Science.gov

Sample records for advancing front method

  1. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  2. Quantifying hydrate solidification front advancing using method of characteristics

    NASA Astrophysics Data System (ADS)

    You, Kehua; DiCarlo, David; Flemings, Peter B.

    2015-10-01

    We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation from gas injection into brine-saturated sediments within the hydrate stability zone. Our solution includes fully coupled multiphase and multicomponent flow and the associated advective transport in a homogeneous system. Our solution shows that hydrate saturation is controlled by the initial thermodynamic state of the system and changed by the gas fractional flow. Hydrate saturation in gas-rich systems can be estimated by 1-cl0/cle when Darcy flow dominates, where cl0 is the initial mass fraction of salt in brine, and cle is the mass fraction of salt in brine at three-phase (gas, liquid, and hydrate) equilibrium. Hydrate saturation is constant, gas saturation and gas flux decrease, and liquid saturation and liquid flux increase with the distance from the gas inlet to the hydrate solidification front. The total gas and liquid flux is constant from the gas inlet to the hydrate solidification front and decreases abruptly at the hydrate solidification front due to gas inclusion into the hydrate phase. The advancing velocity of the hydrate solidification front decreases with hydrate saturation at a fixed gas inflow rate. This analytical solution illuminates how hydrate is formed by gas injection (methane, CO2, ethane, propane) at both the laboratory and field scales.

  3. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  4. Advanced RF Front End Technology

    NASA Technical Reports Server (NTRS)

    Herman, M. I.; Valas, S.; Katehi, L. P. B.

    2001-01-01

    The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.

  5. Nonperturbative light-front Hamiltonian methods

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2016-09-01

    We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.

  6. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  7. Front lighted shadowgraphic method and apparatus

    DOEpatents

    Stone, William J.

    1985-02-26

    High contrast silhouette images of a substantially opaque object are obtained using front illumination techniques. The object is frontally illuminated by light of a first polarization. A frontal surface of the object reflects the incident light to an observation station. The polarization of incident light bypassing the object and incident on a background is changed. The background light is reflected to the observation station, and the intensity of one of the two, differently polarized, reflected images is substantially reduced with respect to the other. Apparatus for carrying out the method includes a first polarizer for polarizing frontally incident illuminating light, a second polarizer behind the object and a reflective surface behind the second polarizer. A polarization analyzer, located in front of the object, is used to extinguish one of the two reflected images. Apparatus for carrying out the invention in instruments having a polarized light source and a polarization analyzer includes a combination of a polarizing material, for contacting a rear surface of the object, and a reflective surface provided adjacent the rear surface of the polarizing material. The combination is applied to the rear surface of the object. Back-surface mirrors of pleochroic substrates applied to thin film physical vapor deposited electronic circuit elements enable front lighted shadowgraphic imaging of the elements.

  8. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, W.J.

    1983-06-30

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.

  9. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, William J.

    1985-06-18

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.

  10. Front end support systems for the Advanced Photon Source

    SciTech Connect

    Barraza, J.; Shu, D.; Kuzay, T.M.

    1993-10-01

    The support system designs for the Advanced Photon Source (APS) front ends are complete and will be installed in 1994. These designs satisfy the positioning and alignment requirements of the front end components installed inside the storage ring tunnel, including the photon beam position monitors, fixed masks, photon and safety shutters, filters, windows, and differential pumps. Other components include beam transport pipes and ion pumps. The designs comprise 3-point kinematic mounts and single axis supports to satisfy various multi-direction positioning requirements from course to ultra-precise. The confined space inside the storage ring tunnel has posed engineering challenges in the design of these devices, considering some components weigh as much as 500 kg. These challenges include designing for mobility during commissioning and initial alignment, mechanical and thermal stability, and precise low profile vertical and horizontal positioning. As a result, novel stages and kinematic mounts have emerged with modular and standard designs. This paper will discuss the diverse group of support systems, including specifications and performance data of the prototypes.

  11. Unconstrained plastering : all-hexahedral mesh generation via advancing front geometry decomposition (2004-2008).

    SciTech Connect

    Blacker, Teddy Dean; Staten, Matthew L.; Kerr, Robert A.; Owen, Steven James

    2010-03-01

    The generation of all-hexahedral finite element meshes has been an area of ongoing research for the past two decades and remains an open problem. Unconstrained plastering is a new method for generating all-hexahedral finite element meshes on arbitrary volumetric geometries. Starting from an unmeshed volume boundary, unconstrained plastering generates the interior mesh topology without the constraints of a pre-defined boundary mesh. Using advancing fronts, unconstrained plastering forms partially defined hexahedral dual sheets by decomposing the geometry into simple shapes, each of which can be meshed with simple meshing primitives. By breaking from the tradition of previous advancing-front algorithms, which start from pre-meshed boundary surfaces, unconstrained plastering demonstrates that for the tested geometries, high quality, boundary aligned, orientation insensitive, all-hexahedral meshes can be generated automatically without pre-meshing the boundary. Examples are given for meshes from both solid mechanics and geotechnical applications.

  12. Advanced integrated safeguards using front-end-triggering devices

    SciTech Connect

    Howell, J.A.; Whitty, W.J.

    1995-12-01

    This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

  13. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers. PMID:26367595

  14. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  15. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  16. H-Morph: An indirect approach to advancing front hex meshing

    SciTech Connect

    OWEN,STEVEN J.; SAIGAL,SUNIL

    2000-05-30

    H-Morph is a new automatic algorithm for the generation of a hexahedral-dominant finite element mesh for arbitrary volumes. The H-Morph method starts with an initial tetrahedral mesh and systematically transforms and combines tetrahedral into hexahedra. It uses an advancing front technique where the initial front consists of a set of prescribed quadrilateral surface facets. Fronts are individually processed by recovering each of the six quadrilateral faces of a hexahedron from the tetrahedral mesh. Recovery techniques similar to those used in boundary constrained Delaunay mesh generation are used. Tetrahedral internal to the six hexahedral faces are then removed and a hexahedron is formed. At any time during the H-Morph procedure a valid mixed hexahedral-tetrahedral mesh is in existence within the volume. The procedure continues until no tetrahedral remain within the volume, or tetrahedral remain which cannot be transformed or combined into valid hexahedral elements. Any remaining tetrahedral are typically towards the interior of the volume, generally a less critical region for analysis. Transition from tetrahedral to hexahedra in the final mesh is accomplished through pyramid shaped elements. Advantages of the proposed method include its ability to conform to an existing quadrilateral surface mesh, its ability to mesh without the need to decompose or recognize special classes of geometry, and its characteristic well-aligned layers of elements parallel to the boundary. Example test cases are presented on a variety of models.

  17. Two-terminal longitudinal hotwire sensor for monitoring the position and speed of advancing liquid fronts in microfluidic channels

    SciTech Connect

    Ryu, Kee Suk; Shaikh, Kashan; Goluch, Edgar; Liu Chang

    2006-03-06

    We report a simple and practical sensor for monitoring both the absolute position and advancing speed of liquid front in a microfluidic channel. The sensor consists of a longitudinal hot wire element - a two-terminal electrical device, with its length spanning the entire channel. The design, materials, fabrication method, and use of this sensor are extremely simple. Characterization results are presented.

  18. Advancing-layers method for generation of unstructured viscous grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A novel approach for generating highly stretched grids which is based on a modified advancing-front technique and benefits from the generality, flexibility, and grid quality of the conventional advancing-front-based Euler grid generators is presented. The method is self-sufficient for the insertion of grid points in the boundary layer and beyond. Since it is based on a totally unstructured grid strategy, the method alleviates the difficulties stemming from the structural limitations of the prismatic techniques.

  19. CHARACTERIZATION OF THE ADVANCED RADIOGRAPHIC CAPABILITY FRONT END ON NIF

    SciTech Connect

    Haefner, C; Heebner, J; Dawson, J; Fochs, S; Shverdin, M; Crane, J K; Kanz, V K; Halpin, J; Phan, H; Sigurdsson, R; Brewer, W; Britten, J; Brunton, G; Clark, W; Messerly, M J; Nissen, J D; Nguyen, H; Shaw, B; Hackel, R; Hermann, M; Tietbohl, G; Siders, C W; Barty, C J

    2009-07-15

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  20. A Subgrid-Scale Parameterization for Calving-Front Advance and Retreat

    NASA Astrophysics Data System (ADS)

    Albrecht, Torsten

    2010-05-01

    Floating ice shelves fringing most of Antarctica play a key for the flow of ice into the ocean and thereby for global sea level rise. Calving processes at the ice front are highly complex and are often neglected in numerical ice sheet models. Observed accelerated ice discharge after abrupt ice shelf retreat proofs that this is not a viable approach. In order to be able to take ice shelf dynamics into account we have implemented a number of processes into the Potsdam Parallel Ice Sheet Model (PISM-PIK). We present a newly developed subgrid-scale parameterization for calving-front advance and retreat which allows the introduction of stress boundary conditions on the ice-ocean front and thereby a proper computation of the stress and strain field along the calving front. With these improvements we compare different calving rate approaches for different realistic ice shelf geometries (Albrecht et al., J Glac., in prep.).

  1. Method to determine the speckle characteristics of front projection screens.

    PubMed

    Riechert, Falko; Glöckler, Felix; Lemmer, Uli

    2009-03-01

    We present a method to determine the speckle properties of front projection screens. Seven different screens are investigated in a backscattering geometry for 808 nm light. The speckle contrast reduction that results from polarization scrambling and reduced temporal coherence is modeled for the case of volume scattering in the screens. For this purpose, the screen's volume scattering path length distributions and depolarization characteristics are determined. This is done via a streak camera setup to measure the temporal broadening of ultrashort 50 fs light pulses scattered in the screens. We show that it is essential to properly select a projection screen with large volume roughness in order to achieve low speckle contrast values for moderate illumination bandwidths. PMID:19252632

  2. Quantifying Spatiotemporal Patterns in the Advancing Front of Twitching Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Shelton, Erin; Giuliani, Max; Burrows, Lori; Dutcher, John

    Type IV pili (T4P) are very thin (5-8 nm in diameter) protein filaments that can be extended and retracted by certain classes of Gram-negative bacteria including P. aeruginosa. These bacteria use T4P to move across viscous interfaces, referred to twitching motility. Twitching can occur for isolated cells or in a collective manner. Using a custom-built, temperature and humidity controlled environmental chamber, together with particle image velocimetry and Fourier analysis techniques, we characterized the evolution of the advancing front of expanding colonies. We find that the advancing front consists of finger-like protrusions consisting of many bacteria, with the cells within the expanding colony arranged in a lattice-like pattern. We have characterized the average speed, width and bacterial orientation within the fingers as a function of agar concentration/stiffness. In addition, we have analyzed the motion of individual cells within the fingers at high spatial and temporal resolution.

  3. Up-front neck dissection followed by concurrent chemoradiation in patients with regionally advanced head and neck cancer

    PubMed Central

    Paximadis, Peter A.; Christensen, Michael E.; Dyson, Greg; Kamdar, Dev P.; Sukari, Ammar; Lin, Ho-Sheng; Yoo, George H.; Kim, Harold E.

    2013-01-01

    Background The appropriate management of the neck in patients with regionally advanced head and neck cancer remains controversial. The purpose of this study was to retrospectively analyze our institutional experience with up-front neck dissection followed by definitive chemoradiotherapy. Methods Fifty-five patients with radiographic evidence of large or necrotic lymph nodes underwent up-front neck dissection followed by definitive chemoradiation. Results The 5-year overall survival (OS) and progression-free survival (PFS) rates were estimated at 71.3% and 64.7%, respectively. There were 2 failures in the dissected neck, for a control rate of 96.7%. There were 7 locoregional failures and 12 distant failures, for locoregional and distant control rates of 87.3% and 78.2%, respectively. Conclusion Up-front neck dissection followed by chemoradiotherapy resulted in excellent locoregional control, OS, and PFS. Utilization of this strategy should be considered in carefully selected patients with regionally advanced head and neck cancer. PMID:22307819

  4. The advance of an advantageous allele: Nucleation, front propagation, and seasonal effects

    NASA Astrophysics Data System (ADS)

    O'Malley, Lauren

    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. I model biological invasion as a two-species, individual-based stochastic process on a two-dimensional landscape. The ecologically superior invader and a resident species compete for space preemptively. The invasive species can occur through random, rare mutations of the resident species, or as a repeated introduction into the environment. To understand how individual-level processes may govern population patterns, I invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation or introduction rate, or a sufficiently small environment generates single-cluster dynamics, an inherently stochastic process. An increased mutation or introduction rate, or larger system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior for the densities with remarkable accuracy. Once invasive clusters grow large enough, observations of the invasive advance occur only through a small "window" of space, where we can approximate the advance as that of a linear propagating front. One can then employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion, and thus study roughening of the front using the framework of non-equilibrium interface growth. The analysis, which includes calculating the scaling (roughness and dynamic) exponents, corrections to the asymptotic front velocity, and the probability distribution of both the surface roughness and the front runner's relative position, indicates that initially flat, linear invading fronts exhibit Kardar-Parisi-Zhang (KPZ) roughening in one transverse dimension. I also study the

  5. Simulation of parachute FSI using the front tracking method

    NASA Astrophysics Data System (ADS)

    Kim, Joung-Dong; Li, Yan; Li, Xiaolin

    2013-02-01

    We use the front tracking method on a spring system to model the dynamic evolution of parachute canopy and risers. The canopy surface and the riser string chord of a parachute are represented by a triangulated surface mesh with preset equilibrium length on each side of the simplices. The stretching and wrinkling of the canopy and its supporting string chords (risers) are modeled by the spring system. The spring constants of the canopy and the risers are chosen based on the analysis of Young's surface modulus for the canopy fabric and Young's string modulus of the string chord. Damping is added to dissipate the excessive spring internal energy. The current model does not have radial reinforcement cables and has not taken into account the canopy porosity. This mechanical structure is coupled with the incompressible Navier-Stokes solver through the "Impulse Method". We analyzed the numerical stability of the spring system and used this computational module to simulate the flow pattern around a static parachute canopy and the dynamic evolution during the parachute inflation process. The numerical solutions have been compared with the available experimental data and there are good agreements in the terminal descent velocity and breathing frequency of the parachute.

  6. Explosive bonding and its application in the advanced photon source front-end and beamline components design

    NASA Astrophysics Data System (ADS)

    Shu, D.; Li, Y.; Ryding, D.; Kuzay, T. M.; Brasher, Dave

    1995-02-01

    Explosive bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bonding between two or more similar or dissimilar materials. Since 1991, a number of explosive bonding joints have been designed for high-thermal-load ultrahigh-vacuum (UHV) components in the Advanced Photon Source. A series of standardized explosive bonded joint units has also been designed and tested, such as oxygen-free copper (OFHC) to stainless-steel vacuum joints for slits and shutters, GlidCop (GlidCop is a trademark of SCM Metal Products, Inc.) to stainless-steel vacuum joints for fixed masks, and GlidCop to OFHC thermal and mechanical joints for shutter face plates, etc. The design and test results for the explosive bonding units to be used in the Advanced Photon Source front ends and beamlines will be discussed in this paper.

  7. Fast wave-front reconstruction by solving the Sylvester equation with the alternating direction implicit method

    NASA Astrophysics Data System (ADS)

    Ren, Hongwu; Dekany, Richard

    2004-07-01

    Large degree-of-freedom real-time adaptive optics (AO) control requires reconstruction algorithms that are computationally efficient and readily parallelized for hardware implementation. In particular, we find the wave-front reconstruction for the Hudgin and Fried geometry can be cast into a form of the well-known Sylvester equation using the Kronecker product properties of matrices. We derive the filters and inverse filtering formulas for wave-front reconstruction in two-dimensional (2-D) Discrete Cosine Transform (DCT) domain for these two geometries using the Hadamard product concept of matrices and the principle of separable variables. We introduce a recursive filtering (RF) method for the wave-front reconstruction on an annular aperture, in which, an imbedding step is used to convert an annular-aperture wave-front reconstruction into a squareaperture wave-front reconstruction, and then solving the Hudgin geometry problem on the square aperture. We apply the Alternating Direction Implicit (ADI) method to this imbedding step of the RF algorithm, to efficiently solve the annular-aperture wave-front reconstruction problem at cost of order of the number of degrees of freedom, O(n). Moreover, the ADI method is better suited for parallel implementation and we describe a practical real-time implementation for AO systems of order 3,000 actuators.

  8. [Advances in cooperativity and mechanism of combination of Back-shu and Front-mu points].

    PubMed

    Wang, Hao; Shen, Guo-Ming

    2011-09-01

    The articles related with combination of Back-shu and Front-mu points searched in CNKI and Pubmed databases during the past 10 years were studied. The conclusions indicate that the application of combination of Back-shu and Front-mu points has solid theoretical basis and experimental evidence, and it is proved that the combination of Back-shu points and Front-mu points is effective in clinic practice. However, the mechanism study still rest on the level of spinal cord, and the breakthrough of combination of Back-Shu and Front-Mu points study is that whether the superior nerve centre involves on the regulation of zang-fu organs by combination of Back-shu and Front-mu points. The key point in future study is to explore the central control mechanism of combination of Back-shu and Front-mu points. PMID:21972656

  9. Dynamic vacuum analysis for APS high heat flux beamline front ends using optical ray-tracing simulation methods

    SciTech Connect

    Xu, S.; Nielsen, R.W.

    1992-01-01

    The high-power and high-flux x-ray beams produced by third generation synchrotron radiation sources such as the Advanced Photon Source (APS) can cause significantly high gas desorption rates on beamline front-end components if beam missteering occurs. The effect of this gas desorption needs to be understood for dynamic vacuum analysis. To simulate beam missteering conditions, optical ray-tracing methods have been employed. The results of the ray-tracing analysis have been entered into a system-oriented vacuum program to provide dynamic vacuum calculations for determination of pumping requirements for the beamline front-ends. The APS will provide several types of synchrotron radiation sources, for example, undulators, wigglers, and bending magnets. For the purpose of this study, the wiggler source was chosen as a worst case'' scenario due to its high photon flux, high beam power, and relatively large beam cross section.

  10. Dynamic vacuum analysis for APS high heat flux beamline front ends using optical ray-tracing simulation methods

    SciTech Connect

    Xu, S.; Nielsen, R.W.

    1992-09-01

    The high-power and high-flux x-ray beams produced by third generation synchrotron radiation sources such as the Advanced Photon Source (APS) can cause significantly high gas desorption rates on beamline front-end components if beam missteering occurs. The effect of this gas desorption needs to be understood for dynamic vacuum analysis. To simulate beam missteering conditions, optical ray-tracing methods have been employed. The results of the ray-tracing analysis have been entered into a system-oriented vacuum program to provide dynamic vacuum calculations for determination of pumping requirements for the beamline front-ends. The APS will provide several types of synchrotron radiation sources, for example, undulators, wigglers, and bending magnets. For the purpose of this study, the wiggler source was chosen as a ``worst case`` scenario due to its high photon flux, high beam power, and relatively large beam cross section.

  11. Modeling of Parachute Dynamics with GPU Enhanced Continuum Fabric Model and Front Tracking Method

    NASA Astrophysics Data System (ADS)

    Shi, Qiangqiang

    An advanced mesoscale spring-mass model is used to mimic fabric surface motion. The fabric surface is represented by a high-quality triangular surface mesh. Both the tensile stiffness and the angular stiffness of each spring are determined by the material's Young's modulus and Poisson ratio, as well as the geometrical characteristics of the surface mesh. The spring-mass system is a nonlinear Ordinary Differential Equation (ODE) system solved by fourth order Runge-Kutta method. The model is shown to be numerically convergent under the constraint that the summation of points masses is constant. Through coupling with an incompressible fluid solver and the front tracking method, the spring-mass model is applied to the simulation of the dynamic phenomenon of parachute inflation. Complex validation simulations conclude the effort via drag force comparisons with experiments. Three applications of Graphics Processing Unit (GPU)-based algorithms for high performance computation of mathematical models were reported. Using one GPU device in the solving of the spring-mass system, we have achieved 6x speedup. In the second set of simulations, the system of one-dimensional gas dynamics equations is solved by the Weighted Essentially Non-Oscillatory (WENO) scheme; the GPU code is 7-20x faster than the pure CPU code. In the last case, a GPU enhanced numerical algorithm for American option pricing under the generalized hyperbolic distribution is studied. We have achieved 2x speedup for pricing single option and 400x speedup for multiple options.

  12. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L.

    2007-12-25

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  13. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L

    2013-12-31

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  14. Advanced probabilistic method of development

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1987-01-01

    Advanced structural reliability methods are utilized on the Probabilistic Structural Analysis Methods (PSAM) project to provide a tool for analysis and design of space propulsion system hardware. The role of the effort at the University of Arizona is to provide reliability technology support to this project. PSAM computer programs will provide a design tool for analyzing uncertainty associated with thermal and mechanical loading, material behavior, geometry, and the analysis methods used. Specifically, reliability methods are employed to perform sensitivity analyses, to establish the distribution of a critical response variable (e.g., stress, deflection), to perform reliability assessment, and ultimately to produce a design which will minimize cost and/or weight. Uncertainties in the design factors of space propulsion hardware are described by probability models constructed using statistical analysis of data. Statistical methods are employed to produce a probability model, i.e., a statistical synthesis or summary of each design variable in a format suitable for reliability analysis and ultimately, design decisions.

  15. Apparatus and method for phase fronts based on superluminal polarization current

    DOEpatents

    Singleton, John; Ardavan, Houshang; Ardavan, Arzhang

    2012-02-28

    An apparatus and method for a radiation source involving phase fronts emanating from an accelerated, oscillating polarization current whose distribution pattern moves superluminally (that is, faster than light in vacuo). Theoretical predictions and experimental measurements using an existing prototype superluminal source show that the phase fronts from such a source can be made to be very complex. Consequently, it will be very difficult for an aircraft imaged by such a radiation to detect where this radiation has come from. Moreover, the complexity of the phase fronts makes it almost impossible for electronics on an aircraft to synthesize a rogue reflection. A simple directional antenna and timing system should, on the other hand, be sufficient for the radar operators to locate the aircraft, given knowledge of their own source's speed and modulation pattern.

  16. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  17. Domain Decomposition By the Advancing-Partition Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2008-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  18. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  19. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  20. The Local Front Reconstruction Method for direct simulation of two- and three-dimensional multiphase flows

    NASA Astrophysics Data System (ADS)

    Shin, Seungwon; Yoon, Ikroh; Juric, Damir

    2011-07-01

    We present a new interface reconstruction technique, the Local Front Reconstruction Method (LFRM), for incompressible multiphase flows. This new method falls in the category of Front Tracking methods but it shares automatic topology handling characteristics of the previously proposed Level Contour Reconstruction Method (LCRM). The LFRM tracks the phase interface explicitly as in Front Tracking but there is no logical connectivity between interface elements thus greatly easing the algorithmic complexity. Topological changes such as interfacial merging or pinch off are dealt with automatically and naturally as in the Level Contour Reconstruction Method. Here the method is described for both two- and three-dimensional flow geometries. The interfacial reconstruction technique in the LFRM differs from that in the LCRM formulation by foregoing using an Eulerian distance field function. Instead, the LFRM uses information from the original interface elements directly to generate the new interface in a mass conservative way thus showing significantly improved local mass conservation. Because the reconstruction procedure is independently carried out in each individual reconstruction cell after an initial localization process, an adaptive reconstruction procedure can be easily implemented to increase the accuracy while at the same time significantly decreasing the computational time required to perform the reconstruction. Several benchmarking tests are performed to validate the improved accuracy and computational efficiency as compared to the LCRM. The results demonstrate superior performance of the LFRM in maintaining detailed interfacial shapes and good local mass conservation especially when using low-resolution Eulerian grids.

  1. Method for characterization of the rate of movement of an oxidation front in cementitious materials

    DOEpatents

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2016-03-01

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize a redox active transition metal indicator that is present in the cementitious material and exhibits variable solubility depending upon the oxidation state of the indicator. When the leaching process is carried out under anaerobic conditions, the presence or absence of the indicator in the leachate can be utilized to determine the redox condition of and location of the oxidation front in the material that has been subjected to the leaching process.

  2. Method of fabricating conductive electrodes on the front and backside of a thin film structure

    DOEpatents

    Tabada, Phillipe J.; Tabada, legal representative, Melody; Pannu, Satinderpall S.

    2011-05-22

    A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.

  3. A method for flattening the solidification front in directional solidification technology

    NASA Astrophysics Data System (ADS)

    Lian, Yuanyuan; Li, Dichen; Zhang, Kai

    2015-09-01

    Nonplanar solidification front causes defects in directional solidification process. The transverse temperature gradient, which can be divided into radial temperature gradient and circumferential temperature gradient, is one of the reasons causing the nonplanar solidification front. This paper presents a method by varying the wall thickness of the mould to decrease the circumferential temperature gradient and hence flatten the solidification front. The equations for calculating the wall thickness were deduced by heat transfer analysis. The optimized mould contour was obtained by solving the equations numerically. It was proved by simulation that the circumferential temperature gradient can be almost reduced by 40%. Furthermore, the starting time difference of solidification at one cross section along the circumferential direction almost reduces by half. Additionally, this paper also researches the influences of parameters of the mould and the furnace etc. on the shape of the mould and the circumferential temperature gradient. The circumferential temperature gradient decreases as the thermal conductivity and the emissivity of the mould increase. And the temperature of the cooling ring impacts little on the circumferential temperature gradient. According to the development trend of the blade manufacturing, this method may be applied widely.

  4. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    USGS Publications Warehouse

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  5. Advances in Light-Front QCD and New Perspectives for QCD from AdS/CFT

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2005-10-26

    The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a Fock space built on a trivial vacuum. The AdS/CFT correspondence has led to important insights into the properties of quantum chromodynamics even though QCD is a broken conformal theory. We have recently shown how a model based on a truncated AdS space can be used to obtain the hadronic spectrum of q{bar q}, qqq and gg bound states, as well as their respective light-front wavefunctions. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state, including orbital angular momentum excitations. The predicted mass spectrum is linear M {proportional_to} L at high orbital angular momentum, in contrast to the quadratic dependence M{sup 2}/L found in the description of spinning strings. Since only one parameter, the QCD scale {Lambda}{sub QCD}, is introduced, the agreement with the pattern of physical states is remarkable. In particular, the ratio of {Delta} to nucleon trajectories is determined by the ratio of zeros of Bessel functions. As a specific application of QCD dynamics from AdS/CFT duality, we describe a computation of the proton magnetic form factor in both the space-like and time-like regions. The extended AdS/CFT space-time theory also provides an analytic model for hadronic light-front wavefunctions, thus providing a relativistic description of hadrons in QCD at the amplitude level. The model wavefunctions display confinement at large inter-quark separation and conformal symmetry at short distances. In particular, the scaling and conformal properties of the LFWFs at high relative momenta agree with perturbative QCD. These AdS/CFT model wavefunctions could be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian.

  6. Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical Highlands of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Hewawasam, Tilak; von Blanckenburg, Friedhelm; Bouchez, Julien; Dixon, Jean L.; Schuessler, Jan A.; Maekeler, Ricarda

    2013-10-01

    Silicate weathering - initiated by major mineralogical transformations at the base of ten meters of clay-rich saprolite - generates the exceptionally low weathering flux found in streams draining the crystalline rocks of the mountainous and humid tropical Highlands of Sri Lanka. This conclusion is reached from a thorough investigation of the mineralogical, chemical, and Sr isotope compositions of samples within a regolith profile extending >10 m from surface soil through the weathering front in charnockite bedrock (a high-grade metamorphic rock), corestones formed at the weathering front, as well as from the chemical composition of the dissolved loads in nearby streams. Weatherable minerals and soluble elements are fully depleted at the top of the profile, showing that the system is supply-limited, such that weathering fluxes are controlled directly by the supply of fresh minerals. We determine the weathering rates using two independent means: (1) in situ-produced cosmogenic nuclides in surface soil and creek sediments in the close vicinity of the regolith combined with immobile element mass balance across the regolith and (2) river dissolved loads. Silicate weathering rates determined from both approaches range from 16 to 36 t km-2 y-1, corresponding to a weathering front advance rate of 6-14 mm ky-1. These rates agree across the 101 to 104 y time scales over which our rate metrics integrate, suggesting that the weathering system operates at steady state. Within error these rates are furthermore compatible with those obtained by modeling the advance rate of the weathering front from chemical gradients and mineral dissolution rates. The silicate weathering flux out of the weathering profile, measured on small creeks, amounts to 84% of the profile’s export flux; the remaining 16% is contributed by non-silicate, atmospheric-derived input. The silicate weathering flux, as measured by dissolved loads in large catchments, amounts to ca. 50% of the total dissolved flux

  7. Development/Demonstration of an Advanced Oxy-Fuel Front-End System

    SciTech Connect

    Mighton, Steven, J.

    2007-08-06

    Owens Corning and other glass manufacturers have used oxy-fuel combustion technology successfully in furnaces to reduce emissions, increase throughput, reduce fuel consumption and, depending on the costs of oxygen and fuel, reduce energy costs. The front end of a fiberglass furnace is the refractory channel system that delivers glass from the melter to the forming process. After the melter, it is the second largest user of energy in a fiberglass plant. A consortium of glass companies and suppliers, led by Owens Corning, was formed to develop and demonstrate oxy/fuel combustion technology for the front end of a fiberglass melter, to demonstrate the viability of this energy saving technology to the U.S. glass industry, as a D.O.E. sponsored project. The project goals were to reduce natural gas consumption and CO2 green house gas emissions by 65 to 70% and create net cost savings after the purchase of oxygen to achieve a project payback of less than 2 years. Project results in Jackson, TN included achieving a 56% reduction in gas consumption and CO2 emissions. A subsequent installation in Guelph ON, not impacted by unrelated operational changes in Jackson, achieved a 64% reduction. Using the more accurate 64% reduction in the payback calculation yielded a 2.2 year payback in Jackson. The installation of the demonstration combustion system saves 77,000 DT/yr of natural gas or 77 trillion Btu/yr and eliminates 4500 tons/yr of CO2 emissions. This combustion system is one of several energy and green house gas reduction technologies being adopted by Owens Corning to achieve aggressive goals relating to the company’s global facility environmental footprint.

  8. Advanced accelerator methods: The cyclotrino

    SciTech Connect

    Welch, J.J.; Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.

    1987-04-01

    Several new and unusual, advanced techniques in the small cyclotron are described. The cyclotron is run at low energy, using negative ions and at high harmonics. Electrostatic focusing is used exclusively. The ion source and injection system is in the center, which unfortunately does not provide enough current, but the new system design should solve this problem. An electrostatic extractor that runs at low voltage, under 5 kV, and a microchannel plate detector which is able to discriminate low energy ions from the /sup 14/C are used. The resolution is sufficient for /sup 14/C dating and a higher intensity source should allow dating of a milligram size sample of 30,000 year old material with less than 10% uncertainty.

  9. Advanced Optics for a Full Quasi-Optical Front Steering ECRH Upper Launcher for ITER

    SciTech Connect

    Moro, A.; Alessi, E.; Bruschi, A.; Platania, P.; Sozzi, C.; Chavan, R.; Collazos, A.; Goodman, T. P.; Udintsev, V. S.; Henderson, M. A.

    2009-11-26

    A full quasi-optical setup for the internal optics of the Front Steering Electron Cyclotron Resonance Heating (ECRH) Upper Launcher for ITER was designed, proving to be feasible and favorable in terms of additional flexibility and cost reduction with respect to the former design. This full quasi-optical solution foresees the replacement of the mitre-bends in the final section of the launcher with dedicated free-space mirrors to realize the last changes of directions in the launcher. A description of the launcher is given and its advantages presented. The parameters of the expected output beams as well as preliminary evaluations of truncation effects with the physical optics GRASP code are shown. Moreover, a study of mitre-bends replacement with single mirrors for multiple beams is described. In principle it could allow the beams to be larger at the mirror locations (with a further decrease of the peak power density due to partial overlapping) and has the additional advantage to get a larger opening with compressed beams to avoid conflicts with side-walls port. Constraints on the setup, arising both from the resulting beam characteristics in the space of free parameters and from mechanical requirements are taken into account in the analysis.

  10. Advances in Front-end Enabling Technologies for Thermal Infrared `THz Torch' Wireless Communications

    NASA Astrophysics Data System (ADS)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-05-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The `THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  11. Advances in Front-end Enabling Technologies for Thermal Infrared ` THz Torch' Wireless Communications

    NASA Astrophysics Data System (ADS)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-09-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  12. Advanced reliability methods - A review

    NASA Astrophysics Data System (ADS)

    Forsyth, David S.

    2016-02-01

    There are a number of challenges to the current practices for Probability of Detection (POD) assessment. Some Nondestructive Testing (NDT) methods, especially those that are image-based, may not provide a simple relationship between a scalar NDT response and a damage size. Some damage types are not easily characterized by a single scalar metric. Other sensing paradigms, such as structural health monitoring, could theoretically replace NDT but require a POD estimate. And the cost of performing large empirical studies to estimate POD can be prohibitive. The response of the research community has been to develop new methods that can be used to generate the same information, POD, in a form that can be used by engineering designers. This paper will highlight approaches to image-based data and complex defects, Model Assisted POD estimation, and Bayesian methods for combining information. This paper will also review the relationship of the POD estimate, confidence bounds, tolerance bounds, and risk assessment.

  13. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  14. Recent advances in lattice Boltzmann methods

    SciTech Connect

    Chen, S.; Doolen, G.D.; He, X.; Nie, X.; Zhang, R.

    1998-12-31

    In this paper, the authors briefly present the basic principles of lattice Boltzmann method and summarize recent advances of the method, including the application of the lattice Boltzmann method for fluid flows in MEMS and simulation of the multiphase mixing and turbulence.

  15. Thermo-mechanical analysis of fixed mask 1 for the Advanced Photon Source insertion device front ends

    SciTech Connect

    Nian, H.L.T.; Shu, D.; Sheng, I.C.A.; Kuzay, T.M.

    1993-10-01

    The first fixed mask (FM1) is one of the critical elements on the insertion device front ends of the beamlines at the Advanced Photon Source (APS) now under construction at Argonne National Laboratory (ANL). The heat flux from the APS undulators is enormous. For example, FM1 placed at a distance of 16 m from the Undulator A source will be subjected to 519 W/mm{sup 2} at normal incidence with a total power of 3.8 kW. Due to a high localized thermal gradient on this component, inclined geometry (1.5{degree}) is used in the design to spread the footprint of the x-ray beam. A box-cone-shape geometry was designed due to the limited space available in the front end. The box shape is a highly constrained geometry, which induces larger stress levels than would occur in a plate or a tube. In order to handle the expected higher stress and the stress concentration at the corners, a single Glidcop block (rather than copper) was used in the construction. The FM1 uses an enhanced heat transfer mechanism developed at Argonne National Laboratory, which increases the convective heat transfer coefficient to about 3 W/cm{sup 2}{center_dot}{degree}C with single-phase water as the coolant. The authors simulated the location of the x-ray beam in several places to cover the worst possible case. The maximum temperature (about 180{degree}C) occurs when the beam hits the center of horizontal surface. The maximum effective stress (about 313 MPa) occurs when the x-ray beam hits about the corners.

  16. Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods

    NASA Astrophysics Data System (ADS)

    Kim, J. H. K.; Pullan, A. J.; Cheng, L. K.

    2012-08-01

    One approach for non-invasively characterizing gastric electrical activity, commonly used in the field of electrocardiography, involves solving an inverse problem whereby electrical potentials on the stomach surface are directly reconstructed from dense potential measurements on the skin surface. To investigate this problem, an anatomically realistic torso model and an electrical stomach model were used to simulate potentials on stomach and skin surfaces arising from normal gastric electrical activity. The effectiveness of the Greensite-Tikhonov or the Tikhonov inverse methods were compared under the presence of 10% Gaussian noise with either 84 or 204 body surface electrodes. The stability and accuracy of the Greensite-Tikhonov method were further investigated by introducing varying levels of Gaussian signal noise or by increasing or decreasing the size of the stomach by 10%. Results showed that the reconstructed solutions were able to represent the presence of propagating multiple wave fronts and the Greensite-Tikhonov method with 204 electrodes performed best (correlation coefficients of activation time: 90%; pacemaker localization error: 3 cm). The Greensite-Tikhonov method was stable with Gaussian noise levels up to 20% and 10% change in stomach size. The use of 204 rather than 84 body surface electrodes improved the performance; however, for all investigated cases, the Greensite-Tikhonov method outperformed the Tikhonov method.

  17. Novel front-surface thermal-diffusivity measurement method based on phase analysis

    NASA Astrophysics Data System (ADS)

    Braggiotti, Alberto; Marinetti, Sergio

    2000-05-01

    The technique described in this paper is for one-side thermal diffusivity measurement. A single stripe-shaped pulse provided by a flash lamp is used to heat the front surface of a specimen slab. Classical methods for estimating a parameter out of a distribution involve fitting the temperature distribution with its theoretical model. With the technique described in this paper the evolution of the temperature distribution along a line perpendicular to the heated stripe is analyzed in the frequency domain. An estimate of the thermal diffusivity is then obtained from comparison of the phase component behavior with an abacus similarly built from the theoretical model. This technique is valid for any shape of flash lamp pulse (i.e. laser spot), and can be used also for estimating the thermal diffusivity of anisotropic materials. The choice of the stripe shape is due to the limitations of the simulation environment used.

