Science.gov

Sample records for advancement era project

  1. Environmentally Responsible Aviation (ERA) Project - N+2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report

    NASA Technical Reports Server (NTRS)

    Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping

    2011-01-01

    NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.

  2. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  3. WMSMonitor advancements in the EMI era

    NASA Astrophysics Data System (ADS)

    Cesini, D.; Dongiovanni, D.; Fattibene, E.

    2012-12-01

    In production Grid infrastructures deploying EMI (European Middleware Initiative) middleware release, the Workload Management System (WMS) is the service responsible for the distribution of user tasks to the remote computing resources. Monitoring the reliability of this service, the job lifecycle and the workflow pattern generated by different user communities is an important and challenging activity. Initially designed to monitor and manage a distributed cluster of gLite WMS/LB (Logging and Bookeeping) services, WMSMonitor has proved to be a useful and flexible tool for a variety of user categories. In fact, after asynchronously extracting information from all monitored instances, WMSMonitor re-aggregates it by different keys (WMS instance, Virtual Organization, User, etc.) providing insight both on services status and on their usage to service administrators, developers, advanced Grid users and performance testers. The positive feedback on WMSMonitor utilization from various production Grid sites pushed us to improve the tool to enhance its flexibility and scalability exploiting a new architecture. Moreover the tool has been made compliant to recent evolutions in the monitored services. We therefore present the new version of WMSMonitor which can monitor EMI WMS/LB services and shows an improved user interface allowing better report capabilities. Among main novelties, we mention the collection of Job Submission Service (JSS) error type statistics and the adoption of ActiveMQ messaging system which now allows multiple data consumers to exploit collected information. Finally, it is worth to mention that the implemented architecture and the exploitation of a messaging layer commonly adopted in EMI Grid applications make WMSMonitor a flexible tool that can be easily extended to monitor other Grid services.

  4. Advances in sickle cell therapies in the hydroxyurea era.

    PubMed

    Field, Joshua J; Nathan, David G

    2014-12-16

    In the hydroxyurea era, insights into mechanisms downstream of erythrocyte sickling have led to new therapeutic approaches for patients with sickle cell disease (SCD). Therapies have been developed that target vascular adhesion, inflammation and hemolysis, including innovative biologics directed against P-selectin and invariant natural killer T cells. Advances in hematopoietic stem cell transplant and gene therapy may also provide more opportunities for cures in the near future. Several clinical studies are underway to determine the safety and efficacy of these new treatments. Novel approaches to treat SCD are desperately needed, since current therapies are limited and rates of morbidity and mortality remain high.

  5. Project development in a new era

    SciTech Connect

    Vold, J.N.

    1995-12-31

    This paper reviews the business making processes being used in the Norwegian oil industry to help optimize the development of their offshore oil resources. It reviews their resource development strategies in a competitive market to reduce overall development costs. It also discusses the current status of offshore oil in Norway, the market for this oil, and sources of competition for the oil market. Finally the paper describes operation and development projects in the offshore areas to demonstrate the optimal methods for development.

  6. The Employment Retention and Advancement Project: Paths to Advancement for Single Parents. Executive Summary

    ERIC Educational Resources Information Center

    Miller, Cynthia; Deitch, Victoria; Hill, Aaron

    2010-01-01

    Between 2000 and 2003, the Employment Retention and Advancement (ERA) project identified and implemented a diverse set of innovative models designed to promote employment stability and wage or earnings progression among low-income individuals, mostly current or former welfare recipients. The project's goal was to determine which strategies could…

  7. The Employment Retention and Advancement Project: Paths to Advancement for Single Parents

    ERIC Educational Resources Information Center

    Miller, Cynthia; Deitch, Victoria; Hill, Aaron

    2010-01-01

    Between 2000 and 2003, the Employment Retention and Advancement (ERA) project identified and implemented a diverse set of innovative models designed to promote employment stability and wage or earnings progression among low-income individuals, mostly current or former welfare recipients. The project's goal was to determine which strategies could…

  8. The advanced LIGO detectors in the era of first discoveries

    NASA Astrophysics Data System (ADS)

    Sigg, Daniel

    2016-08-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Ob- servatory (LIGO) held their first observation run between September 2015 and January 2016. The product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14th, 2015 the Advanced LIGO detectors observed the transient gravitational-wave signal GW150914, determined to be the coalescence of two black holes, launching the era of gravitational-wave astronomy. We present the main features of the detectors that enabled this observation. At its core Advanced LIGO is a multi-kilometer long Michelson interferometer employing optical resonators to enhance its sensitivity. Four very pure and homogeneous fused silica optics with excellent figure quality serve as the test masses. The displacement produced by the event GW150914 was one 200th of a proton radius. It was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of three improvement in the signal-to-noise ratio for binary black hole systems similar in masses to GW150914.

  9. Advanced Network Security Project

    DTIC Science & Technology

    2005-12-01

    network. The network observed was the Abilene network of the University Consortium for Advanced Internet Development (UCAID), often known as “ Internet2 ...for Advanced Internet Development (UCAID), often known as “ Internet2 .” This contract was heavily operational in nature, as opposed to a contract

  10. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    SciTech Connect

    Kennedy, Ellen P.; Harvey, David W.

    2006-09-08

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  11. Advanced Turboprop Project

    NASA Technical Reports Server (NTRS)

    Hager, Roy D.; Vrabel, Deborah

    1988-01-01

    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.

  12. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  13. Application of Deterministic and Probabilistic System Design Methods and Enhancements of Conceptual Design Tools for ERA Project

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Schutte, Jeff S.

    2016-01-01

    This report documents work done by the Aerospace Systems Design Lab (ASDL) at the Georgia Institute of Technology, Daniel Guggenheim School of Aerospace Engineering for the National Aeronautics and Space Administration, Aeronautics Research Mission Directorate, Integrated System Research Program, Environmentally Responsible Aviation (ERA) Project. This report was prepared under contract NNL12AA12C, "Application of Deterministic and Probabilistic System Design Methods and Enhancement of Conceptual Design Tools for ERA Project". The research within this report addressed the Environmentally Responsible Aviation (ERA) project goal stated in the NRA solicitation "to advance vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions." To identify technology and vehicle solutions that simultaneously meet these three metrics requires the use of system-level analysis with the appropriate level of fidelity to quantify feasibility, benefits and degradations, and associated risk. In order to perform the system level analysis, the Environmental Design Space (EDS) [Kirby 2008, Schutte 2012a] environment developed by ASDL was used to model both conventional and unconventional configurations as well as to assess technologies from the ERA and N+2 timeframe portfolios. A well-established system design approach was used to perform aircraft conceptual design studies, including technology trade studies to identify technology portfolios capable of accomplishing the ERA project goal and to obtain accurate tradeoffs between performance, noise, and emissions. The ERA goal, shown in Figure 1, is to simultaneously achieve the N+2 benefits of a cumulative noise margin of 42 EPNdB relative to stage 4, a 75 percent reduction in LTO NOx emissions relative to CAEP 6 and a 50 percent reduction in fuel burn relative to the 2005 best in class aircraft. There were 5 research task associated with this research: 1) identify technology collectors, 2) model

  14. Advanced engineering environment pilot project.

    SciTech Connect

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  15. Advanced engineering environment collaboration project.

    SciTech Connect

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  16. Advanced Life Support Project Plan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  17. Survival among patients with advanced renal cell carcinoma in the pretargeted versus targeted therapy eras.

    PubMed

    Li, Pengxiang; Wong, Yu-Ning; Armstrong, Katrina; Haas, Naomi; Subedi, Prasun; Davis-Cerone, Margaret; Doshi, Jalpa A

    2016-02-01

    Between December 2005 and October 2009, FDA approved six targeted therapies shown to significantly extend survival for advanced renal cell carcinoma (RCC) patients in clinical trials. This study aimed to examine changes in survival between the pretargeted and targeted therapy periods in advanced RCC patients in a real-world setting. Utilizing the 2000-2010 SEER Research files, a pre-post study design with a contemporaneous comparison group was employed to examine differences in survival outcomes for patients diagnosed with advanced RCC (study group) or advanced prostate cancer (comparison group, for whom no significant treatment innovations happened during this period) across the pretargeted therapy era (2000-2005) and the targeted therapy era (2006-2010). RCC patients diagnosed in the targeted therapy era (N = 6439) showed improved survival compared to those diagnosed in the pretargeted therapy era (N = 7231, hazard ratio (HR) for all-cause death: 0.86, P < 0.01), while the change between the pre-post periods was not significant for advanced prostate cancer patients (HR: 0.97, P = 0.08). Advanced RCC patients had significantly larger improvements in overall survival compared to advanced prostate cancer patients (z = 4.31; P < 0.01). More detailed year-to-year analysis revealed greater survival improvements for RCC in the later years of the posttargeted period. Similar results were seen for cause-specific survival. Subgroup analyses by nephrectomy status, age, and gender showed consistent findings. Patients diagnosed with advanced RCC during the targeted therapy era had better survival outcomes than those diagnosed during the pretargeted therapy era. Future studies should examine the real-world survival improvements directly associated with targeted therapies.

  18. The Employment Retention and Advancement Project: Results from the Valuing Individual Success and Increasing Opportunities Now (VISION) Program in Salem, Oregon

    ERIC Educational Resources Information Center

    Molina, Frieda; Cheng, Wan-Lae; Hendra, Richard

    2008-01-01

    The Employment Retention and Advancement (ERA) project is the most comprehensive effort thus far to ascertain which approaches help welfare recipients and other low-income people stay steadily employed and advance in their jobs. Launched in 1999 and slated to end in 2009, the ERA project encompasses more than a dozen demonstration programs and…

  19. Can Low-Income Single Parents Move up in the Labor Market? Findings from the Employment Retention and Advancement Project. Practitioner Brief

    ERIC Educational Resources Information Center

    Miller, Cynthia; Deitch, Victoria; Hill, Aaron

    2011-01-01

    The Employment Retention and Advancement (ERA) project evaluated strategies to promote employment stability among low-income workers. This practitioner brief examines the work, education, and training patterns of single parents in the ERA project. Three years after entering the study, only one in four single parents had advanced. Most of the…

  20. The Employment Retention and Advancement Project: How Effective Are Different Approaches Aiming to Increase Employment Retention and Advancement? Final Impacts for Twelve Models. Executive Summary

    ERIC Educational Resources Information Center

    Hendra, Richard; Dillman, Keri-Nicole; Hamilton, Gayle; Lundquist, Erika; Martinson, Karin; Wavelet, Melissa

    2010-01-01

    This report summarizes the final impact results for the national Employment Retention and Advancement (ERA) project. This project tested, using a random assignment design, the effectiveness of numerous programs intended to promote steady work and career advancement. All the programs targeted current and former welfare recipients and other low-wage…

  1. Advancing Crop Transformation in the Era of Genome Editing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than thirty years of technological advances. Genome editing provides new opportunities to...

  2. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  3. Advanced Placement English in a Solipsistic Era: How Structuralism Can Renew Meaning

    ERIC Educational Resources Information Center

    Rauh, John

    2014-01-01

    Advanced Placement (AP) courses within secondary English education can fail to meet the needs of gifted students in the postmodern era. Because AP courses often are standardized, despite the College Board's efforts to allow freedom in course design, gifted students, as especially attuned to discrepancies between practice and theory, are being…

  4. Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Moe, Karen

    2011-01-01

    This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.

  5. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  6. Psychiatric education in an era of rapidly occurring scientific advances.

    PubMed

    Rubin, Eugene H; Zorumski, Charles F

    2003-04-01

    Scientific advances in the fields of molecular biology, neurobiology, pharmacology, epidemiology, genetics, neuroimaging, and cognitive neuroscience are influencing psychiatric diagnosis and treatment, and this influence will grow substantially in the future. The current shortage of psychiatrists will increase over the next several decades, resulting in the need to train primary care physicians in basic psychiatric care and the use of non-physician mental health professionals to administer time-intensive, formal psychotherapies. The juxtaposition of these two trends-an increasing scientific influence on the clinical practice of psychiatry and fewer psychiatrists to deliver that treatment-is cause for changes in the approach to psychiatric education. In addressing these issues, the authors suggest that (1) psychiatry should be more integrated into undergraduate medical education in both basic science and clinical curricula, (2) residents in primary care disciplines should have more direct exposure to psychiatric training, (3) joint instructional experiences involving psychiatry and primary care residents should be encouraged, (4) psychiatry residency programs should maintain flexibility in order to incorporate rapid advances in diagnostic procedures and treatments into residency training, (5) research experience should be integrated into psychiatry residency programs, and (6) departments of psychiatry must develop the leadership and expertise necessary to implement the incorporation of rapidly advancing scientific discoveries into the psychiatric curriculum.

  7. Parametric instability in the high power era of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Hardwick, Terra; Blair, Carl; Kennedy, Ross; Evans, Matthew; Fritschel, Peter; LIGO Virgo Scientific Collaboration

    2017-01-01

    After the first direct detections of gravitational waves, Advanced LIGO aims to increase its detection rate during the upcoming science runs through a series of detector improvements, including increased optical power. Higher circulating power increases the likelihood for three-mode parametric instabilities (PIs), in which mechanical modes of the mirrors scatter light into higher-order optical modes in the cavity and the resulting optical modes reinforce the mechanical modes via radiation pressure. Currently, LIGO uses two PI mitigation methods: thermal tuning to change the cavity g-factor and effectively decrease the frequency overlap between mechanical and optical modes, and active damping of mechanical modes with electrostatic actuation. While the combined methods provide stability at the current operating power, there is evidence that these will be insufficient for the next planned power increase; future suppression methods including acoustic mode dampers and dynamic g-factor modulation are discussed.

  8. Advancing Crop Transformation in the Era of Genome Editing.

    PubMed

    Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal

    2016-07-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.

  9. Advanced Energy Projects, FY 1993

    NASA Astrophysics Data System (ADS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase 1 SBIR projects, and Phase 2 SBIR projects. Investigator and institutional indexes are included.

  10. Advancing Cancer Prevention and Behavior Theory in the Era of Big Data.

    PubMed

    Atienza, Audie A; Serrano, Katrina J; Riley, William T; Moser, Richard P; Klein, William M

    2016-09-01

    The era of "Big Data" presents opportunities to substantively address cancer prevention and control issues by improving health behaviors and refining theoretical models designed to understand and intervene in those behaviors. Yet, the terms "model" and "Big Data" have been used rather loosely, and clarification of these terms is required to advance the science in this area. The objectives of this paper are to discuss conceptual definitions of the terms "model" and "Big Data", as well as examine the promises and challenges of Big Data to advance cancer prevention and control research using behavioral theories. Specific recommendations for harnessing Big Data for cancer prevention and control are offered.

  11. Advanced Information System Research Project.

    DTIC Science & Technology

    1980-06-01

    realistic near-term achievements. The research program objectives are to develop , manage , and coordinate activities relating to the following: o... development ; o Development and demonstration of tools, techniques, procedures, and advanced design concepts applicable to future management ... management is consolidated under the Division Property Book Officer. Property book accountability is maintained under the provisions of AR 735-35, and

  12. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  13. The ADVANCE project: Insights and achievments

    SciTech Connect

    1996-12-31

    ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumburg/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. The Insights and Perspectives Compendium is intended to provide useful information to project managers, system developers, and system integrators of future similar ITS implementations. It is intended for those that are technically interested in the ADVANCE Project and have a basic understanding of the project.

  14. Italian IGCC project sets pace for new refining era

    SciTech Connect

    Del Bravo, R.; Starace, F.; Chellini, I.M.; Chiantore, P.V.

    1996-12-09

    A joint venture company, api Energia S.p.A., is starting construction of a 280 mw integrated gasification combined cycle plant (IGCC) that will generate electricity for the Italian grid and steam in a refinery on Italy` Adriatic coast. The refinery will supply the heavy residue for the gasifiers. This is one of the three IGCC plants planned for construction in Italy following the liberalization of the electricity production sector there and the introduction of specific government decrees that regulate the exchange and wheeling of electricity. By the year 2000, approximately 1,300 mw of electricity produced by heavy residues with IGCC will be put on the Italian grid. The paper describes the project, its sponsors plant configuration for gasification, the combined cycle power plant, auxiliary systems, the economics, and contracts.

  15. Development of Research Projects in Advanced Laboratory

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Guha, Suchi

    2008-04-01

    Advanced laboratory serves as a bridge spanning primary physics laboratory and scientific research or industrial activities for undergraduate students. Students not only study modern physics experiments and techniques but also acquire the knowledge of advanced instrumentation. It is of interest to encourage students using the knowledge into research projects at a later stage of the course. We have designed several scientific projects for advanced laboratory to promote student's abilities of independent research. Students work as a team to select the project and search literatures, to perform experiments, and to give presentations. During the research project, instructor only provides necessary equipment for the project without any pre-knowledge of results, giving students a real flavor of scientific research. Our initial attempt has shown some interesting results. We found that students showed a very strong motivation in these projects, and student performances exceeded our expectation. Almost all the students in our first batch of the course have now joined graduate school in Physics and Materials Science. In the future we will also arrange graduate students working with undergraduate students to build a collaborative environment. In addition, a more comprehensive method will be used to evaluate student achievements.

  16. Advancing Cancer Prevention and Behavior Theory in the Era of Big Data

    PubMed Central

    Atienza, Audie A.; Serrano, Katrina J.; Riley, William T.; Moser, Richard P.; Klein, William M.

    2016-01-01

    The era of “Big Data” presents opportunities to substantively address cancer prevention and control issues by improving health behaviors and refining theoretical models designed to understand and intervene in those behaviors. Yet, the terms “model” and “Big Data” have been used rather loosely, and clarification of these terms is required to advance the science in this area. The objectives of this paper are to discuss conceptual definitions of the terms “model” and “Big Data”, as well as examine the promises and challenges of Big Data to advance cancer prevention and control research using behavioral theories. Specific recommendations for harnessing Big Data for cancer prevention and control are offered. PMID:27722147

  17. Genome Project Standards in a New Era of Sequencing

    SciTech Connect

    GSC Consortia; HMP Jumpstart Consortia; Chain, P. S. G.; Grafham, D. V.; Fulton, R. S.; FitzGerald, M. G.; Hostetler, J.; Muzny, D.; Detter, J. C.; Ali, J.; Birren, B.; Bruce, D. C.; Buhay, C.; Cole, J. R.; Ding, Y.; Dugan, S.; Field, D.; Garrity, G. M.; Gibbs, R.; Graves, T.; Han, C. S.; Harrison, S. H.; Highlander, S.; Hugenholtz, P.; Khouri, H. M.; Kodira, C. D.; Kolker, E.; Kyrpides, N. C.; Lang, D.; Lapidus, A.; Malfatti, S. A.; Markowitz, V.; Metha, T.; Nelson, K. E.; Parkhill, J.; Pitluck, S.; Qin, X.; Read, T. D.; Schmutz, J.; Sozhamannan, S.; Strausberg, R.; Sutton, G.; Thomson, N. R.; Tiedje, J. M.; Weinstock, G.; Wollam, A.

    2009-06-01

    For over a decade, genome 43 sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole genome sequencing that requires a careful reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker 'draft', however these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and contributed to many wasted hours of (mis)interpretation. These same novel sequencing technologies have also brought an exponential leap in raw sequencing capability, and at greatly reduced prices that have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The resulting effect is an ever-widening gap between drafted and finished genomes that only promises to continue (Figure 1), hence there is an urgent need to distinguish good and poor datasets. The sequencing institutes in the authorship, along with the NIH's Human Microbiome Project Jumpstart Consortium (3), strongly believe that a new set of standards is required for genome sequences. The following represents a set of six community-defined categories of genome sequence standards that better reflect the

  18. Advanced Selling: A Comprehensive Course Sales Project

    ERIC Educational Resources Information Center

    Yarrington-Young, Susan; Castleberry, Stephen B.; Coleman, Joshua T.

    2016-01-01

    A comprehensive project for the Advanced Selling course that has been tested at three universities is introduced. After selecting an industry and a company, students engage in a complete industry analysis, a company sales analysis, a sales-specific SWOT analysis, complete a ride day with a salesperson in that firm, then present their findings in a…

  19. Advanced energy projects FY 1997 research summaries

    SciTech Connect

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  20. Advanced energy projects FY 1994 research summaries

    SciTech Connect

    Not Available

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  1. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10^{-23}/sqrt[Hz] at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

  2. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10-23/√{Hz } at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

  3. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  4. Support of an Active Science Project by a Large Information System: Lessons for the EOS Era

    NASA Technical Reports Server (NTRS)

    Angelici, Gary L.; Skiles, J. W.; Popovici, Lidia Z.

    1993-01-01

    The ability of large information systems to support the changing data requirements of active science projects is being tested in a NASA collaborative study. This paper briefly profiles both the active science project and the large information system involved in this effort and offers some observations about the effectiveness of the project support. This is followed by lessons that are important for those participating in large information systems that need to support active science projects or that make available the valuable data produced by these projects. We learned in this work that it is difficult for a large information system focused on long term data management to satisfy the requirements of an on-going science project. For example, in order to provide the best service, it is important for all information system staff to keep focused on the needs and constraints of the scientists in the development of appropriate services. If the lessons learned in this and other science support experiences are not applied by those involved with large information systems of the EOS (Earth Observing System) era, then the final data products produced by future science projects may not be robust or of high quality, thereby making the conduct of the project science less efficacious and reducing the value of these unique suites of data for future research.

  5. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  6. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  7. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect

    1996-09-01

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  8. Ceramic technology for advanced heat engines project

    SciTech Connect

    Not Available

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  9. An overview of reference user services during the ATDRSS (Advanced Tracking and Data Relay Satellite System) era

    NASA Astrophysics Data System (ADS)

    Weinberg, Aaron

    1989-02-01

    The Tracking and Data Relay Satellite System (TDRSS) is an integral part of the overall NASA Space Network (SN) that will continue to evolve into the 1990's. Projections for the first decade of the 21st century indicate the need for an SN evolution that must accommodate growth int he LEO user population and must further support the introduction of new/improved user services. A central ingredient of this evolution is an Advanced TDRSS (ATDRSS) follow-on to the current TDRSS that must initiate operations by the late 1990's in a manner that permits an orderly transition from the TDRSS to the ATDRSS era. An SN/ATDRSS architectural and operational concept that will satisfy the above goals is being developed. To this date, an SN/ATDRSS baseline concept was established that provides users with an end-to-end data transport (ENDAT) service. An expanded description of the baseline ENDAT concept, from the user perspective, is provided with special emphasis on the TDRSS/ATDRSS evolution. A high-level description of the end-to-end system that identifies the role of ATDRSS is presented; also included is a description of the baseline ATDRSS architecture and its relationship with the TDRSS 1996 baseline. Other key features of the ENDAT service are then expanded upon, including the multiple grades of service, and the RF telecommunications/tracking services to be available. The ATDRSS service options are described.

  10. An overview of reference user services during the ATDRSS (Advanced Tracking and Data Relay Satellite System) era

    NASA Technical Reports Server (NTRS)

    Weinberg, Aaron

    1989-01-01

    The Tracking and Data Relay Satellite System (TDRSS) is an integral part of the overall NASA Space Network (SN) that will continue to evolve into the 1990's. Projections for the first decade of the 21st century indicate the need for an SN evolution that must accommodate growth int he LEO user population and must further support the introduction of new/improved user services. A central ingredient of this evolution is an Advanced TDRSS (ATDRSS) follow-on to the current TDRSS that must initiate operations by the late 1990's in a manner that permits an orderly transition from the TDRSS to the ATDRSS era. An SN/ATDRSS architectural and operational concept that will satisfy the above goals is being developed. To this date, an SN/ATDRSS baseline concept was established that provides users with an end-to-end data transport (ENDAT) service. An expanded description of the baseline ENDAT concept, from the user perspective, is provided with special emphasis on the TDRSS/ATDRSS evolution. A high-level description of the end-to-end system that identifies the role of ATDRSS is presented; also included is a description of the baseline ATDRSS architecture and its relationship with the TDRSS 1996 baseline. Other key features of the ENDAT service are then expanded upon, including the multiple grades of service, and the RF telecommunications/tracking services to be available. The ATDRSS service options are described.

  11. I-5/Gilman advanced technology bridge project

    NASA Astrophysics Data System (ADS)

    Lanza di Scalea, Francesco; Karbhari, Vistasp M.; Seible, Frieder

    2000-04-01

    The UCSD led I-5/Gilman Advanced Technology Bridge Project will design and construct a fully functional traffic bridge of advanced composite materials across Interstate 5 in La Jolla, California. Its objective is to demonstrate the use of advanced composite technologies developed by the aerospace industry in commercial applications to increase the life expectancy of new structures and for the rehabilitation of aging infrastructure components. The structure will be a 450 ft long, 60 ft wide cable-stayed bridge supported by a 150 ft A-frame pylon with two vehicular lanes, two bicycle lanes, pedestrian walkways and utility tunnels. The longitudinal girders and pylon will be carbon fiber shells filled with concrete. The transverse deck system will consist of hollow glass/carbon hybrid tubes and a polypropylene fiber reinforced concrete deck with an arch action. Selected cables will be composite. The bridge's structural behavior will be monitored to determine how advanced composite materials perform in civil infrastructure applications. The bridge will be instrumented to obtain performance and structural health data in real time and, where possible, in a remote fashion. The sensors applied to the bridge will include electrical resistance strain gages, fiberoptic Bragg gratings and accelerometers.

  12. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

  13. Various advanced design projects promoting engineering education

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  14. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.

  15. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  16. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

  17. The advanced software development workstation project

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Pitman, Charles L.

    1991-01-01

    The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.

  18. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  19. Advanced gasification projects. [Support research needs; contains list of advanced gasification projects supported by US DOE

    SciTech Connect

    Not Available

    1982-02-01

    An analysis of the needs for coal gasification reveals the following principal categories of information gaps that can be filled by programs already in progress or those readily initiated. The gaps are technology base needs required for successful application of both currently available and advanced gasification processes. The need areas are classified as follows: Reactor design/performance, gas cleaning/cooling separation, acid-gas removal/gas shift/gas conversion, wastewater treatment, and general data base on both state-of-the-art and advanced technologies. During the future operating and optimization phases of most of the coal gasification projects, when additional troubles will surface, the technical support program described herein will have provided the additional data base needed to correct deficiencies and/or to advance the state-of-the-art. The report describes US DOE supported projects in this area: brief description, title, contractor, objective, accomplishments, current work and possible application.

  20. Performance of Project Advance Students on the AP Biology Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Project Advance biology students (N=60) with Advanced Placement (AP) candidates (N=15,947) nationally on College Entrance Examination Board AP biology test. The research, conducted to determine comparability of the program as valid measures of academic achievement, determined that Project Advance students scored above the…

  1. Faculty Development for Institutional Change: Lessons from an Advance Project

    ERIC Educational Resources Information Center

    Laursen, Sandra; Rocque, Bill

    2009-01-01

    The ADVANCE Institutional Transformation projects are remarkably diverse in their theories of action and choice of strategies. However, faculty development plays a role in many, and it was the central change strategy chosen by Leadership Education for Advancement and Promotion (LEAP), the 2002-2008 ADVANCE project at the University of Colorado at…

  2. AGT (Advanced Gas Turbine) technology project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated

  3. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  4. Advanced nuclear reactor public opinion project

    SciTech Connect

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  5. The TPS Advanced Development Project for CEV

    NASA Technical Reports Server (NTRS)

    Reuther, James; Wercinski, Paul; Venkatapathy, Ethiraj; Ellerby, Don; Raiche, George; Bowman, Lynn; Jones, Craig; Kowal, John

    2006-01-01

    The CEV TPS Advanced Development Project (ADP) is a NASA in-house activity for providing two heatshield preliminary designs (a Lunar direct return as well as a LEO only return) for the CEV, including the TPS, the carrier structure, the interfaces and the attachments. The project s primary objective is the development of a single heatshield preliminary design that meets both Lunar direct return and LEO return requirements. The effort to develop the Lunar direct return capable heatshield is considered a high risk item for the NASA CEV development effort due to the low TRL (approx. 4) of the candidate TPS materials. By initiating the TPS ADP early in the development cycle, the intent is to use materials analysis and testing in combination with manufacturing demonstrations to reduce the programmatic risk of using advanced TPS technologies in the critical path for CEV. Due to the technical and schedule risks associated a Lunar return heatshield, the ADP will pursue a parallel path design approach, whereby a back-up TPS/heatshield design that only meets LEO return requirements is also developed. The TPS materials and carrier structure design concept selections will be based on testing, analysis, design and evaluation of scalability and manufacturing performed under the ADP. At the TPS PDR, the preferred programmatic strategy is to transfer the continued (detailed) design, development, testing and evaluation (DDT&E) of both the Lunar direct and LEO return designs to a government/prime contractor coordinated sub-system design team. The CEV prime contractor would have responsibility for the continued heatshield sub-system development. Continued government participation would include analysis, testing and evaluation as well as decision authority at TPS Final System Decision (FSD) (choosing between the primary and back-up heatshields) occurring between TPS PDR and TPS Critical Design Review (CDR). After TPS FSD the prime CEV contractor will complete the detailed design

  6. Advanced Gas Turbine (AGT) technology development project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the final in a series of Technical Summary Reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorizrd under NASA Contract DEN3-167 and sponsored by the DOE. The project was administered by NASA-Lewis Research Center of Cleveland, Ohio. Plans and progress are summarized for the period October 1979 through June 1987. This program aims to provide the US automotive industry the high risk, long range technology necessary to produce gas turbine engines for automobiles that will reduce fuel consumption and reduce environmental impact. The intent is that this technology will reach the marketplace by the 1990s. The Garrett/Ford automotive AGT was designated AGT101. The AGT101 is a 74.5 kW (100 shp) engine, capable of speeds to 100,000 rpm, and operates at turbine inlet temperatures to 1370 C (2500 F) with a specific fuel consumption level of 0.18 kg/kW-hr (0.3 lbs/hp-hr) over most of the operating range. This final report summarizes the powertrain design, power section development and component/ceramic technology development.

