Three-dimensional hybrid grid generation using advancing front techniques
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Noack, Ralph W.
1995-01-01
A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.
Modeling wildland fire propagation with level set methods
V. Mallet; D.E Keyes; F.E. Fendell
2009-01-01
Level set methods are versatile and extensible techniques for general front tracking problems, including the practically important problem of predicting the advance of a fire front across expanses of surface vegetation. Given a rule, empirical or otherwise, to specify the rate of advance of an infinitesimal segment of fire front arc normal to itself (i.e., given the...
Unstructured viscous grid generation by advancing-front method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
1993-01-01
A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.
Advanced integrated safeguards using front-end-triggering devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, J.A.; Whitty, W.J.
This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.
General advancing front packing algorithm for the discrete element method
NASA Astrophysics Data System (ADS)
Morfa, Carlos A. Recarey; Pérez Morales, Irvin Pablo; de Farias, Márcio Muniz; de Navarra, Eugenio Oñate Ibañez; Valera, Roberto Roselló; Casañas, Harold Díaz-Guzmán
2018-01-01
A generic formulation of a new method for packing particles is presented. It is based on a constructive advancing front method, and uses Monte Carlo techniques for the generation of particle dimensions. The method can be used to obtain virtual dense packings of particles with several geometrical shapes. It employs continuous, discrete, and empirical statistical distributions in order to generate the dimensions of particles. The packing algorithm is very flexible and allows alternatives for: 1—the direction of the advancing front (inwards or outwards), 2—the selection of the local advancing front, 3—the method for placing a mobile particle in contact with others, and 4—the overlap checks. The algorithm also allows obtaining highly porous media when it is slightly modified. The use of the algorithm to generate real particle packings from grain size distribution curves, in order to carry out engineering applications, is illustrated. Finally, basic applications of the algorithm, which prove its effectiveness in the generation of a large number of particles, are carried out.
Numerical simulation of the interaction of biological cells with an ice front during freezing
NASA Astrophysics Data System (ADS)
Carin, M.; Jaeger, M.
2001-12-01
The goal of this study is a better understanding of the interaction between cells and a solidification front during a cryopreservation process. This technique of freezing is commonly used to conserve biological material for long periods at low temperatures. However the biophysical mechanisms of cell injuries during freezing are difficult to understand because a cell is a very sophisticated microstructure interacting with its environment. We have developed a finite element model to simulate the response of cells to an advancing solidification front. A special front-tracking technique is used to compute the motion of the cell membrane and the ice front during freezing. The model solves the conductive heat transfer equation and the diffusion equation of a solute on a domain containing three phases: one or more cells, the extra-cellular solution and the growing ice. This solid phase growing from a binary salt solution rejects the solute in the liquid phase and increases the solute gradient around the cell. This induces the shrinkage of the cell. The model is used to simulate the engulfment of one cell modelling a red blood cell by an advancing solidification front initially planar or not is computed. We compare the incorporation of a cell with that of a solid particle.
Integrated Arrays on Silicon at Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand
2011-01-01
In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.
Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
NASA Astrophysics Data System (ADS)
de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.
2018-03-01
Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.
Nanoporous Gold: Fabrication, Characterization, and Applications
Seker, Erkin; Reed, Michael L.; Begley, Matthew R.
2009-01-01
Nanoporous gold (np-Au) has intriguing material properties that offer potential benefits for many applications due to its high specific surface area, well-characterized thiol-gold surface chemistry, high electrical conductivity, and reduced stiffness. The research on np-Au has taken place on various fronts, including advanced microfabrication and characterization techniques to probe unusual nanoscale properties and applications spanning from fuel cells to electrochemical sensors. Here, we provide a review of the recent advances in np-Au research, with special emphasis on microfabrication and characterization techniques. We conclude the paper with a brief outline of challenges to overcome in the study of nanoporous metals.
Unconstrained paving and plastering method for generating finite element meshes
Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert
2010-03-02
Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.
Flow Patterns During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)
2002-01-01
Friction Stir Welding is a relatively new technique for welding that uses a cylindrical pin or nib inserted along the weld seam. The nib (usually threaded) and the shoulder in which it is mounted are rapidly rotated and advanced along the seam. Extreme deformation takes place leaving a fine equiaxed structure in the weld region., The flow of metal during Friction Stir Welding is investigated using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a zone of material that rotates and advances with the nib. The material undergoes a helical motion within the rotational zone that both rotates and advances and descends in the wash of the threads on the nib and rises on the outer part of the rotational zone. After one or more rotations, this material is sloughed off in its wake of the nib, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side.
NASA Technical Reports Server (NTRS)
Willard, S. A.
1997-01-01
Groups of striations called marker bands generated on a fatigue fracture surface can be used to mark the position of an advancing fatigue crack at known intervals. A technique has been developed that uses the distance between multiple sets of marker bands to obtain a vs. N, crack front shape, and fatigue crack growth rate data for small cracks. This technique is particularly usefull for specimens that require crack length measurements during testing that cannot be obtained because corrosion obscures the surface of the specimen. It is also useful for specimens with unusual or non-symmetric shapes where it is difficult to obtain accurate crack lengths using traditional methods such as compliance or electric potential difference in the early stages of testing.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.
Structured background grids for generation of unstructured grids by advancing front method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
1991-01-01
A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.
Advances in magnetic tweezers for single molecule and cell biophysics.
Kilinc, Devrim; Lee, Gil U
2014-01-01
Magnetic tweezers (MTW) enable highly accurate forces to be transduced to molecules to study mechanotransduction at the molecular or cellular level. We review recent MTW studies in single molecule and cell biophysics that demonstrate the flexibility of this technique. We also discuss technical advances in the method on several fronts, i.e., from novel approaches for the measurement of torque to multiplexed biophysical assays. Finally, we describe multi-component nanorods with enhanced optical and magnetic properties and discuss their potential as future MTW probes.
NASA Astrophysics Data System (ADS)
Kulse, P.; Sasai, K.; Schulz, K.; Wietstruck, M.
2017-06-01
In the last decades the semiconductor technology has been driven by Moore's law leading to high performance CMOS technologies with feature sizes of less than 10 nm [1]. It has been pointed out that not only scaling but also the integration of novel components and technology modules into CMOS/BiCMOS technologies is becoming more attractive to realize smart and miniaturized systems [2]. Driven by new applications in the area of communication, health and automation, new components and technology modules such as BiCMOS embedded RF-MEMS, high-Q passives, Sibased microfluidics and InP-SiGe BiCMOS heterointegration have been demonstrated [3-6]. In contrast to standard VLSI processes fabricated on front side of the silicon wafer, these new technology modules require addition backside processing of the wafer; thus an accurate alignment between the front and backside of the wafer is mandatory. In previous work an advanced back to front side alignment technique and implementation into IHP's 0.25/0.13 μm high performance SiGe:C BiCMOS backside process module has been presented [7]. The developed technique enables a high resolution and accurate lithography on the backside of BiCMOS wafer for additional backside processing. In addition to the aforementioned back side process technologies, new applications like Through-Silicon Vias (TSV) for interposers and advanced substrate technologies for 3D heterogeneous integration demand not only single wafer fabrication but also processing of wafer stacks provided by temporary and permanent wafer bonding [8]. Therefore, the available overlay measurement techniques are not suitable if overlay and alignment marks are realized at the bonding interface of a wafer stack which consists of both a silicon device and a silicon carrier wafer. The former used EVG 40NT automated overlay measurement system, which use two opposite positioned microscopes inspecting simultaneous the wafer back and front side, is not capable measuring embedded overlay marks. In this work, the non-contact infrared alignment system of the Nikon i-line Stepper NSR-SF150 for both the alignment and the overlay determination of bonded wafer stacks with embedded alignment marks are used to achieve an accurate alignment between the different wafer sides. The embedded field image alignment (FIA) marks of the interface and the device wafer top layer are measured in a single measurement job. By taking the offsets between all different FIA's into account, after correcting the wafer rotation induced FIA position errors, hence an overlay for the stacked wafers can be determined. The developed approach has been validated by a standard back to front side application. The overlay was measured and determined using both, the EVG NT40 automated measurement system with special overlay marks and the measurement of the FIA marks of the front and back side layer. A comparison of both results shows mismatches in x and y translations smaller than 200 nm, which is relatively small compared to the overlay tolerances of +/-500 nm for the back to front side process. After the successful validation of the developed technique, special wafer stacks with FIA alignment marks in the bonding interface are fabricated. Due to the super IR light transparency of both doubled side polished wafers, the embedded FIA marks generate a stable and clear signal for accurate x and y wafer coordinate positioning. The FIA marks of the device wafer top layer were measured under standard condition in a developed photoresist mask without IR illumination. Following overlay calculation shows an overlay of less than 200 nm, which enables very accurate process condition for highly scaled TSV integration and advanced substrate integration into IHP's 0.25/0.13 μm SiGe:C BiCMOS technology. The presented method can be applied for both the standard back to front side process technologies and also new temporary and permanent wafer bonding applications.
Prediction of the Aero-Acoustic Performance of Open Rotors
NASA Technical Reports Server (NTRS)
VanZante, Dale; Envia, Edmane
2014-01-01
The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.
Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Postman, Marc; Soummer, Remi; Sivramakrishnan, Annand; Macintosh, Bruce; Guyon, Olivier; Krist, John; Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Kirk, Charles;
2013-01-01
AMTD partner Exelis developed & demonstrated a technique to manufacture a 400 mm thick substrate via stacking and fusing core structural elements to front and back faceplates; making a 40 cm cut-out of a 4 meter diameter 60 kilograms per square meter mirror. This new process offers a lower cost approach for manufacturing large-diameter high-stiffness mirrors.
Analytics and Action in Afghanistan
2010-09-01
rests on rational technology , and ultimately on scientific knowledge. No country could be modern without being eco- nomically advanced or...backwardness to enlight - ened modernity. Underdeveloped countries had failed to progress to what Max Weber called rational legalism because of the grip...Douglas Pike, Viet Cong: The Organization and Techniques of the National Liberation Front of South Vietnam (Boston: Massachusetts Institute of Technology
Diffraction based overlay and image based overlay on production flow for advanced technology node
NASA Astrophysics Data System (ADS)
Blancquaert, Yoann; Dezauzier, Christophe
2013-04-01
One of the main challenges for lithography step is the overlay control. For the advanced technology node like 28nm and 14nm, the overlay budget becomes very tight. Two overlay techniques compete in our advanced semiconductor manufacturing: the Diffraction based Overlay (DBO) with the YieldStar S200 (ASML) and the Image Based Overlay (IBO) with ARCHER (KLA). In this paper we will compare these two methods through 3 critical production layers: Poly Gate, Contact and first metal layer. We will show the overlay results of the 2 techniques, explore the accuracy and compare the total measurement uncertainty (TMU) for the standard overlay targets of both techniques. We will see also the response and impact for the Image Based Overlay and Diffraction Based Overlay techniques through a process change like an additional Hardmask TEOS layer on the front-end stack. The importance of the target design is approached; we will propose more adapted design for image based targets. Finally we will present embedded targets in the 14 FDSOI with first results.
Adaptive mesh refinement and front-tracking for shear bands in an antiplane shear model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garaizar, F.X.; Trangenstein, J.
1998-09-01
In this paper the authors describe a numerical algorithm for the study of hear-band formation and growth in a two-dimensional antiplane shear of granular materials. The algorithm combines front-tracking techniques and adaptive mesh refinement. Tracking provides a more careful evolution of the band when coupled with special techniques to advance the ends of the shear band in the presence of a loss of hyperbolicity. The adaptive mesh refinement allows the computational effort to be concentrated in important areas of the deformation, such as the shear band and the elastic relief wave. The main challenges are the problems related to shearmore » bands that extend across several grid patches and the effects that a nonhyperbolic growth rate of the shear bands has in the refinement process. They give examples of the success of the algorithm for various levels of refinement.« less
Advanced geophysical underground coal gasification monitoring
Mellors, Robert; Yang, X.; White, J. A.; ...
2014-07-01
Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Activemore » and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.« less
Mechanisms of collective cell movement lacking a leading or free front edge in vivo.
Uechi, Hiroyuki; Kuranaga, Erina
2017-08-01
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
DOE R&D Accomplishments Database
Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.
2002-02-28
X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.
Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile.
Tuffen, Hugh; James, Mike R; Castro, Jonathan M; Schipper, C Ian
2013-01-01
The emplacement mechanisms of rhyolitic lava flows are enigmatic and, despite high lava viscosities and low inferred effusion rates, can result in remarkably, laterally extensive (>30 km) flow fields. Here we present the first observations of an active, extensive rhyolitic lava flow field from the 2011-2012 eruption at Cordón Caulle, Chile. We combine high-resolution four-dimensional flow front models, created using automated photo reconstruction techniques, with sequential satellite imagery. Late-stage evolution greatly extended the compound lava flow field, with localized extrusion from stalled, ~35 m-thick flow margins creating >80 breakout lobes. In January 2013, flow front advance continued ~3.6 km from the vent, despite detectable lava supply ceasing 6-8 months earlier. This illustrates how efficient thermal insulation by the lava carapace promotes prolonged within-flow horizontal lava transport, boosting the extent of the flow. The unexpected similarities with compound basaltic lava flow fields point towards a unifying model of lava emplacement.
Fundamental considerations in dynamic fracture in nuclear materials
NASA Astrophysics Data System (ADS)
Cady, Carl; Eastwood, David; Bourne, Neil; Pei, Ruizhi; Mummery, Paul; Rau, Christoph
2017-06-01
The structural integrity of components used in nuclear power plants is the biggest concern of operators. A diverse range of materials, loading, prior histories and environmental conditions, leads to a complex operating environment. An experimental technique has been developed to characterize brittle materials and using linear elastic fracture mechanics, has given accurate measurements of the fracture toughness of materials. X-ray measurements were used to track the crack front as a function of loading parameters as well as determine the crack surface area as loads increased. This X-ray tomographic study of dynamic fracture in beryllium indicates the onset of damage within the target as load is increased. Similarly, measurements on nuclear graphite were conducted to evaluate the technique. This new, quantitative information obtained using the X-ray techniques has shown application in other materials. These materials exhibited a range of brittle and ductile responses that will test our modelling schemes for fracture. Further visualization of crack front advance and the correlated strain fields that are generated during the experiment for the two distinct deformation processes provide a vital step in validating new multiscale predicative modelling.
An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images
NASA Astrophysics Data System (ADS)
Makidon, Russell B.; Sivaramakrishnan, Anand; Perrin, Marshall D.; Roberts, Lewis C., Jr.; Oppenheimer, Ben R.; Soummer, Rémi; Graham, James R.
2005-08-01
Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade and are revolutionizing the kinds of science possible with 4-5 m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave-front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a ``waffle mode'' wave-front error (which is not sensed by a Fried geometry Shack-Hartmann wave-front sensor) affects the AO point-spread function. We model details of AEOS AO to simulate a PSF that matches the actual AO PSF in the I band and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass. Based on observations made at the Maui Space Surveillance System, operated by Detachment 15 of the US Air Force Research Laboratory's Directed Energy Directorate.
I-line stepper based overlay evaluation method for wafer bonding applications
NASA Astrophysics Data System (ADS)
Kulse, P.; Sasai, K.; Schulz, K.; Wietstruck, M.
2018-03-01
In the last decades the semiconductor technology has been driven by Moore's law leading to high performance CMOS technologies with feature sizes of less than 10 nm [1]. It has been pointed out that not only scaling but also the integration of novel components and technology modules into CMOS/BiCMOS technologies is becoming more attractive to realize smart and miniaturized systems [2]. Driven by new applications in the area of communication, health and automation, new components and technology modules such as BiCMOS embedded RF-MEMS, high-Q passives, Sibased microfluidics and InP-SiGe BiCMOS heterointegration have been demonstrated [3-6]. In contrast to standard VLSI processes fabricated on front side of the silicon wafer, these new technology modules additionally require to process the backside of the wafer; thus require an accurate alignment between the front and backside of the wafer. In previous work an advanced back to front side alignment technique and implementation into IHP's 0.25/0.13 µm high performance SiGe:C BiCMOS backside process module has been presented [7]. The developed technique enables a high resolution and accurate lithography on the backside of BiCMOS wafer for additional backside processing. In addition to the aforementioned back side process technologies, new applications like Through-Silicon Vias (TSV) for interposers and advanced substrate technologies for 3D heterogeneous integration demand not only single wafer fabrication but also processing of wafer stacks provided by temporary and permanent wafer bonding [8-9]. In this work, the non-contact infrared alignment system of the Nikon® i-line Stepper NSR-SF150 for both alignment and the overlay determination of bonded wafer stacks with embedded alignment marks are used to achieve an accurate alignment between the different wafer sides. The embedded field image alignment (FIA) marks of the interface and the device wafer top layer are measured in a single measurement job. By taking the offsets between all different FIA's into account, after correcting the wafer rotation induced FIA position errors, hence an overlay for the stacked wafers can be determined. The developed approach has been validated by a standard front side resist in resist experiment. After the successful validation of the developed technique, special wafer stacks with FIA alignment marks in the bonding interface are fabricated and exposed. Following overlay calculation shows an overlay of less than 200 nm, which enables very accurate process condition for highly scaled TSV integration and advanced substrate integration into IHP's 0.25/0.13 µm SiGe:C BiCMOS technology. The developed technique also allows using significantly smaller alignment marks (i.e. standard FIA alignment marks). Furthermore, the presented method is used, in case of wafer bow related overlay tool problems, for the overlay evaluation of the last two metal layers from production wafers prepared in IHP's standard 0.25/0.13 µm SiGe:C BiCMOS technology. In conclusion, the exposure and measurement job can be done with the same tool, minimizing the back to front side/interface top layer misalignment which leads to a significant device performance improvement of backside/TSV integrated components and technologies.
How have changes in front air bag designs affected frontal crash death rates? An update.
Teoh, Eric R
2014-01-01
Provide updated death rates comparing latest generations of frontal air bags in fatal crashes. Rates of driver and right-front passenger deaths in frontal crashes per 10 million registered vehicle years were compared using Poisson marginal structural models for passenger vehicles equipped with air bags certified as advanced and compliant (CAC), sled-certified air bags with advanced features, and sled-certified air bags without any advanced features. Analyses of driver death rates were disaggregated by age group, gender, and belt use. CAC air bags were associated with slightly elevated frontal crash death rates for both drivers and right-front passengers compared to sled-certified air bags with advanced features, but the differences were not statistically significant. Sled-certified air bags with advanced features were associated with significant benefits for drivers and for right-front passengers compared to sled-certified air bags without advanced features. CAC air bags were associated with a significant increase in belted driver death rate and a comparable but nonsignificant decrease in unbelted driver death rate compared to sled-certified air bags with advanced features. Sled-certified air bags with advanced features were associated with a nonsignificant 2 percent increase in belted driver death rate and a significant 26 percent decrease in unbelted driver death rate, relative to sled-certified air bags without advanced features. Implementing advanced features in sled-certified air bags was beneficial overall to drivers and right-front passengers with sled-certified air bags. No overall benefit was observed for CAC air bags compared to sled-certified air bags with advanced features. Further study is needed to understand the apparent reduction in belted driver protection observed for CAC air bags.
O'Malley, Lauren; Korniss, G; Caraco, Thomas
2009-07-01
Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibits universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.
Laser interferometric high-precision geometry (angle and length) monitor for JASMINE
NASA Astrophysics Data System (ADS)
Niwa, Y.; Arai, K.; Ueda, A.; Sakagami, M.; Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.
2008-07-01
The telescope geometry of JASMINE should be stabilized and monitored with the accuracy of about 10 to 100 pm or 10 to 100 prad of rms over about 10 hours. For this purpose, a high-precision interferometric laser metrology system is employed. Useful techniques for measuring displacements on extremely small scales are the wave-front sensing method and the heterodyne interferometrical method. Experiments for verification of measurement principles are well advanced.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.
Investigation of advancing front method for generating unstructured grid
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1992-01-01
The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.
NASA Astrophysics Data System (ADS)
Kim, J.; Yu, J.; Wang, L.; Liu, H.
2017-12-01
Changes in Antarctic ice sheet are caused by various reasons such as changes in Holocene climate, precipitation, and ocean temperature. Such issues of changes in ice sheet has been mainly focused on the Antarctic peninsula, and it is known that ice retreat of the area is caused by changes in atmospheric and ocean temperatures. For the case of West Antarctica, ice front change research is relatively rarely conducted except the Pine island glacier area. This study has monitored ice front changes of West Antarctica and compared the patterns with the changes in brightness temperature based on remote sensing techniques. We used 2000 Radarsat-1 and 2008 Rasarsat-2 SAR data to delineate coastlines of whole West Antarctica based on the locally thresholding adaptive algorithm. The delineated coast lines are analyzed to figure out ice front change patterns between the duration. The variations in brightness temperature for the same duration are calculated based on Defense Meteorological Satellite Program (DMSP)'s Special Sensor Microwave/Images-Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS) passive microwave data. The results show ice front of West Antarctica shows advancing trend except the pine island glacier area. The brightness temperature had decreasing trend during the study period. It infers that changes in ice front and brightness temperature of West Antarctica have considerable relationships. It is expected that a long term monitoring of the relationship would contribute understanding ice dynamics of West Antarctica significantly.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.
Advances in numerical and applied mathematics
NASA Technical Reports Server (NTRS)
South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)
1986-01-01
This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.
Pulsed discharges produced by high-power surface waves
NASA Astrophysics Data System (ADS)
Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.
1996-02-01
The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.
Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov
2016-07-27
The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less
Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaski, Y.; Westferro, F.; Lee, S. H.
2016-07-27
The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less
NASA Astrophysics Data System (ADS)
Rodríguez Cielos, Ricardo; Aguirre de Mata, Julián; Díez Galilea, Andrés; Álvarez Alonso, Marina; Rodríguez Cielos, Pedro; Navarro Valero, Francisco
2016-08-01
Various geomatic measurement techniques can be efficiently combined for surveying glacier fronts. Aerial photographs and satellite images can be used to determine the position of the glacier terminus. If the glacier front is easily accessible, the classic surveys using theodolite or total station, GNSS (Global Navigation Satellite System) techniques, laser-scanner or close-range photogrammetry are possible. When the accessibility to the glacier front is difficult or impossible, close-range photogrammetry proves to be useful, inexpensive and fast. In this paper, a methodology combining photogrammetric methods and other techniques is applied to determine the calving front position of Johnsons Glacier. Images taken in 2013 with an inexpensive nonmetric digital camera are georeferenced to a global coordinate system by measuring, using GNSS techniques, support points in accessible areas close to the glacier front, from which control points in inaccessible points on the glacier surface near its calving front are determined with theodolite using the direct intersection method. The front position changes of Johnsons Glacier during the period 1957-2013, as well as those of the land-terminating fronts of Argentina, Las Palmas and Sally Rocks lobes of Hurd glacier, are determined from different geomatic techniques such as surface-based GNSS measurements, aerial photogrammetry and satellite optical imagery. This provides a set of frontal positions useful, e.g., for glacier dynamics modeling and mass balance studies.Link to the data repository: https://doi.pangaea.de/10.1594/PANGAEA.845379.
The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.
Worthington, Peter; King, Mark; Ranson, Craig
2013-01-01
High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.
Systems and methods for advanced ultra-high-performance InP solar cells
Wanlass, Mark
2017-03-07
Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.
Articulatory characteristics of Hungarian ‘transparent’ vowels
Benus, Stefan; Gafos, Adamantios I.
2007-01-01
Using a combination of magnetometry and ultrasound, we examined the articulatory characteristics of the so-called ‘transparent’ vowels [iː], [i], and [eː] in Hungarian vowel harmony. Phonologically, transparent vowels are front, but they can be followed by either front or back suffixes. However, a finer look reveals an underlying phonetic coherence in two respects. First, transparent vowels in back harmony contexts show a less advanced (more retracted) tongue body posture than phonemically identical vowels in front harmony contexts: e.g. [i] in buli-val is less advanced than [i] in bili-vel. Second, transparent vowels in monosyllabic stems selecting back suffixes are also less advanced than phonemically identical vowels in stems selecting front suffixes: e.g. [iː] in ír, taking back suffixes, compared to [iː] of hír, taking front suffixes, is less advanced when these stems are produced in bare form (no suffixes). We thus argue that the phonetic degree of tongue body horizontal position correlates with the phonological alternation in suffixes. A hypothesis that emerges from this work is that a plausible phonetic basis for transparency can be found in quantal characteristics of the relation between articulation and acoustics of transparent vowels. More broadly, the proposal is that the phonology of transparent vowels is better understood when their phonological patterning is studied together with their articulatory and acoustic characteristics. PMID:18389086
Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin; ...
2017-03-10
Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin
Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less
How have changes in air bag designs affected frontal crash mortality?
Braver, Elisa R; Shardell, Michelle; Teoh, Eric R
2010-07-01
To determine whether front air bag changes have affected occupant protection, frontal crash mortality rates were compared among front outboard occupants in vehicles having certified-advanced air bags (latest generation of air bags) or sled-certified air bags with and without advanced features. Poisson marginal structural models were used to calculate standardized mortality rate ratios (MRRs) for front occupants per registered vehicle. Vehicle age-corrected mortality rates were lower for drivers of vehicles having sled-certified air bags with advanced features than for drivers having sled-certified air bags without advanced features (MRR = 0.88; 95% confidence interval [CI]: 0.81-0.95), including unbelted men and drivers younger than 60. The mortality rate was higher, though not statistically significant, for drivers having certified-advanced air bags compared with sled-certified air bags with advanced features (vehicle age-corrected MRR = 1.13; 95% CI: 0.97-1.32) and significantly higher for belted drivers (MRR = 1.21; 95% CI: 1.04-1.39). Advanced air bag features appeared protective for some occupants. However, increased mortality rates among belted drivers of vehicles having certified-advanced air bags relative to those having sled-certified air bags with advanced features suggest that further study is needed to identify any potential problems with requirements for certification. 2010 Elsevier Inc. All rights reserved.
Turbulent statistics in the vicinity of an SST front: A north wind case, FASINEX February 16, 1986
NASA Technical Reports Server (NTRS)
Stage, Steven A.; Herbster, Chris
1990-01-01
The technique of boxcar variances and covariances is used to examine NCAR Electra data from FASINEX (Frontal Air-Sea Interaction EXperiment). This technique was developed to examine changes in turbulent fluxes near a sea surface temperature (SST) front. The results demonstrate the influence of the SST front on the MABL (Marine Atmospheric Boundary Layer). Data shown are for February 16, 1986, when the winds blew from over cold water to warm. The front directly produced horizontal variability in the turbulence. The front also induced a secondary circulation which further modified the turbulence.
Taking charge: front-line nurse leadership development.
Schwarzkopf, Ruth; Sherman, Rose O; Kiger, Anna J
2012-04-01
The recent Institute of Medicine (2010) report, The Future of Nursing: Leading Change, Advancing Health, included a recommendation that nurses at all levels should be prepared and enabled to lead change to advance health care in the United States. Historically, in most organizations, nursing leadership development programs have focused on nurses in management or executive roles rather than those working in front-line leadership roles. This article describes a front-line leadership development initiative developed by Tenet Healthcare Corporation and attended by 400 charge nurses. Program development, evaluation, and lessons learned that can be applied in other organizations are discussed. Copyright 2012, SLACK Incorporated.
Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies
NASA Technical Reports Server (NTRS)
Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.
2011-01-01
Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.
NASA Astrophysics Data System (ADS)
Bordovsky, Michal; Catrysse, Peter; Dods, Steven; Freitas, Marcio; Klein, Jackson; Kotacka, Libor; Tzolov, Velko; Uzunov, Ivan M.; Zhang, Jiazong
2004-05-01
We present the state of the art for commercial design and simulation software in the 'front end' of photonic circuit design. One recent advance is to extend the flexibility of the software by using more than one numerical technique on the same optical circuit. There are a number of popular and proven techniques for analysis of photonic devices. Examples of these techniques include the Beam Propagation Method (BPM), the Coupled Mode Theory (CMT), and the Finite Difference Time Domain (FDTD) method. For larger photonic circuits, it may not be practical to analyze the whole circuit by any one of these methods alone, but often some smaller part of the circuit lends itself to at least one of these standard techniques. Later the whole problem can be analyzed on a unified platform. This kind of approach can enable analysis for cases that would otherwise be cumbersome, or even impossible. We demonstrate solutions for more complex structures ranging from the sub-component layout, through the entire device characterization, to the mask layout and its editing. We also present recent advances in the above well established techniques. This includes the analysis of nano-particles, metals, and non-linear materials by FDTD, photonic crystal design and analysis, and improved models for high concentration Er/Yb co-doped glass waveguide amplifiers.
National Space Weather Program Advances on Several Fronts
NASA Astrophysics Data System (ADS)
Gunzelman, Mark; Babcock, Michael
2008-10-01
The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.
Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.; Zagaris, George
2009-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
Domain Decomposition By the Advancing-Partition Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
An evaluation of tracer dilution techniques for gauging of rivers in flood
NASA Astrophysics Data System (ADS)
Airey, P. L.; Calf, G. E.; Davison, A.; Easey, J. F.; Morley, A. W.
1984-10-01
The use of the tracer dilution technique to gauge flow over broad shallow floodplains is examined. Because of the long mixing lengths, it sometimes takes several days for the passage of the laterally dispersed pulse. Tracer methods can be used if the flow rates vary linearly during the passage of the pulse. The measured flow rate is related to the time at which the first moment of the concentration profile (∫ tc( z, t)d t) is zero. An experimental verification is presented. By analysing the tracer pulse shapes before the establishment of complete mixing, it was demonstrated that the effective dispersion coefficients were independent of the scale of turbulence over the range 10 m to ˜1 km. This is consistent with the establishment of isotropic turbulence on the floodplain in contrast to oceanic surfaces. The velocity of the tracer is a factor of 2 less than that of an advancing wave front, which is in acceptable agreement with prediction. It is concluded that the transport of a non-interacting contaminant across the floodplain can be predicted from the wave front velocity and the dispersion coefficients measured close to the release point.
Effect of cross grain on stress waves in lumber
C.C. Gerhards
1980-01-01
An evaluation is made of the effect of cross grain on the transit time of longitudinal compression stress waves in Douglas-fir 2 by 8 lumber. Cross grain causes the stress wave to advance with a front or contour skewed in the direction of the grain angle, rather than to advance with a front normal to the long axis of lumber. Thus, the timing of the stress wave in...
Balasubramanian, Viswanathan; Ruedi, Pierre-Francois; Temiz, Yuksel; Ferretti, Anna; Guiducci, Carlotta; Enz
2013-10-01
This paper presents a novel sensor front-end circuit that addresses the issues of 1/f noise and distortion in a unique way by using canceling techniques. The proposed front-end is a fully differential transimpedance amplifier (TIA) targeted for current mode electrochemical biosensing applications. In this paper, we discuss the architecture of this canceling based front-end and the optimization methods followed for achieving low noise, low distortion performance at minimum current consumption are presented. To validate the employed canceling based front-end, it has been realized in a 0.18 μm CMOS process and the characterization results are presented. The front-end has also been tested as part of a complete wireless sensing system and the cyclic voltammetry (CV) test results from electrochemical sensors are provided. Overall current consumption in the front-end is 50 μA while operating on a 1.8 V supply.
Fry, Bryan G; Scheib, Holger; van der Weerd, Louise; Young, Bruce; McNaughtan, Judith; Ramjan, S F Ryan; Vidal, Nicolas; Poelmann, Robert E; Norman, Janette A
2008-02-01
Venom is a key innovation underlying the evolution of advanced snakes (Caenophidia). Despite this, very little is known about venom system structural diversification, toxin recruitment event timings, or toxin molecular evolution. A multidisciplinary approach was used to examine the diversification of the venom system and associated toxins across the full range of the approximately 100 million-year-old advanced snake clade with a particular emphasis upon families that have not secondarily evolved a front-fanged venom system ( approximately 80% of the 2500 species). Analysis of cDNA libraries revealed complex venom transcriptomes containing multiple toxin types including three finger toxins, cobra venom factor, cysteine-rich secretory protein, hyaluronidase, kallikrein, kunitz, lectin, matrix metalloprotease, phospholipase A(2), snake venom metalloprotease/a disintegrin and metalloprotease, and waprin. High levels of sequence diversity were observed, including mutations in structural and functional residues, changes in cysteine spacing, and major deletions/truncations. Morphological analysis comprising gross dissection, histology, and magnetic resonance imaging also demonstrated extensive modification of the venom system architecture in non-front-fanged snakes in contrast to the conserved structure of the venom system within the independently evolved front-fanged elapid or viperid snakes. Further, a reduction in the size and complexity of the venom system was observed in species in which constriction has been secondarily evolved as the preferred method of prey capture or dietary preference has switched from live prey to eggs or to slugs/snails. Investigation of the timing of toxin recruitment events across the entire advanced snake radiation indicates that the evolution of advanced venom systems in three front-fanged lineages is associated with recruitment of new toxin types or explosive diversification of existing toxin types. These results support the role of venom as a key evolutionary innovation in the diversification of advanced snakes and identify a potential role for non-front-fanged venom toxins as a rich source for lead compounds for drug design and development.
The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows
NASA Astrophysics Data System (ADS)
Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.
2014-12-01
The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic waves. Owing to the less attenuation of low frequency waves, advanced signals mainly ranged between 2 and 10 Hz were detected in several minutes prior to the arrival of the main surge of a debris flow. As the results, the prior time of the advanced signals could be used not only to extend the warning time, but also to identify the initial location of a developing debris flow.
NASA Astrophysics Data System (ADS)
Abellan, Antonio; Penna, Ivanna; Daicz, Sergio; Carrea, Dario; Derron, Marc-Henri; Guerin, Antoine; Jaboyedoff, Michel
2015-04-01
There exists a great incertitude concerning the processes that control and lead to glaciers' fronts disintegration, including the laws and the processes governing ice calving phenomena. The record of surface processes occurring at glacier's front has proven problematic due to the highly dynamic nature of the calving phenomenon, creating a great uncertainty concerning the processes and forms controlling and leading to the occurrence of discrete calving events. For instance, some common observational errors for quantifying the sudden occurrence of the calving phenomena include the insufficient spatial and/or temporal resolution of the conventional photogrammetric techniques and satellites missions. Furthermore, a lack of high quality four dimensional data of failures is currently affecting our ability to straightforward analyse and predict the glaciers' dynamics. In order to overcome these limitations, we used a terrestrial LiDAR sensor (Optech Ilris 3D-LR) for intensively monitoring the changes occurred at one of the most impressive calving glacier fronts: the Perito Moreno glacier, located in the Southern Patagonian Ice Fields (Argentina). Using this system, we were able to capture at an unprecedented level of detail the three-dimensional geometry of the glacier's front during five days (from 10th to 14th of March 2014). Each data collection, which was acquired at a mean interval of 20 minutes each, consisted in the automatic acquisition of several million points at a mean density between 100-200 points per square meter. The maximum attainable range for the utilized wavelength of the Ilris-LR system (1064 nm) was around 500 meters over massive ice (showing no-significant loss of information), being this distance considerably reduced on crystalline or wet ice short after the occurrence of calving events. By comparing successive three-dimensional datasets, we have investigated not only the magnitude and frequency of several ice failures at the glacier's terminus, but also the characteristic geometrical features of each failure. We were also able to investigate a growing strain rate on several areas of the glacier's front several days in advance of its final collapse. Furthermore, we carried out a structural analysis of the different sets of crevasses observed at the glacier front using the normal vector of each facet of the glacier front surface. When adapting well-known kinematic test that were originally developed for rock slopes to the investigation of gravity driven instabilities on glaciers' front, toppling emerged as the preferential failure mechanism at this part of the glacier front. This approach for monitoring glacier's fronts is original and innovative. Up to very recently, characterizing the discrete calving phenomenon and understanding the statistical laws governing the system have gained interest on the scientific community. Our proposed approach may shed light into both the possibility to identify the elusive existence of calving Magnitude-Frequency laws at specific regions and to capture the key spatio-temporal linkages between rates of ice calving, flow, surface lowering and frontal advance/retreat, with clear implications for modeling the global trend of ice mass balance.
Sen, Novonil; Kundu, Tribikram
2018-07-01
Estimating the location of an acoustic source in a structure is an important step towards passive structural health monitoring. Techniques for localizing an acoustic source in isotropic structures are well developed in the literature. Development of similar techniques for anisotropic structures, however, has gained attention only in the recent years and has a scope of further improvement. Most of the existing techniques for anisotropic structures either assume a straight line wave propagation path between the source and an ultrasonic sensor or require the material properties to be known. This study considers different shapes of the wave front generated during an acoustic event and develops a methodology to localize the acoustic source in an anisotropic plate from those wave front shapes. An elliptical wave front shape-based technique was developed first, followed by the development of a parametric curve-based technique for non-elliptical wave front shapes. The source coordinates are obtained by minimizing an objective function. The proposed methodology does not assume a straight line wave propagation path and can predict the source location without any knowledge of the elastic properties of the material. A numerical study presented here illustrates how the proposed methodology can accurately estimate the source coordinates. Copyright © 2018 Elsevier B.V. All rights reserved.
Aerodynamic properties of turbulent combustion fields
NASA Technical Reports Server (NTRS)
Hsiao, C. C.; Oppenheim, A. K.
1985-01-01
Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.
Spectroscopic imaging, diffraction, and holography with x-ray photoemission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less
An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Erickson, Larry L.
1994-01-01
A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.
Simons, Jack
2008-07-24
The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.
Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system
NASA Astrophysics Data System (ADS)
Morita, Ken; Shiozawa, Kento; Suizu, Koji; Ishitani, Yoshihiro
2018-05-01
To achieve the phase matching condition in terahertz (THz) pulse generation by the tilted pulse front technique, it is necessary to rebuild the entire optical setup if the optical conditions, such as excitation wavelength, temperature of nonlinear crystal, and output THz frequency, are changed. We propose THz pulse generation by the tilted pulse front technique using an M-shaped configuration. This system allows us to change the optical conditions only by tuning a few optics and without rebuilding the entire setup. We change the excitation wavelength at a fixed radiation frequency and assess the performance of the proposed system.
Development of an Automatic Grid Generator for Multi-Element High-Lift Wings
NASA Technical Reports Server (NTRS)
Eberhardt, Scott; Wibowo, Pratomo; Tu, Eugene
1996-01-01
The procedure to generate the grid around a complex wing configuration is presented in this report. The automatic grid generation utilizes the Modified Advancing Front Method as a predictor and an elliptic scheme as a corrector. The scheme will advance the surface grid one cell outward and the newly obtained grid is corrected using the Laplace equation. The predictor-corrector step ensures that the grid produced will be smooth for every configuration. The predictor-corrector scheme is extended for a complex wing configuration. A new technique is developed to deal with the grid generation in the wing-gaps and on the flaps. It will create the grids that fill the gap on the wing surface and the gap created by the flaps. The scheme recognizes these configurations automatically so that minimal user input is required. By utilizing an appropriate sequence in advancing the grid points on a wing surface, the automatic grid generation for complex wing configurations is achieved.
NASA Astrophysics Data System (ADS)
Kehrl, L. M.; Joughin, I. R.; Shean, D. E.
2016-12-01
Marine-terminating glaciers can be very sensitive to changes in ice-front position, depending on their geometry. If a nearly grounded glacier retreats into deeper water, the glacier typically must speed up to produce the additional longitudinal and lateral stress gradients necessary to restore force balance. This speedup often causes thinning, which can increase the glacier's susceptibility to further retreat. In this study, we combine satellite observations and numerical modeling (Elmer/Ice) to investigate how seasonal changes in ice-front position affect glacier speed and surface elevation at Helheim Glacier, SE Greenland, from 2010-2016. Helheim's calving front position fluctuated about a mean position from 2010-2016. During 2010/11, 2013/14, and 2015/16, Helheim seasonally retreated and advanced along a reverse bed slope by > 3 km. During these years, the glacier retreated from winter/spring to late summer and then readvanced until winter/spring. During the retreat, Helheim sped up by 20-30% and thinned by 20 m near its calving front. This thinning caused the calving front to unground, and a floating ice tongue was then able to readvance over the following winter with limited iceberg calving. The advance, which continued until the glacier reached the top of the bathymetric high, caused the glacier to slow and thicken. During years when Helheim likely did not form a floating ice tongue, iceberg calving continued throughout the winter. Consequently, the formation of this floating ice tongue may have helped stabilize Helheim after periods of rapid retreat and dynamic thinning. Helheim's rapid retreat from 2001-2005 also ended when a floating ice tongue formed and readvanced over the 2005/06 winter. These seasonal retreat/advance cycles may therefore be important for understanding Helheim's long-term behavior.
Laser velocimeter measurements of the flowfield generated by an advanced counterrotating propeller
NASA Technical Reports Server (NTRS)
Podboy, Gary G.; Krupar, Martin J.
1989-01-01
Results are presented of an investigation to measure the flowfield generated by an advanced counterrotating pusher propeller model similar to the full-scale Unducted Fan demonstrator engine. A laser Doppler velocimeter was used to measure the velocity field in several planes normal to the centerline of the model at axial stations upstream and downstream of each rotor. During this investigation, blades of the F4/A4 type were installed on the model which was operating in a freestream Mach 0.72 regime, with the advance ratio of each rotor set at 2.80. The measured data indicate only a slight influence of the potential field of each front rotor blade on the flowfield upstream of the rotor. The data measured downstream of the front rotor characterize the tip vortices, vortex sheets and potential field nonuniformities generated by the front rotor. The unsteadiness of the flow in the rotating frame of reference of the aft rotor is also illustrated.
The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China
NASA Astrophysics Data System (ADS)
Xiao, Derong; Zhang, Liquan; Zhu, Zhenchang
2010-06-01
The range expansion patterns of Spartina alterniflora and the roles which sexual reproduction and asexual propagation play in range expansion were investigated at the Chongming Dongtan nature reserve in the Yangtze Estuary, China. Two range expansion patterns of S. alterniflora at its advancing fronts could be found (1) S. alterniflora-mudflat front (S-M) and (2) S. alterniflora- Scirpus mariqueter-mudflat front (S-S-M). One feature revealed by this study was that a flush of seedling recruitment and establishment in spring was a crucial way for S. alterniflora to colonize new habitats and achieve a fast rate of range expansion. The mean number of seedlings recruited at the S-M front was much higher than that at the S-S-M front. Once established, the survivorship of seedlings was high, both at the S-M and S-S-M fronts. The established seedlings formed new tussocks quickly by vegetative tillering and growth of rhizomes and these finally merged into dense meadows. The mean distance of range expansion of S. alterniflora, after one growing season at the S-M front, was 25.4 ± 3.1 m yr -1 and 2.7 ± 0.5 m yr -1 at the S-S-M front. Sexual reproduction by seedlings and asexual propagation by tillering and growth of rhizomes were the two main means by which S. alterniflora could maintain a fast rate of range expansion on the salt marshes of the Yangtze Estuary. The colonization behaviors of S. alterniflora on advancing fronts differed as a reaction to various external and internal factors. The impact of abiotic and biotic factors governing the range expansion of S. alterniflora and its implications for the spatial structure of tidal wetlands are discussed.
Crossmaps: Visualization of overlapping relationships in collections of journal papers
Morris, Steven A.; Yen, Gary G.
2004-01-01
A crossmapping technique is introduced for visualizing multiple and overlapping relations among entity types in collections of journal articles. Groups of entities from two entity types are crossplotted to show correspondence of relations. For example, author collaboration groups are plotted on the x axis against groups of papers (research fronts) on the y axis. At the intersection of each pair of author group/research front pairs a circular symbol is plotted whose size is proportional to the number of times that authors in the group appear as authors in papers in the research front. Entity groups are found by agglomerative hierarchical clustering using conventional similarity measures. Crossmaps comprise a simple technique that is particularly suited to showing overlap in relations among entity groups. Particularly useful crossmaps are: research fronts against base reference clusters, research fronts against author collaboration groups, and research fronts against term co-occurrence clusters. When exploring the knowledge domain of a collection of journal papers, it is useful to have several crossmaps of different entity pairs, complemented by research front timelines and base reference cluster timelines. PMID:14762168
An adaptive front tracking technique for three-dimensional transient flows
NASA Astrophysics Data System (ADS)
Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.
2000-01-01
An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright
Nornahraun lava morphology and mode of emplacement
NASA Astrophysics Data System (ADS)
Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór
2015-04-01
The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT and the flow front came to halt on 12 SEPT 18 km from the source vent. Subsequently, a new lobe broke out S of the first lobe and migrated eastward until it came to a halt at a slightly shorter distance from the fissure. This mode of gradual clockwise propagation of new frontal lobes continued from mid-SEPT to end-NOV. Around 15 OCT, a ~0.8 km2 lava pond developed and persists into 2015. As the activity on the southern front dwindled toward end-NOV, verti-cal stacking of insulated flows had commenced and reached the edge of northern front on 26 NOV. Prior to that the entire northern flow front had hardly advanced for two weeks. The main lava channel partly crusted over and by end-NOV a series of insulated flows were overriding the previous emplaced flows, changing transport system to include closed/insultaed pathways in addition to open channels. Resultantly, the area now covered by the flow field has undergone several topographic inversions due to stacking of lava lobes. [1] Macdonald (1967) NY Wiley, 1-61. [2] Swanson (1973) GSAB, 84, 615-626. [3] Thordarson (2000) Surtsey Res. Prog. Rep., XI, 125-142. [4] Guilbaud et al. (2005) Geol. Soc. Am. Spec. Pap., 396, 81-102. [5] Keszthelyi et al. (2004) GGG, 5, Q11014.
