Science.gov

Sample records for advancing stem cell

  1. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  2. Technology Advancement for Integrative Stem Cell Analyses

    PubMed Central

    Jeong, Yoon

    2014-01-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose—by introducing a concept of vertical and horizontal approach—that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment. PMID:24874188

  3. Induced pluripotent stem cells: advances to applications

    PubMed Central

    Nelson, Timothy J; Martinez-Fernandez, Almudena; Yamada, Satsuki; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre

    2010-01-01

    Induced pluripotent stem cell (iPS) technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms. PMID:21165156

  4. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    PubMed

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients. PMID:26483336

  5. Personalized nanomedicine advancements for stem cell tracking☆

    PubMed Central

    Janowski, Mirek; Bulte, Jeff W.M.; Walczak, Piotr

    2012-01-01

    Recent technological developments in biomedicine have facilitated the generation of data on the anatomical, physiological and molecular level for individual patients and thus introduces opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly promising treatment paradigm; however, due to the lack of consistent and unbiased data about the fate of stem cells in vivo, interpretation of therapeutic remains challenging hampering the progress in this field. The advent of nanotechnology with a wide palette of inorganic and organic nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The diversity of nanomaterials has revolutionized personalized nanomedicine and enables individualized tailoring of stem cell labeling materials for the specific needs of each patient. The successful implementation of stem cell tracking will likely be a significant driving force that will contribute to the further development of nanotheranostics. The purpose of this review is to emphasize the role of cell tracking using currently available nanoparticles. PMID:22820528

  6. Advances and Prospect of Nanotechnology in Stem Cells

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Ruan, Jing; Cui, Daxiang

    2009-07-01

    In recent years, stem cell nanotechnology has emerged as a new exciting field. Theoretical and experimental studies of interaction between nanomaterials or nanostructures and stem cells have made great advances. The importance of nanomaterials, nanostructures, and nanotechnology to the fundamental developments in stem cells-based therapies for injuries and degenerative diseases has been recognized. In particular, the effects of structure and properties of nanomaterials on the proliferation and differentiation of stem cells have become a new interdisciplinary frontier in regeneration medicine and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches and challenges, with the aim of improving application of nanotechnology in the stem cells research and development.

  7. Advances in Culture and Manipulation of Human Pluripotent Stem Cells

    PubMed Central

    Qian, X.; Villa-Diaz, L.G.; Krebsbach, P.H.

    2013-01-01

    Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell–like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells. PMID:23934156

  8. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    PubMed

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field. PMID:27426082

  9. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review

    PubMed Central

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-01-01

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field. PMID:27426082

  10. Recent advances in Echinococcus genomics and stem cell research.

    PubMed

    Koziol, U; Brehm, K

    2015-10-30

    Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of

  11. Recent advances in bone regeneration using adult stem cells.

    PubMed

    Zigdon-Giladi, Hadar; Rudich, Utai; Michaeli Geller, Gal; Evron, Ayelet

    2015-04-26

    Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34(+) blood progenitors) for bone regeneration. PMID:25914769

  12. Advances in stem cell therapy for cardiovascular disease (Review)

    PubMed Central

    SUN, RONGRONG; LI, XIANCHI; LIU, MIN; ZENG, YI; CHEN, SHUANG; ZHANG, PEYING

    2016-01-01

    Cardiovascular disease constitutes the primary cause of mortality and morbidity worldwide, and represents a group of disorders associated with the loss of cardiac function. Despite considerable advances in the understanding of the pathologic mechanisms of the disease, the majority of the currently available therapies remain at best palliative, since the problem of cardiac tissue loss has not yet been addressed. Indeed, few therapeutic approaches offer direct tissue repair and regeneration, whereas the majority of treatment options aim to limit scar formation and adverse remodeling, while improving myocardial function. Of all the existing therapeutic approaches, the problem of cardiac tissue loss is addressed uniquely by heart transplantation. Nevertheless, alternative options, particularly stem cell therapy, has emerged as a novel and promising approach. This approach involves the transplantation of healthy and functional cells to promote the renewal of damaged cells and repair injured tissue. Bone marrow precursor cells were the first cell type used in clinical studies, and subsequently, preclinical and clinical investigations have been extended to the use of various populations of stem cells. This review addresses the present state of research as regards stem cell therapy for cardiovascular disease. PMID:27220939

  13. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  14. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  15. Steady advance of stem cell therapies: report from the 2011 World Stem Cell Summit, Pasadena, California, October 3-5.

    PubMed

    Swan, Melanie

    2011-12-01

    Stem cell research and related therapies (including regenerative medicine and cellular therapies) could have a significant near-term impact on worldwide public health and aging. One reason is the industry's strong linkage between policy, science, industry, and patient advocacy, as was clear in the attendance and programming at the 7(th) annual World Stem Cell Summit held in Pasadena, California, October 3-5, 2011. A special conference session sponsored by the SENS Foundation discussed how stem cell therapies are being used to extend healthy life span. Stem cells are useful not only in cell-replacement therapies, but also in disease modeling, drug discovery, and drug toxicity screening. Stem cell therapies are currently being applied to over 50 diseases, including heart, lung, neurodegenerative, and eye disease, cancer, and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Dozens of companies are developing therapeutic solutions that are in different stages of clinical use and clinical trials. Some high-profile therapies include Dendreon's Provenge for prostate cancer, Geron's first-ever embryonic stem cell trials for spinal cord injury, Fibrocell's laViv cellular therapy for wrinkles, and well-established commercial skin substitutes (Organogenesis' Apligraf and Advanced BioHealing's Dermagraft). Stem cell policy issues under consideration include medical tourism, standards for large-scale stem cell manufacturing, and lingering ethical debates over the use of embryonic stem cells. Contemporary stem cell science advances include a focus on techniques for the direct reprogramming of cells from one lineage to another without returning to pluripotency as an intermediary step, improved means of generating and characterizing induced pluripotent cells, and progress in approaches to neurodegenerative disease. PMID:22175514

  16. Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration

    PubMed Central

    Becker, Silke; Jayaram, Hari; Limb, G. Astrid

    2012-01-01

    Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice. PMID:24710533

  17. Advances in haploidentical stem cell transplantation for hematologic malignancies.

    PubMed

    Montoro, Juan; Sanz, Jaime; Sanz, Guillermo F; Sanz, Miguel A

    2016-08-01

    One of the most important advances in allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the use of alternative donors and cell sources, such as haploidentical transplants (haplo-HSCT) from family donors. Several approaches have been developed to overcome the challenging bidirectional alloreactivity. We discuss these approaches, including ex vivo T-cell-depleted grafts with megadose of CD34(+) cells, not requiring immunosuppression after allogeneic transplantation for graft-versus-host disease (GVHD) prophylaxis, and other strategies using unmanipulated T-cell-replete grafts with intensive immunosuppression or post-transplantation cyclophosphamide to minimize the GVHD. We also address the role of other strategies developed in the context of the haplo-HSCT platforms, such as ex vivo selective depletion of alloreactive donor T-cell subpopulations, infusion of antigen-specific T-cells against several pathogens, and infusion of regulatory T-cells, among other experimental approaches. Finally, some considerations about the selection of the most suitable donor, when more than one family member is available, are also addressed. PMID:27424663