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing

  8. The Advanced Software Development and Commercialization Project

    SciTech Connect

    Gallopoulos, E. . Center for Supercomputing Research and Development); Canfield, T.R.; Minkoff, M.; Mueller, C.; Plaskacz, E.; Weber, D.P.; Anderson, D.M.; Therios, I.U. ); Aslam, S.; Bramley, R.; Chen, H.-C.; Cybenko, G.; Gallopoulos, E.; Gao, H.; Malony, A.; Sameh, A. . Center for Supercomputing Research

    1990-09-01

    This is the first of a series of reports pertaining to progress in the Advanced Software Development and Commercialization Project, a joint collaborative effort between the Center for Supercomputing Research and Development of the University of Illinois and the Computing and Telecommunications Division of Argonne National Laboratory. The purpose of this work is to apply techniques of parallel computing that were pioneered by University of Illinois researchers to mature computational fluid dynamics (CFD) and structural dynamics (SD) computer codes developed at Argonne. The collaboration in this project will bring this unique combination of expertise to bear, for the first time, on industrially important problems. By so doing, it will expose the strengths and weaknesses of existing techniques for parallelizing programs and will identify those problems that need to be solved in order to enable wide spread production use of parallel computers. Secondly, the increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more accurate engineering models that involve fluid and structural dynamics. In order to realize the above two goals, we are considering two production codes that have been developed at ANL and are widely used by both industry and Universities. These are COMMIX and WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor design and safety and as a design tool for the casting industry. The second is a three-dimensional structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These codes are currently available for both sequential and vector computers only. Our main goal is to port and optimize these two codes on shared memory multiprocessors. In so doing, we shall establish a process that can be followed in optimizing other sequential or vector engineering codes for parallel processors.

  9. Advanced Gas Turbine (AGT) Technology Development Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the eleventh in the series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Standard Oil Company, and AiResearch Casting Company. This report covers plans and progress for the period July 1, 1985 through June 30, 1986. Technical progress during the reported period was highlighted by the 85-hour endurance run of an all-ceramic engine operating in the 2000 to 2250 F temperature regime. Component development continued in the areas of the combustion/fuel injection system, regenerator and seals system, and ceramic turbine rotor attachment design. Component rig testing saw further refinements. Ceramic materials showed continued improvements in required properties for gas turbine applications; however, continued development is needed before performance and reliability goals can be set.

  10. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  11. The ECLSS Advanced Automation Project Evolution and Technology Assessment

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.

  12. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology

  13. Advanced Energy Projects: FY 1993, Research summaries

    SciTech Connect

    Not Available

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  14. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray

    2016-07-12

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  15. Advancing Project Management in Learning Organizations

    ERIC Educational Resources Information Center

    Bourne, Lynda; Walker, Derek H. T.

    2004-01-01

    Effective project managers are required to have both "hard" technical skills to help control the iron triangle of time, cost and functional scope as well as relationship management skills to work effectively with people and get the best out of them. This paper argues that project managers also need a third skill: we refer to it as tapping into the…

  16. SSME Advanced Health Management: Project Overview

    NASA Technical Reports Server (NTRS)

    Plowden, John

    2000-01-01

    This document is the viewgraphs from a presentation concerning the development of the Health Management system for the Space Shuttle Main Engine (SSME). It reviews the historical background of the SSME Advanced Health Management effort through the present final Health management configuration. The document includes reviews of three subsystems to the Advanced Health Management System: (1) the Real-Time Vibration Monitor System, (2) the Linear Engine Model, and (3) the Optical Plume Anomaly Detection system.

  17. Advanced Technology Display House. Volume 1: Project Summary and Procedures

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.

  18. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. Capabilities include anomaly detection, fault isolation, prognostics and physics-based diagnostics.

  19. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2015-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics.

  20. The environmental control and life support system advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  1. Advanced Biology [Sahuarita High School Career Curriculum Project.

    ERIC Educational Resources Information Center

    Christensen, Larry

    This course in advanced biology is entitled "Advanced Genetics" and is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of seven units of study, and 15 behavioral objectives relating to these units are stated. The topics covered include a review of genetics,…

  2. Defense Advanced Research Projects Agency Strategic Plan

    DTIC Science & Technology

    2007-02-01

    22 Figure 22: Warfighters in a DARPA Training Superiority program classroom ...technical Breakthroughs in DARPA or other research programs; program managers, it is easy to make decisions. This managemet style is essential to...Superiority program classroom . emotional involvement of multi-user computer games. 3.4. Advanced Manned and Unmanned Systems DARPA is working with the Army

  3. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  4. Advanced energy projects; FY 1995 research summaries

    SciTech Connect

    1995-09-01

    The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

  5. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; Ursic, Joseph

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  6. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements prognostics capabilities to predict when a component, system or subsystem will no longer meet desired functional or performance criteria, called the "end of life." The capability also provides an assessment of the "remaining useful life" of a hardware component.

  7. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.

  8. Advanced Fingerprint Analysis Project Fingerprint Constituents

    SciTech Connect

    GM Mong; CE Petersen; TRW Clauss

    1999-10-29

    The work described in this report was focused on generating fundamental data on fingerprint components which will be used to develop advanced forensic techniques to enhance fluorescent detection, and visualization of latent fingerprints. Chemical components of sweat gland secretions are well documented in the medical literature and many chemical techniques are available to develop latent prints, but there have been no systematic forensic studies of fingerprint sweat components or of the chemical and physical changes these substances undergo over time.

  9. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  10. College Credit Earned in High School: Comparing Student Performance in Project Advance and Advanced Placement.

    ERIC Educational Resources Information Center

    Mercurio, Joseph A.; And Others

    1983-01-01

    Syracuse University's Project Advance (one of the first high school college cooperative programs in the United States through which college courses, taught in high schools by high school faculty, are taken for college credit) is described. (MLW)

  11. The IDA Advanced Technology Combat Simulation Project

    DTIC Science & Technology

    1990-09-01

    Codes Dt Avail and/or r DtDDist Special4 A I I ! I I 5 PREFACE This paper was prepared as part of IDA Project 9000-623 under the IDA Central Research...Grotte, Ken Ratkiewicz , Phillip Merkey, Paul B. Schneck, Eleanor L. Schwartz, Shawn Sheridan, William Stoltz, Victor U.goff, Lowell Miller, Valyncia...benefit from the use of these methods. v HI I CONTENTS1 P R E F A C E

  12. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    ERIC Educational Resources Information Center

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  13. Advancing climate dynamics toward reliable regional climate projections

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping

    2013-06-01

    With a scientific consensus reached regarding the anthropogenic effect on global mean temperature, developing reliable regional climate projections has emerged as a new challenge for climate science. A national project was launched in China in 2012 to study ocean's role in regional climate change. This paper starts with a review of recent advances in the study of regional climate response to global warming, followed by a description of the Chinese project including the rationale, objectives, and plan for field observations. The 15 research articles that follow in the special issue are highlighted, representing some of the initial results from the project.

  14. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

  15. Advanced Placement Chemistry: Project Advance and the Advanced Placement Program: A Comparison of Students' Performance on the AP Chemistry Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Syracuse University Project Advance (PA) chemistry students (N=35) with advanced placement (AP) candidates on the AP chemistry examination. PA students scored slightly above the national average on the examination, and students who performed well (B or better) in AP chemistry also did well on the examination. (JN)

  16. Advancing a New Era of Energy Delivery in the West (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This 2-page fact sheet provides a high-level overview of the Western Area Power Administration's Transmission Infrastructure Program, including background, purpose, goals, eligibility criteria, and current projects.

  17. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  18. MONTE CARLO ADVANCES FOR THE EOLUS ASCI PROJECT

    SciTech Connect

    J. S. HENDRICK; G. W. MCKINNEY; L. J. COX

    2000-01-01

    The Eolus ASCI project includes parallel, 3-D transport simulation for various nuclear applications. The codes developed within this project provide neutral and charged particle transport, detailed interaction physics, numerous source and tally capabilities, and general geometry packages. One such code is MCNPW which is a general purpose, 3-dimensional, time-dependent, continuous-energy Monte Carlo fully-coupled N-Particle transport code. Significant advances are also being made in the areas of modern software engineering and parallel computing. These advances are described in detail.

  19. Feasibility and Timing of Cytoreduction Surgery in Advanced (Metastatic or Recurrent) Gastrointestinal Stromal Tumors During the Era of Imatinib

    PubMed Central

    Chang, Shih-Chun; Liao, Chien-Hung; Wang, Shang-Yu; Tsai, Chun-Yi; Chiang, Kun-Chun; Cheng, Chi-Tung; Yeh, Ta-Sen; Chen, Yen-Yang; MA, Ming-Chun; Liu, Chien-Ting; Yeh, Chun-Nan

    2015-01-01

    Abstract The prognosis of advanced gastrointestinal stromal tumors (GISTs) was dramatically improved in the era of imatinib. Cytoreduction surgery was advocated as an additional treatment for advanced GISTs, especially when patients having poor response to imatinib or developing resistance to it. However, the efficacy and benefit of cytoreduction were still controversial. Likewise, the sequence between cytoreduction surgery and imatinib still need evaluation. In this study, we tried to assess the feasibility and efficiency of cytoreduction in advanced GISTs. Furthermore, we analyzed the impact of timing of the cytoreduction surgery on the prognosis of advanced GISTs. We conducted a prospective collecting retrospective review of patients with advanced GISTs (metastatic, unresectable, and recurrent GISTs) treated in Chang Gung memorial hospital (CGMH) since 2001 to 2013. We analyzed the impact of cytoreduction surgery to response to imatinib, progression-free survival (PFS), and overall survival (OS) in patients with advanced GISTs. Moreover, by the timing of cytoreduction to imatinib, we divided the surgical patients who had surgery before imatinib use into early group and those who had surgery after imatinib into late. We compared the clinical response to imatinib, PFS and OS between early and late cytoreduction surgical groups. Totally, 182 patients were enrolled into this study. Seventy-six patients underwent cytoreduction surgery. The demographic characteristics and tumor presentation were similar between surgical and non-surgical groups. The surgical group showed better complete response rate (P < 0.001) and partial response rate (P = 0.008) than non-surgical group. The 1-year, 3-year, and 5-year PFS were significantly superior in surgical group (P = 0.003). The 1-year, 3-year, and 5-year OS were superior in surgical group, but without statistical significance (P = 0.088). Dividing by cytoreduction surgical timing, the demographic

  20. A New ERA in Global Temperature Monitoring with the Advanced Microwave Sounding Unit (AMSU)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.; Christy, John R.

    1999-01-01

    The launch of the first Advanced Microwave Sounding Unit (AMSU) on the NOAA-15 spacecraft on 13 May 1998 marked a significant advance in our ability to monitor global temperatures. Compared to the Microwave Sounding Units (MSU) flying since 1978 on the TIROS-N series of NOAA polar orbiters, the AMSU offers better horizontal, vertical, and radiometric resolutions. It will allow routine monitoring of 1 1 (mostly) separate layers, compared to 2 or 3 with the MSU, including layers in the middle and upper stratosphere (2.5 hPa) where increasing carbon dioxide concentrations should be causing a cooling rate of about 1 deg. C per decade. More precise limb corrections combined with low noise will allow identification of subtle spatial temperature patterns associated with global cyclone activity.

  1. The PACA Project: Convergence of Scientific Research, Social Media and Citizen Science in the Era of Astronomical Big Data

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The Pro-Am Collaborative Astronomy (PACA) project promotes and supports the professional-amateur astronomer collaboration in scientific research via social media and has been implemented in several comet observing campaigns. In 2014, two comet observing campaigns involving pro-am collaborations were initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of The PACA Project that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers in the era of astronmical big data. The empowerment of amateur astronomers vis-à-vis their partnerships with the professional scientists creates a new demographic of data scientists, enabling citizen science of the integrated data from both the professional and amateur communities.While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers. The PACA Project is expanding to include pro-am collaborations on other solar system objects; allow for immersive outreach and include various types of astronomical communities, ranging from individuals, to astronmical societies and telescopic networks. Enabling citizen science research in the era of astronomical big data is a challenge which requires innovative approaches and integration of professional and amateur astronomers with data scientists and some examples of recent projects will be highlighted.

  2. Advanced Gas Turbine (AGT) Technology Development Project annual report

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company. The Project is administered by Mr. Thomas N. Strom, Project Manager, NASA-Lewis Research Center, Cleveland, Ohio. This report covers plans and progress for the period July 1, 1984 through June 30, 1985.

  3. Collaborative Learning in Advanced Supply Systems: The KLASS Pilot Project.

    ERIC Educational Resources Information Center

    Rhodes, Ed; Carter, Ruth

    2003-01-01

    The Knowledge and Learning in Advanced Supply Systems (KLASS) project developed collaborative learning networks of suppliers in the British automotive and aerospace industries. Methods included face-to-face and distance learning, work toward National Vocational Qualifications, and diagnostic workshops for senior managers on improving quality,…

  4. Advanced Botany (Sahuarita High School Career Curriculum Project].

    ERIC Educational Resources Information Center

    Esser, Robert

    This course entitled "Advanced Botany" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of three units of study, and eight behavioral objectives relating to these units are stated. The topics covered include plant cells and taxonomy, functions and…

  5. Advances in understanding itching and scratching: a new era of targeted treatments

    PubMed Central

    Sanders, Kristen M.; Nattkemper, Leigh A.; Yosipovitch, Gil

    2016-01-01

    Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials. PMID:27610225

  6. Cardiovascular proteomics in the era of big data: experimental and computational advances.

    PubMed

    Lam, Maggie P Y; Lau, Edward; Ng, Dominic C M; Wang, Ding; Ping, Peipei

    2016-01-01

    Proteomics plays an increasingly important role in our quest to understand cardiovascular biology. Fueled by analytical and computational advances in the past decade, proteomics applications can now go beyond merely inventorying protein species, and address sophisticated questions on cardiac physiology. The advent of massive mass spectrometry datasets has in turn led to increasing intersection between proteomics and big data science. Here we review new frontiers in technological developments and their applications to cardiovascular medicine. The impact of big data science on cardiovascular proteomics investigations and translation to medicine is highlighted.

  7. Advanced skin, scar and wound care centre for children: A new era of care

    PubMed Central

    Burd, Andrew; Huang, Lin

    2012-01-01

    Advanced wound care centres are now a well established response to the growing epidemic of chronic wounds in the adult population. Is the concept transferable to children? Whilst there is not the same prevalence of chronic wounds in children there are conditions affecting the integumentary system that do have a profound effect on the quality of life of both children and their families. We have identified conditions involving the skin, scars and wounds which contribute to a critical number of potential patients that can justify the setting up of an advanced skin, scar and wound care centre for children. The management of conditions such as giant naevi, extensive scarring and epidermolysis bullosa challenge medical professionals and lead to new and novel treatments to be developed. The variation between and within such conditions calls for a customizing of individual patient care that involves a close relationship between research scientists and clinicians. This is translational medicine of its best and we predict that this is the future of wound care particularly and specifically in children. PMID:23162215

  8. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Metzger, Brian D.

    2016-10-01

    The mergers of binaries containing neutron stars and stellar-mass black holes are among the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. We review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. We focus on those observables that provide the most sensitive diagnostics of the merger physics and the contribution to the synthesis of rapid neutron capture (r-process) elements in the Galaxy. We also outline expected future developments on the observational and theoretical sides of this rapidly evolving field.

  9. Liver transplantation for chronic liver disease: advances and controversies in an era of organ shortages

    PubMed Central

    Prince, M; Hudson, M

    2002-01-01

    Since liver transplantation was first performed in 1968 by Starzl et al, advances in case selection, liver surgery, anaesthetics, and immunotherapy have significantly increased the indications for and success of this operation. Liver transplantation is now a standard therapy for many end stage liver disorders as well as acute liver failure. However, while demand for cadaveric organ grafts has increased, in recent years the supply of organs has fallen. This review addresses current controversies resulting from this mismatch. In particular, methods for increasing graft availability and difficulties arising from transplantation in the context of alcohol related cirrhosis, primary liver tumours, and hepatitis C are reviewed. Together these three indications accounted for 42% of liver transplants performed for chronic liver disease in the UK in 2000. Ethical frameworks for making decisions on patients' suitability for liver transplantation have been developed in both the USA and the UK and these are also reviewed. PMID:11884694

  10. Parameter Estimation for Binary Neutron-star Coalescences with Realistic Noise during the Advanced LIGO Era

    NASA Astrophysics Data System (ADS)

    Berry, Christopher P. L.; Mandel, Ilya; Middleton, Hannah; Singer, Leo P.; Urban, Alex L.; Vecchio, Alberto; Vitale, Salvatore; Cannon, Kipp; Farr, Ben; Farr, Will M.; Graff, Philip B.; Hanna, Chad; Haster, Carl-Johan; Mohapatra, Satya; Pankow, Chris; Price, Larry R.; Sidery, Trevor; Veitch, John

    2015-05-01

    Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than {{10}-3} {{M}⊙ }. The median 90% (50%) credible region for sky localization is ˜ 600 {{deg }2} (˜ 150 {{deg }2}), with 3% (30%) of detected events localized within 100 {{deg }2}. Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible.

  11. NASA Advanced Refrigerator/Freezer Technology Development Project Overview

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.

    1995-01-01

    NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

  12. Advancing Crop Transformation in the Era of Genome Editing[OPEN

    PubMed Central

    Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.

    2016-01-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450

  13. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  14. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Bansal, Narottam P.; Szelagowski, J.; Sokhey, J.; Heffernan, T.; Clegg, J.; Pierluissi, A.; Riedell, J.; Atmur, S.; Wyen, T.; Ursic, J.

    2015-01-01

    Rolls-Royce North American Technologies, Inc. (LibertyWorksLW) began considering the development of CMC exhaust forced mixers in 2008, as a means of obtaining reduced weight and hotter operating temperature capability, while minimizing shape distortion during operation, which would improve mixing efficiency and reduce fuel burn. Increased component durability, enhanced ability to fabricate complex-shaped components, and engine noise reduction are other potential advantages of CMC mixers (compared to metallic mixers). In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project. ERA subtasks, including those focused on CMC components, were formulated with the goal of maturing technology from proof of concept validation (TRL 3) to a systemsubsystem or prototype demonstration in a relevant environment (TRL 6). In April 2010, the NASA Glenn Research Center (GRC) and LibertyWorks jointly initiated a CMC Exhaust System Validation Program within the ERA Project, teaming on CMC exhaust mixer development for subsonic jet engines capable of operating with increased performance. Our initial focus was on designing, fabricating, and characterizing the thrust and acoustic performance of a roughly quarter-scale 16-lobe oxide oxide CMC mixer and tail cone along with a conventional low bypass exhaust nozzle. Support Services, LLC (Allendale, MI) and ATK COI Ceramics, Inc. (COIC, in San Diego, CA) supported the design of a subscale nozzle assembly that consisted of an oxide oxide CMC mixer and center body, with each component mounted on a metallic attachment ring. That design was based upon the operating conditions a mixer would experience in a turbofan engine. Validation of the aerodynamic and acoustic performance of the subscale mixer via testing and the achievement of TRL 4 encouraged the NASALWCOIC team to move to the next phase where a full scale CMC mixer sized for a RR

  15. Advanced exterior sensor project : final report, September 2004.

    SciTech Connect

    Ashby, M. Rodema

    2004-12-01

    This report (1) summarizes the overall design of the Advanced Exterior Sensor (AES) system to include detailed descriptions of system components, (2) describes the work accomplished throughout FY04 to evaluate the current health of the original prototype and to return it to operation, (3) describes the status of the AES and the AES project as of September 2004, and (4) details activities planned to complete modernization of the system to include development and testing of the second-generation AES prototype.

  16. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  17. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  18. Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992

    SciTech Connect

    Not Available

    1993-03-01

    This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

  19. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  20. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  1. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    SciTech Connect

    Chiu, Weihsueh A.; Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P.

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  2. 34 CFR 664.14 - What is an advanced overseas intensive language training project?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is an advanced overseas intensive language... overseas intensive language training project? (a)(1) An advanced overseas intensive language project is... United States when providing intensive advanced foreign language training. (2) Project activities may...

  3. 34 CFR 664.14 - What is an advanced overseas intensive language training project?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is an advanced overseas intensive language... overseas intensive language training project? (a)(1) An advanced overseas intensive language project is... United States when providing intensive advanced foreign language training. (2) Project activities may...

  4. 34 CFR 664.14 - What is an advanced overseas intensive language training project?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is an advanced overseas intensive language... overseas intensive language training project? (a)(1) An advanced overseas intensive language project is... United States when providing intensive advanced foreign language training. (2) Project activities may...

  5. 34 CFR 664.14 - What is an advanced overseas intensive language training project?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is an advanced overseas intensive language... overseas intensive language training project? (a)(1) An advanced overseas intensive language project is... United States when providing intensive advanced foreign language training. (2) Project activities may...

  6. 34 CFR 664.14 - What is an advanced overseas intensive language training project?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is an advanced overseas intensive language... overseas intensive language training project? (a)(1) An advanced overseas intensive language project is... United States when providing intensive advanced foreign language training. (2) Project activities may...

  7. Opportunities for new era projectors

    NASA Astrophysics Data System (ADS)

    Coggshall, William L.

    2009-02-01

    Advances in front projection technology, particularly imager chips and illumination sources, are heralding a whole "New Era" of sub-500 lumen projectors that are significantly smaller and/or cheaper than the classical (500+ lumen) models available up to now. Liquid crystal and MEMS technology imager chips are being joined by MOEMS scanner chips, and lamps are being joined by LEDs and lasers. These New Era models are finding myriad applications, from wall-powered toy and gaming projectors (for which price, not size, is the key consideration) and personal projectors that can be used for a variety of vertical markets, to a host of viewing needs that can be filled by tiny battery-powered pico projectors.

  8. New Competencies in a New Era? Examining the Impact of a Teacher Training Project

    ERIC Educational Resources Information Center

    Dooly, Melinda

    2009-01-01

    This article describes follow-up research aimed at exploring the long-term impact on participants of a teacher training course that integrated a variety of projects focusing on ICT use in language teaching. Internet in education is often promoted for its features that allow for new opportunities for constructivist approaches in the classroom.…

  9. Advanced Engineering Environment FY09/10 pilot project.

    SciTech Connect

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  10. The `advanced DIR-MCFC development' project, an overview

    NASA Astrophysics Data System (ADS)

    Kortbeek, P. J.; Ottervanger, R.

    An overview is given of the approach and mid-term status of the joint European `Advanced DIR-MCFC Development' project, in which BCN, BG plc, GDF, ECN, Stork, Schelde and Sydkraft co-operate. Hospitals are identified as an attractive initial market for cogeneration direct internal reforming-molten carbonate fuel cell (DIR-MCFC) systems in the size of 400 kWe. Innovative system and stack design concepts are being developed for this application. The `SMARTER' system, based on DIR stacks, combines high electric efficiency and a wide operational window with optimal system simplicity and low cost.

  11. Advanced polychromator systems for remote chemical sensing (LDRD project 52575).

    SciTech Connect

    Sinclair, Michael B.; Pfeifer, Kent Bryant; Allen, James Joe

    2005-01-01

    The objective of this LDRD project was to develop a programmable diffraction grating fabricated in SUMMiT V{trademark}. Two types of grating elements (vertical and rotational) were designed and demonstrated. The vertical grating element utilized compound leveraged bending and the rotational grating element used vertical comb drive actuation. This work resulted in two technical advances and one patent application. Also a new optical configuration of the Polychromator was demonstrated. The new optical configuration improved the optical efficiency of the system without degrading any other aspect of the system. The new configuration also relaxes some constraint on the programmable diffraction grating.

  12. Update of the Solar Concentrator Advanced Development Project

    NASA Technical Reports Server (NTRS)

    Corrigan, Robert D.; Peterson, Todd T.; Ehresman, Derik T.

    1989-01-01

    The Solar Concentrator Advanced Development Project, which has achieved the successful design, fabrication, and testing of a full-scale prototypical solar dynamic concentrator, is discussed. The design and fabrication process are summarized, and the test results for the reflective facet optical performance and the concentrator structural repeatability are reported. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen-panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort, which entailed developing a vapor-deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  13. Overview of NREL's Photovoltaic Advanced R D Project

    SciTech Connect

    Surek, T.

    1992-01-01

    The National Renewable Energy Laboratory's (NREL's) Photovoltaic Advanced Research and Development (PV AR D) Project supports the US Department of Energy's National Photovoltaics Program in assisting the development and commercialization of photovoltaics (PV) energy technology. The NREL program is implemented through in-house research and subcontracts, with over 50% of the annual budget awarded through competitive solicitations to universities, large and small businesses, and other research centers. These activities include cost-shared, multiyear, government/industry partnerships and technology initiatives. The research has resulted in a better fundamental understanding of materials, devices, and processes, the achievement of record efficiencies in nearly all PV technology areas, the identification of promising new approaches to low-cost photovoltaics, and the introduction of new PV technology products into system experiments and PV markets. This paper presents an overview of NREL's PV AR D Project in terms of project organization and budgets, near- and long-term project objectives, research participants, and current and future research directions. Recent progress in the in-house and subcontracted research activities is described. 4 refs.

  14. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  15. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  16. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect

    Campbell, J.H.; King-Jones, K.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  17. NOx Emissions Characteristics and Correlation Equations of Two P and W's Axially Staged Sector Combustors Developed Under NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.

    2017-01-01

    Two P&W (Pratt & Whitney)'s axially staged sector combustors have been developed under NASA's Environmentally Responsible Aviation (ERA) project. One combustor was developed under ERA Phase I, and the other was developed under ERA Phase II. Nitrogen oxides (NOx) emissions characteristics and correlation equations for these two sector combustors are reported in this article. The Phase I design was to optimize the NOx emissions reduction potential, while the Phase II design was more practical and robust. Multiple injection points and fuel staging strategies are used in the combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom (Phase I) or on the top only (Phase II) of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve lean burn throughout the combustor yielding very low NOx emissions. The ICAO (International Civil Aviation Organization) landing-takeoff NOx emissions are verified to be 88 percent (Phase I) and 76 percent (Phase II) under the ICAO CAEP/6 (Committee on Aviation Environmental Protection 6th Meeting) standard, exceeding the ERA project goal of 75 percent reduction, and the combustors proved to have stable combustion with room to maneuver on fuel flow splits for operability.

  18. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    NASA Technical Reports Server (NTRS)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  19. Project for the Institution of an Advanced Course in Physics

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  20. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and

  1. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.

    PubMed

    Eckhard, Ulrich; Marino, Giada; Butler, Georgina S; Overall, Christopher M

    2016-03-01

    Proteolytic processing is a pervasive and irreversible post-translational modification that expands the protein universe by generating new proteoforms (protein isoforms). Unlike signal peptide or prodomain removal, protease-generated proteoforms can rarely be predicted from gene sequences. Positional proteomic techniques that enrich for N- or C-terminal peptides from proteomes are indispensable for a comprehensive understanding of a protein's function in biological environments since protease cleavage frequently results in altered protein activity and localization. Proteases often process other proteases and protease inhibitors which perturbs proteolytic networks and potentiates the initial cleavage event to affect other molecular networks and cellular processes in physiological and pathological conditions. This review is aimed at researchers with a keen interest in state of the art systems level positional proteomic approaches that: (i) enable the study of complex protease-protease, protease-inhibitor and protease-substrate crosstalk and networks; (ii) allow the identification of proteolytic signatures as candidate disease biomarkers; and (iii) are expected to fill the Human Proteome Project missing proteins gap. We predict that these methodologies will be an integral part of emerging precision medicine initiatives that aim to customize healthcare, converting reactive medicine into a personalized and proactive approach, improving clinical care and maximizing patient health and wellbeing, while decreasing health costs by eliminating ineffective therapies, trial-and-error prescribing, and adverse drug effects. Such initiatives require quantitative and functional proteome profiling and dynamic disease biomarkers in addition to current pharmacogenomics approaches. With proteases at the pathogenic center of many diseases, high-throughput protein termini identification techniques such as TAILS (Terminal Amine Isotopic Labeling of Substrates) and COFRADIC (COmbined

  2. Advanced nuclear reactor public opinion project. Interim report

    SciTech Connect

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  3. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    SciTech Connect

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  4. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  5. The Hubble Space Telescope Advanced Spectral Library Project

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    2015-08-01

    Advanced Spectral Library (ASTRAL) is a Hubble Large Treasury Project, whose aim is to collect high-quality ultraviolet (1150-3100 Å) spectra of bright stars, utilizing the echelle modes of powerful Space Telescope Imaging Spectrograph; with resolution and signal-to-noise rivaling the best that can be achieved at ground-based observatories in the visible. During HST Cycle 18 (2010-2011), ASTRAL was allocated 146 orbits to record eight representative late-type ("cool") stars, including well-known cosmic denizens like Procyon and Betelgeuse. In Cycle 21 (2013-2014), ASTRAL was awarded an additional 230 orbits to extend the project to the hot side of the H-R diagram: 21 targets covering the O-A spectral types, including household favorites Vega and Sirius. The second part of the program was completed in January 2015. I describe the scientific motivations for observing hot and cool stars in the UV; the unique instrumental characteristics of STIS that enabled a broad survey like ASTRAL; progress in the program to date; and prospects for the future.

  6. The advanced linked extended reconnaissance and targeting technology demonstration project

    NASA Astrophysics Data System (ADS)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  7. The Advanced Scintillator Compton Telescope (ASCOT) balloon project

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Sharma, Tejaswita; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.; Wright, Alex M.

    2016-07-01

    We describe a project to develop new medium-energy gamma-ray instrumentation by constructing and flying a balloon-borne Compton telescope using advanced scintillator materials combined with silicon photomultiplier readouts. There is a need in high-energy astronomy for a medium-energy gamma-ray mission covering the energy range from approximately 0.4 - 20 MeV to follow the success of the COMPTEL instrument on CGRO. We believe that directly building on the legacy of COMPTEL, using relatively robust, low-cost, off-the-shelf technologies, is the most promising path for such a mission. Fortunately, high-performance scintillators, such as Lanthanum Bromide (LaBr3), Cerium Bromide (CeBr3), and p-terphenyl, and compact readout devices, such as silicon photomultipliers (SiPMs), are already commercially available and capable of meeting this need. We have conducted two balloon flights of prototype instruments to test these technologies. The first, in 2011, demonstrated that a Compton telescope consisting of an liquid organic scintillator scattering layer and a LaBr3 calorimeter effectively rejects background under balloon-flight conditions, using time-of-flight (ToF) discrimination. The second, in 2014, showed that a telescope using an organic stilbene crystal scattering element and a LaBr3 calorimeter with SiPM readouts can achieve similar ToF performance. We are now constructing a much larger balloon instrument, an Advanced Scintillator Compton Telescope (ASCOT) with SiPM readout, with the goal of imaging the Crab Nebula at MeV energies in a one-day flight. We expect a 4σ detection up to 1 MeV in a single transit. We present calibration results of the first detector modules, and updated simulations of the balloon instrument sensitivity. If successful, this project will demonstrate that the energy, timing, and position resolution of this technology are sufficient to achieve an order of magnitude improvement in sensitivity in the mediumenergy gamma-ray band, were it to be

  8. Overview and Summary of the Advanced Mirror Technology Development Project

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  9. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  10. USAF advanced terrestrial energy study. Volume 1: Project summary

    NASA Astrophysics Data System (ADS)

    Daniels, E. J.; Yudow, B. D.; Donakowski, T. D.