4. CONSTRUCTION PROGRESS VIEW OF EQUIPMENT IN FRONT PART OF ...
4. CONSTRUCTION PROGRESS VIEW OF EQUIPMENT IN FRONT PART OF CONTROL BUNKER (TRANSFORMER, HYDRAULIC TANK, PUMP, MOTOR). SHOWS UNLINED CORRUGATED METAL WALL. CAMERA FACING EAST. INEL PHOTO NUMBER 65-5433, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
On advanced configuration enhance adaptive system optimization
NASA Astrophysics Data System (ADS)
Liu, Hua; Ding, Quanxin; Wang, Helong; Guo, Chunjie; Chen, Hongliang; Zhou, Liwei
2017-10-01
For aim to find an effective method to structure to enhance these adaptive system with some complex function and look forward to establish an universally applicable solution in prototype and optimization. As the most attractive component in adaptive system, wave front corrector is constrained by some conventional technique and components, such as polarization dependence and narrow working waveband. Advanced configuration based on a polarized beam split can optimized energy splitting method used to overcome these problems effective. With the global algorithm, the bandwidth has been amplified by more than five times as compared with that of traditional ones. Simulation results show that the system can meet the application requirements in MTF and other related criteria. Compared with the conventional design, the system has reduced in volume and weight significantly. Therefore, the determining factors are the prototype selection and the system configuration, Results show their effectiveness.
Advances in Radiotherapy for Glioblastoma
Mann, Justin; Ramakrishna, Rohan; Magge, Rajiv; Wernicke, A. Gabriella
2018-01-01
External beam radiotherapy (RT) has long played a crucial role in the treatment of glioblastoma. Over the past several decades, significant advances in RT treatment and image-guidance technology have led to enormous improvements in the ability to optimize definitive and salvage treatments. This review highlights several of the latest developments and controversies related to RT, including the treatment of elderly patients, who continue to be a fragile and vulnerable population; potential salvage options for recurrent disease including reirradiation with chemotherapy; the latest imaging techniques allowing for more accurate and precise delineation of treatment volumes to maximize the therapeutic ratio of conformal RT; the ongoing preclinical and clinical data regarding the combination of immunotherapy with RT; and the increasing evidence of cancer stem-cell niches in the subventricular zone which may provide a potential target for local therapies. Finally, continued development on many fronts have allowed for modestly improved outcomes while at the same time limiting toxicity. PMID:29379468
Advances in Radiotherapy for Glioblastoma.
Mann, Justin; Ramakrishna, Rohan; Magge, Rajiv; Wernicke, A Gabriella
2017-01-01
External beam radiotherapy (RT) has long played a crucial role in the treatment of glioblastoma. Over the past several decades, significant advances in RT treatment and image-guidance technology have led to enormous improvements in the ability to optimize definitive and salvage treatments. This review highlights several of the latest developments and controversies related to RT, including the treatment of elderly patients, who continue to be a fragile and vulnerable population; potential salvage options for recurrent disease including reirradiation with chemotherapy; the latest imaging techniques allowing for more accurate and precise delineation of treatment volumes to maximize the therapeutic ratio of conformal RT; the ongoing preclinical and clinical data regarding the combination of immunotherapy with RT; and the increasing evidence of cancer stem-cell niches in the subventricular zone which may provide a potential target for local therapies. Finally, continued development on many fronts have allowed for modestly improved outcomes while at the same time limiting toxicity.
High-efficiency neutron detectors and methods of making same
McGregor, Douglas S.; Klann, Raymond
2007-01-16
Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.
Nomura, Ken-Ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri C T; Goddard, William A
2007-10-05
Mechanical stimuli in energetic materials initiate chemical reactions at shock fronts prior to detonation. Shock sensitivity measurements provide widely varying results, and quantum-mechanical calculations are unable to handle systems large enough to describe shock structure. Recent developments in reactive force-field molecular dynamics (ReaxFF-MD) combined with advances in parallel computing have paved the way to accurately simulate reaction pathways along with the structure of shock fronts. Our multimillion-atom ReaxFF-MD simulations of l,3,5-trinitro-l,3,5-triazine (RDX) reveal that detonation is preceded by a transition from a diffuse shock front with well-ordered molecular dipoles behind it to a disordered dipole distribution behind a sharp front.
Unification of color postprocessing techniques for 3-dimensional computational mechanics
NASA Technical Reports Server (NTRS)
Bailey, Bruce Charles
1985-01-01
To facilitate the understanding of complex three-dimensional numerical models, advanced interactive color postprocessing techniques are introduced. These techniques are sufficiently flexible so that postprocessing difficulties arising from model size, geometric complexity, response variation, and analysis type can be adequately overcome. Finite element, finite difference, and boundary element models may be evaluated with the prototype postprocessor. Elements may be removed from parent models to be studied as independent subobjects. Discontinuous responses may be contoured including responses which become singular, and nonlinear color scales may be input by the user for the enhancement of the contouring operation. Hit testing can be performed to extract precise geometric, response, mesh, or material information from the database. In addition, stress intensity factors may be contoured along the crack front of a fracture model. Stepwise analyses can be studied, and the user can recontour responses repeatedly, as if he were paging through the response sets. As a system, these tools allow effective interpretation of complex analysis results.
Teaching Front Handsprings from a Developmental Approach
ERIC Educational Resources Information Center
Stork, Steve
2006-01-01
The front handspring is an important gymnastics skill that serves as a transition from beginner-level rolling and static balances to more advanced tumbling. It is, therefore, a skill highly desired by beginners. Early learning requires a great deal of effort during which students experience many failed attempts. Unless they are highly motivated,…
5-D interpolation with wave-front attributes
NASA Astrophysics Data System (ADS)
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that there are significant advantages for steep dipping events using the 5-D WABI method when compared to the rank-reduction-based 5-D interpolation technique. Diffraction tails substantially benefit from this improved performance of the partial CRS stacking approach while the CPU time is comparable to the CPU time consumed by the rank-reduction-based method.
Front surface structured targets for enhancing laser-plasma interactions
NASA Astrophysics Data System (ADS)
Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass
2016-10-01
We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.
Stress measurements in Kuzbass mines using photoelastic sensors
NASA Astrophysics Data System (ADS)
Schastlivtsev, E.
1996-06-01
The basic amount of known measurements of stressed state in front of development workings' faces was carried out with the use of hydraulic sensors, which give an information about principal stresses without their separation. Besides, the availability of pipe-line and cumbersome equipment make more complicated and sometimes impossible the process of stresses' measurements during works in mining process. In our opinion, the borehole and photoelastic sensors at high degree satisfy with the conditions of stresses' measurements in front of mining workings' faces. The principal idea of the method is in the usage of proper face advancing aiming the estimation of the field stresses in its neighborhood. Borehole and photoelastic sensors, fixed in the advanced boreholes, drilled from the active face react to the field change of stresses or deformation caused by working face advancing. While obtaining this information we may judge about the distribution of additional stresses in rock of face's neighborhood and concentration of stresses in front of face. The usage of cavity (because of face advancing) in the quality of disturbing influence in combination with the properties of ring photoelastic sensor to given an information about magnitude and direction of secondary principle stresses, permits us to obtain rather a simple and not labor consuming method of investigation of field additional stresses in the working's face neighborhood.
NASA Astrophysics Data System (ADS)
Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.
1993-05-01
A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.
Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments
NASA Astrophysics Data System (ADS)
Prele, D.
2015-08-01
As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.
Advance, Retreat, and Halt of Abrupt Gravel-Sand Transitions in Alluvial Rivers
NASA Astrophysics Data System (ADS)
Blom, Astrid; Chavarrías, Víctor; Ferguson, Robert I.; Viparelli, Enrica
2017-10-01
Downstream fining of bed sediment in alluvial rivers is usually gradual, but often an abrupt decrease in characteristic grain size occurs from about 10 to 1 mm, i.e., a gravel-sand transition (GST) or gravel front. Here we present an analytical model of GST migration that explicitly accounts for gravel and sand transport and deposition in the gravel reach, sea level change, subsidence, and delta progradation. The model shows that even a limited gravel supply to a sand bed reach induces progradation of a gravel wedge and predicts the circumstances required for the gravel front to advance, retreat, and halt. Predicted modern GST migration rates agree well with measured data at Allt Dubhaig and the Fraser River, and the model qualitatively captures the behavior of other documented gravel fronts. The analysis shows that sea level change, subsidence, and delta progradation have a significant impact on the GST position in lowland rivers.
NASA Technical Reports Server (NTRS)
Elliott, David
2007-01-01
In order to increase stall margin in a high-bypass ratio turbofan engine, an advanced casing treatment was developed that extracted a small amount of flow from the casing behind the fan and injected it back in front of the fan. Several different configurations of this casing treatment were designed by varying the distance of the extraction and injection points, as well as varying the amount of flow. These casing treatments were tested on a 55.9 cm (22 in.) scale model of the Pratt & Whitney Advanced Ducted Propulsor in the NASA Glenn 9 by 15 Low Speed Wind Tunnel. While all of the casing treatment configurations showed the expected increase in stall margin, a few of the designs showed a potential noise benefit for certain engine speeds. This paper will show the casing treatments and the results of the testing as well as propose further research in this area. With better prediction and design techniques, future casing treatment configurations could be developed that may result in an optimized casing treatment that could conceivably reduce the noise further.
ERIC Educational Resources Information Center
Buzzanell, Patrice M.
2001-01-01
Analyzes and critiques a front-page article in the "Wall Street Journal." Finds that, underlying an image of fun and equitable workplace, is a disquieting depiction of adversarial gendered relationships, and of career advice that can damage the competence assessments and long-term advancement of women. (SR)
Mini gamma camera, camera system and method of use
Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.
2001-01-01
A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.
2015-01-01
Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.
Problem definition for pre-crash sensing advanced restraints.
DOT National Transportation Integrated Search
2009-04-01
This report presents the results of crash analyses that defined and prioritized target crashes for advanced restraint systems based on pre-crash sensors. These analyses targeted the driver and front-seat passenger 13 or older, traveling in light vehi...
Episodic Growth of Fold-Thrust Belts: Insights from Finite Element Modelling
NASA Astrophysics Data System (ADS)
Yang, X.; Peel, F.; Sanderson, D. J.; McNeill, L. C.
2016-12-01
The sequential development of an imbricate thrust system was investigated using a set of 2D FEM models. This study provides new insights on how the style and location of thrust activity changes through cycles of thrust accretion by making refined measurements of the thrust system parameters through time and tracking these parameters through each cycle. In addition to conventional wedge parameters (i.e. surface slope, wedge width and height), the overall taper angle is used to determine how the critical taper angle is reached; a particular focus is on the region of outboard minor horizontal displacement provides insights into the forward propagation of material within, and in front of, the thrust wedge; tracking the position of the failure front (where the frontal thrust roots into the basal detachment) reveals the sequence and advancement of the imbricate thrusts. The model results show that a thrust system is generally composed of three deformation components: thrust wedge, pre-wedge and wedge front. A thrust belt involves growth that repeats episodically and cyclically. When a wedge reaches critical taper ( 10°), thrust movement within the wedge slows while the taper angle and wedge width gradually increase. In contrast, the displacement front (tracked here by the location of 0 m displacement) rapidly propagates forward along whilst the wedge height is fast growing. During this period, the wedge experiences a significant shortening after a new thrust initiates at the failure front, leading to an obvious decrease in wedge width. As soon as the critical taper is achieved, wedge interior (tracked here by the location of 50 m displacement) accelerates forward reducing the taper angle below critical. This is accompanied by a sudden increase in wedge width, slow advancement of displacement front, and slow uplift of the fold-thrust belt. The rapid movements within and in front of the wedge occur alternately. The model results also show that there is clear, although minor, activity (5-10 m displacement) in front of the thrust wedge, which distinguishes the failure front from the displacement front throughout the fold-thrust belt development. This spatial and temporal relationship may not have been previously recognized in natural systems.
Convective instabilities in traveling fronts of addition polymerization
NASA Technical Reports Server (NTRS)
Pojman, John A.; Jones, Chris E.; Khan, Akhtar M.
1993-01-01
An autocatalytic reaction in an unstirred vessel can support a constant velocity wavefront resulting from the coupling of diffusion to the chemical reaction. A flare front is a common example in which heat is the autocatalytic species that diffuses into unreacted regions stimulating a reaction that produces more heat. Traveling fronts were studied in synthetic polymerization reactions under high pressure by workers in the former USSR. More recently, propagating fronts of methacrylic acid polymerization were studied under ambient conditions, both with video techniques and by NMR.
Study and optimization of lower hybrid wave coupling in advanced scenario plasmas in JET
NASA Astrophysics Data System (ADS)
Pericoli Ridolfini, V.; Ekedahl, A.; Erents, S. K.; Mailloux, J.; Podda, S.; Sarazin, Y.; Tuccillo, A. A.; Workprogramme contributors, EFDA-JET
2004-02-01
Active current drive with lower hybrid (LH) waves in the advanced scenario plasmas at JET-EFDA was successful after a systematic study of the coupling problems that derive from the H-mode features of the edge plasma, namely very low density and ELM activity. The LH coupling has been improved compared to the past, by making the edge plasma in front of the LH launcher denser and more uniform. Injecting deuterated methane (CD4) from a nearby gas pipe increases the density in front of the LH launcher at least by a factor of 1.5, above the cut-off value for the LH frequency. A better matching of the plasma shape to that of the LH antenna makes the plasma ahead of the LH launcher more regular along the poloidal angle. These two techniques together have permitted a balanced supply of the three LH grills, with an average reflection below 4%, as in the previous L-mode operation. CD4 does not affect the performances nor does it contaminate the main plasma up to the maximum flow rate so far used, \\Phi_{CD_4}>10^{22}el\\,s^{-1} and now it is routinely applied in JET (up to 4 MW have been injected for longer than 8 s) with very encouraging results for LHCD. Even though CD4 is not suitable for ITER for tritium retention, the possibility of controlling locally and safely the scrape-off plasma density has been demonstrated.
Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Jones, Billy D.
1997-10-01
Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?
An advancing front Delaunay triangulation algorithm designed for robustness
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1992-01-01
A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.
Boron removal and its concentration in aqueous solution through progressive freeze concentration.
Wang, Li Pang
2017-09-01
This study explored the feasibility of progressive freeze concentration in boron removal and its concentration in aqueous solution. The influence of three key parameters in progressive freeze concentration on boron removal and concentration, namely, the advance speed of the ice front, the circumferential velocity of the stirrer, and the initial boron concentration, are investigated by conducting batch experiments. The results show that the effectiveness of boron removal increases with a lower advance speed of the ice front, a higher circumferential velocity of the stirrer, and a lower initial boron concentration. For a model boron solution with an initial concentration of 100 mg/L, the boron concentration in the ice phase after progressive freeze concentration is below 1 mg/L when the advance speed of the ice front is lower than 1 cm/h and the circumferential velocity of the stirrer is higher than 0.12 m/s. In addition, the concentration of boron in the liquid phase occurs simultaneously with progressive freeze concentration. Furthermore, the results also suggest that this method can be applied to the purification and concentration of not only organic molecules but also inorganic ions.
Novel expansion techniques for skin grafts
Kadam, Dinesh
2016-01-01
The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. PMID:27274117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less
Utility of up-front transoral robotic surgery in tailoring adjuvant therapy.
Gildener-Leapman, Neil; Kim, Jeehong; Abberbock, Shira; Choby, Garret W; Mandal, Rajarsi; Duvvuri, Umamaheswar; Ferris, Robert L; Kim, Seungwon
2016-08-01
The purpose of this study was to describe how the up-front transoral robotic surgery (TORS) approach could be used to individually tailor adjuvant therapy based on surgical pathology. Between January 2009 and December 2013, 76 patients received TORS for oropharyngeal squamous cell carcinoma (OPSCC). Clinical predictors of adjuvant therapy were analyzed and comparisons were made between recommended treatment guidelines for up-front surgery versus definitive nonsurgical approaches. Advanced N classification, human papillomavirus (HPV)-positive tumor, extracapsular spread (ECS; 26 of 76), perineural invasion (PNI; 14 of 76), and positive margins (7 of 76) were significant predictors of adjuvant chemoradiotherapy (CRT) (p < .05). Up-front TORS deintensified adjuvant therapy; 76% of stage I/II and 46% of stage III/IV patients avoided CRT. Conversely, pathologic staging resulted in 33% of patients who would have received radiotherapy (RT) alone based on clinical staging, to be intensified to receive adjuvant CRT. The TORS approach deintensifies adjuvant therapy and provides valuable pathologic information to intensify treatment in select patients. TORS may be less effective in deintensification of adjuvant therapy in patients with clinically advanced N classification disease. © 2016 Wiley Periodicals, Inc. Head Neck 38:1201-1207, 2016. © 2016 Wiley Periodicals, Inc.
Methods for enhancing mapping of thermal fronts in oil recovery
Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.
1987-01-01
A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.
Advanced Dairy Unit for Advanced Livestock Production Curriculum. Instructor's Guide. AGDEX 410/00.
ERIC Educational Resources Information Center
Coday, Stan; Stewart, Bob R.
This instructor's guide contains 18 lessons for teaching advanced dairying in accordance with the Missouri State Board of Education's Vocational Instructional Management System. To make the unit easier for teachers to use, the following materials are provided in the front of the unit: objectives and competencies for each lesson, a references and…
NASA Astrophysics Data System (ADS)
Inoue, Tomoyasu; Hamasaki, Toshihiko
1987-04-01
A high-speed movie technique was used to investigate the growth front movement during electron beam recrystallization of thin silicon layers on insulating material. In a laterally epitaxial growth process, it was clearly observed that the molten zone shape dramatically changes across a seed opening, which is due to nonuniformity in heat dissipation toward the substrate in the vicinity of the seed opening. The molten zone width and velocities of the melt front and growth front were quantitatively analyzed using digital film motion analysis. The growth front velocity was found to drastically change by ˜30% across the seed opening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piper, M; Lundquist, J K
Some recent investigations have begun to quantify turbulence and dissipation in frontal zones to address the question of what physical mechanism counteracts the intensification of temperature and velocity gradients across a developing front. Frank (1994) examines the turbulence structure of two fronts that passed a 200m instrumented tower near Karlsruhe, Germany. In addition to showing the mean vertical structure of the fronts as they pass the tower, Frank demonstrates that there is an order of magnitude or more increase in turbulent kinetic energy across the frontal zone. Blumen and Piper (1999) reported turbulence statistics, including dissipation rate measurements, from themore » MICROFRONTS field experiment, where high-frequency turbulence data were collected from tower-mounted hotwire and sonic anemometers in a cold front and in a density current. Chapman and Browning (2001) measured dissipation rate in a precipitating frontal zone with high-resolution Doppler radar. Their measurements were conducted above the surface layer, to heights of 5km. The dissipation rate values they found are comparable to those measured in Kennedy and Shapiro (1975) in an upper-level front. Here, we expand on these recent studies by depicting the behavior of the fine scales of turbulence near the surface in a frontal zone. The primary objective of this study is to quantify the levels of turbulence and dissipation occurring in a frontal zone through the calculation of kinetic energy spectra and dissipation rates. The high-resolution turbulence data used in this study are taken during the cold front that passed the MICROFRONTS site in the early evening hours of 20 March 1995. These new measurements can be used as a basis for parameterizing the effects of surface-layer turbulence in numerical models of frontogenesis. We present three techniques for calculating the dissipation rate: direct dissipation technique, inertial dissipation technique and Kolmogorov's four-fifths law. Dissipation rate calculations using these techniques are employed using data from both the sonic and hotwire anemometers, when possible. Unfortunately, direct calculations of {var_epsilon} were not possible during a part of the frontal passage because the high wind speeds concurrent with the frontal passage demand very high frequency resolution, beyond that possible with the hotwire anemometer, for direct {var_epsilon} calculations. The calculations resulting from these three techniques are presented for the cold front as a time series. Quantitative comparisons of the direct and indirect calculation techniques are also given. More detail, as well as a discussion of energy spectra, can be found in Piper & Lundquist(2004).« less
Fluid front morphologies in gap-modulated Hele-Shaw cells
NASA Astrophysics Data System (ADS)
Díaz-Piola, Lautaro; Planet, Ramon; Campàs, Otger; Casademunt, Jaume; Ortín, Jordi
2017-09-01
We consider the displacement of an inviscid fluid (air) by a viscous fluid (oil) in a narrow channel with gap-thickness modulations. The interfacial dynamics of this problem is strongly nonlocal and exhibits competing effects from capillarity and permeability. We derive analytical predictions of steady-state front morphologies, which are exact at linear level in the case of a persistent modulation in the direction of front advancement. The theoretical predictions are in good agreement with experimental measurements of steady-state front morphologies obtained in a Hele-Shaw cell with modulations of the channel depth, consisting on three parallel tracks of reduced depth, for small gap modulations. The relative average distance between theoretical and experimental fronts in the region around the central track is smaller than about 4 % , provided that the height of the tracks is less than 13 % of the total channel depth and the local distortion of the front height h is small enough (|∇ h |<0.8 ) for the linear approximation to hold.
Broadband quantitative NQR for authentication of vitamins and dietary supplements
NASA Astrophysics Data System (ADS)
Chen, Cheng; Zhang, Fengchao; Bhunia, Swarup; Mandal, Soumyajit
2017-05-01
We describe hardware, pulse sequences, and algorithms for nuclear quadrupole resonance (NQR) spectroscopy of medicines and dietary supplements. Medicine and food safety is a pressing problem that has drawn more and more attention. NQR is an ideal technique for authenticating these substances because it is a non-invasive method for chemical identification. We have recently developed a broadband NQR front-end that can excite and detect 14N NQR signals over a wide frequency range; its operating frequency can be rapidly set by software, while sensitivity is comparable to conventional narrowband front-ends over the entire range. This front-end improves the accuracy of authentication by enabling multiple-frequency experiments. We have also developed calibration and signal processing techniques to convert measured NQR signal amplitudes into nuclear spin densities, thus enabling its use as a quantitative technique. Experimental results from several samples are used to illustrate the proposed methods.
An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment
de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James
2012-01-01
In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524
Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond
NASA Astrophysics Data System (ADS)
Franken, J.; Hambir, S. A.; Hare, D. E.; Dlott, D. D.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity ( 4 km/s), the shock front risetime (tr < 25 ps), and the temperature ( 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time.
Infiltration in unsaturated layered fluvial deposits at Rio Bravo : photo essay and data summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brainard, James Robert; Glass, Robert John, Jr.
2007-08-01
An infiltration and dye transport experiment was conducted to visualize flow and transport processes in a heterogeneous, layered, sandy-gravelly fluvial deposit adjacent to Rio Bravo Boulevard in Albuquerque, NM. Water containing red dye followed by blue-green dye was ponded in a small horizontal zone ({approx}0.5 m x 0.5 m) above a vertical outcrop ({approx}4 m x 2.5 m). The red dye lagged behind the wetting front due to slight adsorption thus allowing both the wetting front and dye fronts to be observed in time at the outcrop face. After infiltration, vertical slices were excavated to the midpoint of the infiltrometermore » exposing the wetting front and dye distribution in a quasi three-dimensional manner. At small-scale, wetting front advancement was influenced by the multitude of local capillary barriers within the deposit. However at the scale of the experiment, the wetting front appeared smooth with significant lateral spreading {approx} twice that in the vertical, indicating a strong anisotropy due to the pronounced horizontal layering. The dye fronts exhibited appreciably more irregularity than the wetting front, as well as the influence of preferential flow features (a fracture) that moved the dye directly to the front, bypassing the fresh water between.« less
Proposition of stair climb of a drop using chemical wettability gradient
NASA Astrophysics Data System (ADS)
Seerha, Prabh P. S.; Kumar, Parmod; Das, Arup K.; Mitra, Sushanta K.
2017-07-01
We propose a passive technique for a drop to climb along the staircase textured surface using chemical wettability gradients. The stair structure, droplet configuration, and contact angle gradient are modeled using Lagrangian smoothed particle hydrodynamics. The stair climb efficiency of the droplet is found to be a function of wettability gradient strength. Using analytical balance of actuation and resistive forces across droplets, physical reasons behind stair climbing are established and influencing parameters are identified. Evolution of the droplet shape along with the advancing and the receding contact angles is presented from where instantaneous actuation and hysteresis forces are calculated. Using history of Lagrangian particles, circulation at the foot of stairs and progressing development of the advancing drop front are monitored. Higher efficiency in stair climbing in the case of a bigger sized drop than smaller one is obtained from simulation results and realized from force balance. Difficulty in climbing steeper stairs is also demonstrated to delineate the effect of gravitational pull against the actuation force due to the wettability gradient.
Temperature in subsonic and supersonic radiation fronts measured at OMEGA
NASA Astrophysics Data System (ADS)
Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John
2017-10-01
Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.
Instabilities and finger formation in replacement fronts driven by an oversaturated solution
NASA Astrophysics Data System (ADS)
Kondratiuk, Paweł; Tredak, Hanna; Upadhyay, Virat; Ladd, Anthony J. C.; Szymczak, Piotr
2017-08-01
We consider a simple model of infiltration-driven mineral replacement, in which the chemical coupling between precipitation and dissolution leads to the appearance of a reaction front advancing into the system. Such fronts are usually accompanied by a local increase of porosity. We analyze the linear stability of the replacement front to establish whether such a localized porosity increase can lead to global instability and pattern formation in these systems. We find that for a wide range of control parameters such fronts are unstable. However, both short- and long-wavelength perturbations are stabilized, whereas in a purely dissolutional instability only short wavelengths are stable. We analyze the morphologies of the dissolution patterns emerging in the later stages of the evolution of the system, when the dynamics are beyond the linear regime. Implications of these results for the natural systems are discussed, particularly in the context of karst formation in terra rossa-covered carbonate bedrock.
Theoretical and computer models of detonation in solid explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, C.M.; Urtiew, P.A.
1997-10-01
Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less
Three-Dimensional Conformation of Folded Polymers in Single Crystals
NASA Astrophysics Data System (ADS)
Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu
2015-10-01
The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spotz, William F.
PyTrilinos is a set of Python interfaces to compiled Trilinos packages. This collection supports serial and parallel dense linear algebra, serial and parallel sparse linear algebra, direct and iterative linear solution techniques, algebraic and multilevel preconditioners, nonlinear solvers and continuation algorithms, eigensolvers and partitioning algorithms. Also included are a variety of related utility functions and classes, including distributed I/O, coloring algorithms and matrix generation. PyTrilinos vector objects are compatible with the popular NumPy Python package. As a Python front end to compiled libraries, PyTrilinos takes advantage of the flexibility and ease of use of Python, and the efficiency of themore » underlying C++, C and Fortran numerical kernels. This paper covers recent, previously unpublished advances in the PyTrilinos package.« less
Solid State Division progress report for period ending September 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Hinton, L.W.
1994-08-01
This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasismore » on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.« less
Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.
Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry
2016-10-28
Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Car suspension system monitoring under road conditions
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Kuznetsov, N. Y.; Lysenko, A. V.; Vlasov, V. G.
2017-12-01
The paper describes an advanced gyro-based measuring system comprising a CGV-4K central vertical gyro and a G-3M gyrocompass. The advanced system provides additional functions that help measure unsprung mass rotation angles about a vertical axis, rolling angles, trim angles and movements of the unsprung masses of the front (ap and al) and rear b axes when a car wheel hits a single obstruction. The paper also describes the operation of the system, which measures movements of unsprung masses about the body of a car when it hits a single obstruction. The paper presents the dependency diagrams ap = f(t) and al = f(t) for front and rear wheels respectively, as well as b = f(t) for a rear left wheel, which were determined experimentally. Test results for a car equipped with an advanced gyro-based measuring system moving around a circle can form a basis for developing a mathematical model of the process.
Local mesh adaptation technique for front tracking problems
NASA Astrophysics Data System (ADS)
Lock, N.; Jaeger, M.; Medale, M.; Occelli, R.
1998-09-01
A numerical model is developed for the simulation of moving interfaces in viscous incompressible flows. The model is based on the finite element method with a pseudo-concentration technique to track the front. Since a Eulerian approach is chosen, the interface is advected by the flow through a fixed mesh. Therefore, material discontinuity across the interface cannot be described accurately. To remedy this problem, the model has been supplemented with a local mesh adaptation technique. This latter consists in updating the mesh at each time step to the interface position, such that element boundaries lie along the front. It has been implemented for unstructured triangular finite element meshes. The outcome of this technique is that it allows an accurate treatment of material discontinuity across the interface and, if necessary, a modelling of interface phenomena such as surface tension by using specific boundary elements. For illustration, two examples are computed and presented in this paper: the broken dam problem and the Rayleigh-Taylor instability. Good agreement has been obtained in the comparison of the numerical results with theory or available experimental data.
Microstructural features of carious human enamel imaged with back-scattered electrons.
Pearce, E I; Nelson, D G
1989-02-01
We have used back-scattered electrons (BE) in the scanning electron microscope to produce mineral density images of enamel. Flat surfaces of artificially-carious enamel, softened in an intra-oral experiment, and naturally-carious (white spot) enamel were polished to a high gloss with diamond lapping compound, rendering them almost featureless by secondary electron scanning electron microscopy. They were then examined at 10 to 30 kV in a Philips 505 instrument fitted with a 4-quadrant BE detector. Study of surfaces prepared approximately parallel to the natural surface showed that mineral was lost from both prism core and the interprismatic region, leaving a thin mineral-rich rim at the prism periphery. The same lesions viewed longitudinally on a surface prepared perpendicular to the natural surface showed mineral-rich bands at the prism margins in the outer enamel. Near the advancing front of the lesion, the prism junctions were widened and the prism cores sometimes hypermineralized. Natural lesions sectioned in the prism long axis showed features previously seen with other techniques, e.g., cross-striations and striae of Retzius, but in much greater detail. Mineral enrichment at the prism periphery in the lesion body and a widening of the prism junction at the advancing fronts of lesions in permanent teeth were most obvious. Calculations showed that with an accelerating voltage of 30 kV, the images reflected mineral density up to 4 microns beneath the surface. BE microscopy produces a high-resolution image of mineral loss or gain in carious enamel, with relatively easy sample preparation.
Advanced Technology Training Program for the Apparel Industry. Final Report.
ERIC Educational Resources Information Center
El Paso Community Coll., TX.
A project developed rapid response, advanced technology courses that met the apparel market labor needs of the El Paso (Texas) community. Courses were designed for four options: computerized marker making and pattern grading, computerized front office systems, high technology machinery operation, and high technology machinery mechanics. The…
Comparison of conditional sampling and averaging techniques in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Subramanian, C. S.; Rajagopalan, S.; Antonia, R. A.; Chambers, A. J.
1982-10-01
A rake of cold wires was used in a slightly heated boundary layer to identify coherent temperature fronts. An X-wire/cold-wire arrangement was used simultaneously with the rake to provide measurements of the longitudinal and normal velocity fluctuations and temperature fluctuations. Conditional averages of these parameters and their products were obtained by application of conditional techniques (VITA, HOLE, BT, RA1, and RA3) based on the detection of temperature fronts using information obtained at only one point in space. It is found that none of the one-point detection techniques is in good quantitative agreement with the rake detection technique, the largest correspondence being 51%. Despite the relatively poor correspondence between the conditional techniques, these techniques, with the exception of HOLE, produce conditional averages that are in reasonable qualitative agreement with those deduced using the rake.
Methods for enhancing mapping of thermal fronts in oil recovery
Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.
1984-03-30
A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.
NASA Astrophysics Data System (ADS)
Mays, Owen; Tringe, Joe; Souers, Clark; Lauderbach, Lisa; Baluyot, Emer; Converse, Mark; Kane, Ron
2017-06-01
Microwave interferometry (MI) presents several advantages over more traditional existing shock and deflagration front diagnostics. Most importantly, it directly interrogates these fronts, instead of measuring the evolution of containment surfaces or explosive edges. Here we present the results of MI measurements on detonator-initiated cylinder tests, as well as on deflagration-to-detonation transition experiments, with emphasis on optimization of signal strength through coupling devices and through microwave-transparent windows. Full-wave electromagnetic field finite element simulations were employed to better understand microwave coupling into porous and near full theoretical maximum density (TMD) explosives. HMX and TATB-based explosives were investigated. Data was collected simultaneously at 26.5 GHz and 39 GHz, allowing for direct comparison of the front characteristics and providing insight into the dielectric properties of explosives at these high frequencies. MI measurements are compared against detonation velocity results from photonic Doppler velocimetry probes and high speed cameras, demonstrating the accuracy of the MI technique. Our results illustrate features of front propagation behavior that are difficult to observe with other techniques. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
[Clinical Application of Analytical and Medical Instruments Mainly Using MS Techniques].
Tanaka, Koichi
2016-02-01
Analytical instruments for clinical use are commonly required to confirm the compounds and forms related to diseases with the highest possible sensitivity, quantitative performance, and specificity and minimal invasiveness within a short time, easily, and at a low cost. Advancements of technical innovation for Mass Spectrometer (MS) have led to techniques that meet such requirements. Besides confirming known substances, other purposes and advantages of MS that are not fully known to the public are using MS as a tool to discover unknown phenomena and compounds. An example is clarifying the mechanisms of human diseases. The human body has approximately 100 thousand types of protein, and there may be more than several million types of protein and their metabolites. Most of them have yet to be discovered, and their discovery may give birth to new academic fields and lead to the clarification of diseases, development of new medicines, etc. For example, using the MS system developed under "Contribution to drug discovery and diagnosis by next generation of advanced mass spectrometry system," one of the 30 projects of the "Funding Program for World-Leading Innovative R&D on Science and Technology" (FIRST program), and other individual basic technologies, we succeeded in discovering new disease biomarker candidates for Alzheimer's disease, cancer, etc. Further contribution of MS to clinical medicine can be expected through the development and improvement of new techniques, efforts to verify discoveries, and communications with the medical front.
NASA Astrophysics Data System (ADS)
Lough, James D.
The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size.
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Macrae, John D.; Hammond, Vincent H.; Kranbuehl, David E.; Hart, Sean M.; Hasko, Gregory H.; Markus, Alan M.
1993-01-01
A two-dimensional model of the resin transfer molding (RTM) process was developed which can be used to simulate the infiltration of resin into an anisotropic fibrous preform. Frequency dependent electromagnetic sensing (FDEMS) has been developed for in situ monitoring of the RTM process. Flow visualization tests were performed to obtain data which can be used to verify the sensor measurements and the model predictions. Results of the tests showed that FDEMS can accurately detect the position of the resin flow-front during mold filling, and that the model predicted flow-front patterns agreed well with the measured flow-front patterns.
New Hydrologic Insights to Advance Geophysical Investigation of the Unsaturated Zone
NASA Astrophysics Data System (ADS)
Nimmo, J. R.; Perkins, K. S.
2015-12-01
Advances in hydrology require information from the unsaturated zone, especially for problems related to groundwater contamination, water-supply sustainability, and ecohydrology. Unsaturated-zone processes are notoriously difficult to quantify; soils and rocks are visually opaque, spatially variable in the extreme, and easily disturbed by instrument installation. Thus there is great value in noninvasive techniques that produce water-related data of high density in space and time. Methods based on resistivity and electromagnetic waves have already produced significant new understanding of percolation processes, root-zone water retention, influences of evapotranspiration on soil-water, and effects of preferential flow. Further developments are underway for such purposes as noninvasive application to greater depths, increased resolution, adaptation for lab-scale experiments, and calibration in heterogeneous media. Beyond these, however, there is need for a stronger marriage of hydrologic and geophysical knowledge and perspective. Possible means to greater and faster progress include: Apply the latest hydrologic understanding, both pore-scale and macroscopic, to the detection of preferential flow paths and their degree of activation. In the continuing advancement of hardware and techniques, draw creatively from developments in such fields as high-energy physics, medical imaging, astrogeology, high-tech semiconductors, and bioinstrumentation. Sidestep the imaging process where possible to measure essential properties and fluxes more directly. Pose questions that have a strong end-use character, like "how does storm intensity relate to aquifer recharge rate" rather than "what is the shape of the wetting front". The greatest advances in geophysical investigation of the unsaturated zone will come from methods informed by the latest understanding of unsaturated systems and processes, and aimed as directly as possible at the answers to important hydrologic questions.
Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)
NASA Astrophysics Data System (ADS)
Kunnas, M.; Astapov, I.; Barbashina, N.; Beregnev, S.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Brückner, M.; Budnev, N.; Chiavassa, A.; Chvalaev, O.; Dyachok, A.; Epimakhov, S.; Eremin, T.; Gafarov, A.; Gorbunov, N.; Grebenyuk, V.; Gress, O.; Gress, T.; Grinyuk, A.; Grishin, O.; Horns, D.; Ivanova, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kozhin, V.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Perevalov, A.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popescu, M.; Popova, E.; Porelli, A.; Porokhovoy, S.; Prosin, V.; Ptuskin, V.; Romanov, V.; Rubtsov, G. I.; Müger; Rybov, E.; Samoliga, V.; Satunin, P.; Saunkin, A.; Savinov, V.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slunecka, M.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Veslopopov, A.; Veslopopova, E.; Voronov, D.; Wischnewski, R.; Yashin, I.; Yurin, K.; Zagorodnikov, A.; Zirakashvili, V.; Zurbanov, V.
2015-08-01
Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion quality and gamma-hadron separation power. However, sensitive observations at and above 100 TeV require very large effective areas (10 km2 and more), which is difficult and expensive to achieve. The alternative to IACTs are shower front sampling arrays (non-imaging technique or timing-arrays) with a large area and a wide field of view. Such experiments provide good core position, energy and angular resolution, but only poor gamma-hadron separation. Combining both experimental approaches, using the strengths of both techniques, could optimize the sensitivity to the highest energies. The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small (∼10m2) imaging telescopes. This paper covers simulation results of this hybrid approach.
Blast and Shock Mitigation Through the Use of Advanced Materials
NASA Astrophysics Data System (ADS)
Bartyczak, Susan; Edgerton, Lauren; Mock, Willis
2017-06-01
The dynamic response to low amplitude blast waves of four viscoelastic materials has been investigated: Dragonshield BCTM and three polyurea formulations (P1000, P650, and a P250/1000 blend). A 40-mm-bore gas gun was used as a shock tube to generate planar blast waves, ranging from 1 to 2 bars, that impacted instrumented target assemblies mounted on the gas gun muzzle. Each target assembly consisted of a viscoelastic material sample sandwiched between two gauge assemblies for measuring wave velocity and input/output stresses. Each gauge assembly consisted of one polyvinylidene fluoride (PVDF) stress gauge sandwiched between two 3.25 inch diameter 6061-T6 aluminum discs. Impedance matching techniques were used on the stress measurements to calculate the stresses on the front and back of the samples. The shock velocity-particle velocity relationship, stress-particle velocity relationship, and blast attenuation for each material were determined. The experimental technique, analysis methodology, and results will be presented.
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Verification of a two-dimensional infiltration model for the resin transfer molding process
NASA Technical Reports Server (NTRS)
Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.
1993-01-01
A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform and corn oil. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle.
NASA Astrophysics Data System (ADS)
Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji
2006-04-01
We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.
Shock wave viscosity measurements
NASA Astrophysics Data System (ADS)
Celliers, Peter
2013-06-01
Several decades ago a method was proposed and demonstrated to measure the viscosity of fluids at high pressure by observing the oscillatory damping of sinusoidal perturbations on a shock front. A detailed mathematical analysis of the technique carried out subsequently by Miller and Ahrens revealed its potential, as well as a deep level of complexity in the analysis. We revisit the ideas behind this technique in the context of a recent experimental development: two-dimensional imaging velocimetry. The new technique allows one to capture a broad spectrum of perturbations down to few micron scale-lengths imposed on a shock front from an initial perturbation. The detailed evolution of the perturbation spectrum is sensitive to the viscosity in the fluid behind the shock front. Initial experiments are aimed at examining the viscosity of shock compressed SiO2 just above the shock melting transition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.
2017-01-01
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728
Digital correlation detector for low-cost Omega navigation
NASA Technical Reports Server (NTRS)
Chamberlin, K. A.
1976-01-01
Techniques to lower the cost of using the Omega global navigation network with phase-locked loops (PLL) were developed. The technique that was accepted as being "optimal" is called the memory-aided phase-locked loop (MAPLL) since it allows operation on all eight Omega time slots with one PLL through the implementation of a random access memory. The receiver front-end and the signals that it transmits to the PLL were first described. A brief statistical analysis of these signals was then made to allow a rough comparison between the front-end presented in this work and a commercially available front-end to be made. The hardware and theory of application of the MAPLL were described, ending with an analysis of data taken with the MAPLL. Some conclusions and recommendations were also given.
Particle Engulfment and Pushing
NASA Technical Reports Server (NTRS)
2001-01-01
As a liquefied metal solidifies, particles dispersed in the liquid are either pushed ahead of or engulfed by the moving solidification front. Similar effects can be seen when the ground freezes and pushes large particles out of the soil. The Particle Engulfment and Pushing (PEP) experiment, conducted aboard the fourth U.S. Microgravity Payload (USMP-4) mission in 1997, used a glass and plastic beads suspended in a transparent liquid. The liquid was then frozen, trapping or pushing the particles as the solidifying front moved. This simulated the formation of advanced alloys and composite materials. Such studies help scientists to understand how to improve the processes for making advanced materials on Earth. The principal investigator is Dr. Doru Stefanescu of the University of Alabama. This image is from a video downlink.
2001-01-24
As a liquefied metal solidifies, particles dispersed in the liquid are either pushed ahead of or engulfed by the moving solidification front. Similar effects can be seen when the ground freezes and pushes large particles out of the soil. The Particle Engulfment and Pushing (PEP) experiment, conducted aboard the fourth U.S. Microgravity Payload (USMP-4) mission in 1997, used a glass and plastic beads suspended in a transparent liquid. The liquid was then frozen, trapping or pushing the particles as the solidifying front moved. This simulated the formation of advanced alloys and composite materials. Such studies help scientists to understand how to improve the processes for making advanced materials on Earth. The principal investigator is Dr. Doru Stefanescu of the University of Alabama. This image is from a video downlink.
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
Business Case Analysis: Reconfiguration of the Frederick Memorial Healthcare System Courier Service
2008-05-13
from each specimen. This figure alone clearly supports the existence of the FMH courier service. The problem , rather, lies in the efficiency and...investigated, to include the Hyundai Accent, Chevrolet Aveo, and the Honda Fit. Each vehicle was evaluated on cost, fuel efficiency, predicted reliability...P175/65R14 Tires Temporary Spare Tire SAFETY Driver Front Airbag and Front Passenger Airbag with Advanced Airbag System 3 Point Driver & Fr Pass
Advanced RF Front End Technology
NASA Technical Reports Server (NTRS)
Herman, M. I.; Valas, S.; Katehi, L. P. B.
2001-01-01
The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.
The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.
1997-01-01
Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.
STATUS/IQ: A Semi-Intelligent Information Retrieval System.
ERIC Educational Resources Information Center
Pearsall, Jayne
1990-01-01
Provides background on the problems of traditional text retrieval systems and describes STATUS/IQ, an advanced text retrieval system that incorporates a natural language front-end and an advanced relevance ranking facility. The principles, capabilities, and benefits of the system are discussed, and an example of a STATUS/IQ session is presented…
Frontal Polymerization of Dicyclopentadiene: A Numerical Study.
Goli, Elyas; Robertson, Ian D; Geubelle, Philippe H; Moore, Jeffrey S
2018-04-26
As frontal polymerization is being considered as a faster and more energy efficient manufacturing technique for polymer-matrix fiber-reinforced composites, we perform a finite-element-based numerical study of the initiation and propagation of a polymerization front in dicyclopentadiene (DCPD). The transient thermochemical simulations are complemented by an analytical study of the steady-state propagation of the polymerization front, allowing to draw a direct link between the cure kinetics model and the key characteristics of the front, i.e., front velocity and characteristic length scales. The second part of this study focuses on the prediction of the temperature spike associated with the merger of two polymerization fronts. The thermal peak, which might be detrimental to the properties of the polymerized material, is due to the inability of the heat associated with the highly exothermic reaction to be dissipated when the two fronts merge. The analysis investigates how the amplitude of the thermal spike is affected by the degree of cure at the time of the front merger.
Calculated viscosity-distance dependence for some actively flowing lavas
NASA Technical Reports Server (NTRS)
Pieri, David
1987-01-01
The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect.