  18. ADVANCES IN THE USE OF STEM CELLS IN ORTHOPEDICS

    PubMed Central

    Cristante, Alexandre Fogaça; Narazaki, Douglas Kenji

    2015-01-01

    Primordial cells or stem cells are multipotent undifferentiated cells with the capacity to originate any type of cell in the organism. They may have their origins in the blastocyst and thus are classified as embryonic, or tissues developed in fetuses, newborns or adults and thus are known as somatic stem cells. Bone marrow is one of the main locations for isolating primordial cells, and there are two lineages: hematopoietic and mesenchymal progenitor cells. There are several uses for these undifferentiated cells in orthopedics, going from cartilaginous lesions in osteoarthrosis, osteochondritis dissecans and patellar chondromalacia, to bone lesions like in pseudarthrosis or bone losses, or nerve lesions like in spinal cord trauma. Studying stem cells is probably the most promising field of study of all within medicine, and this is shortly going to revolutionize all medical specialties (both clinical and surgical) and thus provide solutions for diseases that today are difficult to deal with. PMID:27027022

  19. Hematopoietic Stem-Cell Transplantation for Advanced Systemic Mastocytosis

    PubMed Central

    Ustun, Celalettin; Reiter, Andreas; Scott, Bart L.; Nakamura, Ryotaro; Damaj, Gandhi; Kreil, Sebastian; Shanley, Ryan; Hogan, William J.; Perales, Miguel-Angel; Shore, Tsiporah; Baurmann, Herrad; Stuart, Robert; Gruhn, Bernd; Doubek, Michael; Hsu, Jack W.; Tholouli, Eleni; Gromke, Tanja; Godley, Lucy A.; Pagano, Livio; Gilman, Andrew; Wagner, Eva Maria; Shwayder, Tor; Bornhäuser, Martin; Papadopoulos, Esperanza B.; Böhm, Alexandra; Vercellotti, Gregory; Van Lint, Maria Teresa; Schmid, Christoph; Rabitsch, Werner; Pullarkat, Vinod; Legrand, Faezeh; Yakoub-agha, Ibrahim; Saber, Wael; Barrett, John; Hermine, Olivier; Hagglund, Hans; Sperr, Wolfgang R.; Popat, Uday; Alyea, Edwin P.; Devine, Steven; Deeg, H. Joachim; Weisdorf, Daniel; Akin, Cem; Valent, Peter

    2014-01-01

    Purpose Advanced systemic mastocytosis (SM), a fatal hematopoietic malignancy characterized by drug resistance, has no standard therapy. The effectiveness of allogeneic hematopoietic stem-cell transplantation (alloHCT) in SM remains unknown. Patients and Methods In a global effort to define the value of HCT in SM, 57 patients with the following subtypes of SM were evaluated: SM associated with clonal hematologic non–mast cell disorders (SM-AHNMD; n = 38), mast cell leukemia (MCL; n = 12), and aggressive SM (ASM; n = 7). Median age of patients was 46 years (range, 11 to 67 years). Donors were HLA-identical (n = 34), unrelated (n = 17), umbilical cord blood (n = 2), HLA-haploidentical (n = 1), or unknown (n = 3). Thirty-six patients received myeloablative conditioning (MAC), and 21 patients received reduced-intensity conditioning (RIC). Results Responses in SM were observed in 40 patients (70%), with complete remission in 16 patients (28%). Twelve patients (21%) had stable disease, and five patients (9%) had primary refractory disease. Overall survival (OS) at 3 years was 57% for all patients, 74% for patients with SM-AHNMD, 43% for those with ASM, and 17% for those with MCL. The strongest risk factor for poor OS was MCL. Survival was also lower in patients receiving RIC compared with MAC and in patients having progression compared with patients having stable disease or response. Conclusion AlloHCT was associated with long-term survival in patients with advanced SM. Although alloHCT may be considered as a viable and potentially curative therapeutic option for advanced SM in the meantime, given that this is a retrospective analysis with no control group, the definitive role of alloHCT will need to be determined by a prospective trial. PMID:25154823

  20. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    PubMed

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  1. Limbal stem cell failure secondary to advanced conjunctival squamous cell carcinoma: a clinicopathological case report

    PubMed Central

    Lyall, Douglas A M; Srinivasan, Sathish; Roberts, Fiona

    2009-01-01

    A 67-year-old man with a history of multiple myeloma (treated with chemotherapy) was referred with a left hyperaemic conjunctival lesion covering almost 360° of the limbus and extending onto the corneal surface. Conjunctival biopsy revealed conjunctival intraepithelial neoplasia. Initial treatment consisted of topical and intralesional injections of interferon α-2b. The patient subsequently developed limbal stem cell deficiency resulting in a persistent non-healing corneal epithelial defect. This was successfully managed with total excisional biopsy of the lesion, combined with limbal stem cell autograft (from the fellow eye) and amniotic membrane transplantation. Histopathology revealed a conjunctival squamous cell carcinoma. The corneal epithelium completely healed postoperatively and there is no evidence of tumour recurrence at 1 year follow-up. This case highlights a rare case of advanced ocular surface neoplasia causing secondary limbal stem cell deficiency. Medical and surgical management of ocular surface neoplasia with limbal stem cell transplantation is effective in treating such cases. PMID:22121391

  2. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    PubMed Central

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years. PMID:26106425

  3. Advances in stem cells technologies and their commercialization potential.

    PubMed

    Kamarul, Tunku

    2013-07-01

    The World Stem Cells & Regenerative Medicine Congress Asia 2013 held in Singapore from 19-21 March 2013 was attended by over 2000 industry attendees and 5000 registered visitors. The focus of the congress was to discuss potential uses of stem cells for various diagnostic and therapeutic applications, their market opportunity and the latest R&D, which would potentially find its way into the market in not too distant future. In addition to the traditional lectures presented by academic and industry experts, there were forums, discussions, posters and exhibits, which provided various platforms for researchers, potential industry partners and even various interest groups to discuss prospective development of the stem cell-related industry. PMID:23927663

  4. Advances and challenges in the differentiation of pluripotent stem cells into pancreatic β cells

    PubMed Central

    Abdelalim, Essam M; Emara, Mohamed M

    2015-01-01

    Pluripotent stem cells (PSCs) are able to differentiate into several cell types, including pancreatic β cells. Differentiation of pancreatic β cells depends on certain transcription factors, which function in a coordinated way during pancreas development. The existing protocols for in vitro differentiation produce pancreatic β cells, which are not highly responsive to glucose stimulation except after their transplantation into immune-compromised mice and allowing several weeks for further differentiation to ensure the maturation of these cells in vivo. Thus, although the substantial improvement that has been made for the differentiation of induced PSCs and embryonic stem cells toward pancreatic β cells, several challenges still hindering their full generation. Here, we summarize recent advances in the differentiation of PSCs into pancreatic β cells and discuss the challenges facing their differentiation as well as the different applications of these potential PSC-derived β cells. PMID:25621117

  5. Adrenocortical Cells with Stem/Progenitor Cell Properties: Recent Advances

    PubMed Central

    Kim, Alex; Hammer, Gary D.

    2007-01-01

    The existence and location of undifferentiated cells with the capability of maintaining the homeostasis of the adrenal cortex have long been sought. These cells are thought to remain mostly quiescent with a potential to commit to self-renewal processes or terminal differentiation to homeostatically repopulate the organ. In addition, in response to physiologic stress, the undifferentiated cells undergo rapid proliferation to accommodate organismic need. Sufficient adrenocortical proliferative capacity lasting the lifespan of the host has been demonstrated through cell transplantation and enucleation experiments. Labeling experiments with tritium, BrdU, or trypan blue, as well as transgenic assays support the clonogenic identity and location of these undefined cells within the gland periphery. We define undifferentiated adrenocortical cells as cells devoid of steroidogenic gene expression, and differentiated cells as cells with steroidogenic capacity. In this review, we discuss historic developmental studies together with recent molecular examinations that aim to characterize such populations of cells. PMID:17240045

  6. Induced Pluripotent Stem Cells in Dermatology: Potentials, Advances, and Limitations

    PubMed Central

    Bilousova, Ganna; Roop, Dennis R.