    1983-04-01

    The objective of this project was to develop a data base of technical and economic performance parameters of selected energy conversion and energy storage devices. The data base includes not only the state-of-the-art (1980) values of performance parameters, but also the expected values of performance parameters in 1985, 1990, and 2000. For energy conversion technologies, performance parameters were developed over a power output from 1.5 to 5000.0 kW. For energy storage technologies, performance parameters were developed over an energy output range equivalent to the power output at continuous annual operation. The following energy conversion technologies were characterized in this data base: Gas turbines -- Closed cycle and Open cycle, (recuperative and nonrecuperative); Diesels -- Turbocompounded, Turbocharged and Adiabatic; Stirlings -- Free piston and Kinematic; Organic Rankine Cycles; Fuel cells -Phosphoric acid, Solid polymer electrolyte and Molten carbonate; Photovoltaics -- Flat plate, Actively cooled and Photochemical; and Wind turbines -- Vertical and horizontal axes. The following energy storage technologies were characterized: Batteries -- Zn/Cl2, Zn/Br2, Ni/Fe, Li-Al/FeS2, Na/S, Advanced sealed lead/acids and Redox Cr-Fe; and Thermal energy storage devices -- CaCl26H2O, Na2SO410H2O, Na2S2O35H2O, Olivine and Magnesite ceramic brick, and Form-stable polyethylene.

  11. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2001-08-31

    The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

  12. Gas turbine critical research and advanced technology (CRT) support project

    NASA Technical Reports Server (NTRS)

    Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.

    1982-01-01

    The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.

  13. An advanced data-acquisition system for wind energy projects

    SciTech Connect

    Simms, D.A. ); Cousineau, K.L. )

    1992-10-01

    NREL has subcontracted with Zond Systems, Inc. to develop an advanced data-acquisition system (ADAS) for wind energy projects. The ADAS can be used to simplify the process of making accurate measurements and analyzing. The system utilizes state-of-the-art electronics and telemetry to provide distributed multi-source, multi-channel data acquisition. Local stand-alone microprocessor-based data acquisition modules (DAMs) can be located near sources of measurement. These allow analog data values to be digitized close to the measurement source, thus eliminating the need for long data runs and slip rings. Signals from digital sensors and transducers can also be directly input to the local DAMS. A PC-based ground station is used to coordinate data transmission to and from all remote DAMS, display real-time values, archive data sets, and process and analyze results. The system is capable of acquiring synchronized time-series data from sensors and transducers under a variety of test configurations in an operational wind-park environment. Data acquisition needs of the wind industry differ significantly from those of most other technologies. Most conventional system designs do not handle data coming from multiple distributed sources, nor do they provide telemetry or the ability to mesh multiple incoming digital data streams. This paper describes the capabilities of the ADAS, and how its design and cost objectives are geared to meet anticipated US wind industry needs.

  14. Final Report for LDRD Project ''A New Era of Research in Aerosol/Cloud/Climate Interactions at LLNL''

    SciTech Connect

    Chuang, C; Bergman, D J; Dignon, J E; Connell, P S

    2002-01-31

    of aerosol/cloud interactions on climate forcing [Chuang and Penner, 1995]. Our research has been recognized as one of a few studies attempting to quantify the effects of anthropogenic aerosols on climate in the IPCC Third Assessment Report [IPCC, 2001]. Our previous assessments of aerosol climate effects were based on a general circulation model (NCAR CCM1) fully coupled to a global tropospheric chemistry model (GRANTOUR). Both models, however, were developed more than a decade ago. The lack of advanced physics representation and techniques in our current models limits us from further exploring the interrelationship between aerosol, cloud, and climate variation. Our objective is to move to a new era of aerosol/cloud/climate modeling at LLNL by coupling the most advanced chemistry and climate models and by incorporating an aerosol microphysics module. This modeling capability will enable us to identify and analyze the responsible processes in aerosol/cloud/climate interactions and therefore, to improve the level of scientific understanding for aerosol climate effects. This state-of-the-art coupled models will also be used to address the relative importance of anthropogenic and natural emissions in the spatial pattern of aerosol climate forcing in order to assess the potential of human induced climate change.

  15. Project Kaleidoscope: Advancing What Works in Undergraduate STEM Education

    NASA Astrophysics Data System (ADS)

    Elrod, S.

    2011-12-01

    In 1989, Project Kaleidoscope (PKAL) published its first report, What Works: Building Natural Science Communities, on reforming undergraduate STEM (science, technology, engineering and mathematics) education. Since then, PKAL has grown into a national organization comprised of a diverse group of over 6500 STEM educators who are committed to advancing "what works." The PKAL mission is to be a national leader in catalyzing the efforts of people, institutions, organizations and networks to move from analysis to action in significantly improving undergraduate student learning and achievement in STEM (science, technology, engineering and mathematics). Specifically, PKAL's strategic goals are to: 1) Promote the development and wider use of evidence-based teaching, learning and assessment approaches, 2) Build individual and organizational capacity to lead change in STEM education, and 3) Engage the broader community of external stakeholders - professional and disciplinary societies, business and industry groups, accreditation organizations, educational associations, governmental agencies, philanthropic organizations - in achieving our mission. PKAL achieves these goals by serving as the nexus of an interconnected and multidisciplinary web of people, ideas, strategies, evidence and resources focused on systemic change in undergraduate STEM education. PKAL also provides resources on critical issues, such as teaching using pedagogies of engagement, and engages interested faculty, campuses and professional societies in national projects and programs focused on cutting edge issues in STEM education. One of these projects - Mobilizing Disciplinary Societies for a Sustainable Future - is engaging eleven disciplinary societies, including the National Association of Geoscience Teachers, in defining specific resources, faculty development programs and goals focused on promoting undergraduate STEM courses that: 1) provide more knowledge about real-world issues; 2) connect these real

  16. Career Advancement through Bilingual Education Skills. Project CABES, 1987-1988.

    ERIC Educational Resources Information Center

    Berney, Tomi D.; Velazquez, Clara

    This report evaluates Project CABES (Career Advancement through Bilingual Education Skills) during its second year of extension of a federal funding cycle at New York's Seward Park High School. The major goal of Project CABES was to provide career advancement skills to 250 Hispanic 9th- through 12-grade students of limited English proficiency…

  17. Advancing Nursing Research in the Visual Era: Reenvisioning the Photovoice Process Across Phenomenological, Grounded Theory, and Critical Theory Methodologies.

    PubMed

    Evans-Agnew, Robin A; Boutain, Doris M; Rosemberg, Marie-Anne S

    Photovoice is a powerful research method that employs participant photography for advancing voice, knowledge, and transformative change among groups historically or currently marginalized. Paradoxically, this research method risks exploitation of participant voice because of weak methodology to method congruence. The purposes of this retrospective article are to revisit current interdisciplinary research using photovoice and to suggest how to advance photovoice by improving methodology-method congruence. Novel templates are provided for improving the photovoice process across phenomenological, grounded theory, and critical theory methodologies.

  18. The value of clinical electrophysiology in the assessment of the eye and visual system in the era of advanced imaging.

    PubMed

    Whatham, Andrew R; Nguyen, Vincent; Zhu, Yuan; Hennessy, Michael; Kalloniatis, Michael

    2014-03-01

    Electrophysiological techniques allow clinical investigations to include a 'dissection' of the visual system. Using suitable electrophysiological techniques, the 'dissection' allows function to be ascribed to the different photoreceptors (rod and cone photoreceptors), retinal layers, retinal location or the visual pathway up to the visual cortex. Combined with advances in genetics, retinal biochemistry, visual fields and ocular imaging, it is now possible to obtain a better understanding of diseases affecting the retina and visual pathways. This paper reviews core electrophysiological principles that can complement other examination techniques, including advanced ocular imaging, and help the interpretation of other clinical data and thus, refine and guide clinical diagnosis.

  19. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    SciTech Connect

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  20. Final report on LDRD project : advanced optical trigger systems.

    SciTech Connect

    Roose, Lars D.; Hadley, G. Ronald; Mar, Alan; Serkland, Darwin Keith; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas M.; Peake, Gregory Merwin; Loubriel, Guillermo Manuel; Montano, Victoria A.

    2008-09-01

    Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they

  1. A new era of improving progression-free survival with dual blockade in postmenopausal HR(+), HER2(-) advanced breast cancer.

    PubMed

    Jerusalem, Guy; Bachelot, Thomas; Barrios, Carlos; Neven, Patrick; Di Leo, Angelo; Janni, Wolfgang; de Boer, Richard

    2015-02-01

    Disease progression despite existing endocrine therapies remains a major challenge to the effective management of hormone-receptor-positive (HR(+)), human epidermal growth factor receptor-2-negative (HER2(-)), advanced breast cancer. Recent advances in elucidating the molecular mechanisms of disease progression have identified the existence of adaptive "cross-talk" between the estrogen receptor (ER) and various growth factor receptor and intracellular signaling pathways, allowing breast cancer cells to escape the inhibitory effects of endocrine therapy. These findings provide the clinical rationale for enhancing or extending endocrine sensitivity by combining endocrine therapy with a targeted agent against a compensatory pathway. In BOLERO-2, adding the mTOR inhibitor everolimus to endocrine therapy significantly improved progression-free survival (PFS) in patients with HR(+) advanced breast cancer previously treated with nonsteroidal aromatase inhibitor therapy. Notably, PFS benefits were comparable in subgroup analyses of first- and later-line settings. These results contrast with those of the large first-line HORIZON study, wherein adding the mTOR inhibitor temsirolimus to endocrine therapy did not improve PFS. Therefore, it is unclear whether a targeted agent should only be combined with endocrine therapy to restore endocrine sensitivity or whether it may also prevent or delay resistance in hormone-sensitive advanced breast cancer. Numerous additional targeted agents are currently being evaluated in combination with endocrine therapies, including PI3K, cyclin-dependent kinase 4/6, SRC, and histone deacetylase inhibitors. Appropriate patient selection based on prior treatment history will become increasingly important in maximizing the incremental benefit derived from these new agents combined with existing endocrine therapies in HR(+) advanced breast cancer.

  2. Project Work in Social Biology at GCE Advanced Level

    ERIC Educational Resources Information Center

    Gadd, P.; Smith, S. Tyrell

    1977-01-01

    The system by which projects are submitted, modified, and approved is outlined and an indication is given of the standards and quantity of work expected. Criteria on which assessment is based are explained, the range of individual studies is summarized, and cases for and against project work are given. (Author/AJ)

  3. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  4. Advanced Solid State Lighting for AES Deep Space Hab Project

    NASA Technical Reports Server (NTRS)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  5. Moon-Based Advanced Reusable Transportation Architecture: The MARTA Project

    NASA Astrophysics Data System (ADS)

    Alexander, R.; Bechtel, R.; Chen, T.; Cormier, T.; Kalaver, S.; Kirtas, M.; Lewe, J.-H.; Marcus, L.; Marshall, D.; Medlin, M.; McIntire, J.; Nelson, D.; Remolina, D.; Scott, A.; Weglian, J.; Olds, J.

    2000-01-01

    The Moon-based Advanced Reusable Transportation Architecture (MARTA) Project conducted an in-depth investigation of possible Low Earth Orbit (LEO) to lunar surface transportation systems capable of sending both astronauts and large masses of cargo to the Moon and back. This investigation was conducted from the perspective of a private company operating the transportation system for a profit. The goal of this company was to provide an Internal Rate of Return (IRR) of 25% to its shareholders. The technical aspect of the study began with a wide open design space that included nuclear rockets and tether systems as possible propulsion systems. Based on technical, political, and business considerations, the architecture was quickly narrowed down to a traditional chemical rocket using liquid oxygen and liquid hydrogen. However, three additional technologies were identified for further investigation: aerobraking, in-situ resource utilization (ISRU), and a mass driver on the lunar surface. These three technologies were identified because they reduce the mass of propellant used. Operational costs are the largest expense with propellant cost the largest contributor. ISRU, the production of materials using resources on the Moon, was considered because an Earth to Orbit (ETO) launch cost of 1600 per kilogram made taking propellant from the Earth's surface an expensive proposition. The use of an aerobrake to circularize the orbit of a vehicle coming from the Moon towards Earth eliminated 3, 100 meters per second of velocity change (Delta V), eliminating almost 30% of the 11,200 m/s required for one complete round trip. The use of a mass driver on the lunar surface, in conjunction with an ISRU production facility, would reduce the amount of propellant required by eliminating using propellant to take additional propellant from the lunar surface to Low Lunar Orbit (LLO). However, developing and operating such a system required further study to identify if it was cost effective. The

  6. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  7. Advanced spacecraft fire safety: Proposed projects and program plan

    NASA Technical Reports Server (NTRS)

    Youngblood, Wallace W.; Vedha-Nayagam, M.

    1989-01-01

    A detailed review identifies spacecraft fire safety issues and the efforts for their resolution, particularly for the threats posed by the increased on-orbit duration, size, and complexity of the Space Station Freedom. Suggestions provided by a survey of Wyle consultants and outside fire safety experts were combined into 30 research and engineering projects. The projects were then prioritized with respect to urgency to meet Freedom design goals, status of enabling technology, cost, and so on, to yield 14 highest priority projects, described in terms of background, work breakdown structure, and schedule. These highest priority projects can be grouped into the thematic areas of fire detection, fire extinguishment, risk assessment, toxicology and human effects, and ground based testing. Recommendations for overall program management stress the need for NASA Headquarters and field center coordination, with information exchange through spacecraft fire safety oversight committees.

  8. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  9. Advanced Solid State Lighting for Human Evaluation Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Holbert, Eirik

    2015-01-01

    Lighting intensity and color have a significant impact on human circadian rhythms. Advanced solid state lighting was developed for the Advanced Exploration System (AES) Deep Space Habitat(DSH) concept demonstrator. The latest generation of assemblies using the latest commercially available LED lights were designed for use in the Bigelow Aerospace Environmental Control and Life Support System (ECLSS) simulator and the University of Hawaii's Hawaii Space Exploration Analog and Simulation (Hi-SEAS) habitat. Agreements with both these organizations will allow the government to receive feedback on the lights and lighting algorithms from long term human interaction.

  10. Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis

    NASA Technical Reports Server (NTRS)

    Pelton, Joseph N.

    1991-01-01

    The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.

  11. Advanced Exploration Systems (AES) Logistics Reduction and Repurposing Project: Advanced Clothing Ground Study Final Report

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini

    2013-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The goal of the Advanced Exploration Systems (AES) Logistics Reduction & Repurposing (LRR) project is to bring new ideas and technologies that will enable human presence in farther regions of space. The LRR project has five tasks: 1) Advanced Clothing System (ACS) to reduce clothing mass and volume, 2) Logistics to Living (L2L) to repurpose existing cargo, 3) Heat Melt Compactor (HMC) to reprocess materials in space, 4) Trash to Gas (TTG) to extract useful gases from trash, and 5) Systems Engineering and Integration (SE&I) to integrate these logistical components. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The ACS task is to find ways to further reduce this logistical burden while examining human response to different types of clothes. The ACS task has been broken into a series of studies on length of wear of various garments: 1) three small studies conducted through other NASA projects (MMSEV, DSH, HI-SEAS) focusing on length of wear of garments treated with an antimicrobial finish; 2) a ground study, which is the subject of this report, addressing both length of wear and subject perception of various types of garments worn during aerobic exercise; and 3) an ISS study replicating the ground study, and including every day clothing to collect information on perception in reduced gravity in which humans experience physiological changes. The goal of the ground study is first to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment, and second to learn why. Human factors considerations included in the study consist of the Institutional Review Board approval, test protocol and participants' training, and a web

  12. Is the chemotherapy era in advanced non-small cell lung cancer really over? Maybe not yet.

    PubMed

    Lo Russo, Giuseppe; Imbimbo, Martina; Garassino, Marina Chiara

    2016-06-02

    Lung cancer is one of the most frequently diagnosed tumors in both the male and female population. In Italy it is the leading cause of cancer deaths in men and the third in women. Although the 5-year survival rate has moderately increased in the last years, the diagnosis remains associated with a very poor prognosis. However, in the last decade significant progress has been made, also in the treatment of advanced-stage non-small cell lung cancer. The advent of targeted therapies and the recent explosion of immunotherapy seem to have limited the role of chemotherapy. But is this completely true? The aim of this editorial is to discuss some of the most controversial aspects of the therapeutic scenario in non-small cell lung cancer, with particular attention to the role that chemotherapy still plays.

  13. Advancing Basic Skills through the Use of Online Services. 1995-1996 Special 353 Project.

    ERIC Educational Resources Information Center

    Lehigh Carbon Community Coll., Allentown, PA.

    This curriculum and instructor's guide were developed for adult literacy students to advance their literacy skills and prepare for the General Education Diploma exam using the information on the Internet via an online service. The report of the project that developed the curriculum describes the following project activities: computer technology…

  14. Project LOGgED ON: Advanced Science Online for Gifted Learners

    ERIC Educational Resources Information Center

    Reed, Christine; Urquhart, Jill

    2007-01-01

    Gifted students are often underserved because they do not have access to highly challenging curriculum. In October, 2002, Project LOGgED ON (www.scrolldown.com/loggedon/) at University of Virginia received federal funding from the Jacob Javits Act to tackle this issue. Those who were part of the LOGgED ON project developed advanced science…

  15. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Industrial Physics.

    ERIC Educational Resources Information Center

    Whisenhunt, James E.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour introduction to industrial physics that explains and demonstrates to industrial maintenance mechanics the direct relationship of physics to machinery. Project TEAM is intended to upgrade basic technical competencies of…

  16. Using the Student Research Project to Integrate Macroeconomics and Statistics in an Advanced Cost Accounting Course

    ERIC Educational Resources Information Center

    Hassan, Mahamood M.; Schwartz, Bill N.

    2014-01-01

    This paper discusses a student research project that is part of an advanced cost accounting class. The project emphasizes active learning, integrates cost accounting with macroeconomics and statistics by "learning by doing" using real world data. Students analyze sales data for a publicly listed company by focusing on the company's…

  17. Project Athena: A Pathway to Advanced Literacy Development for Children of Poverty

    ERIC Educational Resources Information Center

    VanTassel-Baska, Joyce; Stambaugh, Tamra

    2006-01-01

    This article describes Project Athena, a Javits program funded by the U.S. Department of Education and developed through the Center for Gifted Education at the College of William and Mary. Project Athena seeks to find ways to help impoverished children develop advanced skills in reading comprehension, literary analysis, and persuasive writing. Its…

  18. Race and Ethnicity in the Genome Era: The Complexity of the Constructs

    ERIC Educational Resources Information Center

    Bonham, Vence L.; Warshauer-Baker, Esther; Collins, Francis S.

    2005-01-01

    The vast amount of biological information that is now available through the completion of the Human Genome Project presents opportunities and challenges. The genomic era has the potential to advance an understanding of human genetic variation and its role in human health and disease. A challenge for genomics research is to understand the…

  19. An international project to confirm Soviet-era results on immunological and teratological effects of RF field exposure in Wistar rats and comments on Grigoriev et al. [2010].

    PubMed

    Repacholi, Michael; Buschmann, Jochen; Pioli, Claudio; Sypniewska, Roza

    2011-05-01

    Results of key Soviet-era studies dealing with effects on the immune system and teratological consequences in rats exposed to radiofrequency (RF) fields serve, in part, as a basis for setting exposure limits in the USSR and the current RF standards in Russia. The World Health Organization's (WHO) International EMF Project considered these Soviet results important enough that they should be confirmed using more modern methods. Since the Soviet papers did not contain comprehensive details on how the results were obtained, Professor Yuri Grigoriev worked with Dr. Bernard Veyret to agree on the final study protocol and to conduct separate studies in Moscow and Bordeaux under the same protocol. The International Oversight Committee (IOC) provided oversight on the conduct of the studies and was the firewall committee that dealt with the sponsors and researchers. This paper gives the IOC comments and conclusions on the differing results between the two studies.

  20. NASA. Lewis Research Center Advanced Modulation and Coding Project: Introduction and overview

    NASA Technical Reports Server (NTRS)

    Budinger, James M.

    1992-01-01

    The Advanced Modulation and Coding Project at LeRC is sponsored by the Office of Space Science and Applications, Communications Division, Code EC, at NASA Headquarters and conducted by the Digital Systems Technology Branch of the Space Electronics Division. Advanced Modulation and Coding is one of three focused technology development projects within the branch's overall Processing and Switching Program. The program consists of industry contracts for developing proof-of-concept (POC) and demonstration model hardware, university grants for analyzing advanced techniques, and in-house integration and testing of performance verification and systems evaluation. The Advanced Modulation and Coding Project is broken into five elements: (1) bandwidth- and power-efficient modems; (2) high-speed codecs; (3) digital modems; (4) multichannel demodulators; and (5) very high-data-rate modems. At least one contract and one grant were awarded for each element.

  1. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  2. Advanced Development Projects for Constellation From The Next Generation Launch Technology Program Elements

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne

    2005-01-01

    When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.

  3. Advances in Projection Technology for On-Line Instruction.

    ERIC Educational Resources Information Center

    Davis, H. Scott; Miller, Marsha

    This document consists of supplemental information designed to accompany a presentation on the application of projection technology, including video projectors and liquid crystal display (LCD) devices, in the online catalog library instruction program at the Indiana State University libraries. Following an introductory letter, the packet includes:…

  4. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  5. Advanced Turbine Technology Applications Project (ATTAP). 1944 Annual report

    SciTech Connect

    1995-06-01

    This report summarizes work performed in development and demonstration of structural ceramics technology for automotive gas turbine engines. At the end of this period, the project name was changed to ``Ceramic Turbine Engine Demonstration Project``, effective Jan. 1995. Objectives are to provide early field experience demonstrating the reliability and durability of ceramic components in a modified, available gas turbine engine application, and to scale up and improve the manufacturing processes for ceramic turbine engine components and demonstrate the application of these processes in the production environment. The 1994 ATTAP activities emphasized demonstration and refinement of the ceramic turbine nozzles in the AlliedSignal/Garrett Model 331-200[CT] engine test bed in preparation for field testing; improvements in understanding the vibration characteristics of the ceramic turbine blades; improvements in critical ceramics technologies; and scaleup of the process used to manufacture ceramic turbine components.

  6. Advanced Guidance and Control Project for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.

    2000-01-01

    The goals of this project are to significantly reduce the time and cost associated with guidance and control design for reusable launch vehicles, and to increase their safety and reliability. Success will lead to reduced cycle times during vehicle design and to reduced costs associated with flying to new orbits, with new payloads, and with modified vehicles. Success will also lead to more robustness to unforeseen circumstances in flight thereby enhancing safety and reducing risk. There are many guidance and control methods available that hold some promise for improvement in the desired areas. Investigators are developing a representative set of independent guidance and control methods for this project. These methods are being incorporated into a high-fidelity off is being conducted across a broad range of flight requirements. The guidance and control methods that perform the best will have demonstrated the desired qualities.

  7. Defense Advanced Research Projects Agency (DARPA) Network Archive (DNA)

    DTIC Science & Technology

    2008-12-01

    overview of better methods. We decided for Cipher Feed-Back (CFB). The corresponding function in the OpenSSL library is called EVP_aes_128_cfb128. The...Purpose of this Project ........................................................................... 3 2.3. Guiding Design Principles for Security...the planning of fu- ture work. 5 2.3. Guiding Design Principles for Security 1. Minimization of the security sensitive system

  8. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lowell, C. E.; Niedzwiecki, R. W.; Nainiger, J. J.

    1979-01-01

    The technical progress made during the first 15 months of a planned 40-month project to provide a critical-technology data base for utility gas-turbine systems capable of burning coal-derived fuels is summarized. Tasks were included in the following areas: (1) combustion, to study the combustion of coal-derived fuels and conversion of fuel-bound nitrogen to NOx; (2) materials, to understand and prevent hot corrosion; and (3) system studies, to integrate and guide the other technologies. Significant progress was made.

  9. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  10. Advanced software development workstation project: Engineering scripting language. Graphical editor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.

  11. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.

    1981-01-01

    A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.

  12. Thermal Protection System (Heat Shield) Development - Advanced Development Project

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2010-01-01

    The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.

  13. NGS' GRAV-D Project Brings Advances in Aerogravimetry

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Preaux, S. A.; Diehl, T. M.; Li, X.; Weil, C.

    2011-12-01

    NOAA's National Geodetic Survey has undertaken an extensive airborne gravity campaign to help replace the nation's vertical datum by 2022. After receiving Congressional funding in FY10 &11, the GRAV-D project has now surveyed 13.45% of the total area (as of abstract submittal time). The survey has now worked on a number of aircraft, both jets and turboprops. Early work was performed at 35,000 ft and 280 kts. Since summer of 2009, the survey altitude has been lowered to 20,000 ft to enhance signal recovery and to reduce the amplitude enhancement of noise in the downward continuation needed for gravity field blending. The high altitude and speed of the survey has forced a re-evaluation of all aspects of the airborne gravity processing methodology. This presentation will update the community on the progress of the project, summarize the various processing improvements implemented, and discuss the magnitude of their effects. Improvements and research include: a new in-house gravity processing software package called "Newton", kinematic GPS processing variables and their impacts on final gravity products, and evaluation of gravimeter off-level corrections, among other topics.

  14. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    SciTech Connect

    Marceau, Thomas E.; Watson, Thomas L.

    2013-11-13

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  15. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    SciTech Connect

    Coleman, Justin

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  16. Status of ERA Airframe Technology Demonstrators

    NASA Technical Reports Server (NTRS)

    Davis, Pamela; Jegley, Dawn; Rigney, Tom

    2015-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. The Airframe Technology subproject contains two elements. Under the Damage Arresting Composite Demonstration an advanced material system is being explored which will lead to lighter airframes that are more structural efficient than the composites used in aircraft today. Under the Adaptive Compliant Trailing Edge Flight Experiment a new concept of a flexible wing trailing edge is being evaluated which will reduce weight and improve aerodynamic performance. This presentation will describe the development these two airframe technologies.

  17. Critical research and advanced technology (CRT) support project

    NASA Technical Reports Server (NTRS)

    Furman, E. R.; Anderson, D. N.; Hodge, P. E.; Lowell, C. E.; Nainiger, J. J.; Schultz, D. F.

    1983-01-01

    A critical technology base for utility and industrial gas turbines by planning the use of coal-derived fuels was studied. Development tasks were included in the following areas: (1) Combustion - investigate the combustion of coal-derived fuels and methods to minimize the conversion of fuel-bound nitrogen to NOx; (2) materials - understand and minimize hot corrosion; (3) system studies - integrate and focus the technological efforts. A literature survey of coal-derived fuels was completed and a NOx emissions model was developed. Flametube tests of a two-stage (rich-lean) combustor defined optimum equivalence ratios for minimizing NOx emissions. Sector combustor tests demonstrated variable air control to optimize equivalence ratios over a wide load range and steam cooling of the primary zone liner. The catalytic combustion of coal-derived fuels was demonstrated. The combustion of coal-derived gases is very promising. A hot-corrosion life prediction model was formulated and verified with laboratory testing of doped fuels. Fuel additives to control sulfur corrosion were studied. The intermittent application of barium proved effective. Advanced thermal barrier coatings were developed and tested. Coating failure modes were identified and new material formulations and fabrication parameters were specified. System studies in support of the thermal barrier coating development were accomplished.

  18. Final report for the Advanced Natural Gas Vehicle Project

    SciTech Connect

    John Wozniak

    1999-02-16

    The project objective was to develop the technologies necessary to prototype a dedicated compressed natural gas (CNG) powered, mid-size automobile with operational capabilities comparable to gasoline automobiles. A system approach was used to design and develop the engine, gas storage system and vehicle packaging. The 2.4-liter DOHC engine was optimized for natural gas operation with high-compression pistons, hardened exhaust valves, a methane-specific catalytic converter and multi-point gaseous injection. The chassis was repackaging to increase space for fuel storage with a custom-designed, cast-aluminum, semi-trailing arm rear suspension system, a revised flat trunk sheet-metal floorpan and by equipping the car with run-flat tires. An Integrated Storage system (ISS) was developed using all-composite, small-diameter cylinders encapsulated within a high-strength fiberglass shell with impact-absorbing foam. The prototypes achieved the target goals of a city/highway driving range of 300 miles, ample trunk capacity, gasoline vehicle performance and ultra low exhaust emissions.

  19. 'Advancement of KHPS to DOE TRL 7/8' Project - Final Technical Report

    SciTech Connect

    Adonizio, Mary Ann; Corren, Dean; Smith, Ron; Colby, Jonathan; Hernandez, Aaron

    2016-04-08

    Final Report describing activities performed under the 'Advancement of the KHPS to DOE TRL 7/8' project, including the development of critical component test protocols, testing and analysis of the Gen5 KHPS main shaft seal, and continuing compliance work on approved operational environmental monitoring plans in anticipation of KHPS turbine installation at Verdant Power's Roosevelt Island Tidal Energy (RITE) Project site in New York, NY.

  20. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  1. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  2. Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.

    SciTech Connect

    McGehee, E. D.; Isaacson, J.

    2001-01-01

    In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

  3. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  4. A May American Economic Review Papers Seminar and an Analytic Project for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Elliott, Catherine S.

    2004-01-01

    The author describes two learning activities for teaching economics at the advanced undergraduate level: a May American Economic Review (AER) papers seminar and an analytic project. Both activities help students learn to "do economics." The May AER papers seminar promotes in-depth synthesis and interpretation on the basis of printed session papers…

  5. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  6. s-Block Elements. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two sections and an appendix, focuses on the elements and compounds of Groups I and II (the s-block) of the periodic table. The groups are treated concurrently to note comparisons between groups and to…

  7. SALSA (Southwest Advanced Learning System for Adults). Pilot Project Research Report.

    ERIC Educational Resources Information Center

    Rio Salado Community Coll., AZ.