Overview of recent trends and developments for BPM systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, M.; /Fermilab
2011-08-01
Beam position monitoring (BPM) systems are the workhorse of beam diagnostics for almost any kind of charged particle accelerator: linear, circular or transport-lines, operating with leptons, hadrons or heavy ions. BPMs are essential for beam commissioning, accelerator fault analysis and trouble shooting, machine optics, as well as lattice measurements, and finally, for accelerator optimization, in order to achieve the ultimate beam quality. This presentation summarizes the efforts of the beam instrumentation community on recent developments and advances on BPM technologies, i.e. BPM pickup monitors and front-end electronics (analog and digital). Principles, examples, and state-of-the-art status on various BPM techniques, servingmore » hadron and heavy ion machines, sync light synchrotron's, as well as electron linacs for FEL or HEP applications are outlined.« less
Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurements
NASA Technical Reports Server (NTRS)
Weimer, Daniel R.
2002-01-01
Measurements of the interplanetary magnetic field (IMF) from the ACE (Advanced Composition Explorer), Wind, IMP-8 (Interplanetary Monitoring Platform), and Geotail spacecraft have revealed that the IMF variations are contained in phase planes that are tilted with respect to the propagation direction, resulting in continuously variable changes in propagation times between spacecraft, and therefore, to the Earth. Techniques for using 'minimum variance analysis' have been developed in order to be able to measure the phase front tilt angles, and better predict the actual propagation times from the L1 orbit to the Earth, using only the real-time IMF measurements from one spacecraft. The use of empirical models with the IMF measurements at L1 from ACE (or future satellites) for predicting 'space weather' effects has also been demonstrated.
Review of design optimization methods for turbomachinery aerodynamics
NASA Astrophysics Data System (ADS)
Li, Zhihui; Zheng, Xinqian
2017-08-01
In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and ;greener; but also need to be developed at on much shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.
The marrow of the tragedy (Harvey Cushing).
Tilney, N L
1983-10-01
One of the curses of mankind is to involve itself in war. Whether it is a small skirmish between towns or principalities or a major conflagration between countries, men fight, are wounded and must be cared for. Under combat conditions, often extreme, doctors must attempt to resuscitate, repair and, later, reconstruct. By trial, expediency and desperation, many advances in surgical techniques and concepts have emanated from these situations. Among his several contributions, Cushing's experience at the Front in World War I allowed him to find new approaches to the care of neurologic war wounds, as well as the opportunity to study neurophysiologic events following selective injury. Not only his scientific papers documenting his experiences, but his own diaries chronicling his involvement in the war, both in Boston and France, are unique and have rarely been matched.
Nonperturbative light-front Hamiltonian methods
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method
NASA Astrophysics Data System (ADS)
Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín
2013-09-01
Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.
NASA Technical Reports Server (NTRS)
Laney, C. C., Jr.
1974-01-01
A microwave interferometer technique to determine the front interface velocity of a high enthalpy gas flow, is described. The system is designed to excite a standing wave in an expansion tube, and to measure the shift in this standing wave as it is moved by the test gas front. Data, in the form of a varying sinusoidal signal, is recorded on a high-speed drum camera-oscilloscope combination. Measurements of average and incremental velocities in excess of 6,000 meters per second were made.
Pinpointing chiral structures with front-back polarized neutron reflectometry.
O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E
2002-02-11
A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.
Slow Progress in Dune (Left Front Wheel)
NASA Technical Reports Server (NTRS)
2005-01-01
The left front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.Analysis of local delaminations caused by angle ply matrix cracks
NASA Technical Reports Server (NTRS)
Salpekar, Satish A.; Obrien, T. Kevin; Shivakumar, K. N.
1993-01-01
Two different families of graphite/epoxy laminates with similar layups but different stacking sequences, (0,theta,-theta) sub s and (-theta/theta/0) sub s were analyzed using three-dimensional finite element analysis for theta = 15 and 30 degrees. Delaminations were modeled in the -theta/theta interface, bounded by a matrix crack and the stress free edge. The total strain energy release rate, G, along the delamination front was computed using three different techniques: the virtual crack closure technique (VCCT), the equivalent domain Integral (EDI) technique, and a global energy balance technique. The opening fracture mode component of the strain energy release rate, Gl, along the delamination front was also computed for various delamination lengths using VCCT. The effect of residual thermal and moisture stresses on G was evaluated.
NASA Technical Reports Server (NTRS)
Katsaros, Kristina B.; Bhatti, Iftekhar; Mcmurdie, Lynn A.; Patty, Grant W.
1989-01-01
This paper describes some basic research techniques and algorithms developed to diagnose fronts in cyclonic storms over the ocean with data from satellite-borne microwave radiometers. Methods are developed for flagging strong gradients in integrated atmospheric water vapor and the presence of rain by using data from the SSMR on board the polar orbiting Seasat and Nimbus-7 satellites. Examination of 65 frontal systems showed that the water vapor gradient flag correctly identified 86 percent of the fronts, while the precipitation flagged 91 percent. The two types of flags emphasize different portions of the cyclone and are therefore complementary. Ultimately, these techniques are intended for operational use with data from the Special Sensor Microwave Imager which was launched in June 1987 on a satellite in the Defense Meteorological Satellite Program (DMSP).
Observations of obsidian lava flow emplacement at Puyehue-Cordón Caulle, Chile
NASA Astrophysics Data System (ADS)
Tuffen, H.; Castro, J. M.; Schipper, C. I.; James, M. R.
2012-04-01
The dynamics of obsidian lava flow emplacement remain poorly understood as active obsidian lavas are seldom seen. In contrast with well-documented basaltic lavas, we lack observational data on obsidian flow advance and temporal evolution. The ongoing silicic eruption at Puyehue-Cordón Caulle volcanic complex (PCCVC), southern Chile provides an unprecedented opportunity to witness and study obsidian lava on the move. The eruption, which started explosively on June 4th 2011, has since June 20 generated an active obsidian flow field that remains active at the time of writing (January 2012), with an area of ~6 km2, and estimated volume of ~0.18 km3. We report on observations, imaging and sampling of the north-western lava flow field on January 4th and 10th 2012, when vent activity was characterised by near-continuous ash venting and Vulcanian explosions (Schipper et al, this session) and was simultaneously feeding the advancing obsidian flow (Castro et al, this session). On January 4th the north-western lava flow front was characterised by two dominant facies: predominant rubbly lava approximately 30-40 m thick and mantled by unstable talus aprons, and smoother, thinner lobes of more continuous lava ~50 m in length that extended roughly perpendicular to the overall flow direction, forming lobes that protrude from the flow margin, and lacked talus aprons. The latter lava facies closely resembled squeeze-up structures in basaltic lava flows[1] and appeared to originate from and overlie the talus apron of the rubbly lava. Its upper surface consisted of smooth, gently folded lava domains cut by crevasse-like tension gashes. During ~2 hours of observation the squeeze-up lava lobe was the most frequent location of small-volume rockfalls, which occurred at ~1-10 minute intervals from the flow front and indicated a locus of lava advance. On January 10th the squeeze-up lava lobes had evolved significantly, with disruption and breakage of smooth continuous lava surfaces to form blocky lava domains. Gravitational collapse of lobe toes had created an incipient talus apron that had markedly advanced. In contrast, the rubbly lava had undergone only modest evolution, reflecting continued rockfall and subtle advance of its well-developed talus apron. Visualisation of the lava morphology and evolution was assisted by 3D models of the lava flow front, produced by an automated photo-reconstruction technique (SfM-MVS, a combination of structure from motion and multi-view stereo algorithms), and >1000 digital images taken at the scene. Additionally samples were collected from the rubbly lava and squeeze-up lava lobe facies. Sample textures, geochemistry and volatile concentrations will provide further insight into the evolving physical and chemical state of the lava. Our observations indicate that endogenous growth plays a major role in obsidian lava flow advance, with effective thermal insulation of lava that emerges from squeeze-ups close to the flow margin. This has important implications for the longevity, mobility and hazard potential of obsidian flows and indicates striking similarities with the dynamics of basaltic lava flow emplacement. [1]Applegarth L.J. et al. 2010 Bull. Volcanol. 72, 641-656.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Davis, A. K.; Armstrong, W.
Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (more » $${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$$), image-to-image timing ($${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$$ ps) and absolute timing ($${\\it\\delta}t=\\pm 10$$ ps) are presented. Angular averaging of the images provides an average radius measurement of$${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$$and an error in velocity of$${\\it\\delta}V/V=\\pm 3\\%$$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.« less
Michel, D. T.; Davis, A. K.; Armstrong, W.; ...
2015-07-08
Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (more » $${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$$), image-to-image timing ($${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$$ ps) and absolute timing ($${\\it\\delta}t=\\pm 10$$ ps) are presented. Angular averaging of the images provides an average radius measurement of$${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$$and an error in velocity of$${\\it\\delta}V/V=\\pm 3\\%$$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.« less
Experiments to the Space Station (EXPRESS) Rack 4
2002-07-04
iss005e06720 (7/4/2002) --- Front view of Express Rack 4 in the U.S. Laboratory / Destiny taken during Expedition Five. Visible in the rack are the following items: Single-Locker Thermal Enclosure System (STES) Muffler, Advanced Astroculture Growth Chamber (ADVASC-GC), Advanced Astroculture Support System (ADVASC-SS). And Space Acceleration and Measurement System (SAMS) II.
NASA Astrophysics Data System (ADS)
Maloney, J. M.; Bentley, S. J.; Obelcz, J.; Xu, K.; Miner, M. D.; Georgiou, I. Y.; Hanegan, K.; Keller, G.
2014-12-01
Subaqueous mudflows are known to be ubiquitous across the Mississippi River delta front (MRDF) and have been identified as a hazard to offshore infrastructure. Among other factors, sediment accumulation rates and patterns play an important role in governing the stability of delta front sediment. High sedimentation rates result in underconsolidation, slope steepening, and increased biogenic gas production, which are all known to decrease stability. Sedimentation rates are highly variable across the MRDF, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River sediment into the Gulf of Mexico. Since the 1950s, the sediment load of the Mississippi River has decreased by ~50% due to dam construction upstream. The impact of this decreased sediment load on MRDF mudflow dynamics has yet to be examined. We compiled MRDF bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009, in order to identify historic trends in sedimentation patterns. The progradation of Southwest Pass (measured at 10 m depth contour) has slowed from ~66 m/yr between 1764 and 1940 to ~25 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre. Advancement of the delta also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward ~25 m/yr, but did not advance from 1979-2005. Furthermore, over the same area and time ranges, the sediment accumulation rate decreased by ~82%. We expect these sedimentation trends are occurring across the delta front, with potential impacts on spatial and temporal patterns of subaqueous mudflows. The MRDF appears to be entering a phase of decline, which will likely be accelerated by future upstream sediment diversion projects. New geophysical data will be required to assess potential mudflow hazards associated with new MRDF sedimentation rates and patterns (See Part 2, Obelcz et al.).
NASA Technical Reports Server (NTRS)
Mcanulty, M. A.
1986-01-01
The orbital Maneuvering Vehicle (OMV) is intended to close with orbiting targets for relocation or servicing. It will be controlled via video signals and thruster activation based upon Earth or space station directives. A human operator is squarely in the middle of the control loop for close work. Without directly addressing future, more autonomous versions of a remote servicer, several techniques that will doubtless be important in a future increase of autonomy also have some direct application to the current situation, particularly in the area of image enhancement and predictive analysis. Several techniques are presentet, and some few have been implemented, which support a machine vision capability proposed to be adequate for detection, recognition, and tracking. Once feasibly implemented, they must then be further modified to operate together in real time. This may be achieved by two courses, the use of an array processor and some initial steps toward data reduction. The methodology or adapting to a vector architecture is discussed in preliminary form, and a highly tentative rationale for data reduction at the front end is also discussed. As a by-product, a working implementation of the most advanced graphic display technique, ray-casting, is described.
Slow neutron mapping technique for level interface measurement
NASA Astrophysics Data System (ADS)
Zain, R. M.; Ithnin, H.; Razali, A. M.; Yusof, N. H. M.; Mustapha, I.; Yahya, R.; Othman, N.; Rahman, M. F. A.
2017-01-01
Modern industrial plant operations often require accurate level measurement of process liquids in production and storage vessels. A variety of advanced level indicators are commercially available to meet the demand, but these may not suit specific need of situations. The neutron backscatter technique is exceptionally useful for occasional and routine determination, particularly in situations such as pressure vessel with wall thickness up to 10 cm, toxic and corrosive chemical in sealed containers, liquid petroleum gas storage vessels. In level measurement, high energy neutrons from 241Am-Be radioactive source are beamed onto a vessel. Fast neutrons are slowed down mostly by collision with hydrogen atoms of material inside the vessel. Parts of thermal neutron are bounced back towards the source. By placing a thermal detector next to the source, these backscatter neutrons can be measured. The number of backscattered neutrons is directly proportional to the concentration of the hydrogen atoms in front of the neutron detector. As the source and detector moved by the matrix around the side of the vessel, interfaces can be determined as long as it involves a change in hydrogen atom concentration. This paper presents the slow neutron mapping technique to indicate level interface of a test vessel.
Oscillating-grid experiments in water and superfluid helium
NASA Astrophysics Data System (ADS)
Honey, Rose E.; Hershberger, Robert; Donnelly, Russell J.; Bolster, Diogo
2014-05-01
Passing a fluid through a grid is a well-known mechanism used to study the properties of turbulence. Oscillating a horizontal grid vertically in a tank has also been used extensively and is considered to be a source of almost homogenous isotropic turbulence. When the oscillating grid is turned on a turbulent flow is induced. A front translates into the experimental tank, behind which the flow is highly turbulent. Long predicted that the growth of such a front would grow diffusively as the square root of time (i.e., d ˜√t ) and Dickinson and Long presented experimental evidence for the diffusive result at a low mesh Reynolds number of 555. This paper revisits these experiments and attempts a set of two models for the advancing front in both square and round tanks. We do not observe significant differences between runs in square and round tanks. The experiments in water reach mesh Reynolds numbers of order 30000. Using some data from superfluid helium experiments we are able to explore mesh Reynolds numbers to about 43000. We find the power law for the advancing front decreases weakly with the mesh Reynolds number. Using a very long tank we find that the turbulent front stops completely at a certain depth and attempt a simple explanation for that behavior. We study the propagation of the turbulent front into tubes of different diameters inserted into the main tank. We show that these tubes exclude wavelengths much larger than the tube diameter. We explore the variation of the position of the steady-state boundary H on tube diameter D and find that H =cD with c ˜2. We suggest this may be explained by saturation of the energy-containing length scale ℓe. We also report on the effect of plugging up just one hole of the grid. Finally, we recall some earlier oscillating grid experiments in superfluid 4He in the light of the present results.
NASA Technical Reports Server (NTRS)
Heier, W. C. (Inventor)
1974-01-01
A method is described for compression molding of thermosetting plastics composition. Heat is applied to the compressed load in a mold cavity and adjusted to hold molding temperature at the interface of the cavity surface and the compressed compound to produce a thermal front. This thermal front advances into the evacuated compound at mean right angles to the compression load and toward a thermal fence formed at the opposite surface of the compressed compound.
ERIC Educational Resources Information Center
Bird, Bruce
This paper discusses the development of two World Wide Web sites at Anne Arundel Community College (Maryland). The criteria for the selection of hardware and software for Web site development that led to the decision to use Microsoft FrontPage 98 are described along with its major components and features. The discussion of the Science Division Web…
THz semiconductor-based front-end receiver technology for space applications
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Siegel, Peter
2004-01-01
Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.
Verification of a three-dimensional resin transfer molding process simulation model
NASA Technical Reports Server (NTRS)
Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson
1995-01-01
Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.
The Emergence and Impact of Intelligent Machines. Chapter 10
NASA Technical Reports Server (NTRS)
Kurzweil, Raymond
2007-01-01
The following issues are addressed in this essay: a) Models of Technology Trends: A discussion of why nanotechnology and related advanced technologies are inevitable. The underlying technologies are deeply integrated into our society and are advancing on many diverse fronts; and b) The Economic Imperatives of the Law of Accelerating Returns: The exponential advance of technology, including the accelerating miniaturization of technology, is driven by economic imperative, and, in turn, has a pervasive impact on the economy.
NASA Astrophysics Data System (ADS)
Whalen, Daniel; Norman, Michael L.
2006-02-01
Radiation hydrodynamical transport of ionization fronts (I-fronts) in the next generation of cosmological reionization simulations holds the promise of predicting UV escape fractions from first principles as well as investigating the role of photoionization in feedback processes and structure formation. We present a multistep integration scheme for radiative transfer and hydrodynamics for accurate propagation of I-fronts and ionized flows from a point source in cosmological simulations. The algorithm is a photon-conserving method that correctly tracks the position of I-fronts at much lower resolutions than nonconservative techniques. The method applies direct hierarchical updates to the ionic species, bypassing the need for the costly matrix solutions required by implicit methods while retaining sufficient accuracy to capture the true evolution of the fronts. We review the physics of ionization fronts in power-law density gradients, whose analytical solutions provide excellent validation tests for radiation coupling schemes. The advantages and potential drawbacks of direct and implicit schemes are also considered, with particular focus on problem time-stepping, which if not properly implemented can lead to morphologically plausible I-front behavior that nonetheless departs from theory. We also examine the effect of radiation pressure from very luminous central sources on the evolution of I-fronts and flows.
NASA Astrophysics Data System (ADS)
Gómez-Galán, J. A.; Sánchez-Rodríguez, T.; Sánchez-Raya, M.; Martel, I.; López-Martín, A.; Carvajal, R. G.; Ramírez-Angulo, J.
2014-06-01
This paper evaluates the design of front-end electronics in modern technologies to be used in a new generation of heavy ion detectors—HYDE (FAIR, Germany)—proposing novel architectures to achieve high gain in a low voltage environment. As conventional topologies of operational amplifiers in modern CMOS processes show limitations in terms of gain, novel approaches must be raised. The work addresses the design using transistors with channel length of no more than double the feature size and a supply voltage as low as 1.2 V. A front-end system has been fabricated in a 90 nm process including gain boosting techniques based on regulated cascode circuits. The analog channel has been optimized to match a detector capacitance of 5 pF and exhibits a good performance in terms of gain, speed, linearity and power consumption.
Melt Flow Control in the Directional Solidification of Binary Alloys
NASA Technical Reports Server (NTRS)
Zabaras, Nicholas
2003-01-01
Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.
Hapstack, Mark
1991-01-01
A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.
A holographic technique for recording a hypervelocity projectile with front surface resolution.
Kurtz, R L; Loh, H Y
1970-05-01
Any motion of the scene during the exposure of a hologram results in a spatial modulation of the recorded fringe contrast. On reconstruction, this produces a spatial amplitude modulation of the reconstructed wavefront, which results in a blurring of the image, not unlike that of a conventional photograph. For motion of the scene sufficient to change the path length of the signal arm by a half wavelength, this blurring is generally prohibitive. This paper describes a proposed holographic technique which offers promise for front light resolution of targets moving at high speeds, heretofore unobtainable by conventional methods.
NASA Technical Reports Server (NTRS)
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
Advanced Data Acquisition and Telemetry System
2016-09-15
The Advanced Data Acquisition and Telemetry System team includes front row from left Mario Soto, Sam Habbal, Tiffany Titas, RIchard Hang, Randy Torres, Thang Quach, Otto Schnarr, Matthew Waldersen, Karen Estes, Andy Olvera, Stanley Wertenberger and Rick Cordes. In the second row from left are John Atherly, Doug Boston, Tom Horn, Brady Rennie, Chris Birkinbine, Jim McNally, Martin Munday and Tony Lorek.
Is particulate air pollution at the front door a good proxy of residential exposure?
Zauli Sajani, Stefano; Trentini, Arianna; Rovelli, Sabrina; Ricciardelli, Isabella; Marchesi, Stefano; Maccone, Claudio; Bacco, Dimitri; Ferrari, Silvia; Scotto, Fabiana; Zigola, Claudia; Cattaneo, Andrea; Cavallo, Domenico Maria; Lauriola, Paolo; Poluzzi, Vanes; Harrison, Roy M
2016-06-01
The most advanced epidemiological studies on health effects of air pollution assign exposure to individuals based on residential outdoor concentrations of air pollutants measured or estimated at the front-door. In order to assess to what extent this approach could cause misclassification, indoor measurements were carried out in unoccupied rooms at the front and back of a building which fronted onto a major urban road. Simultaneous measurements were also carried out at adjacent outdoor locations to the front and rear of the building. Two 15-day monitoring campaigns were conducted in the period June-December 2013 in a building located in the urban area of Bologna, Italy. Particulate matter metrics including PM2.5 mass and chemical composition, particle number concentration and size distribution were measured. Both outdoor and indoor concentrations at the front of the building substantially exceeded those at the rear. The highest front/back ratio was found for ultrafine particles with outdoor concentration at the front door 3.4 times higher than at the rear. A weak influence on front/back ratios was found for wind direction. Particle size distribution showed a substantial loss of particles within the sub-50 nm size range between the front and rear of the building and a further loss of this size range in the indoor data. The chemical speciation data showed relevant reductions for most constituents between the front and the rear, especially for traffic related elements such as Elemental Carbon, Iron, Manganese and Tin. The main conclusion of the study is that gradients in concentrations between the front and rear, both outside and inside the building, are relevant and comparable to those measured between buildings located in high and low traffic areas. These findings show high potential for misclassification in the epidemiological studies that assign exposure based on particle concentrations estimated or measured at subjects' home addresses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Onset of nonlinearity in a stochastic model for auto-chemotactic advancing epithelia
NASA Astrophysics Data System (ADS)
Ben Amar, Martine; Bianca, Carlo
2016-09-01
We investigate the role of auto-chemotaxis in the growth and motility of an epithelium advancing on a solid substrate. In this process, cells create their own chemoattractant allowing communications among neighbours, thus leading to a signaling pathway. As known, chemotaxis provokes the onset of cellular density gradients and spatial inhomogeneities mostly at the front, a phenomenon able to predict some features revealed in in vitro experiments. A continuous model is proposed where the coupling between the cellular proliferation, the friction on the substrate and chemotaxis is investigated. According to our results, the friction and proliferation stabilize the front whereas auto-chemotaxis is a factor of destabilization. This antagonist role induces a fingering pattern with a selected wavenumber k0. However, in the planar front case, the translational invariance of the experimental set-up gives also a mode at k = 0 and the coupling between these two modes in the nonlinear regime is responsible for the onset of a Hopf-bifurcation. The time-dependent oscillations of patterns observed experimentally can be predicted simply in this continuous non-linear approach. Finally the effects of noise are also investigated below the instability threshold.
Numerical simulation of a turbulent flame stabilized behind a rearward-facing step
NASA Technical Reports Server (NTRS)
Hsiao, C. C.; Oppenheim, A. K.; Chorin, A. J.; Ghoniem, A. F.
1985-01-01
Flow of combustible mixtures in a plane channel past a smooth contraction followed by an abrupt expansion, in a typical dump combustor configuration, is modeled by a two-dimensional numerical technique based on the random vortex method. Both the inert and the reacting case are considered. In the latter, the flame is treated as an interface, self-advancing at a prescribed normal burning speed, while the dynamic effects of expansion due to the exothermicity of combustion are expressed by volumetric source lines delineated by its front. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and the reattachment length. The stochastic turbulent velocity components manifest interesting differences, especially near the walls where three-dimensional effects of turbulence are expected to be of importance.
Method and apparatus for improved observation of in-situ combustion processes
Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.
Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there-through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 6 figures, 2 tables.
Aerodynamic Design Study of Advanced Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.
2002-01-01
As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.
Recent advances in the front-end sources of the LMJ fusion laser
NASA Astrophysics Data System (ADS)
Gleyze, Jean-François; Hares, Jonathan; Vidal, Sebastien; Beck, Nicolas; Dubertrand, Jerome; Perrin, Arnaud
2011-03-01
LMJ is typical of lasers used for inertial confinement fusion and requires a laser of programmable parameters for injection into the main amplifier. For several years, the CEA has developed front end fiber sources, based on telecommunications fiber optics technologies. These sources meet the needs but as the technology evolves we can expect improved efficiency and reductions in size and cost. We give an up-to-date description of some present development issues, particularly in the field of temporal shaping with the use of digital system. The synchronization of such electronics has been challenging however we now obtain system jitter of less then 7ps rms. Secondly, we will present recent advance in the use of fiber based pre-comp system to avoid parasitic amplitude modulation from phase modulation used for spectral broadening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu
In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less
Comparing historic and modern forests on the Bitterroot Front
Michael G. Hartwell; Paul Alaback; Stephen F. Arno
2000-01-01
A study was initiated in 1995 to measure landscape changes in forest structures between 1900 and 1995. A systematic sampling system was used to collect data on three forested faces on the Bitterroot Front. Over 1,200 tree cores were taken on 216 plots between the elevation range of 4,500 to 7,500 feet. Historic forests were reconstructed through quantitative techniques...
Cazzola, Dario; Preatoni, Ezio; Stokes, Keith A; England, Michael E; Trewartha, Grant
2015-04-01
Biomechanical studies of the rugby union scrum have typically been conducted using instrumented scrum machines, but a large-scale biomechanical analysis of live contested scrummaging is lacking. We investigated whether the biomechanical loading experienced by professional front row players during the engagement phase of live contested rugby scrums could be reduced using a modified engagement procedure. Eleven professional teams (22 forward packs) performed repeated scrum trials for each of the three engagement techniques, outdoors, on natural turf. The engagement processes were the 2011/2012 (referee calls crouch-touch-pause-engage), 2012/2013 (referee calls crouch-touch-set) and 2013/2014 (props prebind with the opposition prior to the 'Set' command; PreBind) variants. Forces were estimated by pressure sensors on the shoulders of the front row players of one forward pack. Inertial Measurement Units were placed on an upper spine cervical landmark (C7) of the six front row players to record accelerations. Players' motion was captured by multiple video cameras from three viewing perspectives and analysed in transverse and sagittal planes of motion. The PreBind technique reduced biomechanical loading in comparison with the other engagement techniques, with engagement speed, peak forces and peak accelerations of upper spine landmarks reduced by approximately 20%. There were no significant differences between techniques in terms of body kinematics and average force during the sustained push phase. Using a scrum engagement process which involves binding with the opposition prior to the engagement reduces the stresses acting on players and therefore may represent a possible improvement for players' safety. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Wavelet Analysis of SAR Images for Coastal Monitoring
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Wu, Sunny Y.; Tseng, William Y.; Pichel, William G.
1998-01-01
The mapping of mesoscale ocean features in the coastal zone is a major potential application for satellite data. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ice edge can be tracked by the wavelet analysis using satellite data from repeating paths. The wavelet transform has been applied to satellite images, such as those from Synthetic Aperture Radar (SAR), Advanced Very High-Resolution Radiometer (AVHRR), and ocean color sensor for feature extraction. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite SAR imagery employing wavelet analysis have been developed. Case studies on two major coastal oil spills have been investigated using wavelet analysis for tracking along the coast of Uruguay (February 1997), and near Point Barrow, Alaska (November 1997). Comparison of SAR images with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data for coccolithophore bloom in the East Bering Sea during the fall of 1997 shows a good match on bloom boundary. This paper demonstrates that this technique is a useful and promising tool for monitoring of coastal waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.; Oldenburg, C.; Moridis, G.
1997-12-31
This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport.more » A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.« less
NASA Astrophysics Data System (ADS)
Knighton, W. B.; Floerchinger, C. R.; Wormhoult, J.; Massoli, P.; Fortner, E.; Brooks, B.; Roscioli, J. R.; Bon, D.; Herndon, S. C.
2014-12-01
Volatile organic compounds (VOCs) play an important role in local and regional air quality. A large source of VOCs comes from the oil and gas industry and the Denver-Julesburg Basin (D-J Basin) has seen a sharp increase in production in recent years primarily due to advances in horizontal drilling techniques. To help curb emissions with extraction and production of natural gas and its associated oil, emission control devices are required for facilities emitting over 6 tons of hydrocarbons per year. Within the ozone non-attainment area, which encompasses Denver and much of the front range, enclosed combustion devices (enclosed flares) are required to reduce hydrocarbon emissions by at least 95%. While certification tests indicate that these enclosed combustor devices provide high destruction removal efficiencies, there is considerable interest in knowing how well they perform in the field. As part of Front Range Air Pollution and Photochemistry Experiment (FRAPPE) project conducted during the Summer of 2014, the Aerodyne Mobile Laboratory (AML) surveyed oil and gas operations within the Wattenberg gas field and the surrounding D-J Basin. The AML deployed a full suite of gas and particle phase instrumentation providing a comprehensive set of on-line, real-time measurements for the major natural gas components (methane and ethane) and their combustion products (CO2, CO, NOx) using a variety of spectroscopic techniques. Additional gas phase organic gas emissions were made using a proton transfer reaction mass spectrometer (PTR-MS). Particle number and composition were determined using a condensation particle counter and an Aerodyne Aerosol Mass Spectrometer (AMS). A summary of the number of enclosed combustor devices measured and their observed combustion efficiencies will be presented.
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.
2016-11-15
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven bymore » fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.« less
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
NASA Astrophysics Data System (ADS)
Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.
2016-11-01
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.
NASA Astrophysics Data System (ADS)
Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew
2016-08-01
Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.
Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese
2017-02-15
(Left): Kyle Botteon (front) and Hunjpp Kim (Behind), NASA JPL. (Right): Gregory Zilliac, Advance Propulsion Technician. NASA Ames, preparing the Peregrine Hybrid Rocket Engine at the Outdoor Aerodynamic Research Facility (OARF, N-249).
Teaching Spatial Awareness for Better Twisting Somersaults.
ERIC Educational Resources Information Center
Hennessy, Jeff T.
1985-01-01
The barani (front somersault with one-half twist) and the back somersault with one twist are basic foundation skills necessary for more advanced twisting maneuvers. Descriptions of these movements on a trampoline surface are offered. (DF)
Numerical study on the thawing process of biological tissue induced by laser irradiation.
Zhou, Jianhua; Liu, Jing; Yu, Aibing
2005-06-01
Most of the laser applications in medicine and biology involve thermal effects. The laser-tissue thermal interaction has therefore received more and more attentions in recent years. However, previous works were mainly focused on the case of laser heating on normal tissues (37 degrees C or above). To date, little is known on the mechanisms of laser heating on the frozen biological tissues. Several latest experimental investigations have demonstrated that lasers have great potentials in tissue cryopreservation. But the lack of theoretical interpretation limits its further application in this area. The present paper proposes a numerical model for the thawing of biological tissues caused by laser irradiation. The Monte Carlo approach and the effective heat capacity method are, respectively, employed to simulate the light propagation and solid-liquid phase change heat transfer. The proposed model has four important features: (1) the tissue is considered as a nonideal material, in which phase transition occurs over a wide temperature range; (2) the solid phase, transition phase, and the liquid phase have different thermophysical properties; (3) the variations in optical properties due to phase-change are also taken into consideration; and (4) the light distribution is changing continually with the advancement of the thawing fronts. To this end, 15 thawing-front geometric configurations are presented for the Monte Carlo simulation. The least-squares parabola fitting technique is applied to approximate the shape of the thawing front. And then, a detailed algorithm of calculating the photon reflection/refraction behaviors at the thawing front is described. Finally, we develop a coupled light/heat transport solution procedure for the laser-induced thawing of frozen tissues. The proposed model is compared with three test problems and good agreement is obtained. The calculated results show that the light reflectance/transmittance at the tissue surface are continually changing with the progression of the thawing fronts and that lasers provide a new heating method superior to conventional heating through surface conduction because it can achieve a uniform volumetric heating. Parametric studies are performed to test the influences of the optical properties of tissue on the thawing process. The proposed model is rather general in nature and therefore can be applied to other nonbiological problems as long as the materials are absorbing and scattering media.
Implementation of a gust front head collapse scheme in the WRF numerical model
NASA Astrophysics Data System (ADS)
Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje
2018-05-01
Gust fronts are thunderstorm-related phenomena usually associated with severe winds which are of great importance in theoretical meteorology, weather forecasting, cloud dynamics and precipitation, and wind engineering. An important feature of gust fronts demonstrated through both theoretical and observational studies is the periodic collapse and rebuild of the gust front head. This cyclic behavior of gust fronts results in periodic forcing of vertical velocity ahead of the parent thunderstorm, which consequently influences the storm dynamics and microphysics. This paper introduces the first gust front pulsation parameterization scheme in the WRF-ARW model (Weather Research and Forecasting-Advanced Research WRF). The influence of this new scheme on model performances is tested through investigation of the characteristics of an idealized supercell cumulonimbus cloud, as well as studying a real case of thunderstorms above the United Arab Emirates. In the ideal case, WRF with the gust front scheme produced more precipitation and showed different time evolution of mixing ratios of cloud water and rain, whereas the mixing ratios of ice and graupel are almost unchanged when compared to the default WRF run without the parameterization of gust front pulsation. The included parameterization did not disturb the general characteristics of thunderstorm cloud, such as the location of updraft and downdrafts, and the overall shape of the cloud. New cloud cells in front of the parent thunderstorm are also evident in both ideal and real cases due to the included forcing of vertical velocity caused by the periodic collapse of the gust front head. Despite some differences between the two WRF simulations and satellite observations, the inclusion of the gust front parameterization scheme produced more cumuliform clouds and seem to match better with real observations. Both WRF simulations gave poor results when it comes to matching the maximum composite radar reflectivity from radar measurement. Similar to the ideal case, WRF model with the gust front scheme gave more precipitation than the default WRF run. In particular, the gust front scheme increased the area characterized with light precipitation and diminished the development of very localized and intense precipitation.
Hapstack, M.
1991-05-28
A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hapstack, M.
1991-05-28
A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly andmore » bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hapstack, M.
1990-05-01
A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radically outward to increase the range of the legs when the pipe crawler enters a section of pipe having a larger diameter. The crawler crawls by inchworm''-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up themore » rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figs.« less
A nonperturbative light-front coupled-cluster method
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2012-10-01
The nonperturbative Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the many-body coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponentiated operator is truncated, and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory, to obtain form factors and other observables.
SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren Deqing; Dou Jiangpei; Zhang Xi
2012-07-10
Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We furthermore » discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.« less
Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.
1986-12-09
Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 12 figs.
Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.
1986-01-01
Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front therethrough. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique.
Baker, Kevin Louis
2013-01-08
X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.
Liu, Yu; Teng, Ying; Jiang, Lanlan; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Song, Yongchen
2017-04-01
It is of great importance to study the CO 2 -oil two-phase flow characteristic and displacement front behavior in porous media, for understanding the mechanisms of CO 2 enhanced oil recovery. In this work, we carried out near miscible CO 2 flooding experiments in decane saturated synthetic sandstone cores to investigate the displacement front characteristic by using magnetic resonance imaging technique. Experiments were done in three consolidated sandstone cores with the permeabilities ranging from 80 to 450mD. The oil saturation maps and the overall oil saturation during CO 2 injections were obtained from the intensity of magnetic resonance imaging. Finally the parameters of the piston-like displacement fronts, including the front velocity and the front geometry factor (the length to width ratio) were analyzed. Experimental results showed that the near miscible vertical upward displacement is instable above the minimum miscible pressure in the synthetic sandstone cores. However, low permeability can restrain the instability to some extent. Copyright © 2016 Elsevier Inc. All rights reserved.
Systems and Sensors for Debris-flow Monitoring and Warning
Arattano, Massimo; Marchi, Lorenzo
2008-01-01
Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828
USDA-ARS?s Scientific Manuscript database
Over the past 50 years, significant progress has been made in improving our understanding of the extent and potential consequences of groundwater contamination, with research advancing on several fronts including groundwater sampling methods, laboratory detection methods, subsurface transport (and m...
CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break
NASA Astrophysics Data System (ADS)
Park, Kyung Min; Yoon, Hyun Sik; Kim, Min Il
2018-06-01
This study investigates the multiphase flow of a liquid-gas-particle mixture in dam break. The open source codes, OpenFOAM and CFDEMproject, were used to reproduce the multiphase flow. The results of the present study are compared with those of previous results obtained by numerical and experimental methods, which guarantees validity of present numerical method to handle the multiphase flow. The particle density ranging from 1100 to 2500 kg/m3 is considered to investigate the effect of the particle density on the behavior of the free-surface and the particles. The particle density has no effect on the liquid front, but it makes the particle front move with different velocity. The time when the liquid front reach at the opposite wall is independent of particle density. However, such time for particle front decrease as particle density increases, which turned out to be proportional to particle density. Based on these results, we classified characteristics of the movement by the front positions of the liquid and the particles. Eventually, the response of the free-surface and particles to particle density is identified by three motion regimes of the advancing, overlapping and delaying motions.
Chemoselection: A Paradigm for Optimization of Organ Preservation in Locally Advanced Larynx Cancer
Vainshtein, Jeffrey M.; Wu, Vivian F.; Spector, Matthew E.; Bradford, Carol R.; Wolf, Gregory T.; Worden, Francis P.
2014-01-01
Summary Definitive chemoradiation (CRT) and laryngectomy followed by postoperative radiotherapy (RT) are both considered standard of care options for the management of advanced laryngeal cancer. While organ preservation with chemoradiotherapy is often the preferred up-front approach for appropriately selected candidates, the functional benefits of organ preservation must be carefully balanced against the considerable morbidity of salvage laryngectomy in patients who fail primary chemoradiation. Up-front identification of patients who are likely to require surgical salvage, therefore, is an important aim of any organ preserving approach in order to minimize morbidity while maximizing organ preservation. To this end, a strategy of “chemoselection”, using the primary tumor's response after one cycle of induction chemotherapy as an in vivo method of selecting responders for definitive chemoradiation while reserving primary surgical management for non-responders, has been employed extensively at our institution. The rationale, treatment results, and future directions of this approach are discussed. PMID:24053204
Della Volpe, Angelique; Volker, Schmidt; Krautwald-Junghanns, Maria-Elisabeth
2011-03-01
The purpose of this study was to establish a technique for collecting semen from blue-fronted Amazon parrots (Amazona aestiva aestiva) and to evaluate the samples that were collected. The massage method is the most common technique used to collect semen in birds and has been proven successful in several psittacine species; however, collection attempts in larger parrots have been unsatisfactory. Six blue-fronted Amazon parrot males, 3 paired with hens and 3 unpaired, were used in this study. The semen collection technique was revised to allow collection from individual birds by a single person. Semen collection was attempted from the 6 parrots on 52-56 occasions, which totaled 330 single attempts. Nineteen ejaculates were collected, and each bird produced at least 1 ejaculate that contained spermatozoa. Large ranges of sample volume (1-15.4 microL), sperm quality (motility = 2%-60%; live:dead ratio = 2:198 to 185:15), sperm concentration (0.79-3.3 x 10(6) sperm/mL), and contamination rate (0%-100%) were observed. Measured parameters did not appear to be significantly impacted by birds being paired or kept singly. Because of the relatively short acclimation period, the birds appeared to be sexually inactive for the majority of the study. Further research using sexually active birds will be necessary to determine standard spermatological parameters and verify the success of the methodology used here.
Front dynamics and entanglement in the XXZ chain with a gradient
NASA Astrophysics Data System (ADS)
Eisler, Viktor; Bauernfeind, Daniel
2017-11-01
We consider the XXZ spin chain with a magnetic field gradient and study the profiles of the magnetization as well as the entanglement entropy. For a slowly varying field, it is shown that, by means of a local density approximation, the ground-state magnetization profile can be obtained with standard Bethe ansatz techniques. Furthermore, it is argued that the low-energy description of the theory is given by a Luttinger liquid with slowly varying parameters. This allows us to obtain a very good approximation of the entanglement profile using a recently introduced technique of conformal field theory in curved spacetime. Finally, the front dynamics is also studied after the gradient field has been switched off, following arguments of generalized hydrodynamics for integrable systems. While for the XX chain the hydrodynamic solution can be found analytically, the XXZ case appears to be more complicated and the magnetization profiles are recovered only around the edge of the front via an approximate numerical solution.
The Politburo’s Management of Its America Problem.
1981-04-01
long-term process of extending the Soviet political presence into more and more previously Western-influenced areas. The leadership expects occasional...major setbacks as inevitable incidents in this process of advance on a gradually broadening front. The Soviet leaders are well aware that not every...objective, self-propelled phenomena that are incrementally and inevitably erod- ing U.S. influence and in the process advancing that of the Soviet Union. In
Bioprocesses. [in the marine environment
NASA Technical Reports Server (NTRS)
Ditoro, D. M.; Iverson, R. L.; Mccarthy, J. J.
1980-01-01
The application of remote sensing techniques to the study of eutrophication in natural waters and the location and characterization of fronts is considered. The specific problem to be studied is examined along with the feasibility and capabability of remote sensing techniques for each application.
Estimation techniques and simulation platforms for 77 GHz FMCW ACC radars
NASA Astrophysics Data System (ADS)
Bazzi, A.; Kärnfelt, C.; Péden, A.; Chonavel, T.; Galaup, P.; Bodereau, F.
2012-01-01
This paper presents two radar simulation platforms that have been developed and evaluated. One is based on the Advanced Design System (ADS) and the other on Matlab. Both platforms are modeled using homodyne front-end 77 GHz radar, based on commercially available monolithic microwave integrated circuits (MMIC). Known linear modulation formats such as the frequency modulation continuous wave (FMCW) and three-segment FMCW have been studied, and a new variant, the dual FMCW, is proposed for easier association between beat frequencies, while maintaining an excellent distance estimation of the targets. In the signal processing domain, new algorithms are proposed for the three-segment FMCW and for the dual FMCW. While both of these algorithms present the choice of either using complex or real data, the former allows faster signal processing, whereas the latter enables a simplified front-end architecture. The estimation performance of the modulation formats has been evaluated using the Cramer-Rao and Barankin bounds. It is found that the dual FMCW modulation format is slightly better than the other two formats tested in this work. A threshold effect is found at a signal-to-noise ratio (SNR) of 12 dB which means that, to be able to detect a target, the SNR should be above this value. In real hardware, the SNR detection limit should be set to about at least 15 dB.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2018-05-01
Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining q \\bar{q} potential κ ^4 ζ ^2, where ζ ^2 is the light-front radial variable related in momentum space to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.
NASA Astrophysics Data System (ADS)
Gilmore, Mark; Hsu, Scott
2015-11-01
The goal of the Plasma Liner eXperiment PLX-alpha at Los Alamos National Laboratory is to establish the viability of creating a spherically imploding plasma liner for MIF and HED applications, using a spherical array of supersonic plasma jets launched by innovative contoured-gap coaxial plasma guns. PLX- α experiments will focus in particular on establishing the ram pressure and uniformity scalings of partial and fully spherical plasma liners. In order to characterize these parameters experimentally, a suite of diagnostics is planned, including multi-camera fast imaging, a 16-channel visible interferometer (upgraded from 8 channels) with reconfigurable, fiber-coupled front end, and visible and VUV high-resolution and survey spectroscopy. Tomographic reconstruction and data fusion techniques will be used in conjunction with interferometry, imaging, and synthetic diagnostics from modeling to characterize liner uniformity in 3D. Diagnostic and data analysis design, implementation, and status will be presented. Supported by the Advanced Research Projects Agency - Energy - U.S. Department of Energy.
Kim, Jean; Schlesinger, Erica B; Desai, Tejal A
2015-01-01
Effective drug delivery to the eye is an ongoing challenge due to poor patient compliance coupled with numerous physiological barriers. Eye drops for the front of the eye and ocular injections for the back of the eye are the most prevalent delivery methods, both of which require relatively frequent administration and are burdensome to the patient. Novel drug delivery techniques stand to drastically improve safety, efficacy and patient compliance for ocular therapeutics. Remarkable advances in nanofabrication technologies make the application of nanostructured materials to ocular drug delivery possible. This article focuses on the use of nanostructured materials with nanoporosity or nanotopography for ocular delivery. Specifically, we discuss nanotopography for enhanced bioadhesion and permeation and nanoporous materials for controlled release drug delivery. As examples, application of polymeric nanostructures for greater transepithelial permeability, nanostructured microparticles for enhanced preocular retention time and nanoporous membranes for tuning drug release profile are covered. PMID:26652282
Comparative Genomics and Host Resistance against Infectious Diseases
Qureshi, Salman T.; Skamene, Emil
1999-01-01
The large size and complexity of the human genome have limited the identification and functional characterization of components of the innate immune system that play a critical role in front-line defense against invading microorganisms. However, advances in genome analysis (including the development of comprehensive sets of informative genetic markers, improved physical mapping methods, and novel techniques for transcript identification) have reduced the obstacles to discovery of novel host resistance genes. Study of the genomic organization and content of widely divergent vertebrate species has shown a remarkable degree of evolutionary conservation and enables meaningful cross-species comparison and analysis of newly discovered genes. Application of comparative genomics to host resistance will rapidly expand our understanding of human immune defense by facilitating the translation of knowledge acquired through the study of model organisms. We review the rationale and resources for comparative genomic analysis and describe three examples of host resistance genes successfully identified by this approach. PMID:10081670
Microcontroller based driver alertness detection systems to detect drowsiness
NASA Astrophysics Data System (ADS)
Adenin, Hasibah; Zahari, Rahimi; Lim, Tiong Hoo
2018-04-01
The advancement of embedded system for detecting and preventing drowsiness in a vehicle is a major challenge for road traffic accident systems. To prevent drowsiness while driving, it is necessary to have an alert system that can detect a decline in driver concentration and send a signal to the driver. Studies have shown that traffc accidents usually occur when the driver is distracted while driving. In this paper, we have reviewed a number of detection systems to monitor the concentration of a car driver and propose a portable Driver Alertness Detection System (DADS) to determine the level of concentration of the driver based on pixelated coloration detection technique using facial recognition. A portable camera will be placed at the front visor to capture facial expression and the eye activities. We evaluate DADS using 26 participants and have achieved 100% detection rate with good lighting condition and a low detection rate at night.