  18. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  19. The parallelization of an advancing-front, all-quadrilateral meshing algorithm for adaptive analysis

    SciTech Connect

    Lober, R.R.; Tautges, T.J.; Cairncross, R.A.

    1995-11-01

    The ability to perform effective adaptive analysis has become a critical issue in the area of physical simulation. Of the multiple technologies required to realize a parallel adaptive analysis capability, automatic mesh generation is an enabling technology, filling a critical need in the appropriate discretization of a problem domain. The paving algorithm`s unique ability to generate a function-following quadrilateral grid is a substantial advantage in Sandia`s pursuit of a modified h-method adaptive capability. This characteristic combined with a strong transitioning ability allow the paving algorithm to place elements where an error function indicates more mesh resolution is needed. Although the original paving algorithm is highly serial, a two stage approach has been designed to parallelize the algorithm but also retain the nice qualities of the serial algorithm. The authors approach also allows the subdomain decomposition used by the meshing code to be shared with the finite element physics code, eliminating the need for data transfer across the processors between the analysis and remeshing steps. In addition, the meshed subdomains are adjusted with a dynamic load balancer to improve the original decomposition and maintain load efficiency each time the mesh has been regenerated. This initial parallel implementation assumes an approach of restarting the physics problem from time zero at each interaction, with a refined mesh adapting to the previous iterations objective function. The remeshing tools are being developed to enable real time remeshing and geometry regeneration. Progress on the redesign of the paving algorithm for parallel operation is discussed including extensions allowing adaptive control and geometry regeneration.

  20. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  1. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  2. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 40 CFR part 63, appendix A. (2) The annual mass emissions of halogen atoms for a batch front-end... containing halogens and hydrogen halides as measured by Method 26 or 26A of 40 CFR part 60, appendix A. (iv... are being estimated. Tm = Minutes/episode. (3) Emissions from vapor displacement due to transfer...

  3. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 40 CFR part 63, appendix A. (2) The annual mass emissions of halogen atoms for a batch front-end... containing halogens and hydrogen halides as measured by Method 26 or 26A of 40 CFR part 60, appendix A. (iv... are being estimated. Tm = Minutes/episode. (3) Emissions from vapor displacement due to transfer...

  4. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 40 CFR part 63, appendix A. (2) The annual mass emissions of halogen atoms for a batch front-end.... (i) Method 1 or 1A, 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the..., 40 CFR part 60, appendix A is used to determine gas stream volumetric flow rate. (ii) Annual...

  5. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 40 CFR part 63, appendix A. (2) The annual mass emissions of halogen atoms for a batch front-end.... (i) Method 1 or 1A, 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the..., 40 CFR part 60, appendix A is used to determine gas stream volumetric flow rate. (ii) Annual...

  6. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 40 CFR part 63, appendix A. (2) The annual mass emissions of halogen atoms for a batch front-end.... (i) Method 1 or 1A, 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the..., 40 CFR part 60, appendix A is used to determine gas stream volumetric flow rate. (ii) Annual...

  7. A new quantitative method of mountain-front analysis, with applications

    SciTech Connect

    Willemin, J.H.; Knuepfer, P.L.K.; Coleman, P.C. . Dept. of Geological Sciences)

    1992-01-01

    Most parameters used in conventional analysis of tectonic geomorphology of mountain fronts have been designed to quantify differences in the landscapes of mountain-front segments defined a priori. The quantified landscape parameters of these pre-defined segments then are used to infer differences in rates of tectonic uplift. The authors have developed a processing technique using principles of maximum likelihood estimation which removes the need for pre-defined segments, and allows a mountain front to be partitioned objectively into geomorphic domains (regions of more-or-less uniform landscape character) based on variation in geomorphic parameters. The authors apply a weighted averaging scheme to parameters such as mountain-front sinuosity or facet density to generate continuous functions of distance along the front. The authors use the scale-space image of these functions to locate possible domain boundaries at points of rapid change in parameters and to rank them by prominence. They then apply an iterative scheme based on the Akaike information criterion to obtain a maximum-likelihood estimate of the underlying parameter distribution function, assumed to be stepwise linear. Discontinuous functions such as drainage-basin shape or valley cross-section are classified using clustering algorithms. these procedures yield the most likely domain boundaries for each parameter; multivariate analysis allows them to define the most likely boundaries for the entire parameter space, which presumably correlate with tectonic segment boundaries. By applying this new methodology to the Central Range of Taiwan and the Wasatch Range in Utah, they show that subdivision of mountain fronts--and inferences about tectonic uplift rates--are strongly dependent on which parameters are used in the analysis.

  8. Advanced Bayesian Method for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Center, Julian

    2015-01-01

    Autonomous Exploration, Inc., has developed an advanced Bayesian statistical inference method that leverages current computing technology to produce a highly accurate surface navigation system. The method combines dense stereo vision and high-speed optical flow to implement visual odometry (VO) to track faster rover movements. The Bayesian VO technique improves performance by using all image information rather than corner features only. The method determines what can be learned from each image pixel and weighs the information accordingly. This capability improves performance in shadowed areas that yield only low-contrast images. The error characteristics of the visual processing are complementary to those of a low-cost inertial measurement unit (IMU), so the combination of the two capabilities provides highly accurate navigation. The method increases NASA mission productivity by enabling faster rover speed and accuracy. On Earth, the technology will permit operation of robots and autonomous vehicles in areas where the Global Positioning System (GPS) is degraded or unavailable.

  9. Advanced Analysis Methods in High Energy Physics

    SciTech Connect

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  10. Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method.

    PubMed

    Yazdani, Alireza; Bagchi, Prosenjit

    2012-05-01

    Three-dimensional numerical simulation using the front-tracking method is presented on the dynamics of a vesicle in a linear shear flow. The focus here is to elucidate the parametric dependence and the self-similarity of the vesicle dynamics, quantification of vesicle deformation, and the analysis of shape dynamics. A detailed comparison of the numerical results is made with various theoretical models and experiments. It is found that the applicability of the theoretical models is limited despite some general agreement with the simulations and experiments. The deviations between the perturbative results and the simulation results occur even in the absence of thermal noise. Specifically, we find that the vesicle dynamics does not follow a self-similar behavior in a two-parameter phase space, as proposed in a theoretical model. Rather, the dynamics is governed by three controlling parameters, namely, the excess area, viscosity ratio, and dimensionless shear rate. Additionally, we find that a linear scaling of the tank-treading angle, as proposed in the theoretical model, is possible only for nearly spherical vesicles. The breakdown of the scaling occurs at higher values of the excess area even in the absence of thermal noise. We find that the vesicle deformation saturates at large shear rates, and the asymptotic deformation matches well with a theoretical prediction for nearly spherical vesicles. The dependence of the critical viscosity ratio associated with the onset of unsteady dynamics on the vesicle excess area is in excellent agreement with the experimental observation. We show that near the transition between the tank-treading and tumbling dynamics, both the vacillating-breathing-like motion characterized by a smooth ellipsoidal shape and the trembling-like motion characterized by a highly deformed shape are possible. For the trembling-like motion, the shape is highly three-dimensional with concavities and lobes, and the vesicle deforms more in the vorticity

  11. An illustration of the light-front coupled-cluster method in quantum electrodynamics

    SciTech Connect

    Chabysheva, S. S.

    2012-10-23

    A field-theoretic formulation of the exponential-operator technique is applied to a nonperturbative Hamiltonian eigenvalue problem in electrodynamics, quantized in light-front coordinates. Specifically, we consider the dressed-electron state, without positron contributions but with an unlimited number of photons, and compute its anomalous magnetic moment. A simple perturbative solution immediately yields the Schwinger result of {alpha}/2{pi}. The nonperturbative solution, which requires numerical techniques, sums a subset of corrections to all orders in {alpha} and incorporates additional physics.

  12. Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Zagaris, George

    2009-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  13. 7 CFR 27.92 - Method of payment; advance deposit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of payment; advance deposit. 27.92 Section 27... Micronaire § 27.92 Method of payment; advance deposit. Any payment or advance deposit under this subpart...,” and may not be made in cash except in cases where the total payment or deposit does not exceed...

  14. Advanced electromagnetic methods for aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-06-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  15. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories. PMID:26220303

  16. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  17. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  18. Improvement Text Compression Performance Using Combination of Burrows Wheeler Transform, Move to Front, and Huffman Coding Methods

    NASA Astrophysics Data System (ADS)

    Aprilianto, Mohammada; Abdurohman, Maman

    2014-04-01

    Text is a media that is often used to convey information in both wired and wireless-based network. One limitation of the wireless system is the network bandwidth. In this study we implemented a text compression application with lossless compression technique using combination of Burrows wheeler transform, move to front, and Huffman coding methods. With the addition of the compression of the text, it is expected to save network resources. This application provides information about compression ratio. From the testing process, it concludes that text compression with only Huffman coding method will be efficient when the number of text characters are above 400 characters, meanwhile text compression with burrows wheeler transform, move to front, and Huffman coding methods will be efficient when the number of text characters are above 531 characters. Combination of these methods are more efficient than just Huffman coding when the number of text characters are above 979 characters. The more characters that are compressed and the more patterns of the same symbol, the better the compression ratio.

  19. Methods for estimating streamflow at mountain fronts in southern New Mexico

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1994-01-01

    The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.

  20. Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland

    NASA Astrophysics Data System (ADS)

    Bondzio, Johannes H.; Seroussi, Hélène; Morlighem, Mathieu; Kleiner, Thomas; Rückamp, Martin; Humbert, Angelika; Larour, Eric Y.

    2016-03-01

    Calving is a major mechanism of ice discharge of the Antarctic and Greenland ice sheets, and a change in calving front position affects the entire stress regime of marine terminating glaciers. The representation of calving front dynamics in a 2-D or 3-D ice sheet model remains non-trivial. Here, we present the theoretical and technical framework for a level-set method, an implicit boundary tracking scheme, which we implement into the Ice Sheet System Model (ISSM). This scheme allows us to study the dynamic response of a drainage basin to user-defined calving rates. We apply the method to Jakobshavn Isbræ, a major marine terminating outlet glacier of the West Greenland Ice Sheet. The model robustly reproduces the high sensitivity of the glacier to calving, and we find that enhanced calving triggers significant acceleration of the ice stream. Upstream acceleration is sustained through a combination of mechanisms. However, both lateral stress and ice influx stabilize the ice stream. This study provides new insights into the ongoing changes occurring at Jakobshavn Isbræ and emphasizes that the incorporation of moving boundaries and dynamic lateral effects, not captured in flow-line models, is key for realistic model projections of sea level rise on centennial timescales.

  1. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    SciTech Connect

    Zhou, Yijie; Lim, Hyun-Kyung; de Almeida, Valmor F; Navamita, Ray; Wang, Shuqiang; Glimm, James G; Li, Xiao-lin; Jiao, Xiangmin

    2012-06-01

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

  2. Why Video? How Technology Advances Method

    ERIC Educational Resources Information Center

    Downing, Martin J., Jr.

    2008-01-01

    This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…

  3. An adaptive integrated algorithm for active front steering and direct yaw moment control based on direct Lyapunov method

    NASA Astrophysics Data System (ADS)

    Ding, Nenggen; Taheri, Saied

    2010-10-01

    In this article, an adaptive integrated control algorithm based on active front steering and direct yaw moment control using direct Lyapunov method is proposed. Variation of cornering stiffness is considered through adaptation laws in the algorithm to ensure robustness of the integrated controller. A simple two degrees of freedom (DOF) vehicle model is used to develop the control algorithm. To evaluate the control algorithm developed here, a nonlinear eight-DOF vehicle model along with a combined-slip tyre model and a single-point preview driver model are used. Control commands are executed through correction steering angle on front wheels and braking torque applied on one of the four wheels. Simulation of a double lane change manoeuvre using Matlab®/Simulink is used for evaluation of the control algorithm. Simulation results show that the integrated control algorithm can significantly enhance vehicle stability during emergency evasive manoeuvres on various road conditions ranging from dry asphalt to very slippery packed snow road surfaces.

  4. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W. Thor

    1998-01-01

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.

  5. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W.T.

    1998-06-02

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.

  6. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  7. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  8. NATO PILOT STUDY ON ADVANCED CANCER RISK ASSESSMENT METHODS

    EPA Science Inventory

    NCEA scientists are participating in a study of advanced cancer risk assessment methods, conducted under the auspices of NATO's Committee on the Challenges of Modern Society. The product will be a book of case studies that illustrate advanced cancer risk assessment methods, avail...

  9. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  10. Multi-relaxation-time lattice Boltzmann front tracking method for two-phase flow with surface tension

    NASA Astrophysics Data System (ADS)

    Xie, Hai-Qiong; Zeng, Zhong; Zhang, Liang-Qi; Liang, Gong-You; Hiroshi, Mizuseki; Yoshiyuki, Kawazoe

    2012-12-01

    In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.

  11. A 3D front tracking method on a CPU/GPU system

    SciTech Connect

    Bo, Wurigen; Grove, John

    2011-01-21

    We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.

  12. Accounting for Surface Concentrations Using a VOF Front Tracking Method in Multiphase Flow

    NASA Astrophysics Data System (ADS)

    Martin, David W.

    In this dissertation, we present a numerical method for tracking surfactants on an interface in multiphase flow, along with applications of the method to two physical problems. We also present an extension of our method to track charged droplets. Our method combines a traditional volume of fluid (VOF) method with marker tracking. After describing this method in detail, we present a series of tests we used to validate our method. The applications we consider are the coalescence of surfactant-laden drops, and the rising of surfactant-laden drops in stratifications. In our study of the coalescence of surfactant-laden drops, we describe conditions under which coalescence is partial, rather than total. In particular, we examine the dependence of the critical Ohnesorge number, above which coalescence is total, on surfactant effects. We find that the surfactant potency has a surprising non-monotonic effect on the critical Ohnesorge number. This effect is explained by a balancing interface area loss and tangential stresses, which we describe using a scaling argument. Our argument is confirmed by forming a predicted critical Ohnesorge number profile, which qualitatively matches the data. We also discuss gravity effects, varying initial conditions, and daughter drops resulting from partial coalescence. In our study of rising drops, we examine three distinct physical setups. In the first setup, we examine a drop coated in insoluble surfactant rising in a uniform ambient. Our results for an unstratified ambient show good agreement with earlier work, and fill a gap between results for zero Reynolds number and intermediate Reynolds number. In our second setup, we study drops rising in a linear density stratification, with and without surfactant. Entrainment effects on the rising drop are isolated and used to compute an effective buoyancy of entrained fluid. In our third setup, we present velocity profiles of a clean drop entering a layer of soluble surfactant. The surfactant

  13. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  14. A discontinuous Galerkin front tracking method for two-phase flows with surface tension

    SciTech Connect

    Nguyen, V.-T.; Peraire, J.; Cheong, K.B.; Persson, P.-O.

    2008-12-28

    A Discontinuous Galerkin method for solving hyperbolic systems of conservation laws involving interfaces is presented. The interfaces are represented by a collection of element boundaries and their position is updated using an arbitrary Lagrangian-Eulerian method. The motion of the interfaces and the numerical fluxes are obtained by solving a Riemann problem. As the interface is propagated, a simple and effective remeshing technique based on distance functions regenerates the grid to preserve its quality. Compared to other interface capturing techniques, the proposed approach avoids smearing of the jumps across the interface which leads to an improvement in accuracy. Numerical results are presented for several typical two-dimensional interface problems, including flows with surface tension.

  15. Method of up-front load balancing for local memory parallel processors

    NASA Technical Reports Server (NTRS)

    Baffes, Paul Thomas (Inventor)

    1990-01-01

    In a parallel processing computer system with multiple processing units and shared memory, a method is disclosed for uniformly balancing the aggregate computational load in, and utilizing minimal memory by, a network having identical computations to be executed at each connection therein. Read-only and read-write memory are subdivided into a plurality of process sets, which function like artificial processing units. Said plurality of process sets is iteratively merged and reduced to the number of processing units without exceeding the balance load. Said merger is based upon the value of a partition threshold, which is a measure of the memory utilization. The turnaround time and memory savings of the instant method are functions of the number of processing units available and the number of partitions into which the memory is subdivided. Typical results of the preferred embodiment yielded memory savings of from sixty to seventy five percent.

  16. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  17. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  18. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  19. Experimental investigation of density behaviors in front of the lower hybrid launcher in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J.; Li, M. H.; Kong, E. H.; Wei, W.; Liu, F. K.; Shan, J. F.; Wu, Z. G.; Zhu, L.; Ma, W. D.; Tong, Y. Y.; Li, Y. C.; Wang, M.; Zhao, L. M.; Hu, H. C.; Liu, L.; Collaboration: EAST Team

    2013-06-15

    A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup −2} to 10.3 MWm{sup −2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup −3} for 2.45 GHz lower hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.

  20. Advanced verification methods for OVI security ink

    NASA Astrophysics Data System (ADS)

    Coombs, Paul G.; McCaffery, Shaun F.; Markantes, Tom

    2006-02-01

    OVI security ink +, incorporating OVP security pigment* microflakes, enjoys a history of effective document protection. This security feature provides not only first-line recognition by the person on the street, but also facilitates machine-readability. This paper explores the evolution of OVI reader technology from proof-of-concept to miniaturization. Three different instruments have been built to advance the technology of OVI machine verification. A bench-top unit has been constructed which allows users to automatically verify a multitude of different banknotes and OVI images. In addition, high speed modules were fabricated and tested in a state of the art banknote sorting machine. Both units demonstrate the ability of modern optical components to illuminate and collect light reflected from the interference platelets within OVI ink. Electronic hardware and software convert and process the optical information in milliseconds to accurately determine the authenticity of the security feature. Most recently, OVI ink verification hardware has been miniaturized and simplified providing yet another platform for counterfeit protection. These latest devices provide a tool for store clerks and bank tellers to unambiguously determine the validity of banknotes in the time period it takes the cash drawer to be opened.

  1. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  2. Advances in methods for deepwater TLP installations

    SciTech Connect

    Wybro, P.G.

    1995-10-01

    This paper describes a method suitable for installing deepwater TLP structures in water depths beyond 3,000 ft. An overview is presented of previous TLP installation, wherein an evaluation is made of the various methods and their suitability to deepwater applications. A novel method for installation of deepwater TLP`s is described. This method of installation is most suitable for deepwater and/or large TLP structures, but can also be used in moderate water depth as well. The tendon installation method utilizes the so-called Platform Arrestor Concept (PAC), wherein tendon sections are transported by barges to site, and assembled vertically using a dynamically position crane vessel. The tendons are transferred to the platform where they are hung off until there are a full complement of tendons. The hull lock off operation is performed on all tendons simultaneously, avoiding dangerous platform resonant behavior. The installation calls for relatively simple installation equipment, and also enables the use of simple tendon tie-off equipment, such as a single piece nut.

  3. Advanced reliability method for fatigue analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Wirsching, P. H.

    1984-01-01

    When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) may become extremely difficult or very inefficient. This study suggests using a simple and easily constructed second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.

  4. Transonic wing analysis using advanced computational methods

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Hicks, R. M.

    1978-01-01

    This paper discusses the application of three-dimensional computational transonic flow methods to several different types of transport wing designs. The purpose of these applications is to evaluate the basic accuracy and limitations associated with such numerical methods. The use of such computational methods for practical engineering problems can only be justified after favorable evaluations are completed. The paper summarizes a study of both the small-disturbance and the full potential technique for computing three-dimensional transonic flows. Computed three-dimensional results are compared to both experimental measurements and theoretical results. Comparisons are made not only of pressure distributions but also of lift and drag forces. Transonic drag rise characteristics are compared. Three-dimensional pressure distributions and aerodynamic forces, computed from the full potential solution, compare reasonably well with experimental results for a wide range of configurations and flow conditions.

  5. Advanced method for making vitreous waste forms

    SciTech Connect

    Pope, J.M.; Harrison, D.E.

    1980-01-01

    A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed.

  6. Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method.

    PubMed

    Zhu, Bing; Chen, Yizhou; Zhao, Jian

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676

  7. Integrated Chassis Control of Active Front Steering and Yaw Stability Control Based on Improved Inverse Nyquist Array Method

    PubMed Central

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676

  8. Advanced Electromagnetic Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis; Birtcher, Craig R.; Georgakopoulos, Stavros; Han, Dong-Ho; Ballas, Gerasimos

    1999-01-01

    The imminent destructive threats of Lightning on helicopters and other airborne systems has always been a topic of great interest to this research grant. Previously, the lightning induced currents on the surface of the fuselage and its interior were predicted using the finite-difference time-domain (FDTD) method as well as the NEC code. The limitations of both methods, as applied to lightning, were identified and extensively discussed in the last meeting. After a thorough investigation of the capabilities of the FDTD, it was decided to incorporate into the numerical method a subcell model to accurately represent current diffusion through conducting materials of high conductivity and finite thickness. Because of the complexity of the model, its validity will be first tested for a one-dimensional FDTD problem. Although results are not available yet, the theory and formulation of the subcell model are presented and discussed here to a certain degree. Besides lightning induced currents in the interior of an aircraft, penetration of electromagnetic fields through apertures (e.g., windows and cracks) could also be devastating for the navigation equipment, electronics, and communications systems in general. The main focus of this study is understanding and quantifying field penetration through apertures. The simulation is done using the FDTD method and the predictions are compared with measurements and moment method solutions obtained from the NASA Langley Research Center. Cavity-backed slot (CBS) antennas or slot antennas in general have many applications in aircraft-satellite type of communications. These can be flushmounted on the surface of the fuselage and, therefore, they retain the aerodynamic shape of the aircraft. In the past, input impedance and radiation patterns of CBS antennas were computed using a hybrid FEM/MoM code. The analysis is now extended to coupling between two identical slot antennas mounted on the same structure. The predictions are performed

  9. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  10. Advances in organometallic synthesis with mechanochemical methods.

    PubMed

    Rightmire, Nicholas R; Hanusa, Timothy P

    2016-02-14

    Solvent-based syntheses have long been normative in all areas of chemistry, although mechanochemical methods (specifically grinding and milling) have been used to good effect for decades in organic, and to a lesser but growing extent, inorganic coordination chemistry. Organometallic synthesis, in contrast, represents a relatively underdeveloped area for mechanochemical research, and the potential benefits are considerable. From access to new classes of unsolvated complexes, to control over stoichiometries that have not been observed in solution routes, mechanochemical (or 'M-chem') approaches have much to offer the synthetic chemist. It has already become clear that removing the solvent from an organometallic reaction can change reaction pathways considerably, so that prediction of the outcome is not always straightforward. This Perspective reviews recent developments in the field, and describes equipment that can be used in organometallic synthesis. Synthetic chemists are encouraged to add mechanochemical methods to their repertoire in the search for new and highly reactive metal complexes and novel types of organometallic transformations. PMID:26763151

  11. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  12. Advances in LC: bioanalytical method transfer.

    PubMed

    Wright, Patricia; Wright, Adrian

    2016-09-01

    There are three main reasons for transferring from an existing bioanalytical assay to an alternative chromatographic method: speed, cost and sensitivity. These represent a challenge to the analyst in that there is an interplay between these three considerations and one factor is often improved at the expense of another. These three factors act as drivers to encourage technology development and support its uptake. The more recently introduced chromatographic technologies may show significant improvements against one of more of these factors relative to conventional 4.6-mm id reversed-phase HPLC. In this article, some of these new chromatographic approaches will be considered in terms of what they can offer the bioanalysts. PMID:27491842

  13. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  14. Current methods and advances in bone densitometry.

    PubMed

    Guglielmi, G; Gluer, C C; Majumdar, S; Blunt, B A; Genant, H K

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis. PMID:11539928

  15. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  16. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  17. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Choi, Jachoon; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Birtcher, Craig R.

    1990-01-01

    High- and low-frequency methods to analyze various radiation elements located on aerospace vehicles with combinations of conducting, nonconducting, and energy absorbing surfaces and interfaces. The focus was on developing fundamental concepts, techniques, and algorithms which would remove some of the present limitations in predicting radiation characteristics of antennas on complex aerospace vehicles. In order to accomplish this, the following subjects were examined: (1) the development of techniques for rigorous analysis of surface discontinuities of metallic and nonmetallic surfaces using the equivalent surface impedance concept and Green's function; (2) the effects of anisotropic material on antenna radiation patterns through the use of an equivalent surface impedance concept which is incorporated into the existing numerical electromagnetics computer codes; and (3) the fundamental concepts of precipitation static (P-Static), such as formulations and analytical models. A computer code was used to model the P-Static process on a simple structure. Measurement techniques were also developed to characterized the electrical properties at microwave frequencies. Samples of typical materials used in airframes were tested and the results are included.

  18. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  19. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    NASA Astrophysics Data System (ADS)

    Hai-Qiong, Xie; Zhong, Zeng; Liang-Qi, Zhang

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. Project supported by the National Natural Science Foundation of China (Grant No. 11572062), the Fundamental Research Funds for the Central Universities, China (Grant No. CDJZR13248801), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13043), and Key Laboratory of Functional Crystals and Laser Technology, TIPC, Chinese Academy of Sciences.

  20. Advanced Ablative Insulators and Methods of Making Them

    NASA Technical Reports Server (NTRS)

    Congdon, William M.

    2005-01-01

    Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.

  1. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  2. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  3. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  4. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  5. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    EPA Science Inventory

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  6. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  7. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Advanced propulsion for LEO-Moon transport. 1: A method for evaluating advanced propulsion performance

    NASA Technical Reports Server (NTRS)

    Stern, Martin O.

    1992-01-01

    This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.

  9. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  10. Advances in subtyping methods of foodborne disease pathogens.

    PubMed

    Boxrud, Dave

    2010-04-01

    Current subtyping methods for the detection of foodborne disease outbreaks have limitations that reduce their use by public health laboratories. Recent advances in subtyping of foodborne disease pathogens utilize techniques that identify nucleic acid polymorphisms. Recent methods of nucleic acid characterization such as microarrays and mass spectrometry (MS) may provide improvements such as increasing speed and data portability while decreasing labor compared to current methods. This article discusses multiple-locus variable-number tandem-repeat analysis, single-nucleotide polymorphisms, nucleic acid sequencing, whole genome sequencing, variable absent or present loci, microarrays and MS as potential subtyping methods to enhance our ability to detect foodborne disease outbreaks. PMID:20299203

  11. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  12. Fracture Toughness in Advanced Monolithic Ceramics - SEPB Versus SEVENB Methods

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2005-01-01

    Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape), toughening exponent, and stable crack growth determined using back-face strain gaging.

  13. A multi-mode multi-band RF receiver front-end for a TD-SCDMA/LTE/LTE-advanced in 0.18-μm CMOS process

    NASA Astrophysics Data System (ADS)

    Rui, Guo; Haiying, Zhang

    2012-09-01

    A fully integrated multi-mode multi-band directed-conversion radio frequency (RF) receiver front-end for a TD-SCDMA/LTE/LTE-advanced is presented. The front-end employs direct-conversion design, and consists of two differential tunable low noise amplifiers (LNA), a quadrature mixer, and two intermediate frequency (IF) amplifiers. The two independent tunable LNAs are used to cover all the four frequency bands, achieving sufficient low noise and high gain performance with low power consumption. Switched capacitor arrays perform a resonant frequency point calibration for the LNAs. The two LNAs are combined at the driver stage of the mixer, which employs a folded double balanced Gilbert structure, and utilizes PMOS transistors as local oscillator (LO) switches to reduce flicker noise. The front-end has three gain modes to obtain a higher dynamic range. Frequency band selection and mode of configuration is realized by an on-chip serial peripheral interface (SPI) module. The front-end is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.3 mm2. The measured double-sideband (DSB) noise figure is below 3.5 dB and the conversion gain is over 43 dB at all of the frequency bands. The total current consumption is 31 mA from a 1.8-V supply.

  14. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  15. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  16. Evolution of a physical and biological front from upwelling to relaxation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwu; Bellingham, James G.; Ryan, John P.; Godin, Michael A.

    2015-10-01

    Fronts influence the structure and function of coastal marine ecosystems. Due to the complexity and dynamic nature of coastal environments and the small scales of frontal gradient zones, frontal research is difficult. To advance this challenging research we developed a method enabling an autonomous underwater vehicle (AUV) to detect and track fronts, thereby providing high-resolution observations in the moving reference frame of the front itself. This novel method was applied to studying the evolution of a frontal zone in the coastal upwelling environment of Monterey Bay, California, through a period of variability in upwelling intensity. Through 23 frontal crossings in four days, the AUV detected the front using real-time analysis of vertical thermal stratification to identify water types and the front between them, and the vehicle tracked the front as it moved more than 10 km offshore. The physical front coincided with a biological front between strongly stratified phytoplankton-enriched water inshore of the front, and weakly stratified phytoplankton-poor water offshore of the front. While stratification remained a consistent identifier, conditions on both sides of the front changed rapidly as regional circulation responded to relaxation of upwelling winds. The offshore water type transitioned from relatively cold and saline upwelled water to relatively warm and fresh coastal transition zone water. The inshore water type exhibited an order of magnitude increase in chlorophyll concentrations and an associated increase in oxygen and decrease in nitrate. It also warmed and freshened near the front, consistent with the cross-frontal exchange that was detected in the high-resolution AUV data. AUV-observed cross-frontal exchanges beneath the surface manifestation of the front emphasize the importance of AUV synoptic water column surveys in the frontal zone.

  17. Advanced preservation methods and nutrient retention in fruits and vegetables.

    PubMed

    Barrett, Diane M; Lloyd, Beate

    2012-01-15

    Despite the recommendations of international health organizations and scientific research carried out around the world, consumers do not take in sufficient quantities of healthy fruit and vegetable products. The use of new, 'advanced' preservation methods creates a unique opportunity for food manufacturers to retain nutrient content similar to that found in fresh fruits and vegetables. This review presents a summary of the published literature regarding the potential of high-pressure and microwave preservation, the most studied of the 'advanced' processes, to retain the natural vitamin A, B, C, phenolic, mineral and fiber content in fruits and vegetables at the time of harvest. Comparisons are made with more traditional preservation methods that utilize thermal processing. Case studies on specific commodities which have received the most attention are highlighted; these include apples, carrots, oranges, tomatoes and spinach. In addition to summarizing the literature, the review includes a discussion of postharvest losses in general and factors affecting nutrient losses in fruits and vegetables. Recommendations are made for future research required to evaluate these advanced process methods. PMID:22102258

  18. Basis Light-Front Quantization: Recent Progress and Future Prospects

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Li, Yang; Maris, Pieter; Zhao, Xingbo

    2016-08-01

    Light-front Hamiltonian field theory has advanced to the stage of becoming a viable non-perturbative method for solving forefront problems in strong interaction physics. Physics drivers include hadron mass spectroscopy, generalized parton distribution functions, spin structures of the hadrons, inelastic structure functions, hadronization, particle production by strong external time-dependent fields in relativistic heavy ion collisions, and many more. We review selected recent results and future prospects with basis light-front quantization that include fermion-antifermion bound states in QCD, fermion motion in a strong time-dependent external field and a novel non-perturbative renormalization scheme.

  19. Basis Light-Front Quantization: Recent Progress and Future Prospects

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Li, Yang; Maris, Pieter; Zhao, Xingbo

    2016-05-01

    Light-front Hamiltonian field theory has advanced to the stage of becoming a viable non-perturbative method for solving forefront problems in strong interaction physics. Physics drivers include hadron mass spectroscopy, generalized parton distribution functions, spin structures of the hadrons, inelastic structure functions, hadronization, particle production by strong external time-dependent fields in relativistic heavy ion collisions, and many more. We review selected recent results and future prospects with basis light-front quantization that include fermion-antifermion bound states in QCD, fermion motion in a strong time-dependent external field and a novel non-perturbative renormalization scheme.

  20. ARIEL front end

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Baartman, R. A.; Laxdal, R. E.

    2014-01-01

    The ARIEL project at TRIUMF will greatly expand the variety and availability of radioactive ion beams (RIBs) (Laxdal, Nucl Inst Methods Phys Res B 204:400-409, 2003). The ARIEL front end connects the two ARIEL target stations to the existing ISAC facility to expand delivery to two and eventually three simultaneous RIB beams with up to two simultaneous accelerated beams (Laxdal et al. 2008). The low-energy beam transport lines and mass separators are designed for maximum flexibility to allow a variety of operational modes in order to optimize the radioactive ion beam delivery. A new accelerator path is conceived for high mass delivery from an EBIS charge state breeder. The front-end design utilizes the experience gained in 15 years of ISAC beam delivery.

  1. Front matter.

    PubMed

    2014-01-01

    ; Computer-aided Image Analyis in Ophthalmology chaired by Prof Manuel Penedo, University of La Coruña, Spain; and Advances in Data & Knowledge Management for Healthcare chaired by Dr Massimo Esposito, National Research Council of Italy (ICAR-CNR). These proceedings consist of 43 papers that were presented at the conference, each of which was comprehensively reviewed by at least two members of the International Programme Committee. We hope this will form a useful and interesting reference for further research on this topic. The InMed-14 Conference Chairs: Manuel Graña, Robert J. Howlett, Lakhmi C. Jain and Carlos Toro. PMID:25488250

  2. Front Matter.

    PubMed

    2016-01-01

    The European Federation for Medical Informatics (EFMI) Association is the leading organisation in medical informatics in Europe as a federation of national societies of 30 countries. EFMI is organized as a non-profit organization concerned with the theory and practice of information science and technology within health and health science in a European context. The objectives of the EFMI are: • To advance international co-operation and dissemination of information in medical informatics at the European level; • To promote high standards in the application of medical informatics; • To promote research and development in medical informatics; • To encourage high standards in education in medical informatics; • To function as the autonomous European Regional Council of IMIA. This year is a special year for EFMI as it celebrates its 40th anniversary; the Federation was founded in 1976. Therefore, different special events have been organized including several conferences, work shops special issues in journals. In view of this special year for EFMI also the Medical Informatics Europe (MIE) conference, one of EFMI's top conferences, is organized in a special way. Considering the complexity and interrelation of the health domain and as a sign of the long-lasting collaboration of major societies in the field a special joint conference was set up that unities the conferences of the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), the German Society for Epidemiology (DGEpi), the International Epidemiological Association - European Region and the European Federation for Medical Informatics (EFMI). The societies involved have longstanding experience in integrating the disciplines of medical informatics, biometry, epidemiology and health data management. The collaboration will not only offer a unique opportunity for integration but also strengthen each of the disciplines involved both on a national and international level. The event is

  3. Weather fronts and acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Kveton, Vit

    1991-03-01

    Some methodological aspects are discussed of the investigation of acute infarct myocarditis (AIM) in relation to weather fronts. Results of a new method of analysis are given. Data were analysed from about the hour of the onset of symptoms, and led to the diagnosis of AIM either immediately or within a few hours or days (3019 cases observed over 4.5 years during 1982 1986 in Plzen, Czechoslovakia). Weather classification was based on three factors (the type of the foregoing front, the type of the subsequent front, the time section of the time interval demarcated by the passage of the surfaces of the fronts). AIM occurrence increased in particular types of weather fronts: (i) by 30% during 7 12 h after a warm front, if the time span between fronts exceeded 24 h; (ii) by 10% in time at least 36 h distant from the foregoing cold or occlusion front and from the succeeding warm or occlusion front; (iii) by 20% during 0 2 h before the passage of the front, provided the foregoing front was not warm and the interval between fronts exceeded 5 h. AIM occurrence decreased by 15% 20% for time span between fronts > 24 h at times 6 11, 6 23 and 6 35 h before a coming warm or occlusion front (for interfrontal intervals 25 48, 49 72 and possibly > 72 h), and also at 12 23 and possibly 12 35 h before a cold front (for intervals 49 72 and possibly > 72 h), if the foregoing front was cold or an occlusion front.

  4. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  5. A Method of Decreasing the Drag of a Heavy-Duty Truck with the Use of Front and Stern Board Generators of Large-Scale Vortices

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Gortyshov, Yu. F.; Gureev, V. M.; Opara, Yu. S.; Popov, I. A.

    2015-01-01

    A method of improvement of the aerodynamic and working characteristics of automobiles with the use of generators of large-scale vortices is proposed. The drag of a model container truck, on which board vortex generators were positioned in front of the cab of the truck and at the rear of its container, was experimentally investigated. By varying the geometric parameters of the model truck, its rational arrangement providing a decrease in the drag of the truck and an economy of the fuel consumed by it was determined.

  6. Advanced Remedial Methods for Metals and Radionuclides in Vadose Zone Environments

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Hubbard, Susan; Miracle, Ann L.; Zhong, Lirong; Foote, Martin; Wu, Yuxin; Jansik, Danielle P.