    2015-01-01

    The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) has raised the possibility of producing truly personalized treatment options for numerous diseases. Similar to embryonic stem cells (ESCs), iPSCs can give rise to any cell type in the body and they are amenable to genetic correction by homologous recombination. These ESC properties of iPSCs allow for the development of permanent corrective therapies for many currently incurable disorders, including inherited skin diseases, without using embryonic tissues or oocytes. Here, we review recent progress and limitations of iPSC research with a focus on clinical applications of iPSCs, and using iPSCs to model human diseases for drug discovery in the field of dermatology. PMID:25368014

  7. Advancements in Induced Pluripotent Stem Cell Technology for Cardiac Regenerative Medicine

    PubMed Central

    Suh, Carol Y.; Wang, Zelun; Bártulos, Oscar; Qyang, Yibing

    2014-01-01

    Cardiovascular diseases remain the leading causes of morbidity and mortality in the developed world. Cellular based cardiac regenerative therapy serves as a potential approach to treating cardiovascular diseases. Although various cellular types have been tested, induced pluripotent stem cells are regarded as a promising cell source for therapy. In this review, we will highlight some of the advances in generating induced pluripotent stem cells and differentiation to cardiac cells. We will also discuss the progress in modeling cardiovascular diseases using induced pluripotent stem cell derived cardiac cells. As we continue to make progress in induced pluripotent stem cell and cardiac differentiation technology, we will become closer to application of cardiac regenerative medicine. PMID:24651517

  8. Advances in Complex Multiparameter Flow Cytometry Technology: Applications in Stem Cell Research

    PubMed Central

    Preffer, Frederic; Dombkowski, David

    2009-01-01

    Flow cytometry and cell sorting are critical tools in stem cell research. Recent advances in flow cytometric hardware, reagents and software have synergized to permit the stem cell biologist to more fully identify and isolate rare cells based on their immunofluorescent and light scatter characteristics. Some of these improvements include physically smaller air-cooled lasers, new designs in optics, new fluorescent conjugate-excitation pairs, and improved software to visualize data, all which combine to open up new horizons in the study of stem cells, by enhancing the resolution and specificity of inquiry. In this review, these recent improvements in technology will be outlined and important cell surface and functional antigenic markers useful for the study of stem cells described. PMID:19492350

  9. [New advance of research on therapy of severe acute radiation sickness with mesenchymal stem cells].

    PubMed

    Guo, Ling-Ling; Li, Ming; Xing, Shuang; Luo, Qing-Liang

    2011-06-01

    Mesenchymal stem cells (MSC) are a kind of non-hematopoietic adult stem cells with self-renewal and multilineage differentiation potential, which have special biological characteristics, such as secreting various cytokines, promoting hematopoiesis, accelerating stem cells homing and reconstructing hematopoietic microenvironment. MSC are collected and amplified easily, and can be transfected by exogenous gene. Many reports indicated that MSC were applied in therapy for variety of tissues and organs injury, meanwhile the treatment for acute radiation sickness has made significant progress. In this review, the biological characteristics and new research advance on MSC in treatment of severe acute radiation sickness are summarized and discussed. PMID:21729581

  10. Stem Cells in Liver Diseases and Cancer: Recent Advances on the Path to New Therapies

    PubMed Central

    Rountree, C. Bart; Mishra, Lopa; Willenbring, Holger

    2011-01-01

    Stem cells have potential for therapy of liver diseases, but may also be involved in the formation of liver cancer. Recently, the AASLD Henry M. and Lillian Stratton Basic Research Single Topic Conference “Stem Cells in Liver Diseases and Cancer: Discovery and Promise” brought together a diverse group of investigators to define the status of research on stem cells and cancer stem cells in the liver and identify problems and solutions on the path to clinical translation. This report summarizes the outcomes of the conference and provides an update on recent research advances. Progress in liver stem cell research includes isolation of primary liver progenitor cells (LPC), directed hepatocyte differentiation of primary LPC and pluripotent stem cells, findings of transdifferentiation, disease-specific considerations for establishing a therapeutically effective cell mass, and disease modeling in cell culture. Tumor initiating stem-like cells (TISC) that emerge during chronic liver injury share expression of signaling pathways, including those organized around TGF-β and β-catenin, and surface markers with normal LPC. Recent investigations of the role of TISC in hepatocellular carcinoma have provided insight into the transcriptional and posttranscriptional regulation of hepatocarcinogenesis. Targeted chemotherapies for TISC are in development as a means to overcome cellular resistance and mechanisms driving disease progression in liver cancer. PMID:22030746

  11. Types of Stem Cells

    MedlinePlus

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  12. Advanced Imaging and Tissue Engineering of the Human Limbal Epithelial Stem Cell Niche

    PubMed Central

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J.; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E.; Vernon, Amanda J.; Funderburgh, James L.; Daniels, Julie T.

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein. PMID:25388395

  13. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    PubMed

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  14. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells

    PubMed Central

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  15. Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets.

    PubMed

    Yan, Guang-Ning; Lv, Yang-Fan; Guo, Qiao-Nan

    2016-01-28

    Osteosarcoma is the most common type of bone cancer, especially in children and young adults. The primary treatment for osteosarcoma is a combination of surgery and chemotherapy, however prognoses remain poor due to chemoresistance and early metastases. Osteosarcoma stem cells appear to play central roles in tumor recurrence, metastases and chemoresistance via self-renewal and differentiation. Targeting these cells may provide a novel strategy in the treatment of osteosarcoma. This review summarizes current knowledge of this rare phenotype and recent advances in understanding the functions OSCs (osteosarcoma stem cells) in osteosarcoma, with the aim of improving therapies in the future. PMID:26571463

  16. Stem Cells: Taking a Closer Look at the Advancements and Hurdles of Stem Cell Research in Australia

    ERIC Educational Resources Information Center

    Sanderson, Aimee

    2008-01-01

    The technology surrounding stem cells generates great excitement amongst scientists, media and the community. For science teachers, this means not only embracing and keeping track of the rapid growth and ongoing development in this field but also tackling the ethical and legislative issues surrounding the topic. So what are stem cells, what is all…

  17. Advances in mesenchymal stem cell-mediated gene therapy for cancer

    PubMed Central

    2010-01-01

    Mesenchymal stem cells have a natural tropism for tumours and their metastases, and are also considered immunoprivileged. This remarkable combination of properties has formed the basis for many studies investigating their potential as tumour-specific delivery vehicles for suicide genes, oncolytic viruses and secreted therapeutic proteins. The aim of the present review is to discuss the range of approaches that have been used to exploit the tumour-homing capacity of mesenchymal stem cells for gene delivery, and to highlight advances required to realize the full potential of this promising approach. PMID:20699014

  18. Advances in islet cell biology: from stem cell differentiation to clinical transplantation: conference report.

    PubMed

    Kandeel, Fouad; Smith, Craig V; Todorov, Ivan; Mullen, Yoko

    2003-10-01

    The 3rd Annual Rachmiel Levine Symposium entitled "Advances in Islet Cell Biology-From Stem Cell Differentiation to Clinical Transplantation" was organized by the Department of Diabetes, Endocrinology and Metabolism at the City of Hope National Medical Center, with the support of the Southern California Islet Cell Resources Center, American Diabetes Association-David Shapiro Research Fund, Ross Foundation, the National Center for Research Resources (NCRR), and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health. The symposium was held at the Hilton Anaheim Hotel in Anaheim, CA, in October 2002, and was attended by nearly 400 participants from 23 countries and 30 U.S. states. The symposium consisted of 11 sessions focusing on 3 areas: (1) pancreas and islet cell differentiation and islet generation, (2) beta cell biology and insulin synthesis and/or secretion, and (3) pancreatic islet transplantation in patients with type I diabetes. Thirty-nine world experts lectured on the most current information in each field. Fifty-three abstracts were selected for presentation and discussed at the poster session. The first author of each of the top 10 posters received a Young Investigator Travel Award provided by the National Center for Research Resources and the Southern California Islet Cell Resources Center. The symposium also offered special Meet the Professor sessions, which gave the attendees an opportunity to closely interact with the participating speakers of the day. PMID:14508143