    Researchers at Rio Salado Community College (Arizona) directing an educational research project, called the Southwest Advanced Learning System for Adults (SALSA), placed personal computers in the homes of production line workers as a supplement to traditional classroom basic skills training. Objectives were to determine whether this supplemental…

  8. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    ERIC Educational Resources Information Center

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  9. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    ERIC Educational Resources Information Center

    Draper, Alison J.

    2004-01-01

    An active service-learning research work is conducted in the field of advanced environmental chemistry. Multiple projects are assigned to students, which promote individual learning skills, self-confidence as scientists, and a deep understanding of the environmental chemist's profession.

  10. Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…

  11. Enhancing Success in Advanced Practice Nursing: a grant-funded project.

    PubMed

    McNeal, Gloria J; Walker, Donita

    2006-01-01

    The Enhancing Success in Advanced Practice Nursing (ESAPN) Project is designed to improve access to a diverse and culturally competent and sensitive health professions workforce by increasing the number of Hispanic, African-American and Asian nurses recruited, enrolled in and graduated from the MSN program at the University of Medicine and Dentistry of New Jersey-School of Nursing (UMDNJ-SN). In addition, the project plan includes the development and implementation of a comprehensive program that incorporates academic support services, career advisement and mentoring activities to retain and graduate an increased number of culturally, racially and ethnically diverse advanced practice nurses for the State of New Jersey. The project also seeks to improve the quality of care by preparing advanced practice nurses to provide culturally competent and sensitive care by assuring that the MSN curriculum includes content and clinical experiences relevant to the development of cultural competence. Faculty participation in workshops, designed to increase knowledge of cultural competence, is a key component. The success of the project will be evaluated using a variety of measures that track increases in the number of diverse students recruited and enrolled, the number of students accessing services associated with the ESAPN program, and increased retention and graduation of Hispanic, African-American and Asian nurses prepared as advanced practice nurses.

  12. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Computers.

    ERIC Educational Resources Information Center

    Ellis, Brenda

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 3-hour introduction to computers. The purpose is to develop the following competencies: (1) orientation to data processing; (2) use of data entry devices; (3) use of computer menus; and (4) entry of data with accuracy and…

  13. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  14. The Halogens. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the elements and compounds of Group IV (halogens) of the periodic table. Level one deals with the physical and chemical properties of the individual elements. Level two considers…

  15. Independent Learning Project for Advanced Chemistry (ILPAC). Teachers' and Technicians' Notes for First Year Units.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    The Independent Learning Project for Advanced Chemistry (ILPAC) has produced units of study for students in A-level chemistry. Students completing ILPAC units assume a greater responsibility for their own learning and can work, to some extent, at their own pace. By providing guidance, and detailed solutions to exercises in the units, supported by…

  16. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  17. The Gaseous State. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…

  18. Bonding and Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S4.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on chemical bonding is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides an introduction to the main types of chemical bonding and important aspects of structure. The main emphasis is placed on such topics as ionic and covalent bonding,…

  19. Project T.E.A.M. (Technical Education Advancement Modules). Fundementals of Workplace Integration.

    ERIC Educational Resources Information Center

    Kraeling, Vicki

    This module is one of a series of instructional guides developed by Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training for unemployed, underemployed, and existing industrial employees whose basic technical skills are in need of upgrading. The module is a 27-hour overview course…

  20. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Plant Floor Operations.

    ERIC Educational Resources Information Center

    Mao, Leii

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 16-hour introduction to plant floor operations. The guide is designed to develop the following competencies: (1) understanding the characteristics and components of personal computer (PC) networks; (2) computer networking…

  1. Project T.E.A.M. (Technical Education Advancement Modules). Interpersonal and Communication Skills.

    ERIC Educational Resources Information Center

    Mason, Joan S.

    This module was developed by Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training for unemployed, underemployed, and existing industrial employees needing upgrading. The module is a 6-hour overview course intended to develop competencies in the following interpersonal and…

  2. Project T.E.A.M. (Technical Education Advancement Modules). Job Search Skills.

    ERIC Educational Resources Information Center

    Mason, Joan S.

    This module is one of a series developed by Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training for unemployed, underemployed, and existing industrial employees needing upgrading. This module is a 3-hour overview course intended to develop competencies in the following job search…

  3. Chemical Energetics. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on chemical energetics is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides a clear yet detailed and thorough introduction to the topic. Level one extends ideas from previous courses, introduces and emphasizes the importance of Hess'…

  4. Equilibrium I: Principles. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the principles of equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. After a treatment of non-mathematical aspects in level one (the idea of a reversible reaction, characteristics of an equilibrium state, the Le Chatelier's principle),…

  5. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  6. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    NASA Astrophysics Data System (ADS)

    Draper, Alison J.

    2004-02-01

    In an advanced environmental chemistry course, the inclusion of semester-long scientific service projects successfully integrated the research process with course content. Each project involved a unique community-based environmental analysis in which students assessed an aspect of environmental health. The projects were due in small pieces at even intervals, and students worked independently or in pairs. Initially, students wrote a project proposal in which they chose and justified a project. Following a literature review of their topic, they drafted sampling and analysis plans using methods in the literature. Samples were collected and analyzed, and all students assembled scientific posters describing the results of their study. In the last week of the semester, the class traveled to a regional professional meeting to present the posters. In all, students found the experience valuable. They learned to be professional environmental chemists and learned the value of the discipline to community health. Students not only learned about their own project in depth, but they were inspired to learn textbook material, not for an exam, but because it helped them understand their own project. Finally, having a community to answer to at the end of the project motivated students to do careful work.

  7. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  8. Schools of Education in a New Era of Accountability: A Case Study of an Annual Report Process Used to Advance a Professional Learning Community

    ERIC Educational Resources Information Center

    Aceves, Manuel A.

    2013-01-01

    Institutions of higher education are entering a new era, one where cost, value, and quality are at the front of mind. To proactively ensure long-term viability, institutions must operate differently. This qualitative case study examined how the St. Alexander University School of Education's Annual Report Process impacted institutional…

  9. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly

  10. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    SciTech Connect

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..; Easter, Richard C; Elliott, Scott M.; Ghan, Steven J.; Liu, Xiaohong; Lowrie, Robert B.; Lucas, Donald D.; Ma, Po-lun; Sacks, William J.; Shrivastava, Manish; Singh, Balwinder; Tautges, Timothy J.; Taylor, Mark A.; Vertenstein, Mariana; Worley, Patrick H.

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  11. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    SciTech Connect

    Not Available

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  12. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the... EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Projects Does the Secretary Assist? § 350.12 What are the general requirements for an Advanced Rehabilitation...

  13. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    SciTech Connect

    1995-01-31

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project.

  14. Advanced Manufacturing Methods for Systems of Microsystem Nanospacecraft- Status of the Project

    NASA Astrophysics Data System (ADS)

    Plesseria, J. Y.; Corbelli, A.; Masse, C.; Rigo, O.; Pambaguian, L.; Bonvoisin, B.

    2014-06-01

    In the frame of an ESA TRP project, CSL, SIRRIS, ALMASpace and TAS-F associated to evaluate advanced manufacturing methods for application to space hardware.The state of the art of the new manufacturing methods, including additive manufacturing but also advanced bonding, joining and shaping techniques has been reviewed. Then three types of case studies have been developed successively. The first type was a re- manufacture of an existing piece of hardware using advanced techniques to evaluate if there is some potential improvement to be achieved (cost, production time, complexity reduction). The second level was to design and manufacture a part based on the application requirements. The last level was to design and manufacture a part taking into account the subsystem to which it belongs. All case studies have been tested in terms of achieved performances and resistance to the mechanical and thermal environment.

  15. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 3

    SciTech Connect

    1997-01-01

    ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumbura/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. This volume provides a summary of the insights and achievements made as a result of this field test, and selected appendices containing more detailed information.

  16. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  17. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project.

    PubMed

    Siggens, L; Ekwall, K

    2014-09-01

    The organization of the genome into functional units, such as enhancers and active or repressed promoters, is associated with distinct patterns of DNA and histone modifications. The Encyclopedia of DNA Elements (ENCODE) project has advanced our understanding of the principles of genome, epigenome and chromatin organization, identifying hundreds of thousands of potential regulatory regions and transcription factor binding sites. Part of the ENCODE consortium, GENCODE, has annotated the human genome with novel transcripts including new noncoding RNAs and pseudogenes, highlighting transcriptional complexity. Many disease variants identified in genome-wide association studies are located within putative enhancer regions defined by the ENCODE project. Understanding the principles of chromatin and epigenome organization will help to identify new disease mechanisms, biomarkers and drug targets, particularly as ongoing epigenome mapping projects generate data for primary human cell types that play important roles in disease.

  18. Advanced Neutron Source (ANS) Project: Annual report, April 1987--March 1988

    SciTech Connect

    Selby, D.L.; Harrington, R.M.; Peretz, F.J.; McBee, M.R.

    1989-02-01

    The Advanced Neutron Source (ANS) Project (formerly called the Center for Neutron Research) will provide the world's best facilities for the study of neutron scattering. The ANS high-power density reactor will be fueled with uranium silicide and cooled, moderated, and reflected by deuterium oxide. Peak neutron fluxes in the reflector are expected to be 5 to 10 x 10/sup 19/ neutrons/center dot/m/sup -2//center dot/s/sup -1/ with a power level between 270 and 300 MW. This report describes the status of technical work funded through the ANS Project during the period April 1987 through March 1988. Earlier work is described in Center for Neutron Research Project Status Report and other Oak Ridge National Laboratory reports. 22 refs., 57 figs., 23 tabs.

  19. Development Status of the Advanced Life Support On-Line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Cavazzoni, Jim; Brodbeck, Christina; Morrow, Rich; Ho, Michael; Kaehms, Bob; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. The core functionality of OPIS will launch in October of 2005. This paper presents the current OPIS development status. OPIS core functionality involves a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIS) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. The data will be stored in an object-oriented relational database (created in MySQL(R)) located on a secure server at NASA ARC. Upon launch, OPIS can be utilized by Managers to identify research and technology development gaps and to assess task performance. Analysts can employ OPIS to obtain.

  20. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 1

    SciTech Connect

    1997-01-01

    The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an invehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-time route guidance to a vehicle based on (a) an on-board static (fixed) data base of average network link travel times by time of day, combined as available and appropriate with (b) dynamic (real-time) information on traffic conditions provided by radio frequency (RF) communications to and from a traffic information center (TIC). Originally conceived in 1990 as a major project that would have installed 3,000 to 5,000 route guidance units in privately owned vehicles throughout the test area, ADVANCE was restructured in 1995 as a {open_quotes}targeted deployment,{close_quotes} in which approximately 80 vehicles were to be equipped with the guidance units - Mobile Navigation Assistants (MNAs) - to be in full communication with the TIC while driving the ADVANCE test area road system. Volume one consists of the evaluation managers overview report, and several appendices containing test results.

  1. The Human Resources Certificate of Advanced Mastery Curriculum Framework and Statewide Articulation Projects. A Senate Bill 81 Project of the 1993 Oregon Legislature.

    ERIC Educational Resources Information Center

    Southwestern Oregon Community Coll., Coos Bay.

    In 1993, the Oregon Legislature funded six curriculum development projects to design frameworks for integrating academic content with technical skills, work behaviors, sample teaching activities, and assessment strategies appropriate to the state's Certificates of Advanced Mastery (CAMs). This report describes results for the six projects as of…

  2. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  3. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  4. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  5. Establishing a portfolio of quality-improvement projects in pediatric surgery through advanced improvement leadership systems.

    PubMed

    Gerrein, Betsy T; Williams, Christina E; Von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children's Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution's strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division's efficiency and effectiveness in pursing the QI mission that is integral at our hospital.

  6. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    SciTech Connect

    Gevorgian, Vahan; O'Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to

  7. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  8. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  9. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    SciTech Connect

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  10. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  11. Infusing informatics into interprofessional education: the iTEAM (Interprofessional Technology Enhanced Advanced practice Model) project.

    PubMed

    Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy

    2014-01-01

    The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations.

  12. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  13. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; Sostaric, Ronald r.; Johnson, Andrew E.

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  14. Advanced space power requirements and techniques. Task 1: Mission projections and requirements. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1978-01-01

    The objectives of this study were to: (1) develop projections of the NASA, DoD, and civil space power requirements for the 1980-1995 time period; (2) identify specific areas of application and space power subsystem type needs for each prospective user; (3) document the supporting and historical base, including relevant cost related measures of performance; and (4) quantify the benefits of specific technology projection advancements. The initial scope of the study included: (1) construction of likely models for NASA, DoD, and civil space systems; (2) generation of a number of future scenarios; (3) extraction of time phased technology requirements based on the scenarios; and (4) cost/benefit analyses of some of the technologies identified.

  15. Propulsion and Cryogenics Advanced Development (PCAD) Project Propulsion Technologies for the Lunar Lander

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Smith, Timothy D.

    2008-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.

  16. Project ERA: A Three Year Study of a Follow Through Program. A Longitudinal Study of the Monongalia County Follow Through Program.

    ERIC Educational Resources Information Center

    Puzzuoli, David A.; Fazzaro, Charles J.

    A 3-year study of the Monongalia County (Morgantown, W. Va.) Follow Through Program is presented. The program, known as Educational Renaissance in Appalachia (ERA), was designed to provide educational countermeasures to assist children in acquiring the ability to question values critically and to develop new concepts in lieu of some of the values…

  17. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    SciTech Connect

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  18. Development Approach of the Advanced Life Support On-line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA

  19. The design, development, and assessment of advanced modeling based projects in introductory physics

    NASA Astrophysics Data System (ADS)

    Ramsdell, Michael W.

    The results of Physics Education Research (PER) have provided much insight into developing more effective learning environments in introductory physics courses. In this dissertation we discuss the design, development, and implementation of two advanced Modeling Based Projects (MBP) that have evolved through research-based criteria. The projects serve as an alternative to the traditional laboratory portion of the introductory calculus-based courses taught at Clarkson University for undergraduate science and engineering majors. Each project has gone through several research-redevelopment cycles, through which the experimental apparatuses and pedagogical approaches have been improved. Details of each projects' pedagogical structure and implementation are presented and discussed within the context of recommendations established through PER. We present a detailed assessment of their effectiveness in terms of students' conceptual learning via the Force Concepts Inventory (FCI) and the Conceptual Survey of Electricity and Magnetism (CSEM), course performance via exam scores, and attitudes via the Maryland Physics Expectations Survey (MPEX). The results show that students who participate in MBP at Clarkson University achieve significant gains over students taught elsewhere with a traditional approach and similar gains to those achieved by others using well tested, research motivated curricula reforms. An internal evaluation was performed to compare students participating in MBP with a control group of statistically comparable students who attended traditional laboratories. The results reveal that students who participated in MBP obtain statistically significant gains over similar students taught with the traditional approach for both courses within the introductory sequence.

  20. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Astrophysics Data System (ADS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  1. Overview of NREL`s Photovoltaic Advanced R&D Project

    SciTech Connect

    Surek, T

    1992-01-01

    The National Renewable Energy Laboratory`s (NREL`s) Photovoltaic Advanced Research and Development (PV AR & D) Project supports the US Department of Energy`s National Photovoltaics Program in assisting the development and commercialization of photovoltaics (PV) energy technology. The NREL program is implemented through in-house research and subcontracts, with over 50% of the annual budget awarded through competitive solicitations to universities, large and small businesses, and other research centers. These activities include cost-shared, multiyear, government/industry partnerships and technology initiatives. The research has resulted in a better fundamental understanding of materials, devices, and processes, the achievement of record efficiencies in nearly all PV technology areas, the identification of promising new approaches to low-cost photovoltaics, and the introduction of new PV technology products into system experiments and PV markets. This paper presents an overview of NREL`s PV AR & D Project in terms of project organization and budgets, near- and long-term project objectives, research participants, and current and future research directions. Recent progress in the in-house and subcontracted research activities is described. 4 refs.

  2. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    1992-01-01

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  3. 24 CFR 232.254 - Withdrawal of project funds, including for repayments of advances from the borrower, operator, or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Withdrawal of project funds, including for repayments of advances from the borrower, operator, or management agent. 232.254 Section 232... FACILITIES Contract Rights and Obligations § 232.254 Withdrawal of project funds, including for repayments...

  4. 24 CFR 232.254 - Withdrawal of project funds, including for repayments of advances from the borrower, operator, or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Withdrawal of project funds, including for repayments of advances from the borrower, operator, or management agent. 232.254 Section 232... FACILITIES Contract Rights and Obligations § 232.254 Withdrawal of project funds, including for repayments...

  5. The integrated project NF-PRO: recent advances in European research on the near-field system

    SciTech Connect

    Sneyers, Alain; Grambow, Bernd; Aranyossy, Jean-Francois; Johnson, Lawrence

    2007-07-01

    The Integrated Project NF-PRO (Sixth Framework Programme by the European Commission) investigates key-processes in the near-field of a geological repository for the disposal of high-level vitrified waste and spent fuel. The paper discusses the project scope and content and gives a summary overview of advances made by NF-PRO. (authors)

  6. Complementary Spectroscopic Assays for Investigating Protein-Ligand Binding Activity: A Project for the Advanced Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mascotti, David P.; Waner, Mark J.

    2010-01-01

    A protein-ligand binding, guided-inquiry laboratory project with potential application across the advanced undergraduate curriculum is described. At the heart of the project are fluorescence and spectrophotometric assays utilizing biotin-4-fluorescein and streptavidin. The use of the same stock solutions for an assay that may be examined by two…

  7. Project ASSERT. Advanced and Specialized Study in Educational Research Techniques. Final Report, November 1979 to November 1981.

    ERIC Educational Resources Information Center

    Cornejo, Ricardo J.; Rodriguez, Ana Maria

    Project ASSERT, an experimental project conducted at San Diego State University (California), was designed to prepare, demonstrate, and disseminate strategies to increase the participation of women and minorities in education research. The program trained faculty researchers in advanced research methodologies and provided practitioners with…

  8. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  9. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    1995-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  10. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  11. The Environmental Control and Life Support System (ECLSS) advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  12. The environmental control and life support system advanced automation project. Phase 1: Application evaluation

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to advanced automation primarily due to the comparatively large reaction times of its subsystem processes. This allows longer contemplation times in which to form a more intelligent control strategy and to detect or prevent faults. The objective of the ECLSS Advanced Automation Project is to reduce the flight and ground manpower needed to support the initial and evolutionary ECLS system. The approach is to search out and make apparent those processes in the baseline system which are in need of more automatic control and fault detection strategies, to influence the ECLSS design by suggesting software hooks and hardware scars which will allow easy adaptation to advanced algorithms, and to develop complex software prototypes which fit into the ECLSS software architecture and will be shown in an ECLSS hardware testbed to increase the autonomy of the system. Covered here are the preliminary investigation and evaluation process, aimed at searching the ECLSS for candidate functions for automation and providing a software hooks and hardware scars analysis. This analysis shows changes needed in the baselined system for easy accommodation of knowledge-based or other complex implementations which, when integrated in flight or ground sustaining engineering architectures, will produce a more autonomous and fault tolerant Environmental Control and Life Support System.

  13. Architecture and Functionality of the Advanced Life Support On-Line Project Information System

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriguez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects. Using OPIS, ALS managers and element leads will be able to carry out informed R&TD investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, Controls and Systems Analysis). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  14. [Advanced Coal Conversion Process Demonstration Project]. Technical progress report: April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-10-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1992, through June 30, 1992. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques designed to upgrade high-moisture, low-rank coals into a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal{reg_sign} process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 British thermal units per pound (Btu/Ib), by producing a stable, upgraded coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45-ton-per-hour unit is located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently near commercial size.

  15. Advancing Cancer Survivorship in a Country with 1.35 Billion People: The China Lymphoma Project

    PubMed Central

    Coughlin, Steven; Reno, Jamie

    2016-01-01

    Rates of lymphoma are rising rapidly and lymphoma is now the ninth most common cancer among Chinese males. The China Lymphoma Project was founded to increase awareness of lymphoma in China, including the survivability of the disease and the availability of potentially life-saving treatments, and to provide social support for men, women, and children in China who are living with the disease. The project is working with China government officials, several of the top cancer hospitals in China and the U.S., internationally known oncologists and cancer researchers, pharmaceutical and biotech companies in China and the U.S., healthcare and environmental companies, the Confucius Institute at San Diego State University, and the Asian Heritage Society. Advances in e-Health are being utilized to provide patient education and social support. The project will provide free e-books that profile lymphoma survivors (e.g., Kai-Fu Lee, creator of Google China), new videos, websites, pamphlets, blogs, video logs (vlogs), peer-to-peer counseling and support, and information about the latest treatments and oncology clinical trials. PMID:27570834

  16. Professional development in photonics: the advanced technology education projects of the New England Board of Education

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith; Hanes, Fenna; Massa, Nicholas

    2007-09-01

    Since 1995, the New England Board of Education (NEBHE) has been providing curriculum and professional development as well as laboratory improvement in optics/photonics to middle school and high school teachers and college faculty across the United States. With funding from the National Science Foundation's Advanced Technology Education program, NEBHE's optics/photonics education projects have created a national network of educational and industry alliances resulting in opportunities in optics and photonics for students at participating schools and colleges. The cornerstone of NEBHE projects is collaboration among educational levels, career counselors and teachers/faculty, and industry and academia. In such a rich atmosphere of cooperation, participants have been encouraged to create their own regional projects and activities involving students from middle school through four-year universities. In this paper we will describe the evolution of teacher/faculty professional development from a traditional week-long summer workshop to a collaborative distance learning laboratory course based on adult learning principles and supported by a national network of industry mentors.

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Program review

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report summarizes the Integrated Application of Active Controls (IAAC) Technology to an Advanced Subsonic Transport Project, established as one element of the NASA/Boeing Energy Efficient Transport Technology Program. The performance assessment showed that incorporating ACT into an airplane designed to fly approximately 200 passengers approximately 2,000 nmi could yield block fuel savings from 6 to 10 percent at the design range. The principal risks associated with incorporating these active control functions into a commercial airplane are those involved with the ACT system implementation. The Test and Evaluation phase of the IAAC Project focused on the design, fabrication, and test of a system that implemented pitch axis fly-by-wire, pitch axis augmentation, and wing load alleviation. The system was built to be flight worthy, and was planned to be experimentally flown on the 757. The system was installed in the Boeing Digital Avionics Flight Controls Laboratory (DAFCL), where open loop hardware and software tests, and a brief examination of a direct drive valve (DDV) actuation concept were accomplished. The IAAC Project has shown that ACT can be beneficially incorporated into a commercial transport airplane. Based on the results achieved during the testing phase, there appears to be no fundamental reason(s) that would preclude the commercial application of ACT, assuming an appropriate development effort is included.

  18. Advancing Cancer Survivorship in a Country with 1.35 Billion People: The China Lymphoma Project.

    PubMed

    Coughlin, Steven; Reno, Jamie

    Rates of lymphoma are rising rapidly and lymphoma is now the ninth most common cancer among Chinese males. The China Lymphoma Project was founded to increase awareness of lymphoma in China, including the survivability of the disease and the availability of potentially life-saving treatments, and to provide social support for men, women, and children in China who are living with the disease. The project is working with China government officials, several of the top cancer hospitals in China and the U.S., internationally known oncologists and cancer researchers, pharmaceutical and biotech companies in China and the U.S., healthcare and environmental companies, the Confucius Institute at San Diego State University, and the Asian Heritage Society. Advances in e-Health are being utilized to provide patient education and social support. The project will provide free e-books that profile lymphoma survivors (e.g., Kai-Fu Lee, creator of Google China), new videos, websites, pamphlets, blogs, video logs (vlogs), peer-to-peer counseling and support, and information about the latest treatments and oncology clinical trials.

  19. A Ground Testbed to Advance US Capability in Autonomous Rendezvous and Docking Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Chris

    2014-01-01

    This project will advance the Autonomous Rendezvous and Docking (AR&D) GNC system by testing it on hardware, particularly in a flight processor, with a goal of testing it in IPAS with the Waypoint L2 AR&D scenario. The entire Agency supports development of a Commodity for Autonomous Rendezvous and Docking (CARD) as outlined in the Agency-wide Community of Practice whitepaper entitled: "A Strategy for the U.S. to Develop and Maintain a Mainstream Capability for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond". The whitepaper establishes that 1) the US is in a continual state of AR&D point-designs and therefore there is no US "off-the-shelf" AR&D capability in existence today, 2) the US has fallen behind our foreign counterparts particularly in the autonomy of AR&D systems, 3) development of an AR&D commodity is a national need that would benefit NASA, our commercial partners, and DoD, and 4) an initial estimate indicates that the development of a standardized AR&D capability could save the US approximately $60M for each AR&D project and cut each project's AR&D flight system implementation time in half.

  20. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  1. Advanced High School Biology in an Era of Rapid Change: A Summary of the Biology Panel Report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools

    ERIC Educational Resources Information Center

    Wood, William B.

    2002-01-01

    A recently released National Research Council (NRC) report, "Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools", evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study,…

  2. Architecture and Functionality of the Advanced Life Support On-Line Project Information System (OPIS)

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriquez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Amcs Research Center (ARC) tu develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL(Trademark) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an R&TD status information hub that can potentially serve as the primary annual reporting mechanism. Using OPIS, ALS managers and element leads will be able to carry out informed research and technology development investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, and Control). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  3. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    SciTech Connect

    Thompson, P.B.; Meek, W.E.

    1993-07-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

  4. Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259

    SciTech Connect

    Hookfin, J.D.

    1995-05-12

    The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades.

  5. Advanced Mirror Technology Development (AMTD) project: overview and year four accomplishments

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2016-07-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  6. Advanced Mirror Technology Development (AMTD) Project: Overview and Year 4 Accomplishments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2016-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  7. Special Advanced Course for Core Sciences to Bring Up Project Leaders

    NASA Astrophysics Data System (ADS)

    Inagaki, Kenji; Tabata, Nobuhisa; Gofuku, Akio; Harada, Isao; Takada, Jun

    Special Advanced Course for Core Sciences has been introduced recently to Graduate School of Natural Science and Technology, Okayama University, to bring up a project leader. The following points are key education goals in this program : (1) knowledge of core sciences, (2) communication ability by using English, and (3) wide viewpoints for researches. In order to accomplish these goals, several lectures for core sciences, patent systems and engineering ethics as well as long term internships by the collaboration with some regional companies have been put in practice. In this paper, we describe the outline of the program, educational effects, and our experiences. Then, we discuss how effective the program is for bringing up an engineer or a scientist who can lead sciences and technologies of their domains. This paper also describes current activities of the program.

  8. A rugged, low-cost advanced data acquisition system for field test projects

    SciTech Connect

    Simms, D A; Cousineau, K L

    1993-06-01

    The National Renewable Energy Laboratory (NREL) has teamed up with Zond Systems, Inc., to provide a rugged, low-cost, advanced data-acquisition system (ADAS) for use in field test projects. The ADAS simplifies the process of making accurate measurements on mechanical equipment exposed to harsh environments. It provides synchronized, time-series measurement data from multiple, independent sources. The ADAS is currently being used to acquire data from large wind turbines in operational wind-plant environments. ADAS modules are mounted on rotating blades, turbine towers, nacelles, control modules, meteorological towers, and electrical stations. The ADAS has the potential to meet the testing and monitoring needs of many other technologies as well, including vehicles, heavy equipment, piping and power transmission networks, and building energy systems.

  9. Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications

    NASA Astrophysics Data System (ADS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.

  10. Palliative care for advanced dementia: a pilot project in 2 nursing homes.

    PubMed

    Kuhn, Daniel R; Forrest, Jeannine M

    2012-02-01

    This article describes a pilot project involving training, case consultations, and administrative coaching over a period of 1 year aimed at introducing palliative care in 2 nursing homes among 31 residents with advanced dementia. Resident outcomes that examined numerous clinical measures were assessed at 3 points in time. Changes in the knowledge and attitudes of 80 staff members and 33 family members who participated in the multimodal intervention were also assessed at 3 points in time. Limited improvements were demonstrated on measures for residents, staff members, and family members at the first nursing home (site 1) and significant improvements were demonstrated at the other nursing home (site 2). Top leadership turned over 3 times at site 1 which limited the integration of palliative care, whereas leadership of site 2 remained stable. Implications for implementing a program of palliative care in nursing homes are discussed.

  11. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  12. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  13. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  14. ORNL contributions to the Advanced Neutron Source (ANS) Project for October 1986-March 1987

    SciTech Connect

    Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1987-11-01

    The Advanced Neutron Source (ANS) Facility - formerly called the Center for Neutron Research - will provide the world's best facilities for the study of neutron scattering. The ANS high power density reactor will be fueled with uranium silicide and cooled, moderated, and reflected by D/sub 2/O. Peak neutron fluxes in the reflector are expected to be 5 to 10 x 10/sup 19/ neutrons per square meter with a power level between 270 MW and 300 MW. This report describes the status of technical work at ORNL on the ANS Project during the first half of FY 1987. The scope of this report includes Research and Development Tasks; Safety Tasks; Conceptual Design Tasks; and Project Support. The last two areas were only initiated as separate activities during this reporting period. Technical highlights include a better understanding of the relationship among neutron flux, core power, and core volume; preconceptual design work on a cold source for use in a very high gamma and neutron flux environment; identification of the major applicable safety rules and guidelines; and establishment of initial functional objectives for the containment structure.