    2010-10-03

    Functionally, the methods for addressing contamination must remove and/or reduce transport or toxicity of contaminants. This problem is particularly challenging in arid environments where the vadose zone can be up to hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous vadose zone environments present hydrologic and geochemical challenges that limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, by-passing low-permeability zones which frequently contain the majority of the contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to underlying aquifers prior to stabilization. Development of innovative, in-situ technologies may be the only way to meet remedial action objectives and long-term stewardship goals. Shear-thinning fluids (i.e., surfactants) can be used to lower the liquid surface tension and create stabile foams, which readily penetrate low permeability zones. Although surfactant foams have been utilized for subsurface mobilization efforts in the oil and gas industry, so far, the concept of using foams as a delivery mechanism for transporting reactive remedial amendments into deep vadose zone environments to stabilize metal and long-lived radionuclide contaminants has not been explored. Foam flow can be directed by pressure gradients, rather than being dominated by gravity; and, foam delivery mechanisms limit the volume of water (< 20% vol.) required for remedy delivery and emplacement, thus mitigating contaminant mobilization. We will present the results of a numerical modeling and integrated laboratory

  7. Front Matter.

    PubMed

    2016-01-01

    organizations on the one hand and much smaller investment in evaluating the evidence of these decisions on a scientifically sound basis on the other. In therapy research, this discrepancy also existed, however much earlier. In order to overcome this discrepancy, among other methods, randomized clinical trials are now forming an important part of evaluating and making decisions on good clinical practice. Health information systems in their current form have only existed for a few decades. And they are still in continuous change. Their complexity is high and often underestimated. Insofar it is understandable that in the beginning priority has been put on successful and stable implementations and on feasible solutions concerning organizational issues. However, this initial phase should now clearly be regarded as finished and so the need for systematically looking for evidence must also be demanded for the practice of health informatics - for the sake of patients, of health care organizations, and for high-quality and efficient health care. This book on evidence-based health informatics, edited by two colleagues with high international reputations in this field, is timely and very welcome. They successfully invited excellent authors worldwide to report and to discuss about the many aspects of evidence-based health informatics. What has to be considered when reading the book? In their preface Elske Ammenwerth and Michael Rigby report about the book's objective: It "seeks to meet the need for better understanding of the need for robust evidence to support health IT, give insight into health IT evidence and evaluation as its primary source, and to promote health informatics as the underpinning science". They state that a reader should not expect a cook book with a few recipes on how to successfully cook some delightful meals of evidence-based health informatics. Editors and authors seek "to inform the reader on the wide range of knowledge available, and its necessary use according to

  8. Front Matter.

    PubMed

    2015-01-01

    This book has been written by a group of renowned and experienced international researchers from nine countries, who share here how they have applied Techno-Anthropological methodologies to their research in a variety of different health informatics contexts. Bridges have been built in the process of editing and writing this book, and we are now actually building Techno-Anthropological research constructions in research environments in Denmark, Australia, Canada, Finland and Israel. This is the third major work on Techno-Anthropology, following What is Techno-Anthropology? (2013) edited by Tom Børsen and Lars Botin and a special issue on Techno-Anthropology in Techné: Journal of the Society for Philosophy and Technology - edited by Galit Wellner, Lars Botin and Kathrin Otrel-Cass (2015). In this current volume we specifically address methodology from ethnographic, anthropological, ethical, sociotechnical and participatory perspectives in a health informatics context, which is reflected in the structure of the anthology. Techno-Anthropology is an emerging interdisciplinary research field that focuses on human/technology interactions and relations, and on how these can be understood and facilitated in context. This means that Techno-Anthropology has much to offer the health informatics and eHealth contexts when it comes to applying methods and techniques that can create an understanding of how citizens, patients, health care professionals, IT-professionals - and those who manage them - interact with technology. Techno-Anthropology, in its current configuration, also considers how technological innovation, development and implementation can be made in an appropriate and pragmatic way in relation to understanding work practices and in interpretations of technology in situated and contextual transfers of knowledge in constant negotiations. This means that there is a striving towards connecting science, engineering, social science and the humanities. The conglomeration

  9. Front matter.

    PubMed

    2014-01-01

    economic burden can accumulate impressively. And unfortunately, the American public's return on investment-healthier lives per dollars spent-is poor. Again, several factors are at play. Opaque and monopolistic healthcare pricing obstructs comparison between providers, so inefficiencies stand uncorrected. In addition, the insurance industry takes a large cut of healthcare spending without actually providing any care. Furthermore, American culture tends to underrate prevention, but value dramatic interventions. (How many cardiac stents and insulin pumps could we eliminate with better dietary education?) And when the public expresses discontent and asks the government to improve the current system, the methods to effect change become stubbornly politicized. Naturally, players already making a lot of money protect their advantage; political expediency influences how healthcare profits remain private and losses become socialized. Caregivers, hospitals, drugs, and devices are limited and valuable resources that merit significant investment. In order to protect these resources and improve our investment, though, we need to resolve the key issue at hand: how much more can the public pay for care without damaging the rest of the economy? Clearly, we require greater efficiency. Scientists and engineers also form part of the relationship between healthcare invention, patient expectations, and increasing expenditure. They tackle healthcare problems focusing chiefly on scientific solutions. But science is also a business, so following successful discovery and regulatory approval, corporations must recoup R&D and fund future research. Their aggressive marketing of new products maximizes sales, and pricing reflects what the market will bear, yet FDA approval doesn't guarantee that a new therapy is the most cost-effective option available. Return on investment-from the public's standpoint-appears to be an afterthought. Although the technologies shared at NextMed/MMVR capitalize on the

  10. Methods and Systems for Advanced Spaceport Information Management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  11. Methods and systems for advanced spaceport information management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  12. A conditioned level-set method with block-division strategy to flame front extraction based on OH-PLIF measurements

    NASA Astrophysics Data System (ADS)

    Han, Yue; Cai, Guo-Biao; Xu, Xu; Renou, Bruno; Boukhalfa, Abdelkrim

    2014-05-01

    A novel approach to extract flame fronts, which is called the conditioned level-set method with block division (CLSB), has been developed. Based on a two-phase level-set formulation, the conditioned initialization and region-lock optimization appear to be beneficial to improve the efficiency and accuracy of the flame contour identification. The original block-division strategy enables the approach to be unsupervised by calculating local self-adaptive threshold values autonomously before binarization. The CLSB approach has been applied to deal with a large set of experimental data involving swirl-stabilized premixed combustion in diluted regimes operating at atmospheric pressures. The OH-PLIF measurements have been carried out in this framework. The resulting images are, thus, featured by lower signal-to-noise ratios (SNRs) than the ideal image; relatively complex flame structures lead to significant non-uniformity in the OH signal intensity; and, the magnitude of the maximum OH gradient observed along the flame front can also vary depending on flow or local stoichiometry. Compared with other conventional edge detection operators, the CLSB method demonstrates a good ability to deal with the OH-PLIF images at low SNR and with the presence of a multiple scales of both OH intensity and OH gradient. The robustness to noise sensitivity and intensity inhomogeneity has been evaluated throughout a range of experimental images of diluted flames, as well as against a circle test as Ground Truth (GT).

  13. Influence of crystallization front direction on the Mg-related impurity centers incorporation in bulk GaN:Mg grown by HNPS method

    NASA Astrophysics Data System (ADS)

    Sadovyi, B.; Amilusik, M.; Litwin-Staszewska, E.; Bockowski, M.; Grzegory, I.; Porowski, S.; Fijalkowski, M.; Rudyk, V.; Tsybulskyi, V.; Panasyuk, M.; Karbovnyk, I.; Kapustianyk, V.

    2016-08-01

    We studied the incorporation of Mg-related impurity centers in GaN crystals depending on the direction of the crystallization front. Two series of GaN crystals - (i) undoped and (ii) Mg-doped - were grown by High Nitrogen Pressure Solution (HNPS) method under otherwise identical conditions. Each series contained four samples with (10 1 bar 0) , (11 2 bar 0) , (20 2 bar 1 bar) and (20 2 bar 1) orientations. The low-temperature photoluminescence (PL) spectroscopy was used for characterization of the obtained crystals. The observed differences in the PL spectra of GaN:Mg crystals suggested that Mg incorporation in GaN grown by HNPS method depends considerably on the orientation of crystallization front. The concentration of Mg impurity incorporated into the GaN crystals subsequently increases for the following sequence of planes: (10 1 bar 0) , (11 2 bar 0) , (20 2 bar 1 bar) and (20 2 bar 1) . For (10 1 bar 0) , (11 2 bar 0) and (20 2 bar 1 bar) planes the blue band is related only to ON - MgGa donor-acceptor pair (DAP) transitions, while for (20 2 bar 1) plane the incorporation of Mg-H complexes occurs additionally to the formation ON - MgGa DAP.

  14. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  15. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  16. Exploration of Advanced Probabilistic and Stochastic Design Methods

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    2003-01-01

    The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and

  17. Advanced Motion Compensation Methods for Intravital Optical Microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2013-01-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405

  18. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  19. Method Evaluation And Field Sample Measurements For The Rate Of Movement Of The Oxidation Front In Saltstone

    SciTech Connect

    Almond, P. M.; Kaplan, D. I.; Langton, C. A.; Stefanko, D. B.; Spencer, W. A.; Hatfield, A.; Arai, Y.

    2012-08-23

    The objective of this work was to develop and evaluate a series of methods and validate their capability to measure differences in oxidized versus reduced saltstone. Validated methods were then applied to samples cured under field conditions to simulate Performance Assessment (PA) needs for the Saltstone Disposal Facility (SDF). Four analytical approaches were evaluated using laboratory-cured saltstone samples. These methods were X-ray absorption spectroscopy (XAS), diffuse reflectance spectroscopy (DRS), chemical redox indicators, and thin-section leaching methods. XAS and thin-section leaching methods were validated as viable methods for studying oxidation movement in saltstone. Each method used samples that were spiked with chromium (Cr) as a tracer for oxidation of the saltstone. The two methods were subsequently applied to field-cured samples containing chromium to characterize the oxidation state of chromium as a function of distance from the exposed air/cementitious material surface.

  20. New advanced control methods for doubly salient permanent magnet motor

    SciTech Connect

    Blaabjerg, F.; Christensen, L.; Rasmussen, P.O.; Oestergaard, L.; Pedersen, P.

    1995-12-31

    High performance and high efficiency in adjustable speed drives are needed and new motor constructions are world wide investigated and analyzed. This paper deals with advanced control of a recently developed Doubly Salient Permanent Magnet (DSPM) motor. The construction of the DSPM motor is shown and a dynamical model of the motor is used for simulations. As supply to the DSPM motor, a power converter with a split capacitor is used to reduce the number of devices, and a basic control method for this converter is explained. This control method will cause an unequal voltage distribution across the capacitors because the motor is asymmetrical and a decrease in efficiency and a poorer dynamic performance are the results. To minimize the problems with the unequal load of the capacitors in the converter, a new charge control strategy is developed. The efficiency of the motor can also be improved by using a power minimizing scheme based on changing the turn-on and turn-off angles of the current. The two different strategies are implemented in an adjustable-speed drive, and it is concluded that both control strategies improve the performance of the drive.

  1. Measuring Delta Progradation Using Delta Front Flow Patterns: A New Method of Remote Imagery Analysis on the Wax Lake Delta, Louisiana, U.S.A.

    NASA Astrophysics Data System (ADS)

    Estep, J. D.; Shaw, J.; Edmonds, D. A.

    2015-12-01

    Quantifying the progradation of the Wax Lake Delta (WLD), a sub-delta of the Mississippi River Delta, can lend valuable insight into coastal land-building patterns. Previous studies of WLD progradation have relied on subaerially-exposed land for indicating delta extent, but an inherent problem with this method lies in the high variability of exposed land due to vegetative, hydrologic, and atmospheric fluctuations. By mapping water surface films observed in remote imagery which form streaklines along flow paths in the delta, we show that the shallow delta front flow patterns are relatively unaffected by short term water level changes and can be used to evaluate WLD progradation over time. Remotely sensed imagery from multiple sources (infrared aerial photography, SPOT, UAVSAR) spanning from 1988 to 2015 was used to map streaklines from which we calculate a flow direction divergence field across the delta. Measuring the translation of this field through time, such as areas containing extreme divergence values along the delta front, quantifies the progradation over the time elapsed. Preliminary measurements of WLD progradation were subdivided into the eastern, southern, and western thirds of the delta. The eastern third prograded at 110 ±20m/yr from 1988 - 1997, 100 ±40m/yr from 1997 - 2002, and then remained relatively constant to 2015. The southern third prograded at 130 ±20m/yr from 1988 - 1997, 200 ±40m/yr from 1997 - 2002, and remained relatively constant to 2015. The western third prograded at 130 ±30m/yr from 1988 - 1997, 220 ±60 m from 1997 - 2002, and then remained relatively constant from 2002 - 2015. Also of note is the retrogradation on the average of 700 ±400m observed from January to August, 1992 which we interpret as being caused by the impact of Hurricane Andrew. The streakline methodology of evaluating WLD progradation could provide new methods for analysis of land change in other deltas around the world.

  2. Relating Global Precipitation to Atmospheric Fronts

    NASA Astrophysics Data System (ADS)

    Catto, J. L.; Jakob, C.; Nicholls, N.

    2012-12-01

    Atmospheric fronts are important for the day-to-day variability of weather in the midlatitudes, particularly during winter when extratropical storm-tracks are at their maximum intensity. Fronts are often associated with heavy rain, and strongly affect the local space-time distribution of rainfall. Although global climate models should be expected to represent the baroclinic systems within which the fronts are embedded, the fronts themselves and precipitation processes within them are of much smaller scale. As a consequence, models with the typical horizontal resolution of contemporary climate models do not necessarily accurately capture these features. A recently developed objective front identification method applied to reanalysis data is combined with global rainfall data to investigate how precipitation and extremes of precipitation around the globe are associated with atmospheric fronts. Having established the observed distribution of fronts and their role in producing precipitation and extremes, the occurrence of fronts and the associated precipitation can then be evaluated in state-of-the-art climate models. This provides a process-oriented method of model evaluation where the errors in the model can be decomposed into contributions from errors in front frequency and errors in frontal and non-frontal precipitation intensity. Finally, how fronts and their associated precipitation, may change in the future, especially the extremes, can be investigated.

  3. Advanced Remedial Methods for Metals and Radionuclides in Vadose Zone Environments

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Hubbard, Susan S.; Miracle, Ann L.; Zhong, Lirong; Foote, Martin W.; Wu, Yuxin; Jansik, Danielle P.

    2012-02-03

    Functionally, the methods for addressing contamination must remove and/or reduce transport or toxicity of contaminants. This problem is particularly challenging in arid environments where the vadose zone can be up to hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous vadose zone environments present hydrologic and geochemical challenges that limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, bypassing low-permeability zones which frequently contain the majority of the contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to underlying aquifers prior to stabilization. Development of innovative, in-situ technologies may be the only way to meet remedial action objectives and long-term stewardship goals. Shear-thinning fluids (i.e., surfactants) can be used to lower the liquid surface tension and create stabile foams, which readily penetrate low permeability zones. Although surfactant foams have been utilized for subsurface mobilization efforts in the oil and gas industry, so far, the concept of using foams as a delivery mechanism for transporting reactive remedial amendments into deep vadose zone environments to stabilize metal and long-lived radionuclide contaminants has not been explored. Foam flow can be directed by pressure gradients rather than being dominated by gravity, and, foam delivery mechanisms limit the volume of water (< 20% vol.) required for remedy delivery and emplacement, thus mitigating contaminant mobilization. We will present the results of an integrated laboratory- / intermediate

  4. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.

    PubMed

    Amézqueta, Susana; Torres, Josep Lluís

    2016-05-01

    Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies. PMID:26946023

  5. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    PubMed Central

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  6. Methods for integrating optical fibers with advanced aerospace materials

    NASA Astrophysics Data System (ADS)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  7. PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods

    SciTech Connect

    Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A; Popov, Emilian L

    2012-01-01

    At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM. To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.

  8. Electrochemical test methods for advanced battery and semiconductor technology

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using

  9. Development and Applications of Advanced Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Bell, Franziska

    This dissertation contributes to three different areas in electronic structure theory. The first part of this thesis advances the fundamentals of orbital active spaces. Orbital active spaces are not only essential in multi-reference approaches, but have also become of interest in single-reference methods as they allow otherwise intractably large systems to be studied. However, despite their great importance, the optimal choice and, more importantly, their physical significance are still not fully understood. In order to address this problem, we studied the higher-order singular value decomposition (HOSVD) in the context of electronic structure methods. We were able to gain a physical understanding of the resulting orbitals and proved a connection to unrelaxed natural orbitals in the case of Moller-Plesset perturbation theory to second order (MP2). In the quest to find the optimal choice of the active space, we proposed a HOSVD for energy-weighted integrals, which yielded the fastest convergence in MP2 correlation energy for small- to medium-sized active spaces to date, and is also potentially transferable to coupled-cluster theory. In the second part, we studied monomeric and dimeric glycerol radical cations and their photo-induced dissociation in collaboration with Prof. Leone and his group. Understanding the mechanistic details involved in these processes are essential for further studies on the combustion of glycerol and carbohydrates. To our surprise, we found that in most cases, the experimentally observed appearance energies arise from the separation of product fragments from one another rather than rearrangement to products. The final chapters of this work focus on the development, assessment, and application of the spin-flip method, which is a single-reference approach, but capable of describing multi-reference problems. Systems exhibiting multi-reference character, which arises from the (near-) degeneracy of orbital energies, are amongst the most

  10. Bioinformatics Methods and Tools to Advance Clinical Care

    PubMed Central

    Lecroq, T.

    2015-01-01

    Summary Objectives To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. Method We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. Results The selection and evaluation process of this Yearbook’s section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. Conclusions The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their

  11. Lagrangian fronts in the ocean

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-05-01

    We introduce the concept of Lagrangian fronts (LFs) in the ocean and describe their importance for analyzing water mixing and transport and the specific features and differences from hydrological fronts. A method of calculating LFs in a given velocity field is proposed. Based on altimeter velocity fields from AVISO data in the northwestern Pacific, we calculate the Lagrangian synoptic maps and identify LFs of different spatial and temporal scales. Using statistical analysis of saury catches in different years according to the Goskomrybolovstvo (State Fisheries Committee of the Russian Federation), we show that LFs can serve as good indicators of places that are favorable for fishing.

  12. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  13. Processing of alnico permanent magnets by advanced directional solidification methods

    DOE PAGESBeta

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  14. Processing of alnico permanent magnets by advanced directional solidification methods

    NASA Astrophysics Data System (ADS)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  15. A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Chae, B.-G.; Lee, J.-H.; Park, H.-J.; Choi, J.

    2015-08-01

    Most landslides in Korea are classified as shallow landslides with an average depth of less than 2 m. These shallow landslides are associated with the advance of a wetting front in the unsaturated soil due to rainfall infiltration, which results in an increase in water content and a reduction in the matric suction in the soil. Therefore, this study presents a modified equation of infinite slope stability analysis based on the concept of the saturation depth ratio to analyze the slope stability change associated with the rainfall on a slope. A rainfall infiltration test in unsaturated soil was performed using a column to develop an understanding of the effect of the saturation depth ratio following rainfall infiltration. The results indicated that the rainfall infiltration velocity due to the increase in rainfall in the soil layer was faster when the rainfall intensity increased. In addition, the rainfall infiltration velocity tends to decrease with increases in the unit weight of soil. The proposed model was applied to assess its feasibility and to develop a regional landslide susceptibility map using a geographic information system (GIS). For that purpose, spatial databases for input parameters were constructed and landslide locations were obtained. In order to validate the proposed approach, the results of the proposed approach were compared with the landslide inventory using a ROC (receiver operating characteristics) graph. In addition, the results of the proposed approach were compared with the previous approach used: a steady-state hydrological model. Consequently, the approach proposed in this study displayed satisfactory performance in classifying landslide susceptibility and showed better performance than the steady-state approach.

  16. A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front

    NASA Astrophysics Data System (ADS)

    Chae, B.-G.; Lee, J.-H.; Park, H.-J.; Choi, J.

    2015-01-01

    Most landslides in Korea are classified as shallow landslides with an average depth of less than 2 m. These shallow landslides are associated with the advance of a wetting front in the unsaturated soil due to rainfall infiltration, which results in an increase in water content and a reduction in the matric suction in the soil. Therefore, this study presents a modified equation of infinite slope stability analysis based on the concept of the saturation depth ratio to analyze the slope stability change associated with the rainfall on a slope. A rainfall infiltration test in unsaturated soil was performed using a column to develop an understanding of the effect of the saturation depth ratio following rainfall infiltration. The results indicated that the rainfall infiltration velocity due to the increase in rainfall in the soil layer was faster when the rainfall intensity increased. In addition, the rainfall infiltration velocity tends to decrease with increases in the unit weight of soil. The proposed model was applied to assess its feasibility and to develop a regional landslide susceptibility map using a Geographic Information System (GIS). For that purpose, the spatial databases for input parameters were constructed and landslide locations were obtained. In order to validate the proposed approach, the results of the proposed approach were compared with the landslide inventory using ROC (Receiver Operating Characteristics) graph. In addition, the results of the proposed approach were compared with the previous approach used steady state hydrological model. Consequently, the approach proposed in this study displayed satisfactory performance in classifying landslide susceptibility and showed better performance than the steady state approach.

  17. Modeling ice front Dynamics of Greenland outlet glaciers using ISSM

    NASA Astrophysics Data System (ADS)

    Morlighem, M.; Bondzio, J. H.; Seroussi, H. L.; Rignot, E. J.

    2015-12-01

    The recent increase in the rate of mass loss from the Greenland Ice Sheet is primarily due to the acceleration and thinning of outlet glaciers along the coast. This acceleration is a dynamic response to the retreat of calving fronts, which leads to a loss in resistive stresses. These processes need to be included in ice sheet models in order to be able to accurately reproduce current trends in mass loss, and in the long term reduce the uncertainty in the contribution of ice sheets to sea level rise. Today, the vast majority of ice sheet models that include moving boundaries are one dimensional flow line and vertical flow band models, that are not adapted to the complex geometries of Greenland outlet glaciers, as they do not accurately capture changes in lateral stresses. Here, we use the level set method to track moving boundaries within a 2D plane view model of the Ice Sheet System Model (ISSM), and investigate the sensitivity of Store Glacier, in western Greenland, to the amount of melting occurring at its calving front. We explore different calving laws and obtain the best results with a new simple calving law adapted from von Mises yield criterion. We show that the ocean circulation near the front and the amount of runoff are able to trigger ice front advance and retreat depending on the amount of melting that they produce at the calving face, but the bed topography controls the stable positions of the ice front. The modeled calving front of Store Glacier, for which we have quality bed topography and sea floor bathymetry data, is particularly stable because of the presence of a large sill at the glacier terminus. If the ice front detaches from this stabilizing sill due to larger amounts of melting at the front or due to large calving events, the glacier front starts to retreat as the bed deepens inland, until it finds another stabilizing feature in the bed topography. The new bed topography maps based on mass conservation make it possible to model more

  18. Advanced Methods of Observing Surface Plasmon Polaritons and Magnons

    NASA Astrophysics Data System (ADS)

    Moghaddam, Abolghasem Mobaraki

    Available from UMI in association with The British Library. Requires signed TDF. The primary objectives of this thesis are the investigation of the theoretical and experimental aspects of the design and construction of advanced techniques for the excitation of surface plasmon-polaritons, surface magneto -plasmon-polaritons and surface magnons. They involve on -line observation of these phenomena and to accomplish these goals, analytical studies of the characteristic behaviour of these phenomena have been undertaken. For excitations of surface plasmon- and surface magneto-plasmon-polaritons the most robust and conventional configuration, namely Prism-Medium-Air, coupled to a novel angle scan (prism spinning) method was employed. The system to be described here can automatically measure the reflectivity of a multilayer system over a range of angles that includes the resonance angle in an Attenuated Total Reflection (ATR) experiment. The computer procedure that controls the system is quite versatile so that it allows any right-angle prism of different angle or refractive index to be utilised. It also provided probes to check for optical alignment within the system. Moreover, it performs the angular scan many times and then averages the results in order to reduce the environmental and other possible sources of noise within the system. The mechanical side of the system is unique and could eventually be adopted as a marketable piece of equipment. It consists of a turntable for holding the prism-sample assembly and a drive motor in conjunction with a servo-potentiometer whose output not only operates the turntable but also sends a signal to a computer to measure accurately its position. The interface unit enables a computer to control automatically an angular scan ATR experiment for measuring the resonance reflectivity spectrum of a multilayer system. The interface unit uses an H-bridge switch formed by four bipolar power transistor and two small signal MOSFETs to convert

  19. Fronts, fish, and predators

    NASA Astrophysics Data System (ADS)

    Belkin, Igor M.; Hunt, George L.; Hazen, Elliott L.; Zamon, Jeannette E.; Schick, Robert S.; Prieto, Rui; Brodziak, Jon; Teo, Steven L. H.; Thorne, Lesley; Bailey, Helen; Itoh, Sachihiko; Munk, Peter; Musyl, Michael K.; Willis, Jay K.; Zhang, Wuchang

    2014-09-01

    Ocean fronts play a key role in marine ecosystems. Fronts shape oceanic landscapes and affect every trophic level across a wide range of spatio-temporal scales, from meters to thousands of kilometers, and from days to millions of years. At some fronts, there is an elevated rate of primary production, whereas at others, plankton is aggregated by advection and by the behavior of organisms moving against gradients in temperature, salinity, light irradiance, hydrostatic pressure and other physico-chemical and biological factors. Lower trophic level organisms - phytoplankton and zooplankton - that are aggregated in sufficient densities, attract organisms from higher trophic levels, from planktivorous schooling fish to squid, large piscivorous fish, seabirds and marine mammals. Many species have critical portions of their life stages or behaviors closely associated with fronts, including spawning, feeding, ontogenetic development, migrations, and other activities cued to frontal dynamics. At different life stages, an individual species or population might be linked to different fronts. The nature and strength of associations between fronts and biota depend on numerous factors such as the physical nature and spatio-temporal scales of the front and the species and their life stages in question. In other words, fronts support many different niches and micro/macro-habitats over a wide range of spatial and temporal scales.

  20. Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method

    SciTech Connect

    Budenkova, O. N. Vasiliev, M. G.; Yuferev, V. S.; Ivanov, I. A.; Bul'kanov, A. M.; Kalaev, V. V.

    2008-12-15

    Numerical investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium garnet crystals in the same thermal zone and comparison of the obtained results with the experimental data have been performed. It is shown that the difference in the behavior of the crystallization front during growth of the crystals is related to their different transparency in the IR region. In gadolinium gallium garnet crystals, which are transparent to thermal radiation, a crystallization front, strongly convex toward the melt, is formed in the growth stage, which extremely rapidly melts under forced convection. Numerical analysis of this process has been performed within the quasistationary and nonstationary models. At the same time, in terbium gallium garnet crystals, which are characterized by strong absorption of thermal radiation, the phase boundary shape changes fairly smoothly and with a small amplitude. In this case, as the crystal is pulled, the crystallization front tends to become convex toward the crystal bulk.

  1. Current waveform reconstruction from an explosively emissive cathode at a subnanosecond voltage front

    SciTech Connect

    Sharypov, K. A. Ul'masculov, M. R.; Shpak, V. G.; Shunailov, S. A.; Yalandin, M. I.; Mesyats, G. A.; Rostov, V. V.

    2014-12-15

    We describe the methods of registration and reconstruction of an envelope of explosive electron emission current from the edge of a cylindrical cathode, which provides a picosecond time reference of the emitted electron beam with a subnanosecond voltage front applied to the accelerating gap. Variation of the front steepness allows one to determine the beam onset time in the experiments, where a collector-type current probe can be used. The advanced method of dynamic time domain reflectometry provides exact data on electron beam current rise and track changes in the cathode emission from pulse to pulse with a precision of less than 10 ps.

  2. Application of advanced filtering methods to the determination of the interplanetary orbit of Mariner '71.

    NASA Technical Reports Server (NTRS)

    Rourke, K. H.; Jordan, J. F.

    1972-01-01

    This paper presents the results of the applications of advanced filtering methods to the determination of the interplanetary orbit of the Mariner '71 spacecraft. The advanced techniques are specific extensions of the Kalman filter. The special problems associated with applying these techniques are discussed and the particular algorithmic implementations are outlined. The advanced methods are compared against the weighted least squares filters of conventional application. The results reveal that relatively simple advanced filter configurations yield solutions superior to those of the conventional methods when applied to the Mariner '71 radio measurements.

  3. Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.

    2016-05-01

    The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the

  4. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  5. Advanced materials and methods for next generation spintronics

    NASA Astrophysics Data System (ADS)

    Siegel, Gene Phillip

    The modern age is filled with ever-advancing electronic devices. The contents of this dissertation continue the desire for faster, smaller, better electronics. Specifically, this dissertation addresses a field known as "spintronics", electronic devices based on an electron's spin, not just its charge. The field of spintronics originated in 1990 when Datta and Das first proposed a "spin transistor" that would function by passing a spin polarized current from a magnetic electrode into a semiconductor channel. The spins in the channel could then be manipulated by applying an electrical voltage across the gate of the device. However, it has since been found that a great amount of scattering occurs at the ferromagnet/semiconductor interface due to the large impedance mismatch that exists between the two materials. Because of this, there were three updated versions of the spintronic transistor that were proposed to improve spin injection: one that used a ferromagnetic semiconductor electrode, one that added a tunnel barrier between the ferromagnet and semiconductor, and one that utilized a ferromagnetic tunnel barrier which would act like a spin filter. It was next proposed that it may be possible to achieve a "pure spin current", or a spin current with no concurrent electric current (i.e., no net flow of electrons). One such method that was discovered is the spin Seebeck effect, which was discovered in 2008 by Uchida et al., in which a thermal gradient in a magnetic material generates a spin current which can be injected into adjacent material as a pure spin current. The first section of this dissertation addresses this spin Seebeck effect (SSE). The goal was to create such a device that both performs better than previously reported devices and is capable of operating without the aid of an external magnetic field. We were successful in this endeavor. The trick to achieving both of these goals was found to be in the roughness of the magnetic layer. A rougher magnetic

  6. Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions

    ERIC Educational Resources Information Center

    Syed, Mahbubur Rahman, Ed.

    2009-01-01

    The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…

  7. Recent advances in laser ablation modelling for asteroid deflection methods

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2014-09-01

    Over the past few years, a series of studies have demonstrated the theoretical benefits of using laser ablation in order to mitigate the threat of a potential asteroid on a collision course with earth. Compared to other slow-push mitigation strategies, laser ablation allows for a significant reduction in fuel consumption since the ablated material is used as propellant. A precise modelling of the ablation process is however difficult due to the high variability in the physical parameters encountered among the different asteroids as well as the scarcity of experimental studies available in the literature. In this paper, we derive a new thermal model to simulate the efficiency of a laser-based detector. The useful material properties are first derived from thermochemical tables and equilibrium thermodynamic considerations. These properties are then injected in a 3D axisymetrical thermal model developed in Matlab. A temperature-dependent conduction flux is imposed on the exterior boundary condition that takes into account the balance between the incident power and the power losses due to the vaporization process across the Knudsen layer and the radiations respectively. A non-linear solver is finally used and the solution integrated over the ablation front to reconstruct the net thrust and the global mass flow. Compared to an initial 1D model, this new approach shows the importance of the parietal radiation losses in the case of a CW laser. Despite the low energy conversion efficiency, this new model still demonstrates the theoretical benefit of using lasers over more conventional low-thrust strategies.

  8. Firing up the front line.

    PubMed

    Katzenbach, J R; Santamaria, J A

    1999-01-01

    For many organizations, achieving competitive advantage means eliciting superior performance from employees on the front line--the burger flippers, hotel room cleaners, and baggage handlers whose work has an enormous effect on customers. That's no easy task. Front line workers are paid low wages, have scant hope of advancement, and--not surprisingly--often care little about the company's performance. But then how do some companies succeed in engaging the emotional energy of rank-and-file workers? A team of researchers at McKinsey & Company and the Conference Board recently explored that question and discovered that one highly effective route is demonstrated by the U.S. Marine Corps. The Marines' approach to motivation follows the "mission, values, and pride" path, which researchers say is practical and relevant for the business world. More specifically, the authors say the Marines follow five practices: they over-invest in cultivating core value; prepare every person to lead, including front line supervisors; learn when to create teams and when to create single-leader work groups; attend to all employees, not just the top half; and encourage self-discipline as a way of building pride. The authors admit there are critical differences between the Marines and most businesses. But using vivid examples from companies such as KFC and Marriott International, the authors illustrate how the Marines' approach can be translated for corporate use. Sometimes, the authors maintain, minor changes in a company's standard operating procedure can have a powerful effect on front line pride and can result in substantial payoffs in company performance. PMID:10387573

  9. Domain decomposition by the advancing-partition method for parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z. (Inventor); Banihashemi, legal representative, Soheila (Inventor)

    2012-01-01

    In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.

  10. Advanced 3D inverse method for designing turbomachine blades

    SciTech Connect

    Dang, T.

    1995-10-01

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  11. Advanced 3D inverse method for designing turbomachine blades

    SciTech Connect

    Dang, T.

    1995-12-31

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  12. Advances in Probes and Methods for Clinical EPR Oximetry

    PubMed Central

    Hou, Huagang; Khan, Nadeem; Jarvis, Lesley A.; Chen, Eunice Y.; Williams, Benjamin B.; Kuppusamy, Periannan

    2015-01-01

    EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings. PMID:24729217

  13. Teaching Front Handsprings from a Developmental Approach

    ERIC Educational Resources Information Center

    Stork, Steve

    2006-01-01

    The front handspring is an important gymnastics skill that serves as a transition from beginner-level rolling and static balances to more advanced tumbling. It is, therefore, a skill highly desired by beginners. Early learning requires a great deal of effort during which students experience many failed attempts. Unless they are highly motivated,…

  14. Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids.

    PubMed

    Archer, A J; Robbins, M J; Thiele, U; Knobloch, E

    2012-09-01

    We determine the speed of a crystallization (or, more generally, a solidification) front as it advances into the uniform liquid phase after the system has been quenched into the crystalline region of the phase diagram. We calculate the front speed by assuming a dynamical density functional theory (DDFT) model for the system and applying a marginal stability criterion. Our results also apply to phase field crystal (PFC) models of solidification. As the solidification front advances into the unstable liquid phase, the density profile behind the advancing front develops density modulations and the wavelength of these modulations is a dynamically chosen quantity. For shallow quenches, the selected wavelength is precisely that of the crystalline phase and so well-ordered crystalline states are formed. However, when the system is deeply quenched, we find that this wavelength can be quite different from that of the crystal, so the solidification front naturally generates disorder in the system. Significant rearrangement and aging must subsequently occur for the system to form the regular well-ordered crystal that corresponds to the free energy minimum. Additional disorder is introduced whenever a front develops from random initial conditions. We illustrate these findings with simulation results obtained using the PFC model. PMID:23030925

  15. An advanced deterministic method for spent fuel criticality safety analysis

    SciTech Connect

    DeHart, M.D.

    1998-01-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  16. Advanced methods of microscope control using μManager software

    PubMed Central

    Edelstein, Arthur D.; Tsuchida, Mark A.; Amodaj, Nenad; Pinkard, Henry; Vale, Ronald D.; Stuurman, Nico

    2014-01-01

    μManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, μManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced μManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging. PMID:25606571

  17. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  18. Adherence to Scientific Method while Advancing Exposure Science

    EPA Science Inventory

    Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...

  19. SEM-contour shape analysis method for advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Toyoda, Yasutaka; Shindo, Hiroyuki; Ota, Yoshihiro; Matsuoka, Ryoichi; Hojo, Yutaka; Fuchimoto, Daisuke; Hibino, Daisuke; Sakai, Hideo

    2013-04-01

    The new measuring method that we developed executes a contour shape analysis that is based on the pattern edge information from a SEM image. This analysis helps to create a highly precise quantification of every circuit pattern shape by comparing the contour extracted from the SEM image using a CD measurement algorithm and the ideal circuit pattern. The developed method, in the next phase, can generate four shape indices by using the analysis mass measurement data. When the shape index measured using the developed method is compared the CD, the difference of the shape index and the CD is negligibly small for the quantification of the circuit pattern shape. In addition, when the 2D patterns on a FEM wafer are measured using the developed method, the tendency for shape deformations is precisely caught by the four shape indices. This new method and the evaluation results will be presented in detail in this paper.

  20. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.; Hively, W. Dean; Reeves, James B., III; McCarty, Gregory W.; Calderon, Francisco

    2012-01-01

    The gold standard for soil C determination is combustion. However, this method requires expensive consumables, is limited to the determination of the total carbon and in the number of samples which can be processed (~100/d). With increased interest in soil C sequestration, faster methods are needed. Thus, interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared ranges using either proximal or remote sensing. These methods have the ability to analyze more samples (2 to 3X/d) or huge areas (imagery) and do multiple analytes simultaneously, but require calibrations relating spectral and reference data and have specific problems, i.e., remote sensing is capable of scanning entire watersheds, thus reducing the sampling needed, but is limiting to the surface layer of tilled soils and by difficulty in obtaining proper calibration reference values. The objective of this discussion is the present state of spectroscopic methods for soil C determination.