  19. Robotics, Stem Cells and Brain Computer Interfaces in Rehabilitation and Recovery from Stroke; Updates and Advances

    PubMed Central

    Boninger, Michael L; Wechsler, Lawrence R.; Stein, Joel

    2014-01-01

    Objective To describe the current state and latest advances in robotics, stem cells, and brain computer interfaces in rehabilitation and recovery for stroke. Design The authors of this summary recently reviewed this work as part of a national presentation. The paper represents the information included in each area. Results Each area has seen great advances and challenges as products move to market and experiments are ongoing. Conclusion Robotics, stem cells, and brain computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial PMID:25313662

  20. Stem Cell Basics

    MedlinePlus

    ... stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before ... two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells . ...

  1. Learn About Stem Cells

    MedlinePlus

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  2. Optimizing stem cell culture.

    PubMed

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  3. Stem cell therapies for amyotrophic lateral sclerosis: Recent advances and prospects for the future

    PubMed Central

    Lunn, J. Simon; Sakowski, Stacey A.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal disease involving the loss of motor neurons. Although the mechanisms responsible for motor neuron degeneration in ALS remain elusive, the development of stem cell-based therapies for the treatment of ALS has gained widespread support. Here, we review the types of stem cells being considered for therapeutic applications in ALS, and emphasize recent preclinical advances that provide supportive rationale for clinical translation. We also discuss early trials from around the world translating cellular therapies to ALS patients, and offer important considerations for future clinical trial design. Although clinical translation is still in its infancy, and additional insight into the mechanisms underlying therapeutic efficacy and the establishment of long-term safety are required, these studies represent an important first step towards the development of effective cellular therapies for the treatment of ALS. PMID:24448926

  4. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells.

    PubMed

    Kawser Hossain, Mohammed; Abdal Dayem, Ahmed; Han, Jihae; Kumar Saha, Subbroto; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2016-01-01

    Diabetes mellitus (DM) is a widespread metabolic disease with a progressive incidence of morbidity and mortality worldwide. Despite extensive research, treatment options for diabetic patients remains limited. Although significant challenges remain, induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any cell type, including insulin-secreting pancreatic β cells, highlighting its potential as a treatment option for DM. Several iPSC lines have recently been derived from both diabetic and healthy donors. Using different reprogramming techniques, iPSCs were differentiated into insulin-secreting pancreatic βcells. Furthermore, diabetes patient-derived iPSCs (DiPSCs) are increasingly being used as a platform to perform cell-based drug screening in order to develop DiPSC-based cell therapies against DM. Toxicity and teratogenicity assays based on iPSC-derived cells can also provide additional information on safety before advancing drugs to clinical trials. In this review, we summarize recent advances in the development of techniques for differentiation of iPSCs or DiPSCs into insulin-secreting pancreatic β cells, their applications in drug screening, and their role in complementing and replacing animal testing in clinical use. Advances in iPSC technologies will provide new knowledge needed to develop patient-specific iPSC-based diabetic therapies. PMID:26907255

  5. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells

    PubMed Central

    Kawser Hossain, Mohammed; Abdal Dayem, Ahmed; Han, Jihae; Kumar Saha, Subbroto; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2016-01-01

    Diabetes mellitus (DM) is a widespread metabolic disease with a progressive incidence of morbidity and mortality worldwide. Despite extensive research, treatment options for diabetic patients remains limited. Although significant challenges remain, induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any cell type, including insulin-secreting pancreatic β cells, highlighting its potential as a treatment option for DM. Several iPSC lines have recently been derived from both diabetic and healthy donors. Using different reprogramming techniques, iPSCs were differentiated into insulin-secreting pancreatic βcells. Furthermore, diabetes patient-derived iPSCs (DiPSCs) are increasingly being used as a platform to perform cell-based drug screening in order to develop DiPSC-based cell therapies against DM. Toxicity and teratogenicity assays based on iPSC-derived cells can also provide additional information on safety before advancing drugs to clinical trials. In this review, we summarize recent advances in the development of techniques for differentiation of iPSCs or DiPSCs into insulin-secreting pancreatic β cells, their applications in drug screening, and their role in complementing and replacing animal testing in clinical use. Advances in iPSC technologies will provide new knowledge needed to develop patient-specific iPSC-based diabetic therapies. PMID:26907255

  6. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    PubMed

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  7. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine

    PubMed Central

    Aponte, Pedro Manuel

    2015-01-01

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  8. [Research advances on directional induction and differentiation in vitro from human pluripotent stem cells into erythrocytes].

    PubMed

    Liu, Sen-Quan; Zhang, Li-Fei; Wang, Ye-Bo; Huang, He

    2014-02-01

    Red blood cell transfusion is an effective method to treat acute hemorrhage and severe anemia. However, blood source from donors is very limited, and transfusion-transmitted diseases occurred frequently, thus threatening human health. Therefore, the safe, abundant and functional blood source is needed. Generation of blood cells from human pluripotent stem cells(hPSC) will offer alternative approach. Lots of studies have been focused on erythroid cell differentiation in vitro, including how to enhance efficiency and improve their function. In this review, the research advances on differentiation methods and the regulatory mechanism are summarized. In addition, the progress in PSC differentiation into erythrocytes and the problems to be solved are discussed briefly. PMID:24598681

  9. Intraoperative Stem Cell Therapy

    PubMed Central

    Coelho, Mónica Beato; Cabral, Joaquim M.S.; Karp, Jeffrey M.

    2013-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium. PMID:22809140

  10. Advances in induced pluripotent stem cells, genomics, biomarkers, and antiplatelet therapy highlights of the year in JCTR 2013.

    PubMed

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P; Kirshenbaum, Lorrie; Blaxall, Burns C; Terzic, Andre; Hall, Jennifer L

    2014-07-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, preclinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multimodality imaging, and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088

  11. Stem Cell Separation Technologies

    PubMed Central

    Zhu, Beili; Murthy, Shashi K.

    2012-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell sorting (FACS), Magnet-activated cell sorting (MACS), pre-plating, conditioned expansion media, density gradient centrifugation, field flow fractionation (FFF), and dielectrophoresis (DEP). Next, we will introduce emerging novel methods that are currently under development. These methods include improved aqueous two-phase system, systematic evolution of ligands by exponential enrichment (SELEX), and various types of microfluidic platforms. Finally, we will discuss the challenges and directions towards future breakthroughs for stem cell isolation. Advancing stem cell separation techniques will be essential for clinical and research applications of stem cells. PMID:23505616

  12. Biopsy Needle Advancement during Bone Marrow Aspiration Increases Mesenchymal Stem Cell Concentration

    PubMed Central

    Peters, Anne E.; Watts, Ashlee E.