  15. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect

    1996-02-29

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  16. Advanced Compatibility Characterization Of AF-M315E With Spacecraft Propulsion System Materials Project

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Greene, Benjamin

    2014-01-01

    All spacecraft require propulsion systems for thrust and maneuvering. Propulsion systems can be chemical, nuclear, electrical, cold gas or combinations thereof. Chemical propulsion has proven to be the most reliable technology since the deployment of launch vehicles. Performance, storability, and handling are three important aspects of liquid chemical propulsion. Bipropellant systems require a fuel and an oxidizer for propulsion, but monopropellants only require a fuel and a catalyst for propulsion and are therefore simpler and lighter. Hydrazine is the state of the art propellant for monopropellant systems, but has drawbacks because it is highly hazardous to human health, which requires extensive care in handling, complex ground ops due to safety and environmental considerations, and lengthy turnaround times for reusable spacecraft. All users of hydrazine monopropellant must contend with these issues and their associated costs. The development of a new monopropellant, intended to replace hydrazine, has been in progress for years. This project will apply advanced techniques to characterize the engineering properties of materials used in AF-M315E propulsion systems after propellant exposure. AF-M315E monopropellant has been selected HQ's Green Propellant Infusion Mission (GPIM) to replace toxic hydrazine for improved performance and reduce safety and health issues that will shorten reusable spacecraft turn-around time. In addition, this project will fundamentally strengthen JSC's core competency to evaluate, use and infuse liquid propellant systems.

  17. Advanced emissions control development project. Final report, November 1, 1993--February 29, 1996. Phase I

    SciTech Connect

    Farthing, G.A.

    1996-02-29

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase I activities were primarily directed at providing a reliable, representative test facility for conducting air toxic emission control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. The AECDP facility consists of an ESP, pulse-jet baghouse, and wet scrubber. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal. In order to successfully apply the results of the program to utility systems, the relationship between the performance of the CEDF/AECDP test equipment and commercial units had to be established. The first step in the verification process was to validate that the flue gas treatment devices - boiler/convection pass simulator, ESP, baghouse, and wet SO{sub 2} scrubber - operate in a manner representative of commercial units.

  18. Classroom Activities for the Progressive Era and the World War I Draft.

    ERIC Educational Resources Information Center

    Mills, Randy

    1986-01-01

    Provides discussion questions, activities, and projects to be used with EJ515083, "The Progressive Era and the World War I Draft." Includes three political cartoons and two World War I-era songs of opposing viewpoints. (JDH)

  19. The ESA WACMOS-ET project: advancing in the production of evapotranspiration from satellite observations

    NASA Astrophysics Data System (ADS)

    Jimenez, Carlos

    2014-05-01

    Evapotranspiration (ET) is an essential component of the water and energy cycles. It is highly variable in both space and time, across climates and ecosystems, and difficult to estimate as it does not produce either absorption or emission of electromagnetic signals, which precludes a direct estimation from remote sensing techniques. Therefore global observations related to atmospheric and surface parameters have to be combined with an interpretive model to derive an observational ET product at the global scale. Recent comparisons of satellite-based ET products (e.g., within the LandFlux initiative of the Global Energy and Water Cycle Experiment, GEWEX) have been very useful in providing a first measure of product differences, but not very conclusive in terms of understanding the sources of uncertainty. To further advance in this direction a systematic ET inter-comparison is needed whereby the different ET algorithms are run using (to the greatest possible extent) the same driving data and model protocols. In response to this need, ESA has initiated the WACMOS-ET project, a follow on of the first WACMOS project. While the first WACMOS addressed several components of the water and energy cycle, WACMOS- ET focuses on ET production by different methodologies, and it is aimed at advancing towards the development of ET estimates at global and regional scales. The main objectives are to develop a Reference Input Data Set (RIDS) to derive and validate ET estimates, and to perform a cross-comparison, error characterization, and validation exercise of a group of selected ET algorithms driven by the RIDS. Compared with previous efforts primarily based on combining off-the-shelf input products, the preparation of the RIDS with a large degree of internal consistency is considered essential to (1) evaluate the skill of present algorithms in producing ET, (2) facilitate the attribution of the observed differences to model and driving data limitations, and (3) set up a solid

  20. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors

    NASA Astrophysics Data System (ADS)

    Bohé, Alejandro; Shao, Lijing; Taracchini, Andrea; Buonanno, Alessandra; Babak, Stanislav; Harry, Ian W.; Hinder, Ian; Ossokine, Serguei; Pürrer, Michael; Raymond, Vivien; Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla

    2017-02-01

    We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration toward larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness—at design Advanced-LIGO sensitivity—above 99% against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios ≳4 and double spin ≳0.8 will be crucial to resolving discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.

  1. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  2. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    SciTech Connect

    Chaloupka, Allan B.; Finn, Kevin P.; Parsons, Duane A.

    2012-07-01

    ,000 ft{sup 2}). The initially approved baseline for the ARRA D and D Project was to remove 22 buildings and structures that included approximately 14,680 m{sup 2} (158,000 ft{sup 2}) of footprint. By employing efficiencies during subcontracting, demolition, and waste segregation, the savings allowed an additional 1,580 m{sup 2} (17,000 ft{sup 2}) of footprint to be removed using ARRA funds. Additionally, the lessons learned from this experience were used to apply NNSA funding to the removal of six additional non-contaminated buildings and structures. In the end, 29 buildings and structures, including stacks, cooling towers and tanks, were removed from the mesa. The entire DP East area was cleared of buildings and sub-grade structures and the soils cleaned to residential standards. The total footprint reduction at TA-21 as a result of this effort was in excess of 17,650 m{sup 2} (190,000 ft{sup 2}). The use of a Laboratory self-performance team to start demolition of non-contaminated structures resulted in steady work performance early in the project while subcontracts were being put in place to perform more complicated abatement and contaminated demolition activities. Most importantly, there were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals or radioactive contamination were released and radiological dose to the public was negligible. The ARRA demolition activities were completed six months in advance of the deadline for employing ARRA funds. Additionally, over 17,585 m{sup 3} (23,000 yds{sup 3}) of building demolition debris was safely removed from DP Mesa. All of the major buildings have been removed, unencumbered access to the SWMUs that are required to be cleaned up by the Consent Order with the state of New Mexico, has been achieved, and a significant portion of the mesa has been prepared to support a process that will

  3. Highlights of advances in the field of hydrometeorological research brought about by the DRIHM project

    NASA Astrophysics Data System (ADS)

    Caumont, Olivier; Hally, Alan; Garrote, Luis; Richard, Évelyne; Weerts, Albrecht; Delogu, Fabio; Fiori, Elisabetta; Rebora, Nicola; Parodi, Antonio; Mihalović, Ana; Ivković, Marija; Dekić, Ljiljana; van Verseveld, Willem; Nuissier, Olivier; Ducrocq, Véronique; D'Agostino, Daniele; Galizia, Antonella; Danovaro, Emanuele; Clematis, Andrea

    2015-04-01

    The FP7 DRIHM (Distributed Research Infrastructure for Hydro-Meteorology, http://www.drihm.eu, 2011-2015) project intends to develop a prototype e-Science environment to facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in Hydro-Meteorology Research (HMR). As the project comes to its end, this presentation will summarize the HMR results that have been obtained in the framework of DRIHM. The vision shaped and implemented in the framework of the DRIHM project enables the production and interpretation of numerous, complex compositions of hydrometeorological simulations of flood events from rainfall, either simulated or modelled, down to discharge. Each element of a composition is drawn from a set of various state-of-the-art models. Atmospheric simulations providing high-resolution rainfall forecasts involve different global and limited-area convection-resolving models, the former being used as boundary conditions for the latter. Some of these models can be run as ensembles, i.e. with perturbed boundary conditions, initial conditions and/or physics, thus sampling the probability density function of rainfall forecasts. In addition, a stochastic downscaling algorithm can be used to create high-resolution rainfall ensemble forecasts from deterministic lower-resolution forecasts. All these rainfall forecasts may be used as input to various rainfall-discharge hydrological models that compute the resulting stream flows for catchments of interest. In some hydrological simulations, physical parameters are perturbed to take into account model errors. As a result, six different kinds of rainfall data (either deterministic or probabilistic) can currently be compared with each other and combined with three different hydrological model engines running either in deterministic or probabilistic mode. HMR topics which are allowed or facilitated by such unprecedented sets of hydrometerological forecasts

  4. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  5. How Project Management Tools Aid in Association to Advance Collegiate Schools of Business (AACSB) International Maintenance of Accreditation

    ERIC Educational Resources Information Center

    Cann, Cynthia W.; Brumagim, Alan L.

    2008-01-01

    The authors present the case of one business college's use of project management techniques as tools for accomplishing Association to Advance Collegiate Schools of Business (AACSB) International maintenance of accreditation. Using these techniques provides an efficient and effective method of organizing maintenance efforts. In addition, using…

  6. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What are the general requirements for an Advanced Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT...

  7. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What are the general requirements for an Advanced Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT...

  8. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true What are the general requirements for an Advanced Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT...

  9. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What are the general requirements for an Advanced Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT...

  10. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    SciTech Connect

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs.

  11. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum

  12. The Maryland ERA.

    ERIC Educational Resources Information Center

    Maryland State Commission for Women, Baltimore.

    In 1972, the Maryland Equal Rights Amendment (ERA) became law in that state. The amendment provides that "Equality of rights under the law shall not be abridged or denied because of sex." This document surveys the legislative reforms that have been enacted to implement the ERA in the 12 years following the law's ratification. It also…

  13. Advanced reprocessing developments in Europe contribution of European projects ACSEPT and ACTINET-I3

    SciTech Connect

    Bourg, S.; Poinssot, C.; Geist, A.; Cassayre, L.; Rhodes, C.; Ekberg, C.

    2012-07-01

    Nuclear energy has more than ever to demonstrate that it can contribute safely and on a sustainable way to answer the international increase in energy needs. Actually, in addition to an increased safety of the reactors themselves, its acceptance is still closely associated to our capability to reduce the lifetime of the nuclear waste, to manage them safely and to propose options for a better use of the natural resources. Spent fuel reprocessing can help to reach these objectives. But this cannot be achieved only by optimizing industrial processes through engineering studies. It is of a primary importance to increase our fundamental knowledge in actinide sciences in order to build the future of nuclear energy on reliable and scientifically-founded results, and therefore meet the needs of the future fuel cycles in terms of fabrication and performance of fuels, reprocessing and waste management. At the European level, both the collaborative project ACSEPT and the Integrated Infrastructure Initiative ACTINET-I3 work together to improve our knowledge in actinides chemistry and therefore develop advanced separation processes. These tools are complementary and work in close connection on some specific issues such as the understanding of the selectivity of extracting organic ligands. By offering trans-national access to the main nuclear research facility in Europe, ACTINET-I3 aims at increasing the knowledge in actinide sciences by gathering all the expertise available in European nuclear research institutes or university and giving them the opportunity to come and work in hot-labs (ITU, Atalante...) or beamlines (ESFR, ANKA, PSI) ACSEPT is focused on the development of advanced separation processes, both aqueous and pyrochemical. Head-end steps, fuel re-fabrication, solvent treatment, waste management are also taken into account. In aqueous process development, the SANEX and innovative SANEX flowsheets demonstration were successfully achieved. Chemical systems were

  14. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  15. The Post-Genomic Era of Cassava

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics era revolutionized our efficiency at gathering and disseminating scientific information required for advancing our understanding of plant biology. In the case of cassava, the genomics revolution has not kept pace with other staple food and fiber crops important to global economies. As a...

  16. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    NASA Technical Reports Server (NTRS)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  17. Advances in surveillance of periodontitis: the Centers for Disease Control and Prevention periodontal disease surveillance project.

    PubMed

    Eke, Paul I; Thornton-Evans, Gina; Dye, Bruce; Genco, Robert

    2012-11-01

    The Centers for Disease Control and Prevention (CDC) has as one of its strategic goals to support and improve surveillance of periodontal disease. In 2003, the CDC initiated the CDC Periodontal Disease Surveillance Project in collaboration with the American Academy of Periodontology to address population-based surveillance of periodontal disease at the local, state, and national levels. This initiative has made significant advancements toward the goal of improved surveillance, including developing valid self-reported measures that can be obtained from interview-based surveys to predict prevalence of periodontitis in populations. This will allow surveillance of periodontitis at the state and local levels and in countries where clinical resources for surveillance are scarce. This work has produced standard case definitions for surveillance of periodontitis that are now widely recognized and applied in population studies and research. At the national level, this initiative has evaluated the validity of previous clinical examination protocols and tested new protocols on the National Health and Nutrition Examination Survey (NHANES), recommending and supporting funding for the gold-standard full-mouth periodontal examination in NHANES 2009 to 2012. These examinations will generate accurate estimates of the prevalence of periodontitis in the US adult population and provide a superior dataset for surveillance and research. Also, this data will be used to generate the necessary coefficients for our self-report questions for use in subsets of the total US population. The impact of these findings on population-based surveillance of periodontitis and future directions of the project are discussed along with plans for dissemination and translation efforts for broader public health use.

  18. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  19. Status of ERA Vehicle System Integration Technology Demonstrators

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Fernandez, Hamilton; Khorrami, Mehdi; James, Kevin D.; Thomas, Russell

    2015-01-01

    The Environmentally Responsible Aviation (ERA) Project within the Integrated Systems Research Program (ISRP) of the NASA Aeronautics Research Mission Directorate (ARMD) has the responsibility to explore and document the feasibility, benefits, and technical risk of air vehicle concepts and enabling technologies that will reduce the impact of aviation on the environment. The primary goal of the ERA Project is to select air vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions. In addition, the ERA Project will identify and mitigate technical risk and transfer knowledge to the aeronautics community at large so that new technologies and vehicle concepts can be incorporated into the future design of aircraft.

  20. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

    SciTech Connect

    Rahmat Aryaeinejad; Douglas S. Crawford; Mark D. DeHart; George W. Griffith; D. Scott Lucas; Joseph W. Nielsen; David W. Nigg; James R. Parry; Jorge Navarro

    2010-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  1. Voxel Advanced Digital-Manufacturing for Earth and Regolith in Space Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mueller, Robert P.

    2015-01-01

    A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will conceptualize and study various approaches in order to develop a proof of concept 3D printing device that utilizes regolith as the material of the voxels. The goal is to develop a digital printer head capable of placing discrete self-aligning voxels in additive layers in order to fabricate small parts that can be given structural integrity through a post-printing sintering or other binding process. The quicker speeds possible with the voxel 3D printing approach along with the utilization of regolith material as the substrate will advance the use of this technology to applications for In-Situ Resource Utilization (ISRU), which is key to reducing logistics from Earth to Space, thus making long-duration human exploration missions to other celestial bodies more possible.

  2. NASA systems autonomy demonstration project: Advanced automation demonstration of Space Station Freedom thermal control system

    NASA Technical Reports Server (NTRS)

    Dominick, Jeffrey; Bull, John; Healey, Kathleen J.

    1990-01-01

    The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.

  3. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  4. Overview and Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick 'biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror.

  5. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2013

    SciTech Connect

    David W. Nigg

    2013-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for effective application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  6. Advancing Coupled Human-Earth System Models: The Integrated Ecosystem Demography Model (iED) Project

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Chini, L. P.; Clarke, L.; Calvin, K. V.; Chambers, J. Q.; Dubayah, R.; Dolan, K.; Edmonds, J. A.; Fisk, J. P.; Flanagan, S.; Frolking, S.; Janetos, A. C.; LePage, Y.; Morton, D. C.; Patel, P.; Rourke, O.; Sahajpal, R.; Thomson, A. M.; Wise, M.; Ying, Q.

    2012-12-01

    Recent studies with integrated assessment models, models linking human and natural systems at a global scale, highlight the importance of terrestrial systems in climate stabilization efforts. Here we introduce a new modeling framework iED, designed to link advanced remote sensing data (active and passive.), height-structured terrestrial ecosystem dynamics (ED), gridded land-use change projections (GLM), and integrated assessment modeling (GCAM) into a single coupled modeling framework with unprecedented spatial resolution and process-level detail. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth, mortality, and productivity for integrated assessments of terrestrial carbon management. iED is being used to address key science questions including: (1) What are the opportunities for land-use strategies such as afforestation or woody bioenergy crop production to contribute to stabilization of atmospheric CO2 concentrations? (2) How could potentially altered disturbance rates from tropical cyclones and Amazonian fires affect vegetation, carbon stocks and fluxes, and the development of climate change mitigation strategies? (3) What are the linked remote sensing/ecosystem modeling requirements for improving integrated assessments of climate mitigation strategies? With its strong connections to data and conceptual linkages to other models in development, iED is also designed to inform the next generation of remote sensing and integrated Earth system modeling efforts.

  7. Overview and accomplishments of advanced mirror technology development phase 2 (AMTD-2) project

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2015-09-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick `biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror

  8. 76 FR 37804 - NextEra Energy Resources, LLC, Peetz Logan Interconnect, LLC, PWEC, LLC; Notice of Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Energy Regulatory Commission NextEra Energy Resources, LLC, Peetz Logan Interconnect, LLC, PWEC, LLC...Era Energy Resources, LLC (NextEra) and two of its indirect subsidiaries, Peetz Logan Interconnect... convenience in this petition, all of NextEra's Logan County, Colorado projects collectively are...

  9. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt...

  10. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt...

  11. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt...

  12. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt...

  13. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt...

  14. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  15. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect

    Not Available

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  16. COMPARING H{alpha} AND H I SURVEYS AS MEANS TO A COMPLETE LOCAL GALAXY CATALOG IN THE ADVANCED LIGO/VIRGO ERA

    SciTech Connect

    Metzger, Brian D.; Kaplan, David L.; Berger, Edo E-mail: kaplan@uwm.edu

    2013-02-20

    Identifying the electromagnetic counterparts of gravitational wave (GW) sources detected by upcoming networks of advanced ground-based interferometers will be challenging, due in part to the large number of unrelated astrophysical transients within the {approx}10-100 deg{sup 2} sky localizations. A potential way to greatly reduce the number of such false positives is to limit detailed follow-up to only those candidates near galaxies within the GW sensitivity range of {approx}200 Mpc for binary neutron star mergers. Such a strategy is currently hindered by the fact that galaxy catalogs are grossly incomplete within this volume. Here, we compare two methods for completing the local galaxy catalog: (1) a narrowband H{alpha} imaging survey and (2) an H I emission line radio survey. Using H{alpha} fluxes, stellar masses (M {sub *}), and star formation rates (SFRs) from galaxies in the Sloan Digital Sky Survey (SDSS), combined with H I data from the GALEX Arecibo SDSS Survey and the Herschel Reference Survey, we estimate that an H{alpha} survey with a luminosity sensitivity of L {sub H{alpha}} = 10{sup 40} erg s{sup -1} at 200 Mpc could achieve a completeness of f {sup H{alpha}} {sub SFR} Almost-Equal-To 75% with respect to total SFR, but only f{sub M* Star-Operator }{sup H{alpha}} approx. 33% with respect to M {sub *} (due to lack of sensitivity to early-type galaxies). These numbers are significantly lower than those achieved by an idealized spectroscopic survey due to the loss of H{alpha} flux resulting from resolving out nearby galaxies and the inability to correct for the underlying stellar continuum. An H I survey with sensitivity similar to the proposed WALLABY survey on ASKAP could achieve f{sub SFR}{sup H{sub I}} Almost-Equal-To 80% and f{sub M Star-Operator }{sup H{sub I}} Almost-Equal-To 50%, somewhat higher than that of the H{alpha} survey. Finally, both H{alpha} and H I surveys should achieve {approx}> 50% completeness with respect to the host galaxies of

  17. The Advanced Technology Solar Telescope: Science Goals, Design and Project Status. (Invited)

    NASA Astrophysics Data System (ADS)

    Rimmele, T.; Keil, S. L.; Wagner, J.

    2009-12-01

    The 4m Advance Technology Solar Telescope (ATST) on Haleakala will be the most powerful solar telescope and the world’s leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun’s output. The project is about to enter the construction phase and is expected to be fully commissioned in 2017. A brief overview of the science goals and observational requirements of the ATST will be given followed by a summary of the design status of the telescope and its instrumentation will during which the technical and engineering challenges the ATST project faces will be discussed. ATST will provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona. With its 4 m aperture, ATST will resolve features at 0.”03 (20km on the sun) at visible wavelengths. The science requirement for polarimetric sensitivity (10-5 relative to intensity) and accuracy (5x10-4 relative to intensity) place strong constraints on the polarization analysis and calibration units. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coude lab facility. A few examples of the many unique science capabilities of the 4m ATST will be discussed. The initial set of first generation instruments includes: 1: the Visible Broadband Imager will provide images at the highest possible spatial and temporal resolution at a number of specified wavelengths in the range from 390 nm to 860 nm. 2: the Visible Spectro-Polarimeter will provide precision vector field measurements simultaneously at diverse wavelengths in the visible spectrum and thus deliver quantitative diagnostics of the magnetic field vector as a function of height in the solar atmosphere, along with the associated variation of the thermodynamic properties. 3: the Diffraction-Limited Near-Infrared Spectro

  18. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012

    SciTech Connect

    David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

    2012-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core

  19. Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.

  20. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997

    SciTech Connect

    1998-05-01

    The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.

  1. Status of the Advanced Stirling Conversion System Project for 25 kW dish Stirling applications

    SciTech Connect

    Shaltens, R.K.; Schreiber, J.G.

    1991-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising heat engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting technology development for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. NASA Lewis is providing management of the Advanced Stirling Conversion System (ASCS) Project through an Interagency Agreement (IAA) with the DOE. Parallel contracts continue with both Cummins Engine Company (CEC), Columbus, Indiana, and Stirling Technology Company (STC), Richland, Washington for the designs of an ASCS. Each system'' design features a solar receiver/liquid metal heat transport system, and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to a utility grid while meeting DOE's performance and long-term'' cost goals. The Cummins free- piston Stirling convertor incorporates a linear alternator to directly provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both the Cummins and STC ASCS designs will use technology which can reasonably be expected to be available in the early 1990's. 17 refs., 7 figs., 3 tabs.

  2. Central nervous system recurrence of systemic lymphoma in the era of stem cell transplantation--an International Primary Central Nervous System Lymphoma Study Group project.

    PubMed

    Bromberg, Jacoline E; Doorduijn, Jeanette K; Illerhaus, Gerald; Jahnke, Kristoph; Korfel, Agniezka; Fischer, Lars; Fritsch, Kristina; Kuittinen, Outti; Issa, Samar; van Montfort, Cees; van den Bent, Martin J

    2013-05-01

    Autologous stem cell transplantation has greatly improved the prognosis of systemic recurrent non-Hodgkin's lymphoma. However, no prospective data are available concerning the feasibility and efficacy of this strategy for systemic lymphoma relapsing in the central nervous system. We, therefore, we performed an international multicenter retrospective study of patients with a central nervous system recurrence of systemic lymphoma to assess the outcome of these patients in the era of stem cell transplantation. We collected clinical and treatment data on patients with a first central nervous system recurrence of systemic lymphoma treated between 2000 and 2010 in one of five centers in four countries. Patient- and treatment-related factors were analyzed and compared descriptively. Primary outcome measures were overall survival and percentage of patients transplanted. We identified 92 patients, with a median age of 59 years and a median Eastern Cooperative Oncology Group/World Health Organization performance status of 2, of whom 76% had diffuse large B-cell histology. The majority (79%) of these patients were treated with systemic chemotherapy with or without intravenous rituximab. Twenty-seven patients (29%) were transplanted; age and insufficient response to induction chemotherapy were the main reasons for not being transplanted in the remaining 65 patients. The median overall survival was 7 months (95% confidence interval 2.6-11.4), being 8 months (95% confidence interval 3.8-5.2) for patients ≤ 65 years old. The 1-year survival rate was 34.8%; of the 27 transplanted patients 62% survived more than 1 year. The Memorial Sloan Kettering Prognostic Index for primary central nervous system lymphoma was prognostic for both undergoing transplantation and survival. In conclusion, despite the availability of autologous stem cell transplantation for patients with central nervous system progression or relapse of systemic lymphoma, prognosis is still poor. Long-term survival

  3. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    SciTech Connect

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  4. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011

    SciTech Connect

    David W. Nigg; Devin A. Steuhm

    2011-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a

  5. Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D.

    2015-12-01

    This presentation will provide an overview of the most recent reanalysis activities performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). A pilot reanalysis of the 20th-century (ERA-20C) has recently been completed. Funded through the European FP7 collaborative project ERA-CLIM, ERA-20C is part of a suite of experiments that also includes a model-only integration (ERA-20CM) and a land-surface reanalysis (ERA-20CL). Its data assimilation system is constrained by only surface observations obtained from ISPD (3.2.6) and ICOADS (2.5.1). Surface boundary conditions are provided by the Hadley Centre (HadISST2.1.0.0) and radiative forcing follows CMIP5 recommended data sets. First-guess uncertainty estimates are based on a 10-member ensemble of Data Assimilations, ERA-20C ensemble, run prior to ERA-20C using ten SST and sea-ice realizations from the Hadley Centre. In November 2014, the European Commission entrusted ECMWF to run on its behalf the Copernicus Climate Change Service (C3S) aiming at producing quality-assured information about the past, current and future states of the climate at both European and global scales. Reanalysis will be one of the main components of the C3S portfolio and the first one to be produced is a global modern era reanalysis (ERA5) covering the period from 1979 onwards. Based on a recent version of the ECMWF data assimilation system, ERA5 will replace the widely used ERA-Interim dataset. This new production will benefit from a much improved model, and better characterized and exploited observations compared to its predecessor. The first part of the presentation will focus on the ERA-20C production, provide an overview of its main characteristics and discuss some of the key results from its assessment. The second part of the talk will give an overview of ERA5, and briefly discuss some of its challenges.

  6. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 2

    SciTech Connect

    1997-01-01

    The ADVANCE familiar driver test provided a small sample of drivers familiar with their local road network and patterns of recurring congestion with an opportunity to drive a vehicle equipped with the ADVANCE dynamic route guidance system for a period of two weeks of normal use. On the basis of this test experience, drivers were asked to evaluate the ADVANCE system and to assess the value of features for future in-vehicle route guidance systems. This test involved 80 volunteer households living in the ADVANCE test area in northwest suburban Chicago; 110 drivers from these households used the ADVANCE vehicle and responded to both baseline (pre-test) and post-test surveys. Thirty two of these drivers participated in focus groups. Drivers also maintained written logs describing their rerouting experiences with the ADVANCE system.

  7. Oral History Project: Advanced ESL Class, Local 259 U.A.W. 1985-86.

    ERIC Educational Resources Information Center

    Colon, Maria, Comp.; And Others

    A class project undertaken in an English-as-a-Second-Language class is described and presented. Students participating in the project were union employees in a Manhattan electronics factory, and most were native Spanish speakers. The project's objective was to produce an illustrated book and tapes to document work and union experience in the…

  8. A Bubble Mixture Experiment Project for Use in an Advanced Design of Experiments Class

    ERIC Educational Resources Information Center

    Steiner, Stefan H.; Hamada, Michael; White, Bethany J.Giddings; Kutsyy, Vadim; Mosesova, Sofia; Salloum, Geoffrey

    2007-01-01

    This article gives an example of how student-conducted experiments can enhance a course in the design of experiments. We focus on a project whose aim is to find a good mixture of water, soap and glycerin for making soap bubbles. This project is relatively straightforward to implement and understand. At its most basic level the project introduces…

  9. Providing the Basis for Innovative Improvements in Advanced LWR Reactor Passive Safety Systems Design: An Educational R&D Project

    SciTech Connect

    Brian G. Williams; Jim C. P. Liou; Hiral Kadakia; Bill Phoenix; Richard R. Schultz

    2007-02-27

    This project characterizes typical two-phase stratified flow conditions in advanced water reactor horizontal pipe sections, following activation of passive cooling systems. It provides (1) a means to educate nuclear engineering students regarding the importance of two-phase stratified flow in passive cooling systems to the safety of advanced reactor systems and (2) describes the experimental apparatus and process to measure key parameters essential to consider when designing passive emergency core cooling flow paths that may encounter this flow regime. Based on data collected, the state of analysis capabilities can be determined regarding stratified flow in advanced reactor systems and the best paths forward can be identified to ensure that the nuclear industry can properly characterize two-phase stratified flow in passive emergency core cooling systems.

  10. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    SciTech Connect

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  11. Status of the Short-Pulse X-ray Project (SPX) at the Advanced Photon Source (APS)

    SciTech Connect

    Nassiri, R; Berenc, G; Borland, M; Bromberek, D J; Chae, Y -C; Decker, G; Emery, L; Fuerst, J D; Grelick, A E; Horan, D; Lenkszus, F; Lill, R M; Sajaev, V; Smith, T L; Waldschmidt, G J; Wu, G; Yang, B X; Zholents, A; Byrd, J M; Doolittle, L R; Huang, G; Cheng, G; Ciovati, G; Henry, J; Kneisel, P; Mammosser, J D; Rimmer, R A; Turlington, L; Wang, H

    2011-03-01

    The Advanced Photon Source Upgrade project (APS-U) at Argonne includes implementation of Zholents’* deflecting cavity scheme for production of short x-ray pulses. This is a joint project between Argonne National Laboratory, Thomas Jefferson National Laboratory, and Lawrence Berkeley National Laboratory. This paper describes performance characteristics of the proposed source and technical issues related to its realization. Ensuring stable APS storage ring operation requires reducing quality factors of these modes by many orders of magnitude. These challenges reduce to those of the design of a single-cell SC cavity that can achieve the desired operating deflecting fields while providing needed damping of all these modes. The project team is currently prototyping and testing several promising designs for single-cell cavities with the goal of deciding on a winning design in the near future. Here

  12. Stereospecificity of NAD+/NADH Reactions: A Project Experiment for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Lowrey, Jonathan S.; And Others

    1981-01-01

    Presents background information, materials needed, and experimental procedures to study enzymes dependent on pyridine nucleotide coenzymes (NAD/NADH). The experiments, suitable for advanced organic or biochemistry courses, require approximately 10-15 hours to complete. (SK)

  13. Economic project perspectives: An overview of the impact resulting from recent advances in satellite meteorology

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Boness, F. H.

    1972-01-01

    The impact of advanced satellite meteorology on long range weather forecasts, agriculture, commerce, and resource utilization are examined. All data are geared to obtaining a picture of various user needs and possible benefits.

  14. Experimental Design, Near-Infrared Spectroscopy, and Multivariate Calibration: An Advanced Project in a Chemometrics Course

    ERIC Educational Resources Information Center

    de Oliveira, Rodrigo R.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2012-01-01

    A chemometrics course is offered to students in their fifth semester of the chemistry undergraduate program that includes an in-depth project. Students carry out the project over five weeks (three 8-h sessions per week) and conduct it in parallel to other courses or other practical work. The students conduct a literature search, carry out…

  15. Advanced Ground Systems Maintenance Functional Fault Models For Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2014-01-01

    This project implements functional fault models (FFM) to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  16. Strategic Institutional Change to Support Advancement of Women Scientists in the Academy: Lessons from a Study of ADVANCE-IT Projects

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Austin, A. E.; Soto, M.; Martinez, D.