  1. Shock front velocity measurements in a T-tube plasma

    NASA Astrophysics Data System (ADS)

    Vujičić, B.; Ciršan, M.; Djurović, S.; Mijatović, Z.

    2002-12-01

    In the sense of investigation of T-tube shock front influence to the material surfaces, we analysed dependence of shock front velocity on deposited electric energy in capacitor bank i.e. applied voltage to discharge electrodes. A simple, cheap and reliable method for the shock front velocity determination by using a photomultiplier and oscilloscope is described in this paper.

  2. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    SciTech Connect

    Michaelides, Angelos; Martinez, Todd J.; Alavi, Ali; Kresse, Georg

    2015-09-14

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  3. Integrating Advanced High School Chemistry Research with Organic Chemistry and Instrumental Methods of Analysis

    ERIC Educational Resources Information Center

    Kennedy, Brian J.

    2008-01-01

    This paper describes and discusses the unique chemistry course opportunities beyond the advanced placement-level available at a science and technology magnet high school. Students may select entry-level courses such as honors and advanced placement chemistry; they may also take electives in organic chemistry with instrumental methods of analysis;…

  4. The Saccharomyces Genome Database: Advanced Searching Methods and Data Mining.

    PubMed

    Cherry, J Michael

    2015-12-01

    At the core of the Saccharomyces Genome Database (SGD) are chromosomal features that encode a product. These include protein-coding genes and major noncoding RNA genes, such as tRNA and rRNA genes. The basic entry point into SGD is a gene or open-reading frame name that leads directly to the locus summary information page. A keyword describing function, phenotype, selective condition, or text from abstracts will also provide a door into the SGD. A DNA or protein sequence can be used to identify a gene or a chromosomal region using BLAST. Protein and DNA sequence identifiers, PubMed and NCBI IDs, author names, and function terms are also valid entry points. The information in SGD has been gathered and is maintained by a group of scientific biocurators and software developers who are devoted to providing researchers with up-to-date information from the published literature, connections to all the major research resources, and tools that allow the data to be explored. All the collected information cannot be represented or summarized for every possible question; therefore, it is necessary to be able to search the structured data in the database. This protocol describes the YeastMine tool, which provides an advanced search capability via an interactive tool. The SGD also archives results from microarray expression experiments, and a strategy designed to explore these data using the SPELL (Serial Pattern of Expression Levels Locator) tool is provided. PMID:26631124

  5. Health, wealth, and air pollution: advancing theory and methods.

    PubMed Central

    O'Neill, Marie S; Jerrett, Michael; Kawachi, Ichiro; Levy, Jonathan I; Cohen, Aaron J; Gouveia, Nelson; Wilkinson, Paul; Fletcher, Tony; Cifuentes, Luis; Schwartz, Joel

    2003-01-01

    The effects of both ambient air pollution and socioeconomic position (SEP) on health are well documented. A limited number of recent studies suggest that SEP may itself play a role in the epidemiology of disease and death associated with exposure to air pollution. Together with evidence that poor and working-class communities are often more exposed to air pollution, these studies have stimulated discussion among scientists, policy makers, and the public about the differential distribution of the health impacts from air pollution. Science and public policy would benefit from additional research that integrates the theory and practice from both air pollution and social epidemiologies to gain a better understanding of this issue. In this article we aim to promote such research by introducing readers to methodologic and conceptual approaches in the fields of air pollution and social epidemiology; by proposing theories and hypotheses about how air pollution and socioeconomic factors may interact to influence health, drawing on studies conducted worldwide; by discussing methodologic issues in the design and analysis of studies to determine whether health effects of exposure to ambient air pollution are modified by SEP; and by proposing specific steps that will advance knowledge in this field, fill information gaps, and apply research results to improve public health in collaboration with affected communities. PMID:14644658

  6. Advanced scanning methods with tracking optical coherence tomography

    PubMed Central

    Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823

  7. Review: Advances in delta-subsidence research using satellite methods

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie A.

    2016-05-01

    Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

  8. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Reeves, James B., III; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean

    2012-01-01

    The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.

  9. The advance of non-invasive detection methods in osteoarthritis

    NASA Astrophysics Data System (ADS)

    Dai, Jiao; Chen, Yanping

    2011-06-01

    Osteoarthritis (OA) is one of the most prevalent chronic diseases which badly affected the patients' living quality and economy. Detection and evaluation technology can provide basic information for early treatment. A variety of imaging methods in OA were reviewed, such as conventional X-ray, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI) and near-infrared spectroscopy (NIRS). Among the existing imaging modalities, the spatial resolution of X-ray is extremely high; CT is a three-dimensional method, which has high density resolution; US as an evaluation method of knee OA discriminates lesions sensitively between normal cartilage and degenerative one; as a sensitive and nonionizing method, MRI is suitable for the detection of early OA, but the cost is too expensive for routine use; NIRS is a safe, low cost modality, and is also good at detecting early stage OA. In a word, each method has its own advantages, but NIRS is provided with broader application prospect, and it is likely to be used in clinical daily routine and become the golden standard for diagnostic detection.

  10. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  11. Application of advanced reliability methods to local strain fatigue analysis

    NASA Technical Reports Server (NTRS)

    Wu, T. T.; Wirsching, P. H.

    1983-01-01

    When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) might become extremely difficult or very inefficient. This study suggests using a simple, and easily constructed, second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.

  12. Protein Microarrays with Novel Microfluidic Methods: Current Advances

    PubMed Central

    Dixit, Chandra K.; Aguirre, Gerson R.

    2014-01-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.

  13. Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials

    SciTech Connect

    J. J. Einerson

    2005-05-01

    Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.

  14. Origins, Methods and Advances in Qualitative Meta-Synthesis

    ERIC Educational Resources Information Center

    Nye, Elizabeth; Melendez-Torres, G. J.; Bonell, Chris

    2016-01-01

    Qualitative research is a broad term encompassing many methods. Critiques of the field of qualitative research argue that while individual studies provide rich descriptions and insights, the absence of connections drawn between studies limits their usefulness. In response, qualitative meta-synthesis serves as a design to interpret and synthesise…

  15. Advanced discretizations and multigrid methods for liquid crystal configurations

    NASA Astrophysics Data System (ADS)

    Emerson, David B.

    Liquid crystals are substances that possess mesophases with properties intermediate between liquids and crystals. Here, we consider nematic liquid crystals, which consist of rod-like molecules whose average pointwise orientation is represented by a unit-length vector, n( x, y, z) = (n1, n 2, n3)T. In addition to their self-structuring properties, nematics are dielectrically active and birefringent. These traits continue to lead to many important applications and discoveries. Numerical simulations of liquid crystal configurations are used to suggest the presence of new physical phenomena, analyze experiments, and optimize devices. This thesis develops a constrained energy-minimization finite-element method for the efficient computation of nematic liquid crystal equilibrium configurations based on a Lagrange multiplier formulation and the Frank-Oseen free-elastic energy model. First-order optimality conditions are derived and linearized via a Newton approach, yielding a linear system of equations. Due to the nonlinear unit-length constraint, novel well-posedness theory for the variational systems, as well as error analysis, is conducted. The approach is shown to constitute a convergent and well-posed approach, absent typical simplifying assumptions. Moreover, the energy-minimization method and well-posedness theory developed for the free-elastic case are extended to include the effects of applied electric fields and flexoelectricity. In the computational algorithm, nested iteration is applied and proves highly effective at reducing computational costs. Additionally, an alternative technique is studied, where the unit-length constraint is imposed by a penalty method. The performance of the penalty and Lagrange multiplier methods is compared. Furthermore, tailored trust-region strategies are introduced to improve robustness and efficiency. While both approaches yield effective algorithms, the Lagrange multiplier method demonstrates superior accuracy per unit cost. In

  16. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect

    Murdoch, L. |; Siegrist, B.; Meiggs, T.

    1997-12-31

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

  17. Advanced finite element method for nano-resonators

    NASA Astrophysics Data System (ADS)

    Zschiedrich, Lin; Burger, Sven; Kettner, Benjamin; Schmidt, Frank

    2006-02-01

    Miniaturized optical resonators with spatial dimensions of the order of the wavelength of the trapped light offer prospects for a variety of new applications like quantum processing or construction of meta-materials. Light propagation in these structures is modelled by Maxwell's equations. For a deeper numerical analysis one may compute the scattered field when the structure is illuminated or one may compute the resonances of the structure. We therefore address in this paper the electromagnetic scattering problem as well as the computation of resonances in an open system. For the simulation effcient and reliable numerical methods are required which cope with the infinite domain. We use transparent boundary conditions based on the Perfectly Matched Layer Method (PML) combined with a novel adaptive strategy to determine optimal discretization parameters like the thickness of the sponge layer or the mesh width. Further a novel iterative solver for time-harmonic Maxwell's equations is presented.

  18. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  19. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  20. Advanced and In Situ Analytical Methods for Solar Fuel Materials.

    PubMed

    Chan, Candace K; Tüysüz, Harun; Braun, Artur; Ranjan, Chinmoy; La Mantia, Fabio; Miller, Benjamin K; Zhang, Liuxian; Crozier, Peter A; Haber, Joel A; Gregoire, John M; Park, Hyun S; Batchellor, Adam S; Trotochaud, Lena; Boettcher, Shannon W

    2016-01-01

    In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials. PMID:26267386

  1. Advancements of the Hybrid Method UF6 Container Inspection System

    SciTech Connect

    Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.

    2011-07-17

    Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plant’s cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.

  2. Advances in multifocal methods for imaging human brain activity

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Ales, Justin; Klein, Stanley A.

    2006-02-01

    The typical multifocal stimulus used in visual evoked potential (VEP) studies consists of about 60 checkerboard stimulus patches each independently contrast reversed according to an m-sequence. Cross correlation of the response (EEG, MEG, ERG, or fMRI) with the m-sequence results in a series of response kernels for each response channel and each stimulus patch. In the past the number and complexity of stimulus patches has been constrained by graphics hardware, namely the use of look-up-table (LUT) animation methods. To avoid such limitations we replaced the LUTs with true color graphic sprites to present arbitrary spatial patterns. To demonstrate the utility of the method we have recorded simultaneously from 192 cortically scaled stimulus patches each of which activate about 12mm2 of cortex in area V1. Because of the sparseness of cortical folding, very small stimulus patches and robust estimation of dipole source orientation, the method opens a new window on precise spatio-temporal mapping of early visual areas. The use of sprites also enables multiplexing stimuli such that at each patch location multiple stimuli can be presented. We have presented patterns with different orientations (or spatial frequencies) at the same patch locations but independently temporally modulated, effectively doubling the number of stimulus patches, to explore cell population interactions at the same cortical locus. We have also measured nonlinear responses to adjacent pairs of patches, thereby getting an edge response that doubles the spatial sampling density to about 1.8 mm on cortex.

  3. Recent advances in sample preparation techniques for effective bioanalytical methods.

    PubMed

    Kole, Prashant Laxman; Venkatesh, Gantala; Kotecha, Jignesh; Sheshala, Ravi

    2011-01-01

    This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article. PMID:21154887

  4. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  5. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training. PMID:25802860

  6. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGESBeta

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  7. Light-Front Holography and the Light-Front Schrodinger Equation

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  8. Advanced Signal Processing Methods Applied to Digital Mammography

    NASA Technical Reports Server (NTRS)

    Stauduhar, Richard P.

    1997-01-01

    The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases

  9. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  10. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  11. Advanced Computational Aeroacoustics Methods for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane (Technical Monitor); Tam, Christopher

    2003-01-01

    Direct computation of fan noise is presently not possible. One of the major difficulties is the geometrical complexity of the problem. In the case of fan noise, the blade geometry is critical to the loading on the blade and hence the intensity of the radiated noise. The precise geometry must be incorporated into the computation. In computational fluid dynamics (CFD), there are two general ways to handle problems with complex geometry. One way is to use unstructured grids. The other is to use body fitted overset grids. In the overset grid method, accurate data transfer is of utmost importance. For acoustic computation, it is not clear that the currently used data transfer methods are sufficiently accurate as not to contaminate the very small amplitude acoustic disturbances. In CFD, low order schemes are, invariably, used in conjunction with unstructured grids. However, low order schemes are known to be numerically dispersive and dissipative. dissipative errors are extremely undesirable for acoustic wave problems. The objective of this project is to develop a high order unstructured grid Dispersion-Relation-Preserving (DRP) scheme. would minimize numerical dispersion and dissipation errors. contains the results of the funded portion of the project. scheme on an unstructured grid has been developed. constructed in the wave number space. The characteristics of the scheme can be improved by the inclusion of additional constraints. Stability of the scheme has been investigated. Stability can be improved by adopting the upwinding strategy.

  12. Advanced criticality assessment method for sewer pipeline assets.

    PubMed

    Syachrani, S; Jeong, H D; Chung, C S

    2013-01-01

    For effective management of water and wastewater infrastructure, the United States Environmental Protection Agency (US-EPA) has long emphasized the significant role of risk in prioritizing and optimizing asset management decisions. High risk assets are defined as assets with a high probability of failure (e.g. soon to fail, old, poor condition) and high consequences of failure (e.g. environmental impact, high expense, safety concerns, social disruption). In practice, the consequences of failure are often estimated by experts through a Delphi method. However, the estimation of the probability of failure has been challenging as it requires the thorough analysis of the historical condition assessment data, repair and replacement records, and other factors influencing the deterioration of the asset. The most common predictor in estimating the probability of failure is calendar age. However, a simple reliance on calendar age as a basis for estimating the asset's deterioration pattern completely ignores the different aging characteristics influenced by various operational and environmental conditions. This paper introduces a new approach of using 'real age' in estimating the probability of failure. Unlike the traditional calendar age method, the real age represents the adjusted age based on the unique operational and environmental conditions of the asset. Depending on the individual deterioration pattern, the real age could be higher or lower than its calendar age. Using the concept of real age, the probability of failure of an asset can be more accurately estimated. PMID:23508155

  13. Recent advances in computer camera methods for machine vision

    NASA Astrophysics Data System (ADS)

    Olson, Gaylord G.; Walker, Jo N.

    1998-10-01

    During the past year, several new computer camera methods (hardware and software) have been developed which have applications in machine vision. These are described below, along with some test results. The improvements are generally in the direction of higher speed and greater parallelism. A PCI interface card has been designed which is adaptable to multiple CCD types, both color and monochrome. A newly designed A/D converter allows for a choice of 8 or 10-bit conversion resolution and a choice of two different analog inputs. Thus, by using four of these converters feeding the 32-bit PCI data bus, up to 8 camera heads can be used with a single PCI card, and four camera heads can be operated in parallel. The card has been designed so that any of 8 different CCD types can be used with it (6 monochrome and 2 color CCDs) ranging in resolution from 192 by 165 pixels up to 1134 by 972 pixels. In the area of software, a method has been developed to better utilize the decision-making capability of the computer along with the sub-array scan capabilities of many CCDs. Specifically, it is shown below how to achieve a dual scan mode camera system wherein one scan mode is a low density, high speed scan of a complete image area, and a higher density sub-array scan is used in those areas where changes have been observed. The name given to this technique is adaptive sub-array scanning.

  14. Stories from the Front.

    ERIC Educational Resources Information Center

    Melnick, Blake

    2002-01-01

    Shares some of the author's personal experiences from the "front line" to illustrate the potential of computer-supported learning environments. Concludes that technology, if used in conjunction with sound pedagogy, allows students to tep outside the confines of the traditional classroom and school structure and take responsibility for both their…

  15. Nanoparticle Oscillations and Fronts

    SciTech Connect

    Lagzi, Istvan; Kowalczyk, Bartlomiej; Wang, Dawei; Grzybowski, Bartosz A.

    2010-09-30

    Chemical oscillations can be coupled to the dynamic self-assembly of nanoparticles. Periodic pH changes translate into protonation and deprotonation of the ligands that stabilize the nanoparticles, thus altering repulsive and attractive interparticle forces. In a continuous stirred-tank reactor, rhythmic aggregation and dispersion is observed; in spatially distributed media, propagation of particle aggregation fronts is seen.

  16. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  17. Comparative Assessment of Advanced Gay Hydrate Production Methods

    SciTech Connect

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  18. Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)

    2009-01-01

    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.

  19. Advancing Methods in Research on Asian American Children and Youth.

    PubMed

    Yoshikawa, Hirokazu; Mistry, Rashmita; Wang, Yijie

    2016-07-01

    Asian American children and youth constitute at the same time an immigrant group, a set of ethnic groups, and a set of cultural groups. Research on these populations can therefore take on one or more of these perspectives. This article provides guidance for research methods in three areas: (a) conceptualizing and assessing migration-related factors, (b) assessing ethnicity and national origin, and (c) using culturally and contextually relevant measures. Methodological recommendations are made for each area, with attention to small-scale studies with community samples as well as large-scale data sets. In addition, this article recommends researchers attend to within-group variations (i.e., intersections of ethnicity, generational status, gender, class, sexuality), the embeddedness of individual development in context, and specificity of developmental periods. PMID:27392797

  20. Advanced view factor analysis method for radiation exchange

    NASA Astrophysics Data System (ADS)

    Park, Sookuk; Tuller, Stanton E.

    2014-03-01

    A raster-based method for determining complex view factor patterns is presented (HURES model). The model uses Johnson and Watson's view factor analysis method for fisheye lens photographs. The entire sphere is divided into 13 different view factors: open sky; sunny and shaded building walls, vegetation (trees) and ground surfaces above and below 1.2 m from the ground surface. The HURES model gave reasonable view factor results in tests at two urban study sites on summer days: downtown Nanaimo, B.C., Canada and Changwon, Republic of Korea. HURES gave better estimates of open sky view factors determined from fisheye lens photographs than did ENVI-met 3.1 and RayMan Pro. However, all three models underestimated sky view factor. For view factor analysis in outdoor urban areas, the 10° interval of rotation angle at 100 m distance of annuli will be suitable settings for three-dimensional computer simulations. The HURES model can be used for the rapid determination of complex view factor patterns which facilitates the analysis of their effects. Examples of how differing view factor patterns can affect human thermal sensation indices are given. The greater proportion of sunny view factors increased the computed predicted mean vote (PMV) by 1.3 on the sunny side of the street compared with the shady side during mid-morning in downtown Nanaimo. In another example, effects of differing amounts of open sky, sunny ground, sunny buildings and vegetation combined to produce only slight differences in PMV and two other human thermal sensation indices, PET and UTCI.

  1. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect

    Murdoch, L. |; Siegrist, B.; Vesper, S.

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  2. Progress in front propagation research

    NASA Astrophysics Data System (ADS)

    Fort, Joaquim; Pujol, Toni

    2008-08-01

    We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined.

  3. An evolutionary method for synthesizing technological planning and architectural advance

    NASA Astrophysics Data System (ADS)

    Cole, Bjorn Forstrom

    In the development of systems with ever-increasing performance and/or decreasing drawbacks, there inevitably comes a point where more progress is available by shifting to a new set of principles of use. This shift marks a change in architecture, such as between the piston-driven propeller and the jet engine. The shift also often involves an abandonment of previous competencies that have been developed with great effort, and so a foreknowledge of these shifts can be advantageous. A further motivation for this work is the consideration of the Micro Autonomous Systems and Technology (MAST) project, which aims to develop very small (<5 cm) robots for a variety of uses. This is primarily a technology research project, and there is no baseline morphology for a robot to be considered. This then motivates an interest in the ability to automatically compose physical architectures from a series of components and quantitatively analyze them for a basic, conceptual analysis. The ability to do this would enable researchers to turn attention to the most promising forms. This work presents a method for using technology forecasts of components that enable future architectural shifts in order to forecast those shifts. The method consists of the use of multidimensional S-curves, genetic algorithms, and a graph-based formulation of architecture that is more flexible than other morphological techniques. Potential genetic operators are explored in depth to draft a final graph-based genetic algorithm. This algorithm is then implemented in a design code called Sindri, which leverages a commercial design tool named Pacelab. The first chapters of this thesis provide context and a philosophical background to the studies and research that was conducted. In particular, the idea that technology progresses in a fundamentally gradual way is developed and supported with previous historical research. The import of this is that the future can to some degree be predicted by the past, provided that

  4. Front-flash thermal imaging characterization of continuous fiber ceramic composites.

    SciTech Connect

    Deemer, C.

    1999-04-23

    Infrared thermal imaging has become increasingly popular as a nondestructive evaluation method for characterizing materials and detecting defects. One technique, which was utilized in this study, is front-flash thermal imaging. We have developed a thermal imaging system that uses this technique to characterize advanced material systems, including continuous fiber ceramic composite (CFCC) components. In a front-flash test, pulsed heat energy is applied to the surface of a sample, and decay of the surface temperature is then measured by the thermal imaging system. CFCC samples with drilled flat-bottom holes at the back surface (to serve as ''flaws'') were examined. The surface-temperature/time relationship was analyzed to determine the depths of the flaws from the front surface of the CFCC material. Experimental results on carbon/carbon and CFCC samples are presented and discussed.

  5. Advances in calibration methods for micro- and nanoscale surfaces

    NASA Astrophysics Data System (ADS)

    Leach, R. K.; Giusca, C. L.; Coupland, J. M.

    2012-04-01

    Optical surface topography measuring instrument manufacturers often quote accuracies of the order of nanometres and claim that the instruments can reliably measure a range of surfaces with structures on the micro- to nanoscale. However, for many years there has been debate about the interpretation of the data from optical surface topography measuring instruments. Optical artefacts in the output data and a lack of a calibration infrastructure mean that it can be difficult to get optical instruments to agree with contact stylus instruments. In this paper, the current situation with areal surface topography measurements is discussed along with the ISO specification standards that are in draft form. An infrastructure is discussed whereby the ISO-defined metrological characteristics of optical instruments can be determined, but these characteristics do not allow the instrument to measure complex surfaces. Current research into methods for determining the transfer function of optical instruments is reviewed, which will allow the calibration of optical instruments to measure complex surfaces, at least in the case of weak scattering. The ability of some optical instruments to measure outside the spatial bandwidth limitation of the numerical aperture is presented and some general outlook for future work given.

  6. Advanced methods for electromagnetic investigation of PCB/PWB layouts

    NASA Astrophysics Data System (ADS)

    Codreanu, N. D.; Ionescu, C.; Svasta, P.; Golumbeanu, V.

    2007-05-01

    High Density Interconnect (HDI) technology is a way to condense electronic circuits for ruggedness, radiation hardening, and high performance. HDI minimizes the size and weight of electronic products while maximizing their performances. HDI circuits offer new solutions to signal integrity (SI) and electromagnetic compatibility (EMC) concerns, concerns which are expected to grow more and more as rise/fall times continue to drop. Because PCB manufacturers have developed new materials and technological solutions, indispensable at this moment is to perform a deep virtual characterization of structures directly related to HDI. This paper presents investigations and results focused on the main areas of SI and EMC, as noise at PCB level (reflections, and crosstalk), electromagnetic interference (EMI) and on-board interconnection delay. The authors have evaluated various HDI-PCB items and structures using the MoM full-wave electromagnetic simulation method. After modeling and simulation a link to classical circuit simulators was created by extracting RLCG elements and various parameters, which are directly related to the total current along the HDI structures. The paper offers a new way to find the solutions for keeping the integrity of signals and electromagnetic compliance.

  7. Investigation of advanced fault insertion and simulator methods

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.

    1986-01-01

    The cooperative agreement partly supported research leading to the open-literature publication cited. Additional efforts under the agreement included research into fault modeling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs. As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any statistical use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than 'stuck-at' and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures. The report discusses methods of developing composite pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of temperature stress testing and functional modeling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed. Indicated research directions are presented.

  8. Advanced methods for preparation and characterization of infrared detector materials

    NASA Technical Reports Server (NTRS)

    Broerman, J. G.; Morris, B. J.; Meschter, P. J.

    1983-01-01

    Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  9. Foam front propagation in anisotropic oil reservoirs.

    PubMed

    Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N

    2016-04-01

    The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does. PMID:27090239

  10. Advanced Extraction Methods for Actinide/Lanthanide Separations

    SciTech Connect

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  11. Conceptual Design Method Developed for Advanced Propulsion Nozzles

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth; Barnhart, Paul J.

    1998-01-01

    As part of a contract with the NASA Lewis Research Center, a simple, accurate method of predicting the performance characteristics of a nozzle design has been developed for use in conceptual design studies. The Nozzle Performance Analysis Code (NPAC) can predict the on- and off-design performance of axisymmetric or two-dimensional convergent and convergent-divergent nozzle geometries. NPAC accounts for the effects of overexpansion or underexpansion, flow divergence, wall friction, heat transfer, and small mass addition or loss across surfaces when the nozzle gross thrust and gross thrust coefficient are being computed. NPAC can be used to predict the performance of a given nozzle design or to develop a preliminary nozzle system design for subsequent analysis. The input required by NPAC consists of a simple geometry definition of the nozzle surfaces, the location of key nozzle stations (entrance, throat, exit), and the nozzle entrance flow properties. NPAC performs three analysis "passes" on the nozzle geometry. First, an isentropic control volume analysis is performed to determine the gross thrust and gross thrust coefficient of the nozzle. During the second analysis pass, the skin friction and heat transfer losses are computed. The third analysis pass couples the effects of wall shear and heat transfer with the initial internal nozzle flow solutions to produce a system of equations that is solved at steps along the nozzle geometry. Small mass additions or losses, such as those resulting from leakage or bleed flow, can be included in the model at specified geometric sections. A final correction is made to account for divergence losses that are incurred if the nozzle exit flow is not purely axial.

  12. 35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  13. 9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY (LEFT) AND BLANK WALL (CENTER) CORRESPONDING TO LOCATION OF INTERIOR VAULTS. VIEW TO SOUTHEAST. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID

  14. View of portion of the front entry on the front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of portion of the front entry on the front (west) side of the Mueller house, looking northeast. Sheds are in the background. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA

  15. 3. VIEW NORTH, SOUTHWEST FRONT, SOUTHEAST SIDE Front and side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTH, SOUTHWEST FRONT, SOUTHEAST SIDE Front and side elevation. Note gasoline sign post added. Flush store window not altered, 1900 clapboard siding and panelling remaining. - 510 Central Avenue (Commercial Building), Ridgely, Caroline County, MD

  16. Method and system for advancement of a borehole using a high power laser

    SciTech Connect

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  17. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    SciTech Connect

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  18. A Straightforward Method for Advance Estimation of User Charges for Information in Numeric Databases.

    ERIC Educational Resources Information Center

    Jarvelin, Kalervo

    1986-01-01

    Describes a method for advance estimation of user charges for queries in relational data model-based numeric databases when charges are based on data retrieved. Use of this approach is demonstrated by sample queries to an imaginary marketing database. The principles and methods of this approach and its relevance are discussed. (MBR)

  19. Front Range Report, Abstracts

    NASA Astrophysics Data System (ADS)

    Spence, William

    The second regional conference of the Front Range Branch, AGU, was attended by more than 80 professionals and some 20 outstanding high school students. The conference included 2 days of interdisciplinary talks, and lots of discussion, that primarily were keyed to geophysical studies of Colorado, Wyoming, and New Mexico. Other talks reported on nonregional, and sometimes global, studies being done by geophypsicists of the Front Range region.Topics included tectonics of the Front Range and the Colorado Plateau, pollution of the Arkansas and Mississippi rivers, and a supreme polluting event that caused the late-Cretaceous extinctions. Other notable talks were on toxic cleanup, microburst (wind shear) detection at U.S. airports, and other meteorological studies. Several talks treated the audience to the excitement of new work and surprise discoveries. The meeting was multimedia, including the playing of two videos through a projection TV and the playing of a fascinating tape between an airport control tower and incoming pilots during a severe microburst event.

  20. Radiative thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  1. Theory of pinned fronts

    NASA Astrophysics Data System (ADS)

    Weissmann, Haim; Shnerb, Nadav M.; Kessler, David A.

    2016-01-01

    The properties of a front between two different phases in the presence of a smoothly inhomogeneous external field that takes its critical value at the crossing point is analyzed. Two generic scenarios are studied. In the first, the system admits a bistable solution and the external field governs the rate in which one phase invades the other. The second mechanism corresponds to a continuous transition that, in the case of reactive systems, takes the form of a transcritical bifurcation at the crossing point. We solve for the front shape and for the response of competitive fronts to external noise, showing that static properties and also some of the dynamical features cannot discriminate between the two scenarios. A reliable indicator turns out to be the fluctuation statistics. These take a Gaussian form in the bifurcation case and a double-peaked shape in a bistable system. Our results are discussed in the context of biological processes, such as species and communities dynamics in the presence of a resource gradient.

  2. Radiative thermal conduction fronts

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-07-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  3. Electron acceleration in a wavy shock front

    NASA Astrophysics Data System (ADS)

    Vandas, M.; Karlický, M.

    2011-07-01

    Context. It is known that electrons are accelerated at nearly perpendicular shocks by the drift mechanism. And it is also known that energy gain of electrons caused by this mechanism is not very high. Therefore it was suggested in the past that the energy gain might be increased if shocks had wavy fronts. For instance, there were attempts to explain coronal type II burst and their fine structure by electron acceleration in a wavy shock front. Aims: We studied electron acceleration numerically at nearly perpendicular wavy shocks for coronal conditions and compared it with analytical results on electron acceleration at nearly perpendicular plane shocks. Methods: An analytical model of a wavy shock front was used and trajectories of electrons in it and around it were calculated numerically in a guiding centre approximation. Results: We found that energy gains of electrons at a wavy shock front and a corresponding smoothed-into-plane shock on the average were comparable. That is why they do not depend significantly on the shock thickness, magnetic field profile inside the shock, and shock wavy form. They do depend on the angle between the smoothed shock front and ambient magnetic field. Conclusions: On average, a wavy shock front does not significantly increase an acceleration efficiency. Energy gain remarkably exceeds an average level for some combinations of initial parameters. Distribution functions of accelerated electrons have a patchy structure, which is prone to inducing plasma instabilities that will generate plasma waves. This may have relevance to the problem of type II burst origin.

  4. Light-Front Quantization of Gauge Theories

    SciTech Connect

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  5. Thermal Fronts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  6. The development and features of the Spanish prehospital advanced triage method (META) for mass casualty incidents.

    PubMed

    Arcos González, Pedro; Castro Delgado, Rafael; Cuartas Alvarez, Tatiana; Garijo Gonzalo, Gracia; Martinez Monzon, Carlos; Pelaez Corres, Nieves; Rodriguez Soler, Alberto; Turegano Fuentes, Fernando

    2016-01-01

    This text describes the process of development of the new Spanish Prehospital Advanced Triage Method (META) and explain its main features and contribution to prehospital triage systems in mass casualty incidents. The triage META is based in the Advanced Trauma Life Support (ATLS) protocols, patient's anatomical injuries and mechanism of injury. It is a triage method with four stages including early identification of patients with severe trauma that would benefit from a rapid evacuation to a surgical facility and introduces a new patient flow by-passing the advanced medical post to improve evacuation. The stages of triage META are: I) Stabilization triage that classifies patients according to severity to set priorities for initial emergency treatment; II) Identifying patients requiring urgent surgical treatment, this is done at the same time than stage I and creates a new flow of patients with high priority for evacuation; III) Implementation of Advanced Trauma Life Support protocols to patients previously classified according to stablished priority; and IV) Evacuation triage, stablishing evacuation priorities in case of lacks of appropriate transport resources. The triage META is to be applied only by prehospital providers with advanced knowledge and training in advanced trauma life support care and has been designed to be implemented as prehospital procedure in mass casualty incidents (MCI). PMID:27130042

  7. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  8. DIAGNOSTIC EVALUATION OF AIR QUALITY MODELS USING ADVANCED METHODS WITH SPECIALIZED OBSERVATIONS OF SELECTED AMBIENT SPECIES -PART II

    EPA Science Inventory

    This is Part 2 of "Diagnostic Evaluation of Air Quality Models Using Advanced Methods with Specialized Observations of Selected Ambient Species". A limited field campaign to make specialized observations of selected ambient species using advanced and innovative instrumentation f...

  9. Seismic Precursors to Space Shuttle Shock Fronts

    NASA Astrophysics Data System (ADS)

    Sorrells, G.; Bonner, J.; Herrin, E. T.

    - Seismic precursors to space shuttle re-entry shock fronts are detected at TXAR in Southwest Texas when the ground track of the orbiter vehicle passes within 150-200km of the observatory. These precursors have been termed ``shuttle-quakes'' because their seismograms superficially mimic the seismograms of small earthquakes from shallow sources. Analysis of the ``shuttle-quake'' seismograms, however, reveals one important difference. Unlike ordinary earthquakes, the propagation azimuths and horizontal phase velocities of the individual phases of the ``shuttle-quakes'' are functionally related. From a theoretical model developed to account for the origin of these precursors it is found that the seismic phases of ``shuttle-quakes'' are ``bow'' waves. A ``bow'' wave originates at the advancing tip of the shock front trace (i.e., intersection of the re-entry shock front with the surface of the earth) when the ground speed of the orbiter vehicle exceeds the horizontal phase velocity of a particular seismic phase. ``Bow'' waves are shown to differ in two important respects from the ordinary seismic phases. They vanish ahead of the advancing tip of the shock front trace and their propagation azimuths and horizontal phase velocities are functionally related. The ground speed of the orbiter vehicle exceeds the horizontal phase velocities of crustal seismic phase over much of the re-entry flight profile. As a result, P,S, and Rg``bow'' waves will be seen as precursors to the re-entry shock front at stations located within a few hundred km of its ground track.

  10. QCD and Light-Front Dynamics

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  11. Human-System Safety Methods for Development of Advanced Air Traffic Management Systems

    SciTech Connect

    Nelson, W.R.

    1999-05-24

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems.

  12. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  13. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  14. Wave-front measurement errors from restricted concentric subdomains.

    PubMed

    Goldberg, K A; Geary, K

    2001-09-01

    In interferometry and optical testing, system wave-front measurements that are analyzed on a restricted subdomain of the full pupil can include predictable systematic errors. In nearly all cases, the measured rms wave-front error and the magnitudes of the individual aberration polynomial coefficients underestimate the wave-front error magnitudes present in the full-pupil domain. We present an analytic method to determine the relationships between the coefficients of aberration polynomials defined on the full-pupil domain and those defined on a restricted concentric subdomain. In this way, systematic wave-front measurement errors introduced by subregion selection are investigated. Using vector and matrix representations for the wave-front aberration coefficients, we generalize the method to the study of arbitrary input wave fronts and subdomain sizes. While wave-front measurements on a restricted subdomain are insufficient for predicting the wave front of the full-pupil domain, studying the relationship between known full-pupil wave fronts and subdomain wave fronts allows us to set subdomain size limits for arbitrary measurement fidelity. PMID:11551047

  15. From the front

    SciTech Connect

    Price, Stephen

    2009-01-01

    The causes of recent dynamic thinning of Greenland's outlet glaciers have been debated. Realistic simulations suggest that changes at the marine fronts of these glaciers are to blame, implying that dynamic thinning will cease once the glaciers retreat to higher ground. For the last decade, many outlet glaciers in Greenland that terminate in the ocean have accelerated, thinned, and retreated. To explain these dynamic changes, two hypotheses have been discussed. Atmospheric warming has increased surface melting and may also have increased the amount of meltwater reaching the glacier bed, increasing lubrication at the base and hence the rate of glacier sliding. Alternatively, a change in the delicate balance of forces where the glacier fronts meet the ocean could trigger the changes. Faezeh Nick and colleagues5 present ice-sheet modeling experiments that mimic the observations on Helheim glacier, East Greenland, and suggest that the dynamic behaviour of outlet glaciers follows from perturbations at their marine fronts. Greenland's ice sheet loses mass partly through surface melting and partly through fast flowing outlet glaciers that connect the vast plateau of inland ice with the ocean. Earlier ice sheet models have failed to reproduce the dynamic variability exhibited by ice sheets over time. It has therefore not been possible to distinguish with confidence between basal lubrication from surface meltwater and changes at the glaciers' marine fronts as causes for the observed changes on Greenland's outlet glaciers. But this distinction bears directly on future sea-level rise, the raison d'etre of much of modern-day glaciology: If the recent dynamic mass loss Greenland's outlet glaciers is linked to changing atmospheric temperatures, it may continue for as long as temperatures continue to increase. On the other hand, if the source of the dynamic mass loss is a perturbation at the ice-ocean boundary, these glaciers will lose contact with that perturbation after a finite

  16. NOVEL CONCEPTS, METHODS AND ADVANCED TECHNOLOGY IN PARTICULATE/GAS SEPARATION

    EPA Science Inventory

    This paper discusses presentations made during a symposium on novel concepts, methods, and advanced technology in particulate/gas separation. The symposium, held at the University of Notre Dame and sponsored by the National Science Foundation and the Environmental Protection Agen...

  17. A Mixed Methods Approach to Examining an Advanced Placement Program in One Connecticut Public School District

    ERIC Educational Resources Information Center

    Docimo, Chelsey L.