Tropical cyclone intensities from satellite microwave data
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.; Kidder, S. Q.
1980-01-01
Radial profiles of mean 1000 mb to 250 mb temperature from the Nimbus 6 scanning microwave spectrometer (SCAMS) were constructed around eight intensifying tropical storms in the western Pacific. Seven storms showed distinct inward temperature gradients required for intensification; the eighth displayed no inward gradient and was decaying 24 hours later. The possibility that satellite data might be used to forecast tropical cyclone turning motion was investigated using estimates obtained from Nimbus 6 SCAMS data tapes of the mean 1000 mb to 250 mb temperature field around eleven tropical storms in 1975. Analysis of these data show that for turning storms, in all but one case, the turn was signaled 24 hours in advance by a significant temperature gradient perpendicular to the storm's path, at a distance of 9 deg to 13 deg in front of the storm. A thresholding technique was applied to the North Central U.S. during the summer to estimate precipitation frequency. except
NASA Astrophysics Data System (ADS)
Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.
A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.
Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu
2014-06-15
In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less
Experimental studies of one-way reaction front barriers in three-dimensional vortex flows
NASA Astrophysics Data System (ADS)
Gannon, Joanie; Doan, Minh; Simons, Jj; Mitchell, Kevin; Solomon, Tom
2017-11-01
We present results of experimental studies of the evolution of the excitable, Ruthenium (Ru)-catalyzed, Belousov-Zhabotinsky (BZ) reaction in a three-dimensional (3D) flow composed of the superposition of horizontal and vertical vortex chains. The reaction fronts are imaged in 3D with a scanning, laser-induced fluorescence technique that takes advantage of the differential fluoresence of the Ruthenium indicated at the front. When the horizontal and vertical vortex chains are lined up, a dominant scroll structure is observed that acts as a one-way barrier blocking fronts propagating across vortex boundaries and into vortex centers. A second, quarter-tube barrier is observed along the edges of the unit cell. When the vortices are shifted relative to each other, tube-like barriers are observed in the interior. All of these barriers are compared with burning invariant manifolds predicted from a 6D set of differential equations describing the evolution of front elements in the flow. Supported by NSF Grants DMR-1361881 and DUE-1317446.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.H.; Yang, B.X.; Decker, G.
Accurate and stable x-ray beam position monitors (XBPMs) are ke y elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generat ion XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Com missioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulatormore » beams are separated by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scat tering from the diamond blades placed edge-on to the x- ray beam. A prototype of the Compton scattering XBPM system was i nstalled at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contac t resistance of a joint between two solid bodies is also discussed« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. H., E-mail: shlee@aps.anl.gov; Yang, B. X., E-mail: bxyang@aps.anl.gov; Decker, G., E-mail: decker@aps.anl.gov
Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generation XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Commissioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulator beams are separatedmore » by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from the diamond blades placed edge-on to the x-ray beam. A prototype of the Compton scattering XBPM system was installed at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contact resistance of a joint between two solid bodies is also discussed.« less
The Transition Zone Chlorophyll Front updated: Advances from a decade of research
NASA Astrophysics Data System (ADS)
Polovina, Jeffrey J.; Howell, Evan A.; Kobayashi, Donald R.; Seki, Michael P.
2017-01-01
The dynamic ocean feature called the Transition Zone Chlorophyll Front (TZCF) was first described fifteen years ago based on an empirical association between the apparent habitat of loggerhead sea turtles and albacore tuna linked to a basin-wide chlorophyll front observed with remotely sensed ocean color data. Subsequent research has provided considerable evidence that the TZCF is an indicator for a dynamic ocean feature with important physical and biological characteristics. New insights into the seasonal dynamics of the TZCF suggest that in the summer it is located at the southern boundary of the subarctic gyre while its position in the winter and spring is defined by the extent of the southward transport of surface nutrients. While the TZCF is defined as the dynamic boundary between low and high surface chlorophyll, it appears to be a boundary between subtropical and subarctic phytoplankton communities. Furthermore, the TZCF is also characterized as supporting enhanced phytoplankton net community production throughout its seasonal migration. Lastly, the TZCF is important to the growth rate of neon flying squid and to the survival of monk seal pups in the northern atolls of the Hawaiian Archipelago. This paper reviews these and other findings that advance our current understanding of the physics and biology of the TZCF from research over the past decade.
Wave-front propagation of rinsing flows on rotating semiconductor wafers
NASA Astrophysics Data System (ADS)
Frostad, John M.; Ylitalo, Andy; Walls, Daniel J.; Mui, David S. L.; Fuller, Gerald G.
2016-11-01
The semiconductor manufacturing industry is migrating to a cleaning technology that involves dispersing cleaning solutions onto a rotating wafer, similar to spin-coating. Advantages include a more continuous overall fabrication process, lower particle level, no cross contamination from the back side of a wafer, and less usage of harsh chemicals for a lower environmental impact. Rapid rotation of the wafer during rinsing can be more effective, but centrifugal forces can pull spiral-like ribbons of liquid radially outward from the advancing wave-front where particles can build up, causing higher instances of device failure at these locations. A better understanding of the rinsing flow is essential for reducing yield losses while taking advantage of the benefits of rotation. In the present work, high-speed video and image processing are used to study the dynamics of the advancing wave-front from an impinging jet on a rotating substrate. The flow-rate and rotation-speed are varied for substrates coated with a thin layer of a second liquid that has a different surface tension than the jet liquid. The difference in surface tension of the two fluids gives rise to Marangoni stresses at the interface that have a significant impact on the rinsing process, despite the extremely short time-scales involved.
NASA Astrophysics Data System (ADS)
Benguria, Rafael D.; Depassier, M. Cristina; Loss, Michael
2012-12-01
We study the effect of a cutoff on the speed of pulled fronts of the one-dimensional reaction diffusion equation. To accomplish this, we first use variational techniques to prove the existence of a heteroclinic orbit in phase space for traveling wave solutions of the corresponding reaction diffusion equation under conditions that include discontinuous reaction profiles. This existence result allows us to prove rigorous upper and lower bounds on the minimal speed of monotonic fronts in terms of the cut-off parameter ɛ. From these bounds we estimate the range of validity of the Brunet-Derrida formula for a general class of reaction terms.
Integral glass encapsulation for solar arrays
NASA Technical Reports Server (NTRS)
Landis, G. A.
1981-01-01
Electrostatic bonding technology, an encapsulation technique for terrestrial solar array was developed. The process produces full integral, hermetic bonds with no adhesives or pottants. Panels of six solar cells on a simple glass superstrate were produced. Electrostatic bonding for making the cell front contact was also developed. A metal mesh is trapped into contact with the cell front during the bonding process. Six cell panels using the bonded mesh as the only cell front contact were produced. The possibility of using lower cost glass, with a higher thermal expansion mismatch to silicon, by making lower temperature bonds is developed. However, this requires a planar surface cell.
Front-end electronics and DAQ for the EURITRACK tagged neutron inspection system
NASA Astrophysics Data System (ADS)
Lunardon, M.; Bottosso, C.; Fabris, D.; Moretto, S.; Nebbia, G.; Pesente, S.; Viesti, G.; Bigongiari, A.; Colonna, A.; Tintori, C.; Valkovic, V.; Sudac, D.; Peerani, P.; Sequeira, V.; Salvato, M.
2007-08-01
The EURopean Illicit TRAfficing Countermeasures Kit (EURITRACK) Front-End and Data Acquisition System is a compact set of VME boards interfaced with a standard PC. The system is part of a cargo container inspection portal based on the tagged neutrons technique. The front-end processes all detector signals and checks coincidences between any of the 64 pixels of the alpha particle detector and any gamma-ray signals in 22 NaI(Tl) scintillators. The system is capable of handling the data flow at neutron flux up to the portal limiting value of 108 neutrons/second. Some typical applications are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza
2014-10-15
In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.
An infiltration/cure model for manufacture of fabric composites by the resin infusion process
NASA Technical Reports Server (NTRS)
Weideman, Mark H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.
1992-01-01
A 1-D infiltration/cure model was developed to simulate fabrication of advanced textile composites by the resin film infusion process. The simulation model relates the applied temperature and pressure processing cycles, along with the experimentally measured compaction and permeability characteristics of the fabric preforms, to the temperature distribution, the resin degree of cure and viscosity, and the infiltration flow front position as a function of time. The model also predicts the final panel thickness, fiber volume fraction, and resin mass for full saturation as a function of compaction pressure. Composite panels were fabricated using the RTM (Resin Transfer Molding) film infusion technique from knitted, knitted/stitched, and 2-D woven carbon preforms and Hercules 3501-6 resin. Fabric composites were fabricated at different compaction pressures and temperature cycles to determine the effects of the processing on the properties. The composites were C-scanned and micrographed to determine the quality of each panel. Advanced cure cycles, developed from the RTM simulation model, were used to reduce the total cure cycle times by a factor of 3 and the total infiltration times by a factor of 2.
Silicon microelectronic field-emissive devices for advanced display technology
NASA Astrophysics Data System (ADS)
Morse, J. D.
1993-03-01
Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.
Acoustic Wave Filter Technology-A Review.
Ruppel, Clemens C W
2017-09-01
Today, acoustic filters are the filter technology to meet the requirements with respect to performance dictated by the cellular phone standards and their form factor. Around two billion cellular phones are sold every year, and smart phones are of a very high percentage of approximately two-thirds. Smart phones require a very high number of filter functions ranging from the low double-digit range up to almost triple digit numbers in the near future. In the frequency range up to 1 GHz, surface acoustic wave (SAW) filters are almost exclusively employed, while in the higher frequency range, bulk acoustic wave (BAW) and SAW filters are competing for their shares. Prerequisites for the success of acoustic filters were the availability of high-quality substrates, advanced and highly reproducible fabrication technologies, optimum filter techniques, precise simulation software, and advanced design tools that allow the fast and efficient design according to customer specifications. This paper will try to focus on innovations leading to high volume applications of intermediate frequency (IF) and radio frequency (RF) acoustic filters, e.g., TV IF filters, IF filters for cellular phones, and SAW/BAW RF filters for the RF front-end of cellular phones.
2012-02-02
Kepler Program VIP's from left Natalie Batalha, Bill Borucki and Jon Jenkins in front of a NASA Ames Hyperwall display of newly discovered planet K-22B art at the NAS (NASA Advanced Supercomputing) Facility, Moffett Field, CA (for aviation week)
Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries
Byun, Roy; Nadkarni, Mangala A.; Chhour, Kim-Ly; Martin, F. Elizabeth; Jacques, Nicholas A.; Hunter, Neil
2004-01-01
Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion. PMID:15243071
Quantitative analysis of diverse Lactobacillus species present in advanced dental caries.
Byun, Roy; Nadkarni, Mangala A; Chhour, Kim-Ly; Martin, F Elizabeth; Jacques, Nicholas A; Hunter, Neil
2004-07-01
Our previous analysis of 65 advanced dental caries lesions by traditional culture techniques indicated that lactobacilli were numerous in the advancing front of the progressive lesion. Production of organic acids by lactobacilli is considered to be important in causing decalcification of the dentinal matrix. The present study was undertaken to define more precisely the diversity of lactobacilli found in this environment and to quantify the major species and phylotypes relative to total load of lactobacilli by real-time PCR. Pooled DNA was amplified by PCR with Lactobacillus genus-specific primers for subsequent cloning, sequencing, and phylogenetic analysis. Based on 16S ribosomal DNA sequence comparisons, 18 different phylotypes of lactobacilli were detected, including strong representation of both novel and gastrointestinal phylotypes. Specific PCR primers were designed for nine prominent species, including Lactobacillus gasseri, L. ultunensis, L. salivarius, L. rhamnosus, L. casei, L. crispatus, L. delbrueckii, L. fermentum, and L. gallinarum. More than three different species were identified as being present in most of the dentine samples, confirming the widespread distribution and numerical importance of various Lactobacillus spp. in carious dentine. Quantification by real-time PCR revealed various proportions of the nine species colonizing carious dentine, with higher mean loads of L. gasseri and L. ultunensis than of the other prevalent species. The findings provide a basis for further characterization of the pathogenicity of Lactobacillus spp. in the context of extension of the carious lesion.
Shin-Etsu super-high-flat substrate for FPD panel photomask
NASA Astrophysics Data System (ADS)
Ishitsuka, Youkou; Harada, Daijitsu; Watabe, Atsushi; Takeuchi, Masaki
2017-07-01
Recently, high-resolution exposure machine has been developed for production of high-definition (HD) panels, and higher-flat photomask substrates for FPD is being expected for panel makers to produce HD panels. In this presentation, we introduce about Shin-Etsu's advanced technique of producing super-high-flat photomask substrates. Shin-Etsu has developed surface polishing and planarization technology with No.1-quality-IC photomask substrates. Our most advanced IC photomask substrates have gained the highest estimation and appreciation from our customers because of their surface quality (non-defect surface without sub-0.1um size defects) and ultimate flatness (sub-0.1um order having achieved). By scaling up those IC photomask substrate technologies and developing unique large-size processing technologies, we have achieved creating high-flat large substrates, even G10-photomask size as well as regular G6-G8 photomask size. The core technology is that the surface shape of the substrate is completely controlled by the unique method. For example, we can regularly produce a substrate with its flatness of triple 5ums; front side flatness, back side flatness and total thickness variation are all less than 5μm. Furthermore, we are able to supply a substrate with its flatness of triple 3ums for G6-photomask size advanced grade, believed to be needed in near future.
Multiscale modeling of interfacial flow in particle-solidification front dynamics
NASA Astrophysics Data System (ADS)
Garvin, Justin
2005-11-01
Particle-solidification front interactions are important in many applications, such as metal-matrix composite manufacture, frost heaving in soils and cryopreservation. The typical length scale of the particles and the solidification fronts are of the order of microns. However, the force of interaction between the particle and the front typically arises when the gap between them is of the order of tens of nanometers. Thus, a multiscale approach is necessary to analyze particle-front interactions. Solving the Navier-Stokes equations to simulate the dynamics by including the nano-scale gap between the particle and the front would be impossible. Therefore, the microscale dynamics is solved using a level-set based Eulerian technique, while an embedded model is developed for solution in the nano-scale (but continuum) gap region. The embedded model takes the form of a lubrication equation with disjoining pressure acting as a body force and is coupled to the outer solution. A particle is pushed by the front when the disjoining pressure is balanced by the viscous drag. The results obtained show that this balance can only occur when the thermal conductivity ratio of the particle to the melt is less than 1.0. The velocity of the front at which the particle pushing/engulfment transition occurs is predicted. In addition, this novel method allows for an in-depth analysis of the flow physics that cause particle pushing/engulfment.
A quantitative evaluation of the high elbow technique in front crawl.
Suito, Hiroshi; Nunome, Hiroyuki; Ikegami, Yasuo
2017-07-01
Many coaches often instruct swimmers to keep the elbow in a high position (high elbow position) during early phase of the underwater stroke motion (pull phase) in front crawl, however, the high elbow position has never been quantitatively evaluated. The aims of this study were (1) to quantitatively evaluate the "high elbow" position, (2) to clarify the relationship between the high elbow position and required upper limb configuration and (3) to examine the efficacy of high elbow position on the resultant swimming velocity. Sixteen highly skilled and 6 novice male swimmers performed 25 m front crawl with maximal effort and their 3-dimensional arm stroke motion was captured at 60 Hz. An attempt was made to develop a new index to evaluate the high elbow position (I he : high elbow index) using 3-dimensional coordinates of the shoulder, elbow and wrist joints. I he of skilled swimmers moderately correlated with the average shoulder internal rotation angle (r = -0.652, P < 0.01) and swimming velocity (r = -0.683, P < 0.01) during the pull phase. These results indicate that I he is a useful index for evaluating high elbow arm stroke technique during the pull phase in front crawl.
An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.
Manuel, Thomas J; Munnangi, Pujita; Rubinsky, Boris
2017-07-01
Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.
NASA Astrophysics Data System (ADS)
Maloney, J. M.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Miner, M. D.
2016-02-01
The Mississippi River delta system is undergoing unprecedented changes due to the effects of climate change and anthropogenic alterations to the river and its delta. Since the 1950s, the suspended sediment load of the Mississippi River has decreased by approximately 50% due to the construction of >50,000 dams in the Mississippi basin. The impact of this decreased sediment load has been observed in subaerial environments, but the impact on sedimentation and geomorphology of the subaqueous delta front has yet to be examined. To identify historic trends in sedimentation patterns, we compiled bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009. Sedimentation rates are variable across the delta front, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River flow and sediment into the Gulf of Mexico. The progradation rate of Southwest Pass (measured at the 10 m depth contour) has slowed from 67 m/yr between 1764 and 1940 to 26 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre, with the 10 m contour retreating at rates >20 m/yr at both passes. Advancement of the delta front also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward 30 m/yr, but rates declined from 1979-2005. Furthermore, over the same area, the sediment accumulation rate decreased by 81% for the same period. The Mississippi River delta front appears to be entering a phase of decline, which will likely be accelerated by future upstream management practices. This decline has implications for offshore ecosystems, biogeochemical cycling, pollutant dispersal, mudflow hazard, and the continued use of the delta as an economic and population center.
Exploration of the Climate Change Frontier in Polar Regions at the Land Ice-Ocean Boundary.
NASA Astrophysics Data System (ADS)
Rignot, E. J.
2014-12-01
Ice sheets are the largest contributors to sea level rise at present, and responsible for the largest uncertainty in sea level projections. Ice sheets raised sea level 5 m per century 13.5 kyr ago during one period of rapid change. Leading regions for future rapid changes include the marine-based, retrograde bed parts of Greenland (north center and east), West Antarctica (Amundsen Sea), and East Antarctica (Filchner basin and Wilkes Land). Fast changes require an increase in ice melt from a warmer ocean and an increase in iceberg calving. Our understanding of both processes remains limited due to a lack of basic observations. Understanding ocean forcing requires observations on the continental shelf, along bays and glacial fjords and at ice-ocean boundaries, beneath kilometers of ice (Antarctica) or at near-vertical calving cliffs (Greenland), of ocean temperature and sea floor bathymetry. Where such observations exist, the sea floor is much deeper than anticipated because of the carving of deep channels by multiple glacier advances. Warm subsurface waters penetrate throughout the Amundsen Sea Embayment of West Antarctica, the southeast and probably the entire west coasts of Greenland. In Greenland, discharge of subglacial water from surface runoff at the glacier grounding line increases ice melting by the ocean even if the ocean temperature remains the same. Near ice-ocean boundaries, satellite observations are challenged, airborne observations and field surveys are limited, so advanced robotic techniques for cold, deep, remote environments are ultimately required in combination with advanced numerical modeling techniques. Until such technological advances take place and advanced networks are put in place, it is critical to conduct boat surveys, install moorings, and conduct extensive airborne campaigns (for instance, gravity-derived bathymetry and air-dropped CTDs), some of which is already taking place. In the meantime, projections of ice sheet evolution in a warmer climate will remain highly conservative and perhaps misleading. Furthermore, as glaciers destabilize, iceberg calving will take over. Calving depends on the height of the calving cliff, the fracturing of ice near the ice front by strain rates or water; but the jury is also out about defining a universal calving law.
Front propagation in one-dimensional spatially periodic bistable media
NASA Astrophysics Data System (ADS)
Löber, Jakob; Bär, Markus; Engel, Harald
2012-12-01
Front propagation in heterogeneous bistable media is studied using the Schlögl model as a representative example. Spatially periodic modulations in the parameters of the bistable kinetics are taken into account perturbatively. Depending on the ratio L/l (L is the spatial period of the heterogeneity, l is the front width), appropriate singular perturbation techniques are applied to derive an ordinary differential equation for the position of the front in the presence of the heterogeneities. From this equation, the dependence of the average propagation speed on L/l as well as on the modulation amplitude is calculated. The analytical results obtained predict velocity overshoot, different cases of propagation failure, and the propagation speed for very large spatial periods in quantitative agreement with the results of direct numerical simulations of the underlying reaction-diffusion equation.
Design of an Intelligent Front-End Signal Conditioning Circuit for IR Sensors
NASA Astrophysics Data System (ADS)
de Arcas, G.; Ruiz, M.; Lopez, J. M.; Gutierrez, R.; Villamayor, V.; Gomez, L.; Montojo, Mª. T.
2008-02-01
This paper presents the design of an intelligent front-end signal conditioning system for IR sensors. The system has been developed as an interface between a PbSe IR sensor matrix and a TMS320C67x digital signal processor. The system architecture ensures its scalability so it can be used for sensors with different matrix sizes. It includes an integrator based signal conditioning circuit, a data acquisition converter block, and a FPGA based advanced control block that permits including high level image preprocessing routines such as faulty pixel detection and sensor calibration in the signal conditioning front-end. During the design phase virtual instrumentation technologies proved to be a very valuable tool for prototyping when choosing the best A/D converter type for the application. Development time was significantly reduced due to the use of this technology.
NASA Astrophysics Data System (ADS)
Xie, Surui; Dixon, Timothy H.; Voytenko, Denis; Deng, Fanghui; Holland, David M.
2018-04-01
Ice velocity variations near the terminus of Jakobshavn Isbræ, Greenland, were observed with a terrestrial radar interferometer (TRI) during three summer campaigns in 2012, 2015, and 2016. We estimate a ˜ 1 km wide floating zone near the calving front in early summer of 2015 and 2016, where ice moves in phase with ocean tides. Digital elevation models (DEMs) generated by the TRI show that the glacier front here was much thinner (within 1 km of the glacier front, average ice surface is ˜ 100 and ˜ 110 m above local sea level in 2015 and 2016, respectively) than ice upstream (average ice surface is > 150 m above local sea level at 2-3 km to the glacier front in 2015 and 2016). However, in late summer 2012, there is no evidence of a floating ice tongue in the TRI observations. Average ice surface elevation near the glacier front was also higher, ˜ 125 m above local sea level within 1 km of the glacier front. We hypothesize that during Jakobshavn Isbræ's recent calving seasons the ice front advances ˜ 3 km from winter to spring, forming a > 1 km long floating ice tongue. During the subsequent calving season in mid- and late summer, the glacier retreats by losing its floating portion through a sequence of calving events. By late summer, the entire glacier is likely grounded. In addition to ice velocity variation driven by tides, we also observed a velocity variation in the mélange and floating ice front that is non-parallel to long-term ice flow motion. This cross-flow-line signal is in phase with the first time derivative of tidal height and is likely associated with tidal currents or bed topography.
Turbulent premixed combustion in V-shaped flames: Characteristics of flame front
NASA Astrophysics Data System (ADS)
Kheirkhah, S.; Gülder, Ö. L.
2013-05-01
Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.
Simşekoğlu, Ozlem; Lajunen, Timo
2008-01-01
Low seat belt use rate among car occupants is one of the main problems contributing to low driver and passenger safety in Turkey, where injury and fatality rates of car occupants are very high in traffic crashes. The present article consists of two observation studies, which were conducted in Ankara. The first study aimed at investigating environmental factors and occupant characteristics affecting seat belt use among front-seat occupants, and the objective of the second study was to investigate the relationship between driver and front-seat passenger seat belt use. In the first study, 4, 227 front-seat occupants (drivers or front seat passengers) were observed on four different road sides and, in the second study 1, 398 front seat occupants were observed in car parks of five different shopping centers in Ankara. In both observations, front-seat occupants' seat bet use (yes, no), sex (male, female), and age (< 30 years, 30-50 years, > 50 years) were recorded. The data were analyzed using chi-square statistics and binary logistic regression techniques. Results of the first study showed that seat belt use proportion among observed front seat occupants was very low (25%). Being female and traveling on intercity roads were two main factors positively related to use a seat belt among front-seat occupants. High correlations between seat belt use of the drivers and front-seat passengers were found in the second study. Overall, low seat belt use rate (25%) among the front-seat occupants should be increased urgently for an improved driver and passenger safety in Turkey. Seat belt campaigns especially tailored for male front-seat occupants and for the front-seat occupants traveling on city roads are needed to increase seat belt use rates among them. Also, both drivers and passengers may have an important role in enforcing seat belt use among themselves.
Education Matters, December 2009
ERIC Educational Resources Information Center
Beckner, Gary, Ed.
2009-01-01
"Education Matters" is the monthly newsletter of the Association of American Educators (AAE), an organization dedicated to advancing the American teaching profession through personal growth, professional development, teacher advocacy and protection. This issue of the newsletter includes: (1) Notes from the Front Lines: Study Reveals…
Sound Change and Social Structure in a Rural Community.
ERIC Educational Resources Information Center
Frazer, Timothy C.
1983-01-01
A study of 51 speakers in rural Illinois showed fronting and raising of (aw) to be considerably more advanced among countryside dwellers than among town residents. Discusses some of the social and economic changes contributing to this phonological shift. (EKN)
Upper-limb biomechanical analysis of wheelchair transfer techniques in two toilet configurations.
Tsai, Chung-Ying; Boninger, Michael L; Bass, Sarah R; Koontz, Alicia M
2018-06-01
Using proper technique is important for minimizing upper limb kinetics during wheelchair transfers. The objective of the study was to 1) evaluate the transfer techniques used during toilet transfers and 2) determine the impact of technique on upper limb joint loading for two different toilet configurations. Twenty-six manual wheelchair users (23 men and 3 women) performed transfers in a side and front wheelchair-toilet orientation while their habitual transfer techniques were evaluated using the Transfer Assessment Instrument. A motion analysis system and force sensors were used to record biomechanical data during the transfers. More than 20% of the participants failed to complete five transfer skills in the side setup compared to three skills in the front setup. Higher quality skills overall were associated with lower peak forces and moments in both toilet configurations (-0.68 < r < -0.40, p < 0.05). In the side setup, participants who properly placed their hands in a stable position and used proper leading handgrips had lower shoulder resultant joint forces and moments than participants who did not perform these skills correctly (p ≤ 0.04). In the front setup, positioning the wheelchair within three inches of the transfer target was associated with reduced peak trailing forces and moments across all three upper limb joints (p = 0.02). Transfer skills training, making toilet seats level with the wheelchair seat, positioning the wheelchair closer to the toilet and mounting grab bars in a more ideal location for persons who do sitting pivot transfers may facilitate better quality toilet transfers. Published by Elsevier Ltd.
The first H II regions in the universe
NASA Astrophysics Data System (ADS)
Whalen, Daniel James
State of the art simulations of primordial star formation suggest that the first stars in the universe were likely very massive, from 30 to 300 solar masses. These metal-free, Population III stars were prodigious sources of ionizing UV radiation that permeated the early intergalactic medium (IGM). As agents of early reionization, Pop III stars likely contributed to the cosmic free electrons recently observed at high redshifts by the WMAP satellite. However, until recently it was unknown what percentage of ionizing photons escaped the cosmological minihalos hosting these luminous objects, seriously hampering the power of large scale reionization calculations to predict the optical depths to electron scattering revealed by WMAP. UV escape from high-redshift minihalos crucially depends on the radiation hydrodynamics of ionization front transitions deep within the halos. I describe a multistep integration scheme for radiative transfer and reactive flow hydrodynamics developed for the accurate propagation of I-fronts and ionized flows from UV point sources or plane waves in cosmological simulations. The algorithm is a photon-conserving method which correctly tracks the position of I-fronts at much lower resolutions than non-conservative techniques. The method applies direct hierarchical updates to ionic species, bypassing the need for the costly matrix solutions required by implicit updates while retaining sufficient accuracy to capture the true evolution of the fronts. This radiation-matter coupling scheme is a significant advance beyond the radiative transfer performed in static media that is the current industry standard in cosmological reionization simulations. I review the major analytical and numerical studies of H II regions performed to date as well as the physics of ionization fronts in uniform and stratified media. My algorithm development greatly benefited from some recent analyses of I-front evolution in radially-symmetric power-law envelopes. These studies provided benchmarks that became severe tests of my code's accuracy. I present tests of I-front propagation in both static and hydrodynamical media, in both constant and radial density gradients. The code converges to the proper results with grid resolution and exhibits excellent agreement with theory in the density gradients most likely to be encountered in cosmological simulations. I next describe 1D radiation-hydrodynamical calculations of UV escape from minihalo density profiles taken from adaptive mesh refinement calculations of first star formation. These simulations demonstrate that in excess of 90% of the ionizing photons will exit the halo if the central star is greater than 80 solar masses, and that the final H II regions range from 2000 pc to 5000 pc in radius for 80 [Special characters omitted.] < M star < 500 [Special characters omitted.] . Of equal interest, they show the rise of shocked ionized flows capable of ejecting half of the baryons from the halo over the main sequence lifetime of the star, with important consequences to chemical enrichment of the early IGM and subsequent star formation. Finally, I detail the first three-dimensional massively parallel simulations of I-front instabilities ever performed. This suite is a survey of the morphological features we expect to arise in 3D minihalo evaporation studies currently in progress. Our numerical work has uncovered important evolutionary departures from earlier 2D work that may be due to the higher dimensionality of our 3D flows. I-front instabilities in high-redshift minihalos may have serious impact on the escape of metals into the early universe as well as foster the formation of the second generation of stars.
Gas Density Discontinuities in Merging Clusters
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Markevitch, Maxim
2005-01-01
Chandra has discovered a new phenomenon in galaxy clusters, the sharp gas density edges. Depending on the sign of the temperature jump across the edge, these features may either be bow shocks or cold fronts. While bow shocks obviously are driven by merging sub-clusters, what causes cold fronts is not entirely clear, as they are observed both in mergers and in relaxed clusters. The purpose of the XMM study of A3376, an interesting cluster with density edges, is to understand the origin of cold fronts and to look for possible shocks. The XMM data for A3376 have been mostly analyzed (the X-ray edge turned out to be a cold front). Preliminary results have been shown at a conference and a paper is in preparation. We also have Chandra data for this cluster, and are comparing and combining the two datasets. In the course of analyzing the X-ray data for this cluster as well as several others, it has become apparent that we need the help of hydrodynamic simulations to study the precise mechanism by which cold fronts are formed, the main goal of the present project. A postdoc (Yago Ascasibar) is currently running SPH simulations of an idealized sub- cluster merger. These advanced simulations are nearing completion and two papers with their results are in preparation.
Long, Strong Eastern U.S. Cold Front Brings Changes
2013-12-23
A long, strong, cold front draped over the eastern U.S. is marking a stark change from record-warmth to very cold temperatures. This NOAA GOES-East satellite image from December 23 at 1515 UTC/10:15 a.m. EST shows a powerful cold front covering the U.S. East Coast and stretching into the central and southwestern Gulf of Mexico. According to the National Weather Service, that front is bringing rain and embedded thunderstorms over the Mid-Atlantic and Southeastern U.S. The same system is bringing lingering wintry precipitation to northern New England and upstate New York. Behind the cold front, much colder and dry Canadian air will filter in under high pressure and bring sunshine over the eastern U.S. in time for Christmas. The image was created by the NASA GOES Project at NASA's Goddard Space Flight Center, Greenbelt, Md. Rob Gutro NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland
Moon, Twila; Hauser, Donna D. W.; McGovern, Richard; Heide-Jørgensen, Mads Peter; Dietz, Rune; Hudson, Ben
2016-01-01
Glacial fronts are important summer habitat for narwhals (Monodon monoceros); however, no studies have quantified which glacial properties attract whales. We investigated the importance of glacial habitats using telemetry data from n = 15 whales tagged in September of 1993, 1994, 2006 and 2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers, we estimated (i) narwhal presence/absence, (ii) number of 24 h periods spent at glaciers and (iii) the fraction of narwhals that visited each glacier (at 5, 7 and 10 km) in autumn. We also compiled data on glacier width, ice thickness, ice velocity, front advance/retreat, area and extent of iceberg discharge, bathymetry, subglacial freshwater run-off and sediment flux. Narwhal use of glacial habitats expanded in the 2000s probably due to reduced summer fast ice and later autumn freeze-up. Using a generalized multivariate framework, glacier ice front thickness (vertical height in the water column) was a significant covariate in all models. A negative relationship with glacier velocity was included in several models and glacier front width was a significant predictor in the 2000s. Results suggest narwhals prefer glaciers with potential for higher ambient freshwater melt over glaciers with silt-laden discharge. This may represent a preference for summer freshwater habitat, similar to other Arctic monodontids. PMID:27784729
Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland.
Laidre, Kristin L; Moon, Twila; Hauser, Donna D W; McGovern, Richard; Heide-Jørgensen, Mads Peter; Dietz, Rune; Hudson, Ben
2016-10-01
Glacial fronts are important summer habitat for narwhals (Monodon monoceros); however, no studies have quantified which glacial properties attract whales. We investigated the importance of glacial habitats using telemetry data from n = 15 whales tagged in September of 1993, 1994, 2006 and 2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers, we estimated (i) narwhal presence/absence, (ii) number of 24 h periods spent at glaciers and (iii) the fraction of narwhals that visited each glacier (at 5, 7 and 10 km) in autumn. We also compiled data on glacier width, ice thickness, ice velocity, front advance/retreat, area and extent of iceberg discharge, bathymetry, subglacial freshwater run-off and sediment flux. Narwhal use of glacial habitats expanded in the 2000s probably due to reduced summer fast ice and later autumn freeze-up. Using a generalized multivariate framework, glacier ice front thickness (vertical height in the water column) was a significant covariate in all models. A negative relationship with glacier velocity was included in several models and glacier front width was a significant predictor in the 2000s. Results suggest narwhals prefer glaciers with potential for higher ambient freshwater melt over glaciers with silt-laden discharge. This may represent a preference for summer freshwater habitat, similar to other Arctic monodontids. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Ganguly, S.; Lubetzky, E.; Martinelli, F.
2015-05-01
The East process is a 1 d kinetically constrained interacting particle system, introduced in the physics literature in the early 1990s to model liquid-glass transitions. Spectral gap estimates of Aldous and Diaconis in 2002 imply that its mixing time on L sites has order L. We complement that result and show cutoff with an -window. The main ingredient is an analysis of the front of the process (its rightmost zero in the setup where zeros facilitate updates to their right). One expects the front to advance as a biased random walk, whose normal fluctuations would imply cutoff with an -window. The law of the process behind the front plays a crucial role: Blondel showed that it converges to an invariant measure ν, on which very little is known. Here we obtain quantitative bounds on the speed of convergence to ν, finding that it is exponentially fast. We then derive that the increments of the front behave as a stationary mixing sequence of random variables, and a Stein-method based argument of Bolthausen (`82) implies a CLT for the location of the front, yielding the cutoff result. Finally, we supplement these results by a study of analogous kinetically constrained models on trees, again establishing cutoff, yet this time with an O(1)-window.
Brodsky, Stanley J.
2018-03-06
Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less
Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations
NASA Technical Reports Server (NTRS)
Osher, Stanley; Sethian, James A.
1987-01-01
New numerical algorithms are devised (PSC algorithms) for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble Hamilton-Jacobi equations with parabolic right-hand-sides, by using techniques from the hyperbolic conservation laws. Non-oscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be used also for more general Hamilton-Jacobi-type problems. The algorithms are demonstrated by computing the solution to a variety of surface motion problems.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1982-01-01
The acquisition and application of airborne laser induced emission spectra from German Bight water during the 1979 MARSEN experiment is detailed for the synoptic location of estuarine fronts. The NASA Airborne Oceanographic Lidar (AOL) was operated in the fluorosensing mode. A nitrogen laser transmitter at 337.1 nm was used to stimulate the water column to obtain Gelbstoff or organic material fluorescence spectra together with water Raman backscatter. Maps showing the location and relative strength of estuarine fronts are presented. The distribution of the fronts indicates that mixing within the German Bight takes place across a relatively large area. Reasonable agreement between the patterns observed by the AOL and published results are obtained. The limitations and constraints of this technique are indicated and improvements to the AOL fluorosensor are discussed with respect to future ocean mapping applications.
Numerical Modeling of Three-Dimensional Fluid Flow with Phase Change
NASA Technical Reports Server (NTRS)
Esmaeeli, Asghar; Arpaci, Vedat
1999-01-01
We present a numerical method to compute phase change dynamics of three-dimensional deformable bubbles. The full Navier-Stokes and energy equations are solved for both phases by a front tracking/finite difference technique. The fluid boundary is explicitly tracked by discrete points that are connected by triangular elements to form a front that is used to keep the stratification of material properties sharp and to calculate the interfacial source terms. Two simulations are presented to show robustness of the method in handling complex phase boundaries. In the first case, growth of a vapor bubble in zero gravity is studied where large volume increase of the bubble is managed by adaptively increasing the front resolution. In the second case, growth of a bubble under high gravity is studied where indentation at the rear of the bubble results in a region of large curvature which challenges the front tracking in three dimensions.
NASA Astrophysics Data System (ADS)
Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.
2011-10-01
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (6.4 × 109 voxel each) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop. We discuss our findings in the context of previous studies.
NASA Astrophysics Data System (ADS)
Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.
2012-03-01
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Jönsson, Peter; Höök, Fredrik
2011-02-15
Supported lipid bilayers (SLBs) are one of the most common model systems for cell membrane studies. We have previously found that when applying a bulk flow of liquid above an SLB the lipid bilayer and its constituents move in the direction of the bulk flow in a rolling type of motion, with the lower monolayer being essentially stationary. In this study, a theoretical platform is developed to model the dynamic behavior of a shear-driven SLB. In most regions of the moving SLB, the dynamics of the lipid bilayer is well explained by a balance between the hydrodynamic shear force arising from the bulk flow above the lipid bilayer and the friction between the upper and lower monolayers of the SLB. These two forces result in a drift velocity profile for the lipids in the upper monolayer of the SLB that is highest at the center of the channel and decreases to almost zero at the corners of the channel. However, near the front of an advancing SLB a very different flow behavior is observed, showing an almost constant drift velocity of the lipids over the entire bilayer front. In this region, the motion of the SLB is significantly influenced by gradients in the surface pressure as well as internal friction due to molecules that have accumulated at the front of the SLB. It is shown that even a modest surface fraction of accumulated molecules (∼1%) can drastically affect the behavior of the SLB near the bilayer front, forcing the advancing lipids in the SLB away from the center of the channel out toward the sides.
Coupled Growth in Hypermonotectics
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Coriell, Sam R.
2001-01-01
The overall objective of this project is to obtain a fundamental understanding of the physics controlling solidification processes in immiscible alloy systems. The investigation involves both experimentation and the development of a model describing solidification in monotectic systems. The experimental segment was designed to first demonstrate that it is possible to obtain interface stability and steady state coupled growth in hypermonotectic alloys through microgravity processing. Microgravity results obtained to date have verified this possibility. Future flights will permit experimental determination of the limits of interface stability and the influence of alloy composition and growth rate on microstructure. The objectives of the modeling segment of the investigation include prediction of the limits of interface stability, modeling of convective flow due to residual acceleration, and the influence of surface tension driven flows at the solidification interface. The study of solidification processes in immiscible alloy systems is hindered by the inherent convective flow that occurs on Earth and by the possibility of sedimentation of the higher density immiscible liquid phase. It has been shown that processing using a high thermal gradient and a low growth rate can lead to a stable macroscopically planar growth front even in hypermonotectic alloys. Processing under these growth conditions can avoid constitutional supercooling and prevent the formation of the minor immiscible liquid phase in advance of the solidification front. However, the solute depleted boundary layer that forms in advance of the solidification front is almost always less dense than the liquid away from the solidification front. As a result, convective instability is expected. Ground based testing has indicated that convection is a major problem in these alloy systems and leads to gross compositional variations along the sample and difficulties maintaining interface stability. Sustained low gravity processing conditions are necessary in order to minimize these problems and obtain solidification conditions which approach steady state.
Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load.
Sedmák, P; Pilch, J; Heller, L; Kopeček, J; Wright, J; Sedlák, P; Frost, M; Šittner, P
2016-08-05
The stress-induced martensitic transformation in tensioned nickel-titanium shape-memory alloys proceeds by propagation of macroscopic fronts of localized deformation. We used three-dimensional synchrotron x-ray diffraction to image at micrometer-scale resolution the grain-resolved elastic strains and stresses in austenite around one such front in a prestrained nickel-titanium wire. We found that the local stresses in austenite grains are modified ahead of the nose cone-shaped buried interface where the martensitic transformation begins. Elevated shear stresses at the cone interface explain why the martensitic transformation proceeds in a localized manner. We established the crossover from stresses in individual grains to a continuum macroscopic internal stress field in the wire and rationalized the experimentally observed internal stress field and the topology of the macroscopic front by means of finite element simulations of the localized deformation. Copyright © 2016, American Association for the Advancement of Science.
The establishment of the Croatian Dental Crops: the front-line experience of a dentist volunteer.
Jelaca-Bagić, S; Sipina, J; Visković, R; Cakarun, Z; Vlatković, I; Biloglav, D
1997-01-01
The establishment of the first dental office of the Croatian Dental Corps (CDC) in the city of Zadar represented at the same time the beginning of the CDC. This article describes the front-line experience of a dentist who volunteered to provide basic medical help, which eventually laid the groundwork for providing general dental care and establishing the first CDC dental office. The office was opened on December 16, 1991, and provided general dental care except prosthetics. Although faced with numerous problems and extremely difficult conditions, the office staff completed 1,913 initial and 1,157 control checkups and performed 4,002 services by treating 12 to 16 patients per day. The main causes for emergencies were caries (59%) and endodontic complications (28%). This variety of services in the proximity of the front line is considered extensive even for advanced medical corps of modern armies.
Imbibition with swelling: Capillary rise in thin deformable porous media
NASA Astrophysics Data System (ADS)
Kvick, Mathias; Martinez, D. Mark; Hewitt, Duncan R.; Balmforth, Neil J.
2017-07-01
The imbibition of a liquid into a thin deformable porous substrate driven by capillary suction is considered. The substrate is initially dry and has uniform porosity and thickness. Two-phase flow theory is used to describe how the liquid flows through the pore space behind the wetting front when out-of-plane deformation of the solid matrix is considered. Neglecting gravity and evaporation, standard shallow-layer scalings are used to construct a reduced model of the dynamics. The model predicts convergence to a self-similar behavior in all regions except near the wetting front, where a boundary layer arises whose structure narrows with the advance of the front. Over time, the rise height approaches the similarity scaling of t1 /2, as in the classical Washburn or BCLW law. The results are compared with a series of laboratory experiments using cellulose paper sheets, which provide qualitative agreement.
Two-Dimensional Failure Waves and Ignition Fronts in Premixed Combustion
NASA Technical Reports Server (NTRS)
Vedarajan, T. G.; Buckmaster J.; Ronney, P.
1998-01-01
This paper is a continuation of our work on edge-flames in premixed combustion. An edge-flame is a two-dimensional structure constructed from a one-dimensional configuration that has two stable solutions (bistable equilibrium). Edge-flames can display wavelike behavior, advancing as ignition fronts or retreating as failure waves. Here we consider two one-dimensional configurations: twin deflagrations in a straining flow generated by the counterflow of fresh streams of mixture: and a single deflagration subject to radiation losses. The edge-flames constructed from the first configuration have positive or negative speeds, according to the value of the strain rate. But our numerical solutions strongly suggest that only positive speeds (corresponding to ignition fronts) can exist for the second configuration. We show that this phenomenon can also occur in diffusion flames when the Lewis numbers are small. And we discuss the asymptotics of the one-dimensional twin deflagration configuration. an overlooked problem from the 70s.
Five-dimensional imaging of freezing emulsions with solute effects.
Dedovets, Dmytro; Monteux, Cécile; Deville, Sylvain
2018-04-20
The interaction of objects with a moving solidification front is a common feature of many industrial and natural processes such as metal processing, the growth of single crystals, the cryopreservation of cells, or the formation of sea ice. Interaction of solidification fronts with objects leads to different outcomes, from total rejection of the objects to their complete engulfment. We imaged the freezing of emulsions in five dimensions (space, time, and solute concentration) with confocal microscopy. We showed that the solute induces long-range interactions that determine the solidification microstructure. The local increase of solute concentration enhances premelting, which controls the engulfment of droplets by the front and the evolution of grain boundaries. Freezing emulsions may be a good analog of many solidification systems where objects interact with a solidification interface. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Advanced imaging programs: maximizing a multislice CT investment.