    2011-12-01

    While women's representation among undergraduate and graduate degree-earners has grown steadily in most science fields, progress at the faculty level has been slow to realize, especially in upper academic ranks and in higher status institutions. This is only partly explained by the slow turnover of faculty positions. While some efforts to address this issue have aimed to support individual women and foster their career success, the National Science Foundation's ADVANCE program has taken a different approach, calling for institutions to take a systemic and organizational approach to enhance women's representation in the academy. Since 2001, some 50 institutions have received ADVANCE Institutional Transformation (IT) awards to develop such systemic approaches. Most ADVANCE-IT projects have attended to structures (e.g. committee and departmental leadership roles), processes (e.g. hiring), policy (e.g. family leave), attitudes and awareness (e.g. training for chairs), and workplace climate, as well as interventions that focus on faculty members as valuable human resources. Our research team is studying ADVANCE institutions' approaches to organizational change, by identifying and categorizing individual change interventions, examining how they combine to build an overall change portfolio, and considering how change interventions are selected or adapted to fit a specific institutional context. Because universities are complex organizations composed of multiple, loosely coupled, interconnected sub-systems, an overall change strategy cannot depend on a single type of intervention. Yet any particular intervention might be deployed on behalf of multiple goals and in a variety of forms that may depend on the context, or institutional system, in which it is introduced. We will discuss some common types of strategic intervention used in ADVANCE-IT projects, categorized by Bolman and Deal's (1991) four main perspectives or "lenses" for understanding organizational issues. The

  17. Advanced Secondary Recovery Project for the Sooner ''D'' Sand Unit, Weld County, Colorado

    SciTech Connect

    Sippel, Mark A.

    1996-07-01

    The objective of this project is to increase production from the Cretaceous D Sandstone in the Denver-Julesburg (D-J) Basin through geologically targeted infill drilling and improved reservoir management of waterflood operations. This project involves multi-disciplinary reservoir characterization using high-density 3D seismic, detailed stratigraphy and reservoir simulation studies. Infill drilling, water-injection conversion and re-completing some wells to add short-radius laterals will be based on the results of the reservoir characterization studies. Production response will be evaluated using reservoir simulation and production tests. Technology transfer will utilize workshops, presentations and technical papers which will emphasize the economic advantages of implementing the demonstrated technologies. The success of this project and effective technology transfer should prompt-reappraisal of older waterflood projects and implementation of new projects in oil provinces such as the D-J Basin.

  18. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  19. New Media, New Era

    ERIC Educational Resources Information Center

    Russo, John Paul

    2004-01-01

    This article explores the impact of the new communications technologies on the generation born in the 1980s, the first to grow up under the dominance of the computer. It considers some of the parameters for discussing the close of one era and the beginning of another and draws on the writings of major civilizationist historians and futurologists,…

  20. Dialog's New ERA.

    ERIC Educational Resources Information Center

    Basch, Reva

    1994-01-01

    Describes ERA (Electronic Redistribution and Archiving), a new service on Dialog, that provides both users and database producers with a legal means of registering multiple, systematic use of copyrighted material. Costs and pricing are explained; inclusion of copyright notices on database records is discussed; and compliance is considered. (LRW)

  1. Induction Chemotherapy Improved Long-term Outcomes of Patients with Locoregionally Advanced Nasopharyngeal Carcinoma: A Propensity Matched Analysis of 5-year Survival Outcomes in the Era of Intensity-modulated Radiotherapy

    PubMed Central

    Peng, Hao; Chen, Lei; Zhang, Jian; Li, Wen-Fei; Mao, Yan-Ping; Zhang, Yuan; Liu, Li-Zhi; Tian, Li; Lin, Ai-Hua; Sun, Ying; Ma, Jun

    2017-01-01

    Background: The aim of this study is to evaluate the long-term therapeutic gain of induction chemotherapy (IC) in locoregionally advanced nasopharyngeal carcinoma (NPC) in the era of intensity-modulated radiotherapy (IMRT). Methods: Data on 957 patients with stage T1-2N2-3 or T3-4N1-3 NPC treated with IMRT were retrospectively reviewed. Propensity score matching (PSM) method was adopted to balance influence of various covariates. Patient survival between IC and non-IC groups were compared. Results: For the 318 pairs selected from the original 957 patients by PSM, the median follow-up duration was 57.13 months (range, 1.27-78.1 months). The 5-year overall survival (OS), distant metastasis-free survival (DMFS), disease-free survival (DFS) and locoregional relapse-free survival (LRRFS) rates for IC group vs. non-IC group were 87.2% vs. 80.8% (P = 0.023), 88.1% vs. 83.2% (P = 0.071), 80.7% vs. 71.4% (P = 0.011) and 92.1% vs. 86.7% (P = 0.081), respectively. Multivariate analysis identify IC as an independent prognostic factor for OS (HR, 0.595; 95% CI, 0.397-0.891; P = 0.012) and DFS (HR, 0.627; 95% CI, 0.451-0.872; P = 0.006). After excluding the patients not receiving concurrent chemotherapy, IC was found to be an independent prognostic factor for OS (HR, 0.566; 95% CI, 0.368-0.872; P = 0.01), DMFS (HR, 0.580; 95% CI, 0.367-0.916; P = 0.02) and DFS (HR, 0.633; 95% CI, 0.444-0.903; P = 0.012). Conclusions: IC is an effective treatment modality for patients with stage T1-2N2-3 and T3-4N1-3 NPC, and the incorporation of IC with standard CCRT could achieve the best therapeutic gain. PMID:28261337

  2. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  3. Evaluating aggregate terrestrial impacts of road construction projects for advanced regional mitigation.

    PubMed

    Thorne, James H; Girvetz, Evan H; McCoy, Michael C

    2009-05-01

    This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.

  4. Advancements in NORM metrology - Results and impact of the European joint research project MetroNORM.

    PubMed

    Josef Maringer, Franz; Baumgartner, Andreas; Cardellini, Francesco; Cassette, Philippe; Crespo, Teresa; Dean, Julian; Wiedner, Hannah; Hůlka, Jiři; Hult, Mikael; Jerome, Simon; Kabrt, Franz; Kovář, Petr; Larijani, Cyrus; Lutter, Guillaume; Marouli, Maria; Mauring, Alexander; Mazánová, Monika; Michalik, Bogusław; Michielsen, Nathalie; Peyres, Virginia; Pierre, Sylvie; Pöllänen, Roy; Pommé, Stefaan; Reis, Mário; Stietka, Michael; Szücs, László; Vodenik, Branko

    2017-03-08

    The results of the three years European Metrology Research Programme's (EMRP) joint research project 'Metrology for processing materials with high natural radioactivity' (MetroNORM) are presented. In this project, metrologically sound novel instruments and procedures for laboratory and in-situ NORM activity measurements have been developed. Additionally, standard reference materials and sources for traceable calibration and improved decay data of natural radionuclides have been established.

  5. Recent findings from the Human Proteome Project: opening the mass spectrometry toolbox to advance cancer diagnosis, surveillance and treatment.

    PubMed

    Cantor, David I; Nice, Edouard C; Baker, Mark S

    2015-06-01

    The Human Proteome Project stands to eclipse the Human Genome Project in terms of scope, content and interpretation. Its outputs, in conjunction with recent developments across the proteomics community, provide new tools for cancer research with the potential of providing clinically relevant insights into the disease. These collectively may guide the development of future diagnosis, surveillance and treatment strategies. Having established a robust organizational framework within the international community, the Human Proteome Organization and the proteomics community at large have made significant advances in biomarker discovery, detection, molecular imaging and in exploring tumor heterogeneity. Here, the authors discuss some developments in cancer proteomics and how they can be implemented to reduce the global burden of the disease.

  6. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    NASA Technical Reports Server (NTRS)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  7. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  8. Advanced Fuel Cycle Initiative - Projected Linear Heat Generation Rate and Burnup Calculations

    SciTech Connect

    Richard G. Ambrosek; Gray S. Chang; Debbie J. Utterbeck

    2005-02-01

    This report provides documentation of the physics analysis performed to determine the linear heat generation rate (LHGR) and burnup calculations for the Advanced Fuel Cycle Initiative (AFCI) tests, AFC-1D, AFC-1H, and AFC-1G. The AFC-1D and AFC-1H tests consists of low-fertile metallic fuel compositions and the AFC-1G test consists of non-fertile and low-fertile nitride compositions. These tests will be irradiated in the East Flux Trap (EFT) positions E1, E2, and E3, respectively, during Advanced Test Reactor (ATR) Cycle 135B.

  9. Management of symptoms associated with advanced cancer: olanzapine and mirtazapine. A World Health Organization project.

    PubMed

    Davis, Mellar P; Khawam, Elias; Pozuelo, Leo; Lagman, Ruth

    2002-08-01

    Advanced cancer patients are polysymptomatic and often receive multiple medications for symptom relief. Common symptoms include anorexia, weight loss, delirium and depression. Olanzapine and mirtazapine may have several advantages over older agents despite increased acquisition costs. Both medications can treat several symptoms with a low risk for drug-drug interactions and with only once- or twice-daily dosing. Drug side effects are low, compared with more conventionally used agents. The pharmacokinetics and pharmacodynamics of both agents are unique and explain many of the benefits. More research and clinical experience will be necessary to define their role in the palliation of advanced cancer.

  10. Advanced Information Processing. Volume II. Instructor's Materials. Curriculum Improvement Project. Region II.

    ERIC Educational Resources Information Center

    Stanford, Linda

    This course curriculum is intended for use by community college insructors and administrators in implementing an advanced information processing course. It builds on the skills developed in the previous information processing course but goes one step further by requiring students to perform in a simulated office environment and improve their…

  11. Advanced Information Processing. Volume I. Student's Materials. Curriculum Improvement Project. Region II.

    ERIC Educational Resources Information Center

    Stanford, Linda

    This course curriculum is intended for use in an advanced information processing course. It builds on the skills developed in the previous information processing course but goes one step further by requiring students to perform in a simulated office environment and improve their decision-making skills. This volume contains two parts of the…

  12. Student Learning in Linear Algebra: The Gateways To Advance Mathematical Thinking Project.

    ERIC Educational Resources Information Center

    Manes, Michelle

    This document provides a preliminary report of the study Gateways To Advance Mathematical Thinking (GAMT) run by Educational Development Center, Inc. (EDC). The study was designed to see what types of reasoning students who have recently completed a linear algebra course apply to problems in algebraic thinking. Student interviews were used as the…

  13. MentorLinks: Advancing Technological Education. Project Brief. AACC-PB-04-01

    ERIC Educational Resources Information Center

    Hause, Ellen

    2004-01-01

    The American Association of Community Colleges with support from the National Science Foundation created the "MentorLinks" Advancing Technological Education program to help community colleges develop or strengthen technician training programs in the science, technology, engineering, and mathematics fields. The program works with…

  14. Advance Appropriations: A Needless and Confusing Education Budget Technique. Federal Education Budget Project

    ERIC Educational Resources Information Center

    Delisle, Jason

    2007-01-01

    This report argues that advance appropriations serve no functional purpose for schools, but they create a loss of transparency, comparability, and simplicity in federal education budgeting. It allocates spending before future budgets have been established. The approach was originally used to skirt spending limits and budget procedures in place…

  15. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    SciTech Connect

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results in plant

  16. Laparoscopy in the era of enhanced recovery.

    PubMed

    Rockall, T A; Demartines, N

    2014-02-01

    Laparoscopy is one of the cornerstones in the surgical revolution and transformed outcome and recovery for various surgical procedures. Even if these changes were widely accepted for basic interventions, like appendectomies and cholecystectomies, laparoscopy still remains challenged for more advanced operations in many aspects. Despite these discussion, there is an overwhelming acceptance in the surgical community that laparoscopy did transform the recovery for several abdominal procedures. The importance of improved peri-operative patient management and its influence on outcome started to become a focus of attention 20 years ago and is now increasingly spreading, as shown by the incoming volume of data on this topic. The enhanced recovery after surgery (ERAS) concept incorporates simple measures of general management, and requires multidisciplinary collaboration from hospital staff as well as the patient and the relatives. Several studies have demonstrated a significant decrease in postoperative complication rate, length of hospital stay and reduced overall cost. The key elements of success are fluid restriction, a functioning epidural and preoperative carbohydrate intake. With the expansion of laparoscopic techniques, ERAS increasingly incorporates laparoscopic patients, especially in colorectal surgery. However, the precise impact of laparoscopy on ERAS is still not clearly defined. Increasing evidence suggests that laparoscopy itself is an additional ERAS item that should be considered as routine where feasible in order to obtain the best surgical outcomes.

  17. Advanced secondary recovery project for the Sooner D Sand Unit, Weld County, Colorado: Final report

    SciTech Connect

    Sippel, M.A.; Cammon, T.J.

    1986-06-01

    The objective of this project was to increase production at the Sooner D Sand Unit through geologically targeted infill drilling and improved reservoir management of waterflood operations. The Sooner D Sand Unit demonstration project should be an example for other operators to follow for reservoir characterization and exploitation methodologies to increase production by waterflood from the Cretaceous D Sandstone in the Denver-Julesburg (D-J) Basin. This project involved multi-disciplinary reservoir characterization using high-density 3D seismic, detailed stratigraphy and reservoir simulation studies. Infill drilling, water-injection conversion and re-completing some wells to add short-radius laterals were based on the results of the reservoir characterization studies. Production response were evaluated using reservoir simulation and production tests. Technology transfer utilized workshops, presentations and technical papers which emphasized the economic advantages of implementing the demonstrated technologies.

  18. The Progressive Era.

    PubMed

    Chambers, David W

    2005-01-01

    The American College of Dentists was founded in 1920 for the purpose of encouraging young dentists to continue study and to apply science to their practices. This ideal emerged in the Progressive Era, which lasted roughly from 1895 to 1920. The animating spirit of this period was that the human condition could be improved and that the way to achieve this was through science and the use of experts working together. The Progressive Era saw inventions, such as automobiles and airplanes, telephone and radio, that required mass production and brought people together. It also spawned many political and legislative innovations that we now take for granted. Among these are the Food and Drug Administration, the Department of Commerce, and the Federal Trade Commission. Workers' compensation and other social protections were introduced, as were city commissions; the income tax; women's suffrage; and initiative, referendum, and recall. Medicine, for the first time, became an effective way to treat disease as it developed a scientific foundation.

  19. The fourth energy era

    NASA Astrophysics Data System (ADS)

    Nansen, R. H.

    The use of energy in world history is reviewed, and alternative energy futures are assessed. The eras of wood and coal energy belong to the past, and the present energy crisis indicates that the era of oil energy is coming to an end. Possible modes of meeting the energy need of the future are briefly assessed, including wind power, biomass energy conversion, geothermal energy, ocean thermal gradient, oceanic wave power, ground solar power, conservation, coal and synthetic fuels, oil, nuclear fission, nuclear fusion, and solar power satellites. The latter three are considered superior because electricity is the final product. The solar power satellite is chosen as the answer to the future energy problem because of considerations of potential abundance, environmental acceptability, great flexibility, and low cost

  20. Advances in EPA’s Rapid Exposure and Dosimetry Project (Interagency Alternatives Assessment Webinar)

    EPA Science Inventory

    Estimates of human and ecological exposures are required as critical input to risk-based prioritization and screening of chemicals. The CSS Rapid Exposure and Dosimetry project seeks to develop the data, tools, and evaluation approaches required to generate rapid and scientifical...

  1. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  2. Stereospecific Reductions of Delta4-Cholesten-3-one: An Advanced Organic Synthesis Project.

    ERIC Educational Resources Information Center

    Markgraf, J. Hodge; And Others

    1988-01-01

    Outlines a multistep project involving oxidation of cholesterol, isomerization of an enone, and reduction of delta-4-cholesten-3-one. Featured is the last stage in which the ring junction is set stereospecifically. Recommends two laboratory periods to complete the reaction. (ML)

  3. Defense Advanced Research Projects Agency Properly Awarded Contracts for Disc-Rotor Research and Development

    DTIC Science & Technology

    2013-07-19

    Boeing. Contract Solicitation DARPA personnel properly issued BAA 06-15, “DARPA Tactical Technology Office ( TTO ),” to solicit proposals for advanced R...technology. The BAA 06-15 published on the Federal Business Opportunities website https://www.fedbizopps.gov, stated that DARPA TTO personnel would...submission. DARPA contracting personnel provided letters of “Discouraged” to 122 white papers submissions based on the relevance to the TTO mission

  4. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge Project

    NASA Technical Reports Server (NTRS)

    Wright, Maria Clara (Compiler)

    2015-01-01

    The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific technology idea that needs improvement and to then work with an external partner to develop that technology. This Challenge will enable competitive partnerships with outside entities that will increase the value by bringing leveraged resources. The selected proposal from the University of Florida will develop new lightweight technologies with radiation mitigation for spacecraft.

  5. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  6. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  7. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  8. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  9. NASA Environmentally Responsible Aviation Projects Propulsion Technology Phase I Overview and Highlights of Accomplishments

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Delaat, John C.

    2012-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and highlights of the results obtained during the first phase of ERA will be presented.

  10. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    SciTech Connect

    Johnson, Timothy J.; Weise, David; Lincoln, E. N.; Sams, Robert L.; Cameron, Melanie; Veres, Patrick; Yokelson, Robert J.; Urbanski, Shawn; Profeta, Luisa T.; Williams, S.; Gilman, Jessica; Kuster, W. C.; Akagi, Sheryl; Stockwell, Chelsea E.; Mendoza, Albert; Wold, Cyle E.; Warneke, Carsten; de Gouw, Joost A.; Burling, Ian R.; Reardon, James; Schneider, Matthew D.; Griffith, David W.T.; Roberts, James M.

    2013-12-17

    Objectives: Project RC-1649, “Advanced Chemical Measurement of Smoke from DoD-prescribed Burns” was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement of need (SON) called for “(1) improving characterization of fuel consumption” and “(2) improving characterization of air emissions under both flaming and smoldering conditions with respect to volatile organic compounds, heavy metals, and reactive gases.” The measurements and fuels were from several bases throughout the southeast (Camp Lejeune, Ft. Benning, and Ft. Jackson) and were carried out in collaboration and conjunction with projects 1647 (models) and 1648 (particulates, SW bases). Technical Approach: We used an approach that featured developing techniques for measuring biomass burning emission species in both the laboratory and field and developing infrared (IR) spectroscopy in particular. Using IR spectroscopy and other methods, we developed emission factors (EF, g of effluent per kg of fuel burned) for dozens of chemical species for several common southeastern fuel types. The major measurement campaigns were laboratory studies at the Missoula Fire Sciences Laboratory (FSL) as well as field campaigns at Camp Lejeune, NC, Ft. Jackson, SC, and in conjunction with 1648 at Vandenberg AFB, and Ft. Huachuca. Comparisons and fusions of laboratory and field data were also carried out, using laboratory fuels from the same bases. Results: The project enabled new technologies and furthered basic science, mostly in the area of infrared spectroscopy, a broadband method well suited to biomass burn studies. Advances in hardware, software and supporting reference data realized a nearly 20x improvement in sensitivity and now provide quantitative IR spectra for potential detection of ~60 new

  11. Status Report on the Development of Micro-Scheduling Software for the Advanced Outage Control Center Project

    SciTech Connect

    Germain, Shawn St.; Thomas, Kenneth; Farris, Ronald; Joe, Jeffrey

    2014-09-01

    The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are

  12. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    SciTech Connect

    Kopf, Steven

    2013-10-15

    The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: Wave Tank Testing to Characterize Hydrodynamic Characteristics;  Open-Sea Testing of a New 1:2 Scale Experimental Model;  Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status;  Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

  13. Venezuelan projects advance to develop world`s largest heavy oil reserves

    SciTech Connect

    Croft, G.; Stauffer, K.

    1996-07-08

    A number of joint venture projects at varying stages of progress promise to greatly increase Venezuela`s production of extra heavy oil. Units of Conoco, Chevron, Total, Arco, and Mobil have either signed agreements or are pursuing negotiations with affiliates of state-owned Petroleos de Venezuela SA on the development of huge reserves of 8--10{degree} gravity crude. Large heavy oil resources are present in the oil producing areas of eastern and western Venezuela, and the largest are in eastern Venezuela`s Orinoco heavy oil belt. The paper discusses the Orinoco heavy oil belt geology and several joint ventures being implemented.

  14. Advances in Projection Moire Interferometry Development for Large Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.; Bartram, Scott M.

    1999-01-01

    An instrument development program aimed at using Projection Moire Interferometry (PMI) for acquiring model deformation measurements in large wind tunnels was begun at NASA Langley Research Center in 1996. Various improvements to the initial prototype PMI systems have been made throughout this development effort. This paper documents several of the most significant improvements to the optical hardware and image processing software, and addresses system implementation issues for large wind tunnel applications. The improvements have increased both measurement accuracy and instrument efficiency, promoting the routine use of PMI for model deformation measurements in production wind tunnel tests.

  15. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ.

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Sullivan, Kenneth W.

    1991-01-01

    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  16. Effects of Depth on Dredging Frequency. Report 3. Evaluation of Advance Maintenance Projects.

    DTIC Science & Technology

    1985-04-01

    to 1)rovide a p rede te rmi ned amiis’t () If L-;) Lhint c a pa( I it v he Ilow les jgz dtepth.i ItL is exclIus ive of the alIlIowah Ie ulre-lg Iig t...p roject s wh ichi infl tdod advance ma LI t ellal ce w Ii 11 h u h s wh I did ( to . Dlat I. used wv e of) Lb a I ned f rom p red redcge- aInd postdr...was conducted during the period 1978 to 1982 under the di- rection of Messrs. H. B. Simmons and F. A. Herrmann , Jr., former and present Chiefs of the

  17. The Coal Tech Advanced Cyclone Combustor Demonstration Project: A DOE assessment

    SciTech Connect

    Not Available

    1993-05-01

    The objective of this project was to demonstrate a technology for retrofitting oil/gas designed boilers, and conventional pulverized coal-fired boilers, by using the patented air-cooled slagging coal combustor in place of oil/gas/coal burners. The project aimed to utilize coals with a wide range of sulfur contents and to achieve efficient combustion under fuel-rich conditions. The three performance goals of the combustor were to limit emissions of SO{sub 2} and NO{sub x}, while maintaining maximum sulfur retention in the slag removed from the combustor. A slagging cyclone combustor is a high-temperature device in which a high-velocity swirling gas is used to burn crushed or pulverized coal. The key novel feature of this combustor is the use of air cooling. This is accomplished by using a ceramic liner which is cooled by secondary air and maintained at a temperature high enough to keep the slag in a liquid, free-flowing state. The arrangement also promotes slag retention in the combustor, an important feature for retrofitting in boilers designed for oil/gas.

  18. Recent advances in a linear micromirror array for high-resolution projection

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Doucet, Michel; Niall, Keith K.; Larouche, Carl; Savard, Maxime; Crisan, Silviu; Thibault, Simon; Jerominek, Hubert

    2004-05-01

    The visual displays of contemporary military flight simulators lack adequate definition to represent scenes in basic fast-jet fighter tasks. For example, air-to-air and air-to-ground targets are not projected with sufficient contrast and resolution for a pilot to perceive aspect, aspect rate and object detail at real world slant ranges. Simulator display geometries require the development of ultra-high resolution projectors with greater than 20 megapixel resolution at 60 Hz frame rate. A new micromirror device has been developed to address this requirement; it is able to modulate light intensity in an analog fashion with switching times shorter than 5 μs. When combined with a scanner, a laser and Schlieren optics, a linear array of these flexible micromirrors can display images composed of thousands of lines at a frame rate of 60 Hz. Recent results related to evaluation of this technology for high resolution projection are presented. Alternate operation modes for light modulation with flexible micromirrors are proposed. The related importance of controlling the residual micromirror curvature is discussed and results of experiments investigating the use of the deposition pressure to achieve such control are reported. Moreover, activities aiming at minimizing the micromirror response time and, so doing, maximizing the number of image columns per image frame are discussed. Finally, contrast measurement and estimate of the contrast limit achievable with the flexible micromirror technology are presented. All reported activities support the development of a fully addressable 2000-element micromirror array.

  19. Advances in projection of climate change impacts using supervised nonlinear dimensionality reduction techniques

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Yang, Ge; Ghodsi, Ali

    2017-02-01

    One of the main challenges in climate change studies is accurate projection of the global warming impacts on the probabilistic behaviour of hydro-climate processes. Due to the complexity of climate-associated processes, identification of predictor variables from high dimensional atmospheric variables is considered a key factor for improvement of climate change projections in statistical downscaling approaches. For this purpose, the present paper adopts a new approach of supervised dimensionality reduction, which is called "Supervised Principal Component Analysis (Supervised PCA)" to regression-based statistical downscaling. This method is a generalization of PCA, extracting a sequence of principal components of atmospheric variables, which have maximal dependence on the response hydro-climate variable. To capture the nonlinear variability between hydro-climatic response variables and projectors, a kernelized version of Supervised PCA is also applied for nonlinear dimensionality reduction. The effectiveness of the Supervised PCA methods in comparison with some state-of-the-art algorithms for dimensionality reduction is evaluated in relation to the statistical downscaling process of precipitation in a specific site using two soft computing nonlinear machine learning methods, Support Vector Regression and Relevance Vector Machine. The results demonstrate a significant improvement over Supervised PCA methods in terms of performance accuracy.

  20. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment

    PubMed Central

    Rashydov, Namik M.; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk. PMID:26217350

  1. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

    PubMed

    Rashydov, Namik M; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

  2. An FP7 "Space" project: Aphorism "Advanced PRocedures for volcanic and Seismic Monitoring"

    NASA Astrophysics Data System (ADS)

    Di Iorio, A., Sr.; Stramondo, S.; Bignami, C.; Corradini, S.; Merucci, L.

    2014-12-01

    APHORISM project proposes the development and testing of two new methods to combine Earth Observation satellite data from different sensors, and ground data. The aim is to demonstrate that this two types of data, appropriately managed and integrated, can provide new improved GMES products useful for seismic and volcanic crisis management. The first method, APE - A Priori information for Earthquake damage mapping, concerns the generation of maps to address the detection and estimate of damage caused by a seism. The use of satellite data to investigate earthquake damages is not an innovative issue. We can find a wide literature and projects concerning such issue, but usually the approach is only based on change detection techniques and classifications algorithms. The novelty of APE relies on the exploitation of a priori information derived by InSAR time series to measure surface movements, shake maps obtained from seismological data, and vulnerability information. This a priori information is then integrated with change detection map to improve accuracy and to limit false alarms. The second method deals with volcanic crisis management. The method, MACE - Multi-platform volcanic Ash Cloud Estimation, concerns the exploitation of GEO (Geosynchronous Earth Orbit) sensor platform, LEO (Low Earth Orbit) satellite sensors and ground measures to improve the ash detection and retrieval and to characterize the volcanic ash clouds. The basic idea of MACE consists of an improvement of volcanic ash retrievals at the space-time scale by using both the LEO and GEO estimations and in-situ data. Indeed the standard ash thermal infrared retrieval is integrated with data coming from a wider spectral range from visible to microwave. The ash detection is also extended in case of cloudy atmosphere or steam plumes. APE and MACE methods have been defined in order to provide products oriented toward the next ESA Sentinels satellite missions.The project is funded under the European Union FP7

  3. TP Atlas: integration and dissemination of advances in Targeted Proteins Research Program (TPRP)-structural biology project phase II in Japan.

    PubMed

    Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki

    2012-09-01

    The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .

  4. Materials for advanced turbine engines. Project 2: Rene 150 directionally solidified superalloy turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Deboer, G. J.

    1982-01-01

    The results of the engine testing of Rene 150 Stage 1 high pressure turbine blades in CF6-50 core and fan engines are presented. The core engine test was conducted for 233 hours with a variety of test cycles, and the fan engine test was conducted for 1000 C cycles. Post-test analysis of the core engine test data confirmed the suitability of the Rene 150 HPT blade for fan engine testing. Post-test evaluation and analysis of the fan engine test blades included visual and dimensional inspection as well as metallographic examination of selected blades. The Rene 150 HPT blade met the target goal of this project by demonstrating increased metal temperature capability; however, the post-test analysis revealed several areas that would have to be addressed in designing a long-life Rene 150 CF6-50 HPT blade.

  5. Applying knowledge-anchored hypothesis discovery methods to advance clinical and translational research: the OAMiner project

    PubMed Central

    Jackson, Rebecca D; Best, Thomas M; Borlawsky, Tara B; Lai, Albert M; James, Stephen; Gurcan, Metin N

    2012-01-01

    The conduct of clinical and translational research regularly involves the use of a variety of heterogeneous and large-scale data resources. Scalable methods for the integrative analysis of such resources, particularly when attempting to leverage computable domain knowledge in order to generate actionable hypotheses in a high-throughput manner, remain an open area of research. In this report, we describe both a generalizable design pattern for such integrative knowledge-anchored hypothesis discovery operations and our experience in applying that design pattern in the experimental context of a set of driving research questions related to the publicly available Osteoarthritis Initiative data repository. We believe that this ‘test bed’ project and the lessons learned during its execution are both generalizable and representative of common clinical and translational research paradigms. PMID:22647689

  6. Advanced NMR-based techniques for pore structure analysis of coal. Final project report

    SciTech Connect

    Smith, D.M.; Hua, D.W.

    1996-02-01

    During the 3 year term of the project, new methods have been developed for characterizing the pore structure of porous materials such as coals, carbons, and amorphous silica gels. In general, these techniques revolve around; (1) combining multiple techniques such as small-angle x-ray scattering (SAXS) and adsorption of contrast-matched adsorbates or {sup 129}Xe NMR and thermoporometry (the change in freezing point with pore size), (2) combining adsorption isotherms over several pressure ranges to obtain a more complete description of pore filling, or (3) applying NMR ({sup 129}Xe, {sup 14}N{sub 2}, {sup 15}N{sub 2}) techniques with well-defined porous solids with pores in the large micropore size range (>1 nm).

  7. Report of activities of the advanced coal extraction systems definition project, 1979 - 1980

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Isenberg, L.