    2013-01-01

    The purpose of this eleventh grade Advanced Placement (AP) program study was to determine factors associated with AP placement and subsequent student performance. This research was considered to be a mixed methods case study with elements of arrested action research. One hundred and twenty-four students, four guidance counselors, three AP…

  18. Advances in methods and algorithms in a modern quantum chemistry program package.

    PubMed

    Shao, Yihan; Molnar, Laszlo Fusti; Jung, Yousung; Kussmann, Jörg; Ochsenfeld, Christian; Brown, Shawn T; Gilbert, Andrew T B; Slipchenko, Lyudmila V; Levchenko, Sergey V; O'Neill, Darragh P; DiStasio, Robert A; Lochan, Rohini C; Wang, Tao; Beran, Gregory J O; Besley, Nicholas A; Herbert, John M; Lin, Ching Yeh; Van Voorhis, Troy; Chien, Siu Hung; Sodt, Alex; Steele, Ryan P; Rassolov, Vitaly A; Maslen, Paul E; Korambath, Prakashan P; Adamson, Ross D; Austin, Brian; Baker, Jon; Byrd, Edward F C; Dachsel, Holger; Doerksen, Robert J; Dreuw, Andreas; Dunietz, Barry D; Dutoi, Anthony D; Furlani, Thomas R; Gwaltney, Steven R; Heyden, Andreas; Hirata, So; Hsu, Chao-Ping; Kedziora, Gary; Khalliulin, Rustam Z; Klunzinger, Phil; Lee, Aaron M; Lee, Michael S; Liang, Wanzhen; Lotan, Itay; Nair, Nikhil; Peters, Baron; Proynov, Emil I; Pieniazek, Piotr A; Rhee, Young Min; Ritchie, Jim; Rosta, Edina; Sherrill, C David; Simmonett, Andrew C; Subotnik, Joseph E; Woodcock, H Lee; Zhang, Weimin; Bell, Alexis T; Chakraborty, Arup K; Chipman, Daniel M; Keil, Frerich J; Warshel, Arieh; Hehre, Warren J; Schaefer, Henry F; Kong, Jing; Krylov, Anna I; Gill, Peter M W; Head-Gordon, Martin

    2006-07-21

    Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces. PMID:16902710

  19. Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

    DOE PAGESBeta

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.

    2015-10-13

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  20. Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

    SciTech Connect

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.

    2015-10-13

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

  1. Advances in explosives analysis—part II: photon and neutron methods

    DOE PAGESBeta

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.

    2015-10-07

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  2. Advances in explosives analysis--part I: animal, chemical, ion, and mechanical methods.

    PubMed

    Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S

    2016-01-01

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245-246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons. PMID:26462922

  3. Advances in explosives analysis--part II: photon and neutron methods.

    PubMed

    Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S

    2016-01-01

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245-246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. This part, Part II, will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons. PMID:26446898

  4. Advances in explosives analysis—part II: photon and neutron methods

    SciTech Connect

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.

    2015-10-07

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

  5. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  6. Pareto Fronts in Clinical Practice for Pinnacle

    SciTech Connect

    Janssen, Tomas; Kesteren, Zdenko van; Franssen, Gijs; Damen, Eugène; Vliet, Corine van

    2013-03-01

    Purpose: Our aim was to develop a framework to objectively perform treatment planning studies using Pareto fronts. The Pareto front represents all optimal possible tradeoffs among several conflicting criteria and is an ideal tool with which to study the possibilities of a given treatment technique. The framework should require minimal user interaction and should resemble and be applicable to daily clinical practice. Methods and Materials: To generate the Pareto fronts, we used the native scripting language of Pinnacle{sup 3} (Philips Healthcare, Andover, MA). The framework generates thousands of plans automatically from which the Pareto front is generated. As an example, the framework is applied to compare intensity modulated radiation therapy (IMRT) with volumetric modulated arc therapy (VMAT) for prostate cancer patients. For each patient and each technique, 3000 plans are generated, resulting in a total of 60,000 plans. The comparison is based on 5-dimensional Pareto fronts. Results: Generating 3000 plans for 10 patients in parallel requires on average 96 h for IMRT and 483 hours for VMAT. Using VMAT, compared to IMRT, the maximum dose of the boost PTV was reduced by 0.4 Gy (P=.074), the mean dose in the anal sphincter by 1.6 Gy (P=.055), the conformity index of the 95% isodose (CI{sub 95%}) by 0.02 (P=.005), and the rectal wall V{sub 65} {sub Gy} by 1.1% (P=.008). Conclusions: We showed the feasibility of automatically generating Pareto fronts with Pinnacle{sup 3}. Pareto fronts provide a valuable tool for performing objective comparative treatment planning studies. We compared VMAT with IMRT in prostate patients and found VMAT had a dosimetric advantage over IMRT.

  7. Combustion front propagation in underground coal gasification

    SciTech Connect

    Dobbs, R.L. II; Krantz, W.B.

    1990-10-01

    Reverse Combustion (RC) enhances coal seam permeability prior to Underground Coal Gasification. Understanding RC is necessary to improve its reliability and economics. A curved RC front propagation model is developed, then solved by high activation energy asymptotics. It explicitly incorporates extinction (stoichiometric and thermal) and tangential heat transport (THT) (convection and conduction). THT arises from variation in combustion front temperature caused by tangential variation in the oxidant gas flux to the channel surface. Front temperature depends only weakly on THT; front velocity is strongly affected, with heat loss slowing propagation. The front propagation speed displays a maximum with respect to gas flux. Combustion promoters speed front propagation; inhibitors slow front propagation. The propagation model is incorporated into 2-D simulations of RC channel evolution utilizing the boundary element method with cubic hermetian elements to solve the flow from gas injection wells through the coal to the convoluted, temporally evolving, channel surface, and through the channel to a gas production well. RC channel propagation is studied using 17 cm diameter subbituminous horizontally drilled coal cores. Sixteen experiments at pressures between 2000 and 3600 kPa, injected gas oxygen contents between 21% and 75%, and flows between 1 and 4 standard liters per minute are described. Similarity analysis led to scaling-down of large RC ({approx}1 m) to laboratory scale ({approx}5 cm). Propagation velocity shows a strong synergistic increase at high levels of oxygen, pressure, and gas flow. Char combustion is observed, leaving ash-filled, irregularly shaped channels. Cracks are observed to penetrate the char zone surrounding the channel cores. 69 refs., 54 figs., 4 tabs.

  8. Advances in the theory and practice of DNA-hybridization as a systematic method.

    PubMed

    Sheldon, F H

    1994-01-01

    DNA hybridization continues in the 1990s to provide insight into phylogeny and evolution. The resilience of this 30-year-old distance technique may be attributed to its fundamental power as a comparative method, as well as to advances in our understanding of its operation and improvements in experimental design and data analysis. These attributes and advances, along with the assumptions and limitations of DNA hybridization, are discussed in this paper. Examples are provided of recent DNA hybridization studies of molecular, morphological, and behavioral systematics and evolution. PMID:7994110

  9. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  10. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  11. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    DOEpatents

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  12. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  13. About Shape of an Interplanetary Shock Front.

    NASA Astrophysics Data System (ADS)

    Petukhov, Ivan; Petukhov, Stanislav

    The form of an interplanetary shock front has been investigated by the statistical method. Results of determination the components of normals to the interplanetary shock fronts obtained from data of ACE experiment during from 1998 to 2003 years (about 200 measurements) are used. North-south asymmetry of shock amount about 15% is revealed. Possibly, it is caused by more activity of the north semi-sphere of the Sun. East-west asymmetry of shock area are obtained. At probability 95% values of asymmetry more 0.53 and less 0.65 at most probability 0.59. Here asymmetry is ratio west part of area to whole area of shock front. Possibly, it is formed at propagation of a shock in interplanetary space. The reason of asymmetry may be self-generation turbulence by the accelerated particles which influences on velocity of shock propagation.

  14. Light-Front Holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front

  15. FACILITY 209, SINGLESTORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM CENTER DRIVE, FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  16. FACILITY 1042. FRONT OBLIQUE SHOWING ROYAL PALMS LINING FRONT WALK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 1042. FRONT OBLIQUE SHOWING ROYAL PALMS LINING FRONT WALK. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hale Alii, Junior Officers' Quarters Type, 9-10 Hale Alii Avenue, 1-2 Eighth Street, Pearl City, Honolulu County, HI

  17. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  18. Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound

    PubMed Central

    Borazjani, Iman; Westerdale, John; McMahon, Eileen M.; Rajaraman, Prathish K.; Heys, Jeffrey J.

    2013-01-01

    The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics. PMID:23690874

  19. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  20. Surface properties of ocean fronts

    NASA Technical Reports Server (NTRS)

    Wolff, P. M.; Hubert, W. E.

    1976-01-01

    Background information on oceanic fronts is presented and the results of several models which were developed to study the dynamics of oceanic fronts and their effects on various surface properties are described. The details of the four numerical models used in these studies are given in separate appendices which contain all of the physical equations, program documentation and running instructions for the models.

  1. MMS Observations of Dipolarization Fronts

    NASA Astrophysics Data System (ADS)

    Hwang, K. J.; Goldstein, M. L.; Sibeck, D. G.; Ashour-Abdalla, M.; Nakamura, R.; Burch, J. L.; Torbert, R. B.; Moore, T. E.; Ergun, R. E.; Pollock, C. J.; Mauk, B.; Fuselier, S. A.

    2015-12-01

    We present MMS observations of dipolarization fronts. Dipolarization fronts commonly observed in Earth's plasma sheet are characterized by intense gradients in the current sheet-normal component of the magnetic field and plasma/magnetic pressure across the front. These fronts are often embedded within fast earthward flows, i.e., bursty bulk flows. Analysis using data from all four spacecraft shows the presence of both typical and atypical dipolarization fronts. Typically dipolarization fronts propagate earthward and their normals point radially inward, however, we have identified dipolarization fronts propagating tailward with normals pointing significantly away from the radial direction. Atypical dipolarization fronts observed on 7 May 2015 and 21 July 2015 are preceded or accompanied by a rapid decrease in the Bx or By components of the magnetic field. These decreases indicate that the magnetotail is first thinning and then thickening. The resulting magnetic pile-up can cause the local Bz to increase rapidly, indicating propagation tailward, as observed. These new high time resolution field and plasma observations from MMS provide exciting new insights about the dynamical changes of magnetotail topology.

  2. Development and application of a probabilistic evaluation method for advanced process technologies. Final report

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  3. Development and application of a probabilistic evaluation method for advanced process technologies

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  4. Snowplow Injection Front Effects

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Buzulukova, N.; Collinson, G. A.; Kepko, E. L.; Garcia-Sage, K. S.; Henderson, M. G.; Sitnov, M. I.

    2013-01-01

    As the Polar spacecraft apogee precessed through the magnetic equator in 2001, Polar encountered numerous substorm events in the region between geosynchronous orbit and 10 RE geocentric distance; most of them in the plasma sheet boundary layers. Of these, a small number was recorded near the neutral sheet in the evening sector. Polar/Thermal Ion Dynamics Experiment provides a unique perspective on the lowest-energy ion plasma, showing that these events exhibited a damped wavelike character, initiated by a burst of radially outward flow transverse to the local magnetic field at approximately 80 km/s. They then exhibit strongly damped cycles of inward/outward flow with a period of several minutes. After one or two cycles, they culminated in a hot plasma electron and ion injection, quite similar to those observed at geosynchronous orbit. Cold plasmaspheric plasmas comprise the outward flow cycles, while the inward flow cycles contain counterstreaming field-parallel polar wind-like flows. The observed wavelike structure, preceding the arrival of an earthward moving substorm injection front, suggests an outward displacement driven by the inward motion at local times closer to midnight, that is, a "snowplow" effect. The damped in/out flows are consistent with interchange oscillations driven by the arrival at the observed local time by an injection originating at greater radius and local time.

  5. The Hatteras Front: August 2004 velocity and density structure

    NASA Astrophysics Data System (ADS)

    Savidge, Dana K.; Austin, Jay A.

    2007-07-01

    The Hatteras Front is a persistent mesoscale cross-shelf oriented front off Cape Hatteras, North Carolina. It is the boundary between relatively cool, fresh Mid-Atlantic Bight shelf waters and warmer, saltier shelf waters of the South Atlantic Bight, which both converge along-shelf upon Cape Hatteras year round. The Frontal Interaction Near Cape Hatteras (FINCH) project was conducted in 2004-2005 to intensively sample the Hatteras Front with shipboard ADCP and undulating towed CTD. This paper documents velocity and density structures associated with the cross-shelf oriented zone of Hatteras Front during the August 2004 field season. Property gradients across the Hatteras Front are large, with temperature (T) and salinity (S) differences of ˜4-6°C, 2-5 psu, respectively over distances of 1-2 km. The T and S are not completely compensating, and a strong density (ρ) gradient also exists, with Δρ of ˜2 kg/m3 across a gentler 10 km wide front. The density gradient results in a steric sea-level height gradient of ˜1-2 cm across the Front, which is in approximate geostrophic balance with a surface intensified jet, directed shoreward along the cross-shelf oriented Front. The velocity is sheared with depth at 3.0 × 10-2 to 5.0 × 10-2 s-1 in the upper 5 m of the jet; a rate consistent with the density gradient according to the thermal wind relationship. Shoreward transport of ˜4.8 × 104 m3/s results from the surface intensified jet. The structure of the velocity field associated with the Hatteras Front resembles that of a slope-controlled buoyant plume, as described by Lentz and Helfrich (2002). Velocity and density structures are similar during both advancing (southwestward) and retreating (northeastward) motion of the Front.

  6. Comparison of advanced reduced-basis methods for transient structural analysis

    NASA Technical Reports Server (NTRS)

    Mcgowan, David M.; Bostic, Susan W.

    1991-01-01

    Two advanced reduced-basis methods for linear, transient structural analysis, the force-derivative method and the Lanczos method, are compared to two widely-used modal methods, the mode-displacement method and the mode-acceleration method. Comparisons are made for two linear example problems: a proportionally-damped cantilevered beam subject to a discrete tip load which varies linearly with time, and a discretely-damped multispan beam subject to a uniformly distributed load which varies as a quintic function of time. Results from the methods are compared in terms of the number of basis vectors required to obtain a desired level of accuracy and the associated computational times. The results are problem dependent, and it is shown that for the cantilevered beam problem, the mode-acceleration and force-derivative methods are the most efficient in terms of the number of basis vectors and computational time. The force-derivative method is shown to be the most effective method for solving the multispan beam problem with closely-spaced frequencies. In general, the force-derivative method is shown to produce an accurate solution using very few basis vectors and to require less computational time as compared to the other methods studied.

  7. Fronts in Large Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Belkin, Igor M.; Cornillon, Peter C.; Sherman, Kenneth

    2009-04-01

    Oceanic fronts shape marine ecosystems; therefore front mapping and characterization are among the most important aspects of physical oceanography. Here we report on the first global remote sensing survey of fronts in the Large Marine Ecosystems (LME). This survey is based on a unique frontal data archive assembled at the University of Rhode Island. Thermal fronts were automatically derived with the edge detection algorithm of Cayula and Cornillon (1992, 1995, 1996) from 12 years of twice-daily, global, 9-km resolution satellite sea surface temperature (SST) fields to produce synoptic (nearly instantaneous) frontal maps, and to compute the long-term mean frequency of occurrence of SST fronts and their gradients. These synoptic and long-term maps were used to identify major quasi-stationary fronts and to derive provisional frontal distribution maps for all LMEs. Since SST fronts are typically collocated with fronts in other water properties such as salinity, density and chlorophyll, digital frontal paths from SST frontal maps can be used in studies of physical-biological correlations at fronts. Frontal patterns in several exemplary LMEs are described and compared, including those for: the East and West Bering Sea LMEs, Sea of Okhotsk LME, East China Sea LME, Yellow Sea LME, North Sea LME, East and West Greenland Shelf LMEs, Newfoundland-Labrador Shelf LME, Northeast and Southeast US Continental Shelf LMEs, Gulf of Mexico LME, and Patagonian Shelf LME. Seasonal evolution of frontal patterns in major upwelling zones reveals an order-of-magnitude growth of frontal scales from summer to winter. A classification of LMEs with regard to the origin and physics of their respective dominant fronts is presented. The proposed classification lends itself to comparative studies of frontal ecosystems.

  8. Some Recent Advances of Ultrasonic Diagnostic Methods Applied to Materials and Structures (Including Biological Ones)

    NASA Astrophysics Data System (ADS)

    Nobile, Lucio; Nobile, Stefano

    This paper gives an overview of some recent advances of ultrasonic methods applied to materials and structures (including biological ones), exploring typical applications of these emerging inspection technologies to civil engineering and medicine. In confirmation of this trend, some results of an experimental research carried out involving both destructive and non-destructive testing methods for the evaluation of structural performance of existing reinforced concrete (RC) structures are discussed in terms of reliability. As a result, Ultrasonic testing can usefully supplement coring thus permitting less expensive and more representative evaluation of the concrete strength throughout the whole structure under examination.

  9. Recent advances in Euler and Navier-Stokes methods for calculating helicopter rotor aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Baeder, J. D.

    1991-01-01

    This paper outlines some recent advances in the application of the Euler and Navier-Stokes computational fluid dynamics methods to analyze nonlinear problems of helicopter aerodynamics and acoustics. A complete flowfield simulation of helicopters is currently not feasible with these methods. However, the use of the state-of-the-art numerical algorithms in conjunction with powerful supercomputers, like the Cray-2, have enabled notable progress to be made in modeling several individual components of this complex flow in hover and forward flight.

  10. A framework for advanced methods of control of human-induced vibrations

    NASA Astrophysics Data System (ADS)

    Reynolds, Paul

    2012-04-01

    The vibration serviceability of civil engineering structures under human dynamic excitation is becoming ever more critical with the design and redevelopment of structures with reduced mass, stiffness and damping. A large number of problems have been reported in floors, footbridges, sports stadia, staircases and other structures. Unfortunately, the range of options available to fix such problems are very limited and are primarily limited to structural modification or the implementation of passive vibration control measures, such as tuned mass dampers. This paper presents the initial development of a new framework for advanced methods of control of humaninduced vibrations in civil engineering structures. This framework includes both existing passive methods of vibration control and more advanced active, semi-active and hybrid control techniques, which may be further developed as practical solutions for these problems. Through the use of this framework, rational decisions as to the most appropriate technologies for particular human vibration problems may be made and pursued further. This framework is also intended to be used in the design of new civil engineering structures, where advanced control technologies may be used both to increase the achievable slenderness and to reduce the amount of construction materials used and hence their embodied energy. This will be an ever more important consideration with the current drive for structures with reduced environmental impact.

  11. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    PubMed

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested. PMID:25847169

  12. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  13. The Promise of Mixed-Methods for Advancing Latino Health Research

    PubMed Central

    Apesoa-Varano, Ester Carolina; Hinton, Ladson

    2015-01-01

    Mixed-methods research in the social sciences has been conducted for quite some time. More recently, mixed-methods have become popular in health research, with the National Institutes of Health leading the impetus to fund studies that implement such an approach. The public health issues facing us today are great and they range from policy and other macro-level issues, to systems level problems to individuals' health behaviors. For Latinos, who are projected to become the largest minority group bearing a great deal of the burden of social inequality in the U.S., it is important to understand the deeply-rooted nature of these health disparities in order to close the gap in health outcomes. Mixed-methodology thus holds promise for advancing research on Latino heath by tackling health disparities from a variety of standpoints and approaches. The aim of this manuscript is to provide two examples of mixed methods research, each of which addresses a health topic of considerable importance to older Latinos and their families. These two examples will illustrate a) the complementary use of qualitative and quantitative methods to advance health of older Latinos in an area that is important from a public health perspective, and b) the “translation” of findings from observational studies (informed by social science and medicine) to the development and testing of interventions. PMID:23996325

  14. On the front lines.

    PubMed

    Lipley, Nick

    2016-06-10

    Why did you become an emergency nurse? After qualifying as a registered adult nurse in 2003, I started my nursing career as a theatre nurse, which I enjoyed for six years. Here I developed my anaesthetic and recovery nursing skills which gave me great grounding for my career in ED. I had the opportunity to complete an advanced standing children's nursing programme from which I qualified in 2010 as a dual trained adult/paediatric nurse. I then consolidated my knowledge on an acute paediatric ward, before moving to emergency care where I could use my dual training best. PMID:27286031

  15. Sensitivity analysis of infectious disease models: methods, advances and their application.

    PubMed

    Wu, Jianyong; Dhingra, Radhika; Gambhir, Manoj; Remais, Justin V

    2013-09-01

    Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods-scatter plots, the Morris and Sobol' methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method-and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design. PMID:23864497

  16. Flame front as hydrodynamic discontinuity

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide; Abarzhi, Snezhana

    2012-11-01

    We applied generalized Rankine-Hugoniot conditions to study the dynamics of unsteady and curved fronts as a hydrodynamic discontinuity. It is shown that the front is unstable and Landau-Darrieus instability develops only if three conditions are satisfied (1) large-scale vorticity is generated in the fluid bulk; (2) energy flux across the front is imbalanced; (3) the energy imbalance is large. The structure of the solution is studied in details. Flows with and without gravity and thermal diffusion are analyzed. Stabilization mechanisms are identified. NSF 1004330.

  17. Asymmetric counterpropagating fronts without flow.

    PubMed

    Andrade-Silva, I; Clerc, M G; Odent, V

    2015-06-01

    Out-of-equilibrium systems exhibit domain walls between different states. These walls, depending on the type of connected states, can display rich spatiotemporal dynamics. In this Rapid Communication, we investigate the asymmetrical counterpropagation of fronts in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the different front shapes and propagation speeds. These fronts present dissimilar elastic deformations that are responsible for their asymmetric speeds. Theoretically, using a phenomenological model, we describe the observed dynamics with fair agreement. PMID:26172647

  18. [Front Block distraction].

    PubMed

    Esnault, Olivier

    2015-03-01

    The contribution of the segmental osteotomies in the ortho-surgical protocols is no longer to demonstrate and found a new lease of life thanks to the combination with the bone distraction techniques. The osteotomy of Köle, initially described to close infraclusies, and then used to level very marked curves of Spee has more recently been used to correct anterior crowding. This support is therefore aimed at patients with an incisor and canine Class 2 but molar Class 1 with an isolated mandibular footprint. With minimal orthodontic preparation we can create in two weeks bilateral diastemas that will then be used to align the incisivocanin crowding without stripping or bicuspid extractions. Dental orthodontic movements can be resumed one month after the end of the distraction. This technique is therefore likely to avoid bicuspid extraction and replace some sagittal osteotomy advancement by correction of the overjet. It also helps to correct a incisors labial or lingual tipping playing on differential activation of the cylinders and the distractor. This segmental surgery can be combined with Le Fort 1 surgeries with correction of the transverse and associated meanings, but in a second time, to a mandibular advancement and/or a genioplasty. PMID:25888045

  19. Hydrodynamics of superfluid turbulence fronts in He II: steady propagation

    NASA Astrophysics Data System (ADS)

    Geurst, J. A.; van Beelen, H.

    1995-02-01

    A hydrodynamic theory of superfluid turbulent flow of He II which was developed recently is applied to a specific inhomogeneous flow situation, viz. a superfluid turbulence front propagating into an (unstable) state of zero turbulence. It is shown that in a wide range of experimental flow conditions the two equations governing the evolution of the vortex tangle may be uncoupled from the other equations. In the case where the vortex tangle is in internal equilibrium the two vortex-tangle equations may, in addition, be reduced to one non-linear partial differential equation of the first order. It appears that the waves of permanent form permitted by this equation fall apart in two classes, viz. a class of ‘warm’ fronts propagating in the direction of the heat flow and a class of ‘cold’ fronts moving oppositely. The velocity ranges of the warm and cold fronts are separated by a velocity gap. The initial-value problem for front propagation is solved exactly by means of the method of characteristics. A linear analysis of front stability based on that exact solution yields criteria for the selection of the front velocity by requiring marginal stability of the corresponding warm and cold fronts. The significance of marginal stability as a dynamical mechanism for velocity selection was recently put forward by van Saarloos (1988). It is shown that alternative selection criteria for the velocity of warm and cold fronts are provided by the requirements of minimum rate of line-length production and minimum dissipation rate. The comparison of the theoretical values for the velocities of warm and cold fronts with the experimental front velocities reported by Slegtenhorst et al. (1982) for capillary flow of He II looks promising. Wall effects will be taken into account in a separate paper.

  20. Advances in Gas Chromatographic Methods for the Identification of Biomarkers in Cancer

    PubMed Central

    Kouremenos, Konstantinos A.; Johansson, Mikael; Marriott, Philip J.

    2012-01-01

    Screening complex biological specimens such as exhaled air, tissue, blood and urine to identify biomarkers in different forms of cancer has become increasingly popular over the last decade, mainly due to new instruments and improved bioinformatics. However, despite some progress, the identification of biomarkers has shown to be a difficult task with few new biomarkers (excluding recent genetic markers) being considered for introduction to clinical analysis. This review describes recent advances in gas chromatographic methods for the identification of biomarkers in the detection, diagnosis and treatment of cancer. It presents a general overview of cancer metabolism, the current biomarkers used for cancer diagnosis and treatment, a background to metabolic changes in tumors, an overview of current GC methods, and collectively presents the scope and outlook of GC methods in oncology. PMID:23074381

  1. Immunoassay Methods and their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances

    PubMed Central

    Darwish, Ibrahim A.

    2006-01-01

    Immunoassays are bioanalytical methods in which the quantitation of the analyte depends on the reaction of an antigen (analyte) and an antibody. Immunoassays have been widely used in many important areas of pharmaceutical analysis such as diagnosis of diseases, therapeutic drug monitoring, clinical pharmacokinetic and bioequivalence studies in drug discovery and pharmaceutical industries. The importance and widespread of immunoassay methods in pharmaceutical analysis are attributed to their inherent specificity, high-throughput, and high sensitivity for the analysis of wide range of analytes in biological samples. Recently, marked improvements were achieved in the field of immunoassay development for the purposes of pharmaceutical analysis. These improvements involved the preparation of the unique immunoanalytical reagents, analysis of new categories of compounds, methodology, and instrumentation. The basic methodologies and recent advances in immunoassay methods applied in different fields of pharmaceutical analysis have been reviewed. PMID:23674985

  2. Structural Analysis and Quantitative Determination of Clevidipine Butyrate Impurities Using an Advanced RP-HPLC Method.

    PubMed

    Zhou, Yuxia; Zhou, Fan; Yan, Fei; Yang, Feng; Yao, Yuxian; Zou, Qiaogen

    2016-03-01

    Eleven potential impurities, including process-related compounds and degradation products, have been analyzed by comprehensive studies on the manufacturing process of clevidipine butyrate. Possible formation mechanisms could also be devised. MS and NMR techniques have been used for the structural characterization of three previously unreported impurities (Imp-3, Imp-5 and Imp-11). To separate and quantify the potential impurities in a simultaneous fashion, an efficient and advanced RP-HPLC method has been developed. In doing so, four major degradation products (Imp-2, Imp-4, Imp-8 and Imp-10) can be observed under varying stress conditions. This analytical method has been validated according to ICH guidelines with respect to specificity, accuracy, linearity, robustness and stability. The method described has been demonstrated to be applicable in routine quality control processes and stability evaluation studies of clevidipine butyrate. PMID:26489435

  3. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  4. Sequential Chemotherapy and Radiotherapy in the Sandwich Method for Advanced Endometrial Cancer

    PubMed Central

    Gao, Huiqiao; Zhang, Zhenyu

    2015-01-01

    Abstract Endometrial cancer is one of the most common gynecological malignancies and the standard treatment modality has not been established. To assess the efficacy and tolerability of a sandwich method consisted of chemotherapy followed by involved field irradiation and additional chemotherapy for the treatment of advanced endometrial cancer. The Medline, Embase, Cochrane, and China National Knowledge Infrastructure (CNKI) Library were searched to identify the relevant literature published between 1970 and September 2014. A meta-analysis was performed to evaluate progression-free survival (PFS), overall survival (OS), and toxicity. A total of 5 articles were subjected to this meta-analysis. The pooled 3-year PFS and OS of patients with advanced endometrial cancer treated with the “sandwich” method was 68% (95% CI: 0.60–0.77) with no heterogeneity (I2 = 0.00%, P = 0.77) among the studies and 75% (95% CI: 0.61–0.89) with significant heterogeneity (I2 = 71.8%, P = 0.01), respectively. Pooled analysis of toxicity was not performed because of the substantial heterogeneity. Sequential chemotherapy and radiotherapy in the sandwich method is both efficacious and well tolerated. Large-scale randomized controlled trials (RCTs) are necessary in the future. PMID:25906095

  5. [Methods of advanced purification-the challenge for biosynthetic antibiotics industry].

    PubMed

    Oniscu, C; Caşcaval, D; Galaction, Anca-Irina

    2002-01-01

    Reactive extraction, permeation through liquid membranes and direct extraction are some of the new techniques applied for separation and advanced purification of biosynthetic antibiotics. Compared with the conventional separation techniques, the main advantages of these extraction methods are: high separation efficiency, the avoidance of antibiotics chemical and thermal inactivation, high purity of obtained antibiotics. Furthermore, using reactive extraction or permeation through liquid membrane, the antibiotics can be selective separated from their biosynthesis precursors or from the secondary biosynthetic compounds. This paper is a review on separation of Penicillins and Erythromycin by means of these extraction techniques, being underlined their advantages, applications and problems concerning the separation process scale-up. PMID:12638304

  6. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  7. QCD and Light-Front Holography

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  8. Radiative magnetized thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The evolution of plane-parallel magnetized thermal conduction fronts in the interstellar medium (ISM) was studied. Separating the coronal ISM phase and interstellar clouds, these fronts have been thought to be the site of the intermediate-temperature regions whose presence was inferred from O VI absorption-line studies. The front evolution was followed numerically, starting from the initial discontinuous temperature distribution between the hot and cold medium, and ending in the final cooling stage of the hot medium. It was found that, for the typical ISM pressure of 4000 K/cu cm and the hot medium temperature of 10 to the 6th K, the transition from evaporation to condensation in a nonmagnetized front occurs when the front thickness is 15 pc. This thickness is a factor of 5 smaller than previously estimated. The O VI column densities in both evaporative and condensation stages agree with observations if the initial hot medium temperature Th exceeds 750,000 K. Condensing conduction fronts give better agreement with observed O VI line profiles because of lower gas temperatures.

  9. Restless rays, steady wave fronts.

    PubMed

    Godin, Oleg A

    2007-12-01

    Observations of underwater acoustic fields with vertical line arrays and numerical simulations of long-range sound propagation in an ocean perturbed by internal gravity waves indicate that acoustic wave fronts are much more stable than the rays comprising these wave fronts. This paper provides a theoretical explanation of the phenomenon of wave front stability in a medium with weak sound-speed perturbations. It is shown analytically that at propagation ranges that are large compared to the correlation length of the sound-speed perturbations but smaller than ranges at which ray chaos develops, end points of rays launched from a point source and having a given travel time are scattered primarily along the wave front corresponding to the same travel time in the unperturbed environment. The ratio of root mean square displacements of the ray end points along and across the unperturbed wave front increases with range as the ratio of ray length to correlation length of environmental perturbations. An intuitive physical explanation of the theoretical results is proposed. The relative stability of wave fronts compared to rays is shown to follow from Fermat's principle and dimensional considerations. PMID:18247745

  10. Recent advances in auxiliary-field methods --- simulations in lattice models and real materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwei

    2007-03-01

    We have developed an auxiliary-field (AF) quantum Monte Carlo (QMC) method for many-body simulations. The method takes the form of a linear superposition of independent-particle calculations in fluctuating external fields. ``Entanglement'' of the different field configurations leads to random walks in Slater determinant space. We formulate an approximate constraint on the random walk paths to control the sign/phase problem, which has shown to be very accurate even with simple mean-field solutions as the constraining trial wave function. The same method can be applied to both simplified lattice models and real materials. For realistic electronic Hamiltonians, each random walk stream resembles a density-functional theory (DFT) calculation in random local fields. Thus, the AF QMC method can directly import existing technology from standard electronic structure methods into a many-body QMC framework. We have demonstrated this method with calculations in close to 100 systems, including Si solid, first- and second-row molecular systems, molecules of heavier post-d elements, transition-metal systems, and ultra-cold atomic gases. In these we have operated largely in an automated mode, inputting the DFT or Hartree-Fock solutions as trial wave functions. The AF QMC results showed consistently good agreement with near-exact quantum chemistry results and/or experiment. I will also discuss additional algorithmic advances which can further improve the method in strongly correlated systems. Supported by ARO, NSF, ONR, and DOE-cmsn.

  11. Sensitivity analysis of infectious disease models: methods, advances and their application

    PubMed Central

    Wu, Jianyong; Dhingra, Radhika; Gambhir, Manoj; Remais, Justin V.

    2013-01-01

    Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design. PMID:23864497

  12. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method.

    PubMed

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-08-10

    Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology. PMID:27415640

  13. A Mixed Methods Study: African American Students' Performance Trends and Perceptions Towards Advanced Placement Literature Courses and Examinations

    ERIC Educational Resources Information Center

    Buford, Brandie J.

    2012-01-01

    The purpose of this mixed methods study was to describe the perceptions of African American students pertaining to their engagement in Advanced Placement English Literature and Composition course and Advanced Placement English Literature and Composition examination. A purposive sampling design was employed to select 12 participants from one urban…

  14. 13. CLOSEUP OF FRONT OF BUNKER SHOWING DOOR, TANK, GENERATOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CLOSE-UP OF FRONT OF BUNKER SHOWING DOOR, TANK, GENERATOR, LIGHT FIXTURE OVER DOOR. CAMERA FACING EAST. INEL PHOTO NUMBER 65-6174, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  15. 9. EXTERIOR VIEW OF FRONT ENTRANCE TO BUNKER. CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR VIEW OF FRONT ENTRANCE TO BUNKER. CAMERA FACING EAST. TANK COVER AND FRAME TO THE REAR OF VIEW. INEL PHOTO NUMBER 65-6170, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  16. 4. CONSTRUCTION PROGRESS VIEW OF EQUIPMENT IN FRONT PART OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CONSTRUCTION PROGRESS VIEW OF EQUIPMENT IN FRONT PART OF CONTROL BUNKER (TRANSFORMER, HYDRAULIC TANK, PUMP, MOTOR). SHOWS UNLINED CORRUGATED METAL WALL. CAMERA FACING EAST. INEL PHOTO NUMBER 65-5433, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  17. Advanced TEM specimen preparation methods for replication of P91 steel

    SciTech Connect

    Mitchell, D.R.G. . E-mail: drm@ansto.gov.au; Sulaiman, S.

    2006-01-15

    A range of advanced transmission electron microscopy specimen preparation methods, based on replication, have been developed for P91 steel. The results obtained have been compared with conventional replication and thin foil methods. The aim has been to obtain complimentary information from thin foil and replica specimens from the same region of interest either sequentially or simultaneously. The effects of various reagents for dissolution of the steel matrix and replica release have been investigated, and chemical methods for removing amorphous iron oxide contaminants from replicas have been identified. A method of region-specific replication is demonstrated whereby regions of thin foils previously characterised by TEM, can be subsequently replicated. This enables the former location of extracted particles, such as on grain/lath/subgrain boundaries etc., to be determined prior to microanalysis. It also permits the identification of artefacts such as stray particles and failed extractions. A second method of thin foil partial replication was developed in which both replica and thin foil are present on the same specimen. At the interface between the two regions, thin foil information such as dislocation interactions with fine scale particles and replica information such as microanalysis of particles within the same grain or lath can be obtained. Double replication of thin foils has also been successfully demonstrated. These methods are applied to a creep resistant martensitic steel (P91), but should be broadly applicable to a wide range of alloy steels.

  18. Advanced display object selection methods for enhancing user-computer productivity

    NASA Technical Reports Server (NTRS)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  19. Advanced magnetic resonance imaging techniques in the preterm brain: methods and applications.

    PubMed

    Tao, Joshua D; Neil, Jeffrey J

    2014-01-01

    Brain development and brain injury in preterm infants are areas of active research. Magnetic resonance imaging (MRI), a non-invasive tool applicable to both animal models and human infants, provides a wealth of information on this process by bridging the gap between histology (available from animal studies) and developmental outcome (available from clinical studies). Moreover, MRI also offers information regarding diagnosis and prognosis in the clinical setting. Recent advances in MR methods - diffusion tensor imaging, volumetric segmentation, surface based analysis, functional MRI, and quantitative metrics - further increase the sophistication of information available regarding both brain structure and function. In this review, we discuss the basics of these newer methods as well as their application to the study of premature infants. PMID:25055864

  20. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method.

    PubMed

    Hurvitz, G; Ehrlich, Y; Strum, G; Shpilman, Z; Levy, I; Fraenkel, M

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements. PMID:22938276

  1. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    NASA Astrophysics Data System (ADS)

    Hurvitz, G.; Ehrlich, Y.; Strum, G.; Shpilman, Z.; Levy, I.; Fraenkel, M.

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  2. Advanced negative detection method comparable to silver stain for SDS-PAGE separated proteins detection.