Falk, Robert
2008-01-01
Advanced image processing has moved from a luxury to a necessity in the practice of medicine. A hospital's adoption of sophisticated 3D imaging entails several important steps with many factors to consider in order to be successful. Like any new hospital program, 3D post-processing should be introduced through a strategic planning process that includes administrators, physicians, and technologists to design, implement, and market a program that is scalable-one that minimizes up front costs while providing top level service. This article outlines the steps for planning, implementation, and growth of an advanced imaging program.
NASA Astrophysics Data System (ADS)
Hess, Phillip
A Coronal Mass Ejection (CME) is an eruption of magnetized plasma from the Coronaof the Sun. Understanding the physical process of CMEs is a fundamental challenge in solarphysics, and is also of increasing importance for our technological society. CMEs are knownthe main driver of space weather that has adverse effects on satellites, power grids, com-munication and navigation systems and astronauts. Understanding and predicting CMEs is still in the early stage of research. In this dissertation, improved observational methods and advanced theoretical analysis are used to study CMEs. Unlike many studies in the past that treat CMEs as a single object, this study divides aCME into two separate components: the ejecta from the corona and the sheath region thatis the ambient plasma compressed by the shock/wave running ahead of the ejecta; bothstructures are geo-effective but evolve differently. Stereoscopic observations from multiplespacecraft, including STEREO and SOHO, are combined to provide a three-dimensionalgeometric reconstruction of the structures studied. True distances and velocities of CMEs are accurately determined, free of projection effects, and with continuous tracking from the low corona to 1 AU.To understand the kinematic evolution of CMEs, an advanced drag-based model (DBM) is proposed, with several improvements to the original DBM model. The new model varies the drag parameter with distance; the variation is constrained by thenecessary conservation of physical parameters. Second, the deviation of CME-nose from the Sun-Earth-line is taken into account. Third, the geometric correction of the shape of the ejecta front is considered, based on the assumption that the true front is a flattened croissant-shaped flux rope front. These improvements of the DBM model provide a framework for using measurement data to make accurate prediction of the arrival times of CME ejecta and sheaths. Using a set of seven events to test the model, it is found that the evolution of the ejecta front can be accurately predicted, with a slightly poorer performance on the sheath front. To improve the sheath prediction, the standoff-distance between the ejecta and the sheath front is used to model the evolution. The predicted arrivals of both the sheath and ejecta fronts at Earth are determined to within an average 3.5 hours and 1.5 hours of observed arrivals,respectively. These prediction errors show a significant improvement over predictions made by other researches. The results of this dissertation study demonstrate that accurate space weather prediction is possible, and also reveals what observations are needed in the future for realistic operational space weather prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott
We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receivesmore » these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.« less
Characterising a holographic modal phase mask for the detection of ocular aberrations
NASA Astrophysics Data System (ADS)
Corbett, A. D.; Leyva, D. Gil; Diaz-Santana, L.; Wilkinson, T. D.; Zhong, J. J.
2005-12-01
The accurate measurement of the double-pass ocular wave front has been shown to have a broad range of applications from LASIK surgery to adaptively corrected retinal imaging. The ocular wave front can be accurately described by a small number of Zernike circle polynomials. The modal wave front sensor was first proposed by Neil et al. and allows the coefficients of the individual Zernike modes to be measured directly. Typically the aberrations measured with the modal sensor are smaller than those seen in the ocular wave front. In this work, we investigated a technique for adapting a modal phase mask for the sensing of the ocular wave front. This involved extending the dynamic range of the sensor by increasing the pinhole size to 2.4mm and optimising the mask bias to 0.75λ. This was found to decrease the RMS error by up to a factor of three for eye-like aberrations with amplitudes up to 0.2μm. For aberrations taken from a sample of real-eye measurements a 20% decrease in the RMS error was observed.
NASA Astrophysics Data System (ADS)
Le Bel, D. A.; Brown, S.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Tinto, K. J.
2014-12-01
Photogrammetric digital elevation models (DEMs) are a powerful approach for understanding elevation change and dynamics along the margins of the large ice sheets. The IcePod system, mounted on a New York Air National Guard LC-130, can measure high-resolution surface elevations with a Riegl VQ580 scanning laser altimeter and Imperx Bobcat IGV-B6620 color visible-wavelength camera (6600x4400 resolution); the surface temperature with a Sofradir IRE-640L infrared camera (spectral response 7.7-9.5 μm, 640x512 resolution); and the structure of snow and ice with two radar systems. We show the use of IcePod imagery to develop DEMs across calving fronts and meltwater channels in Greenland. Multiple over-flights of the Kangerlussaq Airport ramp have provided a test of the technique at a location with accurate, independently-determined elevation. Here the photogrammetric DEM of the airport, constrained by ground control measurements, is compared with the Lidar results. In July 2014 the IcePod ice-ocean imaging system surveyed the calving fronts of five outlet glaciers north of Jakobshavn Isbrae. We used Agisoft PhotoScan to develop a DEM of each calving front using imagery captured by the IcePod systems. Adjacent to the ice sheet, meltwater plumes foster mixing in the fjord, moving warm ocean water into contact with the front of the ice sheet where it can undercut the ice front and trigger calving. The five glaciers provide an opportunity to examine the calving front structure in relation to ocean temperature, fjord circulation, and spatial scale of the meltwater plumes. The combination of the accurate DEM of the calving front and the thermal imagery used to constrain the temperature and dynamics of the adjacent plume provides new insights into the ice-ocean interactions. Ice sheet margins provide insights into the connections between the surface meltwater and the fate of the water at the ice sheet base. Surface meltwater channels are visualized here for the first time using the combination of Lidar, photogrammetry DEMs and infrared imagery. These techniques leverage electromagnetic surface properties that allow us to identify the presence of water, measure the slope and elevation of the channel, as well as the two-dimensional temperature variability of the water/ice/snow in multiple melt channels within a drainage system.
Cestari, Andrea
2013-01-01
Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology.
Community assembly rules affect the diversity of expanding communities.
Peng, Zechen; Zhou, Shurong
2014-11-01
Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two-species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity-survival trade-offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities.
Advanced Wireless Sensor Nodes - MSFC
NASA Technical Reports Server (NTRS)
Varnavas, Kosta; Richeson, Jeff
2017-01-01
NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.
Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.
Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC
NASA Astrophysics Data System (ADS)
Li, Linling; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi
2013-03-01
We report a diffusion study on the polystyrene/poly(phenylene oxide) (PS/PPO) mixture consisted by the PS and PPO nanoparticles. Diffusion of liquid PS into glassy PPO (l-PS/g-PPO) is promoted by annealing the PS/PPO mixture at several temperatures below Tg of the PPO. By tracing the Tgs of the PS-rich domain behind the diffusion front using DSC, we get the relationships of PS weight fractions and diffusion front advances with the elapsed diffusion times at different diffusion temperatures using the Gordon-Taylor equation and core-shell model. We find that the plots of weight fraction of PS vs. elapsed diffusion times at different temperatures can be converted to a master curve by Time-Temperature superposition, and the shift factors obey the Arrhenius equation. Besides, the diffusion front advances of l-PS into g-PPO show an excellent agreement with the t1/2 scaling law at the beginning of the diffusion process, and the diffusion coefficients of different diffusion temperatures also obey the Arrhenius equation. We believe the diffusion mechanism for l-PS/g-PPO should be the Fickean law rather than the Case II, though there are departures of original linearity at longer diffusion times due to the limited liquid supply system. Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC
NASA Astrophysics Data System (ADS)
Bush, Meredith A.; Horton, Brian K.; Murphy, Michael A.; Stockli, Daniel F.
2016-09-01
New geochronological constraints on upper crustal exhumation in the southern Rocky Mountains help delineate the latest Cretaceous-Paleogene history of drainage reorganization and landscape evolution during Laramide flat-slab subduction beneath western North America. Detrital zircon U-Pb results for the Raton basin of southern Colorado and northern New Mexico define the inception of coarse-grained siliciclastic sedimentation and a distinctive shift in provenance, from distal to proximal sources, that recorded shortening-related uplift and unroofing along the Laramide deformation front of the northern Sangre de Cristo Mountains. This Maastrichtian-early Paleocene ( 70-65 Ma) change—from distal foreland accumulation of sediment derived from the thin-skinned Cordilleran (Sevier) fold-thrust belt to coarse-grained sedimentation proximal to a Laramide basement block uplift—reflects cratonward (eastward) deformation advance and reorganization of drainage systems that supplied a large volume of Paleocene-lower Eocene sediments to the Gulf of Mexico. The timing of unroofing along the eastern deformation front is synchronous with basement-involved shortening across the interior of the Laramide province, suggesting abrupt wholesale uplift rather than a systematic inboard advance of deformation. The growth and infilling of broken foreland basins within the interior and margins of the Laramide province had a significant impact on continental-scale drainage systems, as several ponded/axial Laramide basins trapped large volumes of sediment and induced reorganization of major source-to-sink sediment pathways.
Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report
NASA Technical Reports Server (NTRS)
Burger, G. D.; Lee, D.; Snow, D. W.
1979-01-01
A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.
Study of blade aspect ratio on a compressor front stage
NASA Technical Reports Server (NTRS)
Behlke, R. F.; Brooky, J. D.; Canal, E., Jr.
1980-01-01
A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent at a flow of 44.35 kg/sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point.
Greenland ice sheet outlet glacier front changes: comparison of year 2008 with past years
NASA Astrophysics Data System (ADS)
Decker, D. E.; Box, J.; Benson, R.
2008-12-01
NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) imagery are used to calculate inter-annual, end of summer, glacier front area changes at 10 major Greenland ice sheet outlets over the 2000-2008 period. To put the recent 8 end of summer net annual changes into a longer perspective, glacier front position information from the past century are also incorporated. The largest MODIS-era area changes are losses/retreats; found at the relatively large Petermann Gletscher, Zachariae Isstrom, and Jakobshavn Isbrae. The 2007-2008 net ice area losses were 63.4 sq. km, 21.5 sq. km, and 10.9 sq. km, respectively. Of the 10 largest Greenland glaciers surveyed, the total net cumulative area change from end of summer 2000 to 2008 is -536.6 sq km, that is, an area loss equivalent with 6.1 times the area of Manhattan Is. (87.5 sq km) in New York, USA. Ice front advances are evident in 2008; also at relatively large and productive (in terms of ice discharge) glaciers of Helheim (5.7 sq km), Store Gletscher (4.9 sq km), and Kangerdlugssuaq (3.4 sq km). The largest retreat in the 2000-2008 period was 54.2 sq km at Jakobshavn Isbrae between 2002 and 2003; associated with a floating tongue disintegration following a retreat that began in 2001 and has been associated with thinning until floatation is reached; followed by irreversible collapse. The Zachariae Isstrom pro-glacial floating ice shelf loss in 2008 appears to be part of an average ~20 sq km per year disintegration trend; with the exception of the year 2006 (6.2 sq km) advance. If the Zachariae Isstrom retreat continues, we are concerned the largest ice sheet ice stream that empties into Zachariae Isstrom will accelerate, the ice stream front freed of damming back stress, increasing the ice sheet mass budget deficit in ways that are poorly understood and could be surprisingly large. By approximating the width of the surveyed glacier frontal zones, we determine and present effective glacier normalized length (L') changes that also will be presented at the meeting. The narrow Ingia Isbrae advanced in L' the most in 2006-2007 by 9.2 km. Jakobshavn decreased in L' the most in 2002-2003 by 8.0 km. Petermann decreased in length the most in 2000-2001, that is, L' = -5.3 km and again by L' = -3.9 km in 2007-2008. Helheim Gl. retreated in 2004-2005 by L' = -4.6 km and advanced 2005-2006 by L' = 4.4 km. The 10 glacier average L' change from end of summer 2000 end of summer 2008 was 0.6 km. Results from a growing list of glaciers will be presented. We attempt to interpret the observed glacier changes using glaciological theory and regional climate observations.
A comparison of the Maslov integral seismogram and the finite-difference method
NASA Astrophysics Data System (ADS)
Huang, X.; Kendall, J.-M.; Thomson, C. J.; West, G. F.
1998-03-01
The Maslov asymptotic method addresses some of the problems with standard ray theory, such as caustics and shadows. However, it has been applied relatively little, perhaps because its accuracy remains untested. In this study we examine Maslov integral (MI) seismograms by comparing them with finite-difference (FD) seismograms for several cases of interest, such as (1) velocity gradients generating traveltime triplications and shadows, (2) wave-front bending, kinking and folding in a low-velocity waveguide, and (3) wavefield propagation perturbed by a high-velocity slab. The results show that many features of high- and intermediate-frequency waveforms are reliably predicted by Maslov's technique, but also that it is far less reliable and even fails for low frequencies. The terms `high' and `low' are model-dependent, but we mean the range over which it is sensible to discuss signals associated with identifiable wave fronts and local (if complicated) effects that potentially can be unravelled in interpretation. Of the high- and intermediate-frequency wave components, those wave- front anomalies due to wave-front bending, kinking, folding or rapid ray divergence can be accurately given by MI. True diffractions due to secondary wave-front sections are theoretically not included in Maslov theory (as they require true diffracted rays), but in practice they can often be satisfactorily predicted. This occurs roughly within a wavelength of the truncated geometrical wave front, where such diffractions are most important since their amplitudes may still be as large as half that on the geometrical wave front itself. Outside this region MI is inaccurate (although then the diffractions are usually small). Thus waveforms of high and intermediate frequencies are essentially controlled by classical wave-front geometry. Our results also show that the accuracy of MI can be improved by rotating the Maslov integration axis so that the nearest wave-front anomaly is adequately `sampled'. This rotation can be performed after ray tracing and it can serve to avoid pseudo-caustics by using it in conjunction with the phase-partitioning approach. The effort needed in phase partitioning has been reduced by using an interactive graphics technique. It is difficult to formulate a general rule prescribing the limitations of MI accuracy because of model dependency. However, our experiences indicate that two space- and two timescales need to be considered. These are the pulse width in space, the length scale over which the instantaneous wave-front curvature changes, and the timescales of pulse width and significant features in the ray traveltime curve. It seems, from our examples, that when these scales are comparable, the Maslov method gives very acceptable results.
Zheng, Yun; Li, Jin-Qing; Chen, Min-Shan; Zhang, Yao-Jun; Zhang, Ya-Qi
2004-11-01
The application and development of traditional percutaneous microwave coagulation therapy (PMCT) has been limited by high shaft temperature. The "air-cooled" PMCT is the newest advancement. This study was to compare shaft temperature related treatment efficacy between "air-cooled" PMCT and traditional PMCT. Two pigs underwent traditional PMCT, and "air-cooled" PMCT at 80 W for 10 min separately. Skin injury, surface temperature of guide-needle, charring tissue sticking to the shaft, and lesion shape in 2 pigs were compared. Five patients with liver tumor received traditional PMCT, and 8 patients with liver tumor received "air-cooled" PMCT. Feeling of pain, skin injury, charring tissue sticking to the shaft, local therapeutic efficacy, and recurrence of these 2 groups of patients were compared. In the pig underwent traditional PMCT, surface temperature of guide-needle reached 119-160 Centigrade; skin burn around puncture points was serious; charring tissue stuck to the front of electrodes; a trail sign was observed in coagulated lesion. In the pig underwent "air-cooled" PMCT, surface temperature of guide-needle was 28.8-39.9 Centigrade; no skin injury was found around puncture points; no charring tissue stuck to the front of electrodes; no obvious trail sign was observed in coagulated lesion. In 5 patients received traditional PMCT, 3 had skin injury; 2 had charring tissue stuck to the front of electrode; all felt moderate or serious epigastric pain lasted for 1-8 weeks; 4 had complete coagulation; 1 had local recurrence. In 8 patients received "air-cooled" PMCT, no one had skin injury, and charring tissue stuck to "air-cooled" electrode; 4 felt slight epigastric pain within 1 week; all had complete coagulation; no local recurrence was found. The technique of "air-cooled" electrode may decrease temperature of shaft safely and reliably, and eliminate side effects arose from high temperature of shaft. Treatment efficacy of "air-cooled" PMCT is better than that of traditional PMCT.
Tritium assay of Li sub 2 O pellets in the LBM/LOTUS experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quanci, J.; Azam, S.; Bertone, P.
1986-01-01
One of the objectives of the Lithium Blanket Module (LBM) program is to test the ability of advanced neutronics codes to model the tritium breeding characteristics of a fusion blanket exposed to a toroidal fusion neutron source. The LBM consists of over 20,000 cylindrical lithium oxide pellets and numerous diagnostic pellets and wafers. The LBM has been irradiated at the Ecole Polytechnique Federale de Lausanne (EPFL) LOTUS facility with a Haefely sealed neutron generator that gives a point deuterium-tritium neutron source up to 5 {times} 10{sup 12} 14-MeV n/s. Both Princeton Plasma Physics Laboratory (PPL) and EPFL assayed the tritiummore » bred at various positions in the LBM. EPFL employed a dissolution technique while PPL recovered the tritium by a thermal extraction method. EPFL uses 0.38-g, 75% TD, lithium oxide diagnostic wafers to evaluate the tritium bred in the LBM. PPPL employs a thermal extraction method to determine the tritium bred in lithium oxide samples. In the initial experiments, diagnostic pellets and wafers were placed at five locations in the LBM central removable test rod at distances of 3, 9, 21, 36, and 48 cm from the front face of the module. The two sets of data for the tritium bred in the LBM along its centerline as a function of distance from the front face of the module were compared with each other, and with the predictions of two-dimensional neutronics codes. 1 ref.« less
The Effects of Mental Imagery with Video-Modeling on Self-Efficacy and Maximal Front Squat Ability
Buck, Daniel J. M.; Hutchinson, Jasmin C.; Winter, Christa R.; Thompson, Brian A.
2016-01-01
This study was designed to assess the effectiveness of mental imagery supplemented with video-modeling on self-efficacy and front squat strength (three repetition maximum; 3RM). Subjects (13 male, 7 female) who had at least 6 months of front squat experience were assigned to either an experimental (n = 10) or a control (n = 10) group. Subjects′ 3RM and self-efficacy for the 3RM were measured at baseline. Following this, subjects in the experimental group followed a structured imagery protocol, incorporating video recordings of both their own 3RM performance and a model lifter with excellent technique, twice a day for three days. Subjects in the control group spent the same amount of time viewing a placebo video. Following three days with no physical training, measurements of front squat 3RM and self-efficacy for the 3RM were repeated. Subjects in the experimental group increased in self-efficacy following the intervention, and showed greater 3RM improvement than those in the control group. Self-efficacy was found to significantly mediate the relationship between imagery and front squat 3RM. These findings point to the importance of mental skills training for the enhancement of self-efficacy and front squat performance.
On the ability of human listeners to distinguish between front and back.
Zhang, Peter Xinya; Hartmann, William M
2010-02-01
In order to determine whether a sound source is in front or in back, listeners can use location-dependent spectral cues caused by diffraction from their anatomy. This capability was studied using a precise virtual reality technique (VRX) based on a transaural technology. Presented with a virtual baseline simulation accurate up to 16 kHz, listeners could not distinguish between the simulation and a real source. Experiments requiring listeners to discriminate between front and back locations were performed using controlled modifications of the baseline simulation to test hypotheses about the important spectral cues. The experiments concluded: (1) Front/back cues were not confined to any particular 1/3rd or 2/3rd octave frequency region. Often adequate cues were available in any of several disjoint frequency regions. (2) Spectral dips were more important than spectral peaks. (3) Neither monaural cues nor interaural spectral level difference cues were adequate. (4) Replacing baseline spectra by sharpened spectra had minimal effect on discrimination performance. (5) When presented with an interaural time difference less than 200 micros, which pulled the image to the side, listeners still successfully discriminated between front and back, suggesting that front/back discrimination is independent of azimuthal localization within certain limits. Copyright 2009 Elsevier B.V. All rights reserved.
On the ability of human listeners to distinguish between front and back
Zhang, Peter Xinya; Hartmann, William M.
2009-01-01
In order to determine whether a sound source is in front or in back, listeners can use location-dependent spectral cues caused by diffraction from their anatomy. This capability was studied using a precise virtual-reality technique (VRX) based on a transaural technology. Presented with a virtual baseline simulation accurate up to 16 kHz, listeners could not distinguish between the simulation and a real source. Experiments requiring listeners to discriminate between front and back locations were performed using controlled modifications of the baseline simulation to test hypotheses about the important spectral cues. The experiments concluded: (1) Front/back cues were not confined to any particular 1/3rd or 2/3rd octave frequency region. Often adequate cues were available in any of several disjoint frequency regions. (2) Spectral dips were more important than spectral peaks. (3) Neither monaural cues nor interaural spectral level difference cues were adequate. (4) Replacing baseline spectra by sharpened spectra had minimal effect on discrimination performance. (5) When presented with an interaural time difference less than 200 μs, which pulled the image to the side, listeners still successfully discriminated between front and back, suggesting that front/back discrimination is independent of azimuthal localization within certain limits. PMID:19900525
The Effects of Mental Imagery with Video-Modeling on Self-Efficacy and Maximal Front Squat Ability.
Buck, Daniel J M; Hutchinson, Jasmin C; Winter, Christa R; Thompson, Brian A
2016-04-14
This study was designed to assess the effectiveness of mental imagery supplemented with video-modeling on self-efficacy and front squat strength (three repetition maximum; 3RM). Subjects (13 male, 7 female) who had at least 6 months of front squat experience were assigned to either an experimental ( n = 10) or a control ( n = 10) group. Subjects' 3RM and self-efficacy for the 3RM were measured at baseline. Following this, subjects in the experimental group followed a structured imagery protocol, incorporating video recordings of both their own 3RM performance and a model lifter with excellent technique, twice a day for three days. Subjects in the control group spent the same amount of time viewing a placebo video. Following three days with no physical training, measurements of front squat 3RM and self-efficacy for the 3RM were repeated. Subjects in the experimental group increased in self-efficacy following the intervention, and showed greater 3RM improvement than those in the control group. Self-efficacy was found to significantly mediate the relationship between imagery and front squat 3RM. These findings point to the importance of mental skills training for the enhancement of self-efficacy and front squat performance.
ERIC Educational Resources Information Center
Gettelman, Alan
2006-01-01
Public or private, K-12, college or university, no one knows their facilities better than school maintenance and operations staff--from the front-line custodians to facility managers. When it comes to planning restrooms for new construction and renovation, operational experience is especially critical. Applying best practices in advance can save…
A holographic system that records front-surface detail of a scene moving at high velocity
NASA Technical Reports Server (NTRS)
Kurtz, R. L.; Loh, H. Y.
1972-01-01
A holographic technique that uses an elliptical orientation for the holographic arrangement is discussed. It is shown that the degree of image degradation is not only a function of exposure time but also of the system used. The form of the functional system dependence is given, as well as the results of several systems tested, which verify this dependence. It is further demonstrated that the important parameter is the total motion of the target. Using the experimentally determined resolution of front-surface detail from a target with a velocity of 17,546 centimeters per second, an upper limit on target velocity for resolution of front-surface detail for a given system can be predicted.
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Yeh, H.-G.
1993-01-01
The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.
Railway vehicle body structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finitemore » element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.« less
Removing non-stationary noise in spectrum sensing using matrix factorization
NASA Astrophysics Data System (ADS)
van Bloem, Jan-Willem; Schiphorst, Roel; Slump, Cornelis H.
2013-12-01
Spectrum sensing is key to many applications like dynamic spectrum access (DSA) systems or telecom regulators who need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10 dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have applied matrix factorization techniques, i.e., SVD (singular value decomposition) and NMF (non-negative matrix factorization), which enables signal space analysis. In addition, we use live measurement results to verify the performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e., applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation of spectrum usage by 60%.
Chemical consequences of compaction within the freezing front of a crystallizing magma ocean
NASA Astrophysics Data System (ADS)
Hier-Majumder, S.; Hirschmann, M. M.
2013-12-01
The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we develop a simple 1-D model of melt retention in the freezing front of a crystallizing magma ocean, and apply it to the thermal and chemical evolution of the early Earth.
Exploring Ways to Improve DTAG Deployment Success Rates With the ARTS Pneumatic Launcher
2010-01-01
absorber system has been developed, (the giraffe leg technique or GL, Figure 2), which has the shock absorbing component in front of the tag. The ARTS...3 Figure 2: the new 1- and 4-spring shock absorbing robot (left) and the GL ( giraffe leg technique) with 3 studs (right) WORK
Weeks, E.P.
2002-01-01
The Lisse effect is a rarely noted phenomenon occurring when infiltration caused by intense rain seals the surface soil layer to airflow, trapping air in the unsaturated zone. Compression of air by the advancing front results in a pressure increase that produces a water-level rise in an observation well screened below the water table that is several times as large as the distance penetrated by the wetting front. The effect is triggered by intense rains and results in a very rapid water-level rise, followed by a recession lasting a few days. The Lisse effect was first noted and explained by Thal Larsen in 1932 from water-level observations obtained in a shallow well in the village of Lisse, Holland. The original explanation does not account for the increased air pressure pushing up on the bottom of the wetting front. Analysis of the effect of this upward pressure indicates that a negative pressure head at the base of the wetting front, ??f, analogous to that postulated by Green and Ampt (1911) to explain initially rapid infiltration rates into unsaturated soils, is involved in producing the Lisse effect. Analysis of recorded observations of the Lisse effect by Larsen and others indicates that the water-level rise, which typically ranges from 0.10 to 0.55 m, should be only slightly larger than |??f| and that the depth of penetration of the wetting front is no more than several millimeters.
NASA Astrophysics Data System (ADS)
Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.
2009-04-01
We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.
NASA Astrophysics Data System (ADS)
Hwang, Stephen
Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.
NASA Astrophysics Data System (ADS)
Nikolova, Liliya; Stern, Mark J.; MacLeod, Jennifer M.; Reed, Bryan W.; Ibrahim, Heide; Campbell, Geoffrey H.; Rosei, Federico; LaGrange, Thomas; Siwick, Bradley J.
2014-09-01
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James A. Smith; Jeffrey M. Lacy; Barry H. Rabin
12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEUmore » to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.« less
ERIC Educational Resources Information Center
Giles, Rebecca McMahon
2006-01-01
Exposure to cell phones, DVD players, video games, computers, digital cameras, and iPods has made today's young people more technologically advanced than those of any previous generation. As a result, parents are now concerned that their children are spending too much time in front of the computer. In this article, the author focuses her…
Facilities | Advanced Manufacturing Research | NREL
, and black building with two people walking in front of it. Energy Systems Integration Facility Its projects. Photo of a large, warehouse-like, lab space with several people in hard hats operating equipment with a few people and manufacturing equipment, including spools and web lines. Manufacturing Laboratory
Models and Resources for Advancing Sustainable Institutional and Societal Progress
ERIC Educational Resources Information Center
Litten, Larry H.; Terkla, Dawn Geronimo
2007-01-01
Institutional researchers can take advantage of a variety of resources for understanding sustainability issues and keeping abreast of developments on this front. Models exist both within and outside of higher education for analyzing and presenting data. Sustainability Indicators in Comprehensive Sustainability Reports and Fact Books are appended.…
Developing a Successful Asynchronous Online Extension Program for Forest Landowners
ERIC Educational Resources Information Center
Zobrist, Kevin W.
2014-01-01
Asynchronous online Extension classes can reach a wide audience, is convenient for the learner, and minimizes ongoing demands on instructor time. However, producing such classes takes significant effort up front. Advance planning and good communication with contributors are essential to success. Considerations include delivery platforms, content…
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This Building America Top Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance against measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.
NASA Astrophysics Data System (ADS)
Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.
2015-09-01
A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich-Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.
Measurement of intergranular attack in stainless steel using ultrasonic energy
Mott, Gerry; Attaar, Mustan; Rishel, Rick D.
1989-08-08
Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.
Rear seat safety: Variation in protection by occupant, crash and vehicle characteristics.
Durbin, Dennis R; Jermakian, Jessica S; Kallan, Michael J; McCartt, Anne T; Arbogast, Kristy B; Zonfrillo, Mark R; Myers, Rachel K
2015-07-01
Current information on the safety of rear row occupants of all ages is needed to inform further advances in rear seat restraint system design and testing. The objectives of this study were to describe characteristics of occupants in the front and rear rows of model year 2000 and newer vehicles involved in crashes and determine the risk of serious injury for restrained crash-involved rear row occupants and the relative risk of fatal injury for restrained rear row vs. front passenger seat occupants by age group, impact direction, and vehicle model year. Data from the National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and Fatality Analysis Reporting System (FARS) were queried for all crashes during 2007-2012 involving model year 2000 and newer passenger vehicles. Data from NASS-CDS were used to describe characteristics of occupants in the front and rear rows and to determine the risk of serious injury (AIS 3+) for restrained rear row occupants by occupant age, vehicle model year, and impact direction. Using a combined data set containing data on fatalities from FARS and estimates of the total population of occupants in crashes from NASS-CDS, logistic regression modeling was used to compute the relative risk (RR) of death for restrained occupants in the rear vs. front passenger seat by occupant age, impact direction, and vehicle model year. Among all vehicle occupants in tow-away crashes during 2007-2012, 12.3% were in the rear row where the overall risk of serious injury was 1.3%. Among restrained rear row occupants, the risk of serious injury varied by occupant age, with older adults at the highest risk of serious injury (2.9%); by impact direction, with rollover crashes associated with the highest risk (1.5%); and by vehicle model year, with model year 2007 and newer vehicles having the lowest risk of serious injury (0.3%). Relative risk of death was lower for restrained children up to age 8 in the rear compared with passengers in the right front seat (RR=0.27, 95% CI 0.12-0.58 for 0-3 years, RR=0.55, 95% CI 0.30-0.98 for 4-8 years) but was higher for restrained 9-12-year-old children (RR=1.83, 95% CI 1.18-2.84). There was no evidence for a difference in risk of death in the rear vs. front seat for occupants ages 13-54, but there was some evidence for an increased relative risk of death for adults age 55 and older in the rear vs. passengers in the right front seat (RR=1.41, 95% CI 0.94-2.13), though we could not exclude the possibility of no difference. After controlling for occupant age and gender, the relative risk of death for restrained rear row occupants was significantly higher than that of front seat occupants in model year 2007 and newer vehicles and significantly higher in rear and right side impact crashes. Results of this study extend prior research on the relative safety of the rear seat compared with the front by examining a more contemporary fleet of vehicles. The rear row is primarily occupied by children and adolescents, but the variable relative risk of death in the rear compared with the front seat for occupants of different age groups highlights the challenges in providing optimal protection to a wide range of rear seat occupants. Findings of an elevated risk of death for rear row occupants, as compared with front row passengers, in the newest model year vehicles provides further evidence that rear seat safety is not keeping pace with advances in the front seat. Copyright © 2015 Elsevier Ltd. All rights reserved.
Translational genetics: advancing fronts for craniofacial health.
D'Souza, R N; Dunnwald, M; Dunnvald, M; Frazier-Bowers, S; Polverini, P J; Wright, J T; de Rouen, T; Vieira, A R
2013-12-01
Scientific opportunities have never been better than today! The completion of the Human Genome project has sparked hope and optimism that cures for debilitating conditions can be achieved and tailored to individuals and communities. The availability of reference genome sequences and genetic variations as well as more precise correlations between genotype and phenotype have facilitated the progress made in finding solutions to clinical problems. While certain craniofacial and oral diseases previously deemed too difficult to tackle have benefited from basic science and technological advances over the past decade, there remains a critical need to translate the fruits of several decades' worth of basic and clinical research into tangible therapies that can benefit patients. The fifth Annual Fall Focused Symposium, "Translational Genetics - Advancing Fronts for Craniofacial Health", was created by the American Association for Dental Research (AADR) to foster its mission to advance interdisciplinary research that is directed toward improving oral health. The symposium showcased progress made in identifying molecular targets that are potential therapeutics for common and rare dental diseases and craniofacial disorders. Speakers focused on translational and clinical applications of their research and, where applicable, on strategies for new technologies and therapeutics. The critical needs to transfer new knowledge to the classroom and for further investment in the field were also emphasized. The symposium underscored the importance of basic research, chairside clinical observations, and population-based studies in driving the new translational connections needed for the development of cures for the most common and devastating diseases involving the craniofacial complex.
Joint Optics Structures Experiment (JOSE)
NASA Technical Reports Server (NTRS)
Founds, David
1987-01-01
The objectives of the JOSE program is to develop, demonstrate, and evaluate active vibration suppression techniques for Directed Energy Weapons (DEW). DEW system performance is highly influenced by the line-of-sight (LOS) stability and in some cases by the wave front quality. The missions envisioned for DEW systems by the Strategic Defense Initiative require LOS stability and wave front quality to be significantly improved over any current demonstrated capability. The Active Control of Space Structures (ACOSS) program led to the development of a number of promising structural control techniques. DEW structures are vastly more complex than any structures controlled to date. They will be subject to disturbances with significantly higher magnitudes and wider bandwidths, while holding higher tolerances on allowable motions and deformations. Meeting the performance requirements of the JOSE program requires upgrading the ACOSS techniques to meet new more stringent requirements, the development of requisite sensors and acturators, improved control processors, highly accurate system identification methods, and the integration of hardware and methodologies into a successful demonstration.
100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.
The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected tomore » eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity change and the associated change in moisture content so that 4D images of moisture content change can be generated. Results from this field test will be available for any future Ca-citrate-PO4 amendment infiltration tests, which would be designed to evaluate the efficacy of using near surface application of amendments to form apatite mineral phases in the upper portion of the zone of water table fluctuation.« less
Rapid Collapse of the Vavilov Ice Cap, Russian High Arctic.
NASA Astrophysics Data System (ADS)
Willis, M. J.; Zheng, W.; Durkin, W. J., IV; Pritchard, M. E.; Ramage, J. M.; Dowdeswell, J. A.; Benham, T. J.; Glazovsky, A.; Macheret, Y.; Porter, C. C.
2016-12-01
Cold based ice caps and glaciers are thought to respond slowly to environmental changes. As sea ice cover evolves in the Arctic, a feedback process alters air-temperatures and precipitation patterns across the region. During the last decades of the 20th century the land-terminating western margin of the Vavilov Ice Cap, on October Revolution Island of the Severnaya Zemlya Archipelago, advanced slowly westwards. The advance was driven by precipitation changes that occurred about half a millennia ago. InSAR shows that in 1996 the margin sustained ice speeds of around 20 m/yr. By 2000 the ice front had moved a short distance into the Kara Sea and had transitioned to a marine-terminating front, although an ice apron around the ice margin indicates the ice there was still frozen to the bed and there is no evidence of calving in satellite imagery. In 2013 ice motions near the terminus had accelerated to around 1 m/day. By late 2015 the main trunk of the newly activated outlet glacier attained speeds of 25 m/day and the inland portion of the ice cap thinned at rates of more than 0.3 m/day. The acceleration of the outlet glacier occurred due to its advance over weak, water-saturated marine sediments that provide little resistance to ice flow, and to the removal of lateral resistive stresses as the glacier advanced out into an open embayment. Longitudinal stretching at the front forces an increase in the surface slope upstream. Rapid rates of motion inland generate frictional melt at the bed, possibly aided by cryohydrological warming. Large areas of the interior of the Vavilov ice cap are now below the equilibrium line and the grounded portion of the ice cap is losing mass at a rate of 4.5 km3 w.e./year. The changes at the Vavilov are likely irrecoverable in a warming climate due to a reduction in the accumulation area of the ice cap. Increased precipitation drove the advance, which accelerated due to the presence of soft sediments. The acceleration lowered the elevation of the interior portion of the ice cap to a point from which it cannot recover. A second, similar collapse seems to be underway at basin-2 on the southern margin of the Austfonna Ice cap in Svalbard.
Advanced Gas Turbine (AGT) technology development
NASA Technical Reports Server (NTRS)
1983-01-01
A 74.5 kW (100 hp) automotive gas turbine was evaluated. The engine structure, bearings, oil system, and electronics were demonstrated and no shaft dynamics or other vibration problem were encountered. Areas identified during the five tests are the scroll retention features, and transient thermal deflection of turbine backplates. Modifications were designed. Seroll retention is addressed by modifying the seal arrangement in front of the gasifier turbine assembly, which will increase the pressure load on the scroll in the forward direction and thereby increase the retention forces. the backplate thermal deflection is addressed by geometric changes and thermal insulation to reduce heat input. Combustor rig proof testing of two ceramic combustor assemblies was completed. The combustor was modified to incorporate slots and reduce sharp edges, which should reduce thermal stresses. The development work focused on techniques to sinter these barrier materials onto the ceramic rotors with successes for both material systems. Silicon carbide structural parts, including engine configuration gasifier rotors (ECRs), preliminary gasifier scroll parts, and gasifier and power turbine vanes are fabricated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk; John Adams Institute for Accelerator Science, Department of Physics, University of Oxford; Faircloth, Daniel C.
2015-04-08
In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for eithermore » long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.« less
Jones, Blake C; Lipson, Evan J; Childers, Brandon; Fishman, Elliot K; Johnson, Pamela T
The incidence of melanoma has risen dramatically over the past several decades. Oncologists rely on the ability of radiologists to identify subtle radiographic changes representing metastatic and recurrent melanoma in uncommon locations on multidetector computed tomography (MDCT) as the front-line imaging surveillance tool. To accomplish this goal, MDCT acquisition and display must be optimized and radiologist interpretation and search patterns must be tailored to identify the unique and often subtle metastatic lesions of melanoma. This article describes MDCT acquisition and display techniques that optimize the visibility of melanoma lesions, such as high-contrast display windows and multiplanar reconstructions. In addition, innovative therapies for melanoma, such as immunotherapy and small-molecule therapy, have altered clinical management and outcomes and have also changed the spectrum of therapeutic complications that can be detected on MDCT. Recent advances in melanoma therapy and potential complications that the radiologist can identify on MDCT are reviewed.
Stereoscopic applications for design visualization
NASA Astrophysics Data System (ADS)
Gilson, Kevin J.
2007-02-01
Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.
STS-107 crew meet with media in front of grandstand at KSC
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - The STS-107 crew meet with the media in front of the grandstand. From left are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Specialist Ilan Ramon, Mission Specialist David Brown, Payload Commander Michael Anderson, and Mission Specialists Laurel Clark and Kalpana Chawla. The crew just finished Terminal Countdown Demonstration Test activities, including a simulated launch countdown, in preparation for launch planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. .
NASA Technical Reports Server (NTRS)
Kurtz, R. L.; Liu, H. K.
1974-01-01
When a hologram storing more than one wave is illuminated with coherent light, the reconstructed wave fronts interfere with each other or with any other phase-related wave front derived from the illuminating source. This multiple wave front comparison is called holographic interferometry, and its application is called holographic nondestructive testing (HNDT). The theoretical aspects of HNDT techniques and the sensitivity of the holographic system to the geometrical placement of the optical components are briefly discussed. A unique HNDT system which is mobile and possesses variable sensitivity to stress amplitude is discribed, the experimental evidence of the application of this system to the testing of the hidden debonds in a ceramic-epoxy-fiberglass structure used for sample testing of the radome of the Pershing missile system is presented.
Gadgeel, Shirish M
2018-03-14
Anaplastic lymphoma kinase (ALK) gene rearrangements as driver genetic alterations occur in approximately 2-4% of non-small-cell lung cancer (NSCLC) patients. Alectinib, a next generation ALK inhibitor, recently demonstrated, in two separate Phase III trials, superior efficacy to crizotinib, the first ALK inhibitor to demonstrate clinical efficacy in ALK-positive NSCLC patients. Alectinib also demonstrated superior efficacy in the CNS. The data from these two Phase III studies suggest that the efficacy of starting with alectinib is superior to the overall clinical efficacy of starting with crizotinib followed by switching to alectinib at the time of disease progression. These results have changed the standard of care to alectinib as front-line therapy for advanced ALK-positive NSCLC patients. Areas covered: this paper reviews the available data on alectinib as front-line therapy in patients with ALK-positive NSCLC patients including its activity against brain metastases. In addition, the paper will review the data with other ALK inhibitors as front-line therapy.
Gonjo, Tomohiro; McCabe, Carla; Sousa, Ana; Ribeiro, João; Fernandes, Ricardo J; Vilas-Boas, João Paulo; Sanders, Ross
2018-06-01
The purpose of this study was to determine kinematic and energetic differences between front crawl and backstroke performed at the same aerobic speeds. Ten male competitive swimmers performed front crawl and backstroke at a pre-determined sub-anaerobic threshold speed to assess energy cost (through oxygen uptake measurement) and kinematics (using three-dimensional videography to determine stroke frequency and length, intra-cycle velocity fluctuation, three-dimensional wrist and ankle speeds, and vertical and lateral ankle range of motion). For detailed kinematic analysis, resultant displacement, the duration, and three-dimensional speed of the wrist during the entry, pull, push, and release phases were also investigated. There were no differences in stroke frequency/length and intra-cycle velocity fluctuation between the swimming techniques, however, swimmers had lower energy cost in front crawl than in backstroke (0.77 ± 0.08 vs 0.91 ± 0.12 kJ m -1 , p < 0.01). Slower three-dimensional wrist and ankle speeds under the water (1.29 ± 0.10 vs 1.55 ± 0.10 and 0.80 ± 0.16 vs 0.97 ± 0.13 m s -1 , both p < 0.01) and smaller ankle vertical range of motion (0.36 ± 0.06 vs 0.47 ± 0.07 m, p < 0.01) in front crawl than in backstroke were also observed, which indirectly suggested higher propulsive efficiency in front crawl. Front crawl is less costly than backstroke, and limbs motion in front crawl is more effective than in backstroke.
NASA Astrophysics Data System (ADS)
Motosaka, M.
2009-12-01
This paper presents firstly, the development of an integrated regional earthquake early warning (EEW) system having on-line structural health monitoring (SHM) function, in Miyagi prefecture, Japan. The system makes it possible to provide more accurate, reliable and immediate earthquake information for society by combining the national (JMA/NIED) EEW system, based on advanced real-time communication technology. The author has planned to install the EEW/SHM system to the public buildings around Sendai, a million city of north-eastern Japan. The system has been so far implemented in two buildings; one is in Sendai, and the other in Oshika, a front site on the Pacific Ocean coast for the approaching Miyagi-ken Oki earthquake. The data from the front-site and the on-site are processed by the analysis system which was installed at the analysis center of Disaster Control Research Center, Tohoku University. The real-time earthquake information from JMA is also received at the analysis center. The utilization of the integrated EEW/SHM system is addressed together with future perspectives. Examples of the obtained data are also described including the amplitude depending dynamic characteristics of the building in Sendai before, during, and after the 2008/6/14 Iwate-Miyagi Nairiku Earthquake, together with the historical change of dynamic characteristics for 40 years. Secondary, this paper presents an advanced methodology based on Artificial Neural Networks (ANN) for forward forecasting of ground motion parameters, not only PGA, PGV, but also Spectral information before S-wave arrival using initial part of P-waveform at a front site. The estimated ground motion information can be used as warning alarm for earthquake damage reduction. The Fourier Amplitude Spectra (FAS) estimated before strong shaking with high accuracy can be used for advanced engineering applications, e.g. feed-forward structural control of a building of interest. The validity and applicability of the method have been verified by using observation data sets of the K-NET sites of 39 earthquakes occurred in Miyagi Oki area. The initial part of P waveform data at the Oshika site (MYG011) of K-NET were used as the front-site waveform data. The earthquake observation data for 35 earthquakes among the 39 earthquakes, as well as the positional-information and site repartition information, were used as training data to construct the ANN structure. The data set for the remaining 4 earthquakes were used as the test data in the blind prediction of PGA and PGV at the 4 sites, namely, Sendai (MYG013), Taiwa (MYG009), Shiogama (MYG012), and Ishinomaki (MYG010).
24 CFR 941.612 - Disbursement of grant funds.
Code of Federal Regulations, 2011 CFR
2011-04-01
... determines that the proposed development is approvable, it may execute with the PHA a front-end ACC amendment and the special mixed-finance amendment to the ACC (and/or grant agreement) to provide advances for... the best of the PHA's knowledge, it is not in default under the ACC, as amended; (iii) All conditions...
Indiana State University Graduates to Advanced Plastic Cooling Towers
ERIC Educational Resources Information Center
Sullivan, Ed
2012-01-01
Perhaps more than many other industries, today's universities and colleges are beset by dramatically rising costs on every front. One of the areas where overhead can be contained or reduced is in the operation of the chilled water systems that support air conditioning throughout college campuses, specifically the cooling towers. Like many…
Array microscopy technology and its application to digital detection of Mycobacterium tuberculosis
NASA Astrophysics Data System (ADS)
McCall, Brian P.