    2016-01-01

    Point-of-care kits to concentrate bone marrow (BM)-derived mesenchymal stem cells (MSCs) are used clinically in horses. A maximal number of MSCs per milliliter of marrow aspirated might be desired prior to use of a point-of-care system to concentrate MSCs. Our objective was to test a method to increase the number of MSCs per milliliter of marrow collected. We collected two BM aspirates using two different collection techniques from 12 horses. The first collection technique was to aspirate BM from a single site without advancement of the biopsy needle. The second collection technique was to aspirate marrow from multiple sites within the same sternal puncture by advancing the needle 5 mm three times for BM aspiration from four sites. Numbers of MSCs in collected BM were assessed by total nucleated cell count of BM after aspiration, total colony-forming unit-fibroblast (CFU-F) assay, and total MSC number at each culture passage. The BM aspiration technique of four needle advancements during BM aspiration resulted in higher initial nucleated cell counts, more CFU-Fs, and more MSCs at the first passage. There were no differences in the number of MSCs at later passages. Multiple advancements of the BM needle during BM aspiration resulted in increased MSC concentration at the time of BM collection. If a point-of-care kit is used to concentrate MSCs, multiple advancements may result in higher MSC numbers in the BM concentrate after preparation by the point-of-care kit. For culture expanded MSCs beyond the first cell passage, the difference is of questionable clinical relevance. PMID:27014705

  13. Biopsy Needle Advancement during Bone Marrow Aspiration Increases Mesenchymal Stem Cell Concentration.

    PubMed

    Peters, Anne E; Watts, Ashlee E

    2016-01-01

    Point-of-care kits to concentrate bone marrow (BM)-derived mesenchymal stem cells (MSCs) are used clinically in horses. A maximal number of MSCs per milliliter of marrow aspirated might be desired prior to use of a point-of-care system to concentrate MSCs. Our objective was to test a method to increase the number of MSCs per milliliter of marrow collected. We collected two BM aspirates using two different collection techniques from 12 horses. The first collection technique was to aspirate BM from a single site without advancement of the biopsy needle. The second collection technique was to aspirate marrow from multiple sites within the same sternal puncture by advancing the needle 5 mm three times for BM aspiration from four sites. Numbers of MSCs in collected BM were assessed by total nucleated cell count of BM after aspiration, total colony-forming unit-fibroblast (CFU-F) assay, and total MSC number at each culture passage. The BM aspiration technique of four needle advancements during BM aspiration resulted in higher initial nucleated cell counts, more CFU-Fs, and more MSCs at the first passage. There were no differences in the number of MSCs at later passages. Multiple advancements of the BM needle during BM aspiration resulted in increased MSC concentration at the time of BM collection. If a point-of-care kit is used to concentrate MSCs, multiple advancements may result in higher MSC numbers in the BM concentrate after preparation by the point-of-care kit. For culture expanded MSCs beyond the first cell passage, the difference is of questionable clinical relevance. PMID:27014705

  14. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy

    PubMed Central

    Otero-Viñas, Marta; Falanga, Vincent

    2016-01-01

    Significance: Almost 7 million Americans have chronic cutaneous wounds and billions of dollars are spent on their treatment. The number of patients with nonhealing wounds keeps increasing worldwide due to an ever-aging population, increasing number of obese and diabetic patients, and cardiovascular disease. Recent Advances: Advanced treatments for difficult wounds are needed. Therapy with mesenchymal stem cells (MSCs) is attractive due to their differentiating potential, their immunomodulating properties, and their paracrine effects. Critical Issues: New technologies (including growth factors and skin substitutes) are now widely used for stimulating wound healing. However, in spite of these advances, the percentage of complete wound closure in most clinical situations is around 50–60%. Moreover, there is a high rate of wound recurrence. Future Directions: Recently, it has been demonstrated that MSCs speed up wound healing by decreasing inflammation, by promoting angiogenesis, and by decreasing scarring. However, there are some potential limitations to successful MSC therapy. These limitations include the need to improve cell delivery methods, cell viability, heterogeneity in MSC preparations, and suboptimal wound bed preparation. Further large, controlled clinical trials are needed to establish the safety of MSCs before widespread clinical application. PMID:27076993

  15. Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation

    PubMed Central

    2015-01-01

    Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However, ADSCs require invasive procedures, and has potential complications. Recently, urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study, we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization, and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation, colony formation, cell surface markers, immune modulation, chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3, 5, and 7. USCs showed high cell proliferation rate, enhanced colony forming ability, strong positive for stem cell markers expression, high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3, 5, and 7. In chromosome stability analysis, both cells showed normal karyotype through all passages. In analysis of multi-lineage capability, USCs showed higher myogenic, neurogenic, and endogenic differentiation rate, and lower osteogenic, adipogenic, and chondrogenic differentiation rate compared to ADSCs. Therefore, we expect that USC can be an alternative autologous stem cell source for muscle, neuron and endothelial tissue reconstruction instead of ADSCs. PMID:26713051

  16. Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models.

    PubMed

    Haggarty, Stephen J; Silva, M Catarina; Cross, Alan; Brandon, Nicholas J; Perlis, Roy H

    2016-06-01

    Compelling clinical, social, and economic reasons exist to innovate in the process of drug discovery for neuropsychiatric disorders. The use of patient-specific, induced pluripotent stem cells (iPSCs) now affords the ability to generate neuronal cell-based models that recapitulate key aspects of human disease. In the context of neuropsychiatric disorders, where access to physiologically active and relevant cell types of the central nervous system for research is extremely limiting, iPSC-derived in vitro culture of human neurons and glial cells is transformative. Potential applications relevant to early stage drug discovery, include support of quantitative biochemistry, functional genomics, proteomics, and perhaps most notably, high-throughput and high-content chemical screening. While many phenotypes in human iPSC-derived culture systems may prove adaptable to screening formats, addressing the question of which in vitro phenotypes are ultimately relevant to disease pathophysiology and therefore more likely to yield effective pharmacological agents that are disease-modifying treatments requires careful consideration. Here, we review recent examples of studies of neuropsychiatric disorders using human stem cell models where cellular phenotypes linked to disease and functional assays have been reported. We also highlight technical advances using genome-editing technologies in iPSCs to support drug discovery efforts, including the interpretation of the functional significance of rare genetic variants of unknown significance and for the purpose of creating cell type- and pathway-selective functional reporter assays. Additionally, we evaluate the potential of in vitro stem cell models to investigate early events of disease pathogenesis, in an effort to understand the underlying molecular mechanism, including the basis of selective cell-type vulnerability, and the potential to create new cell-based diagnostics to aid in the classification of patients and subsequent

  17. From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU.

    PubMed

    Pellegrini, Graziella; Lambiase, Alessandro; Macaluso, Claudio; Pocobelli, Augusto; Deng, Sophie; Cavallini, Gian Maria; Esteki, Roza; Rama, Paolo

    2016-06-01

    In 1997, the human corneal epithelium was reconstructed in vitro and transplanted on patients. Later, it became a routine treatment, before regulations considered advanced therapy medicinal products and drugs on the same lines. Manufacturing, before and after good manufacturing practice setting, was established in different facilities and the clinical application in several hospitals. Advanced therapy medicinal products, including stem cells, are unique products with different challenges than other drugs: some uncertainties, in addition to benefit, cannot be avoided. This review will focus on all recent developments in the stem cell-based corneal therapy. PMID:27091398

  18. Reversing breast cancer stem cell into breast somatic stem cell.

    PubMed

    Wijaya, L; Agustina, D; Lizandi, A O; Kartawinata, M M; Sandra, F

    2011-02-01

    Stem cells have an important role in cell biology, allowing tissues to be renewed by freshly created cells throughout their lifetime. The specific micro-environment of stem cells is called stem cell niche; this environment influences the development of stem cells from quiescence through stages of differentiation. Recent advance researches have improved the understanding of the cellular and molecular components of the micro-environment--or niche--that regulates stem cells. We point out an important trend to the study of niche activity in breast cancers. Breast cancer has long been known to conserve a heterogeneous population of cells. While the majority of cells that make up tumors are destined to differentiate and eventually stop dividing, only minority populations of cells, termed cancer stem cell, possess extensive self renewal capability. These cancer stem cells possess characteristics of both stem cells and cancer cells. Breast cancer stem cells reversal to breast somatic stem cells offer a new therapy, that not only can stop the spread of breast cancer cells, but also can differentiate breast cancer stem cells into normal breast somatic stem cells. These can replace damaged breast tissue. Nevertheless, the complexity of realizing this therapy approach needs further research. PMID:21044008

  19. Total body irradiation, fludarabine, melphalan, and allogeneic hematopoietic stem cell transplantation for advanced pediatric hematologic malignancies.