    PubMed

    Wang, Xu; Hwang, Sun-Young; Cong, Wei-Tao; Jin, Li-Tai; Choi, Jung-Kap

    2016-10-01

    In order to achieve an easy, rapid and sensitive protocol to detect proteins in polyacrylamide gel, an advanced negative detection method comparable to silver stain is described. When a gel was incubated with Phloxine B and followed by the development in acidic solution, the zones where forming protein-dye complex were selectively transparent, unlike opaque gel background. Within 50 min after electrophoresis, down to 0.1-0.4 ng of gel-separated proteins (similar with silver stain) could be observed, without labor-intensive and time-consuming procedure. Comparing with the most common negative stain method, Imidazole-zinc stain, Phloxine B stain has been shown higher sensitivity and distinct contrast between the transparent protein bands/spots and opaque background than those; furthermore, it is no longer necessary to concern about retention time of observation. This technique may provide a sensitive and practical choice for proteomics researches. PMID:27430933

  3. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  4. Advanced fluorescence microscopy methods for the real-time study of transcription and chromatin dynamics

    PubMed Central

    Annibale, Paolo; Gratton, Enrico

    2014-01-01

    In this contribution we provide an overview of the recent advances allowed by the use of fluorescence microscopy methods in the study of transcriptional processes and their interplay with the chromatin architecture in living cells. Although the use of fluorophores to label nucleic acids dates back at least to about half a century ago,1 two recent breakthroughs have effectively opened the way to use fluorescence routinely for specific and quantitative probing of chromatin organization and transcriptional activity in living cells: namely, the possibility of labeling first the chromatin loci and then the mRNA synthesized from a gene using fluorescent proteins. In this contribution we focus on methods that can probe rapid dynamic processes by analyzing fast fluorescence fluctuations. PMID:25764219

  5. Finite element method for optimal guidance of an advanced launch vehicle

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin

    1992-01-01

    A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.

  6. A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages

    NASA Astrophysics Data System (ADS)

    Li, Yan; Srinath, Purushotham Kaushik Muthur; Goyal, Deepak

    2016-01-01

    Advanced three dimensional (3D) packaging is a key enabler in driving form factor reduction, performance benefits, and package cost reduction, especially in the fast paced mobility and ultraportable consumer electronics segments. The high level of functional integration and the complex package architecture pose a significant challenge for conventional fault isolation (FI) and failure analysis (FA) methods. Innovative FI/FA tools and techniques are required to tackle the technical and throughput challenges. In this paper, the applications of FI and FA techniques such as Electro Optic Terahertz Pulse Reflectometry, 3D x-ray computed tomography, lock-in thermography, and novel physical sample preparation methods to 3D packages with package on package and stacked die with through silicon via configurations are reviewed, along with the key FI and FA challenges.

  7. Setting health research priorities using the CHNRI method: IV. Key conceptual advances

    PubMed Central

    Rudan, Igor

    2016-01-01

    Introduction Child Health and Nutrition Research Initiative (CHNRI) started as an initiative of the Global Forum for Health Research in Geneva, Switzerland. Its aim was to develop a method that could assist priority setting in health research investments. The first version of the CHNRI method was published in 2007–2008. The aim of this paper was to summarize the history of the development of the CHNRI method and its key conceptual advances. Methods The guiding principle of the CHNRI method is to expose the potential of many competing health research ideas to reduce disease burden and inequities that exist in the population in a feasible and cost–effective way. Results The CHNRI method introduced three key conceptual advances that led to its increased popularity in comparison to other priority–setting methods and processes. First, it proposed a systematic approach to listing a large number of possible research ideas, using the “4D” framework (description, delivery, development and discovery research) and a well–defined “depth” of proposed research ideas (research instruments, avenues, options and questions). Second, it proposed a systematic approach for discriminating between many proposed research ideas based on a well–defined context and criteria. The five “standard” components of the context are the population of interest, the disease burden of interest, geographic limits, time scale and the preferred style of investing with respect to risk. The five “standard” criteria proposed for prioritization between research ideas are answerability, effectiveness, deliverability, maximum potential for disease burden reduction and the effect on equity. However, both the context and the criteria can be flexibly changed to meet the specific needs of each priority–setting exercise. Third, it facilitated consensus development through measuring collective optimism on each component of each research idea among a larger group of experts using a simple

  8. Nonperturbative calculations in light-front QED

    SciTech Connect

    Chabysheva, Sophia S.

    2010-12-22

    The methods of light-front quantization and Pauli-Villars regularization are applied to a nonperturbative calculation of the dressed-electron state in quantum electrodynamics. This is intended as a test of the methods in a gauge theory, as a precursor to possible methods for the nonperturbative solution of quantum chromodynamics. The electron state is truncated to include at most two photons and no positrons in the Fock basis, and the wave functions of the dressed state are used to compute the electrons's anomalous magnetic moment. A choice of regularization that preserves the chiral symmetry of the massless limit is critical for the success of the calculation.

  9. Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation

    USGS Publications Warehouse

    Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E.

    2000-01-01

    Many methods and criteria are available to assess aquatic ecosystems, and this review focuses on a set that demonstrates advancements from community analyses to methods spanning large spatial and temporal scales. Basic methods have been extended by incorporating taxa sensitivity to different forms of stress, adding measures linked to system function, synthesizing multiple faunal groups, integrating biological and physical attributes, spanning large spatial scales, and enabling simulations through time. These tools can be customized to meet the needs of a particular assessment and ecosystem. Two case studies are presented to show how new methods were applied at the ecosystem scale for achieving practical management goals. One case used an assessment of biotic structure to demonstrate how enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem. In the second case, multitaxonomic integrity indicators were successful in distinguishing lake ecosystems that were disturbed, healthy, and in the process of restoration. Most methods strive to address the concept of biological integrity and assessment effectiveness often can be impeded by the lack of more specific ecosystem management objectives. Scientific and policy explorations are needed to define new ways for designating a healthy system so as to allow specification of precise quality criteria that will promote further development of ecosystem analysis tools.

  10. Verification of a Depletion Method in SCALE for the Advanced High Temperature Reactor

    SciTech Connect

    KELLY, RYAN; Ilas, Dan

    2013-01-01

    This study describes a new approach employing the Dancoff correction method to model the TRISO-based fuel form used by the Advanced High-Temperature Reactor (AHTR) reactor design concept. The Dancoff correction method is used to perform isotope depletion analysis using the TRITON sequence of SCALE and is verified by code-to-code comparisons. The current AHTR fuel design has TRISO particles concentrated along the edges of a slab fuel element. This geometry prevented the use of the DOUBLEHET treatment, previously developed in SCALE to model spherical and cylindrical fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous energy based depletion code systems. The method was initially tested on a fuel configuration typical of the Next Generation Nuclear Plant (NGNP), where DOUBLEHET treatment is possible. A confirmatory study was performed on the AHTR reference core geometry using the VESTA code, which uses the continuous energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole core characteristics, such as the multiplication factor and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu, and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where DOUBLEHET treatment cannot be performed.

  11. A Combined Method for Segmentation and Registration for an Advanced and Progressive Evaluation of Thermal Images

    PubMed Central

    Barcelos, Emilio Z.; Caminhas, Walmir M.; Ribeiro, Eraldo; Pimenta, Eduardo M.; Palhares, Reinaldo M.

    2014-01-01

    In this paper, a method that combines image analysis techniques, such as segmentation and registration, is proposed for an advanced and progressive evaluation of thermograms. The method is applied for the prevention of muscle injury in high-performance athletes, in collaboration with a Brazilian professional soccer club. The goal is to produce information on spatio-temporal variations of thermograms favoring the investigation of the athletes' conditions along the competition. The proposed method improves on current practice by providing a means for automatically detecting adaptive body-shaped regions of interest, instead of the manual selection of simple shapes. Specifically, our approach combines the optimization features in Otsu's method with a correction factor and post-processing techniques, enhancing thermal-image segmentation when compared to other methods. Additional contributions resulting from the combination of the segmentation and registration steps of our approach are the progressive analyses of thermograms in a unique spatial coordinate system and the accurate extraction of measurements and isotherms. PMID:25414972

  12. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2004-01-01

    In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for

  13. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  14. Chaos of radiative heat-loss-induced flame front instability.

    PubMed

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph. PMID:27036182

  15. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  16. Accuracy Evaluation of a Mobile Mapping System with Advanced Statistical Methods

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Rodríguez-Gonzálvez, P.; Remondino, F.; Minto, S.; Orlandini, S.; Fuller, A.

    2015-02-01

    This paper discusses a methodology to evaluate the precision and the accuracy of a commercial Mobile Mapping System (MMS) with advanced statistical methods. So far, the metric potentialities of this emerging mapping technology have been studied in few papers, where generally the assumption that errors follow a normal distribution is made. In fact, this hypothesis should be carefully verified in advance, in order to test how well the Gaussian classic statistics can adapt to datasets that are usually affected by asymmetrical gross errors. The workflow adopted in this study relies on a Gaussian assessment, followed by an outlier filtering process. Finally, non-parametric statistical models are applied, in order to achieve a robust estimation of the error dispersion. Among the different MMSs available on the market, the latest solution provided by RIEGL is here tested, i.e. the VMX-450 Mobile Laser Scanning System. The test-area is the historic city centre of Trento (Italy), selected in order to assess the system performance in dealing with a challenging and historic urban scenario. Reference measures are derived from photogrammetric and Terrestrial Laser Scanning (TLS) surveys. All datasets show a large lack of symmetry that leads to the conclusion that the standard normal parameters are not adequate to assess this type of data. The use of non-normal statistics gives thus a more appropriate description of the data and yields results that meet the quoted a-priori errors.

  17. Applications of flight control system methods to an advanced combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

    1989-01-01

    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

  18. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Schifer, Nicholas A.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.

  19. Self-turbulizing flame fronts

    NASA Astrophysics Data System (ADS)

    Clavin, P.; Searby, G.

    A heuristic derivation of a flame front model is presented that takes into account the effects of gravity, nonlinear effects introduced by advection of the front, and gradients in the tangential component of the flow. A local equation is defined to relate the normal flame speed to the upstream gas flow characteristics. Jump conditions are obtained from an asymptotic analysis of the local structure of the wrinkled flame in order to address the hydrodynamic problem possed by the front being treated as a free boundary between fresh and burnt gases. The expression for the jump conditions is defined in Fourier space. The model extends the equations defined in Fourier space. The model extends the equations defined by Sivashinsky (1977) to cover the effects of gas expansion.

  20. Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts

    SciTech Connect

    Li Chao Ebert, Ute Hundsdorfer, Willem

    2010-01-01

    Streamers are the first stage of sparks and lightning; they grow due to a strongly enhanced electric field at their tips; this field is created by a thin curved space charge layer. These multiple scales are already challenging when the electrons are approximated by densities. However, electron density fluctuations in the leading edge of the front and non-thermal stretched tails of the electron energy distribution (as a cause of X-ray emissions) require a particle model to follow the electron motion. But present computers cannot deal with all electrons in a fully developed streamer. Therefore, super-particle have to be introduced, which leads to wrong statistics and numerical artifacts. The method of choice is a hybrid computation in space where individual electrons are followed in the region of high electric field and low density while the bulk of the electrons is approximated by densities (or fluids). We here develop the hybrid coupling for planar fronts. First, to obtain a consistent flux at the interface between particle and fluid model in the hybrid computation, the widely used classical fluid model is replaced by an extended fluid model. Then the coupling algorithm and the numerical implementation of the spatially hybrid model are presented in detail, in particular, the position of the model interface and the construction of the buffer region. The method carries generic features of pulled fronts that can be applied to similar problems like large deviations in the leading edge of population fronts, etc.

  1. Functional description of APS beamline front ends

    SciTech Connect

    Kuzay, T.

    1993-02-01

    Traditional synchrotron sources were designed to produce bending magnet radiation and have proven to be an essential scientific tool. Currently, a new generation of synchrotron sources is being built that will be able to accommodate a large number of insertion device (ID) and high quality bending magnet (BM) sources. One example is the 7-GeV Advanced Photon Source (APS) now under construction at Argonne National Laboratory. The research and development effort at the APS is designed to fully develop the potential of this new generation of synchrotron sources. Of the 40 straight sections in the APS storage ring, 34 will be available for IDs. The remaining six sections are reserved for the storage ring hardware and diagnostics. Although the ring incorporates 80 BMs, only 40 of them can be used to extract radiation. The accelerator hardware shadows five of these 40 bending magnets, so the maximum number of BM sources on the lattice is 35. Generally, a photon beamline consists of four functional sections. The first section is the ID or the BM, which provides the radiation source. The second section, which is immediately outside the storage ring but inside a concrete shielding tunnel, is the front end, which is designed to control, define, and/or confine the x-ray beam. In the case of the APS, the front ends are designed to confine the photon beam. The third section, just outside the concrete shielding tunnel and on the experimental floor, is the first optics enclosure, which contains optics to filter and monochromatize the photon beam. The fourth section of a beamline consists of beam transports, additional optics, and experiment stations to do the scientific investigations. This document describes only the front ends of the APS beamlines.

  2. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  3. Nanoscale Characterization of Mock Explosive Materials Using Advanced Atomic Force Microscopy Methods

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Mares, Jesus; Groven, Lori J.; Son, Steven F.; Reifenberger, Ronald G.; Raman, Arvind

    2015-01-01

    Most explosives are micro- and nanoscale composite material systems consisting of energetic crystals, amorphous particles, binders, and additives whose response to mechanical, thermal, or electromagnetic insults is often controlled by submicrometer-scale heterogeneities and interfaces. Several advanced dynamic atomic force microscopy (AFM) techniques, including phase imaging, force volume mode, and Kelvin probe force microscopy with resonance enhancement for dielectric property mapping, have been used to map the local physical properties of mock explosive materials systems, allowing the identification of submicrometer heterogeneities in electrical and mechanical properties that could lead to the formation of hotspots under electromagnetic or mechanical stimuli. The physical interpretation of the property maps and the methods of image formation are presented. Possible interpretations of the results and future applications to energetic material systems are also discussed.

  4. Exploring Atmospheric Aerosol Chemistry with Advanced High-Resolution Mass Spectrometry and Particle Imaging Methods

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.

    2014-12-01

    Physical and chemical complexity of atmospheric aerosols presents significant challenges both to experimentalists working on aerosol characterization and to modelers trying to parameterize critical aerosol properties. Multi-modal approaches that combine state-of-the-art experimental, theoretical, and modeling methods are becoming increasingly important in aerosol research. This presentation will discuss recent applications of unique high-resolution mass spectrometry and particle imaging tools developed at two Department of Energy's user facilities, the Environmental Molecular Science Laboratory (EMSL) and Advanced Light Source (ALS), to studies of molecular composition, photochemical aging, and properties of laboratory-generated and field aerosols. Specifically, this presentation will attempt to address the following questions: (a) how do NO2, SO2, and NH3 affect molecular level composition of anthropogenic aerosols?; (b) what factors determine viscosity/surface tension of organic aerosol particles?; (c) how does photolysis affect molecular composition and optical properties of organic aerosols?

  5. Advances in the Development and Validation of Test Methods in the United States

    PubMed Central

    Casey, Warren M.

    2016-01-01

    The National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) provides validation support for US Federal agencies and the US Tox21 interagency consortium, an interagency collaboration that is using high throughput screening (HTS) and other advanced approaches to better understand and predict chemical hazards to humans and the environment. The use of HTS data from assays relevant to the estrogen receptor signaling data pathway is used as an example of how HTS data can be combined with computational modeling to meet the needs of US agencies. As brief summary of US efforts in the areas of biologics testing, acute toxicity, and skin sensitization will also be provided. PMID:26977254

  6. Soil remediation by an advanced oxidative method assisted with ultrasonic energy.

    PubMed

    Flores, Roberto; Blass, Georgina; Domínguez, Vanessa

    2007-02-01

    A new process for the remediation of soil contaminated with hydrocarbons is proposed. The innovation consists on coupling an advanced oxidative method, using a Fenton-type catalyst, with the application of ultrasonic energy. The use of ultrasonic energy not only assists the desorption of the contaminants from the soil, but also promotes the formation of OH radicals, which are the oxidant agents involved in the oxidation process. Different Fenton-like catalysts were employed in the present study; however, the highest removal of toluene and xylenes were obtained with iron sulfate and copper sulfate, respectively. Also, hydrogen peroxide was tested at different concentrations, and it was found that increasing its concentration enhanced the removal of all the contaminants. Finally, it was demonstrated that applying ultrasonic energy to the reacting system process noticeably enhanced the global efficiency of the process due to a synergistic effect in conjunction with the hydrogen peroxide concentration and type of catalyst. PMID:17079076

  7. ADVANCED MR IMAGING METHODS FOR PLANNING AND MONITORING RADIATION THERAPY IN PATIENTS WITH HIGH GRADE GLIOMA

    PubMed Central

    Lupo, Janine M.; Nelson, Sarah J.

    2016-01-01

    This review explores how the integration of advanced imaging methods with high quality anatomic images significantly improves the characterization, target definition, assessment of response to therapy, and overall management of patients with high-grade glioma. Metrics derived from diffusion, perfusion, and susceptibility weighted MR imaging in conjunction with MR spectroscopic imaging, allows us to characterize regions of edema, hypoxia, increased cellularity, and necrosis within heterogeneous tumor and surrounding brain tissue. Quantification of such measures may provide a more reliable initial representation of tumor delineation and response to therapy than changes in the contrast enhancing or T2 lesion alone and have a significant impact on targeting resection, planning radiation, and assessing treatment effectiveness. In the long-term, implementation of these imaging methodologies can also aid in the identification of recurrent tumor and its differentiation from treatment-related confounds and facilitate the detection of radiation-induced vascular injury in otherwise normal appearing brain tissue. PMID:25219809

  8. A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin

    1989-01-01

    A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.

  9. Assessment of Crack Detection in Cast Austenitic Piping Components Using Advanced Ultrasonic Methods.

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2007-01-01

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the utility, effec¬tiveness and limitations of ultrasonic testing (UT) inspection techniques as related to the in-service inspec¬tion of primary system piping components in pressurized water reactors (PWRs). Cast stainless steel pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The low-frequency ultrasonic method employed a zone-focused, multi-incident angle inspection protocol (operating at 250-450 kHz) coupled with a synthetic aperture focusing technique (SAFT) for improved signal-to-noise and advanced imaging capabilities. The phased array approach was implemented with a modified instrument operating at 500 kHz and composite volumetric images of the specimens were generated. Re¬sults from laboratory studies for assessing detection, localization and sizing effectiveness are discussed in this paper.

  10. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    PubMed Central

    Ahmed, Rafay; Oborski, Matthew J; Hwang, Misun; Lieberman, Frank S; Mountz, James M

    2014-01-01

    Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies, and importantly, for facilitating patient management, sparing patients from weeks or months of toxicity and ineffective treatment. This review will present an overview of epidemiology, molecular pathogenesis and current advances in diagnoses, and management of malignant gliomas. PMID:24711712

  11. Advanced Method for In-Field Measurement, Monitoring and Verification of Total Soil Carbon

    NASA Astrophysics Data System (ADS)

    Ebinger, M. H.; Harris, R. D.; Ploss, J. C.; Clegg, S. M.

    2005-12-01

    The Earth`s oceans, forests, agricultural lands and other natural areas absorb about half of the carbon dioxide emitted from anthropogenic sources. Terrestrial carbon sequestration strategies are immediately available to bridge the gap between current terrestrial sequestration capacity and high-capacity geologic sequestration projects available in 10 to 20 years. Terrestrial carbon sequestration strategies consist of implementing land management practices aimed at decreasing CO2 emitted into the atmosphere and developing advanced measurement tools to inventory and monitor carbon processes in soils and biota. In addition to atmospheric CO2 mitigation and carbon trading advantages, terrestrial carbon sequestration produces a variety of benefits which include reclamation of degraded lands, increased soil productivity, increased land value and a more secure food source. Carbon storage in soil depends on climate and management practices, with potential yearly increases estimated from 0 to 150 kg-C ha-1 yr-1 in semiarid environments and up to 1000 kg-C ha-1 yr-1 in more humid environments. Measuring these increases, or in some cases losses of C, is currently a challenge with conventional instrumentation. Development of rapid, accurate, and cost effective and methods of measuring soil carbon are needed to address terrestrial sequestration issues and other aspects of global change. Laser-induced breakdown spectroscopy (LIBS) is one promising advanced measurement method for soil carbon. LIBS has several advantages to conventional analytical tools including speed, analysis takes minutes, and portability as well as increased accuracy and precision. We will show the development of LIBS instrumentation for soil carbon measurement and test results to demonstrate the potential of LIBS to help address the measurement challenge.

  12. Front Matter and Contents.

    PubMed

    2016-01-01

    ATCG model described in [1] ('Applied Theory accounting for human moleCular Genetics'), which constitutes a solid foundation for the present work. The author has a master degree in biochemistry, a master degree in computer science (systems development, informatics) and a European Doctorate and PhD in health informatics. The author has had a full-time research position for about 35 years, divided on a university hospital, the software industry and a university, while cross-fertilising the two professions; the time in the industry and the university mainly was dedicated to participation in large and advanced EU R&D Research projects. This combination of professional experience has enabled the present study. The present study was performed outside of any job or grant affiliation, while the author had an emeritus position at the Aalborg University. The author has since the year 2000 been a member of the scientific team describing the Mereon Matrix (for this, see [2]), went on early retirement in 2011 to work full time on the Mereon Matrix, and is independently continuing such scientific investigations on the matrix. Contact information: jytte@brender.dk and jbr@hst.aau.dk. Acknowledgements The author is deeply grateful for her position as Emeritus Assoc. Professor at her former university affiliation at Aalborg University, Dept. of Health Science and Technology, as this enabled a full and free access to most of the original scientific literature. Without this, the present study would have been critically hampered. The author is deeply grateful for continuous brainstorming and constructive feedback on and in the process with her husband, Dr. Peter McNair, retired director of the Medical Genetics Laboratory, KennedyCenter (DK-2600 Glostrup, Denmark). Conflicting Interests The author declares that there was and is no conflicting interests, financial or otherwise, that would or could have influenced the outcome of the study. The author's work on the Mereon Matrix was not

  13. Light-Front Holography and Novel Effects in QCD

    SciTech Connect

    Brodsky, Stanley J.; Teramond, Guy F. de

    2009-04-20

    The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate z with an invariant light-front coordinate {zeta} which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schroedinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. The distinction between static structure functions such as the probability distributions computed from the square of the light-front wavefunctions versus dynamical structure functions which include the effects of rescattering is emphasized. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.

  14. Light-Front Holography and Novel Effects in QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.

    2008-12-18

    The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate z with an invariant light-front coordinate {zeta} which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schroedinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. The distinction between static structure functions such as the probability distributions computed from the square of the light-front wavefunctions versus dynamical structure functions which include the effects of rescattering is emphasized. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.

  15. An advanced synthetic eddy method for the computation of aerofoil-turbulence interaction noise

    NASA Astrophysics Data System (ADS)

    Kim, Jae Wook; Haeri, Sina

    2015-04-01

    This paper presents an advanced method to synthetically generate flow turbulence via an inflow boundary condition particularly designed for three-dimensional aeroacoustic simulations. The proposed method is virtually free of spurious noise that might arise from the synthetic turbulence, which enables a direct calculation of propagated sound waves from the source mechanism. The present work stemmed from one of the latest outcomes of synthetic eddy method (SEM) derived from a well-defined vector potential function creating a divergence-free velocity field with correct convection speeds of eddies, which in theory suppresses pressure fluctuations. In this paper, a substantial extension of the SEM is introduced and systematically optimised to create a realistic turbulence field based on von Kármán velocity spectra. The optimised SEM is then combined with a well-established sponge-layer technique to quietly inject the turbulent eddies into the domain from the upstream boundary, which results in a sufficiently clean acoustic field. Major advantages in the present approach are: a) that genuinely three-dimensional turbulence is generated; b) that various ways of parametrisation can be created to control/characterise the randomly distributed eddies; and, c) that its numerical implementation is efficient as the size of domain section through which the turbulent eddies should be passing can be adjusted and minimised. The performance and reliability of the proposed SEM are demonstrated by a three-dimensional simulation of aerofoil-turbulence interaction noise.

  16. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method

    PubMed Central

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  17. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method.

    PubMed

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  18. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    SciTech Connect

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence rate of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.

  19. Fast discrimination of danshen from different geographical areas by NIR spectroscopy and advanced cluster analysis method

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wang, Yan; Xu, Kexin

    2006-09-01

    Near infrared (NIR) diffuse reflection spectroscopy has been an effective way to perform quantitative analysis without the requirement of sample pretreatnient. In this paper, NIR Fourier transform infrared (FTIR) spectroscopy has been introduced to probe spectral features of traditional Chinese medicine Danshen. Infrared fingerprint spectra of Danshen can be established. Influence of differentiation of spectrum is also discussed. After pretreatment and derivation on the spectral data, methods of principal analysis (PCA), soft independent modeling of class analogy (SIMCA) and Artificial Neural Network (ANN) are combined to sort the geographical origins of 53 samples by local modeling. The result show that, as a basis of the other two methods, PCA is a more efficient one for identifying the geographical origins of Danshen. Combining SIMCA with PCA, an effective model is built to analyze the data after normalization and differentiation, the correct identification rate reaches above 90%. Then 36 samples are chosen as training set while other 17 samples being verifying set. Using ANN-based Back Propagation method, after proper training of BP network, the origins of Danshen are completely classified. Therefore, combined with advanced mathematical analysis, NIR diffuse spectroscopy can be a novel and rapid way to accurately evaluate the origin of Chinese medicine, and also to accelerate the modernization process of Chinese drugs.

  20. Align the Front End First.

    ERIC Educational Resources Information Center

    Perry, Jim

    1995-01-01

    Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)

  1. Teaching the French Popular Front.

    ERIC Educational Resources Information Center

    Wall, Irwin M.

    1987-01-01

    Examines the French Popular Front of 1936 as a vehicle to investigate the turbulent decade of the 1930s. Reviews current historiography and discusses various facets of Leon Blum's government, examining the interrelationship of major economic and political forces. Concludes that the French Left still faces Blum's dilemma of implementing socialism…

  2. Theory for the curvature dependence of delta front progradation

    NASA Astrophysics Data System (ADS)

    Ke, Wun-Tao; Capart, Hervé

    2015-12-01

    When Gilbert-type deltas respond to uneven sediment supply or advance over irregular basin bathymetry, they develop curved, creased fronts prograding at speeds that vary with location along the shoreline. Relations governing the progradation rate, however, have so far been proposed only for simple special cases. In this paper, we exploit the special properties of solutions to the eikonal equation to derive a general progradation relation, applicable to delta fronts of finite angle of repose and arbitrary shoreline planform. In these circumstances, the theory explicitly relates the progradation rate to the local shoreline curvature. We illustrate the resulting morphodynamics with numerical and analytical solutions for a sinuous delta front. The proposed relation can be used to model deltaic evolution or deduce spanwise distributions of sediment supply rates from observations of foreset evolution.

  3. Fluctuation-controlled front propagation

    NASA Astrophysics Data System (ADS)

    Ridgway, Douglas Thacher

    1997-09-01

    A number of fundamental pattern-forming systems are controlled by fluctuations at the front. These problems involve the interaction of an infinite dimensional probability distribution with a strongly nonlinear, spatially extended pattern-forming system. We have examined fluctuation-controlled growth in the context of the specific problems of diffusion-limited growth and biological evolution. Mean field theory of diffusion-limited growth exhibits a finite time singularity. Near the leading edge of a diffusion-limited front, this leads to acceleration and blowup. This may be resolved, in an ad hoc manner, by introducing a cutoff below which growth is weakened or eliminated (8). This model, referred to as the BLT model, captures a number of qualitative features of global pattern formation in diffusion-limited aggregation: contours of the mean field match contours of averaged particle density in simulation, and the modified mean field theory can form dendritic features not possible in the naive mean field theory. The morphology transition between dendritic and non-dendritic global patterns requires that BLT fronts have a Mullins-Sekerka instability of the wavefront shape, in order to form concave patterns. We compute the stability of BLT fronts numerically, and compare the results to fronts without a cutoff. A significant morphological instability of the BLT fronts exists, with a dominant wavenumber on the scale of the front width. For standard mean field fronts, no instability is found. The naive and ad hoc mean field theories are continuum-deterministic models intended to capture the behavior of a discrete stochastic system. A transformation which maps discrete systems into a continuum model with a singular multiplicative noise is known, however numerical simulations of the continuum stochastic system often give mean field behavior instead of the critical behavior of the discrete system. We have found a new interpretation of the singular noise, based on maintaining

  4. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Rogers, Craig A.

    1998-07-01

    The emerging electro-mechanical impedance technology has high potential for in-situ health monitoring and NDE of structural systems and complex machinery. At first, the fundamental principles of the electro-mechanical impedance method are briefly reviewed and ways for practical implementation are highlighted. The equations of piezo- electric material response are given, and the coupled electro-mechanical impedance of a piezo-electric wafer transducer as affixed to the monitored structure is discussed. Due to the high frequency operation of this NDE method, wave propagation phenomena are identified as the primary coupling method between the structural substrate and the piezo-electric wafer transducer. Attention is then focused on several recent advancements that have extended the electro-mechanical impedance method into new areas of applications and/or have developed its underlying principles. US Army Construction Engineering Research Laboratory used the electro-mechanical impedance method to monitor damage development in composite overlaid civil infrastructure specimens under full-scale static testing. A simplified E/M impedance measuring technique was employed at the Polytechnic University of Madrid, Spain, to detect damage in GFRP composite specimens. The development of miniaturized `bare-bones' impedance analyzer equipment that could be easily packaged into transponder-size dimensions is being studied at the University of South Carolina. US Army Research Laboratory developed novel piezo-composite film transducers for embedment into composite structures. Disbond gauges for monitoring the structural joints of adhesively bonded rotor blades have been studies in the Mechanical Engineering Department at the University of South Carolina. These recent developments accentuate the importance and benefits of using the electro-mechanical impedance method for on-line health monitoring and damage detection in a variety of applications. Further investigation of the electro

  5. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  6. Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment

    NASA Technical Reports Server (NTRS)

    Yackovetsky, Robert (Technical Monitor)

    2002-01-01

    The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.

  7. Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges

    DOE PAGESBeta

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Pharr, George M.

    2015-04-30

    In this study, we describe recent advances and developments for the measurement of fracture toughness at small scales by the use of nanoindentation-based methods including techniques based on micro-cantilever beam bending and micro-pillar splitting. A critical comparison of the techniques is made by testing a selected group of bulk and thin film materials. For pillar splitting, cohesive zone finite element simulations are used to validate a simple relationship between the critical load at failure, the pillar radius, and the fracture toughness for a range of material properties and coating/substrate combinations. The minimum pillar diameter required for nucleation and growth ofmore » a crack during indentation is also estimated. An analysis of pillar splitting for a film on a dissimilar substrate material shows that the critical load for splitting is relatively insensitive to the substrate compliance for a large range of material properties. Experimental results from a selected group of materials show good agreement between single cantilever and pillar splitting methods, while a discrepancy of ~25% is found between the pillar splitting technique and double-cantilever testing. It is concluded that both the micro-cantilever and pillar splitting techniques are valuable methods for micro-scale assessment of fracture toughness of brittle ceramics, provided the underlying assumptions can be validated. Although the pillar splitting method has some advantages because of the simplicity of sample preparation and testing, it is not applicable to most metals because their higher toughness prevents splitting, and in this case, micro-cantilever bend testing is preferred.« less

  8. Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges

    SciTech Connect

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; Pharr, George M.

    2015-04-30

    In this study, we describe recent advances and developments for the measurement of fracture toughness at small scales by the use of nanoindentation-based methods including techniques based on micro-cantilever beam bending and micro-pillar splitting. A critical comparison of the techniques is made by testing a selected group of bulk and thin film materials. For pillar splitting, cohesive zone finite element simulations are used to validate a simple relationship between the critical load at failure, the pillar radius, and the fracture toughness for a range of material properties and coating/substrate combinations. The minimum pillar diameter required for nucleation and growth of a crack during indentation is also estimated. An analysis of pillar splitting for a film on a dissimilar substrate material shows that the critical load for splitting is relatively insensitive to the substrate compliance for a large range of material properties. Experimental results from a selected group of materials show good agreement between single cantilever and pillar splitting methods, while a discrepancy of ~25% is found between the pillar splitting technique and double-cantilever testing. It is concluded that both the micro-cantilever and pillar splitting techniques are valuable methods for micro-scale assessment of fracture toughness of brittle ceramics, provided the underlying assumptions can be validated. Although the pillar splitting method has some advantages because of the simplicity of sample preparation and testing, it is not applicable to most metals because their higher toughness prevents splitting, and in this case, micro-cantilever bend testing is preferred.

  9. Efficient method development strategy for challenging separation of pharmaceutical molecules using advanced chromatographic technologies.

    PubMed

    Xiao, Kang Ping; Xiong, Yuan; Liu, Fang Zhu; Rustum, Abu M

    2007-09-01

    In this paper, we describe a strategy that can be used to efficiently develop a high-performance liquid chromatography (HPLC) separation of challenging pharmaceutical molecules. This strategy involves use of advanced chromatographic technologies, such as a computer-assisted chromatographic method development tool (ChromSword) and an automated column switching system (LC Spiderling). This process significantly enhances the probability of achieving adequate separations and can be a large time saver for bench analytical scientists. In our study, the ChromSword was used for mobile phase screening and separation optimization, and the LC Spiderling was used to identify the most appropriate HPLC columns. For proof of concept, the analytes employed in this study are the structural epimers betamethylepoxide and alphamethylepoxide (also known as 16-beta methyl epoxide and 16-alpha methyl epoxide). Both of these compounds are used in the synthesis of various active pharmaceutical ingredients that are part of the steroid pharmaceutical products. While these molecules are relatively large in size and contain various polar functional groups and non-polar cyclic carbon chains, their structures differ only in the orientation of one methyl group. To our knowledge, there is no reported HPLC separation of these two molecules. A simple gradient method was quickly developed on a 5 cm YMC Hydrosphere C(18) column that separated betamethylepoxide and alphamethylepoxide in 10 min with a resolution factor of 3.0. This high resolution provided a true baseline separation even when the concentration ratio between these two epimers was 10,000:1. Although outside of the scope of this paper, stability-indicating assay and impurity profile methods for betamethylepoxide and for alphamethylepoxide have also been developed by our group based on a similar method development strategy. PMID:17628579

  10. Temporality Matters: Advancing a Method for Analyzing Problem-Solving Processes in a Computer-Supported Collaborative Environment

    ERIC Educational Resources Information Center

    Kapur, Manu

    2011-01-01

    This paper argues for a need to develop methods for examining temporal patterns in computer-supported collaborative learning (CSCL) groups. It advances one such quantitative method--Lag-sequential Analysis (LsA)--and instantiates it in a study of problem-solving interactions of collaborative groups in an online, synchronous environment. LsA…

  11. Recent advances in the modeling of plasmas with the Particle-In-Cell methods

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv

    2015-11-01

    The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.

  12. Advanced development of the boundary element method for steady-state heat conduction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, Prasanta K.

    1989-01-01

    Considerable progress has been made in recent years toward advancing the state-of-the-art in solid mechanics boundary element technology. In the present work, much of this new technology is applied in the development of a general-purpose boundary element method (BEM) for steady-state heat conduction. In particular, the BEM implementation involves the use of higher-order conforming elements, self-adaptive integration and multi-region capability. Two- and three-dimensional, as well as axisymmetric analysis, are incorporated within a unified framework. In addition, techniques are introduced for the calculation of boundary flux, and for the inclusion of thermal resistance across interfaces. As a final extension, an efficient formulation is developed for the analysis of solid three-dimensional bodies with embedded holes. For this last class of problems, the new BEM formulation is particularly attractive, since use of the alternatives (i.e. finite element or finite difference methods) is not practical. A number of detailed examples illustrate the suitability and robustness of the present approach for steady-state heat conduction.

  13. Application of advanced methods for the prognosis of production energy consumption

    NASA Astrophysics Data System (ADS)

    Stetter, R.; Witczak, P.; Staiger, B.; Spindler, C.; Hertel, J.

    2014-12-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process.