Tuberculosis causes more deaths worldwide than any other curable infectious disease. This is the case despite tuberculosis appearing to be on the verge of eradication midway through the last century. Efforts at reversing the spread of tuberculosis have intensified since the early 1990s. Since then, microscopy has been the primary frontline diagnostic. In this dissertation, advances in clinical microscopy towards array microscopy for digital detection of Mycobacterium tuberculosis are presented. Digital array microscopy separates the tasks of microscope operation and pathogen detection and will reduce the specialization needed in order to operate the microscope. Distributing the work and reducing specialization will allow this technology to be deployed at the point of care, taking the front-line diagnostic for tuberculosis from the microscopy center to the community health center. By improving access to microscopy centers, hundreds of thousands of lives can be saved. For this dissertation, a lens was designed that can be manufactured as 4x6 array of microscopes. This lens design is diffraction limited, having less than 0.071 waves of aberration (root mean square) over the entire field of view. A total area imaged onto a full-frame digital image sensor is expected to be 3.94 mm2, which according to tuberculosis microscopy guidelines is more than sufficient for a sensitive diagnosis. The design is tolerant to single point diamond turning manufacturing errors, as found by tolerance analysis and by fabricating a prototype. Diamond micro-milling, a fabrication technique for lens array molds, was applied to plastic plano-concave and plano-convex lens arrays, and found to produce high quality optical surfaces. The micro-milling technique did not prove robust enough to produce bi-convex and meniscus lens arrays in a variety of lens shapes, however, and it required lengthy fabrication times. In order to rapidly prototype new lenses, a new diamond machining technique was developed called 4-axis single point diamond machining. This technique is 2-10x faster than micro-milling, depending on how advanced the micro-milling equipment is. With array microscope fabrication still in development, a single prototype of the lens designed for an array microscope was fabricated using single point diamond turning. The prototype microscope objective was validated in a pre-clinical trial. The prototype was compared with a standard clinical microscope objective in diagnostic tests. High concordance, a Fleiss's kappa of 0.88, was found between diagnoses made using the prototype and standard microscope objectives and a reference test. With the lens designed and validated and an advanced fabrication process developed, array microscopy technology is advanced to the point where it is feasible to rapidly prototype an array microscope for detection of tuberculosis and translate array microscope from an innovative concept to a device that can save lives.
Lensless microscopy technique for static and dynamic colloidal systems.
Alvarez-Palacio, D C; Garcia-Sucerquia, J
2010-09-15
We present the application of a lensless microscopy technique known as digital in-line holographic microscopy (DIHM) to image dynamic and static colloidal systems of microspheres. DIHM has been perfected up to the point that submicrometer lateral resolution with several hundreds of micrometers depth of field is achieved with visible light; it is shown that the lateral resolution of DIHM is enough to resolve self-assembled colloidal monolayers built up from polystyrene spheres with submicrometer diameters. The time resolution of DIHM is of the order of 4 frames/s at 2048 x 2048 pixels, which represents an overall improvement of 16 times the time resolution of confocal scanning microscopy. This feature is applied to the visualization of the migration of dewetting fronts in dynamic colloidal systems and the formation of front-like arrangements of particles. Copyright 2010 Elsevier Inc. All rights reserved.
Toda, Hiroyuki
2014-11-01
X-ray microtomography has been utilized for the in-situ observation of various structural metals under external loading. Recent advances in X-ray microtomography provide remarkable tools to image the interior of materials. In-situ X-ray microtomography provides a unique possibility to access the 3D character of internal microstructure and its time evolution behaviours non-destructively, thereby enabling advanced techniques for measuring local strain distribution. Local strain mapping is readily enabled by processing such high-resolution tomographic images either by the particle tracking technique or the digital image correlation technique [1]. Procedures for tracking microstructural features which have been developed by the authors [2], have been applied to analyse localised deformation and damage evolution in a material [3]. Typically several tens of thousands of microstructural features, such as particles and pores, are tracked in a tomographic specimen (0.2 - 0.3 mm(3) in volume). When a sufficient number of microstructural features is dispersed in 3D space, the Delaunay tessellation algorithm is used to obtain local strain distribution. With these techniques, 3D strain fields can be measured with reasonable accuracy. Even local crack driving forces, such as local variations in the stress intensity factor, crack tip opening displacement and J integral along a crack front line, can be measured from discrete crack tip displacement fields [4]. In the present presentation, complicated crack initiation and growth behaviour and the extensive formation of micro cracks ahead of a crack tip are introduced as examples.A novel experimental method has recently been developed by amalgamating a pencil beam X-Ray diffraction (XRD) technique with the microstructural tracking technique [5]. The technique provides information about individual grain orientations and 1-micron-level grain morphologies in 3D together with high-density local strain mapping. The application of this technique to the deformation behavior of a polycrystalline aluminium alloy will be demonstrated in the presentation [6].The synchrotron-based microtomography has been mainly utilized to light materials due to their good X-ray transmission. In the present talk, the application of the synchrotron-based microtomography to steels will be also introduced. Degradation of contrast and spatial resolution due to forward scattering could be avoided by selecting appropriate experimental conditions in order to obtain superior spatial resolution close to the physical limit even in ferrous materials [7]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Katzenbach, J R; Santamaria, J A
1999-01-01
For many organizations, achieving competitive advantage means eliciting superior performance from employees on the front line--the burger flippers, hotel room cleaners, and baggage handlers whose work has an enormous effect on customers. That's no easy task. Front line workers are paid low wages, have scant hope of advancement, and--not surprisingly--often care little about the company's performance. But then how do some companies succeed in engaging the emotional energy of rank-and-file workers? A team of researchers at McKinsey & Company and the Conference Board recently explored that question and discovered that one highly effective route is demonstrated by the U.S. Marine Corps. The Marines' approach to motivation follows the "mission, values, and pride" path, which researchers say is practical and relevant for the business world. More specifically, the authors say the Marines follow five practices: they over-invest in cultivating core value; prepare every person to lead, including front line supervisors; learn when to create teams and when to create single-leader work groups; attend to all employees, not just the top half; and encourage self-discipline as a way of building pride. The authors admit there are critical differences between the Marines and most businesses. But using vivid examples from companies such as KFC and Marriott International, the authors illustrate how the Marines' approach can be translated for corporate use. Sometimes, the authors maintain, minor changes in a company's standard operating procedure can have a powerful effect on front line pride and can result in substantial payoffs in company performance.
The Rate of Beneficial Mutations Surfing on the Wave of a Range Expansion
Lehe, Rémi; Hallatschek, Oskar; Peliti, Luca
2012-01-01
Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions. PMID:22479175
NASA Astrophysics Data System (ADS)
Goliber, S. A.; Allwes, K.; Roberts, C.; Csatho, B. M.
2016-12-01
The southeast region of the Greenland Ice Sheet has thinned at a high rate compared to the rest of the Ice Sheet over the last decade and is characterized by a high diversity of outlet glacier behaviors (Csatho et al., 2014). While the entire region has experienced an overall mass loss from a warming climate, some major outlet glaciers exhibit varying amounts of thinning and thickening attributed to changes in ice dynamics. From 1980 to 2016, Helheim, Fenris, and Midgard glaciers (all located in the Sermilik fjord system) have shown dissimilar thinning and thickening patterns, retreat rates, and velocity changes despite their close geographic proximity. To understand why these glaciers behave so differently, detailed calving front and trimline reconstructions were created from historical maps, aerial photographs, and satellite imagery. Additionally, we measured elevation changes from Airborne Topographic Mapper (ATM) laser altimetry data and DEMs derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Satellite Pour l'Observation de la Terre (SPOT) stereo imagery. The presentation compares the elevation and velocity records with the timing of calving front changes of Helheim, Fenris and Midgard glaciers. Helheim Glacier has retreated a net distance of 7 km since 1972 and exhibited a thinning-thickening- thickening pattern from 2003-2009. It retreated to its maximum inland position in 2005, followed by a re-advance to a new equilibrium position by 2007. The calving front then oscillated around a relatively stable position from 2007 to 2014. However, in 2015, it again retreated to within 2 km of its 2005 position. Contrastingly, Midgard Glacier has experienced decelerated thinning from 2003-2009, followed by an acceleration of thinning. Midgard Glacier retreated a total of 15 km between 1972 and 2015, behind its confluence with a former tributary. While Fenris Glacier exhibits a thinning-thickening-thinning pattern similar to Helheim Glacier, it has much lower velocities and has retreated only a total of 2 km since 1975.
Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.
1998-01-01
Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.
Global Infrared Observations of Roughness Induced Transition on the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Zalameda, Joseph N.; Wood, William A.; Berry, Scott A.; Schwartz, Richard J.; Dantowitz, Ronald F.; Spisz, Thomas S.; Taylor, Jeff C.
2012-01-01
High resolution infrared observations made from a mobile ground based optical system captured the laminar-to-turbulent boundary layer transition process as it occurred during Space Shuttle Endeavour's return to earth following its final mission in 2011. The STS-134 imagery was part of a larger effort to demonstrate an emerging and reliable non-intrusive global thermal measurement capability and to complement a series of boundary layer transition flight experiments that were flown on the Shuttle. The STS-134 observations are believed to be the first time that the development and movement of a hypersonic boundary layer transition front has been witnessed in flight over the entire vehicle surface and in particular, at unprecedented spatial resolution. Additionally, benchmark surface temperature maps of the Orbiter lower surface collected over multiple flights and spanning a Mach range of 18 to 6 are now available and represent an opportunity for collaborative comparison with computational techniques focused on hypersonic transition and turbulence modeling. The synergy of the global temperature maps with the companion in-situ thermocouple measurements serve as an example of the effective leveraging of resources to achieve a common goal of advancing our understanding of the complex nature of high Mach number transition. It is shown that quantitative imaging can open the door to a multitude of national and international opportunities for partnership associated with flight-testing and subsequent validation of numerical simulation techniques. The quantitative imaging applications highlighted in this paper offer unique and complementary flight measurement alternatives and suggest collaborative instrumentation opportunities to advance the state of the art in transition prediction and maximize the return on investment in terms of developmental flight tests for future vehicle designs.
Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting
NASA Technical Reports Server (NTRS)
Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.
2013-01-01
This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.
NASA Astrophysics Data System (ADS)
Alberti, Fabrizio; Santiago, Sergio; Roccabruna, Mattia; Luque, Salvador; Gonzalez-Aguilar, Jose; Crema, Luigi; Romero, Manuel
2016-05-01
Volumetric absorbers constitute one of the key elements in order to achieve high thermal conversion efficiencies in concentrating solar power plants. Regardless of the working fluid or thermodynamic cycle employed, design trends towards higher absorber output temperatures are widespread, which lead to the general need of components of high solar absorptance, high conduction within the receiver material, high internal convection, low radiative and convective heat losses and high mechanical durability. In this context, the use of advanced manufacturing techniques, such as selective laser melting, has allowed for the fabrication of intricate geometries that are capable of fulfilling the previous requirements. This paper presents a parametric design and analysis of the optical performance of volumetric absorbers of variable porosity conducted by means of detailed numerical ray tracing simulations. Sections of variable macroscopic porosity along the absorber depth were constructed by the fractal growth of single-cell structures. Measures of performance analyzed include optical reflection losses from the absorber front and rear faces, penetration of radiation inside the absorber volume, and radiation absorption as a function of absorber depth. The effects of engineering design parameters such as absorber length and wall thickness, material reflectance and porosity distribution on the optical performance of absorbers are discussed, and general design guidelines are given.
Statistics and Informatics in Space Astrophysics
NASA Astrophysics Data System (ADS)
Feigelson, E.
2017-12-01
The interest in statistical and computational methodology has seen rapid growth in space-based astrophysics, parallel to the growth seen in Earth remote sensing. There is widespread agreement that scientific interpretation of the cosmic microwave background, discovery of exoplanets, and classifying multiwavelength surveys is too complex to be accomplished with traditional techniques. NASA operates several well-functioning Science Archive Research Centers providing 0.5 PBy datasets to the research community. These databases are integrated with full-text journal articles in the NASA Astrophysics Data System (200K pageviews/day). Data products use interoperable formats and protocols established by the International Virtual Observatory Alliance. NASA supercomputers also support complex astrophysical models of systems such as accretion disks and planet formation. Academic researcher interest in methodology has significantly grown in areas such as Bayesian inference and machine learning, and statistical research is underway to treat problems such as irregularly spaced time series and astrophysical model uncertainties. Several scholarly societies have created interest groups in astrostatistics and astroinformatics. Improvements are needed on several fronts. Community education in advanced methodology is not sufficiently rapid to meet the research needs. Statistical procedures within NASA science analysis software are sometimes not optimal, and pipeline development may not use modern software engineering techniques. NASA offers few grant opportunities supporting research in astroinformatics and astrostatistics.
On-wafer, cryogenic characterization of ultra-low noise HEMT devices
NASA Technical Reports Server (NTRS)
Bautista, J. J.; Laskar, J.; Szydlik, P.
1995-01-01
Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.
Unsteady Loss in the Stator Due to the Incoming Rotor Wake in a Highly-Loaded Transonic Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill
2015-01-01
The present paper reports an investigation of unsteady loss generation in the stator due to the incoming rotor wake in an advanced GE transonic compressor design with a high-fidelity numerical method. This advanced compressor with high reaction and high stage loading has been investigated both experimentally and analytically in the past. The measured efficiency in this advanced compressor is significantly lower than the design intention goal. The general understanding is that the current generation of compressor design analysis tools miss some important flow physics in this modern compressor design. To pinpoint the source of the efficiency miss, an advanced test with a detailed flow traverse was performed for the front one and a half stage at the NASA Glenn Research Center.
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin (Technical Monitor); Krueger, Ronald; Minguet, Pierre J.
2004-01-01
The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to tension and three-point bending was studied. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to model the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlation of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents. In addition, the application of the submodeling technique for the simulation of skin/stringer debond was also studied. Global models made of shell elements and solid elements were studied. Solid elements were used for local submodels, which extended between three and six specimen thicknesses on either side of the delamination front to model the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from the simulations using the submodeling technique were not in agreement with results obtained from full solid models.
Front-end ASICs for high-energy astrophysics in space
NASA Astrophysics Data System (ADS)
Gevin, O.; Limousin, O.; Meuris, A.
2016-07-01
In most of embedded imaging systems for space applications, high granularity and increasing size of focal planes justify an almost systematic use of integrated circuits. . To fulfill challenging requirements for excellent spatial and energy resolution, integrated circuits must fit the sensors perfectly and interface the system such a way to optimize simultaneously noise, geometry and architecture. Moreover, very low power consumption and radiation tolerance are mandatory to envision a use onboard a payload in space. Consequently, being part of an optimized detection system for space, the integrated circuit is specifically designed for each application and becomes an Application Specific Integrated Circuits (ASIC). The paper focuses on mixed analog and digital signal ASICs for spectro-imaging systems in the keVMeV energy band. The first part of the paper summarizes the main advantages conferred by the use of front-end ASICs for highenergy astrophysics instruments in space mission. Space qualification of ASICs requires the chip to be radiation hard. The paper will shortly describe some of the typical hardening techniques and give some guidelines that an ASIC designer should follow to choose the most efficient technology for his project. The first task of the front-end electronics is to convert the charge coming from the detector into a voltage. For most of the Silicon detectors (CCD, DEPFET, SDD) this is conversion happens in the detector itself. For other sensor materials, charge preamplifiers operate the conversion. The paper shortly describes the different key parameters of charge preamplifiers and the binding parameters for the design. Filtering is generally mandatory in order to increase the signal to noise ratio or to reduce the duration of the signal. After a brief review on the main noise sources, the paper reviews noise-filtering techniques that are commonly used in Integrated circuits designs. The way sensors and ASICs are interconnected together plays a major role in the noise performances of the detection systems. The geometry of a sensor is therefore critical and drives the ASIC design. The second part of the paper takes the geometry of the detector as a story line to explore different kinds of ASIC structures and architectures. From the simple single-channel ASIC for CCDs to the most advanced 3D ASIC prototypes used to build dead-zone free imaging systems, the paper reports on different families of circuits for spectro-imaging systems. It emphasizes a variety of designer choices, all around the word, in different space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, R.; Morris, J.
1994-11-01
The objective of this subcontract over its three-year duration is to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance and expand the Solarex commercial production capacity. Solarex shall meet these objectives by improving the deposition and quality of the transparent front contact, by optimizing the laser patterning process, scaling-up the semiconductor deposition process, improving the back contact deposition, scaling-up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 2 portion of this subcontract, Solarex focused on improving deposition of the front contact, investigating alternate feed stocks for the front contact,more » maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large-areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test. Progress is reported on the following: Front contact development; Laser scribe process development; Amorphous silicon based semiconductor deposition; Rear contact deposition process; Frit/bus/wire/frame; Materials handling; and Environmental test, yield and performance analysis.« less
Tsao, Yao-Chung; Fisker, Christian; Pedersen, Thomas Garm
2014-05-05
The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.
Vision-based vehicle detection and tracking algorithm design
NASA Astrophysics Data System (ADS)
Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi
2009-12-01
The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.
Dai, Qing; Sheng, Xiesun; Chen, Feng
2017-04-12
The reinforcing and reducing manipulation at different acupoints is a kind of acupuncture manipulations and has satisfactory clinical therapeutic effects, combined with a proper needling techniques. The reinforcing needling method is used in the upper and the reducing one in the lower, the distal acupoints are combined with the nearby acupoints. The local acupoints or adjcant acupoints of the affected area are regarded as the nearby acupoints, e.g. the acupoints in the upper. The distant acupoints and the acupoints on the hand and foot are named as distal acupoints, e.g. the acupoint in the lower. In the reinforcing manipulation, the needle is inserted shallowly along the running direction of meridian. In the reducing manipulation, the needle is inserted deeply and against the running direction of meridian. The yin - yang couple needling technique is used with the combination of the front- mu and back- shu points. In the first option, the reinforcing and reducing needling method with rotating technique is predominated at the front- mu points, while that with lifting and thrusting technique is at the back- shu points. In the second option, when needling the back- shu points, the needling sensation is transmitted along the transverse segment and far to the chest and abdomen. These two kinds of integration of acupoint combination and needling techniques display a certain clinical significance in improving the therapeutic effects of acupuncture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salama, Joseph K., E-mail: jsalama@radonc.uchicago.ed; Haddad, Robert I.; Kies, Merril S.
2009-11-01
Purpose: The use of induction chemotherapy (IC) for locoregionally advanced head-and-neck cancer is increasing. The response to IC often causes significant alterations in tumor volume and location and shifts in normal anatomy. Proper determination of the radiotherapy (RT) targets after IC becomes challenging, especially with the use of conformal and precision RT techniques. Therefore, a consensus conference was convened to discuss issues related to RT planning and coordination of care for patients receiving IC. Methods and Materials: Ten participants with special expertise in the various aspects of integration of IC and RT for the treatment of locoregionally advanced head-and-neck cancer,more » including radiation oncologists, medical oncologists, and a medical physicist, participated. The individual members were assigned topics for focused, didactic presentations. Discussion was encouraged after each presentation, and recommendations were formulated. Results: Recommendations and guidelines emerged that emphasize up-front evaluation by all members of the head-and-neck management team, high-quality baseline and postinduction planning scans with the patient in the treatment position, the use of preinduction target volumes, and the use of full-dose RT, even in the face of a complete response. Conclusion: A multidisciplinary approach is strongly encouraged. Although these recommendations were provided primarily for patients treated with IC, many of these same principles apply to concurrent chemoradiotherapy without IC. A rapid response during RT is quite common, requiring the development of two or more plans in a sizeable fraction of patients, and suggesting the need for similar guidance in the rapidly evolving area of adaptive RT.« less
NASA Astrophysics Data System (ADS)
Kwon, B. H.; BéNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.
1998-10-01
The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1° to 2°C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1° to 2°C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems linked with the secondary circulation due to the SST front.
Kolmogorov, S V; Duplishcheva, O A
1992-03-01
By comparing the time of the same distance swum with and without an added resistance, under the assumption of an equal power output in both cases, the drag of 73 top swimmers was estimated. The active drag Fr(a.d.) at maximal swimming velocities varied considerably across strokes and individuals. In the females Fr(a.d.) ranged from 69.78 to 31.16 N in the front-crawl, from 83.04 to 37.78 N in dolphin, from 93.56 to 45.19 N in breaststroke, and from 65.51 to 37.79 N in back-stroke. In the males Fr(a.d.) ranged from 167.11 to 42.23 N in front-crawl, from 156.09 to 46.95 N in dolphin, from 176.87 to 55.61 N in breaststroke, and from 146.28 to 46.36 N in back-stroke. Also, the ratio of Fr(a.d.) to the passive drag Fr(a.d.) as determined for the analogical velocity in a tugging condition (in standard body position-front gliding) shows considerable individual variations. In the female swimmers variations in Fr(a.d.)/Fr(p.d.) ranged from 145.17 to 59.94% in front-crawl, from 192.39 to 85.57% in dolphin, from 298.03 to 124.50% in breaststroke, and from 162.87 to 85.61% in back-stroke. In the male swimmers variations in Fr(a.d.)/Fr(p.d.) ranged from 162.24 to 62.39% in front-crawl, from 191.70 to 70.38% in dolphin, from 295.57 to 102.83% in breaststroke, and from 198.82 to 74.48% in back-stroke. The main reason for such variations is found in the individual features of swimming technique and can be quantitatively estimated with the hydrodynamic force coefficient, which thus provides an adequate index of technique.
Three-gradient regular solution model for simple liquids wetting complex surface topologies
Akerboom, Sabine; Kamperman, Marleen
2016-01-01
Summary We use regular solution theory and implement a three-gradient model for a liquid/vapour system in contact with a complex surface topology to study the shape of a liquid drop in advancing and receding wetting scenarios. More specifically, we study droplets on an inverse opal: spherical cavities in a hexagonal pattern. In line with experimental data, we find that the surface may switch from hydrophilic (contact angle on a smooth surface θY < 90°) to hydrophobic (effective advancing contact angle θ > 90°). Both the Wenzel wetting state, that is cavities under the liquid are filled, as well as the Cassie–Baxter wetting state, that is air entrapment in the cavities under the liquid, were observed using our approach, without a discontinuity in the water front shape or in the water advancing contact angle θ. Therefore, air entrapment cannot be the main reason why the contact angle θ for an advancing water front varies. Rather, the contact line is pinned and curved due to the surface structures, inducing curvature perpendicular to the plane in which the contact angle θ is observed, and the contact line does not move in a continuous way, but via depinning transitions. The pinning is not limited to kinks in the surface with angles θkink smaller than the angle θY. Even for θkink > θY, contact line pinning is found. Therefore, the full 3D-structure of the inverse opal, rather than a simple parameter such as the wetting state or θkink, determines the final observed contact angle. PMID:27826512
Capillary rise in a textured channel
NASA Astrophysics Data System (ADS)
Beilharz, Daniel; Clanet, Christophe; Quere, David
2016-11-01
A wetting liquid can invade a textured material, for example a forest of micropillars. The driving and the viscous forces of this motion are determined by the texture parameters and the influence of shape, height and spacing of posts has been widely studied for the last decade. In this work, we build a channel with textured walls. Brought into contact with a reservoir of wetting liquid, we observe in some cases two advancing fronts. A first one ahead invading the forest of micropillars, and a second one behind filling the remaining gap. We study and model the conditions of existence and the dynamics of these two fronts as a function of the characteristics of both microstructure and gap of this elementary porous medium.
Heterogeneous porous media: Fronts and noise
NASA Astrophysics Data System (ADS)
Chaouchel, M.; Rakotomalala, N.; Salin, D.; Xu, B.; Yortsos, Y. C.
Capillary effects can be important in immiscible flows in heterogeneous media, particularly at low capillary numbers (Ca). We present experiments and simulations of slow drainage in 3-D porous media, either homogeneous and in the presence of buoyancy or heterogeneous and in its absence. An acoustic technique allows for an accurate study of the 3-D fronts and the cross-over region. Our results suggest that both cases can be described by invasion percolation in a gradient. Both front tails scale with the corresponding Bond numbers as σft≈B-47 in agreement with the theory. An analogous scaling for viscous effects is also given. The noise of these fronts are found correlated in the form of a fractional Brownian motion (fBm) of a Hurst exponent H≈.5. At higher Ca, experiments performed in 3-D porous media with sharp changes in permeability, exhibit a saturation profile response closely linked to the permeability variations. This viscous response to heterogeneity provides an opportunity to investigate and determine correlated (even at all scales, i.e. fBm), permeability fields.
The importance of oceanographic fronts to marine birds and mammals of the southern oceans
NASA Astrophysics Data System (ADS)
Bost, C. A.; Cotté, C.; Bailleul, F.; Cherel, Y.; Charrassin, J. B.; Guinet, C.; Ainley, D. G.; Weimerskirch, H.
2009-10-01
During the last 30 years, at-sea studies of seabirds and marine mammals in the oceans south of the Subtropical Front have described an association with major frontal areas. More recently, the advancement in microtechnology has allowed the tracking of individuals and investigations into how these marine predators actually use the frontal zones. In this review, we examine 1) the relative importance to apex predators of the different frontal zones in terms of spatial distribution and carbon flux; 2) the processes that determine their preferential use; and 3) how the mesoscale dynamics of frontal structures drive at-sea foraging strategies of these predators. We review published results from southern waters and place them in a broader context with respect to what has been learned about the importance of fronts in oceans farther north. Some fronts constitute important boundaries for seabird communities in southern waters. At a mesoscale the maximum values of seabird diversity and abundance correspond to the location of the main fronts. At-sea surveys show a strong curvilinear correlation between seabird abundance and sea surface temperatures. High mean species richness and diversity for whales and seabirds are consistently associated with the southern water mass boundary of the Antarctic Circumpolar Current, the Subtropical Front and the Subantarctic Front; in the case of the Polar Front mean seabird densities are more variable. At small-scales, variation in seabird occurrence has been directly related to the processes at fronts in a limited number of cases. A significant positive relation was found between some plankton feeding species and frontal temperature gradient-phytoplankton variables. Telemetric studies have revealed that several apex predators (penguins, albatrosses, seals) perform long, directed foraging trips either to the Subtropical front or Polar Front, depending on locality. Seabirds with low flight costs, such as albatrosses, are able to reach fronts at long distances from colonies, showing variable foraging strategies as a function of the distances involved. Diving birds such as King penguins, that travel at a higher cost and lower speed, rely on the predictable spatial distribution of mesopelagic fish found close to the Polar Front. They may use the currents associated with eddies as oceanographic cues in the active search for frontal zones. Once in these areas they dive preferentially in and below the depth of the thermocline where catches per unit effort are high. Elephant seals concentrate foraging activity principally inside or at the boundary of cyclonic eddies. These mesoscale features appear to offer exceptional productivity favourable for foraging by various diving top predators. The connection between biophysical parameters at fronts and predators is likely to be made through biological enhancement. Top predators appear to forage at locations where prey are advected by physical processes and others where prey are produced locally. Long-term research on at-sea distributions and demographic parameters of top predators are essential to assess the consequences of potential shift in front distributions in relation to global warming. Such environmental changes would add to the impact of fish extraction by the industrial fisheries on the southern food webs.
ERIC Educational Resources Information Center
Stewart, Bob R.; And Others
This instructor's guide contains eight lesson plans for teaching soil conservation in accordance with the Missouri State Board of Education's Vocational Instructional Management System. To make the unit easier for teachers to use, the following materials are provided in the front of the unit: objectives and competencies for each lesson, a…
Early Impacts of Residential Development on Wood Thrushes in an Urbanizing Forest
L. E. Friesen; E. D. Cheskey; M. D. Cadman; V. E. Martin; R. J. MacKay
2005-01-01
Environmental protection policies sometimes protect forests along an advancing suburban front although many of the forests may be brought into close proximity to residential housing. Research suggests that even when forests are physically preserved, their bird communities are simplified as the surroundings become urbanized. However, little is known of the time required...
Measuring fire behavior with photography
Hubert B. Clements; Darold E. Ward; Carl W. Adkins
1983-01-01
Photography is practical for recording and measuring some aspects of forest fire behavior if the scale and perspective can be determined. This paper describes a photogrammetric method for measuring flame height and rate of spread for fires on flat terrain. The flames are photographed at known times with a camera in front of the advancing fire. Scale and perspective of...
Flow chemistry: A light touch to a deadly problem
NASA Astrophysics Data System (ADS)
Booker-Milburn, Kevin
2012-06-01
Flow chemistry has grown in stature as a technique with the potential to deliver synthetic complexity with assembly-line-like efficiency. Application of flow technology to the front-line antimalarial drug artemisinin promises to revolutionalize treatment.
Solutions multiples thermocapillaires en zone flottante à gravité nulle
NASA Astrophysics Data System (ADS)
Chénier, E.; Delcarte, C.; Labrosse, G.
1998-04-01
An original model is adopted to analyse the melted phase hydrodynamics, in the floating zone technique configuration for crystal growth. In particular, a small capillary scale located near the fusion fronts is taken into account. Its size turns out to influence significantly the flow structure. For the first time, multiple solutions are exhibited in zero gravity. Un modèle original a été adopté pour analyser l'hydrodynamique de la phase fondue pour la technique de la zone flottante, en croissance cristalline. En particulier, une petite échelle capillaire, située près des fronts de fusion, est prise en considération. Son extension se révèle influencer significativement la structure des écoulements. L'existence de solutions multiples est, pour la première fois, mise en évidence en gravité zéro.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G. H.; Innis, R. C.
1982-01-01
The essential features of using pitch attitude for glidepath control in conjunction with longitudinal thrust modulation for speed control are described, using a simple linearized model for a powered-lift STOL aircraft operating on the backside of the drag curve and at a fixed setting of propulsive lift. It is shown that an automatic speed-hold system incorporating heave-damping augmentation can allow use of the front-side control technique with satisfactory handling qualities, and the results of previous flight investigations are reviewed. Manual control considerations, as they might be involved following failure of the automatic system, are emphasized. The influence of alternative cockpit controller configurations and flight-director display features were assessed for their effect on the control task, which consisted of a straight-in steep approach flown at constant speed in simulated instrument conditions.
Wang, Y; Li, Y; Xia, L; Niu, K; Chen, X; Lu, D; Kong, R; Chen, Z; Sun, J
2018-03-01
Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is the optimal treatment for EGFR-mutant advanced non-small cell lung cancer (NSCLC). However, most patients developed systemic or local progression due to acquired EGFR-TKI resistance. This retrospective study aimed to evaluate the feasibility of continued EGFR-TKI with concurrent radiotherapy (CTCRT) in patients with local progression after front-line EGFR-TKI treatment. Advanced NSCLC patients with active EGFR mutation who received EGFR-TKI were treated with CTCRT after local progression. Medical data were analyzed for time to progression (TTP), progression-free survival (PFS), tumor response rate, overall survival (OS) and adverse events. A total of 50 irradiated lesions from 44 patients were included. Median TTP and PFS of measurable lesions (n = 31) were both significantly prolonged after local radiotherapy (TTP1 + TTP2 vs. TTP1: 21.7 vs. 16.0 months, P = 0.010; PFS1 + PFS2 vs. PFS1: 21.3 vs. 16.0 months, P = 0.027). For all lesions (n = 50), objective response rate (ORR) and local tumor control rate (LCR) were 54.0 and 84.0%, respectively. Median OS was 26.6 months. There were no serious adverse events before or after radiotherapy. The treatment modality of CTCRT is considerable and effective for EGFR-mutant NSCLC patients even with local failure from front-line EGFR-TKI treatment.
NASA Astrophysics Data System (ADS)
Hahm, W.; Riebe, C. S.; Ferrier, K.; Kirchner, J. W.
2011-12-01
Traditional frameworks for conceptualizing hillslope denudation distinguish between the movement of mass in solution (chemical erosion) and mass moved via mechanical processes (physical erosion). At the hillslope scale, physical and chemical erosion rates can be quantified by combining measurements of regolith chemistry with cosmogenic nuclide concentrations in bedrock and sediment, while basin-scale rates are often inferred from riverine solute and sediment loads. These techniques integrate the effects of numerous weathering and erosion mechanisms and do not provide prima facie information about the precise nature and scale of those mechanisms. For insight into erosional process, physical erosion has been considered in terms of two limiting regimes. When physical erosion outpaces weathering front advance, regolith is mobilized downslope as soon as it is sufficiently loosened by weathering, and physical erosion rates are limited by rates of mobile regolith production. This is commonly termed weathering-limited erosion. Conversely, when weathering front advance outpaces erosion, the mobile regolith layer grows thicker over time, and physical erosion rates are limited by the efficiency of downslope transport processes. This is termed transport-limited erosion. This terminology brings the description of hillslope evolution closer to the realm of essential realism, to the extent that measurable quantities from the field can be cast in a process-based framework. An analogous process-limitation framework describes chemical erosion. In supply-limited chemical erosion, chemical weathering depletes regolith of its reactive phases during residence on a hillslope, and chemical erosion rates are limited by the supply of fresh minerals to the weathering zone. Alternatively, hillslopes may exhibit kinetic-limited chemical erosion, where physical erosion transports regolith downslope before weatherable phases are completely removed by chemical erosion. We show how supply- and kinetic-limited chemical erosion can be distinguished from one another using data from a global compilation of physical and chemical erosion rates. As a step towards understanding these rates at the level of essential realism, we explore how the hillslope-scale regimes of supply- and kinetic-limited chemical erosion relate to existing conceptual frameworks that interpret weathering rates in terms of transport- and kinetic-limitation at the mineral scale.
Heat flux measurements on ceramics with thin film thermocouples
NASA Technical Reports Server (NTRS)
Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.
1993-01-01
Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.
An objective isobaric/isentropic technique for upper air analysis
NASA Technical Reports Server (NTRS)
Mancuso, R. L.; Endlich, R. M.; Ehernberger, L. J.
1981-01-01
An objective meteorological analysis technique is presented whereby both horizontal and vertical upper air analyses are performed. The process used to interpolate grid-point values from the upper-air station data is the same as for grid points on both an isobaric surface and a vertical cross-sectional plane. The nearby data surrounding each grid point are used in the interpolation by means of an anisotropic weighting scheme, which is described. The interpolation for a grid-point potential temperature is performed isobarically; whereas wind, mixing-ratio, and pressure height values are interpolated from data that lie on the isentropic surface that passes through the grid point. Two versions (A and B) of the technique are evaluated by qualitatively comparing computer analyses with subjective handdrawn analyses. The objective products of version A generally have fair correspondence with the subjective analyses and with the station data, and depicted the structure of the upper fronts, tropopauses, and jet streams fairly well. The version B objective products correspond more closely to the subjective analyses, and show the same strong gradients across the upper front with only minor smoothing.
Flavell, Carol A.; Sayers, Mark G. L.; Gordon, Susan J.; Lee, James B.
2013-01-01
The front row of a rugby union scrum consists of three players. The loose head prop, hooker and tight head prop. The objective of this study was to determine if known biomechanical risk factors for triceps surae muscle injury are exhibited in the lower limb of front row players during contested scrummaging. Eleven high performance front row rugby union players were landmarked bilaterally at the posterior superior iliac spine (PSIS), greater trochanter, lateral femoral epicondyle, midline of the calcaneus above the plantar aspect of the heel, midline lower leg 5cm and 20cm proximal to the lateral malleolus, at the axis of subtalar joint, lateral malleolus, and head of the fifth metatarsal. Players were video recorded during a series of 2 on 1 live scrummaging drills. Biomechanical three dimensional analysis identified large angular displacements, and increased peak velocities and accelerations at the ankle joint during attacking scrummaging drill techniques when in the stance phase of gait. This places the triceps surae as increased risk of injury and provides valuable information for training staff regarding injury prevention and scrum training practices for front row players. Key points Front rowers exhibited patterns of single leg weight bearing, in a position of greater ankle plantar flexion and knee extension at toe off during scrummaging, which is a risk position for TS injury. Front rowers also exhibited greater acceleration at the ankle, knee, and hip joints, and greater changes in ankle ROM from toe strike to toe off during attacking scrum drills. These reported accelerations and joint displacements may be risk factors for TS injury, as the ankle is accelerating into plantar flexion at final push off and the muscle is shortening from an elongated state. PMID:24149740
Flavell, Carol A; Sayers, Mark G L; Gordon, Susan J; Lee, James B
2013-01-01
The front row of a rugby union scrum consists of three players. The loose head prop, hooker and tight head prop. The objective of this study was to determine if known biomechanical risk factors for triceps surae muscle injury are exhibited in the lower limb of front row players during contested scrummaging. Eleven high performance front row rugby union players were landmarked bilaterally at the posterior superior iliac spine (PSIS), greater trochanter, lateral femoral epicondyle, midline of the calcaneus above the plantar aspect of the heel, midline lower leg 5cm and 20cm proximal to the lateral malleolus, at the axis of subtalar joint, lateral malleolus, and head of the fifth metatarsal. Players were video recorded during a series of 2 on 1 live scrummaging drills. Biomechanical three dimensional analysis identified large angular displacements, and increased peak velocities and accelerations at the ankle joint during attacking scrummaging drill techniques when in the stance phase of gait. This places the triceps surae as increased risk of injury and provides valuable information for training staff regarding injury prevention and scrum training practices for front row players. Key pointsFront rowers exhibited patterns of single leg weight bearing, in a position of greater ankle plantar flexion and knee extension at toe off during scrummaging, which is a risk position for TS injury.Front rowers also exhibited greater acceleration at the ankle, knee, and hip joints, and greater changes in ankle ROM from toe strike to toe off during attacking scrum drills.These reported accelerations and joint displacements may be risk factors for TS injury, as the ankle is accelerating into plantar flexion at final push off and the muscle is shortening from an elongated state.
NASA Astrophysics Data System (ADS)
Ioannou, Ioannis; Theodoridou, Magdalini; Modestou, Sevasti; Fournari, Revecca; Dagrain, Fabrice
2013-04-01
The characterization of material properties and the diagnosis of their state of weathering and conservation are three of the most important steps in the field of cultural heritage preservation. Several standardised experimental methods exist, especially for determining the material properties and their durability. However, they are limited in their application by the required size of test specimens and the controlled laboratory conditions needed to undertake the tests; this is especially true when the materials under study constitute immovable parts of heritage structures. The current use of other advanced methods of analysis, such as imaging techniques, in the aforementioned field of research offers invaluable results. However, these techniques may not always be accessible to the wider research community due to their complex nature and relatively high cost of application. This study presents innovative applications of two recently developed cutting techniques; the portable Drilling Resistance Measuring System (DRMS) and the scratch tool. Both methods are defined as micro-destructive, since they only destroy a very small portion of sample material. The general concept of both methods lies within the forces needed to cut a material by linear (scratch tool) or rotational (DRMS) cutting action; these forces are related to the mechanical properties of the material and the technological parameters applied on the tool. Therefore, for a given testing configuration, the only parameter influencing the forces applied is the strength of the material. These two techniques have been used alongside a series of standardised laboratory tests aiming at the correlation of various stone properties (density, porosity, dynamic elastic modulus and uniaxial compressive strength). The results prove the potential of both techniques in assessing the uniaxial compressive strength of stones. The scratch tool has also been used effectively to estimate the compressive strength of mud bricks. It therefore follows that both micro-destructive techniques may prove useful in the physico-mechanical characterization of materials which demand in-situ measurements or allow very limited sampling. Moreover, both techniques have been used, for the first time, to map the distribution of salts in building stone in the laboratory; micro-drilling was also applied in the same context in-situ. The results of the laboratory tests performed on limestone impregnated with sodium and magnesium sulfate confirm that both the scratch tool and the DRMS may successfully detect the location of the salt front, as they respond to pore clogging by salt crystals by providing increased scratching/drilling resistance values. Drilling and scratching of duplicate samples treated with a hydrophobic product show the sensitivity of both techniques as they clearly detect changes to the salt front location (i.e. cryptoflorescence) caused by surface treatments. Both techniques were also successful in highlighting the difference in the crystallisation location and pattern of magnesium sulphate and sodium chloride. In-situ application of the micro-drilling test demonstrated its potential for use in the assessment of masonry salt weathering; the results suggest that this technique may, in fact, be useful as a preventive measure against salt damage. Last but not least, both aforementioned novel micro-destructive techniques have been used to assess the effectiveness of commercially available consolidants. The results of the scratch tool have also been utilised to develop a tomography image of the samples under test. Scratching tomography may potentially be combined with in-situ micro-drilling tests to evaluate the effectiveness of consolidation treatments applied on monuments and historic buildings.
A Kinematic Analysis of the Jumping Front-Leg Axe-Kick in Taekwondo
Preuschl, Emanuel; Hassmann, Michaela; Baca, Arnold
2016-01-01
The jumping front-leg axe-kick is a valid attacking and counterattacking technique in Taekwondo competition (Streif, 1993). Yet, the existing literature on this technique is sparse (Kloiber et al., 2009). Therefore, the goal of this study was to determine parameters contributing significantly to maximum linear speed of the foot at impact. Parameters are timing of segment and joint angular velocity characteristics and segment lengths of the kicking leg. Moreover, we were interested in the prevalence of proximal-to-distal-sequencing. Three-dimensional kinematics of the kicks of 22 male Taekwondo-athletes (age: 23.3 ± 5.3 years) were recorded via a motion capturing system (Vicon Motion Systems Limited, Oxford, UK). The participants performed maximum effort kicks onto a rack-held kicking pad. Only the kick with the highest impact velocity was analysed, as it was assumed to represent the individual’s best performance. Significant Pearson correlations to impact velocity were found for pelvis tilt angular displacement (r = 0.468, p < 0.05) and for hip extension angular velocity (r = -0.446, p < 0.05) and for the timing of the minima of pelvis tilt velocity (r = -0.426, p < 0.05) and knee flexion velocity (r = -0.480, p < 0.05). Backward step linear regression analysis suggests a model consisting of three predictor variables: pelvis tilt angular displacement, hip flexion velocity at target contact and timing of pelvic tilt angular velocity minimum (adjusted R2 = 0.524). Results of Chi-Squared tests show that neither for the leg-raising period (χ2 = 2.909) of the technique, nor for the leg-lowering period a pattern of proximal-to-distal sequencing is prevalent (χ2 = 0.727). From the results we conclude that the jumping front-leg axe-kick does not follow a proximal-to-distal pattern. Raising the leg early in the technique and apprehending the upper body to be leant back during the leg-lowering period seems to be beneficial for high impact velocity. Furthermore, striking by extending the hip rather than by flexing the knee could raise impact velocity. Key points Angular velocity characteristics of the pelvis segment and the kicking leg’s hip and knee joint show no proximal-to-distal sequencing, neither for the leg-raising or leg-lowering period in a jumping front-leg axe-kick. Anthropometric parameters of taekwondo athlete’s do not influence their impact velocities. In order to raise the impact velocity in the jumping front-leg axe-kick an athlete should avoid tilting back with the torso. Instead, an upright position should be maintained. In the leg-lowering period, we suggest hitting the target by using hip extension with a rather straight knee, instead of flexing the knee. PMID:26957931
Women's health and women's leadership in academic medicine: hitting the same glass ceiling?
Carnes, Molly; Morrissey, Claudia; Geller, Stacie E
2008-11-01
The term "glass ceiling" refers to women's lack of advancement into leadership positions despite no visible barriers. The term has been applied to academic medicine for over a decade but has not previously been applied to the advancement of women's health. This paper discusses (1) the historical linking of the advances in women's health with women's leadership in academic medicine, (2) the slow progress of women into leadership in academic medicine, and (3) indicators that the advancement of women's health has stalled. We make the case that deeply embedded unconscious gender-based biases and assumptions underpin the stalled advancement of women on both fronts. We conclude with recommendations to promote progress beyond the apparent glass ceiling that is preventing further advancement of women's health and women leaders. We emphasize the need to move beyond "fixing the women" to a systemic, institutional approach that acknowledges and addresses the impact of unconscious, gender-linked biases that devalue and marginalize women and issues associated with women, such as their health.
NASA Astrophysics Data System (ADS)
Rouillard, A. P.; Plotnikov, I.; Pinto, R. F.; Tirole, M.; Lavarra, M.; Zucca, P.; Vainio, R.; Tylka, A. J.; Vourlidas, A.; De Rosa, M. L.; Linker, J.; Warmuth, A.; Mann, G.; Cohen, C. M. S.; Mewaldt, R. A.
2016-12-01
We study the link between an expanding coronal shock and the energetic particles measured near Earth during the ground level enhancement of 2012 May 17. We developed a new technique based on multipoint imaging to triangulate the three-dimensional (3D) expansion of the shock forming in the corona. It uses images from three vantage points by mapping the outermost extent of the coronal region perturbed by the pressure front. We derive for the first time the 3D velocity vector and the distribution of Mach numbers, M FM, of the entire front as a function of time. Our approach uses magnetic field reconstructions of the coronal field, full magnetohydrodynamic simulations and imaging inversion techniques. We find that the highest M FM values appear near the coronal neutral line within a few minutes of the coronal mass ejection onset; this neutral line is usually associated with the source of the heliospheric current and plasma sheet. We illustrate the variability of the shock speed, shock geometry, and Mach number along different modeled magnetic field lines. Despite the level of uncertainty in deriving the shock Mach numbers, all employed reconstruction techniques show that the release time of GeV particles occurs when the coronal shock becomes super-critical (M FM > 3). Combining in situ measurements with heliospheric imagery, we also demonstrate that magnetic connectivity between the accelerator (the coronal shock of 2012 May 17) and the near-Earth environment is established via a magnetic cloud that erupted from the same active region roughly five days earlier.