    PubMed

    Petropoulos, D; Worth, L L; Mullen, C A; Madden, R; Mahajan, A; Choroszy, M; Ha, C S; Champlin, R C; Chan, K W

    2006-03-01

    We evaluated the efficacy and toxicity of adding 9 Gy of total body irradiation (TBI), in three single daily fractions of 3 Gy, to the reduced intensity regimen of fludarabine 30 mg/m2 i.v. x 4 days and melphalan 140 mg/m2 i.v. x 1 day in advanced pediatric hematologic malignancies. Twenty-two acute lymphoblastic leukemia (ALL), six acute myeloid leukemia (AML), and one non-Hodgkin lymphoma patients were transplanted. Of these, 13 were beyond second remission, and five had prior hematopoietic stem cell transplant (HSCT). Twenty-one donors were unrelated, of which 19 were from cord blood (CB) units. Three of the eight related donors were genotypically disparate. Oral mucositis and diarrhea were the most common toxicities. Twenty-seven patients achieved neutrophil engraftment (median 16 days), and 23 had platelet engraftment (median 42 days). One patient had primary graft failure. Seven patients died of non-relapse causes in the first 100 days. With a median follow-up of 52 months, seven of 22 ALL, five of six AML, and one of one lymphoma patients are alive and in remission. The regimen of TBI, fludarabine, and melphalan allows the engraftment of allogeneic hematopoietic stem cells (including mismatched CB). It was fairly well tolerated in pediatric patients, even for second transplants. Its efficacy requires further evaluation. PMID:16435013

  20. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment.

    PubMed

    Franchi, Silvia; Castelli, Mara; Amodeo, Giada; Niada, Stefania; Ferrari, Daniela; Vescovi, Angelo; Brini, Anna Teresa; Panerai, Alberto Emilio; Sacerdote, Paola

    2014-01-01

    Neuropathic pain (NP) is a highly invalidating disease resulting as consequence of a lesion or disease affecting the somatosensory system. All the pharmacological treatments today in use give a long lasting pain relief only in a limited percentage of patients before pain reappears making NP an incurable disease. New approaches are therefore needed and research is testing stem cell usage. Several papers have been written on experimental neuropathic pain treatment using stem cells of different origin and species to treat experimental NP. The original idea was based on the capacity of stem cell to offer a totipotent cellular source for replacing injured neural cells and for delivering trophic factors to lesion site; soon the researchers agreed that the capacity of stem cells to contrast NP was not dependent upon their regenerative effect but was mostly linked to a bidirectional interaction between the stem cell and damaged microenvironment resident cells. In this paper we review the preclinical studies produced in the last years assessing the effects induced by several stem cells in different models of neuropathic pain. The overall positive results obtained on pain remission by using stem cells that are safe, of easy isolation, and which may allow an autologous transplant in patients may be encouraging for moving from bench to bedside, although there are several issues that still need to be solved. PMID:25197647

  1. Stem cell glycolipids.

    PubMed

    Yanagisawa, Makoto

    2011-09-01

    Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety. Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss their availability as biomarkers for identifying and isolating stem cells. PMID:21161592

  2. Stem cells for regenerative medicine: advances in the engineering of tissues and organs

    NASA Astrophysics Data System (ADS)

    Ringe, Jochen; Kaps, Christian; Burmester, Gerd-Rüdiger; Sittinger, Michael

    2002-07-01

    The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as mesenchymal stem or mesenchymal progenitor cells (MSC). These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, MSC have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma, which suggest these cells as an attractive cell source for tissue engineering approaches. The interest in modern biological technologies such as tissue engineering has dramatically increased since it is feasible to isolate living, healthy cells from the body, expand them under cell culture conditions, combine them with biocompatible carrier materials and retransplant them into patients. Therefore, tissue engineering gives the opportunity to generate living substitutes for tissues and organs, which may overcome the drawbacks of classical tissue reconstruction: lacking quality and quantity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Due to the prerequisite for tissue engineering to ensure a sufficient number of tissue specific cells without donor site morbidity, much attention has been drawn to multipotential progenitor cells such as embryonic stem cells, periosteal cells and mesenchymal stem cells. In this report we review the state of the art in tissue engineering with mesenchymal stem and mesenchymal progenitor cells with emphasis on bone and cartilage reconstruction. Furthermore, several issues of importance, especially with regard to the clinical application of mesenchymal stem cells, are discussed.

  3. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application

    PubMed Central

    Almeida-Porada, Graça; Atala, Anthony; Porada, Christopher D

    2016-01-01

    Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future. PMID:27069953

  4. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application.

    PubMed

    Almeida-Porada, Graça; Atala, Anthony; Porada, Christopher D

    2016-01-01

    Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future. PMID:27069953

  5. Recent advances in haploidentical hematopoietic stem cell transplantation using ex vivo T cell-depleted graft in children and adolescents

    PubMed Central

    Koh, Kyung-Nam; Seo, Jong Jin

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for children and adolescents with various malignant and non-malignant diseases. While human leukocyte antigen (HLA)-identical sibling donor is the preferred choice, matched unrelated volunteer donor is another realistic option for successful HSCT. Unfortunately, it is not always possible to find a HLA-matched donor for patients requiring HSCT, leading to a considerable number of deaths of patients without undergoing transplantation. Alternatively, allogeneic HSCT from haploidentical family members could provide donors for virtually all patients who need HSCT. Although the early attempts at allogeneic HSCT from haploidentical family donor (HFD) were disappointing, recent advances in the effective ex vivo depletion of T cells or unmanipulated in vivo regulation of T cells, better supportive care, and optimal conditioning regimens have significantly improved the outcomes of haploidentical HSCT. The ex vivo techniques used to remove T cells have evolved from the selection of CD34+ hematopoietic stem cell progenitors to the depletion of CD3+ cells, and more recently to the depletion of αβ+ T cells. The recent emerging evidence for ex vivo T cell-depleted haploidentical HSCT has provided additional therapeutic options for pediatric patients with diseases curable by HSCT but has not found a suitable related or unrelated donor. This review discusses recent advances in haploidentical HSCT, focusing on transplant using ex vivo T cell-depleted grafts. In addition, our experiences with this novel approach for the treatment of pediatric patients with malignant and non-malignant diseases are described. PMID:27104186

  6. Advances in tissue engineering through stem cell-based co-culture.

    PubMed

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. PMID:24493315

  7. Allogeneic stem cell transplantation for advanced acute promyelocytic leukemia in the ATRA and ATO era

    PubMed Central

    Ramadan, Safaa M.; Di Veroli, Ambra; Camboni, Agnese; Breccia, Massimo; Iori, Anna Paola; Aversa, Franco; Cupelli, Luca; Papayannidis, Cristina; Bacigalupo, Andrea; Arcese, William; Lo-Coco, Francesco

    2012-01-01

    The role of allogeneic stem cell transplant in advanced acute promyelocytic leukemia patients who received standard first- and second-line therapy is still unknown. We report the outcome of 31 acute promyelocytic leukemia patients (median age 39 years) who underwent allogeneic transplant in second remission (n=15) or beyond (n=16). Sixteen patients were real-time polymerase chain reaction positive and 15 negative for PML/RARA pre-transplant. The 4-year overall survival was 62% and 31% for patients transplanted in second remission and beyond, respectively (P=0.05), and 64% and 27% for patients with pre-transplant negative and positive real-time polymerase chain reaction, respectively (P=0.03). The 4-year cumulative incidence of relapse was 32% and 44% for patients transplanted in second remission and beyond, respectively (P=0.37), and 30% and 47% for patients transplanted with negative and positive real-time polymerase chain reaction, respectively (P=0.30). Transplant-related mortality was 19.6%. In conclusion, allogeneic transplant is effective in advanced acute promyelocytic leukemia in the all-trans-retinoic acid and arsenic trioxide era, and should be considered once relapse is diagnosed. PMID:22689684

  8. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine.