  14. Developing Advanced Seismic Imaging Methods For Characterizing the Fault Zone Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Haijiang

    2015-04-01

    Here I present a series of recent developments on seismic imaging of fault zone structure. The goals of these advanced methods are to better determine the physical properties (including seismic velocity, attenuation, and anisotropy) around the fault zone and its boundaries. In order to accurately determine the seismic velocity structure of the fault zone, we have recently developed a wavelet-based double-difference seismic tomography method, in which the wavelet coefficients of the velocity model, rather than the model itself, are solved using both the absolute and differential arrival times. This method takes advantage of the multiscale nature of the velocity model and the multiscale wavelet representation property. Because of the velocity model is sparse in the wavelet domain, a sparsity constraint is applied to tomographic inversion. Compared to conventional tomography methods, the new method is both data- and model-adaptive, and thus can better resolve the fault zone structure. In addition to seismic velocity property of the fault zone, seismic anisotropy and attenuation properties are also important to characterize the fault zone structure. For this reason, we developed the seismic anisotropy tomography method to image the three-dimensional anisotropy strength model of the fault zone using shear wave splitting delay times between fast and slow shear waves. The applications to the San Andreas fault around Parkfield, California and north Anatolian fault in Turkey will be shown. To better constrain the seismic attenuation structure, we developed a new seismic attenuation tomography method using measured t* values for first arrival body waves, in which the structures of attenuation and velocity models are similar through the cross-gradient constraint. Seismic tomography can, however, only resolve the smooth variations in elastic properties in Earth's interior. To image structure at length scales smaller than what can be resolved tomographically, including

  15. Life on the front lines.

    PubMed

    Hern, W M

    1993-01-01

    honor those who advanced the cause of women's rights. They honored the physician who had to shout over hecklers to make his remarks heard. After a year of operation, the physician encountered differences with the Board of Directors of the clinic. Soon after that, he resigned and opened his own clinic with a bank loan of $7000. Within 4 years, his clinic had expanded, and he purchased its building. The harassment from antiabortion protesters continued, with broken windows, pickets, and, in February 1988, bullets fired through the front windows of the waiting room. This necessitated the installation of bullet-proof glass and a security system which cost $17,000. As of March 1, 1993, there had been 1285 acts of violence towards abortion clinics, which led to the destruction of more than 100. On March 10 of that year, a physician who performed abortions in Florida was gunned down by an anti-abortion protestor. People who provide abortions hope for legal protection and respect for their civil liberties, but they will continue to provide this service even if conditions do not improve. PMID:8274868

  16. Spatial and temporal variability of sea-surface temperature fronts in the coastal Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Mustapha, Sélima Ben; Larouche, Pierre; Dubois, Jean-Marie

    2016-08-01

    An analysis of 11 years of sea surface temperatures images allowed the determination of the frontal occurrence probability in the southeastern Beaufort Sea using the single-image edge detection method. Results showed that, as the season progresses, fronts become more detectable due to solar heating of the surface layer. Some recurrent features can be identified in the summer time frontal climatology such as the Mackenzie River plume front, the Cape Bathurst front, the Mackenzie Trough front and the Amundsen Gulf front. These areas may be playing an important role in the biological processes acting as drivers to local enhanced biological productivity.

  17. Evolution of density compensated fronts in simulated ocean mixed layers

    NASA Astrophysics Data System (ADS)

    Helber, R. W.; Hebert, D. A.; Koch, A.

    2015-12-01

    Observations within the ocean surface mixed layer indicate a tendency for temperature gradients to form that are compensated for their effect on density by salinity gradients. These density compensated fronts tend to occur in the absence of strong surface forcing and thus weak vertical mixing. Observations show that density compensated fronts are quickly erased by surface cooling events. The presence of density compensated gradients in the surface mixed layer, however, are not well represented in regional and global ocean circulation model predictions. In these models, subgrid-scale processes are parameterized with minimal ability to represent double diffusion. Recent advances in parameterizations have been developed to model the re-stratification of the mixed layer by sub-mesoscale eddies. These ageostrophic dynamics can lead to long filaments that are governed by process on length scales from 100 m to 10 km and time scales near a day. The impact of these processes in model physics on density compensated fronts is unclear. To improve our understanding of compensated front evolution in the ocean, three different mixing schemes are tested to evaluate the creation of horizontally density compensated gradients in model simulations. One scheme extracts potential energy of ocean fronts for mixing dependent on horizontal and vertical buoyancy gradients, mixed layer depth, and inertial period. The other two schemes mix temperature and salinity horizontally dependent on the buoyancy gradient. All schemes provide a three dimensional approach to mixing that differentiates the horizontal eddy diffusion of temperature and salinity.

  18. Reaction front formation in contaminant plumes

    NASA Astrophysics Data System (ADS)

    Cribbin, Laura B.; Winstanley, Henry F.; Mitchell, Sarah L.; Fowler, Andrew C.; Sander, Graham C.

    2014-12-01

    The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front.

  19. Helicity amplitudes on the light-front

    NASA Astrophysics Data System (ADS)

    Cruz Santiago, Christian A.

    Significant progress has been made recently in the field of helicity amplitudes. Currently there are on-shell recursion relations with shifted complex momenta, geometric interpretations of amplitudes and gauge invariant off-shell amplitudes. All this points to helicity amplitudes being a rich field with much more to say. In this work we take initial steps in understanding amplitudes through the light-front formalism for the first time. We begin by looking at crossing symmetry. In the light-front it is not obvious that crossing symmetry should be present as there are non-local energy denominators that mix energies of different states. Nevertheless, we develop a systematic approach to relate, for example, 1 → N gluon processes to 2 → N -- 1 processes. Using this method, we give a perturbative proof of crossing symmetry on the light-front. One important caveat is that the proof requires the amplitudes to be on-shell. We also saw that the analytic continuation from outgoing to incoming particle produces a phase that's dependent on the choice of polarizations. Next, we reproduce the Parke-Taylor amplitudes. For this purpose we found a recursion relation for an off-shell object called the fragmentation function. This recursion relies on the factorization property of the fragmentation functions, and it becomes apparent that this recursion is the light-front analog of the Berends-Giele recursion relation. We also found this object's connection to off-shell and on-shell amplitudes. The solution for the off-shell amplitude, which does reproduce the Parke-Taylor amplitudes in the on-shell limit, turns out to be very interesting. It can be written as a linear sum of off-shell objects with the same structure as MHV amplitudes. Finally, we look at the Wilson line approach to generate gauge invariant off-shell amplitudes. It turns out that the exact same recursion relation appears on both frameworks, thereby providing the interpretation that our recursion relation has it

  20. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    The Fluid Mechanics and Acoustics Laboratory (FM&AL) was established At Hampton University in June of 1996. In addition, the FM&AL jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a 2.5 year Civilian Research and Development Foundation (CRDF). The goals of the FM&AL programs are two fold: 1) to improve the working efficiency of the FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. This project already benefits NASA and HU because: First, the innovation, testing, and further development of new techniques for advanced propulsion systems are necessary for the successful attainment of the NASA Long Term Goals in Aeronautics and Space Transportation Technology (ASTT) including Global Civil Aviation, Revolutionary Technology Leaps, Access to Space, R&D Services, and the economic competitiveness of the US Aircraft Industry in the 2 1 st century. Secondly, the joint

  1. Front and backside processed thin film electronic devices

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  2. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using

  3. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    NASA Astrophysics Data System (ADS)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  4. Advancing Higher Education with Mobile Learning Technologies: Cases, Trends, and Inquiry-Based Methods

    ERIC Educational Resources Information Center

    Keengwe, Jared, Ed.; Maxfield, Marian B., Ed.

    2015-01-01

    Rapid advancements in technology are creating new opportunities for educators to enhance their classroom techniques with digital learning resources. Once used solely outside of the classroom, smartphones, tablets, and e-readers are becoming common in many school settings. "Advancing Higher Education with Mobile Learning Technologies: Cases,…

  5. Development and validation of an advanced low-order panel method

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.; Iguchi, Steven K.; Dudley, Michael

    1988-01-01

    A low-order potential-flow panel code, PMARC, for modeling complex three-dimensional geometries, is currently being developed at NASA Ames Research Center. The PMARC code was derived from a code named VSAERO that was developed for Ames Research Center by Analytical Methods, Inc. In addition to modeling potential flow over three-dimensional geometries, the present version of PMARC includes several advanced features such as an internal flow model, a simple jet wake model, and a time-stepping wake model. Data management within the code was optimized by the use of adjustable size arrays for rapidly changing the size capability of the code, reorganization of the output file and adopting a new plot file format. Preliminary versions of a geometry preprocessor and a geometry/aerodynamic data postprocessor are also available for use with PMARC. Several test cases are discussed to highlight the capabilities of the internal flow model, the jet wake model, and the time-stepping wake model.

  6. Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor

    SciTech Connect

    Lawler, J.S.

    2001-10-29

    The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA) [1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitive to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance.

  7. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.

    2003-01-01

    The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.

  8. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    NASA Astrophysics Data System (ADS)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  9. Advanced and High-Throughput Method for Mitochondrial Bioenergetics Evaluation in Neurotrauma.

    PubMed

    Pandya, Jignesh D; Sullivan, Patrick G; Leung, Lai Yee; Tortella, Frank C; Shear, Deborah A; Deng-Bryant, Ying

    2016-01-01

    Mitochondrial dysfunction is one of the key posttraumatic neuropathological events observed in various experimental models of traumatic brain injury (TBI). The extent of mitochondrial dysfunction has been associated with the severity and time course of secondary injury following brain trauma. Critically, several mitochondrial targeting preclinical drugs used in experimental TBI models have shown improved mitochondrial bioenergetics, together with cortical tissue sparing and cognitive behavioral outcome. Mitochondria, being a central regulator of cellular metabolic pathways and energy producer of cells, are of a great interest for researchers aiming to adopt cutting-edge methodology for mitochondrial bioenergetics assessment. The traditional way of mitochondrial bioenergetics analysis utilizing a Clark-type oxygen electrode (aka. oxytherm) is time-consuming and labor-intensive. In the present chapter, we describe an advanced and high-throughput method for mitochondrial bioenergetics assessments utilizing the Seahorse Biosciences XF(e)24 Flux Analyzer. This allows for simultaneous measurement of multiple samples with higher efficiency than the oxytherm procedure. This chapter provides helpful guidelines for conducting mitochondrial isolation and studying mitochondrial bioenergetics in brain tissue homogenates following experimental TBI. PMID:27604740

  10. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  11. Phyllotaxis, Pushed Pattern-Forming Fronts, and Optimal Packing

    NASA Astrophysics Data System (ADS)

    Pennybacker, Matthew; Newell, Alan C.

    2013-06-01

    We demonstrate that the pattern forming partial differential equation derived from the auxin distribution model proposed by Meyerowitz, Traas, and others gives rise to all spiral phyllotaxis properties observed on plants. We show how the advancing pushed pattern front chooses spiral families enumerated by Fibonacci sequences with all attendant self-similar properties, a new amplitude invariant curve, and connect the results with the optimal packing based algorithms previously used to explain phyllotaxis. Our results allow us to make experimentally testable predictions.

  12. Development of new methods and polyphosphazene chemistries for advanced materials applications

    NASA Astrophysics Data System (ADS)

    Hindenlang, Mark D.

    The work described within this thesis focuses on the design, synthesis, and characterization of new phosphazenes with potential in advanced materials applications. Additionally, these unique polymers required the development of novel reaction methods or the investigation of new phosphazene chemistry to achieve their synthesis. Chapter 1 lays out some of the basic principles and fundamentals of polymer chemistry. Chapter 2 investigates the use of iodinated polyphosphazenes as x-ray opaque materials. Single-substituent polymers with 4-iodophenoxy or 4-iodophenylanaline ethyl ester units as the only side groups were prepared. Although a single-substitutent polymer with 3,5-diiodotyrosine ethyl ester groups was difficult to synthesize, probably because of steric hindrance, mixed-substituent polymers that contained the non-iodinated ethyl esters of glycyine, alanine, or phenylalanine plus a corresponding iodinated substituent, could be synthesized. Multinuclear NMR spectroscopy was used to follow the substitution of side groups onto the phosphazene back bone and judge the ratio of substituents. Chapter 3 details the initial investigation into 3,4-dihydroxy-L-phenylalanine ethyl ester and dopamine substituted polyphosphazenes that could be applied to a number of applications. L-DOPAEE was acetonide protected to prevent crosslinking reactions by the catechole functionality. Cyclic small molecule studies and macromolecular substitution reactions on the linear high polymer were conducted with the protected L-DOPA. Continuing studies into protection of the dopamine catechol have elucidated a viable method for the synthesis of amino-linked dopamine polymers. Chapter 4 describes a method for the synthesis of phosphazenes with quaternary amine complexes as potential antibacterial agents. Replacement reactions of pyridine alkoxides and chlorophosphazenes were first attempted at the small molecule level to study the reactivities of pyridine alkoxides. The formation of an

  13. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail M.

    2001-01-01

    Three connected sub-projects were conducted under reported project. Partially, these sub-projects are directed to solving the problems conducted by the HU/FM&AL under two other NASA grants. The fundamental idea uniting these projects is to use untraditional 3D corrugated nozzle designs and additional methods for exhaust jet noise reduction without essential thrust lost and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves forming in propulsion systems; this mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) to use porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of exhaust hot jet and pressure compensation for non-design conditions (so-called continuous ejector with small mass flow rate; and (3) to propose and analyze new effective methods fuel injection into flow stream in air-breathing engines. Note that all these problems were formulated based on detailed descriptions of the main experimental facts observed at NASA Glenn Research Center. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of finding theoretical explanations for experimental facts and the creation of the accurate numerical simulation technique and prediction theory for solutions for current problems in propulsion systems solved by NASA and Navy agencies. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analysis for advanced aircraft and rocket engines. The F&AL Team uses analytical methods, numerical simulations, and possible experimental tests at the Hampton University campus. We will present some management activity

  14. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    -P times in a manner similar to double-difference tomography. Obtaining a reliable Vp/Vs model of the subduction zone is more helpful for understanding its mechanical and petrologic properties. Our applications of the original version of double-difference tomography to several subduction zones beneath northern Honshu, Japan, the Wellington region, New Zealand, and Alaska, United States, have shown evident velocity variations within and around the subducting slab, which likely is evidence of dehydration reactions of various hydrous minerals that are hypothesized to be responsible for intermediate depth earthquakes. We will show the new velocity models for these subduction zones by applying our advanced tomographic methods.

  15. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  16. Advanced methods for controlling untethered magnetic devices using rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Mahoney, Arthur W., Jr.

    This dissertation presents results documenting advancements on the control of untethered magnetic devices, such as magnetic "microrobots" and magnetically actuated capsule endoscopes, motivated by problems in minimally invasive medicine. This dissertation focuses on applying rotating magnetic fields for magnetic manipulation. The contributions include advancements in the way that helical microswimmers (devices that mimic the propulsion of bacterial flagella) are controlled in the presence of gravitational forces, advancements in ways that groups of untethered magnetic devices can be differentiated and semi-independently controlled, advancements in the way that untethered magnetic device can be controlled with a single rotating permanent magnet, and an improved understanding in the nature of the magnetic force applied to an untethered device by a rotating magnet.

  17. Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams

    SciTech Connect

    Schell, Stefan; Wilkens, Jan J.

    2010-10-15

    lateral clustering and reduce the number of particles that have to be blocked in the beam delivery system. Furthermore, the optimization routine can be adjusted to reduce the number of dose spots and laser shots. The authors implemented these methods into a research treatment planning system for laser accelerated particles. Results: The authors' proposed methods can decrease the amount of secondary radiation produced when blocking particles with wrong energies or when reducing the total number of particles from one laser shot. Additionally, caused by the efficient use of the beam, the treatment time is reduced considerably. Both improvements can be achieved without extensively changing the quality of the treatment plan since conventional intensity modulated particle therapy usually includes a certain amount of unused degrees of freedom which can be used to adapt to laser specific properties. Conclusions: The advanced beam delivery and treatment planning methods reduce the need to have a perfect laser-based accelerator reproducing the properties of conventional accelerators that might not be possible without increasing treatment time and secondary radiation to the patient. The authors show how some of the differences to conventional beams can be overcome and efficiently used for radiation treatment.

  18. 41 CFR 302-7.106 - What documentation is required to receive an advance under the commuted rate method?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What documentation is required to receive an advance under the commuted rate method? 302-7.106 Section 302-7.106 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION...

  19. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Povitsky, Alex; Schkolnikov, Natalia; Njoroge, Norman; Coston, Calvin; Blankson, Isaiah M.

    2001-01-01

    The Fluid Mechanics and Acoustics Laboratory at Hampton University (HU/FM&AL) jointly with the NASA Glenn Research Center has conducted four connected subprojects under the reporting project. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of theoretical explanation of experimental facts and creation of accurate numerical simulation techniques and prediction theory for solution of current problems in propulsion systems of interest to the NAVY and NASA agencies. This work is also supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and possible experimental tests at the Hampton University campus. The fundamental idea uniting these subprojects is to use nontraditional 3D corrugated and composite nozzle and inlet designs and additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. These subprojects are: (1) Aeroperformance and acoustics of Bluebell-shaped and Telescope-shaped designs; (2) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round, diamond-round and other nozzles; (3) Measurement technique improvement for the HU Low Speed Wind Tunnel; a new course in the field of aerodynamics, teaching and training of HU students; experimental tests of Mobius-shaped screws: research and training; (4) Supersonic inlet shape optimization. The main outcomes during this reporting period are: (l) Publications: The AIAA Paper #00-3170 was presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17-19 June, 2000, Huntsville, AL. The AIAA

  20. Early identification of cervical neoplasia with Raman spectroscopy and advanced methods for biomedical applications

    NASA Astrophysics Data System (ADS)

    Jess, Phillip R. T.; Smith, Daniel D. W.; Mazilu, Michael; Cormack, Iain; Riches, Andrew C.; Herrington, C. Simon; Dholakia, Kishan

    2008-02-01

    Early detection of malignant tumours, or their precursor lesions, can dramatically improve patient outcome. High risk human Papillomavirus (HPV), particularly HPV16, infection can lead to the initiation and development of uterine cervical neoplasia. Bearing this in mind the identification of the effects of HPV infection may have clinical value. In this manuscript we investigate the application of Raman microspectroscopy to detect the presence of HPV in cultured cells when compared with normal cells. We also investigate the effect of sample fixation, which is a common clinical practice, on the ability of Raman spectroscopy to detect the presence of HPV. Raman spectra were acquired from Primary Human Keratinocytes (PHK), PHK expressing the E7 gene of HPV 16 (PHK E7) and CaSki cells, an HPV16 containing cervical carcinoma derived cell line. The average Raman spectra display variations, mostly in peaks relating to DNA and proteins, consistent with HPV gene expression and the onset of neoplasia in both live and fixed samples. Principle component analysis was used to objectively discriminate between the cells types giving sensitivities up to 100% for the comparison between PHK and CaSki. These results show that Raman spectroscopy can discriminate between cell lines representing different stages of cervical neoplasia. Furthermore Raman spectroscopy was able to identify cells expressing the HPV 16 E7 gene suggesting the approach may be of value in clinical practice. Finally this technique was also able to detect the effects of the virus in fixed samples demonstrating the compatibility of this technique with current cervical screening methods. However if Raman spectroscopy is to make a significant impact in clinical practice the long acquisition times must be addressed. In this report we examine the potential for beam shaping and advanced to improve the signal to noise ration hence subsequently facilitating a reduction in acquisition time.

  1. Characterization and risk assessment of PAH-contaminated river sediment by using advanced multivariate methods.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Kao, Yu-Hsuan; Jang, Cheng-Shin

    2015-08-15

    This study applied advanced multivariate methods and risk assessment to evaluate the characteristics of polycyclic aromatic hydrocarbons (PAHs) in the sediment of the severely polluted Erjen River in Taiwan. High-molecular-weight PAHs (HPAHs) dominated in the rainy season. The ecological risk of PAHs in the sediment was low, whereas the total health risk through ingestion and dermal contact was considerably high. The SOM (self-organizing map) analysis clustered the datasets of PAH-contaminated sediment into five groups with similar concentration levels. Factor analysis identified major factors, namely coal combustion, traffic, petrogenic, and petrochemical industry factors, accounting for 88.67% of the variance in the original datasets. The major tributary and the downstream of the river were identified as PAH-contamination hotspots. The PMF (positive matrix factorization) was combined with toxicity assessment to estimate the possible apportionment of sources and the associated toxicity. Spills of petroleum-related products, vehicle exhaust, coal combustion, and exhaust from a petrochemical industry complex constituted respectively 12%, 6%, 74%, and 86% of PAHs in the sediment, but contributed respectively 7%, 15%, 22%, and 56% of toxicity posed by PAHs in the sediment. To improve the sediment quality, best management practices should be adopted to eliminate nonpoint sources of PAHs flushed by storm water into the major tributary and the downstream of the Erjen River. The proposed methodologies and results provide useful information on remediating river PAH-contaminated sediment and may be applicable to other basins with similar properties that are experiencing resembled river environmental issues. PMID:25889545

  2. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.

  3. Opportunity Rolls Free Again (Left Front Wheel)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.'

    A series of images of the rover's left front wheel, taken by the front hazard-avoidance camera, make up this brief movie. It chronicles the challenge Opportunity faced to free itself from a ripple dubbed 'Jammerbugt.' The rover's wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006).

    Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence.

    The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks.

    Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.

  4. Opportunity Rolls Free Again (Right Front Wheel)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.'

    A series of images of the rover's right front wheel, taken by the front hazard-avoidance camera, make up this brief movie. It chronicles the challenge Opportunity faced to free itself from a ripple dubbed 'Jammerbugt.' The rover's wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006).

    Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence.

    The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks.

    Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.

  5. Assessment of an ancient bridge combining geophysical and advanced photogrammetric methods: Application to the Pont De Coq, France

    NASA Astrophysics Data System (ADS)

    Fauchard, Cyrille; Antoine, Raphaël; Bretar, Frédéric; Lacogne, Julien; Fargier, Yannick; Maisonnave, Cindy; Guilbert, Vincent; Marjerie, Pierre; Thérain, Paul-Franck; Dupont, Jean-Paul; Pierrot-Deseilligny, Marc

    2013-11-01

    A high resolution geophysical survey was carried out on the Pont De Coq, a medieval stone arch bridge located in Normandy (France) in 2011 and 2012. Two complementary methods are used: Electrical Resistivity Tomography (ERT) and Ground PenetratingRadar (GPR). They allow to evaluate the structural state of the bridge and to characterize the subsurface around and beneath the bridge. An excellent correlation is obtained between the geophysical methods and the geological data obtained around the bridge. In order to improve the restitution of the geophysical data, an advanced photogrammetric method is performed, providing a high resolution 3D Digital Terrain Model (DTM) of the Pont de Coq. The advanced photogrammetry enhances the presentation of the GPR and ERT data. This approach is an easy-to-use, rapid and cost-effective tool for stakeholders. Finally, it is a promising and original method for improved interpretations of future geophysical surveys.

  6. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    SciTech Connect

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  7. Research on Intelligent Interface in Double-front Work Machines

    NASA Astrophysics Data System (ADS)

    Kamezaki, Mitsuhiro; Iwata, Hiroyasu; Sugano, Shigeki

    This paper proposes a work state identification method with full independent of work environmental conditions and operator skill levels for construction machinery. Advanced operated-work machines, which have been designed for complicated tasks, require intelligent systems that can provide the quantitative work analysis needed to determine effective work procedures and that can provide operational and cognitive support for operators. Construction work environments are extremely complicated, however, and this makes state identification, which is a key technology for an intelligent system, difficult. We therefore defined primitive static states (PSS) that are determined using on-off information for the lever inputs and manipulator loads for each part of the grapple and front and that are completely independent of the various environmental conditions and variation in operator skill level that can cause an incorrect work state identification. To confirm the usefulness of PSS, we performed experiments with a demolition task by using our virtual reality simulator. We confirmed that PSS could robustly and accurately identify the work states and that untrained skills could be easily inferred from the results of PSS-based work analysis. We also confirmed in skill-training experiments that advice information based on PSS-based skill analysis greatly improved operator's work performance. We thus confirmed that PSS can adequately identify work states and are useful for work analysis and skill improvement.

  8. Shock-front broadening in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Barber, J. L.; Kadau, K.

    2008-04-01

    We analyze a model for the evolution of shock fronts in polycrystalline materials. This model is based on the idea of Meyers and Carvalho [Mater. Sci. Eng. 24, 131 (1976)] that the shock velocity anisotropy within the polycrystal is the most important factor in shock front broadening. Our analysis predicts that the shock front width increases as the 1/2 power of the front penetration distance into the crystal. Our theoretical prediction is in plausible agreement with previous experimental results for the elastic precursor rise time, and it should therefore provide a useful shock width estimate. Furthermore, our theoretical framework is also applicable to other problems involving front propagation in heterogeneous media.

  9. Advanced Spectral Analysis Methods for Quantification of Coherent Ultrasound Scattering: Applications in the Breast

    NASA Astrophysics Data System (ADS)

    Rosado-Mendez, Ivan M.

    The goal of this dissertation was to improve the diagnostic value of parametric images generated from Quantitative Ultrasound (QUS) methods based on the power spectral density (PSD) of radiofrequency echo signals. This was achieved by testing for local adherence to conventional QUS assumptions that echo signals originate from incoherent scattering, and that signals are stationary over PSD estimation windows. For this purpose, we designed a novel algorithm that empirically evaluates the statistical significance of coherent-scattering signatures in the echo signals. Signatures are quantified through a set of optimized metrics describing the stationary or non-stationary features of the echo signals. We compared Nakagami-model based metrics and model-free metrics of the statistics of the echo signal amplitude for analyzing stationary features. For non-stationary features, we advanced the use of the echo-signal generalized spectrum by comparing single- and multi-taper estimators of this spectrum to the time-domain singular spectrum analysis method. Tests of statistical significance were done through empirical comparisons with values of the same metrics estimated from a uniform reference material exhibiting incoherent scattering. The metrics that quantify these features were selected after simulation- and phantom-based optimizations centered on the task of creating parametric images, where tradeoffs must be made between spatial resolution and detection performance. The connection of the analyses of the stationary and the non-stationary features provided a way to estimate descriptors of the tissue organization scales below and above the resolution limit imposed by the size of the acoustic pulse. A preliminary application of the developed algorithm was done on echo data from human breast lesions scanned in vivo. Results supported the idea of a more homogeneously random distribution of subresolution scatterers within invasive ductal carcinomas than within fibroadenomas

  10. IFA - INTELLIGENT FRONT ANNOTATION PROGRAM

    NASA Technical Reports Server (NTRS)

    Burke, G. R.

    1994-01-01

    An important aspect of an ASIC (Application Specific Integrated Circuit) design process is verification. The design must not only be functionally accurate, but it must also maintain the correct timing. After a circuit has been laid out, one can utilize the Back Annotation (BA) method to simulate the design and obtain an accurate estimate of performance. However, this can lead to major design changes. It is therefore preferable to eliminate potential problems early in this process. IFA, the Intelligent Front Annotation program, assists in verifying the timing of the ASIC early in the design process. Many difficulties can arise during ASIC design. In a synchronous design, both long path and short path problems can be present. In modern ASIC technologies, the delay through a gate is very dependent on loading. This loading has two main components, the capacitance of the gates being driven and the capacitance of the metal tracks (wires). When using GaAs gate arrays, the metal line capacitance is often the dominating factor. Additionally, the RC delay through the wire itself is significant in sub-micron technologies. Since the wire lengths are unknown before place and route of the entire chip, this would seem to postpone any realistic timing verification until towards the end of the design process, obviously an undesirable situation. The IFA program estimates the delays in an ASIC before layout. Currently the program is designed for Vitesse GaAs gate arrays and, for input, requires the expansion file which is output by the program GED; however, the algorithm is appropriate for many different ASIC types and CAE platforms. IFA is especially useful for devices whose delay is extremely dependent on the interconnection wiring. It estimates the length of the interconnects using information supplied by the user and information in the netlist. The resulting wire lengths are also used to constrain the Place and Route program, ensuring reasonable results. IFA takes locality into

  11. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  12. Identifying Lagrangian fronts with favourable fishery conditions

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-08-01

    Lagrangian fronts (LFs) in the ocean are defined as boundaries between surface waters with strongly different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps for displacements of synthetic tracers and other Lagrangian indicators. We use Pacific saury catch and location data for a number of commercial fishery seasons in the region of the northwest Pacific with one of the richest fishery in the world. It is shown statistically that the saury fishing grounds with maximal catches are not randomly distributed over the region but located mainly along the sharp LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts in altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions LF locations may serve as good indicators of potential fishing grounds. Possible biophysical reasons for saury aggregation near sharp LFs are discussed. We propose a mechanism for effective export of nutrient rich waters based on stretching of material lines in the vicinity of hyperbolic objects in the ocean. The developed method, based on identifying LFs in any velocity fields, is quite general and may be applied to find potential fishing grounds for the other pelagic fish.

  13. Shearlet-based detection of flame fronts

    NASA Astrophysics Data System (ADS)

    Reisenhofer, Rafael; Kiefer, Johannes; King, Emily J.

    2016-03-01

    Identifying and characterizing flame fronts is the most common task in the computer-assisted analysis of data obtained from imaging techniques such as planar laser-induced fluorescence (PLIF), laser Rayleigh scattering (LRS), or particle imaging velocimetry (PIV). We present Complex Shearlet-Based Ridge and Edge Measure (CoShREM), a novel edge and ridge (line) detection algorithm based on complex-valued wavelet-like analyzing functions—so-called complex shearlets—displaying several traits useful for the extraction of flame fronts. In addition to providing a unified approach to the detection of edges and ridges, our method inherently yields estimates of local tangent orientations and local curvatures. To examine the applicability for high-frequency recordings of combustion processes, the algorithm is applied to mock images distorted with varying degrees of noise and real-world PLIF images of both OH and CH radicals. Furthermore, we compare the performance of the newly proposed complex shearlet-based measure to well-established edge and ridge detection techniques such as the Canny edge detector, another shearlet-based edge detector, and the phase congruency measure.

  14. Double-Front Detonation Waves

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Sumskoi, S. I.; Victorov, S. B.

    According to the theory of detonation, in a detonation wave there is a sound plane, named Chapman-Jouguet (CJ) plane. There are certain stationary parameters for this plane. In this work the possibility of the second CJ plane is shown. This second CJ plane is stationary as well. The physical mechanism of non-equilibrium transition providing the existence of the second CJ plane is presented. There is a non-equilibrium state, when the heat is removed from the reaction zone and the heat capacity decreases sharply. As a result of this non-equilibrium state, the sound velocity increases, and the local supersonic zone with second sonic plane (second CJ plane) appears. So the new mode of detonation wave is predicted. Equations describing this mode of detonation are presented. The exact analytical solution for the second CJ plane parameters is obtained. The example of double-front detonation in high explosive (TNT) is presented. In this double-front structure "nanodiamond-nanographite" phase transition takes place in condensed particles of detonation products.

  15. Dipolarization Fronts from Reconnection Onset

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.

    2012-12-01

    Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.

  16. Exploration of polymethacrylate structure-property correlations: Advances towards combinatorial and high-throughput methods for biomaterials discovery

    PubMed Central

    Holmes, Paul F.; Bohrer, Mike; Kohn, Joachim

    2008-01-01

    In this review, we discuss the synthesis, characterization, physical properties, and applications of polymethacrylates and describe physical and biological structure-property correlations relevant to many high performance applications. We also track the advancement of material-property space from the ‘traditional’ mode of materials design to the emerging, state-of-the-art combinatorial and in silico methods. Particularly, this article places emphasis on recent advances in the automated combinatorial synthesis and development of high-throughput characterization methods. As a future perspective, we believe that the realization of combinatorial, high-throughput, and computational methods will allow for the rapid exploration of a vast polymethacrylate library property space. PMID:19649142

  17. Unstructured mesh methods for CFD

    NASA Technical Reports Server (NTRS)

    Peraire, J.; Morgan, K.; Peiro, J.

    1990-01-01

    Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.

  18. Unstructured mesh methods for CFD

    NASA Astrophysics Data System (ADS)

    Peraire, J.; Morgan, K.; Peiro, J.

    Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.

  19. [Pilot study of echocardiographic studies using color- and pulsed-wave spectral Doppler methods in blue-crowned amazons (Amazona ventralis) and blue-fronted amazons (Amazona a. aestiva)].

    PubMed

    Pees, M; Straub, J; Schumacher, J; Gompf, R; Krautwald-Junghanns, M E

    2005-02-01

    Colour-flow and pulsed-wave spectral Doppler echocardiography was performed on 6 healthy, adult Hispaniolan amazon parrots (Amazona ventralis) and 6 blue-fronted amazon parrots (Amazona a. aestiva) to establish normal reference values. Birds were anesthetized with isoflurane in oxygen and placed in dorsal recumbency. An electrocardiogram was recorded continuously and birds were imaged with a micro-phased-array scanner with a frequency of 7.0 MHz. After assessment of cardiac function in 2-D-echocardiography, blood flow across the left and the right atrioventricular valve and across the aortic valve was determined using color-flow and pulsed-wave spectral Doppler echocardiography. Diastolic inflow (mean value +/- standard deviation) into the left ventricle was 0.17 +/- 0.02 m/s (Hispaniolan amazons) and 0.18 +/- 0.03 m/s (Blue fronted amazons). Diastolic inflow into the right ventricle was 0.22 +/- 0.05 m/s (Hispaniolan amazons) and 0.22 +/- 0.04 m/s (Blue fronted amazons). Velocity across the aortic valve was 0.84 +/- 0.07 m/s (Hispaniolan amazons) and 0.83 +/- 0.08 m/s (Blue fronted amazons). Systolic pulmonary flow could not be detected in any of the birds in this study. No significant differences were evident between the two species examined. Results of this study indicate that Doppler echocardiography is a promising technique to determine blood flow in the avian heart. Further studies in other avian species are needed to establish reference values for assessment of cardiac function in diseased birds. PMID:15787312

  20. Methods of validating the Advanced Diagnosis and Warning system for aircraft ICing Environments (ADWICE)

    NASA Astrophysics Data System (ADS)

    Rosczyk, S.; Hauf, T.; Leifeld, C.

    2003-04-01

    In-flight icing is one of the most hazardous problems in aviation. It was determined as contributing factor in more than 800 incidents worldwide. And though the meteorological factors of airframe icing become more and more transparent, they have to be integrated into the Federal Aviation Administration's (FAA) certification rules first. Therefore best way to enhance aviational safety is to know the areas of dangerous icing conditions in order to prevent flying in them. For this reason the German Weather Service (DWD), the Institute for Atmospheric Physics at the German Aerospace Centre (DLR) and the Institute of Meteorology and Climatology (ImuK) of the University of Hanover started developingADWICE - theAdvanced Diagnosis and Warning system for aircraft ICing Environments - in 1998. This algorithm is based on the DWDLocal Model (LM) forecast of temperature and humidity, in fusion with radar and synop and, coming soon, satellite data. It gives an every-hour nowcast of icing severity and type - divided into four categories: freezing rain, convective, stratiform and general - for the middle European area. A first validation of ADWICE took place in 1999 with observational data from an in-flight icing campaign during EURICE in 1997. The momentary validation deals with a broader database. As first step the output from ADWICE is compared to observations from pilots (PIREPs) to get a statistic of the probability of detecting icing and either no-icing conditions within the last icing-seasons. There were good results of this method with the AmericanIntegrated Icing Diagnostic Algorithm (IIDA). A problem though is the small number of PIREPs from Europe in comparison to the US. So a temporary campaign of pilots (including Lufthansa and Aerolloyd) collecting cloud and icing information every few miles is intended to solve this unpleasant situation. Another source of data are the measurements of theFalcon - a DLR research aircraft carrying an icing sensor. In addition to that

  1. Monitoring of infrastructural sites by means of advanced multi-temporal DInSAR methods

    NASA Astrophysics Data System (ADS)

    Vollrath, Andreas; Zucca, Francesco; Stramondo, Salvatore

    2013-10-01

    With the launch of Sentinel-1, advanced interferometric measurements will become more applicable then ever. The foreseen standard Wide Area Product (WAP), with its higher spatial and temporal resolution than comparable SAR missions, will provide the basement for the use of new wide scale and multitemporal analysis. By now the use of SAR interferometry methods with respect to risk assessment are mainly conducted for active tectonic zones, plate boundaries, volcanoes as well as urban areas, where local surface movement rates exceed the expected error and enough pixels per area contain a relatively stable phase. This study, in contrast, aims to focus on infrastructural sites that are located outside cities and are therefore surrounded by rural landscapes. The stumbling bock was given by the communication letter by the European Commission with regard to the stress tests of nuclear power plants in Europe in 2012. It is mentioned that continuously re-evaluated risk and safety assessments are necessary to guarantee highest possible security to the European citizens and environment. This is also true for other infrastructural sites, that are prone to diverse geophysical hazards. In combination with GPS and broadband seismology, multitemporal Differential Interferometric SAR approaches demonstrated great potential in contributing valuable information to surface movement phenomenas. At this stage of the project, first results of the Stamps-MTI approach (combined PSInSAR and SBAS) will be presented for the industrial area around Priolo Gargallo in South East Sicily by using ENVISAT ASAR IM mode data from 2003-2010. This area is located between the Malta Escarpment fault system and the Hyblean plateau and is prone to earthquake and tsunami risk. It features a high density of oil refineries that are directly located at the coast. The general potential of these techniques with respect to the SENTINEL-1 mission will be shown for this area and a road-map for further improvements

  2. Crystallization and saturation front propagation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, Ethan T.

    2013-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface-driven processes of conduction and crystallization front migration. In the end-member case of vigorous convection and crystal settling, volatile saturation advances downward from the roof and upward from the floor throughout the chamber. In the end-member case of stagnant magma bodies, volatile saturation occurs along an inward propagating front from all sides of the chamber. Ambient thermal gradient primarily controls the propagation rate; warm (⩾40 °C/km) geothermal gradients lead to thick (1200+ m) crystal mush zones and slow crystallization front propagation. Cold (<40 °C/km) geothermal gradients lead to rapid crystallization front propagation and thin (<1000 m) mush zones. Magma chamber geometry also exerts a first-order control on propagation rates; bodies with high surface to magma volume ratio and large Earth-surface-parallel faces exhibit more rapid propagation and thinner mush zones. Crystallization front propagation occurs at speeds of greater than 10 cm/yr (rhyolitic magma; 1 km thick sill geometry in a 20 °C/km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate, grow, and ascend through the chamber. Numerical simulations indicate saturation front propagation is determined primarily by pressure and magma crystallization rate; above certain initial water contents (4.4 wt.% in a dacite) the mobile magma is volatile-rich enough above 10 km depth to always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt.% in a dacite at 5 km depth), creating an upper saturated interface for most common (4-6 wt.%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. If the fluid

  3. Reaction-Transport Fronts Propagating into Unstable States

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Fedotov, Sergei; Horsthemke, Werner

    In this chapter we consider the problem of propagating fronts traveling into an unstable state of a reaction-transport system. The purpose is to present the general formalism for the asymptotic analysis of traveling fronts. The method relies on the hyperbolic scaling procedure, the theory of large deviations, and the Hamilton-Jacobi technique. A generic model that describes phenomena of this type is the RD equation (2.3) with appropriate kinetics, such as the FKPP equation (4.1). The propagation velocity of fronts of this equation has been studied in Chap.4. The RD equation involves implicitly a long-time large-scale parabolic scaling, while as far as propagating fronts are concerned, the appropriate scaling must be a hyperbolic one. The macroscopic transport process arises from the overall effect of many particles performing complex random movements. Classical diffusion is simply an approximation for this transport in the long-time large-scale parabolic limit. In general, this approximation is not appropriate for problems involving propagating fronts. The basic idea is that the kinetic term in the RD equation with KPP kinetics is very sensitive to the tails of a density profile. These tails are typically "non-universal," "non-diffusional," and dependent on the microscopic details of the underlying random walk. The purpose of this chapter is to demonstrate that the macroscopic dynamics of the front for a reaction-transport system are dependent on the choice of the underlying random walk model for the transport process. To illustrate the idea of an alternative description of front propagation into an unstable state of reaction-transport system, we consider several models including discrete-in-time or continuous-in-time Markov models with long-distance dispersal kernels, non-Markovian models with memory effects, etc., instead of the RD equation. Let us give a few examples of such models.