NASA Astrophysics Data System (ADS)
Etnoyer, Peter; Canny, David; Mate, Bruce R.; Morgan, Lance E.; Ortega-Ortiz, Joel G.; Nichols, Wallace J.
2006-02-01
Sea-surface temperature (SST) fronts are integral to pelagic ecology in the North Pacific Ocean, so it is necessary to understand their character and distribution, and the way these features influence the behavior of endangered and highly migratory species. Here, telemetry data from sixteen satellite-tagged blue whales ( Balaenoptera musculus) and sea turtles ( Caretta caretta, Chelonia mydas, and Lepidochelys olivacea) are employed to characterize 'biologically relevant' SST fronts off Baja California Sur. High residence times are used to identify presumed foraging areas, and SST gradients are calculated across advanced very high resolution radiometer (AVHRR) images of these regions. The resulting values are compared to classic definitions of SST fronts in the oceanographic literature. We find subtle changes in surface temperature (between 0.01 and 0.10 °C/km) across the foraging trajectories, near the lowest end of the oceanographic scale (between 0.03 and 0.3 °C/km), suggesting that edge-detection algorithms using gradient thresholds >0.10 °C/km may overlook pelagic habitats in tropical waters. We use this information to sensitize our edge-detection algorithm, and to identify persistent concentrations of subtle SST fronts in the Northeast Pacific Ocean between 2002 and 2004. The lower-gradient threshold increases the number of fronts detected, revealing more potential habitats in different places than we find with a higher-gradient threshold. This is the expected result, but it confirms that pelagic habitat can be overlooked, and that the temperature gradient parameter is an important one.
2017-10-01
perturbations in the energetic material to study their effects on the blast wave formation. The last case also makes use of the same PBX, however, the...configuration, Case A: Spore cloud located on the top of the charge at an angle 45 degree, Case B: Spore cloud located at an angle 45 degree from the charge...theoretical validation. The first is the Sedov case where the pressure decay and blast wave front are validated based on analytical solutions. In this test
Ultrafast semi-metallic layer formation in detonating nitromethane
NASA Astrophysics Data System (ADS)
Reed, Evan; Manaa, M. Riad; Fried, Laurence; Glaesemann, Kurt; Joannopoulos, John
2008-03-01
We present the first quantum molecular dynamics simulations behind a detonation front (up to 0.2 ns) of the explosive nitromethane (CH3NO2) represented by the density-functional-based tight-binding method (DFTB). This simulation is enabled by our recently developed multi-scale shock wave molecular dynamics technique (MSST) that opens the door to longer duration simulations by several orders of magnitude. The electronic density of states around the Fermi energy initially increases as metastable material states are produced but then later decreases, perhaps unexpectedly. These changes indicate that the shock front is characterized by an increase in optical thickness and conductivity followed by a reduction around 100 picoseconds behind the front. We find that a significant population of intermediate metastable molecules are charged and charged species play an important role in the density of states evolution. The transient transformation to a semi-metallic state can be understood within the Anderson picture of metallization.
A semi-metallic layer in detonating nitromethane
NASA Astrophysics Data System (ADS)
Reed, Evan; Manaa, Riad; Fried, Laurence; Glaesemann, Kurt; Joannopoulos, John
2007-06-01
We present the first ever glimpse behind a detonation front in a chemically reactive quantum molecular dynamics simulation (up to 0.2 ns) of the explosive nitromethane (CH3NO2) represented by the density-functional-based tight-binding method (DFTB). This simulation is enabled by our recently developed multi-scale shock wave molecular dynamics technique (MSST) that opens the door to longer duration simulations by several orders of magnitude. The electronic DOS around the Fermi energy initially increases as metastable material states are produced but then later decreases, perhaps unexpectedly. These changes indicate that the shock front is characterized by an increase in optical thickness followed by a reduction in optical thickness hundreds of picoseconds behind the front, explaining recent experimental observations. We find that a significant population of intermediate metastable molecules are charged and charged species play an important role in the density of states evolution and a possible Mott metal-insulator transition.
Lean-driven improvements slash wait times, drive up patient satisfaction scores.
2012-07-01
Administrators at LifePoint Hospitals, based in Brentwood, TN, used lean manufacturing techniques to slash wait times by as much as 30 minutes and achieve double-digit increases in patient satisfaction scores in the EDs at three hospitals. In each case, front-line workers took the lead on identifying opportunities for improvement and redesigning the patient-flow process. As a result of the new efficiencies, patient volume is up by about 25% at all three hospitals. At each hospital, the improvement process began with Kaizen, a lean process that involves bringing personnel together to flow-chart the current system, identify problem areas, and redesign the process. Improvement teams found big opportunities for improvement at the front end of the flow process. Key to the approach was having a plan up front to deal with non-compliance. To sustain improvements, administrators gather and disseminate key metrics on a daily basis.
NASA Technical Reports Server (NTRS)
Usab, William J., Jr.; Jiang, Yi-Tsann
1991-01-01
The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.
Retrocausation acting in the single-electron double-slit interference experiment
NASA Astrophysics Data System (ADS)
Hokkyo, Noboru
The single electron double-slit interference experiment is given a time-symmetric interpretation and visualization in terms of the intermediate amplitude of transition between the particle source and the detection point. It is seen that the retarded (causal) amplitude of the electron wave expanding from the source shows an advanced (retrocausal) bifurcation and merging in passing through the double-slit and converges towards the detection point as if guided by the advanced (retrocausal) wave from the detected electron. An experiment is proposed to confirm the causation-retrocausation symmetry of the electron behavior by observing the insensitivity of the interference pattern to non-magnetic obstacles placed in the shadows of the retarded and advanced waves appearing on the rear and front sides of the double-slit.
NASA Technical Reports Server (NTRS)
Lee, C. H.
1978-01-01
A 3-D finite element program capable of simulating the dynamic behavior in the vicinity of the impact point, together with predicting the dynamic response in the remaining part of the structural component subjected to high velocity impact is discussed. The finite algorithm is formulated in a general moving coordinate system. In the vicinity of the impact point contained by a moving failure front, the relative velocity of the coordinate system will approach the material particle velocity. The dynamic behavior inside the region is described by Eulerian formulation based on a hydroelasto-viscoplastic model. The failure front which can be regarded as the boundary of the impact zone is described by a transition layer. The layer changes the representation from the Eulerian mode to the Lagrangian mode outside the failure front by varying the relative velocity of the coordinate system to zero. The dynamic response in the remaining part of the structure described by the Lagrangian formulation is treated using advanced structural analysis. An interfacing algorithm for coupling CELFE with NASTRAN is constructed to provide computational capabilities for large structures.
In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J Y; Zhong, L; Wang, C M
2010-12-09
We report the creation of a nanoscale electrochemical device inside a transmission electron microscope—consisting of a single tin dioxide (SnO{sub 2}) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO{sub 2}) cathode—and the in situ observation of the lithiation of the SnO{sub 2} nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a “Medusa zone” containing a high density of mobile dislocations, which are continuously nucleated and absorbed at the moving front. This dislocation cloud indicates large in-plane misfitmore » stresses and is a structural precursor to electrochemically driven solid-state amorphization. Because lithiation-induced volume expansion, plasticity, and pulverization of electrode materials are the major mechanical effects that plague the performance and lifetime of high-capacity anodes in lithium-ion batteries, our observations provide important mechanistic insight for the design of advanced batteries.« less
Mackessy, Stephen P; Saviola, Anthony J
2016-11-01
Snake venoms represent an adaptive trophic response to the challenges confronting a limbless predator for overcoming combative prey, and this chemical means of subduing prey shows several dominant phenotypes. Many front-fanged snakes, particularly vipers, feed on various vertebrate and invertebrate prey species, and some of their venom components (e.g., metalloproteinases, cobratoxin) appear to have been selected for "broad-brush" incapacitation of different prey taxa. Using proteomic and genomic techniques, the compositional diversity of front-fanged snakes is becoming well characterized; however, this is not the case for most rear-fanged colubroid snakes. Because these species consume a high diversity of prey, and because venoms are primarily a trophic adaptation, important clues for understanding specific selective pressures favoring venom component composition will be found among rear-fanged snake venoms. Rear-fanged snakes typically (but not always) produce venoms with lower complexity than front-fanged snakes, and there are even fewer dominant (and, arguably, biologically most relevant) venom protein families. We have demonstrated taxon-specific toxic effects, where lizards and birds show high susceptibility while mammals are largely unaffected, for both Old World and New World rear-fanged snakes, strongly indicating a causal link between toxin evolution and prey preference. New data are presented on myotoxin a, showing that the extremely rapid paralysis induced by this rattlesnake toxin is specific for rodents, and that myotoxin a is ineffectual against lizards. Relatively few rear-fanged snake venoms have been characterized, and basic natural history data are largely lacking, but directed sampling of specialized species indicates that novel compounds are likely among these specialists, particularly among those species feeding on invertebrate prey such as scorpions and centipedes. Because many of the more than 2200 species of colubroid snakes are rear-fanged, and many possess a Duvernoy's venom gland, understanding the nature of their venoms is foundational to understanding venom evolution in advanced snakes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Choi, Eunho; Lim, Gyu-Ho
2016-04-01
Summer time front is one of the most significant phenomena over East Asia including China, Korea and Japan. Many efforts have been established to understand the nature of front. However, there was no research conducting identifying East Asia summer time fronts objectively. We have established objective front recognition method. The method follows next procedures : 1) We calculate vorticity on 850-hPa surface. 2) Any grid point that have horizontal gradient of equivalent potential temperature (EPT hereafter) on 850-hPa surface less than 4 'c / 100km set to zero. 3) Next, we smooth this field using 9-point smoothing technique. 4) Finally we extract the main axis of closed contour correspond to vorticity of 1.5 10-5s-5. Voronoi diagram used to extract this axis. We define this axis as front on 850-hPa pressure surface. We have applied the method on 1981-2010 ERA-Interim dataset. From the result, front frequency maximums are in around of East China Sea (34N, 122E), north (38N, 136E) and south (34N, 140E) of main island of Japan. Below 30N and above 40N, front frequency tends to decrease maybe due to decrease in the magnitude of gradient of EPT and the frequency of cyclonic weather disturbance. Two main regions affect the variability of East Asia Front Frequency. One is equatorial positive region especially over Taiwan (25N, 120E). The other one is East Sea next to Korea (40N, 135E). Humid warm air transported from southern China (20N-30N, 100E-110E) and dry cold air transported from northern China (30N-40N, 100E-110E) compressed by clockwise high system over Taiwan and counter-clockwise low system over East Sea). This compressed precipitation-making system or front moves by extratropical westerly and transported out to north-western Pacific. It looks like geopotential over Taiwan affected by tropical activity, especially vertical integration of temperature (VIT hereafter) over tropical region (30S-30N). When VIT is higher than normal, geopotential over Taiwan also higher than normal with correlation coefficient of 0.5 (1981-2010). Therefore, we can conclude that when VIT is higher than normal, front frequency is higher than normal. VIT is significantly related with ENSO variability. We will investigate how the tropical region activity affects the front frequency over East Asia.
NASA Astrophysics Data System (ADS)
Hernández-Cordero, Antonio I.; Hernández-Calvento, Luis; Espino, Emma Pérez-Chacón
2015-06-01
This paper explores the relationship between vegetation dynamics and dune mobility in an arid transgressive coastal dune system, specifically the dune field of Maspalomas (Gran Canaria, Canary Islands). The aim is to understand the strategies of colonization and survival that plant communities have developed in slacks that face dune advance. The relationship between plant colonization and dune migration was performed by following Tamarix canariensis and Traganum moquinii plants for several years. Morphological data about each individual as well as the distance of each plant to the dune were measured. A study of the colonization patterns developed by T. moquinii, T. canariensis, Cyperus laevigatus and Launaea arborescens communities was performed by analyzing the evolution of consolidated plant patches and adult plants in relation to the dune advance. This was achieved using digital orthophotos and spatial analysis from geographic information systems. Initiation of plant colonization over transgressive dunes occurs on both wet and dry slacks. The results show that both plant colonization and development of adult plants are largely related to dune mobility. Thus, survival of T. moquinii and T. canariensis plants under dune migration conditions is related to both distance to the dune front and plant height at the moment of burial. Distance from the dune front and plant height increases chance of survival. The dynamics of adult plants is also related to dune displacement rates. Thus, each community has different thresholds of resistance to mobility rates. The T. canariensis community withstands average rates higher than 3 m/year. Its arboreal structure allows this species to grow high enough to resist the advance of the dunes and burial. For the T. moquinii community, the population decreases gradually to eventually disappear when dune mobility rates exceed 4 m/year. The C. laevigatus community develops at dune mobility rates lower than 3 m/year, decreasing its surface area at higher rates. The L. arborescens community endures dune migration rates of at least 1.8 m/year. However, different distances between the dune front and the vegetated area also significant factor, because these can compensate for the effects of displacement rates. Thus, the closer a vegetated area is to a dune front, the lower the rates of displacement must be to produce a greater reduction in the surface vegetation. Plant communities present two patterns of plant colonization to resist burial by sand, one vertical and the other horizontal. The horizontal pattern is employed by C. laevigatus and L. arborescens communities and consists of locating new generations of plants in progressive alignment with the dune front migration. The vertical pattern is employed by the T. canariensis community, and consists of increasing the heights of the plants. The T. moquinii community can utilize both patterns because it reacts positively to some degree of burial since it is located in areas where the dunes reach different heights.
Comparing methods for modelling spreading cell fronts.
Markham, Deborah C; Simpson, Matthew J; Maini, Philip K; Gaffney, Eamonn A; Baker, Ruth E
2014-07-21
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and the asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performance of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of Silver-Free Silicon Photovoltaic Solar Cells with All-Aluminum Electrodes
NASA Astrophysics Data System (ADS)
Sun, Wen-Cheng
To date, the most popular and dominant material for commercial solar cells is crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out of all commercial solar cells. Although the potential of crystalline-Si solar cells in supplying energy demands is enormous, their future growth will likely be constrained by two major bottlenecks. The first is the high electricity input to produce crystalline-Si solar cells and modules, and the second is the limited supply of silver (Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching terawatt-scale deployment, which means the electricity produced by crystalline-Si solar cells would never fulfill a noticeable portion of our energy demands in the future. In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al) electroplating has been developed as an alternative metallization technique in the fabrication of crystalline-Si solar cells. The plating is carried out in a near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been found that dense, adherent Al deposits with resistivity in the high 10--6 Ω-cm range can be reproducibly obtained directly on Si substrates and nickel seed layers. An all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al back electrode, has been successfully demonstrated based on commercial p-type monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further optimization of the cell fabrication process, in particular a suitable patterning technique for the front silicon nitride layer, is expected to increase the efficiency of the cell to ~18%. This shows the potential of Al electroplating in cell metallization is promising and replacing Ag with Al as the front finger electrode is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susino, Roberto; Bemporad, Alessandro; Dolei, Sergio, E-mail: susino@oato.inaf.it, E-mail: sdo@oact.inaf.it
2014-07-20
A three-dimensional (3D) reconstruction of the 2007 May 20 partial-halo coronal mass ejection (CME) has been made using STEREO/EUVI and STEREO/COR1 coronagraphic images. The trajectory and kinematics of the erupting filament have been derived from Extreme Ultraviolet Imager (EUVI) image pairs with the 'tie-pointing' triangulation technique, while the polarization ratio technique has been applied to COR1 data to determine the average position and depth of the CME front along the line of sight. This 3D geometrical information has been combined for the first time with spectroscopic measurements of the O VI λλ1031.91, 1037.61 line profiles made with the Ultraviolet Coronagraphmore » Spectrometer (UVCS) on board the Solar and Heliospheric Observatory. Comparison between the prominence trajectory extrapolated at the altitude of UVCS observations and the core transit time measured from UVCS data made possible a firm identification of the CME core observed in white light and UV with the prominence plasma expelled during the CME. Results on the 3D structure of the CME front have been used to calculate synthetic spectral profiles of the O VI λ1031.91 line expected along the UVCS slit, in an attempt to reproduce the measured line widths. Observed line widths can be reproduced within the uncertainties only in the peripheral part of the CME front; at the front center, where the distance of the emitting plasma from the plane of the sky is greater, synthetic widths turn out to be ∼25% lower than the measured ones. This provides strong evidence of line broadening due to plasma heating mechanisms in addition to bulk expansion of the emitting volume.« less
ERIC Educational Resources Information Center
Hand, Thea
2012-01-01
In the last 20 years, educational technology has exploded into the schoolhouse as a result of the exponential advances being made on a global front in technology to include the Internet, personal computing, smart phones and mobile devices. Much research has been conducted regarding the advent of integrating this technology within the core…
Phil G. Cannon; Francis Ruegorong; Puis Liegel; Victor Guerrero; Robert L. Schlub; Leonard Sigrah; Maxon Nithan; Blair Charley; Sara M. Ashiglar; Ned B. Klopfenstein; Mee-Sook Kim; Bob Gavenda; Katie Friday; Erick Waguk; Yuko Ota; Norio Sahashi; Gibson Santos; Rodasio Samuel
2014-01-01
As a result of the forest pathology trip that occurred during September of 2013, advances were made on several important fronts, and future activities were also identified as critical for addressing threats to forest health in Micronesia. The purpose of this chapter is to list and briefly describe each of these activities.
Tree-species range shifts in a changing climate: detecting, modeling, assisting
Louis R. Iverson; Donald McKenzie
2013-01-01
In these times of rapidly changing climate, the science of detecting and modeling shifts in the ranges of tree species is advancing of necessity. We briefly review the current state of the science on several fronts. First, we review current and historical evidence for shifting ranges and migration. Next, we review two broad categories of methods, focused on the spatial...
J. J. Colbert; Phil Perry; Bradley Onken
1997-01-01
As the advancing front of the gypsy moth continues its spread throughout Ohio, silviculturists on the Wayne National Forest are preparing themselves for potential gypsy moth outbreaks in the coming decade. Through a cooperative effort between the Northeastern Forest Experiment Station and Northeastern Area, Forest Health Protection, the Wayne National Forest, Ohio, is...
Migration of tree species in New England based on elevational and regional analyses
Dale S. Solomon; William B. Leak
1994-01-01
With field measurements of migration patterns, we used two complementary approaches to examine tree-species movement after a documented increase in temperatures. The advancing-front theory was used to examine age trends over distance and elevation for both a mountain site in New Hampshire and a regional comparison across the State of Maine. Well-defined stationary...
Student Interns Enjoy Competing in the Jeopardy Tournament | Poster
Eighteen student interns from various high schools and colleges competed in the Scientific Library’s Ninth Annual Student Science Jeopardy Tournament on July 24, in the auditorium of Building 549, in front of a large crowd of people watching in person and remotely from the Advanced Technology Research Facility. Competing in teams of two, the nine teams played intently, trying
Current status of beech bark disease in New England and New York
Margaret Miller-Weeks
1983-01-01
The advancing front of beech bark disease in the northeast is now located in western New York and Pennsylvania. The disease is killing trees as far west as central New York. Cryptococcus fagisuga scale was found on nearly every tree examined during a northern New England disease survey. From that survey and Resource Evaluation plot data, beech...
Gribben, John G
2010-01-14
Although chronic lymphocytic leukemia (CLL) remains incurable, over the past decade there have been major advances in understanding the pathophysiology of CLL and in the treatment of this disease. This has led to greatly increased response rates and durations of response but not yet improved survival. Advances in the use of prognostic factors that identify patients at high risk for progression have led us to the question whether there is still a role for a "watch and wait" approach in asymptomatic high-risk patients or whether they should be treated earlier in their disease course. Questions remain, including, what is the optimal first-line treatment and its timing and is there any role of maintenance therapy or stem cell transplantation in this disease? CLL is a disease of the elderly and not all patients are eligible for aggressive up-front chemoimmunotherapy regimens, so what is the optimal treatment approach for more frail elderly patients? It is highly likely that our treatment approaches will continue to evolve as the results of ongoing clinical trials are released and that further improvements in the outcome of this disease will result from identification of therapies that target the underlying pathophysiology of CLL.
Staff nurse clinical leadership: a concept analysis.
Chávez, Eduardo C; Yoder, Linda H
2015-01-01
The purpose of this article is to provide a concept analysis of staff nurse clinical leadership (SNCL). A clear delineation of SNCL will promote understanding and encourage communication of the phenomenon. Clarification of the concept will establish a common understanding of the concept, and advance the practice, education, and research of this phenomenon. A review of the literature was conducted using several databases. The databases were searched using the following keywords: clinical leadership, nursing, bedside, staff nurse, front-line, front line, and leadership. The search yielded several sources; however, only those that focused on clinical leadership demonstrated by staff nurses in acute care hospital settings were selected for review. SNCL is defined as staff nurses who exert significant influence over other individuals in the healthcare team, and although no formal authority has been vested in them facilitates individual and collective efforts to accomplish shared clinical objectives. The theoretical definition for SNCL within the team context will provide a common understanding of this concept and differentiate it from other types of leadership in the nursing profession. This clarification and conceptualization of the concept will assist further research of the concept and advance its practical application in acute care hospital settings. © 2014 Wiley Periodicals, Inc.
Reconstructing the calibrated strain signal in the Advanced LIGO detectors
NASA Astrophysics Data System (ADS)
Viets, A. D.; Wade, M.; Urban, A. L.; Kandhasamy, S.; Betzwieser, J.; Brown, Duncan A.; Burguet-Castell, J.; Cahillane, C.; Goetz, E.; Izumi, K.; Karki, S.; Kissel, J. S.; Mendell, G.; Savage, R. L.; Siemens, X.; Tuyenbayev, D.; Weinstein, A. J.
2018-05-01
Advanced LIGO’s raw detector output needs to be calibrated to compute dimensionless strain h(t) . Calibrated strain data is produced in the time domain using both a low-latency, online procedure and a high-latency, offline procedure. The low-latency h(t) data stream is produced in two stages, the first of which is performed on the same computers that operate the detector’s feedback control system. This stage, referred to as the front-end calibration, uses infinite impulse response (IIR) filtering and performs all operations at a 16 384 Hz digital sampling rate. Due to several limitations, this procedure currently introduces certain systematic errors in the calibrated strain data, motivating the second stage of the low-latency procedure, known as the low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses finite impulse response (FIR) filtering to apply corrections to the output of the front-end calibration. It applies time-dependent correction factors to the sensing and actuation components of the calibrated strain to reduce systematic errors. The gstlal calibration pipeline is also used in high latency to recalibrate the data, which is necessary due mainly to online dropouts in the calibrated data and identified improvements to the calibration models or filters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Ding, B. J., E-mail: bjding@ipp.ac.cn; Li, M. H.
2014-02-15
The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of themore » density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.« less
NASA Technical Reports Server (NTRS)
Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.
2018-01-01
Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for Advanced Electric Propulsion System thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.
Ionization waves of arbitrary velocity driven by a flying focus
NASA Astrophysics Data System (ADS)
Palastro, J. P.; Turnbull, D.; Bahk, S.-W.; Follett, R. K.; Shaw, J. L.; Haberberger, D.; Bromage, J.; Froula, D. H.
2018-03-01
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.
STS-107 crew meet with media in front of grandstand at KSC
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-107 crew meet with the media in front of the grandstand. With the microphone is Payload Specialist Ilan Ramon, the first Israeli astronaut. Others, from left, are Commander Rick Husband, Pilot William 'Willie' McCool, Ramon, Mission Specialist David Brown, Payload Commander Michael Anderson, and Mission Specialists Laurel Clark and Kalpana Chawla. The crew just finished Terminal Countdown Demonstration Test activities, including a simulated launch countdown, in preparation for launch planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, P.C.; Tay, J.H.
The role of the unsaturated properties of sand as a drainage layer in a composite liner system for landfills is investigated. The effect of the unsaturated properties of coarse-grained soil on contaminant migration was evaluated by means of a series of simulations using a one-dimensional model of a two- and a three-layer soil liner system for advection and diffusion, respectively. The results showed that under seepage conditions, the effect of an unsaturated sand layer on the advancement of the concentration front was quite insignificant. The arrival time of the C/C{sub o} = 0.5 concentration front increased from 651 days formore » the case with no sand layer to approximately 951 days for the case with a 1.0-m sand layer. A steady-state flow condition was ultimately established in the sand, and this fact suggests that the capillary action might not be effective. For diffusion, the arrival time of the concentration front increased nonlinearly with a decrease in the degree of saturation and linearly with increasing depths of the sand layer. At a residual degree of saturation, the arrival times of the C/C{sub o} = 0.01 and 0.5 concentration front at the base of the 1-m sand layer were 26.9 and 877.4 years as compared to 1.52 and 2.62 years by advection, respectively. 17 refs., 11 figs.« less
NASA Astrophysics Data System (ADS)
Nugroho, Hendro; Harris, Ron; Lestariya, Amin W.; Maruf, Bilal
2009-12-01
New GPS measurements reveal that large sections of the SE Asian Plate are progressively accreting to the edge of the Australian continent by distribution of strain away from the deformation front to forearc and backarc plate boundary segments. The study was designed to investigate relative motions across suspected plate boundary segments in the transition from subduction to collision. The oblique nature of the collision provides a way to quantify the spatial and temporal distribution of strain from the deformation front to the back arc. The 12 sites we measured from Bali to Timor included some from an earlier study and 7 additional stations, which extended the epoch of observation to ten years at many sites. The resulting GPS velocity field delineates at least three Sunda Arc-forearc regions around 500 km in strike-length that shows different amounts of coupling to the Australian Plate. Movement of these regions relative to SE Asia increases from 21% to 41% to 63% eastward toward the most advanced stages of collision. The regions are bounded by the deformation front to the south, the Flores-Wetar backarc thrust system to the north, and poorly defined structures on the sides. The suture zone between the NW Australian continental margin and the Sunda-Banda Arcs is still evolving with more than 20 mm/yr of movement measured across the Timor Trough deformation front between Timor and Australia.
Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes
NASA Technical Reports Server (NTRS)
Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.
1999-01-01
Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.
NASA Astrophysics Data System (ADS)
Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami
We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.
An adaptive evolutionary multi-objective approach based on simulated annealing.
Li, H; Landa-Silva, D
2011-01-01
A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search toward the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well established multi-objective metaheuristic algorithms on both the (constrained) multi-objective knapsack problem and the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated.
Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?
Murlidhar, Vasudha; Rivera-Báez, Lianette; Nagrath, Sunitha
2016-09-01
The study of circulating tumor cells (CTCs) has been made possible by many technological advances in their isolation. Their isolation has seen many fronts, but each technology brings forth a new set of challenges to overcome. Microfluidics has been a key player in the capture of CTCs and their downstream analysis, with the aim of shedding light into their clinical application in cancer and metastasis. Researchers have taken diverging paths to isolate such cells from blood, ranging from affinity-based isolation targeting surface antigens expressed on CTCs, to label-free isolation taking advantage of the size differences between CTCs and other blood cells. For both major groups, many microfluidic technologies have reported high sensitivity and specificity for capturing CTCs. However, the question remains as to the superiority among these two isolation techniques, specifically to identify different CTC populations. This review highlights the key aspects of affinity and label-free microfluidic CTC technologies, and discusses which of these two would be the highest benefactor for the study of CTCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Expert models and modeling processes associated with a computer-modeling tool
NASA Astrophysics Data System (ADS)
Zhang, Baohui; Liu, Xiufeng; Krajcik, Joseph S.
2006-07-01
Holding the premise that the development of expertise is a continuous process, this study concerns expert models and modeling processes associated with a modeling tool called Model-It. Five advanced Ph.D. students in environmental engineering and public health used Model-It to create and test models of water quality. Using think aloud technique and video recording, we captured their computer screen modeling activities and thinking processes. We also interviewed them the day following their modeling sessions to further probe the rationale of their modeling practices. We analyzed both the audio-video transcripts and the experts' models. We found the experts' modeling processes followed the linear sequence built in the modeling program with few instances of moving back and forth. They specified their goals up front and spent a long time thinking through an entire model before acting. They specified relationships with accurate and convincing evidence. Factors (i.e., variables) in expert models were clustered, and represented by specialized technical terms. Based on the above findings, we made suggestions for improving model-based science teaching and learning using Model-It.
Stereoscopic display of 3D models for design visualization
NASA Astrophysics Data System (ADS)
Gilson, Kevin J.
2006-02-01
Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.
Issues in implementing a knowledge-based ECG analyzer for personal mobile health monitoring.
Goh, K W; Kim, E; Lavanya, J; Kim, Y; Soh, C B
2006-01-01
Advances in sensor technology, personal mobile devices, and wireless broadband communications are enabling the development of an integrated personal mobile health monitoring system that can provide patients with a useful tool to assess their own health and manage their personal health information anytime and anywhere. Personal mobile devices, such as PDAs and mobile phones, are becoming more powerful integrated information management tools and play a major role in many people's lives. We focus on designing a health-monitoring system for people who suffer from cardiac arrhythmias. We have developed computer simulation models to evaluate the performance of appropriate electrocardiogram (ECG) analysis techniques that can be implemented on personal mobile devices. This paper describes an ECG analyzer to perform ECG beat and episode detection and classification. We have obtained promising preliminary results from our study. Also, we discuss several key considerations when implementing a mobile health monitoring solution. The mobile ECG analyzer would become a front-end patient health data acquisition module, which is connected to the Personal Health Information Management System (PHIMS) for data repository.
Broadband metasurface holograms: toward complete phase and amplitude engineering
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-01-01
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519
Broadband metasurface holograms: toward complete phase and amplitude engineering.
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-09-12
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.
Experimental analysis of an oblique turbulent flame front propagating in a stratified flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galizzi, C.; Escudie, D.
2010-12-15
This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometrymore » and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)« less
NASA Astrophysics Data System (ADS)
Xu, Yi; Nieto, Karen; Teo, Steven L. H.; McClatchie, Sam; Holmes, John
2017-01-01
The association of albacore tuna distribution with subtropical fronts in the Northeast Pacific was examined on seasonal and interannual scales from 1982 to 2011. Spatial analyses were performed on commercial logbook data from US and Canadian troll and pole-and-line fisheries targeting albacore tuna that were matched with corresponding satellite images from the Advanced Very High Resolution Radiometer (AVHRR). Subtropical fronts were detected by deriving sea surface temperature (SST) gradients on large basin-scales and by using an improved version of the Cayula-Cornillon frontal detection algorithm. Based on our results, we suggest that areas with high albacore catch-per-unit-effort (CPUE) tend to occur in regions with high SST gradients, such as the North Pacific Transition Zone (NPTZ) and the North American coast. Approaching the North American coast along the NPTZ, SST gradients drop off substantially around 130°W before increasing rapidly near the coast, which corresponded to a similar pattern in albacore CPUE. In the NPTZ, the centroid of albacore CPUE showed a seasonal shift northwards in summer and southwards in fall, which coincided with seasonal spatial shifts of areas with high SST gradients. A similar pattern was found on an interannual scale, with the exception of several years with limited fishery data in the NPTZ due to changes in fishery operations. A fine-scale analysis of frontal locations suggested that areas with high albacore CPUE are associated with oceanic fronts, with the highest albacore CPUEs observed within 100 km of the nearest front. In addition, albacore distribution is related to frontal strength, with the highest CPUE found near fronts with high SST gradient values in the range of 0.12-0.16 °C km-1. Integrating our findings on the influence of frontal areas on albacore distribution and abundance in the NEPO should improve the standardization model used to derive abundance indices for North Pacific albacore stock assessments.
Three Dimensional Imaging of the Nucleon
NASA Astrophysics Data System (ADS)
More, Jai; Mukherjee, Asmita; Nair, Sreeraj
2018-05-01
We study the Wigner distributions of quarks and gluons in light-front dressed quark model using the overlap of light front wave functions (LFWFs). We take the target to be a dressed quark, this is a composite spin -1/2 state of quark dressed with a gluon. This state allows us to calculate the quark and gluon Wigner distributions analytically in terms of LFWFs using Hamiltonian perturbation theory. We analyze numerically the Wigner distributions of quark and gluon and report their nature in the contour plots. We use an improved numerical technique to remove the cutoff dependence of the Fourier transformed integral over \\varvec{Δ}_\\perp.
NASA Astrophysics Data System (ADS)
Gulamali, M. Y.; Saunders, J. H.; Jackson, M.; Pain, C. C.
2009-12-01
Recent work has demonstrated that downhole measurements of streaming potential, using electrodes mounted on the outside of insulated casing, may be used to inform production strategies in oil and gas reservoirs. However, spontaneous potentials due to thermoelectric and/or electrochemical effects may also be present during production and may contribute to the signal measured at the production well. We present a workflow to numerically model spontaneous potentials in the subsurface and ascertain their magnitude in oil reservoirs during production. Our results suggest that the injection of seawater, which typically has a different temperature and salinity to the formation brine, leads to the generation of both thermoelectric and electrochemical potential signals which may be measured at the production well. We observe a peak in the thermoelectric potential before and after the temperature front, with a change in sign occurring close to the midpoint of the front, and the signal decaying with distance from the front. The electrochemical potential has a similar profile, with a change in sign occurring close to the location of the salinity front. In both cases, the absolute magnitude of the signal is related to the overall temperature and/or salinity contrast between the injected fluids and the formation brine, and the magnitude of the thermoelectric or electrochemical coupling coefficient. The lag in the temperature front relative to the saturation front leads to a negligible thermoelectric potential signal at the production well until long after water breakthrough occurs. In contrast, the electrochemical potential contributes significantly to the spontaneous potential measured at the production well before the waterfront arrives, as the salinity front and the saturation front coincide. However, the dependency of the thermoelectric and electrochemical coupling coefficients upon temperature and/or salinity is still uncertain, especially at partial water saturation. We have used the maximum theoretical limit, in the case of the perfect membrane, to estimate these parameters. These results imply that measurements of the spontaneous potential at a production well will combine contributions from both streaming and electrochemical effects, and may be used to detect an advancing waterfront some time before water breakthrough occurs at the well. Moreover, inversion of the measured signals could be used to determine the water saturation in the vicinity of the well, and to regulate flow into the well using control valves in order to maintain or increase oil production.
NASA Astrophysics Data System (ADS)
Castelletti, A.; Pianosi, F.; Soncini-Sessa, R.; Antenucci, J. P.
2010-06-01
Improved data collection techniques as well as increasing computing power are opening up new opportunities for the development of sophisticated models that can accurately reproduce hydrodynamic and biochemical conditions of water bodies. While increasing model complexity is considered a virtue for scientific purposes, it is a definite disadvantage for management (engineering) purposes, as it limits the model applicability to what-if analysis over a few, a priori defined interventions. In the recent past, this has become a significant limitation, particularly considering recent advances in water quality rehabilitation technologies (e.g., mixers or oxygenators) for which many design parameters have to be decided. In this paper, a novel approach toward integrating science-oriented and engineering-oriented models and improving water quality planning is presented. It is based on the use of a few appropriately designed simulations of a complex process-based model to iteratively identify the multidimensional function (response surface) that maps the rehabilitation interventions into the objective function. On the basis of the response surface (RS), a greater number of interventions can be quickly evaluated and the corresponding Pareto front can be approximated. Interesting points on the front are then selected and the corresponding interventions are simulated using the original process-based model, thus obtaining new decision-objective samples to refine the RS approximation. The approach is demonstrated in Googong Reservoir (Australia), which is periodically affected by high concentrations of manganese and cyanobacteria. Results indicate that significant improvements could be observed by simply changing the location of the two mixers installed in 2007. Furthermore, it also suggests the best location for an additional pair of mixers.
Marshall, Rafael; Hunting, Katherine; McKay, Mary Pat
2010-01-01
This study used NHTSA NASS/CDS data to examine whether advancing age was associated with a higher incidence and severity of front airbag-related upper extremity injury (UEI). Using a retrospective cohort design we analyzed weighted data from 1998–2007 for. The study population consisted of lap/shoulder belted people over 16 years of age who were driving passenger vehicles with model years 1998–2003 and were involved in a frontal crash where their front airbag deployed. Drivers who were ejected, involved in a vehicle rollover, or accompanied by a passenger sitting directly behind them were omitted. The exposure variable was age and the outcome variables were UEI incidence and severity. Associations were adjusted for gender, seat track position, vehicle type, vehicle weight, intrusion, and delta-v. Logistic regressions were performed using SAS survey procedures to account for the complex survey design. Overall, 42% of drivers sustained an UEI. Advancing age was associated with a higher incidence (p<0. 0001) and severity (p<0. 0001) of UEI. Nineteen percent of drivers sustained an UEI related to the airbag. No significant differences in the incidence or severity of airbag-related UEI were found between young drivers and older driver age groups. The degree of severity due to airbag-related UEI was generally minor. The majority of airbag-related UEI appeared to shift slightly from abrasions to contusions with aging. These results indicate that UEI due to depowered airbag deployment is common but not disproportionately high among older drivers, and injury severity is generally minor across all age groups. PMID:21050604
Fire, Lava Flows, and Human Evolution
NASA Astrophysics Data System (ADS)
Medler, M. J.
2015-12-01
Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.
Synchoronous inter-hemispheric alpine glacier advances during the Late Glacial?
NASA Astrophysics Data System (ADS)
Bakke, Jostein; Paasche, Øyvind
2016-04-01
The termination of the last glaciation in both hemispheres was a period of rapid climate swings superimposed on the overall warming trend, resulting from large-scale reorganizations of the atmospheric and oceanic circulation patterns in both hemispheres. Environmental changes during the deglaciation have been inferred from proxy records, as well as by model simulations. Several oscillations took place both in northern and southern hemispheres caused by melt water releases such as during the Younger Dryas in north and the Antarctic Cold Reversal in south. However, a consensus on the hemispheric linkages through ocean and atmosphere are yet to be reached. Here we present a new multi-proxy reconstruction from a sub-annually resolved lake sediment record from Lake Lusvatnet in Arctic Norway compared with a new reconstruction from the same time interval at South Georgia, Southern Ocean, suggesting inter-hemispheric climate linkages during the Bølling/Allerød time period. Our reconstruction of the alpine glacier in the lake Lusvatnet catchment show a synchronous glacier advance with the Birch-hill moraine complex in the Southern Alps, New Zealand during the Intra Allerød Cooling period. We propose these inter hemispheric climate swings to be forced by the northward migration of the southern Subtropical Front during the Antarctic Cold Reversal. Such a northward migration of the Subtropical Front is shown in model simulation and in palaeorecords to reduce the Agulhas leakage impacting the strength of the Atlantic meridional overturning circulation. We simply ask if this can be the carrier of rapid climate swings from one hemisphere to another? Our high-resolution reconstructions provide the basis for an enhanced understanding of the tiny balance between migration of the Subtropical Front in the Southern Ocean and the teleconnection to northern hemisphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouillard, A. P.; Plotnikov, I.; Pinto, R. F.
2016-12-10
We study the link between an expanding coronal shock and the energetic particles measured near Earth during the ground level enhancement of 2012 May 17. We developed a new technique based on multipoint imaging to triangulate the three-dimensional (3D) expansion of the shock forming in the corona. It uses images from three vantage points by mapping the outermost extent of the coronal region perturbed by the pressure front. We derive for the first time the 3D velocity vector and the distribution of Mach numbers, M {sub FM}, of the entire front as a function of time. Our approach uses magneticmore » field reconstructions of the coronal field, full magnetohydrodynamic simulations and imaging inversion techniques. We find that the highest M {sub FM} values appear near the coronal neutral line within a few minutes of the coronal mass ejection onset; this neutral line is usually associated with the source of the heliospheric current and plasma sheet. We illustrate the variability of the shock speed, shock geometry, and Mach number along different modeled magnetic field lines. Despite the level of uncertainty in deriving the shock Mach numbers, all employed reconstruction techniques show that the release time of GeV particles occurs when the coronal shock becomes super-critical ( M {sub FM} > 3). Combining in situ measurements with heliospheric imagery, we also demonstrate that magnetic connectivity between the accelerator (the coronal shock of 2012 May 17) and the near-Earth environment is established via a magnetic cloud that erupted from the same active region roughly five days earlier.« less
Crack growth monitoring at CFRP bond lines
NASA Astrophysics Data System (ADS)
Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.
2016-02-01
With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.
El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed S; Deen, M Jamal
2015-05-07
The demand for radio frequency (RF) transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA) and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor) transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN).
Modelling chemical depletion profiles in regolith
Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.
2008-01-01
Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.
Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit–Receive Systems
NASA Astrophysics Data System (ADS)
Kiayani, Adnan; Waheed, Muhammad Zeeshan; Anttila, Lauri; Abdelaziz, Mahmoud; Korpi, Dani; Syrjala, Ville; Kosunen, Marko; Stadius, Kari; Ryynanen, Jussi; Valkama, Mikko
2018-05-01
This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.
Swiftly moving focus points and forming shapes through the scattering media
NASA Astrophysics Data System (ADS)
Tran, Vinh; Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong
2018-02-01
Propagation of light through scattering media such as ground glass or biological tissue limits the quality and intensity of focusing point. Wave front shaping technique which uses spatial light modulator (SLM) devices to reshape the field profile of incoming light, is considered as one of the most effective and convenient methods. Advanced biomedical or manufacturing applications require drawing various contours or shapes quickly and precisely. However, creating each shape behind the scattering medium needs different phase profiles, which are time consuming to optimize or measure. Here, we demonstrate a technique to draw various shapes or contours behind the scattering medium by swiftly moving the focus point without any mechanical movements. Our technique relies on the existence of speckle correlation property in scattering media, also known as optical memory effect. In our procedure, we first modulate the phase-only SLM to create the focus point on the other side of scattering medium. Then, we digitally shift the preoptimized phase profile on the SLM and ramp it to tilt the beam accordingly. Now, the incoming beam with identical phase profile shines on the same scattering region at a tilted angle to regenerate the focus point at the desired position due to memory effect. Moreover, with linear combination of different field patterns, we can generate a single phase profile on SLM to produce two, three or more focus points simultaneously on the other side of a turbid medium. Our method could provide a useful tool for prominent applications such as opto-genetic excitation, minimally invasive laser surgery and other related fields.
Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers
NASA Astrophysics Data System (ADS)
Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.
2009-07-01
This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.
Physical Modeling Techniques for Missile and Other Protective Structures
1983-06-29
uniaxial load only. In general , axial thrust was applied with an: initial eccentricity of zero on the specimen end. Sixteen different combinations of Pa...conditioning electronics and cabling schemes is included. The techniques described generally represent current approaches at the Civil Engineering Research...at T- zero and stopping when a pulse is generated by the pi-ezoelectric disc on arrival of! the detonation wave front. All elapsed time data is stored
Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way
2015-01-01
destroyers USS Momsen (DDG 92) and USS Preble (DDG 88) are underway in formation. U.S. Navy photo Front cover: Ingalls Shipbuilding welding photo...applies a variety of innovative welding technologies to address the challenges associated with joining weapon system components. Joining Technologies...friction stir welding process to manufacture edge-cooled naval electronic cold plate assemblies. The modular, high- performance, and scalable
2007-12-01
persuaded the Israelis to halt their advance and move to reinforce the war’s Southern Front, where the Egyptians were about to attempt their breakout...small, equipment was not up to date, and additionally, everyone in the community believed that just by having the Egyptian and the Syrian armies...militaries and governments. Egyptian President Gamal ’Abd Al- Nassir’s resignation was a direct result.22 There were similar movements in Syria, and
Fabrication of Highly Ordered Anodic Aluminium Oxide Templates on Silicon Substrates
2007-01-01
highly ordered anodic aluminium oxide ( AAO ) templates of unprecedented pore uniformity directly on Si, enabled by new advances on two fronts – direct...field emitter, sensors, oscillators and photodetectors. 15. SUBJECT TERMS Anodic aluminum oxide , template-assisted nanofabrication, carbon nanotube...Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer’, Synth. Met
Building America Case Study: Residential Mechanical Precooling, Roseville, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. German and M. Hoeschele
2017-05-01
Precooling is an operational strategy with potentially no up-front cost that cools occupied spaces earlier in the day to minimize or avoid afternoon air conditioner operation. In its simplest form, precooling can be implemented by scheduling air conditioner operation to reduce thermostat setpoints between 2 degrees and 6 degrees F below typical comfort settings in advance of the on-peak time period.
Building America Case Study: Residential Mechanical Precooling, Roseville, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-08
Precooling is an operational strategy with potentially no up-front cost that cools occupied spaces earlier in the day to minimize or avoid afternoon air conditioner operation. In its simplest form, precooling can be implemented by scheduling air conditioner operation to reduce thermostat setpoints between 2 degrees and 6 degrees F below typical comfort settings in advance of the on-peak time period.