    1981-01-01

    During this period effort was devoted to: formulation of system performance goals in the areas of production cost, miner safety, miner health, environmental impact, and coal conservation, survey and in depth assessment of promising technology, and characterization of potential resource targets. Primary system performance goals are to achieve a return on incremental investment of 150% of the value required for a low risk capital improvement project and to reduce deaths and disability injuries per million man-hour by 50%. Although these performance goals were developed to be immediately applicable to the Central Appalachian coal resources, they were also designed to be readily adaptable to other coals by appending a geological description of the new resource. The work done on technology assessment was concerned with the performance of the slurry haulage system.

  8. Development of advanced fibrous monoliths - final report for project of 1998-2000.

    SciTech Connect

    Goretta, K. C.; Singh, D.; Cruse, T. A.; Ellingson, W. A.; Picciolo, J. J.; Polzin, B. J.; Spohnholtz, T. W.; Zok, F. W.; McNulty, J. C.; He, M.; Kriven, W. M.; Lee, S. J.; Kim, D. K.; Hilmas, G.; Mercer, A. J.; Begley, M. R.; de Arellano-Lopez, A. R.

    2001-05-10

    Efforts to develop fibrous ceramic monoliths for primarily structural applications are described. Fibrous monoliths (FMs) are relatively insensitive to flaws and can exhibit graceful failure and large work-of-fracture values. They can be inexpensively produced in a wide variety of forms by conventional ceramic processing methods such as extrusion. The FM project that is the subject of this report involved investigations to (1) develop FMs that can be pressureless sintered rather than hot pressed, (2) develop technologies to continuously extrude FM filaments and inexpensively fabricate FM components, (3) evaluate the performance of commercial and new, prototype FMs, (4) develop micromechanical models to guide the design of new FMs and predict their properties, and (5) forge collaborations with industry to produce useful parts.

  9. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  10. Techno-economic projections for advanced small solar thermal electric power plants to years 1990-2000

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.

    1979-01-01

    Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.

  11. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    SciTech Connect

    Johnson, Francis

    2014-06-30

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy

  12. Development of a more fish-tolerant turbine runner, advanced hydropower turbine project

    SciTech Connect

    Cook, T.C.; Hecker, G.E.; Faulkner, H.B.; Jansen, W.

    1997-02-01

    Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes or eliminates the clearance between the runner and runner housing, and maximizes the size of the flow passages, all with minimal penalty on turbine efficiency. An existing pump impeller provided the starting point for developing the fish tolerant turbine runner. The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Conceptual design of the new runner began with a re-evaluation of studies which have been previously conducted to identify probable sources of injury to fish passing through hydraulic turbines. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. 86 figs., 5 tabs.

  13. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame

  14. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time

  15. Second Nuclear Era

    SciTech Connect

    Weinberg, A.M.; Spiewak, I.; Barkenbus, J.N.; Livingston, R.S.; Phung, D.L.

    1984-03-01

    The Institute for Energy Analysis with support from The Andrew W. Mellon Foundation has studied the decline of the present nuclear era in the United States and the characteristics of a Second Nuclear Era which might be instrumental in restoring nuclear power to an appropriate place in the energy options of our country. The study has determined that reactors operating today are much safer than they were at the time of the TMI accident. A number of concepts for a supersafe reactor were reviewed and at least two were found that show considerable promise, the PIUS, a Swedish pressurized water design, and a gas-cooled modular design of German and US origin. Although new, safer, incrementally improved, conventional reactors are under study by the nuclear industry, the complete lack of new orders in the United States will slow their introduction and they are likely to be more expensive than present designs. The study recommends that supersafe reactors be taken seriously and that federal and private funds both be used to design and, if feasible, to build a prototype reactor of substantial size. 146 references, 8 figures, 2 tables.

  16. Rework of the ERA software system: ERA-8

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Skripnichenko, V.

    2015-08-01

    The software system that has been powering many products of the IAA during decades has undergone a major rework. ERA has capabilities for: processing tables of observations of different kinds, fitting parameters to observations, integrating equations of motion of the Solar system bodies. ERA comprises a domain-specific language called SLON, tailored for astronomical tasks. SLON provides a convenient syntax for reductions of observations, choosing of IAU standards to use, applying rules for filtering observations or selecting parameters for fitting. Also, ERA includes a table editor and a graph plotter. ERA-8 has a number of improvements over previous versions such as: integration of the Solar system and TT xA1 TDB with arbitrary number of asteroids; option to use different ephemeris (including DE and INPOP); integrator with 80-bit floating point. The code of ERA-8 has been completely rewritten from Pascal to C (for numerical computations) and Racket (for running SLON programs and managing data). ERA-8 is portable across major operating systems. The format of tables in ERA-8 is based on SQLite. The SPICE format has been chosen as the main format for ephemeris in ERA-8.

  17. NERI PROJECT 99-119. TASK 1. ADVANCED CONTROL TOOLS AND METHODS. FINAL REPORT

    SciTech Connect

    March-Leuba, J.A.

    2002-09-09

    Nuclear plants of the 21st century will employ higher levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and communication in a distributed system are needed to implement the fully automated plant. Equally challenging will be integrating developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved performance, safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the U. S. Department of Energy is sponsoring a project to address some of the technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project, ''A New Paradigm for Automated Development Of Highly Reliable Control Architectures For Future Nuclear Plants,'' involves researchers from Oak Ridge National Laboratory, University of Tennessee, and North Carolina State University. This paper documents a research effort to develop methods for automated generation of control systems that can be traced directly to the design requirements. Our final goal is to allow the designer to specify only high-level requirements and stress factors that the control system must survive (e.g. a list of transients, or a requirement to withstand a single failure.) To this end, the ''control engine'' automatically selects and validates control algorithms and parameters that are optimized to the current state of the plant, and that have been tested under the prescribed stress factors. The control engine then automatically generates the control software from validated algorithms. Examples of stress factors that the control system must ''survive'' are: transient events (e.g., set-point changes, or expected occurrences such a load rejection,) and postulated component failures. These stress factors are specified by the

  18. Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring, SoilCAM project highlights

    NASA Astrophysics Data System (ADS)

    French, H. K.; Van Der Zee, S. E.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Tsocano, G.

    2013-12-01

    The SoilCAM project (2008- 2012, EU-FP7-212663) aimed at improving methods for monitoring subsurace contaminant distribution and biodegradation. Two test sites were chosen, Oslo airport Gardermoen, Norway where de-icing agents infiltrate the soil during snowmelt and the Trecate site in Italy where an inland crude oil spill occurred in 1994. A number of geophysical investigation techniques were combined with soil and water sampling techniques. Data obtained from time-lapse measurements were further analysed by numerical modelling of flow and transport at different scales in order to characterise transport processes in the unsaturated and saturated zones. Laboratory experiments provided physical and biogeochemical data for model parameterisation and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and to conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. Results showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport showed infiltration patterns during snowmelt and were used to validate 2D unsaturated flow and transport simulations using SUTRA. The simulations illustrate the effect of layering geological structures and membranes, buried parallel to the runway, on the flow pattern. Complex interaction between bio-geo-chemical processes in a 1D vertical profile along the runway were described with the ORCHESTRA model. Smaller scale field site measurements revealed increase of iron and manganese during degradation of de-icing chemicals. At the Trecate site a combination of georadar, electrical resistivity and radio magneto telluric provided a broad outline of the geology down to 50 m. Anomalies in the Induced polarisation and electrical resistivity data from the cross borehole

  19. Interdisciplinarity in an Era of New Public Management: A Case Study of Graduate Business Schools

    ERIC Educational Resources Information Center

    Ryan, Suzanne; Neumann, Ruth

    2013-01-01

    In an era of rapid knowledge transmission and creation spurred on by advances in technology and globalisation, calls for interdisciplinarity to solve "wicked" problems are common. In the same era, universities are increasingly adopting new public management practices. The extent to which these practices affect knowledge production is an…

  20. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019

    SciTech Connect

    Szilard, Ronaldo H.; Smith, Curtis L.; Youngblood, Robert

    2014-09-01

    In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.

  1. Overview and Summary of Advanced UVOIR Mirror Technology Development (AMTD) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: center dotLarge-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented telescopes require larger and stiffer mirrors. center dotSupport System: Large-aperture mirrors require large support systems to ensure that they survive launch, deploy on orbit, and maintain a stable, undistorted shape. center dotMid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. center dotSegment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. center dotSegment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. center dotIntegrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. Because we cannot predict the future, AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements

  2. Status of Advanced Stitched Unitized Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  3. Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report

    SciTech Connect

    Cook, T.C.; Hecker, G.E.; Faulkner, H.B.; Jansen, W.

    1997-01-01

    The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

  4. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines

    SciTech Connect

    Bunting, Bruce G; Bunce, Michael

    2012-01-01

    Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels

  5. Erosion Coatings for High-Temperature Polymer Composites: A Collaborative Project With Allison Advanced Development Company

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    2000-01-01

    composite (ASTM D 4541 95 "Pull Off Strength of Coatings"). Glenn and Allison Advanced Development Company collaborated to optimize erosion coatings for gas turbine fan and compressor applications. All the coating systems survived aggressive thermal cycling without spalling. During erosion tests (see the final photo), the most promising coating systems tested had Cr3C2-NiCr and WC-Co as the hard topcoats. In all cases, these coating systems performed significantly better than that with a TiN hard topcoat. When material depth (thickness) loss is considered, the Cr3C2-NiCr and WC-Co coating systems provided, on average, an erosion resistance 8.5 times greater than that for the uncoated PMR 15/T650 35 composite. Similarly, Cr3C2-NiCr and WC-Co coating systems adhered to the PMC substrate during tensile tests significantly better than systems containing a TiN topcoat. Differences in topcoats of Cr3C2-NiCr and WC-Co were determined by considering issues such as cost and environmental impact. The preferred erosion-resistant coating system for PMR 15/T650 35 has WC-Co as the hard topcoat. This system provides the following benefits in comparison to the coating system with Cr3C2-NiCr topcoat: lower powder material cost (15 to 20 percent), environmentally friendly materials (Cr3C2-NiCr is hazardous), and higher deposition yield (10 to 15 percent), which results in less waste.

  6. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    SciTech Connect

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  7. Applying Systems Thinking via Systemigrams(TM) for Defining the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE) Project

    DTIC Science & Technology

    2010-01-01

    Systems thinking is commonly accepted as the backbone of a successful systems engineering approach. As such, the Body of Knowledge and Curriculum to...Advance Systems Engineering (BKCASE) team chose to leverage a systems thinking based tool called Systemitool, to describe our project to the vast

  8. Big data era in meteor science

    NASA Astrophysics Data System (ADS)

    Vinković, D.; Gritsevich, M.; Srećković, V.; Pečnik, B.; Szabó, G.; Debattista, V.; Škoda, P.; Mahabal, A.; Peltoniemi, J.; Mönkölä, S.; Mickaelian, A.; Turunen, E.; Kákona, J.; Koskinen, J.; Grokhovsky, V.

    2016-01-01

    Over the last couple of decades technological advancements in observational techniques in meteor science have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced science goals. We review some of the developments that push meteor science into the big data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere.

  9. GLASS FORMULATION DEVELOPMENT AND TESTING FOR COLD CRUCIBLE INDUCTION MELTER (CCIM) ADVANCED REMEDIATION TECHNOLOGIES DEMONSTRATION PROJECT - 9208

    SciTech Connect

    Marra, J; Amanda Billings, A; David Peeler, D; Michael Stone, M; Tommy Edwards, T

    2008-08-27

    Over the past few years, Cold Crucible Induction Melter (CCIM) demonstrations have been completed using SRS sludge batches 2, 3 and 4 (SB2, SB3 and SB4) simulant compositions. These campaigns demonstrated the ability of the CCIM to effectively produce quality glasses at high waste loadings. The current Advanced Remediation Technology (ART) Phase II-A Project is aimed at demonstrating the CCIM technology under representative DWPF flowsheet conditions and to demonstrate extended operations of the melter. A glass composition development effort was completed to identify and recommend a frit composition and sludge batch 4 (SB4) simulant waste loading target for subsequent ART-Phase II-A CCIM demonstration testing. Based on the results of the glass formulation testing, it was recommended that the Frit 503-R6 composition (B{sub 2}O{sub 3} = 14 wt %; Li{sub 2}O = 9 wt %; Na{sub 2}O = 3 wt %; and SiO{sub 2} = 74 wt %) be utilized for the demonstration. Furthermore, a waste loading of 46 wt % was recommended. The recommended frit and waste loading would produce a glass with acceptable durability with a liquidus temperature adequately below the 1250 C nominal CCIM operating temperature. This frit composition and waste loading was found to result in a glass that met CCIM processing requirements for viscosity, electrical conductivity and thermal conductivity. The recommended frit and waste loading level should also provide a buffer for sludge product compositional variation to support the Phase II-A CCIM demonstration.

  10. ERA's Open Rotor Studies Including Shielding for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Thomas, Russell

    2012-01-01

    The Open Rotor is a modern version of the UnDucted Fan (UDF) that was flight tested in the late 1980's through a partnership between NASA and General Electric (GE). Tests were conducted in the 9' x 15' Low Speed Wind Tunnel and the 8' x 6' Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic and acoustic data were obtained for takeoff, approach and cruise simulations. GE was the primary partner, but other organizations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. This test campaign provided the acoustic and performance characteristics for modern open rotor blades designs." NASA and GE conducted joint systems analysis to evaluate how well new blade designs would perform on a B737 class aircraft, and compared the results to an advanced higher bypass ratio turbofan." Acoustic shielding experiments were performed at NASA GRC and Boeing LSAF facilities to provide data for noise estimates of unconventional aircraft configurations with Open Rotor propulsion systems." The work was sponsored by NASA's aeronautics programs, including the Subsonic Fixed Wing (SFW) and the Environmentally Responsible Aviation (ERA) projects."

  11. Using Stephen Crane's "Maggie" To Teach the Progressive Era.

    ERIC Educational Resources Information Center

    Gerwin, David; Manolios, Vassilios; Popodopoulos, Lia

    1999-01-01

    Outlines a lesson plan designed for an eleventh-grade U.S. history class in which the students learn about the Progressive Era by reading Stephen Crane's "Maggie: A Girl of the Streets." Explains that students analyze point of view, role play a talk show, write an essay, and complete a long-term research project. (CMK)

  12. Reheating-era leptogenesis

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawana, Kiyoharu

    2016-12-01

    We propose a novel leptogenesis scenario at the reheating era. Our setup is minimal in the sense that, in addition to the standard model Lagrangian, we only consider an inflaton and higher dimensional operators. The lepton number asymmetry is produced not by the decay of a heavy particle, but by the scattering between the standard model particles. After the decay of an inflaton, the model is described within the standard model with higher dimensional operators. The Sakharov's three conditions are satisfied by the following way. The violation of the lepton number is realized by the dimension-5 operator. The complex phase comes from the dimension-6 four lepton operator. The universe is out of equilibrium before the reheating is completed. It is found that the successful baryogenesis is realized for the wide range of parameters, the inflaton mass and reheating temperature, depending on the cutoff scale. Since we only rely on the effective Lagrangian, our scenario can be applicable to all mechanisms to generate neutrino Majorana masses.

  13. Three eras of planetary exploration

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2017-01-01

    The number of known exoplanets rose from zero to one in the mid-1990s, and has been doubling approximately every two years ever since. Although this can justifiably be called the beginning of an era, an earlier era began in the 1960s when humankind began exploring the Solar System with spacecraft. Even earlier than that, the era of modern scientific study of the Solar System began with Copernicus, Galileo, Brahe, Kepler and Newton. These eras overlap in time, and many individuals have worked across all three. This Review explores what the past can tell us about the future and what the exploration of the Solar System can teach us about exoplanets, and vice versa. We consider two primary examples: the history of water on Venus and Mars; and the study of Jupiter, including its water, with the Juno spacecraft.

  14. Advanced Materials Technology Project

    DTIC Science & Technology

    1986-05-01

    TECHNOLGICAL FIELDS Electronic Components * Superconductors (niobium compounds) * Thermistors, magnets (cobalt and nickel ferrites , SmCo5 ) * Temperature...independent electrical resistors (e.g., NbN, TaN, TiN, TixV yN, VN) * Insulators and substrates for circuitry (e.g, AIN, Al20, beryl- lium oxide, magnesium ...aluminate, strontium and barium silicates) * Memory metals (e.g., titanium nickelide) 0 Recording heads, memory devices ( magnesium and manganese fer

  15. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  16. Isotope-based medical research in the post genome era: Gene-orchestrated life functions in medicine seen and affected by isotopes. Workshop report

    SciTech Connect

    Feinendegen, L.E.

    1997-12-31

    The US Department of Energy (DOE) and the National Institutes of Health (NIH) conducted a workshop on Isotope-Based Medical Research in the Post Genome Era at NIH, Bethesda, Maryland, November 12--14, 1997. The workshop aimed at identifying the role of stable and radioisotopes for advanced diagnosis and therapy of a wide range of illnesses using the new information that comes from the human genome program. In this sense, the agenda addressed the challenge of functional genomics in humans. The workshop addressed: functional genomics in clinical medicine; new diagnostic potentials; new therapy potentials; challenge to tracer- and effector-pharmaceutical chemistry; and project plans for joint ventures.

  17. A rapid prototyping/artificial intelligence approach to space station-era information management and access

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Corey, Stephen M.; Snow, John B.

    1989-01-01

    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced.

  18. Era-Planet the European Network for Observing Our Changing Planet

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Nativi, S.; Sprovieri, F.; Hedgecock, I. M.

    2016-06-01

    In the last decade a significant number of projects and programmes in different domains of Earth Observation and environmental monitoring have generated a substantial amount of data and knowledge on different aspects related to environmental quality and sustainability. Big data generated by in-situ or satellite platforms are being collected and archived with a plethora of systems and instruments making difficult the sharing of data and transfer of knowledge to stakeholders and policy makers to support key economic and societal sectors. The overarching goal of ERAPLANET is to strengthen the European Research Area in the domain of Earth Observation in coherence with the European participation in the Group on Earth Observation (GEO) and Copernicus. The expected impact is to strengthen European leadership within the forthcoming GEO 2015-2025 Work Plan. ERA-PLANET is designed to reinforce the interface with user communities, whose needs the Global Earth Observation System of Systems (GEOSS) intends to address. It will provide more accurate, comprehensive and authoritative information to policy and decision-makers in key societal benefit areas, such as Smart Cities and Resilient Societies; Resource efficiency and Environmental management; Global changes and Environmental treaties; Polar areas and Natural resources. ERA-PLANET will provide advanced decision-support tools and technologies aimed to better monitor our global environment and share the information and knowledge available in the different domains of Earth Observation.

  19. Comparative study between ERA-20C and ERA INTERIM reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Krisztina Balázs, Zita; Ihász, István

    2016-04-01

    The continuous development of the 20th century had a positive effect on the meteorological forecasts as well. Thanks to that the numerical models and their forecasts became more precise by the end of the century. Therefore in the 1990s scientists required to verify the results of previous numerical models with the available new technologies. In this way now it is possible to get a more accurate picture of the atmosphere's past. To meet this need reanalyses were improved. Reanalyses not only help to represent the conditions of the atmosphere more precisely, but they also help to recognize the errors of the numerical models. All these progresses are the basics of making trustworthy forecasts, and getting precise results of global climate models as well. Thanks to the innovation of data-assimilated methods and further technical developments several reanalysis projects were improved in the last decades. In our current studies we are making a proper, comparative study between the two most modern ECMWF reanalysis datasets (ERA INTERIM, ERA-20C). In the first step we assigned three periods of ERA-20C (1901-2000, 1901-1950 and 1951-2000) where we examine several selected parameters. We also assigned a collective period from both ERA INTERIM and ERA-20C (1981-2010). Four different meteorological parameters - 500 hPa height, 850 hPa temperature, mean sea level pressure, and ice coverage in the Arctic- Circle regions were investigated in our study. Emphasis is also placed on extreme weather situations. Firstly we are monitoring the detectability and the changes in frequencies of rapid cyclones in the period 1981-2010 collectively in both reanalysis datasets. Besides we examine some selected cyclones' frequency and spatial location in three periods of ERA-20C (1901-2000, 1901-1950 and 1951-2000). By the results we can recognize the strengths and weaknesses of the two reanalyses. It is a great benefit for all the reanalysis users, such as climate researchers, and the developers

  20. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    SciTech Connect

    Seong, Hee Je; Choi, Seungmok

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  1. Reactor physics studies for the Advanced Fuel Cycle Initiative (AFCI) Reactor-Accelerator Coupling Experiments (RACE) Project

    NASA Astrophysics Data System (ADS)

    Stankovskiy, Evgeny Yuryevich

    In the recently completed RACE Project of the AFCI, accelerator-driven subcritical systems (ADS) experiments were conducted to develop technology of coupling accelerators to nuclear reactors. In these experiments electron accelerators induced photon-neutron reactions in heavy-metal targets to initiate fission reactions in ADS. Although the Idaho State University (ISU) RACE ADS was constructed only to develop measurement techniques for advanced experiments, many reactor kinetics experiments were conducted there. In the research reported in this dissertation, a method was developed to calculate kinetics parameters for measurement and calculation of the reactivity of ADS, a safety parameter that is necessary for control and monitoring of power production. Reactivity is measured in units of fraction of delayed versus prompt neutron from fission, a quantity that cannot be directly measured in far-subcritical reactors such as the ISU RACE configuration. A new technique is reported herein to calculate it accurately and to predict kinetic behavior of a far-subcritical ADS. Experiments conducted at ISU are first described and experimental data are presented before development of the kinetic theory used in the new computational method. Because of the complexity of the ISU ADS, the Monte-Carlo method as applied in the MCNP code is most suitable for modeling reactor kinetics. However, the standard method of calculating the delayed neutron fraction produces inaccurate values. A new method was developed and used herein to evaluate actual experiments. An advantage of this method is that its efficiency is independent of the fission yield of delayed neutrons, which makes it suitable for fuel with a minor actinide component (e.g. transmutation fuels). The implementation of this method is based on a correlated sampling technique which allows the accurate evaluation of delayed and prompt neutrons. The validity of the obtained results is indicated by good agreement between experimental

  2. Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    2012-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and the status and results to date will be presented.

  3. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  4. Implementation of advanced LCNG fueling infrastructure in Texas along the I-35/NAFTA Clean Corridor Project. Final report

    SciTech Connect

    Taylor, Stan; Hightower, Jared; Knight, Koby

    2001-05-01

    This report documents the process of planning, siting, and permitting recent LCNG station projects; identifying existing constraints in these processes, and recommendations for improvements; LCNG operating history.

  5. Army Science Board FY2000 Summer Study. Technical and Tactical Opportunities for Revolutionary Advances in Rapidly Deployable Joint Ground Forces in the 2015-2025 Era. Volume III: Information Dominance Panel Report

    DTIC Science & Technology

    2001-04-01

    Information Dominance , Sustainment and Support, and Training. The study concludes: 1) the FCS concept is sound, but senior level attention is required to ensure technologies are ready for 2006 FCS EMD; and 2) Key technologies will significantly improve force projection and combat power. The Information Dominance Panel was tasked to: 1) Assess required sensors at National and Theater level; 2) Assess the technological opportunity to provide necessary bandwidth for data, voice and video requirements; 3) Ascertain the requirements to deny the threat

  6. Entering AN ERA of Synthesis of Modeling

    NASA Astrophysics Data System (ADS)

    Guerin, Stephen

    First, I believe we're entering an era of synthesis of modeling. Over the past 20 years, we've seen the proliferation of many isolated complex systems models. I think we now need tools for researchers, policy makers and the public to share models. Sharing could happen by stacking different layers of spatial agent-based models in geographic information systems and projecting interactive visualization out onto shared surfaces. Further, we need to make model authoring tools much more accessible to the point where motivated policy makers can author on their own. With the increased ability to author and share models, I believe this will allow us to scale our research to understand and manage the many interacting systems that make up our complex world...

  7. Creativity in a Complex Era

    ERIC Educational Resources Information Center

    Brisco, Nicole

    2012-01-01

    In this postmodern era, artists have gone far beyond traditional and technical skills. In her own teaching practices, the author looks to implement practice of a twenty-first-century art educator that inspire students to develop creative and innovative thought processes while relating to the world around them. In this article, she encourages…

  8. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  9. Photonics: Maintaining Competitiveness in the Information Era

    DTIC Science & Technology

    1988-01-01

    Photonics Maintaining Competitiveness in the Information Era \\ATIONAL RESEIARCII COUVIIII, -mail Photonics: Maintaining Competitiveness in the... Information Era Panel on Photonics Science and Tcchnology Assessment Solid State Sciences Committee Board on Physics and Astronomy Commission on Physical

  10. Decision Point 3 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    SciTech Connect

    Armstrong, Phillip

    2012-03-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the -CerFabII) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the -ITM Oxygen Development FacilityII), and to perform supporting development tasks in materials development and engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 3 (DP3), which pertains to the status of all Tasks within Phase 5 and most notably the project status of the CerFab (Task 30) prior to authorization of funds for equipment purchase and construction of the facility. The intent of the DP3 is to provide the opportunity for DOE-NETL to review the status of these tasks and to make recommendations on forward project direction, including a recommendation to pass into Budget Period 8. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Under Task 28.2, subcontractor Ceramatec has made significant progress since DP2 in materials selection and process development and improvement for advanced architecture module fabrication. Ceramatec has determined a materials specification, and has selected a process for making the material. Ceramatec has further developed and selected the process for applying the membrane to unsintered advanced architecture wafers with a Two Step process. Ceramatec has built submodules meeting leak rate

  11. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  12. Advancing Our Understanding of the Impacts of Historic and Projected Land Use in the Earth System: The Land Use Model Intercomparison Project (LUMIP)

    NASA Astrophysics Data System (ADS)

    Lawrence, D. M.; Hurtt, G. C.; Brovkin, V.; Calvin, K. V.; de Noblet-Ducoudre, N.; Jones, C.; Pongratz, J.; Seneviratne, S. I.; Shevliakova, E.

    2014-12-01

    Earth System Models (ESMs) are including increasingly comprehensive treatments of land use and land management, representing not only land cover change, but also land use in the form of prognostic crop and pasture models, irrigation, fertilization, wood harvest, and urbanization. The Land Use Model Intercomparison Project (LUMIP) is a new (proposed) satellite-MIP within the Coupled Model Intercomparison Project (CMIP) that is designed to address the following main science questions: (1) What are the effects of land use and land-use change on climate (past-future)? (2) What are the effects of climate change on land-use and land-use change? (3) Are there regional land management strategies with promise to help mitigate and adapt to climate change? LUMIP will coordinate across existing land use change projects such as LUCID, AgMIP, GSWP3, Trendy, and LUC4C. LUMIP encompasses three major activities: (1) input and output data harmonization and standardization, (2) development of model metrics to assess ESM performance with respect to the impact of land use on climate and carbon cycling, and (3) design and execution of a concise set of land model and ESM experiments for assessment of the impacts of historic and projected land use on the climate system and to separate effects of fossil fuel vs. land use, biogeochemical vs biogeophysical processes, and land cover vs land management. Preliminary results from idealized model experiments will be presented.

  13. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  14. Survival of Er(a+) red cells in a patient with allo-anti-Era

    SciTech Connect

    Thompson, H.W.; Skradski, K.J.; Thoreson, J.R.; Polesky, H.F.

    1985-03-01

    /sup 51/Chromium-labeled Er(a+) red cells survived nearly normally (T1/2 of 21 days) in a patient with allo-anti-Era. Transfusion of Er(a+) blood was without significant reaction and did not affect the anti-Era titer.

  15. Final report for the Department of Energy funded cooperative agreement ''Electronic Research Demonstration Project'' [University electronic research administration demonstration project

    SciTech Connect

    Rodman, John

    1998-07-31

    This is the final report for the Department of Energy (DOE) funded cooperative agreement ''Electronic Research Demonstration Project (DE-FC02-92ER35180)'' for the period August 1994-July 1998. The goal of the project, referred to as NewERA, was to demonstrate the use of open standards for electronic commerce to support research administration, otherwise referred to as Electronic Research Administration (ERA). The NewERA demonstration project provided a means to test interagency standards developed within the Federal Grant Electronic Commerce Committee, a group comprised of federal granting agencies. The NewERA program was initiated by DOE. NewERA was comprised of three separate, but related, ERA activities in preaward administration, postaward administration, and secure Internet commerce. The goal of New ERA was to demonstrate an open standard implementation of ERA using electronic data interchange, e-mail and Internet transaction security between grant applicants and DOE, along with t h e other participating agencies.

  16. Final Report on DOE Project entitled Dynamic Optimized Advanced Scheduling of Bandwidth Demands for Large-Scale Science Applications

    SciTech Connect

    Ramamurthy, Byravamurthy

    2014-05-05

    In this project, developed scheduling frameworks for dynamic bandwidth demands for large-scale science applications. In particular, we developed scheduling algorithms for dynamic bandwidth demands in this project. Apart from theoretical approaches such as Integer Linear Programming, Tabu Search and Genetic Algorithm heuristics, we have utilized practical data from ESnet OSCARS project (from our DOE lab partners) to conduct realistic simulations of our approaches. We have disseminated our work through conference paper presentations and journal papers and a book chapter. In this project we addressed the problem of scheduling of lightpaths over optical wavelength division multiplexed (WDM) networks. We published several conference papers and journal papers on this topic. We also addressed the problems of joint allocation of computing, storage and networking resources in Grid/Cloud networks and proposed energy-efficient mechanisms for operatin optical WDM networks.

  17. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  18. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  19. NIH support of Centers for AIDS Research and Department of Health Collaborative Public Health Research: advancing CDC's Enhanced Comprehensive HIV Prevention Planning project.

    PubMed

    Greenberg, Alan E; Purcell, David W; Gordon, Christopher M; Flores, Stephen; Grossman, Cynthia; Fisher, Holly H; Barasky, Rebecca J

    2013-11-01

    The contributions reported in this supplemental issue highlight the relevance of NIH-funded CEWG research to health department–supported HIV prevention and care activities in the 9 US cities with the highest numbers of AIDS cases. The project findings have the potential to enhance ongoing HIV treatment and care services and to advance the wider scientific agenda. The HIV testing to care continuum, while providing a framework to help track progress on national goals, also can reflect the heterogeneities of local epidemics. The collaborative research that is highlighted in this issue not only reflects a locally driven research agenda but also demonstrates research methods, data collection tools, and collaborative processes that could be encouraged across jurisdictions. Projects such as these, capitalizing on the integrated efforts of NIH, CDC, DOH, and academic institutions, have the potential to contribute to improvements in the HIV care continuum in these communities, bringing us closer to realizing the HIV prevention and treatment goals of the NHAS.