    PubMed

    Szkolnicka, Dagmara; Hay, David C

    2016-06-01

    The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life-threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell-derived hepatocytes as a renewable source of cells for therapy. In addition to cell-based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte-like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421-1426. PMID:27015786

  9. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.

    PubMed

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2015-08-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine. PMID:26069271

  10. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice

    PubMed Central

    2016-01-01

    Today, several veterinary diseases may be treated with the administration of stem cells. This is possible because these cells present a high therapeutic potential and may be injected as autologous or allogenic, freshly isolated, or previously cultured. The literature supports that the process is safe and brings considerable benefits to animal health. Knowledge about how adult stem cells modulate the molecular signals to activate cell homing has also been increasingly determined, evidencing the mechanisms which enable cells to repair and regenerate injured tissues. Preclinical studies were designed for many animal models and they have contributed to the translation to the human clinic. This review shows the most commonly used stem cell types, with emphasis on mesenchymal stem cells and their mechanistic potential to repair, as well as the experimental protocols, studied diseases, and species with the highest amount of studies and applications. The relationship between stem cell protocols utilized on clinics, molecular mechanisms, and the physiological responses may offer subsidies to new studies and therefore improve the therapeutic outcome for both humans and animals. PMID:27379197

  11. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice.

    PubMed

    Markoski, Melissa Medeiros

    2016-01-01

    Today, several veterinary diseases may be treated with the administration of stem cells. This is possible because these cells present a high therapeutic potential and may be injected as autologous or allogenic, freshly isolated, or previously cultured. The literature supports that the process is safe and brings considerable benefits to animal health. Knowledge about how adult stem cells modulate the molecular signals to activate cell homing has also been increasingly determined, evidencing the mechanisms which enable cells to repair and regenerate injured tissues. Preclinical studies were designed for many animal models and they have contributed to the translation to the human clinic. This review shows the most commonly used stem cell types, with emphasis on mesenchymal stem cells and their mechanistic potential to repair, as well as the experimental protocols, studied diseases, and species with the highest amount of studies and applications. The relationship between stem cell protocols utilized on clinics, molecular mechanisms, and the physiological responses may offer subsidies to new studies and therefore improve the therapeutic outcome for both humans and animals. PMID:27379197

  12. Advances in the knowledge of breast cancer stem cells. A review.

    PubMed

    Schwarz-Cruz Y Celis, Angela; Espinosa, Magali; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2016-06-01

    Much effort has been made by researchers to elucidate the complex biology of breast cancer stem cells (BCSCs), a small subset of breast tumor cells that display stem cell properties, drive tumor initiation, and growth. In recent years, it has been suggested that BCSCs could be responsible for the process of metastasis and the development of drug resistance. These findings make the need to find the distinguishing blend of markers that can recognize only BCSCs of the utmost importance in order to be able to design new targeted therapies. This review will summarize BCSCs' main features as well as the cell surface markers that are currently used to identify them. PMID:26715540

  13. Adult mesenchymal stem cells in neural regeneration and repair: Current advances and future prospects (Review).

    PubMed

    Trzaska, Katarzyna A; Castillo, Marianne D; Rameshwar, Pranela

    2008-01-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine as they can be easily isolated from bone marrow (BM) aspirates and expanded in culture while maintaining their 'stemness'. In addition to differentiating into mesodermal cells, MSCs have shown considerable plasticity and generate ectodermal neurons and glia, which can be used to replace cells damaged by neurological diseases and injuries. These unique stem cells also exhibit immunomodulatory functions and secrete a variety of trophic factors which support regeneration and repair. This review focuses on the therapeutic usage of MSCs for neurodegenerative diseases and traumatic injuries to the nervous system. Animal studies demonstrate great promise for MSC transplantation in neurological disorders. In fact, a few clinical trials have already been initiated and show that MSCs are a safe cellular therapy and have great potential to become a viable treatment for neural disorders in the years to come. PMID:21479411

  14. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine

    PubMed Central

    Szkolnicka, Dagmara

    2016-01-01

    Abstract The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life‐threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell‐derived hepatocytes as a renewable source of cells for therapy. In addition to cell‐based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte‐like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421–1426 PMID:27015786

  15. The 3R principle: advancing clinical application of human pluripotent stem cells

    PubMed Central

    2013-01-01

    The first derivation of human embryonic stem cells brought with it a clear understanding that animal models of human disease might be replaced by an unlimited supply of human cells for research, drug discovery, and drug development. With the advent of clinical trials using human pluripotent stem cell-based therapies, it is both timely and relevant to reflect on factors that will facilitate future translation of this technology. Human pluripotent cells are increasingly being used to investigate the molecular mechanisms that underpin normal and pathological human development. Their differentiated progeny are also being used to identify novel pharmaceuticals, to screen for toxic effects of known chemicals, and to investigate cell or tissue transplantation strategies. The intrinsic assumption of these research efforts is that the information gained from these studies will be more accurate, and therefore of greater relevance, than traditional investigations based on animal models of human disease and injury. This review will therefore evaluate how animals and animal-derived products are used for human pluripotent stem cell research, and will indicate how efforts to further reduce or remove animals and animal products from this research will increase the clinical translation of human pluripotent stem cell technologies through drug discovery, toxicology screening, and cell replacement therapies. PMID:23510719

  16. Making a Hematopoietic Stem Cell

    PubMed Central

    Daniel, Michael G.; Pereira, Carlos-Filipe; Lemischka, Ihor R.; Moore, Kateri A.

    2016-01-01

    Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC. PMID:26526106

  17. The advancement of human pluripotent stem cell-derived therapies into the clinic.

    PubMed

    Thies, R Scott; Murry, Charles E

    2015-09-15

    Human pluripotent stem cells (hPSCs) offer many potential applications for drug screening and 'disease in a dish' assay capabilities. However, a more ambitious goal is to develop cell therapeutics using hPSCs to generate and replace somatic cells that are lost as a result of disease or injury. This Spotlight article will describe the state of progress of some of the hPSC-derived therapeutics that offer the most promise for clinical use. Lessons from developmental biology have been instrumental in identifying signaling molecules that can guide these differentiation processes in vitro, and will be described in the context of these cell therapy programs. PMID:26395136

  18. Stem cells supporting other stem cells

    PubMed Central

    Leatherman, Judith

    2013-01-01

    Adult stem cell therapies are increasingly prevalent for the treatment of damaged or diseased tissues, but most of the improvements observed to date are attributed to the ability of stem cells to produce paracrine factors that have a trophic effect on existing tissue cells, improving their functional capacity. It is now clear that this ability to produce trophic factors is a normal and necessary function for some stem cell populations. In vivo adult stem cells are thought to self-renew due to local signals from the microenvironment where they live, the niche. Several niches have now been identified which harbor multiple stem cell populations. In three of these niches – the Drosophila testis, the bulge of the mammalian hair follicle, and the mammalian bone marrow – one type of stem cell has been found to produce factors that contribute to the maintenance of a second stem cell population in the shared niche. In this review, I will examine the architecture of these three niches and discuss the molecular signals involved. Together, these examples establish a new paradigm for stem cell behavior, that stem cells can promote the maintenance of other stem cells. PMID:24348512

  19. Stem cell biobanks.

    PubMed

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment. PMID:20560026

  20. [Autologous hematopoietic stem cell transplantation followed by oral bexarotene in a patient with advanced mycosis fungoides].