Solidification of basaltic magma during flow in a dike.
Delaney, P.T.; Pollard, D.D.
1982-01-01
A model for time-dependent unsteady heat transfer from magma flowing in a dyke is developed. The ratio of solidification T to magma T is the most important parameter. Observations of volcanic fissure eruptions and study of dykes near Ship Rock, New Mexico, show that the low T at dyke margins and the rapidly advancing solidification front predicted by the model are qualitatively correct.-M.S.
Measurements for the BETC in-situ combustion experiment. [Post test surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayland, J.R.; Bartel, L.C.
The Bartlesville Energy Technology Center (BETC) in situ combustion pilot project near Bartlette, Kansas, was studied using controlled source audio-magnetotelluric (CSAMT) mapping, thermal gravimetric analysis (TGA), conventional geophysical logging and modeling of the fireflood. Measurements of formation resistivity changes induced by in situ combustion indicate that CSAMT resistivity maps should show an increase in apparent resistivity. The substantial decrease of apparent resistivity measured within the five spot pattern indicated a complex sequence of events. Using the results from the CSAMT surveys the fire front was located and posttest core samples were obtained. The posttest core samples were examined using TGAmore » techniques, and using information from combustion tube runs as standards, the location of the fire front in the core samples from the posttest holes was inferred. Models of the reservoir in situ combustion process were developed to help analyze the field results. The combustion kinematics, when used in conjunction with CSAMT and TGA techniques, indicated that considerable bypass of injected air occurred with an influx of brine into previously burned zones. This experiment offered an opportunity to integrate several new techniques into a systematic study of a difficult problem.« less
NASA Astrophysics Data System (ADS)
Jarvis, S.; Hargrave, G. K.
2006-01-01
Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.
Advancing innovation in health care leadership: a collaborative experience.
Garcia, Victor H; Meek, Kevin L; Wilson, Kimburli A
2011-01-01
The changing framework of today's health care system requires leaders to be increasingly innovative in how they approach their daily functions and responsibilities. Sustaining and advancing a level of innovation that already exists can be challenging for health care administrators with the demands of time and resource limitations. Using collaboration to bring new-age teaching and disciplines to front-line leadership, one hospital was able to reinvigorate a culture of innovation through multiple levels and disciplines of the organization. The Innovation Certification Course provided nursing leaders and other managers' an evidence-drive approach, new principles and useful strategies of innovative leadership and graduate program education.
Preliminary flight test results from the advanced photovoltaic experiment
NASA Technical Reports Server (NTRS)
Brinker, David J.; Hickey, John R.
1990-01-01
The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight, limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.
Preliminary results from the advanced photovoltaic experiment flight test
NASA Technical Reports Server (NTRS)
Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.
1990-01-01
The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.
Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator.
Servin, M; Malacara, D; Rodriguez-Vera, R
1994-05-01
A recently developed technique for continuous-phase determination of interferograms with a digital phase-locked loop (PLL) is applied to the null testing of aspheres. Although this PLL demodulating scheme is also a synchronous or direct interferometric technique, the separate unwrapping process is not explicitly required. The unwrapping and the phase-detection processes are achieved simultaneously within the PLL. The proposed method uses a computer-generated holographic compensator. The holographic compensator does not need to be printed out by any means; it is calculated and used from the computer. This computer-stored compensator is used as the reference signal to phase demodulate a sample interferogram obtained from the asphere being tested. Consequently the demodulated phase contains information about the wave-front departures from the ideal computer-stored aspheric interferogram. Wave-front differences of ~ 1 λ are handled easily by the proposed PLL scheme. The maximum recorded frequency in the template's interferogram as well as in the sampled interferogram are assumed to be below the Nyquist frequency.
Interface fluctuations during rapid drainage
NASA Astrophysics Data System (ADS)
Ayaz, Monem; Toussaint, Renaud; Schäfer, Gerhard; Jørgen Måløy, Knut; Moura, Marcel
2017-04-01
We experimentally study the interface dynamics of an immiscible fluid as it invades a monolayer of saturated porous medium through rapid drainage. The seemingly stable and continuous motion of the interface at macroscale, involves numerous abrupt pore-scale jumps and local reconfigurations of the interface. By computing the velocity fluctuations along the invasion front from sequences of images captured at high frame rate, we are able to study both the local and global behavior. The latter displays an intermittent behavior with power-law distributed avalanches in size and duration. As the system is drained potential surface energy is stored at the interface up to a given threshold in pressure. The energy released generates elastic waves at the confining plate, which we detect using piezoelectric type acoustic sensors. By detecting pore-scale events emanating from the depinning of the interface, we look to develop techniques for localizing the displacement front. To assess the quality of these techniques, optical monitoring is done in parallel using a high speed camera.
Methodology for interpretation of SST retrievals using the AVHRR split window algorithm
NASA Technical Reports Server (NTRS)
Barbieri, R. W.; Mcclain, C. R.; Endres, D. L.
1983-01-01
Intercomparisons of sea surface temperature (SST) products derived from the operational NOAA-7 AVHRR-II algorithm and in situ observations are made. The 1982 data sets consist of ship survey data during the winter from the Mid-Atlantic Bight (MAB), ship and buoy measurements during April and September in the Gulf of Mexico and shipboard observations during April off the N.W. Spanish coast. The analyses included single pixel comparisons and the warmest pixel technique for 2 x 2 pixel and 10 x 10 pixel areas. The reason for using multi-pixel areas was for avoiding cloud contaminated pixels in the vicinity of the field measurements. Care must be taken when applying the warmest pixel technique near oceanic fronts. The Gulf of Mexico results clearly indicate a persistent degradation in algorithm accuracy due to El Chichon aerosols. The MAB and Spanish data sets indicate that very accurate estimates can be achieved if care is taken to avoid clouds and oceanic fronts.
NASA Astrophysics Data System (ADS)
Song, Sen; McCune, Robert C.; Shen, Weidian; Wang, Yar-Ming
One task under the U.S. Automotive Materials Partnership (USAMP) "Magnesium Front End Research and Development" (MFERD) Project has been the evaluation of methodologies for the assessment of protective capability for a variety of proposed protection schemes for this hypothesized multi-material, articulated structure. Techniques which consider the entire protection system, including both pretreatments and topcoats are of interest. In recent years, an adaptation of the classical electrochemical impedance spectroscopy (EIS) approach using an intermediate cathodic DC polarization step (viz. AC/DC/AC) has been employed to accelerate breakdown of coating protection, specifically at the polymer-pretreatment interface. This work reports outcomes of studies to employ the AC/DC/AC approach for comparison of protective coatings to various magnesium alloys considered for front end structures. In at least one instance, the protective coating system breakdown could be attributed to the poorer intrinsic corrosion resistance of the sheet material (AZ31) relative to die-cast AM60B.
Modulation of Polarization for Phase Extraction in Holographic Interferometry with Two References
NASA Astrophysics Data System (ADS)
Rodriguez-Zurita, G.; Vázquez-Castillo, J.-F.; Toto-Arellano, N.-I.; Meneses-Fabian, C.; Jiménez-Montero, L.-E.
2010-04-01
Heterodyne holographic interferometry allows high accuracy for phase-difference extraction between two wave fronts, especially when they are previously recorded in the same recording medium. In part, this is because the wave fronts can be affected by the recording process in a very similar way. The double reconstruction of a double-exposure hologram with two independent references results in a two-beam holographic interferometer with an arm conveying a wave modulated in frequency when using heterodyne techniques. The heterodyne frequency has been usually introduced with a plane mirror attached to a piezo-electric stack driven with a suitable variable power supply. For holographic interferometry, however, less attention has been devoted to alternative phase retrieval variants as, for example, phase-shifting with modulation of polarization or Fourier methods. In this work, we propose and demonstrate the basic capabilities of modulation of polarization performing as a phase-shifting technique for holographic interferometry with two references in a phase-stepping scheme. Experimental results are provided.
NASA Astrophysics Data System (ADS)
Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.
2014-12-01
The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances, a great challenge still remains in the development of new algorithms for more accurate techniques for 3D point cloud treatment (e.g. filtering, segmentation, etc.) aiming to improve rock slope characterization and monitoring, a series of exciting research findings are expected in the forthcoming years.
Brown, Julie; Bilston, Lynne E
2014-01-01
To compare the pattern of injuries to front and rear seat occupants and test the hypothesis that rear seat passengers of different ages sustain different patterns of injury. Patients admitted to a hospital following involvement in a crash in New South Wales (NSW) Australia between 2005 and 2007 were identified using International Classification of Diseases (10th edition [ICD10]) codes. Hospital admissions data were linked with NSW police crash data using probabilistic techniques. The profiles and patterns of injury of front and rear seat passengers were compared. Logistic regression was used to examine how age influenced the pattern of injury among rear seat passengers. Sixty-three percent of hospital admissions were linked with police records. One in 5 passengers were rear seat passengers. There were more unrestrained occupants in the rear (7%) compared to drivers (3%) and front seat passengers (2%). Younger (9-15 years) injured passengers were seated in the rear more often than in the front passenger position and older injured passengers (>50 years) were seated more often in the front passenger position than in the rear (15% rear compared to 5% front aged 9-15 years; 22% rear compared to 37% front aged >50 years; χ(2), P < .001). There were proportionally more fatal injuries among rear seat passengers (10%) than among drivers (5%) and front seat passengers (6%), and the pattern of injury between front and rear passengers also varied. Rear seat passengers had more head and abdominal injuries and fewer thoracic and knee/lower leg injuries than front seat passengers. After adjusting for vehicle age, restraint status, travel speed, and whether or not a fatality occurred in the crash, older (>50 years) rear passengers had 6.3 times the odds of sustaining thoracic injuries (95% confidence interval [CI], 2.6-15.0) and lower odds (odds ratio [OR] = 0.4, 95% CI, 0.2-0.9) of sustaining abdominal/lumbar injuries than the youngest occupants (9-15 years).The odds of sustaining a head injury did not vary with age, and the odds of sustaining thoracic, abdominal, or lower extremity injuries did not differ significantly between rear seat passengers aged 16-50 years and 9-15 years. The findings suggest that there is a need for enhanced protection for rear seat passengers, because they have proportionally more fatal injuries than front-seated occupants. The frequency of abdominal injury and the differences between injury patterns observed in front seat passengers suggests a potential benefit from adding abdominal injury risk assessment to rear seat occupant protection test protocols. There is also scope to improve chest protection for older rear seat passengers.
A novel pulse height analysis technique for nuclear spectroscopic and imaging systems
NASA Astrophysics Data System (ADS)
Tseng, H. H.; Wang, C. Y.; Chou, H. P.
2005-08-01
The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.
Turbine blade tip durability analysis
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Laflen, J. H.; Spamer, G. T.
1981-01-01
An air-cooled turbine blade from an aircraft gas turbine engine chosen for its history of cracking was subjected to advanced analytical and life-prediction techniques. The utility of advanced structural analysis techniques and advanced life-prediction techniques in the life assessment of hot section components are verified. Three dimensional heat transfer and stress analyses were applied to the turbine blade mission cycle and the results were input into advanced life-prediction theories. Shortcut analytical techniques were developed. The proposed life-prediction theories are evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mériaux, C. A., E-mail: cameriaux@fc.ul.pt; Kurz-Besson, C. B.; Zemach, T.
In this study, we investigate the motion of particulate gravity currents in a horizontal V-shaped channel. The particulate currents consisted of particles whose size varied between 0 and 100 μm but whose mean size increased. Particles were poorly sorted as the variance of the grain size distributions varied between 50 and 200. While the phases of propagation of homogeneous currents in such a geometry have been studied in the literature, this study considers the effects of the grain size on the propagation. The distance of propagation and front velocity of full-depth high-Reynolds-number lock-release experiments and shallow-water equation simulations were analyzedmore » as the mean grain size of the initial particle distributions, defined by mass, was increased from 19 to 58 μm. Similar to the homogeneous currents, three consecutive phases of the front velocity could be identified but their characteristics and extent depend on the particle size. The initial phase, in particular, depends on a dimensionless settling number β that is defined as the ratio of two characteristic time scales, the propagation time x{sub 0}/U, where U is the scale for the front speed and x{sub 0} the lock length, and the settling time h{sub 0}/v{sub s}, where v{sub s} is the scale for the settling velocity and h{sub 0} the initial height of the current. For dimensionless settling numbers less than 0.001, the initial phase is characterized by a constant velocity for over about 6-7 lock lengths that is alike the initial slumping phase of perfectly constant velocity of the homogeneous currents. For dimensionless settling numbers greater than 0.001 and less than 0.015, the initial phase is no longer characterized by a constant velocity but an almost constant velocity for over about a similar 6-7 lock lengths. For dimensionless settling numbers greater than 0.015, however, as such, this phase is no longer seen. This initial phase is followed by a continuous decrease of the front advance, which results from the sedimentation of the particles. Unlike the homogeneous currents, this phase is a non-self-similar propagation. This phase is ended by a viscosity-dominated phase appearing to vary as ∼t{sup 1/7}. The good agreement between the front advance of the experiments and shallow-water equation simulations demonstrates that the mean size by mass is a fairly good proxy of poorly sorted particles.« less
Women's Health and Women's Leadership in Academic Medicine: Hitting the Same Glass Ceiling?
Morrissey, Claudia; Geller, Stacie E.
2008-01-01
Abstract The term “glass ceiling” refers to women's lack of advancement into leadership positions despite no visible barriers. The term has been applied to academic medicine for over a decade but has not previously been applied to the advancement of women's health. This paper discusses (1) the historical linking of the advances in women's health with women's leadership in academic medicine, (2) the slow progress of women into leadership in academic medicine, and (3) indicators that the advancement of women's health has stalled. We make the case that deeply embedded unconscious gender-based biases and assumptions underpin the stalled advancement of women on both fronts. We conclude with recommendations to promote progress beyond the apparent glass ceiling that is preventing further advancement of women's health and women leaders. We emphasize the need to move beyond “fixing the women” to a systemic, institutional approach that acknowledges and addresses the impact of unconscious, gender-linked biases that devalue and marginalize women and issues associated with women, such as their health. PMID:18954235
NASA Astrophysics Data System (ADS)
Moebius, Franziska; Or, Dani
2014-05-01
The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.
Ionization waves of arbitrary velocity driven by a flying focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palastro, J. P.; Turnbull, D.; Bahk, S. -W.
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. For this study, we present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionizationmore » wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.« less
Ionization waves of arbitrary velocity driven by a flying focus
Palastro, J. P.; Turnbull, D.; Bahk, S. -W.; ...
2018-03-01
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. For this study, we present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionizationmore » wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.« less
Next Generation Security for the 10,240 Processor Columbia System
NASA Technical Reports Server (NTRS)
Hinke, Thomas; Kolano, Paul; Shaw, Derek; Keller, Chris; Tweton, Dave; Welch, Todd; Liu, Wen (Betty)
2005-01-01
This presentation includes a discussion of the Columbia 10,240-processor system located at the NASA Advanced Supercomputing (NAS) division at the NASA Ames Research Center which supports each of NASA's four missions: science, exploration systems, aeronautics, and space operations. It is comprised of 20 Silicon Graphics nodes, each consisting of 512 Itanium II processors. A 64 processor Columbia front-end system supports users as they prepare their jobs and then submits them to the PBS system. Columbia nodes and front-end systems use the Linux OS. Prior to SC04, the Columbia system was used to attain a processing speed of 51.87 TeraFlops, which made it number two on the Top 500 list of the world's supercomputers and the world's fastest "operational" supercomputer since it was fully engaged in supporting NASA users.
Numerical Modeling of Turbulent Combustion
NASA Technical Reports Server (NTRS)
Ghoneim, A. F.; Chorin, A. J.; Oppenheim, A. K.
1983-01-01
The work in numerical modeling is focused on the use of the random vortex method to treat turbulent flow fields associated with combustion while flame fronts are considered as interfaces between reactants and products, propagating with the flow and at the same time advancing in the direction normal to themselves at a prescribed burning speed. The latter is associated with the generation of specific volume (the flame front acting, in effect, as the locus of volumetric sources) to account for the expansion of the flow field due to the exothermicity of the combustion process. The model was applied to the flow in a channel equipped with a rearward facing step. The results obtained revealed the mechanism of the formation of large scale turbulent structure in the wake of the step, while it showed the flame to stabilize on the outer edges of these eddies.
2014-04-15
NOAA's GOES-13 satellite saw a large pesky front, one that stretched from Maine to Louisiana on April 13 at 16:15 UTC/12:15 p.m. EDT to April 16 at 12:15 p.m. EDT. This weather pattern did not bode well for people who wanted to see the lunar eclipse on April 15. The GOES-13 satellite images and animations are created at NASA/NOAA's GOES Project at the NASA Goddard Space Flight Center, Greenbelt, Md. Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Deflectometry using portable devices
NASA Astrophysics Data System (ADS)
Butel, Guillaume P.; Smith, Greg A.; Burge, James H.
2015-02-01
Deflectometry is a powerful metrology technique that uses off-the-shelf equipment to achieve nanometer-level accuracy surface measurements. However, there is no portable device to quickly measure eyeglasses, lenses, or mirrors. We present an entirely portable new deflectometry technique that runs on any Android™ smartphone with a front-facing camera. Our technique overcomes some specific issues of portable devices like screen nonlinearity and automatic gain control. We demonstrate our application by measuring an amateur telescope mirror and simulating a measurement of the faulty Hubble Space Telescope primary mirror. Our technique can, in less than 1 min, measure surface errors with accuracy up to 50 nm RMS, simply using a smartphone.
NASA Astrophysics Data System (ADS)
Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.
2017-09-01
Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.
Three-dimensional tracking for efficient fire fighting in complex situations
NASA Astrophysics Data System (ADS)
Akhloufi, Moulay; Rossi, Lucile
2009-05-01
Each year, hundred millions hectares of forests burn causing human and economic losses. For efficient fire fighting, the personnel in the ground need tools permitting the prediction of fire front propagation. In this work, we present a new technique for automatically tracking fire spread in three-dimensional space. The proposed approach uses a stereo system to extract a 3D shape from fire images. A new segmentation technique is proposed and permits the extraction of fire regions in complex unstructured scenes. It works in the visible spectrum and combines information extracted from YUV and RGB color spaces. Unlike other techniques, our algorithm does not require previous knowledge about the scene. The resulting fire regions are classified into different homogenous zones using clustering techniques. Contours are then extracted and a feature detection algorithm is used to detect interest points like local maxima and corners. Extracted points from stereo images are then used to compute the 3D shape of the fire front. The resulting data permits to build the fire volume. The final model is used to compute important spatial and temporal fire characteristics like: spread dynamics, local orientation, heading direction, etc. Tests conducted on the ground show the efficiency of the proposed scheme. This scheme is being integrated with a fire spread mathematical model in order to predict and anticipate the fire behaviour during fire fighting. Also of interest to fire-fighters, is the proposed automatic segmentation technique that can be used in early detection of fire in complex scenes.
Numerical Modeling of Liquid-Vapor Phase Change
NASA Technical Reports Server (NTRS)
Esmaeeli, Asghar; Arpaci, Vedat S.
2001-01-01
We implemented a two- and three-dimensional finite difference/front tracking technique to solve liquid-vapor phase change problems. The mathematical and the numerical features of the method were explained in great detail in our previous reports, Briefly, we used a single formula representation which incorporated jump conditions into the governing equations. The interfacial terms were distributed as singular terms using delta functions so that the governing equations would be the same as conventional conservation equations away from the interface and in the vicinity of the interface they would provide correct jump conditions. We used a fixed staggered grid to discretize these equations and an unstructured grid to explicitly track the front. While in two dimensions the front was simply a connection of small line segments, in three dimensions it was represented by a connection of small triangular elements. The equations were written in conservative forms and during the course of computations we used regriding to control the size of the elements of the unstructured grid. Moreover, we implemented a coalescence in two dimensions which allowed the merging of different fronts or two segments of the same front when they were sufficiently close. We used our code to study thermocapillary migration of bubbles, burst of bubbles at a free surface, buoyancy-driven interactions of bubbles, evaporation of drops, rapid evaporation of an interface, planar solidification of an undercooled melt, dendritic solidification, and a host of other problems cited in the reference.
Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, B.; Lee, S.; Westferro, F.
The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less
Pelvic rotation torque during fast-pitch softball hitting under three ball height conditions.
Iino, Yoichi; Fukushima, Atsushi; Kojima, Takeji
2014-08-01
The purpose of this study was to investigate the relevance of hip joint angles to the production of the pelvic rotation torque in fast-pitch softball hitting and to examine the effect of ball height on this production. Thirteen advanced female softball players hit stationary balls at three different heights: high, middle, and low. The pelvic rotation torque, defined as the torque acting on the pelvis through the hip joints about the pelvic superior-inferior axis, was determined from the kinematic and force plate data using inverse dynamics. Irrespective of the ball heights, the rear hip extension, rear hip external rotation, front hip adduction, and front hip flexion torques contributed to the production of pelvic rotation torque. Although the contributions of the adduction and external rotation torques at each hip joint were significantly different among the ball heights, the contributions of the front and rear hip joint torques were similar among the three ball heights owing to cancelation of the two torque components. The timings of the peaks of the hip joint torque components were significantly different, suggesting that softball hitters may need to adjust the timings of the torque exertions fairly precisely to rotate the upper body effectively.
Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.
1983-01-01
1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.
Li, Yi; Shao, Ming-An
2008-07-01
Based on the experiments of controlled intermittent and repetitive rainfall on slope land, the infiltration and distribution characteristics of soil water on loess slope land were studied. The results showed that under the condition of intermittent rainfall, the cumulative runoff during two rainfall events increased linearly with time, and the wetting front also increased with time. In the interval of the two rainfall events, the wetting front increased slowly, and the infiltration rate was smaller on steeper slope than on flat surface. During the second rainfall event, there was an obvious decreasing trend of infiltration rate with time. The cumulative infiltration on 15 degrees slope land was larger than that of 25 degrees slope land, being 178 mm and 88 mm, respectively. Under the condition of repetitive rainfall, the initial infiltration rate during each rainfall event was relatively large, and during the first rainfall, both the infiltration rate and the cumulative infiltration at various stages were larger than those during the other three rainfall events. However, after the first rainfall, there were no obvious differences in the infiltration rate among the next three rainfall events. The more the rainfall event, the deeper the wetting front advanced.
Collective cell migration without proliferation: density determines cell velocity and wave velocity
NASA Astrophysics Data System (ADS)
Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François
2018-05-01
Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.
A compact dual-band RF front-end and board design for vehicular platforms
NASA Astrophysics Data System (ADS)
Sharawi, Mohammad S.; Aloi, Daniel N.
2012-03-01
Modern vehicular platforms include several wireless systems that provide navigation, entertainment and road side assistance, among other services. These systems operate at different frequency bands and thus careful system-level design should be followed to minimise the interference between them. In this study, we present a compact dual-band RF front-end module for global positioning system (GPS) operating in the L1-band (1574.42-1576.42 MHz) and satellite digital audio radio system (SDARS) operating in the S-band (2320-2345 MHz). The module provides more than 26 dB of measured gain in both bands and low noise figure values of 0.9 and 1.2 dB in SDARS and GPS bands, respectively. The front-end has interference suppression capability from the advanced mobile phone system and personal communication service cellular bands. The module is designed on a low-cost FR-4 substrate material and occupies a small size of 62 × 29 × 1.3 mm3. It dissipates 235 mW in the SDARS section and 100 mW in the GPS section. Three prototypes have been built to verify a repeatable performance.
NASA Astrophysics Data System (ADS)
Seeber, L.; Ferguson, E. K.; Akhter, S. H.; Steckler, M. S.; Mondal, D. R.; Gale, J.; McHugh, C. M.; Paola, C.; Goodbred, S. L.
2013-12-01
The Tsangpo-Brahmaputra River is coupled with the progressive suturing of continental India with continental Asia. Since the Eocene onset of this ongoing collision, the delta of this river has advanced along the Indian margin in front of the suture. As the collision lifts the suture above sea level, progradation has kept the delta ahead of it, at sea level. The delta itself is confined between the still passive Indian continental margin and the advancing subduction boundary. Within this transition zone, the accretion prismof the active margin advanced progressively onto the delta and transformed it from a subsiding sediment sink to a rising and folding sediment source. The faster the accretionary prism grows, the faster the delta progrades to find new accommodation space; on the other hand, the prism advances faster upstream of the delta front where it finds more sediment to accrete. The strong mutual dependency of these processes represents a delicately balanced feedback between tectonics and sedimentation. The shape of the margin of India before and after the birth of the Dauki-Shillong structure modulates this interaction. We highlight this coupling between tectonics and sedimentation by examining structure and stratigraphy in the active foldbelt close to the current delta in Bangladesh and eastern India using field and published subsurface data. Insights include: 1) The shift of the Dauki boundary from a passive margin to a south-verging blind-thrust front is marked by a Quaternary foredeep. Foredeep growth buried along its axis formerly breached and eroded anticlines. Progressive growth of the buried Dauki fault has exposed this unconformity along the northern flank of the foredeep. 2) The rise and northward tilt of the Shillong/Dauki thrust-anticline during Quaternary is probably the cause of the Brahmaputra River avulsing from east of the massif to north and west of it. The Naga collision and the differential growth of the foldbelt south of the Dauki Fault predate the rise of the massif and the avulsion. 3) The foldbelt widens forming a 'promontory' into the active delta, about 100 km north of the coastline. The outer few anticlines have low amplitudes and no or partial surface expressions, yet they root below several km of sediment. Fault-bend models also require much more shortening than the folding can account for. These properties suggest substantial layer-parallel shortening ahead of the folding. 4) Rhythmic sandstone-shale beds characterize a particularly competent part of the stratigraphy of eroding anticlines in different parts of the foldbelt. We interpret them as seasonal facies changes in foreset sequences of the delta. The position of these ridge-forming beds would thus mark the southwestward advance of the delta preceding the folds and can be used to guide research into the role of structure and stratigraphy in the severe landslide hazard affecting development in the foldbelt (e.g., Aizawl, Mizoram State).
Technique of electrical stimulation of the vestibular analyzer under clinical conditions
NASA Technical Reports Server (NTRS)
Khechinashvili, S. N.; Zargaryan, B. M.; Karakozov, K. G.
1980-01-01
Vestibular reactions appear under the action of direct current (dc) on the labyrinth of man and animals. A decrease of the stimulation effect of dc on the extralabyrinthine nervous formations in the suggested method is achieved by the use of electric pulses with steep front and back parts, as well as by previous anesthetization of the skin in the electrode application area by means of novocain solution electrophoresis. For this purpose a pulse producer giving trapezoid pulses with smoothly changing fronts and duration was constructed. With the help of an interrupter it is possible to stop the current increase instantly, and stimulation is performed at the level of the pulse 'plateau'. To induce vestibular reactions under monopolar stimulation, it is necessary to apply the current twice as high as that with bipolar electrode position. The use of short pulses with steep front and back parts for electrode stimulation of the vestibular analyzer is considered to be inexpedient.
Silverstein, Christine M
2008-07-01
During World War II, psychiatric nurses learned valuable lessons on how to deal with the traumas of war. Using psychohistorical inquiry, this historian examined primary and secondary sources, beyond the facts and dates associated with historical events, to understand why and how psychiatric nurse pioneers developed therapeutic techniques to address the psychosocial and physical needs of combatants. Not only is the story told about the hardships endured as nurses ministered to soldiers, but their attitudes, beliefs, and emotions, that is, how they felt and what they thought about their circumstances, are explored. In this study the lived experiences of two psychiatric nurses, Votta and Peplau, are contrasted to explicate how knowledge development improved care and how this knowledge had an impact on the home front in nursing practice and education, as well as in mental institutions and society, long after the war was won.
Arcing in LEO: Does the Whole Array Discharge?
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry
2005-01-01
The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.
NASA Astrophysics Data System (ADS)
Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold
2009-04-01
Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.
Fish Bowls and Bloopers: Oral History in the Classroom. Lesson Plan.
ERIC Educational Resources Information Center
Paul, Paula J.
1997-01-01
Describes teaching methods used to prepare students for conducting oral history interviews. Fishbowl interviews consist of a behavior-modeling exercise where the teacher interviews a guest in front of the class. Examines other instructional techniques such as role playing and paired interviewing. (MJP)
The Fronts Students Use: Facebook and the Standardization of Self-Presentations
ERIC Educational Resources Information Center
Birnbaum, Matthew G.
2013-01-01
This empirical study explored the impression management techniques and standardized performances college students use on their Facebook profiles to ensure their peers believe they are fully participating in the undergraduate experience. Employing an ethnographic research design and data collected using participant-observation and interview…
SMAW Ceramic Weld Backing Evaluation
1982-03-01
marked similarity to the open root technique in that the " keyhole " technique, commnly used to maxmize penetration with SMAW open root welding , was also...melt into the sides of the bevel and penetrate into the root opening to form a keyhole . Once the keyhole was established, normal welding current was...hot start to melt through the taper, welding proceeded to the keyhole . Once in the keyhole , the electrode was positioned in front of the puddle but not
Laser-induced forward transfer for improving fine-line metallization in photovoltaic applications
NASA Astrophysics Data System (ADS)
Sanchez-Aniorte, M. I.; Mouhamadou, B.; Alloncle, A. P.; Sarnet, T.; Delaporte, P.
2016-06-01
Grand challenges to create new front metallization techniques in photovoltaic focus considerable attention on laser-induced forward transfer (LIFT) approach. This alternative method aims to overcome the limitations of the well-established and mature screen-printing (SP) technique. Such limitations are for instance restrictions in the grid pattern design, high-temperature steps, and limited aspect ratio of the line contact (Poulain et al. in Appl Surf Sci 257:5241-5244, 2011). Although different new front contact metallization concepts have been studied, most of them require a second print step to increase the volume of the contact (Gao et al. in Proceedings of 25th EU PVSEC conference, 2010; Beaucarne and Schubert in Energy Proc 67:2-12, 2015; Lossen and Matusovsky in Energy Proc 67:156-162, 2015; Green in Phys E 14:65-70, 2002; Lennon et al. in Prog Photovolt Res Appl V21:1454-1468, 2012). As a result, it is desirable to find innovative metallization techniques to improve the cell efficiency without significantly increasing the cost. Although many challenges remain before to obtain high-quality, robust, and high-performance LIFT contact formation, it required a fully theoretical and experimental assessment. This paper presents the results of a study of the LIFT technique in picosecond regime and thick silver pastes to create high-quality conductive lines for photovoltaic applications.
Multiple stable isotope fronts during non-isothermal fluid flow
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas
2018-02-01
Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.
Performance of synchronous optical receivers using atmospheric compensation techniques.
Belmonte, Aniceto; Khan, Joseph
2008-09-01
We model the impact of atmospheric turbulence-induced phase and amplitude fluctuations on free-space optical links using synchronous detection. We derive exact expressions for the probability density function of the signal-to-noise ratio in the presence of turbulence. We consider the effects of log-normal amplitude fluctuations and Gaussian phase fluctuations, in addition to local oscillator shot noise, for both passive receivers and those employing active modal compensation of wave-front phase distortion. We compute error probabilities for M-ary phase-shift keying, and evaluate the impact of various parameters, including the ratio of receiver aperture diameter to the wave-front coherence diameter, and the number of modes compensated.
Front Range Infrastructure Resources Project--Biological Resources
,
1998-01-01
Riparian (streamside) vegetation communities are of interest in the context of the Front Range Infrastructure Resources Project (FRIRP) because they are often a focal point for conflicting societal demands. The cottonwoods and willows comprising these communities are structurally complex compared to the surrounding landscape and support diverse assemblages of mammals, birds, reptiles, and amphibians. However, riparian areas are also primary sites for water development, agriculture, grazing, sand and gravel mining, and recreation, each of which may limit other uses. Direct and indirect impacts of these activities have led to exploration of new opportunities and techniques for restoring disturbed riparian habitats and to greater concern for some of the scarce species that inhabit them.
Computer graphic visualization of orbiter lower surface boundary-layer transition
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Hartung, L. C.
1984-01-01
Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.
Unstructured mesh methods for CFD
NASA Technical Reports Server (NTRS)
Peraire, J.; Morgan, K.; Peiro, J.
1990-01-01
Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.
Hydromechanical drilling device
Summers, David A.
1978-01-01
A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.
Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package
NASA Technical Reports Server (NTRS)
1979-01-01
The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.
Making advanced analytics work for you.
Barton, Dominic; Court, David
2012-10-01
Senior leaders who write off the move toward big data as a lot of big talk are making, well, a big mistake. So argue McKinsey's Barton and Court, who worked with dozens of companies to figure out how to translate advanced analytics into nuts-and-bolts practices that affect daily operations on the front lines. The authors offer a useful guide for leaders and managers who want to take a deliberative approach to big data-but who also want to get started now. First, companies must identify the right data for their business, seek to acquire the information creatively from diverse sources, and secure the necessary IT support. Second, they need to build analytics models that are tightly focused on improving performance, making the models only as complex as business goals demand. Third, and most important, companies must transform their capabilities and culture so that the analytical results can be implemented from the C-suite to the front lines. That means developing simple tools that everyone in the organization can understand and teaching people why the data really matter. Embracing big data is as much about changing mind-sets as it is about crunching numbers. Executed with the right care and flexibility, this cultural shift could have payoffs that are, well, bigger than you expect.
She, Dongli; Yu, Shuang'en; Shao, Guangcheng
2014-01-01
This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm3. A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ 0 was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils. PMID:25197699
Liu, Dongdong; She, Dongli; Yu, Shuang'en; Shao, Guangcheng; Chen, Dan
2014-01-01
This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm(3). A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ₀ was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.
Wireless Sensor Networks - Node Localization for Various Industry Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derr, Kurt; Manic, Milos
Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less
Wireless Sensor Networks - Node Localization for Various Industry Problems
Derr, Kurt; Manic, Milos
2015-06-01
Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less
The advanced thermionic converter with microwave power as an auxiliary ionization source
NASA Technical Reports Server (NTRS)
Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.
1978-01-01
In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.
Mumby, C; Bouts, T; Sambrook, L; Danika, S; Rees, E; Parry, A; Rendle, M; Masters, N; Weller, R
2013-10-05
Foot problems are extremely common in elephants and radiography is the only imaging method available but the radiographic anatomy has not been described in detail. The aims of this study were to develop a radiographic protocol for elephant feet using digital radiography, and to describe the normal radiographic anatomy of the Asian elephant front and hind foot. A total of fifteen cadaver foot specimens from captive Asian elephants were radiographed using a range of projections and exposures to determine the best radiographic technique. This was subsequently tested in live elephants in a free-contact setting. The normal radiographic anatomy of the Asian elephant front and hind foot was described with the use of three-dimensional models based on CT reconstructions. The projection angles that were found to be most useful were 65-70° for the front limb and 55-60° in the hind limb. The beam was centred 10-15 cm proximal to the cuticle in the front and 10-15 cm dorsal to the plantar edge of the sole in the hind foot depending on the size of the foot. The protocol developed can be used for larger-scale diagnostic investigations of captive elephant foot disorders, while the normal radiographic anatomy described can improve the diagnostic reliability of elephant feet radiography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, S.F.; Foltz, M.F.
1991-11-01
This paper reports on the combustion-front propagation rate of nitromethane that has been examined to pressures of 40 GPa. A new and general technique involving pulsed laser ignition of an energetic material within a diamond anvil cell and a method for monitoring the rapid decomposition of nitromethane and other explosives to more stable chemical products is described in detail. Nitromethane is shown to exhibit a flame propagation rate that increases smoothly to 100 m/s at 30 GPa as a function of pressure. Above 30 GPa, the final solid-state combustion products change dramatically and the flame propagation rate begins to decrease.more » The combustion-front propagation rate is analyzed in terms of an existing condensed-phase model that predicts a relationship between the front propagation rate, U, and the pressure derivative of the chemical kinetic activation energy, dE{sub a}/dP, such that a plot of logU{sup 2} vs. P should be linear. The activation energy is analyzed to yield an effective volume of activation, {Delta}V, of {minus}3.4 ml/mol. The chemical kinetic parameters determined from the combustion-front propagation rate analysis of solid high-pressure nitromethane is compared with results from other thermal decomposition studies of this prototypic molecular explosive.« less
Artificially lengthened and constricted vocal tract in vocal training methods.
Bele, Irene Velsvik
2005-01-01
It is common practice in vocal training to make use of vocal exercise techniques that involve partial occlusion of the vocal tract. Various techniques are used; some of them form an occlusion within the front part of the oral cavity or at the lips. Another vocal exercise technique involves lengthening the vocal tract; for example, the method of phonation into small tubes. This essay presents some studies made on the effects of various vocal training methods that involve an artificially lengthened and constricted vocal tract. The influence of sufficient acoustic impedance on vocal fold vibration and economical voice production is presented.
NASA Astrophysics Data System (ADS)
Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun
2017-12-01
Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.
Quartz phenocrysts preserve volcanic stresses at Long Valley and Yellowstone calderas
NASA Astrophysics Data System (ADS)
Befus, K. S.; Leonhardi, T. C.; Manga, M.; Tamura, N.; Stan, C. V.
2016-12-01
Magmatic processes and eruptions are the consequence of stresses active in volcanic environments. Few techniques are presently available to quantify those stresses because they operate in subsurface and/or hazardous environments, and thus new techniques are needed to advance our understanding of key processes. Here, we provide a dataset of volcanic stresses that were imparted to quartz crystals that traveled through, and were hosted within, pyroclastic and effusive eruptions from Long Valley and Yellowstone calderas. We measured crystal lattice deformation with submicron spatial resolution using the synchrotron X-ray microdiffraction beamline (12.3.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Quartz from all units produces diffraction patterns with residual strains locked in the crystal lattice. We used Hooke's Law and the stiffness constants of quartz to calculate the stresses that caused the preserved residual strains. At Long Valley caldera, quartz preserves stresses of 187±80 MPa within pumice clasts in the F1 fall unit of the Bishop Tuff, and preserves stresses of 120±45 MPa from the Bishop Tuff welded ignimbrite. At Yellowstone caldera quartz preserves stresses of 115±30 and 140±60 MPa within pumices from the basal fall units of the Mesa Falls Tuff and the Tuff of Bluff Point, respectively. Quartz from near-vent and flow-front samples from Summit Lake lava flow preserves stresses up to 130 MPa, and show no variation with distance travelled. We believe that subsurface processes cause the measured residual stresses, but it remains unclear if they are relicts of fragmentation or from the magma chamber. The residual stresses from both Long Valley and Yellowstone samples roughly correlate to lithostatic pressures estimated for the respective pre-eruption magma storage depths. It is possible that residual stress in quartz provides a new geobarometer for crystallization pressure. Moving forward, we will continue to perform analyses and experiments on natural and synthetic crystals to better determine the source of residual stresses.
Minimum-Impact Camping in the Front Woods.
ERIC Educational Resources Information Center
Schatz, Curt
1994-01-01
Minimum-impact camping techniques that can be applied to resident camp programs include controlling group size and behavior, designing camp sites, moving groups frequently, proper use of fires, proper disposal of food and human wastes, use of biodegradable soaps, and encouraging staff and camper awareness of impacts on the environment. (LP)
76 FR 8721 - Notice of Submission for OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
...'' grants that are awarded funds for their entire multi-year project up-front in a single grant award to... the ED 524B to submit their final performance reports to demonstrate project success, impact and..., mechanical, or other technological collection techniques or other forms of information technology. Dated...
76 FR 12945 - Notice of Submission for OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-09
... awarded funds for their entire multi-year project up- front in a single grant award to submit the RPPR on... their final performance reports to demonstrate project success, impact and outcomes. In both the annual..., mechanical, or other technological collection techniques or other forms of information technology. [[Page...
NASA Astrophysics Data System (ADS)
Watanabe, O.; Tanaka, M.
A technique of controlling the extent of the freezing zone created by in ground liquefied natural gas storage tanks by installing a heat barrier is described. The freezing conditions around three representative tanks after operating the system were compared.
High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Miranda, Felix A.
1999-01-01
Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.
Evaluation of the Service Review Model with Performance Scorecards
ERIC Educational Resources Information Center
Szabo, Thomas G.; Williams, W. Larry; Rafacz, Sharlet D.; Newsome, William; Lydon, Christina A.
2012-01-01
The current study combined a management technique termed "Service Review" with performance scorecards to enhance staff and consumer behavior in a human service setting consisting of 11 supervisors and 56 front-line staff working with 9 adult consumers with challenging behaviors. Results of our intervention showed that service review and…
The Effect of Intensity on 3-Dimensional Kinematics and Coordination in Front-Crawl Swimming.
de Jesus, Kelly; Sanders, Ross; de Jesus, Karla; Ribeiro, João; Figueiredo, Pedro; Vilas-Boas, João P; Fernandes, Ricardo J
2016-09-01
Coaches are often challenged to optimize swimmers' technique at different training and competition intensities, but 3-dimensional (3D) analysis has not been conducted for a wide range of training zones. To analyze front-crawl 3D kinematics and interlimb coordination from low to severe swimming intensities. Ten male swimmers performed a 200-m front crawl at 7 incrementally increasing paces until exhaustion (0.05-m/s increments and 30-s intervals), with images from 2 cycles in each step (at the 25- and 175-m laps) being recorded by 2 surface and 4 underwater video cameras. Metabolic anaerobic threshold (AnT) was also assessed using the lactate-concentration-velocity curve-modeling method. Stroke frequency increased, stroke length decreased, hand and foot speed increased, and the index of interlimb coordination increased (within a catch-up mode) from low to severe intensities (P ≤ .05) and within the 200-m steps performed above the AnT (at or closer to the 4th step; P ≤ .05). Concurrently, intracyclic velocity variations and propelling efficiency remained similar between and within swimming intensities (P > .05). Swimming intensity has a significant impact on swimmers' segmental kinematics and interlimb coordination, with modifications being more evident after the point when AnT is reached. As competitive swimming events are conducted at high intensities (in which anaerobic metabolism becomes more prevalent), coaches should implement specific training series that lead swimmers to adapt their technique to the task constraints that exist in nonhomeostatic race conditions.
Robb, N
2014-03-01
The basic techniques of conscious sedation have been found to be safe and effective for the management of anxiety in adult dental patients requiring sedation to allow them to undergo dental treatment. There remains great debate within the profession as to the role of the so called advanced sedation techniques. This paper presents a series of nine patients who were managed with advanced sedation techniques where the basic techniques were either inappropriate or had previously failed to provide adequate relief of anxiety. In these cases, had there not been the availability of advanced sedation techniques, the most likely recourse would have been general anaesthesia--a treatment modality that current guidance indicates should not be used where there is an appropriate alternative. The sedation techniques used have provided that appropriate alternative management strategy.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2017-05-01
A remarkable feature of QCD is that the mass scale κ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ ^4 ζ ^2 for mesons, where ζ ^2 is the LF radial variable conjugate to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ _{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q_0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.
NASA Astrophysics Data System (ADS)
Gulamali, Murtaza; Leinov, Eli; Jackson, Matthew; Pain, Christopher
2010-05-01
Downhole measurements of electrokinetic (EK) streaming potential, using electrodes mounted on the outside of insulated casing, has been shown to be useful for informing production strategies in oil and gas reservoirs. However, spontaneous potentials due to thermoelectric (TE) and/or electrochemical (EC) effects may also be present during production and may contribute to the signal measured at the production well. We present a study of the contribution of these effects based on numerical models of subsurface potentials during production. We find that the injection of seawater, which typically has a different temperature and salinity to the formation brine, leads to the generation of both TE and EC potential signals in an oil reservoir, which may be measured at the production well along with EK potential signals. In particular, there is a peak in the TE potential before and after the temperature front, with a change in sign occurring close to the midpoint of the front, and the signal decaying with distance from the front. The EC potential has a similar profile, with a change in sign occurring close to the location of the salinity front. In both cases, the absolute magnitude of the signal is related to the overall temperature and/or salinity contrast between the injected fluids and the formation brine, and the magnitude of the TE and EC coupling coefficient. When we use the maximum theoretical magnitude for the TE and EC coupling coefficients, in the case of a perfect membrane, the lag in the temperature front relative to the saturation front leads to a negligible TE potential signal at the production well until long after water breakthrough occurs. In contrast, the EC potential contributes significantly to the spontaneous potential measured at the production well before the waterfront arrives, as the salinity front and the saturation front approximately coincide. The dependence of the TE and EC coupling coefficients upon temperature, salinity and/or partial water saturation is still uncertain. We explore the contribution of the EK and EC potential signals to the overall signal measured at the well as a function of salinity and water saturation. Our results imply that measurements of the spontaneous potential at a production well will combine contributions from both streaming and electrochemical effects, and may be used to detect an advancing waterfront some time before water breakthrough occurs at the well. Moreover, inversion of the measured signals could be used to determine the water saturation in the vicinity of the well, and to regulate flow into the well using control valves in order to maintain or increase oil production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. In conclusion, I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.« less