  20. CROSS: A GDSS for the Evaluation and Prioritization of Engineering Support Requests and Advanced Technology Projects at NASA

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid; Lee, Seunghee

    1996-01-01

    Objective evaluation and prioritization of engineering support requests (ESRs) is a difficult task at the Kennedy Space Center (KSC) Shuttle Project Engineering Office. The difficulty arises from the complexities inherent in the evaluation process and the lack of structured information. The purpose of this project is to implement the consensus ranking organizational support system (CROSS), a multiple criteria decision support system (DSS) developed at KSC that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. CROSS utilizes the analytic hierarchy process (AHP), subjective probabilities, entropy concept, and maximize agreement heuristic (MAH) to enhance the decision maker's intuition in evaluation ESRs. Some of the preliminary goals of the project are to: (1) revisit the structure of the ground systems working team (GWST) steering committee, (2) develop a template for ESR originators to provide more comple and consistent information to the GSWT steering committee members to eliminate the need for a facilitator, (3) develop an objective and structured process for the initial screening of ESRs, (4) extensive training of the stakeholders and the GWST steering committee to eliminate the need for a facilitator, (5) automate the process as much as possible, (6) create an environment to compile project success factor data on ESRs and move towards a disciplined system that could be used to address supportability threshold issues at the KSC, and (7) investigate the possibility of an organization-wide implementation of CROSS.

  1. Advanced-Level Testing of Foreign Language Proficiency: An Interim Report of the Post A-Level Spanish Project.

    ERIC Educational Resources Information Center

    Ife, Anne E.; Standish, Peter

    This is a preliminary report concerning the development of tests which measure the linguistic ability in Spanish of English students at the beginning of their post A-level courses. The Palspan (Post A-level Spanish project) pilot test battery is comprised of five sub-tests of between 45 and 90 minutes in length which test for speaking, listening,…

  2. "Blogfolios" and Their Role in the Development of Research Projects in an Advanced Academic Literacy Class for ESL Students

    ERIC Educational Resources Information Center

    Ananyeva, Maria

    2014-01-01

    This paper focuses on "blogfolios", online interactive blog-based portfolios, developed by students for class projects in Electronic Literacy. Blogfolios may contain interactive images, podcasts, and web-log discussions on a variety of researched academic topics. The impact of academic blogfolios on the second language learner's…

  3. Synthesis and Multinuclear Lanthanide Shift Reagent NMR Analysis of 1- and 2-Adamantanol: An Advanced Undergraduate Laboratory Project.

    ERIC Educational Resources Information Center

    Schaeffer, Charles D., Jr.; Yoder, Claude H.

    1985-01-01

    Reports on a project used in a junior-level laboratory in which students prepare two alcohols, characterize these compounds, and use a shift reagent for structure determination and peak assignment. Background information, materials needed, procedures used, and typical results obtained are included. (JN)

  4. Integrated application of active controls (IAAC) technology to an advanced subsonic transport project. Conventional baseline configuration study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Characteristics of the U.S. domestic fleet were evaluated to determine the mission characteristics that would have the most impact on U. S. transport fuel use in the future. This resulted in selection of a 197-passenger (plus cargo), about 3710-km (2000 nmi) mission. The existing data base was reviewed and additional analysis was conducted as necessary to complete the technical descriptions. The resulting baseline configuration utilizes a double-lobe, but nearly circular, body with seven-abreast seating. External characteristics feature an 8.71 aspect ratio, 31.5-degree sweep wing, a T-tail empennage, and a dual CF6-6D2, wing-mounted engine arrangement. It provides for 22 LD-2 or 11 LD-3 containers plus bulk cargo in the lower lobe. Passenger/cargo loading, servicing provisions, taxi/takeoff speeds, and field length characteristics are all compatible with accepted airline operations and regulatory provisions. The baseline configuration construction uses conventional aluminum structure except for advanced aluminum alloys and a limited amount of graphite epoxy secondary structure. Modern systems are used, including advanced guidance, navigation, and controls which emphasize application of digital electronics and advanced displays.

  5. Effect of advanced aircraft noise reduction technology on the 1990 projected noise environment around Patrick Henry Airport. [development of noise exposure forecast contours for projected traffic volume and aircraft types

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Brown, C. G.

    1974-01-01

    A study has been conducted of the future noise environment of Patric Henry Airport and its neighboring communities projected for the year 1990. An assessment was made of the impact of advanced noise reduction technologies which are currently being considered. These advanced technologies include a two-segment landing approach procedure and aircraft hardware modifications or retrofits which would add sound absorbent material in the nacelles of the engines or which would replace the present two- and three-stage fans with a single-stage fan of larger diameter. Noise Exposure Forecast (NEF) contours were computed for the baseline (nonretrofitted) aircraft for the projected traffic volume and fleet mix for the year 1990. These NEF contours are presented along with contours for a variety of retrofit options. Comparisons of the baseline with the noise reduction options are given in terms of total land area exposed to 30 and 40 NEF levels. Results are also presented of the effects on noise exposure area of the total number of daily operations.

  6. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project. Technical progress report No. 15, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-08-01

    The goal of this project is to demonstrate that, by combining state-of-the-art technology, highly efficient plant operation and maintenance capabilities and by-product gypsum sales, significant reductions of SO{sub 2} emissions can be achieved at approximately one-half the life cycle cost of a conventional Flue Gas Desulfurization (FGD) system. Further, this emission reduction is achieved without generating solid waste and while minimizing liquid wastewater effluent. Basically, this project entails the design, construction and operation of a nominal 600 MWe AFGD facility to remove SO{sub 2} from coal-fired power plant flue gas at the Northern Indiana Public Service Company`s Bailly Generating Station.

  7. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system description

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering and fabrication of the test ACT system, produced in the third program element of the IAAC Project is documented. The system incorporates pitch-augmented stability and wing-load alleviation, plus full authority fly-by-wire control of the elevators. The pitch-augmented stability is designed to have reliability sufficient to allow flight with neutral or negative inherent longitudinal stability.

  8. The electronic Space Weather upper atmosphere (eSWua) project at INGV: advancements and state of the art

    NASA Astrophysics Data System (ADS)

    Romano, V.; Pau, S.; Pezzopane, M.; Zuccheretti, E.; Zolesi, B.; de Franceschi, G.; Locatelli, S.

    2008-02-01

    The eSWua project is based on measurements performed by all the instruments installed by the upper atmosphere physics group of the Istituto Nazionale di Geofisica e Vulcanologia, Italy and on all the related studies. The aim is the realization of a hardware-software system to standardize historical and real-time observations for different instruments. An interactive Web site, supported by a well organized database, can be a powerful tool for the scientific and technological community in the field of telecommunications and space weather. The most common and useful database type for our purposes is the relational one, in which data are organized in tables for petabytes data archiving and the complete flexibility in data retrieving. The project started in June 2005 and will last till August 2007. In the first phase the major effort has been focused on the design of hardware and database architecture. The first two databases related to the DPS4 digisonde and GISTM measurements are complete concerning populating, tests and output procedures. Details on the structure and Web tools concerning these two databases are presented, as well as the general description of the project and technical features.

  9. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    SciTech Connect

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  10. Galactoseismology in the GAIA Era

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sukanya

    2017-03-01

    The GAIA satellite will provide unprecedented phase-space information for our Galaxy and enable a new era of Galactic dynamics. We may soon see successful realizations of Galactoseismology, i.e., inferring the characteristics of the Galactic potential and sub-structure from a dynamical analysis of observed perturbations in the gas or stellar disk of the Milky Way. Here, we argue that to maximally take advantage of the GAIA data and other complementary surveys, it is necessary to build comprehensive models for both the stars and the gas. We outline several key morphological puzzles of the Galactic disk and proposed solutions that may soon be tested.

  11. [Advanced radiation therapy project for cancer treatment--from Hokkaido to the world, the world access to Hokkaido].

    PubMed

    Shimizu, Shinichi; Tsuchiya, Kazuhiko; Takao, Seishin; Shirato, Hiroki

    2014-05-01

    Cancer is the most major cause of death in Japan recently. In this symposium, we explained advanced treatment technology for cancer treatment, now used and that will be used in near future at the Hokkaido University Hospital. Intensity Moderated Radiation Therapy (IMRT) and Proton Beam Therapy (PBT) are considered to be the most promising and advanced technologies for cancer treatment. Various kinds of radiation treatment equipment and methods have been developed and constructed at the Hokkaido University. One of the most worlds wide famous one is the real time tumor tracking radiotherapy system. The FIRST (Funding for World-Leading Innovative R&D on Science and Technology) Program has been supporting us to produce cutting-edge technology. We hope that this symposium would help the audience to understand the latest technology for cancer treatment especially in the field of radiation therapy and also we wish the audience would recognize the importance of the research aspect that have been performed at Hokkaido University and its Hospital.

  12. Human rights in the biotechnology era 1

    PubMed Central

    Benatar, Solomon R

    2002-01-01

    Backgound The concept of Human Rights has become the modern civilising standard to which all should aspire and indeed attain. Discussion In an era characterised by widening disparities in health and human rights across the world and spectacular advances in biotechnology it is necessary to reflect on the extent to which human rights considerations are selectively applied for the benefit of the most privileged people. Attention is drawn particularly to sub-Saharan Africa as a marginalised region at risk of further marginalisation if the power associated with the new biotechnology is not used more wisely than power has been used in the past. To rectify such deficiencies it is proposed that the moral agenda should be broadened and at the very least the concept of rights should be more closely integrated with duties Summary New forms of power being unleashed by biotechnology will have to be harnessed and used with greater wisdom than power has been used in the past. Widening disparities in the world are unlikely to be diminished merely by appealing to human rights. We recommend that a deeper understanding is required of the underlying causes of such disparities and that the moral discourse should be extended beyond human rights language. PMID:11960562

  13. Precision genome editing in the CRISPR era.

    PubMed

    Salsman, Jayme; Dellaire, Graham

    2017-04-01

    With the introduction of precision genome editing using CRISPR-Cas9 technology, we have entered a new era of genetic engineering and gene therapy. With RNA-guided endonucleases, such as Cas9, it is possible to engineer DNA double strand breaks (DSB) at specific genomic loci. DSB repair by the error-prone non-homologous end-joining (NHEJ) pathway can disrupt a target gene by generating insertions and deletions. Alternatively, Cas9-mediated DSBs can be repaired by homology-directed repair (HDR) using an homologous DNA repair template, thus allowing precise gene editing by incorporating genetic changes into the repair template. HDR can introduce gene sequences for protein epitope tags, delete genes, make point mutations, or alter enhancer and promoter activities. In anticipation of adapting this technology for gene therapy in human somatic cells, much focus has been placed on increasing the fidelity of CRISPR-Cas9 and increasing HDR efficiency to improve precision genome editing. In this review, we will discuss applications of CRISPR technology for gene inactivation and genome editing with a focus on approaches to enhancing CRISPR-Cas9-mediated HDR for the generation of cell and animal models, and conclude with a discussion of recent advances and challenges towards the application of this technology for gene therapy in humans.

  14. Gravitational waves from an early matter era

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2009-04-15

    We investigate the generation of gravitational waves due to the gravitational instability of primordial density perturbations in an early matter-dominated era which could be detectable by experiments such as laser interferometer gravitational wave observatory (LIGO) and laser interferometer space antenna (LISA). We use relativistic perturbation theory to give analytic estimates of the tensor perturbations generated at second order by linear density perturbations. We find that large enhancement factors with respect to the naive second-order estimate are possible due to the growth of density perturbations on sub-Hubble scales. However very large enhancement factors coincide with a breakdown of linear theory for density perturbations on small scales. To produce a primordial gravitational-wave background that would be detectable with LIGO or LISA from density perturbations in the linear regime requires primordial comoving curvature perturbations on small scales of order 0.02 for advanced LIGO or 0.005 for LISA; otherwise numerical calculations of the nonlinear evolution on sub-Hubble scales are required.

  15. High-power Waveguide Dampers for the Short-Pulse X-Ray Project at the Advanced Photon Source

    SciTech Connect

    Waldschmidt, G J; Liu, J; Middendorf, M E; Nassiri, A; Smith, T L; Wu, G; Henry, J; Mammosser, J D; Rimmer, R A; Wiseman, M

    2012-07-01

    High-power waveguide dampers have been designed and prototyped for the Short-Pulse X-ray (SPX) cavities at the Advanced Photon Source. The cavities will operate at 2.815 GHz and utilize the TM110 dipole mode. As a result, higher-order (HOM) and lower-order mode (LOM) in-vacuum dampers have been designed to satisfy the demanding broadband damping requirements in the APS storage ring. The SPX single-cell cavity consists of two WR284 waveguides for damping the HOMs and one WR284 waveguide for primarily damping the LOM where up to 2kW will be dissipated in the damping material. The damper designs and high-power experimental results will be discussed in this paper.

  16. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Wing planform study and final configuration selection

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This report summarizes the Wing Planform Study Task and Final Configuration Selection of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology (except for ACT), takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail sizes), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3590 km) (1938 nmi), this amounts to 10% block fuel reduction. Good takeoff performance at high-altitude airports on a hot day was also achieved. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation and begin the required control system development and testing.

  18. Advancing the strategic use of HIV operations research to strengthen local policies and programmes: the Research to Prevention Project

    PubMed Central

    Kerrigan, Deanna; Kennedy, Caitlin E; Cheng, Alison Surdo; Sandison, Sarah J; Fonner, Virginia A; Holtgrave, David R; Brahmbhatt, Heena

    2015-01-01

    In the field of HIV prevention, there is renewed interest in operations research (OR) within an implementation science framework. The ultimate goal of such studies is to generate new knowledge that can inform local programmes and policies, thus improving access, quality, efficiency and effectiveness. Using four case studies from the USAID-funded Research to Prevention (R2P) project, we highlight the strategic use of OR and the impact it can have on shaping the focus and content of HIV prevention programming across geographic and epidemic settings and populations. These case studies, which include experiences from several sub-Saharan African countries and the Caribbean, emphasize four unique ways that R2P projects utilized OR to stimulate change in a given context, including: (1) translating findings from clinical trials to real-world settings; (2) adapting promising structural interventions to a new context; (3) tailoring effective interventions to underserved populations; and (4) prioritizing key populations within a national response to HIV. Carefully crafted OR can bridge the common gap that exists between research-generated knowledge and field-based practice, lead to substantial, real-world changes in national policies and programmes, and strengthen local organizations and the use of data to be more responsive to a given topic or population, ultimately supporting a locally tailored HIV response. PMID:26290331

  19. Extreme ultraviolet patterned mask inspection performance of advanced projection electron microscope system for 11nm half-pitch generation

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-03-01

    Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.

  20. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, Panagiotis; Cary, John; Mcinnes, Lois Curfman; Mori, Warren; Ng, Cho; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  1. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Wing planform study and final configuration selection

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Wing Planform Study and Final Configuration Selection Task of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program is documented. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology, takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 44% reduction in horizontal tail size), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3589 km 1938 nmi), this amounts to 10% block-fuel reduction. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation, and begin the required control system development and test.

  2. Advancing the strategic use of HIV operations research to strengthen local policies and programmes: the Research to Prevention Project.

    PubMed

    Kerrigan, Deanna; Kennedy, Caitlin E; Cheng, Alison Surdo; Sandison, Sarah J; Fonner, Virginia A; Holtgrave, David R; Brahmbhatt, Heena

    2015-01-01

    In the field of HIV prevention, there is renewed interest in operations research (OR) within an implementation science framework. The ultimate goal of such studies is to generate new knowledge that can inform local programmes and policies, thus improving access, quality, efficiency and effectiveness. Using four case studies from the USAID-funded Research to Prevention (R2P) project, we highlight the strategic use of OR and the impact it can have on shaping the focus and content of HIV prevention programming across geographic and epidemic settings and populations. These case studies, which include experiences from several sub-Saharan African countries and the Caribbean, emphasize four unique ways that R2P projects utilized OR to stimulate change in a given context, including: (1) translating findings from clinical trials to real-world settings; (2) adapting promising structural interventions to a new context; (3) tailoring effective interventions to underserved populations; and (4) prioritizing key populations within a national response to HIV. Carefully crafted OR can bridge the common gap that exists between research-generated knowledge and field-based practice, lead to substantial, real-world changes in national policies and programmes, and strengthen local organizations and the use of data to be more responsive to a given topic or population, ultimately supporting a locally tailored HIV response.

  3. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect

    Spentzouris, Panagiotis; Cary, John; Mcinnes, Lois Curfman; Mori, Warren; Ng, Cho; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  4. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration

  5. Emerging interdisciplinary fields in the coming intelligence/convergence era

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed

    2012-09-01

    Dramatic advances are in the horizon resulting from rapid pace of development of several technologies, including, computing, communication, mobile, robotic, and interactive technologies. These advances, along with the trend towards convergence of traditional engineering disciplines with physical, life and other science disciplines will result in the development of new interdisciplinary fields, as well as in new paradigms for engineering practice in the coming intelligence/convergence era (post-information age). The interdisciplinary fields include Cyber Engineering, Living Systems Engineering, Biomechatronics/Robotics Engineering, Knowledge Engineering, Emergent/Complexity Engineering, and Multiscale Systems engineering. The paper identifies some of the characteristics of the intelligence/convergence era, gives broad definition of convergence, describes some of the emerging interdisciplinary fields, and lists some of the academic and other organizations working in these disciplines. The need is described for establishing a Hierarchical Cyber-Physical Ecosystem for facilitating interdisciplinary collaborations, and accelerating development of skilled workforce in the new fields. The major components of the ecosystem are listed. The new interdisciplinary fields will yield critical advances in engineering practice, and help in addressing future challenges in broad array of sectors, from manufacturing to energy, transportation, climate, and healthcare. They will also enable building large future complex adaptive systems-of-systems, such as intelligent multimodal transportation systems, optimized multi-energy systems, intelligent disaster prevention systems, and smart cities.

  6. Final DOE-ASR Report for the ProjectAdvancing our Understanding and the Remote Sensing of Ice Clouds”

    SciTech Connect

    Mitchell, David; Erfani, Ehsan; Garnier, Anne; Lawson, Paul; Morrison, Hugh; Avery, Melody

    2016-12-29

    This project has evolved during its execution, and what follows are the key project findings. This project has arguably provided the first global view of how cirrus cloud (defined as having cloud base temperature T < 235 K) nucleation physics (evaluated through satellite retrievals of ice particle number concentration Ni, effective diameter De and ice water content IWC) evolves with the seasons for a given temperature, latitude zone and surface type (e.g. ocean vs. land), based on a new satellite remote sensing method developed for this project. The retrieval method is unique in that it is very sensitive to the small ice crystals that govern the number concentration Ni, allowing Ni to be retrieved. The method currently samples single-layer cirrus clouds having visible optical depth ranging from about 0.3 to 3.0, using co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 μm and 12.05 μm. Retrievals of Ni are primarily used to estimate the cirrus cloud formation mechanism; that is, either homo- or heterogeneous ice nucleation (henceforth hom and het). This is possible since, in general, hom produces more than an order of magnitude more ice crystals than does het. Thus the retrievals provide insight on how these mechanisms change with the seasons for a given latitude zone or region, based on the years 2008 and 2013. Using a conservative criterion for hom cirrus, on average, the sampled cirrus clouds formed through hom occur about 43% of the time in the Arctic and 50% of the time in the Antarctic, and during winter at mid-latitudes in the Northern Hemisphere, hom cirrus occur 37% of the time. Elsewhere (and during other seasons in the Northern Hemisphere mid-latitudes), this hom cirrus fraction is lower, and it is lowest in the

  7. Integrative application of active controls (IAAC) technology to an advanced subsonic transport project. Initial act configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The performance and economic benefits of a constrained application of Active Controls Technology (ACT) are identified, and the approach to airplane design is established for subsequent steps leading to the development of a less constrained final ACT configuration. The active controls configurations are measured against a conventional baseline configuration, a state-of-the-art transport, to determine whether the performance and economic changes resulting from ACT merit proceeding with the project. The technology established by the conventional baseline configuration was held constant except for the addition of ACT. The wing, with the same planform, was moved forward on the initial ACT configuration to move the loading range aft relative to the wing mean aerodynamic chord. Wing trailing-edge surfaces and surface controls also were reconfigured for load alleviation and structural stabilization.

  8. Soviet Advanced Technologies in the Era of Restructuring

    DTIC Science & Technology

    1989-04-01

    10- kW laser material-treatment stands. Plans for computer production are included in the instrument-building sector, but they are limited to small...and produce 1 to 10 kW laser systems for welding pipes and driveshafts; cutting composites, superhard alloys, and ceramics; surface treatment of...V. S., deputy director for research of the Industrial Lasers Research Center, Academy of Sciences, USSR, EKO, No. 1, 1987, p. 4. 104 3 . Problemy i

  9. Effects of Anticipated Consequences on ERA Opinion.

    ERIC Educational Resources Information Center

    Spitze, Glenna; Huber, Joan

    1982-01-01

    Studies the effect of background factors on beliefs about the consequences of the passage of the Equal Rights Amendment (ERA). What types of people fear or welcome the ERA, what their reasons are, and where they obtain information about its possible consequences are examined. (AM)

  10. SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    SciTech Connect

    SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

    2006-08-31

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  11. Replacement and Original Magnet Engineering Options (ROMEOs): A European Seventh Framework Project to Develop Advanced Permanent Magnets Without, or with Reduced Use of, Critical Raw Materials

    NASA Astrophysics Data System (ADS)

    Mcguiness, P.; Akdogan, O.; Asali, A.; Bance, S.; Bittner, F.; Coey, J. M. D.; Dempsey, N. M.; Fidler, J.; Givord, D.; Gutfleisch, O.; Katter, M.; Le Roy, D.; Sanvito, S.; Schrefl, T.; Schultz, L.; Schwöbl, C.; Soderžnik, M.; Šturm, S.; Tozman, P.; Üstüner, K.; Venkatesan, M.; Woodcock, T. G.; Žagar, K.; Kobe, S.

    2015-06-01

    The rare-earth crisis, which peaked in the summer of 2011 with the prices of both light and heavy rare earths soaring to unprecedented levels, brought about the widespread realization that the long-term availability and price stability of rare earths could not be guaranteed. This triggered a rapid response from manufacturers involved in rare earths, as well as governments and national and international funding agencies. In the case of rare-earth-containing permanent magnets, three possibilities were given quick and serious consideration: (I) increased recycling of devices containing rare earths; (II) the search for new, mineable, rare-earth resources beyond those in China; and (III) the development of high-energy-product permanent magnets with little or no rare-earth content used in their manufacture. The Replacement and Original Magnet Engineering Options (ROMEO) project addresses the latter challenge using a two-pronged approach. With its basis on work packages that include materials modeling and advanced characterization, the ROMEO project is an attempt to develop a new class of novel permanent magnets that are free of rare earths. Furthermore, the project aims to minimize rare-earth content, particularly heavy-rare-earth (HRE) content, as much as possible in Nd-Fe-B-type magnets. Success has been achieved on both fronts. In terms of new, rare-earth-free magnets, a Heusler alloy database of 236,945 compounds has been narrowed down to approximately 20 new compounds. Of these compounds, Co2MnTi is expected to be a ferromagnet with a high Curie temperature and a high magnetic moment. Regarding the reduction in the amount of rare earths, and more specifically HREs, major progress is seen in electrophoretic deposition as a method for accurately positioning the HRE on the surface prior to its diffusion into the microstructure. This locally increases the coercivity of the rather small Nd-Fe-B-type magnet, thereby substantially reducing the dependence on the HREs Dy and

  12. A Re-Examination of Neuropsychological Functioning in Persian Gulf War Era Veterans

    DTIC Science & Technology

    2003-08-01

    Archives of Clinical Neuropsychology , 17(8), 754. 9. Sullivan, K., Krengel, M., White, R., Honn...V. (2002, September). Neuropsychological test performance in Gulf-war era veterans: Does Referral source matter? Archives of Clinical Neuropsychology , 17...in patients with advanced VaD. reet edi a ther opsychology annual meeting. Octob ir, 200,2 754 Abstracts/ Archives of Clinical Neuropsychology

  13. Adolescent Literacy in the Era of the Common Core: From Research into Practice

    ERIC Educational Resources Information Center

    Ippolito, Jacy, Ed.; Lawrence, Joshua Fahey, Ed.; Zaller, Colleen, Ed.

    2013-01-01

    "Adolescent Literacy in the Era of the Common Core" provides school leaders, teachers, and others with strategies and best practices for advancing adolescent literacy in the classroom. Exceptionally clear and accessible, the book addresses a full range of topics in this vitally important field, including disciplinary literacy; vocabulary…

  14. The Johnston – Kennedy Era

    PubMed Central

    Spence, Roy

    2007-01-01

    The paper by McConville and Crookes1 in this issue of the Journal highlights the contribution of many Ulster surgeons to gastric surgery. The era of Professor George Johnston and Mr Terence Kennedy produced some of the most dramatic changes in surgery of benign upper GI disease. I was a medical student, House Officer, Senior House Officer and then Senior Registrar to these giants of Ulster surgery – these questioning surgeons participated in some of the most important trials of that time in gastric surgery, and assessed scientifically (and independently) the benefits of a logical progression in surgical vagotomy from truncal to selective (with the various drainage procedures) to the highly selective procedure. I would like to take you on a thirty year journey of reflection. PMID:17288296

  15. The Era of International Space Station Utilization Begins: Research Strategy, International Collaboration, and Realized Potential

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Ruttley, Tara; Johnson-Green, Perry; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Jean, Sabbagh

    2010-01-01

    With the assembly of the International Space Station (ISS) nearing completion and the support of a full-time crew of six, a new era of utilization for research is beginning. For more than 15 years, the ISS international partnership has weathered financial, technical and political challenges proving that nations can work together to complete assembly of the largest space vehicle in history. And while the ISS partners can be proud of having completed one of the most ambitious engineering projects ever conceived, the challenge of successfully using the platform remains. During the ISS assembly phase, the potential benefits of space-based research and development were demonstrated; including the advancement of scientific knowledge based on experiments conducted in space, development and testing of new technologies, and derivation of Earth applications from new understanding. The configurability and human-tended capabilities of the ISS provide a unique platform. The international utilization strategy is based on research ranging from physical sciences, biology, medicine, psychology, to Earth observation, human exploration preparation and technology demonstration. The ability to complete follow-on investigations in a period of months allows researchers to make rapid advances based on new knowledge gained from ISS activities. During the utilization phase, the ISS partners are working together to track the objectives, accomplishments, and the applications of the new knowledge gained. This presentation will summarize the consolidated international results of these tracking activities and approaches. Areas of current research on ISS with strong international cooperation will be highlighted including cardiovascular studies, cell and plant biology studies, radiation, physics of matter, and advanced alloys. Scientific knowledge and new technologies derived from research on the ISS will be realized through improving quality of life on Earth and future spaceflight endeavours

  16. Integrated application of active controls (IAAC) technology to an advanced subsonic transport project. Initial ACT configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial ACT configuration design task of the integrated application of active controls (IAAC) technology project within the Energy Efficient Transport Program is summarized. A constrained application of active controls technology (ACT) resulted in significant improvements over a conventional baseline configuration previously established. The configuration uses the same levels of technology, takeoff gross weight, payload, and design requirements/objectives as the baseline, except for flying qualities, flutter, and ACT. The baseline wing is moved forward 1.68 m. The configuration incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail size), lateral/directional-augmented stability, an angle of attack limiter, wing load alleviation, and flutter mode control. This resulted in a 930 kg reduction in airplane operating empty weight and a 3.6% improvement in cruise efficiency, yielding a 13% range increase. Adjusted to the 3590 km baseline mission range, this amounts to 6% block fuel reduction and a 15.7% higher incremental return on investment, using 1978 dollars and fuel cost.

  17. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  18. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Final ACT configuration evaluation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Final ACT Configuration Evaluation Task of the Integrated Application of Active Controls (IAAC) technology project within the energy efficient transport program is summarized. The Final ACT Configuration, through application of Active Controls Technology (ACT) in combination with increased wing span, exhibits significant performance improvements over the conventional baseline configuration. At the design range for these configurations, 3590 km, the block fuel used is 10% less for the Final ACT Configuration, with significant reductions in fuel usage at all operational ranges. Results of this improved fuel usage and additional system and airframe costs and the complexity required to achieve it were analyzed to determine its economic effects. For a 926 km mission, the incremental return on investment is nearly 25% at 1980 fuel prices. For longer range missions or increased fuel prices, the return is greater. The technical risks encountered in the Final ACT Configuration design and the research and development effort required to reduce these risks to levels acceptable for commercial airplane design are identified.

  19. The CELSS Antarctic Analog Project: an advanced life support testbed at the Amundsen-Scott South Pole Station, Antarctica.

    PubMed

    Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.

  20. Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report

    SciTech Connect

    Oski Energy, LLC,

    2013-03-28

    A five-line (23 mile) reflection- seismic survey was conducted at the Hot Pot geothermal prospect area in north-central Nevada under the USDOE (United States Department of Energy) Geothermal Technologies Program. The project objective was to utilize innovative seismic data processing, integrated with existing geological, geophysical and geochemical information, to identify high-potential drilling targets and to reduce drilling risk. Data acquisition and interpretation took place between October 2010 and April 2011. The first round of data processing resulted in large areas of relatively poor data, and obvious reflectors known from existing subsurface information either did not appear on the seismic profiles or appeared at the wrong depth. To resolve these issues, the velocity model was adjusted to include geologic input, and the lines were reprocessed. The resulting products were significantly improved, and additional detail was recovered within the high-velocity and in part acoustically isotropic basement. Features visible on the improved seismic images include interpreted low angle thrust faults within the Paleozoic Valmy Formation, which potentially are reactivated in the current stress field. Intermediate-depth wells are currently targeted to test these features. The seismic images also suggest the existence of Paleogene sedimentary and volcanic rocks which potentially may function as a near- surface reservoir, charged by deeper structures in Paleozoic rocks.