  4. 1. VIEW SOUTHWARD FROM SOUTHWEST CORNER FRONT AND ARCH STREETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWARD FROM SOUTHWEST CORNER FRONT AND ARCH STREETS (2. N. Front Street starts at left) - North Front Street Area Study, 2-66 North Front Street (Commercial Buildings), Philadelphia, Philadelphia County, PA

  5. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  6. The Effects of Using Advance Organizers on Improving EFL Learners' Listening Comprehension: A Mixed Method Study

    ERIC Educational Resources Information Center

    Jafari, Khadijeh; Hashim, Fatimah

    2012-01-01

    This study investigated the effects of using two types of written advance organizers, key sentences and key vocabulary, on the improvement of EFL learners' listening comprehension. 108 second year university students at the higher and lower listening proficiency levels were randomly assigned to one control group and two experimental groups. Prior…

  7. 7 CFR 1744.68 - Order and method of advances of telephone loan funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... approved telephone loans from RUS, RTB, or FFB, except that for all loans approved on or after November 1..., RUS cost-of-money, RTB, or FFB) may be made; and (2) Only in exchanges that qualify for the type of... of RUS and RTB funds may request advances by wire service only for amounts greater than $500,000...

  8. 7 CFR 1744.68 - Order and method of advances of telephone loan funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... approved telephone loans from RUS, RTB, or FFB, except that for all loans approved on or after November 1..., RUS cost-of-money, RTB, or FFB) may be made; and (2) Only in exchanges that qualify for the type of... of RUS and RTB funds may request advances by wire service only for amounts greater than $500,000...

  9. Classification methods for noise transients in advanced gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Powell, Jade; Trifirò, Daniele; Cuoco, Elena; Heng, Ik Siong; Cavaglià, Marco

    2015-11-01

    Noise of non-astrophysical origin will contaminate science data taken by the advanced laser interferometer gravitational-wave observatory and advanced Virgo gravitational-wave detectors. Prompt characterization of instrumental and environmental noise transients will be critical for improving the sensitivity of the advanced detectors in the upcoming science runs. During the science runs of the initial gravitational-wave detectors, noise transients were manually classified by visually examining the time-frequency scan of each event. Here, we present three new algorithms designed for the automatic classification of noise transients in advanced detectors. Two of these algorithms are based on principal component analysis. They are principal component analysis for transients and an adaptation of LALInference burst. The third algorithm is a combination of an event generator called wavelet detection filter and machine learning techniques for classification. We test these algorithms on simulated data sets, and we show their ability to automatically classify transients by frequency, signal to noise ratio and waveform morphology.

  10. Link between warm conveyor belts and fronts and the impact on extreme rainfall

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer; Madonna, Erica; Joos, Hanna; Wernli, Heini; Rudeva, Irina; Simmonds, Ian

    2015-04-01

    The various dynamical features within extratropical cyclones have been shown to be very important for the precipitation produced by these systems. Warm conveyor belts (WCBs) and fronts are both strongly associated with total and extreme precipitation in the midlatitudes. Here we have brought together two automated feature detection methods to answer questions on the frequency of matching of fronts and WCBs, whether this depends on frontal type or height of WCB, and the impact this matching has on extreme precipitation events. We find that WCBs and fronts are strongly related in the midlatitudes - annually 60% of WCBs are associated with cold fronts and around 50% associated with warm fronts, and a fairly large proportion associated with both together. The frequency of linked WCBs and fronts shows a strong seasonal cycle. In some regions warm fronts are more strongly linked to WCBs than cold fronts. To the east of Australia in particular, there are often WCBs not associated with fronts at all. Fronts that co-occur with a WCB are much more likely to produce an extreme precipitation event.

  11. Scaling of Quench Front and Entrainment-Related Phenomena

    SciTech Connect

    Aumiller, D. L.; Hourser, R. J.; Holowach, M. J.; Hochreiter, L. E.; Cheung, F-B.

    2002-04-01

    The scaling of thermal hydraulic systems is of great importance in the development of experiments in laboratory-scale test facilities that are used to replicate the response of full-size prototypical designs. One particular phenomenon that is of interest in experimental modeling is the quench front that develops during the reflood phase in a PWR (Pressurized Water Reactor) following a large-break LOCA (Loss of Coolant Accident). The purpose of this study is to develop a scaling methodology such that the prototypical quench front related phenomena can be preserved in a laboratory-scale test facility which may have material, geometrical, fluid, and flow differences as compared to the prototypical case. A mass and energy balance on a Lagrangian quench front control volume along with temporal scaling methods are utilized in developing the quench front scaling groups for a phenomena-specific second-tier scaling analysis. A sample calculation is presented comparing the quench front scaling groups calculated for a prototypical Westinghouse 17 x 17 PWR fuel design and that of the geometry and material configuration used in the FLECHT SEASET series of experiments.

  12. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events

    PubMed Central

    Flood, Ann Barry; Boyle, Holly K.; Du, Gaixin; Demidenko, Eugene; Nicolalde, Roberto J.; Williams, Benjamin B.; Swartz, Harold M.

    2014-01-01

    Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100–1 000 000) and two rates for initiating processing of the marker (15 or 15 000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans. PMID:24729594

  13. Is particulate air pollution at the front door a good proxy of residential exposure?

    PubMed

    Zauli Sajani, Stefano; Trentini, Arianna; Rovelli, Sabrina; Ricciardelli, Isabella; Marchesi, Stefano; Maccone, Claudio; Bacco, Dimitri; Ferrari, Silvia; Scotto, Fabiana; Zigola, Claudia; Cattaneo, Andrea; Cavallo, Domenico Maria; Lauriola, Paolo; Poluzzi, Vanes; Harrison, Roy M

    2016-06-01

    The most advanced epidemiological studies on health effects of air pollution assign exposure to individuals based on residential outdoor concentrations of air pollutants measured or estimated at the front-door. In order to assess to what extent this approach could cause misclassification, indoor measurements were carried out in unoccupied rooms at the front and back of a building which fronted onto a major urban road. Simultaneous measurements were also carried out at adjacent outdoor locations to the front and rear of the building. Two 15-day monitoring campaigns were conducted in the period June-December 2013 in a building located in the urban area of Bologna, Italy. Particulate matter metrics including PM2.5 mass and chemical composition, particle number concentration and size distribution were measured. Both outdoor and indoor concentrations at the front of the building substantially exceeded those at the rear. The highest front/back ratio was found for ultrafine particles with outdoor concentration at the front door 3.4 times higher than at the rear. A weak influence on front/back ratios was found for wind direction. Particle size distribution showed a substantial loss of particles within the sub-50 nm size range between the front and rear of the building and a further loss of this size range in the indoor data. The chemical speciation data showed relevant reductions for most constituents between the front and the rear, especially for traffic related elements such as Elemental Carbon, Iron, Manganese and Tin. The main conclusion of the study is that gradients in concentrations between the front and rear, both outside and inside the building, are relevant and comparable to those measured between buildings located in high and low traffic areas. These findings show high potential for misclassification in the epidemiological studies that assign exposure based on particle concentrations estimated or measured at subjects' home addresses. PMID:26925757

  14. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  15. Front pinning in single vortex flows

    NASA Astrophysics Data System (ADS)

    Mahoney, John; Mitchell, Kevin

    2014-11-01

    We study fronts propagating in 2D fluid flows and show that there exist stable invariant front configurations for fairly generic flows. Here we examine the simple flow which combines a single vortex with an overall ``wind.'' We discuss how the invariant front can be derived from a simple 3D ODE. Existence of this front can then be understood in terms of bifurcations of fixed points, and the behavior of the invariant ``sliding front'' submanifold. Interestingly, the front bifurcation precedes the saddle-node bifurcation which gives rise to the vortex. This elementary structure has application in chemical reactor beds and laminar combustion in well-mixed fluids. We request that this talk follow the related talks by our collaborators Tom Solomon, Savannah Gowen, and Sarah Holler.

  16. Reaction front formation in contaminant plumes.

    PubMed

    Cribbin, Laura B; Winstanley, Henry F; Mitchell, Sarah L; Fowler, Andrew C; Sander, Graham C

    2014-12-15

    The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front. PMID:25461883

  17. Front propagation and rejuvenation in flipping processes

    SciTech Connect

    Ben-naim, Eli; Krapivsky, P I; Antal, T; Ben - Avrahm, D

    2008-01-01

    We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess {Delta}{sub k} increases logarithmically, {Delta}{sub k} {approx_equal}ln k, with the distance k from the front. Third, the front exhibits ageing -- young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations.

  18. Spectral Signature Analysis - BIST for RF Front-Ends

    NASA Astrophysics Data System (ADS)

    Lupea, D.; Pursche, U.; Jentschel, H.-J.

    2003-05-01

    In this paper, the Spectral Signature Analysis is presented as a concept for an integrable self-test system (Built-In Self-Test - BIST) for RF front-ends is presented. It is based on modelling the whole RF front-end (transmitter and receiver) on system level, on generating of a Spectral Signature and of evaluating of the Signature Response. Because of using multi-carrier signal as the test signature, the concept is especially useful for tests of linearity and frequency response of front-ends. Due to the presented method of signature response evaluation, this concept can be used for Built-In Self-Correction (BISC) at critical building blocks.

  19. Traveling circumferential unstable wave of cylindrical flame front

    NASA Astrophysics Data System (ADS)

    Trilis, A. V.; Vasiliev, A. A.; Sukhinin, S. V.

    2016-06-01

    The researches of stability of cylindrical front of deflagration combustion in an annular combustion chamber were made using phenomenological model. The flame front is described as discontinuity of gasdynamic parameters. It is considered that the combustion products are under chemical equilibrium. The combustible mixture and the combustion products are ideal gases. The velocity of deflagration combustion is determined using the Chapman-Jouget theory. It depends on the temperature of combustible mixture only. It is found that the combustible flame front is unstable for several types of small disturbances in the system Mechanics of instabilities are examined using both the numeric and analytical methods. The cases of evolution of the unstable waves rotating in circular channel are presented.

  20. Controls on the weathering front depth on hillslopes underlain by mudstones and sandstones

    NASA Astrophysics Data System (ADS)

    Rempe, D. M.; Oshun, J.; Dietrich, W. E.; Salve, R.; Fung, I.

    2010-12-01

    Turbidite sequences typically consist of interbedded sandstones and mudstones and these two materials may weather and erode very differently thereby strongly influencing hydrologic and geomorphic processes. The Elder Creek watershed within the University of California Angelo Coast Range Reserve (ACRR) in Mendocino County, California offers an opportunity to understand form and evolution of the weathering front in these two contrasting lithologies. The ACRR lies within the Coastal Belt of the Franciscan Formation composed of slightly metamorphosed marine turbidites. Elder Creek is bordered by steep slopes punctuated with up to three flights of bedrock terraces and frequent large-scale, deep seated landsliding. Though the entire region has experienced intense tectonic activity and all rock arrives to the surface fractured, a striking difference in topographic expression between the sandstones and mudstones is observed within the watershed. The coarser fractured and harder sandstones tend to form ridges and outcrop. They shed resistant boulders which dominate the channel bed, despite the abundance of mudstone in the landscape, and therefore strongly influence channel slope and habitat structure. In contrast, the mudstones are overlain by thin soil mantles and develop thick (observed up to 30 m) weathered zones of highly fractured, oxidized material overlying fresh bedrock. Coarse mudstone gravel and boulders appear to last a short period on the river bed and then become a shadowy pile of fine particles after drying. At low flow exposed mudstone in the bed of channels noticeably sheds mass as thin fractured particles. These observations suggest that under hillslopes in the ACRR the weathering front may advance by repeated wetting and drying above a chronically saturated zone which drains to Elder Creek. To explore this hypothesis on an intensively monitored hillslope, we are using various geophysical tools to reveal how the deep weathering front within the mudstone is

  1. Muon front end for the neutrino factory

    NASA Astrophysics Data System (ADS)

    Rogers, C. T.; Stratakis, D.; Prior, G.; Gilardoni, S.; Neuffer, D.; Snopok, P.; Alekou, A.; Pasternak, J.

    2013-04-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  2. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  3. Use of advanced particle methods in modeling space propulsion and its supersonic expansions

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud

    This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with

  4. Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method

    NASA Astrophysics Data System (ADS)

    Liong, Shie-Yui; Lim, Wee-Han; Kojiri, Toshiharu; Hori, Tomoharu

    2000-02-01

    An artificial Neural Network (NN) was successfully applied, in an earlier study, as a prediction tool to forecast water level at Dhaka (Bangladesh), for up to seven lead days in advance, with a high accuracy level. In addition, this high accuracy degree was accompanied with a very short computational time. Both make NN a desirable advance warming forecasting tool. In a later study, a sensitivity analysis was also performed to retain only the most sensitive gauging stations for the Dhaka station. The resulting reduction of gauging stations insignificantly affects the prediction accuracy level.The work concerning the possibility of measurement failure in any of the gauging stations during the critical flow level at Dhaka requires prediction tools which can interpret linguistic assessment of flow levels. A fuzzy logic approach is introduced with two or three membership functions, depending on necessity, for the input stations with five membership functions for the output station. Membership functions for each station are derived from their respective water level frequency distributions, after the Kohonen neural network is used to group the data into clusters. The proposed approach in deriving membership function shows a number of advances over the approach commonly used. When prediction results are compared with measured data, the prediction accuracy level is comparable with that of the data driven neural network approach.

  5. Light-Front Holography and QCD Hadronization at the Amplitude Level

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; ,

    2009-01-09

    Light-front holography allows hadronic amplitudes in the AdS/QCD fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The AdS coordinate z is identified with an invariant light-front coordinate {zeta} which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schroedinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. A new method for computing the hadronization of quark and gluon jets at the amplitude level using AdS/QCD light-front wavefunctions is outlined.

  6. Measurement of the shock front velocity produced in a T-tube

    SciTech Connect

    Djurović, S.; Mijatović, Z.; Vujičić, B.; Kobilarov, R.; Savić, I.; Gavanski, L.

    2015-01-15

    A set of shock front velocity measurements is described in this paper. The shock waves were produced in a small electromagnetically driven shock T-tube. Most of the measurements were performed in hydrogen. The shock front velocity measurements in other gases and the velocity of the gas behind the shock front were also analyzed, as well as the velocity dependence on applied input energy. Some measurements with an applied external magnetic field were also performed. The used method of shock front velocity is simple and was shown to be very reliable. Measured values were compared with the calculated ones for the incident and reflected shock waves.

  7. Light-Front Holography and Non-Perturbative QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2009-12-09

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  8. Development of advanced modal methods for calculating transient thermal and structural response

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.

    1991-01-01

    Higher-order modal methods for predicting thermal and structural response are evaluated. More accurate methods or ones which can significantly reduce the size of complex, transient thermal and structural problems are desirable for analysis and are required for synthesis of real structures subjected to thermal and mechanical loading. A unified method is presented for deriving successively higher-order modal solutions related to previously-developed, lower-order methods such as the mode displacement and mode-acceleration methods. A new method, called the force-derivative method, is used to obtain higher-order modal solutions for both uncoupled (proportionally-damped) structural problems as well as thermal problems and coupled (non-proportionally damped) structural problems. The new method is called the force-derivative method because, analogous to the mode-acceleration method, it produces a term that depends on the forcing function and additional terms that depend on the time derivatives of the forcing function.

  9. Extraction, Analytical and Advanced Methods for Detection of Allura Red AC (E129) in Food and Beverages Products

    PubMed Central

    Rovina, Kobun; Siddiquee, Shafiquzzaman; Shaarani, Sharifudin M.

    2016-01-01

    Allura Red AC (E129) is an azo dye that widely used in drinks, juices, bakery, meat, and sweets products. High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R′ = aromatic). Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products. This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake, toxicology and extraction methods. PMID:27303385

  10. Extraction, Analytical and Advanced Methods for Detection of Allura Red AC (E129) in Food and Beverages Products.

    PubMed

    Rovina, Kobun; Siddiquee, Shafiquzzaman; Shaarani, Sharifudin M

    2016-01-01

    Allura Red AC (E129) is an azo dye that widely used in drinks, juices, bakery, meat, and sweets products. High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R' = aromatic). Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products. This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake, toxicology and extraction methods. PMID:27303385

  11. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    SciTech Connect

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  12. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    SciTech Connect

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division

    2010-05-31

    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the

  13. [Research advances on DNA extraction methods from peripheral blood mononuclear cells].

    PubMed

    Wang, Xiao-Ying; Yu, Chen-Xi

    2014-10-01

    DNA extraction is a basic technology of molecular biology. The purity and the integrality of DNA structure are necessary for different experiments of gene engineering. As commonly used materials in the clinical detection, the fast, efficient isolation and extraction of genomic DNA from peripheral blood mononuclear cells is very important for the inspection and analysis of clinical blood. At present, there are many methods for extracting DNA, such as phenol-chloroform method, salting out method, centrifugal adsorption column chromatography method (artificial methods), magnetic beads (semi-automatic method) and DNA extraction kit. In this article, a brief review of the principle for existing DNA blood extraction method, the specific steps and the assessment of the specific methods briefly are summarized. PMID:25338615

  14. Design Updates of the X-ray Beam Position Monitor for Beamline Front Ends

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Singh, Om; Hahne, Michael; Decker, Glenn

    2007-01-01

    At the Advanced Photon Source (APS), each insertion device (ID) beamline front end has two x-ray beam position monitors (XBPMs) to monitor the x-ray beam position in both the vertical and horizontal directions. The XBPMs measure photoelectrons generated from the CVD-diamond-based sensory blades and deduce the beam position by comparison of the relative signals from the blades. Using the method proposed by G. Decker, which involves the introduction of a chicane into the accelerator lattice that directs unwanted x-rays away from the photosensitive XBPM blades, the photon source stability has been improved by addition of XBPMs in the storage ring global orbit feedback. In recent years, design updates for the XBPM mechanical structure and geometric configuration have been made to improve its performance. We present these design updates in this paper. Test results of the XBPM design updates are also discussed here.

  15. Advanced Durability and Damage Tolerance Design and Analysis Methods for Composite Structures: Lessons Learned from NASA Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.

    2003-01-01

    Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.

  16. Advanced stability indicating chemometric methods for quantitation of amlodipine and atorvastatin in their quinary mixture with acidic degradation products

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-02-01

    Two advanced, accurate and precise chemometric methods are developed for the simultaneous determination of amlodipine besylate (AML) and atorvastatin calcium (ATV) in the presence of their acidic degradation products in tablet dosage forms. The first method was Partial Least Squares (PLS-1) and the second was Artificial Neural Networks (ANN). PLS was compared to ANN models with and without variable selection procedure (genetic algorithm (GA)). For proper analysis, a 5-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the interfering species. Fifteen mixtures were used as calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested models. The proposed methods were successfully applied to the analysis of pharmaceutical tablets containing AML and ATV. The methods indicated the ability of the mentioned models to solve the highly overlapped spectra of the quinary mixture, yet using inexpensive and easy to handle instruments like the UV-VIS spectrophotometer.

  17. Light-front holographic QCD and emerging confinement

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Erlich, Joshua

    2015-07-01

    In this report we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. The light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical space-time. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.

  18. Light-front holographic QCD and emerging confinement

    SciTech Connect

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Erlich, Joshua

    2015-05-21

    In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. The light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.

  19. Effects of fluctuations on propagating fronts

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata

    Propagating fronts are seen in varieties of nonequilibrium pattern forming systems in Physics, Chemistry and Biology. In the last two decades, many researchers have contributed to the understanding of the underlying dynamics of the propagating fronts. Of these, the deterministic and mean-field dynamics of the fronts were mostly understood in late 1980s and 1990s. On the other hand, although the earliest work on the effect of fluctuations on propagating fronts dates back to early 1980s, the subject of fluctuating fronts did not reach its adolescence until the mid 1990s. From there onwards the last few years witnessed a surge in activities in the effect of fluctuations on propagating fronts. Scores of papers have been written on this subject since then, contributing to a significant maturity of our understanding, and only recently a full picture of fluctuating fronts has started to emerge. This review is an attempt to collect all the works on fluctuating (propagating) fronts in a coherent and cogent manner in proper perspective. It is based on the idea of making our knowledge in this field available to a broader audience, and it is also expected to help to collect bits and pieces of loose thread-ends together for possible further investigation.

  20. Front end for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess Brooks (Inventor)

    1999-01-01

    The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.

  1. Stability of cosmological detonation fronts

    NASA Astrophysics Data System (ADS)

    Mégevand, Ariel; Membiela, Federico Agustín

    2014-05-01

    The steady-state propagation of a phase-transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our approach breaks down.

  2. Stability of cosmological deflagration fronts

    NASA Astrophysics Data System (ADS)

    Mégevand, Ariel; Membiela, Federico Agustín

    2014-05-01

    In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts. We improve upon previous studies by making a more careful and detailed analysis. In particular, we take into account the fact that the equation of motion for the phase interface depends separately on the temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a consequence, we find that, for large enough supercooling, any subsonic wall velocity becomes unstable. Moreover, as the velocity approaches the speed of sound, perturbations become unstable on all wavelengths. For smaller supercooling and small wall velocities, our results agree with those of previous works. Essentially, perturbations on large wavelengths are unstable, unless the wall velocity is higher than a critical value. We also find a previously unobserved range of marginally unstable wavelengths. We analyze the dynamical relevance of the instabilities, and we estimate the characteristic time and length scales associated with their growth. We discuss the implications for the electroweak phase transition and its cosmological consequences.

  3. Shock front broadening in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Barber, John; Kadau, Kai

    2008-03-01

    We analyze a model for the evolution of weak shock fronts (or elastic precursor waves) in polycrystalline materials. This model is based on the idea of Meyers and Carvalho [Mater. Sci. Eng. 24, 131 (1976)] that the shock velocity anisotropy within the polycrystal is the most important factor in shock front broadening. Our analysis predicts that the shock front width increases as the 1/2 power of the front penetration distance into the crystal. Our theoretical prediction is in plausible agreement with previous experimental results for the elastic precursor rise time, and it should therefore provide a useful shock width estimate. Furthermore, our theoretical framework is also applicable to other problems involving front propagation in heterogeneous media.

  4. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  5. Numerical study of a mesoscale vortex in the planetary boundary layer of the meiyu front

    NASA Astrophysics Data System (ADS)

    Shen, Hangfeng; Zhai, Guoqing; Zhu, Ye; Xu, Yaqin

    2012-12-01

    It was found that the heavy rainfall event along the Meiyu front in the lower reaches of the Yangtze River on 23 June 2009 was connected with a mesoscale disturbance vortex, which originated from the planetary boundary layer (PBL) and developed upward later and was discovered by using the Shuman-Shapiro filtering method. The mesoscale disturbance vortex in the PBL (PMDV) in this process corresponded well to the short-time rainstorm in the Doppler radar echo. Analysis of the high-resolution simulation results from the Advanced Weather Research and Forecasting Model (ARW) showed that there were several surface disturbances along the southern warm section of the Meiyu front prior to the generation of the PMDV. The PMDV interacted with the mesoscale convective system (MCS) and intensified the local convective precipitation. The north and southwest flows in the PBL converged at the time of the PMDV formation. Meanwhile, a southwesterly jet on the top of the PBL to the south side of the vortex reinforced the ascending motion and convergence. Hence, it is concluded that the PMDV was generated when the strong cold air flows north of the shear line encountered the southwest flow south of the shear line. The convergence line in the PBL, the intensification of the southwest wind, and the southward aggression of the north wind were critical for the development of the PMDV. The release of latent heat was found crucial for the formation of the PMDV as it facilitated the convergence at low levels.

  6. Development and comparison of advanced reduced-basis methods for the transient structural analysis of unconstrained structures

    NASA Technical Reports Server (NTRS)

    Mcgowan, David M.; Bostic, Susan W.; Camarda, Charles J.

    1993-01-01

    The development of two advanced reduced-basis methods, the force derivative method and the Lanczos method, and two widely used modal methods, the mode displacement method and the mode acceleration method, for transient structural analysis of unconstrained structures is presented. Two example structural problems are studied: an undamped, unconstrained beam subject to a uniformly distributed load which varies as a sinusoidal function of time and an undamped high-speed civil transport aircraft subject to a normal wing tip load which varies as a sinusoidal function of time. These example problems are used to verify the methods and to compare the relative effectiveness of each of the four reduced-basis methods for performing transient structural analyses on unconstrained structures. The methods are verified with a solution obtained by integrating directly the full system of equations of motion, and they are compared using the number of basis vectors required to obtain a desired level of accuracy and the associated computational times as comparison criteria.

  7. An advanced deterministic method for spent-fuel criticality safety analysis

    SciTech Connect

    DeHart, M.D.

    1998-09-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, nonorthogonal configurations or fissile materials, typical of real-world problems. In the last few years, however, interest in determinist transport methods has been revived, due to shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple-pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constrains in finite differencing schemes have made discrete ordinates methods impractical for nonorthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitation of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built on the ESC formalism, is being developed as part of the SCALE code system. This paper demonstrates the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  8. Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Kaplan, A. F. H.

    The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.

  9. Emerging crack front identification from tangential surface displacements

    NASA Astrophysics Data System (ADS)

    Andrieux, Stéphane; Baranger, Thouraya Nouri

    2012-08-01

    We present in this Note an identification method for the crack front of a crack emerging at the surface of an elastic solid, provided displacements field or its tangential components are given on a part free of loading of the external surface. The method is based on two steps. The first one is the solution of a Cauchy problem in order to expand the displacement field within the solid up to a surface enclosing the unknown crack. Then the reciprocity gap method is used in order to determine the displacement jump on the crack and then the crack itself. We prove then an identifiability result. The method is illustrated with two synthetic examples: a crossing crack with linear crack front and an elliptic emerging crack.

  10. Systematic review of novel ablative methods in locally advanced pancreatic cancer

    PubMed Central

    Keane, Margaret G; Bramis, Konstantinos; Pereira, Stephen P; Fusai, Giuseppe K

    2014-01-01

    Unresectable locally advanced pancreatic cancer with or without metastatic disease is associated with a very poor prognosis. Current standard therapy is limited to chemotherapy or chemoradiotherapy. Few regimens have been shown to have a substantial survival advantage and novel treatment strategies are urgently needed. Thermal and laser based ablative techniques are widely used in many solid organ malignancies. Initial studies in the pancreas were associated with significant morbidity and mortality, which limited widespread adoption. Modifications to the various applications, in particular combining the techniques with high quality imaging such as computed tomography and intraoperative or endoscopic ultrasound has enabled real time treatment monitoring and significant improvements in safety. We conducted a systematic review of the literature up to October 2013. Initial studies suggest that ablative therapies may confer an additional survival benefit over best supportive care but randomised studies are required to validate these findings. PMID:24605026

  11. Advanced panel-type influence coefficient methods applied to subsonic flows

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Rubbert, P. E.

    1975-01-01

    An advanced technique for solving the linear integral equations of three-dimensional subsonic potential flows (steady, inviscid, irrotational and incompressible) about arbitrary configurations is presented. It involves assembling select, logically consistent networks whose construction comprises four tasks, which are described in detail: surface geometry definition; singularity strength definition; control point and boundary condition specification; and calculation of induced potential or velocity. The technique is applied to seven wing examples approached by four network types: source/analysis, doublet/analysis, source/design, and doublet/design. The results demonstrate the forgiveness of the model to irregular paneling and the practicality of combined analysis/design boundary conditions. The appearance of doublet strength mismatch is a valuable indicator of locally inadequate paneling.

  12. Recent advances in methods for numerical solution of O.D.E. initial value problems

    NASA Technical Reports Server (NTRS)

    Bui, T. D.; Oppenheim, A. K.; Pratt, D. T.

    1984-01-01

    In the mathematical modeling of physical systems, it is often necessary to solve an initial value problem (IVP), consisting of a system of ordinary differential equations (ODE). A typical program produces approximate solutions at certain mesh points. Almost all existing codes try to control the local truncation error, while the user is really interested in controlling the true or global error. The present investigation provides a review of recent advances regarding the solution of the IVP, giving particular attention to stiff systems. Stiff phenomena are customarily defined in terms of the eigenvalues of the Jacobian. There are, however, some difficulties connected with this approach. It is pointed out that an estimate of the Lipschitz constant proves to be a very practical way to determine the stiffness of a problem.

  13. Optimization of engines for a commercial Mach 0.98 transport using advanced turbine cooling methods

    NASA Technical Reports Server (NTRS)

    Kraft, G. A.; Whitlow, J. B., Jr.

    1972-01-01

    A study was made of an advanced technology airplane using supercritical aerodynamics. Cruise Mach number was 0.98 at 40,000 feet altitude with a payload of 60,000 pounds and a range of 3000 nautical miles. Separate-flow turbofans were examined parametrically to determine the effect of sea-level-static design turbine-inlet-temperature and noise on takeoff gross weight (TOGW) assuming full-film turbine cooling. The optimum turbine inlet temperature was 2650 F. Two-stage-fan engines, with cruise fan pressure ratio of 2.25, achieved a noise goal of 103.5 EPNdB with todays noise technology while one-stage-fan engines, achieved a noise goal of 98 EPNdB. The take-off gross weight penalty to use the one-stage fan was 6.2 percent.

  14. Prisoners' bodies: methods and advances in convict medicine in the transportation era.

    PubMed

    Brasier, Angeline

    2010-01-01

    Recent historical research looks upon the plight of Australian convicts not as victims of a harsh penal system, but as workers whose health had to be judiciously maintained. What then can be said for the medical treatments provided for convict patients during this chapter in Australia's past? Did convicts receive medical treatments with the same measure of importance and urgency as the free populace, or were prisoners' bodies considered with such a measure of insignificance that they provided veritable opportunities for advances in medicine? This article will provide general insight into prison medicine in Australia during the transportation era and how some convicts were subjected to experimental medical practices. It will also place these techniques into a wider global context by considering experimental practices involving convict patients in establishments in other places, such as Wakefield and Bermuda. PMID:21553693

  15. OPTIMA: advanced methods for the analysis, integration, and optimization of PRISMA mission products

    NASA Astrophysics Data System (ADS)

    Guzzi, Donatella; Pippi, Ivan; Aiazzi, Bruno; Baronti, Stefano; Carlà, Roberto; Lastri, Cinzia; Nardino, Vanni; Raimondi, Valentina; Santurri, Leonardo; Selva, Massimo; Alparone, Luciano; Garzelli, Andrea; Lopinto, Ettore; Ananasso, Cristina; Barducci, Alessandro

    2015-10-01

    PRISMA is an Earth observation system that combines a hyperspectral sensor with a panchromatic, medium-resolution camera. OPTIMA is one of the five independent scientific research projects funded by the Italian Space Agency in the framework of PRISMA mission for the development of added-value algorithms and advanced applications. The main goal of OPTIMA is to increase and to strengthen the applications of PRISMA through the implementation of advanced methodologies for the analysis, integration and optimization of level 1 and 2 products. The project is comprehensive of several working packages: data simulation, data quality, data optimization, data processing and integration and, finally, evaluation of some applications related to natural hazards. Several algorithms implemented during the project employ high-speed autonomous procedures for the elaboration of the upcoming images acquired by PRISMA. To assess the performances of the developed algorithms and products, an end-to-end simulator of the instrument has been implemented. Data quality analysis has been completed by introducing noise modeling. Stand-alone procedures of radiometric and atmospheric corrections have been developed, allowing the retrieval of at-ground spectral reflectance maps. Specific studies about image enhancement, restoration and pan-sharpening have been carried out for providing added-value data. Regarding the mission capability of monitoring environmental processes and disasters, different techniques for estimating surface humidity and for analyzing burned areas have been investigated. Finally, calibration and validation activities utilizing the CAL/VAL test site managed by CNR-IFAC and located inside the Regional Park of San Rossore (Pisa), Italy have been considered.

  16. Advances on Empirical Mode Decomposition-based Time-Frequency Analysis Methods in Hydrocarbon Detection

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Xue, Y. J.; Cao, J.

    2015-12-01

    Empirical mode decomposition (EMD), which is a data-driven adaptive decomposition method and is not limited by time-frequency uncertainty spreading, is proved to be more suitable for seismic signals which are nonlinear and non-stationary. Compared with other Fourier-based and wavelet-based time-frequency methods, EMD-based time-frequency methods have higher temporal and spatial resolution and yield hydrocarbon interpretations with more statistical significance. Empirical mode decomposition algorithm has now evolved from EMD to Ensemble EMD (EEMD) to Complete Ensemble EMD (CEEMD). Even though EMD-based time-frequency methods offer many promising features for analyzing and processing geophysical data, there are some limitations or defects in EMD-based time-frequency methods. This presentation will present a comparative study on hydrocarbon detection using seven EMD-based time-frequency analysis methods, which include: (1) first, EMD combined with Hilbert transform (HT) as a time-frequency analysis method is used for hydrocarbon detection; and (2) second, Normalized Hilbert transform (NHT) and HU Methods respectively combined with HT as improved time-frequency analysis methods are applied for hydrocarbon detection; and (3) three, EMD combined with Teager-Kaiser energy (EMD/TK) is investigated for hydrocarbon detection; and (4) four, EMD combined with wavelet transform (EMDWave) as a seismic attenuation estimation method is comparatively studied; and (5) EEMD- and CEEMD- based time-frequency analysis methods used as highlight volumes technology are studied. The differences between these methods in hydrocarbon detection will be discussed. The question of getting a meaningful instantaneous frequency by HT and mode-mixing issues in EMD will be analysed. The work was supported by NSFC under grant Nos. 41430323, 41404102 and 41274128.

  17. The time-variable position of the Antarctic Circumpolar Current salinity fronts from Aquarius data

    NASA Astrophysics Data System (ADS)

    Volkov, D.; Dong, S.; Goni, G. J.

    2014-12-01

    SSH records and can potentially advance our knowledge about the complex structure of the ACC fronts.

  18. Advanced computational methods for nodal diffusion, Monte Carlo, and S[sub N] problems

    SciTech Connect

    Martin, W.R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. A alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  19. Advanced computational methods for nodal diffusion, Monte Carlo, and S(sub N) problems

    NASA Astrophysics Data System (ADS)

    Martin, W. R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. An alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  20. Multiscale Design of Advanced Materials based on Hybrid Ab Initio and Quasicontinuum Methods

    SciTech Connect

    Luskin, Mitchell

    2014-03-12

    This project united researchers from mathematics, chemistry, computer science, and engineering for the development of new multiscale methods for the design of materials. Our approach was highly interdisciplinary, but it had two unifying themes: first, we utilized modern mathematical ideas about change-of-scale and state-of-the-art numerical analysis to develop computational methods and codes to solve real multiscale problems of DOE interest; and, second, we took very seriously the need for quantum mechanics-based atomistic forces, and based our methods on fast solvers of chemically accurate methods.