    PubMed

    Pérez-Barrio, S; Izu, R; García-Ruiz, J C; Acebo, E; Martínez de Lagrán, Z; Díaz-Pérez, J L

    2008-09-01

    We describe the case of a 17-year-old patient with rapidly progressing and aggressive mycosis fungoides, with multiple cutaneous tumors and large cell transformation. She was initially treated with 3 cycles of high-dose chemotherapy with mega-CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) without response, leading to the decision to undertake autologous hematopoietic stem cell transplantation. Partial remission of the disease was achieved with this treatment and subsequent introduction of oral bexarotene led to complete remission, which has been maintained for more than 3 years with good tolerance of oral therapy. We discuss the advantages and disadvantages of autologous hematopoietic stem cell transplantation and the use of oral bexarotene. PMID:18682170

  1. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering

    PubMed Central

    Wankhade, Umesh D.; Shen, Michael; Kolhe, Ravindra; Fulzele, Sadanand

    2016-01-01

    Obesity is a complex, multifactorial disease that has been extensively researched in recent times. Obesity is characterized by excess deposition of adipose tissue in response to surplus energy. Despite the negative connotations of adipose tissue (AT), it serves as a critical endocrine organ. Adipose tissue is a source of several adipokines and cytokines which have been deemed important for both normal metabolic function and disease formation. The discoveries of metabolically active brown AT in adult humans and adipose tissue derived stem cells (ADSC) have been key findings in the past decade with potential therapeutic implications. ADSCs represent an enticing pool of multipotent adult stem cells because of their noncontroversial nature, relative abundance, ease of isolation, and expandability. A decade and a half since the discovery of ADSCs, the scientific community is still working to uncover their therapeutic potential in a wide range of diseases. In this review, we provide an overview of the recent developments in the field of ADSCs and examine their potential use in transplantation and cell-based therapies for the regeneration of diseased organs and systems. We also hope to provide perspective on how to best utilize this readily available, powerful pool of stem cells in the future. PMID:26981130

  2. Recent Advances and Future Direction in Lyophilisation and Desiccation of Mesenchymal Stem Cells.

    PubMed

    Bissoyi, Akalabya; Kumar, Awanish; Rizvanov, Albert A; Nesmelov, Alexander; Gusev, Oleg; Patra, Pradeep Kumar; Bit, Arindam

    2016-01-01

    Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation. PMID:27597869

  3. Recent Advances and Future Direction in Lyophilisation and Desiccation of Mesenchymal Stem Cells

    PubMed Central

    Bissoyi, Akalabya; Gusev, Oleg; Patra, Pradeep Kumar

    2016-01-01

    Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation. PMID:27597869

  4. Mesenchymal stromal stem cell therapy in advanced interstitial lung disease - Anaphylaxis and short-term follow-up.

    PubMed

    Thangakunam, Balamugesh; Christopher, Devasahayam Jesudas; Mathews, Vikram; Srivastava, Alok

    2015-01-01

    There are limited treatment options for advanced interstitial lung disease (ILD). We describe a patient of ILD treated with mesenchymal stromal stem cell infusion. The index patient had end-stage ILD due to a combination of insults including treatment with radiotherapy and a tyrosine kinase inhibitor Erlotinib. He was oxygen-dependent and this was hampering his quality of life. He tolerated the first infusion stem cells without any problem. During the second infusion he developed anaphylactic shock, which was appropriately managed. At 6-months follow-up he had no improvement in oxygenation, pulmonary function or CT scan parameters. In view of anaphylaxis, further infusions of MSC were withheld. A longer follow-up may reveal long-term benefits or side effects, if any. However the occurrence of anaphylaxis is of concern suggesting that further trials should be conducted with intensive monitoring. PMID:26628765

  5. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers.

    PubMed

    Mimeault, M; Hauke, R; Mehta, P P; Batra, S K

    2007-01-01

    Overcoming intrinsic and acquired resistance of cancer stem/progenitor cells to current clinical treatments represents a major challenge in treating and curing the most aggressive and metastatic cancers. This review summarizes recent advances in our understanding of the cellular origin and molecular mechanisms at the basis of cancer initiation and progression as well as the heterogeneity of cancers arising from the malignant transformation of adult stem/progenitor cells. We describe the critical functions provided by several growth factor cascades, including epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor (SCF) receptor (KIT), hedgehog and Wnt/beta-catenin signalling pathways that are frequently activated in cancer progenitor cells and are involved in their sustained growth, survival, invasion and drug resistance. Of therapeutic interest, we also discuss recent progress in the development of new drug combinations to treat the highly aggressive and metastatic cancers including refractory/relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas and gastrointestinal cancers which remain incurable in the clinics. The emphasis is on new therapeutic strategies consisting of molecular targeting of distinct oncogenic signalling elements activated in the cancer progenitor cells and their local microenvironment during cancer progression. These new targeted therapies should improve the efficacy of current therapeutic treatments against aggressive cancers, and thereby preventing disease relapse and enhancing patient survival. PMID:17979879

  6. Bone marrow derived stem cells in regenerative medicine as Advanced Therapy Medicinal Products

    PubMed Central

    Astori, Giuseppe; Soncin, Sabrina; Lo Cicero, Viviana; Siclari, Francesco; Sürder, Daniel; Turchetto, Lucia; Soldati, Gianni; Moccetti, Tiziano

    2010-01-01

    Bone marrow derived stem cells administered after minimal manipulation represent an important cell source for cellbased therapies. Clinical trial results, have revealed both safety and efficacy of the cell reinfusion procedure in many cardiovascular diseases. Many of these early clinical trials were performed in a period before the entry into force of the US and European regulation on cellbased therapies. As a result, conflicting data have been generated on the effectiveness of those therapies in certain conditions as acute myocardial infarction. As more academic medical centers and private companies move toward exploiting the full potential of cellbased medicinal products, needs arise for the development of the infrastructure necessary to support these investigations. This review describes the regulatory environment surrounding the production of cell based medicinal products and give practical aspects for cell isolation, characterization, production following Good Manufacturing Practice, focusing on the activities associated with the investigational new drug development. PMID:20589167

  7. Dental mesenchymal stem cells.

    PubMed

    Sharpe, Paul T

    2016-07-01

    Mammalian teeth harbour mesenchymal stem cells (MSCs), which contribute to tooth growth and repair. These dental MSCs possess many in vitro features of bone marrow-derived MSCs, including clonogenicity, expression of certain markers, and following stimulation, differentiation into cells that have the characteristics of osteoblasts, chondrocytes and adipocytes. Teeth and their support tissues provide not only an easily accessible source of MSCs but also a tractable model system to study their function and properties in vivo In addition, the accessibility of teeth together with their clinical relevance provides a valuable opportunity to test stem cell-based treatments for dental disorders. This Review outlines some recent discoveries in dental MSC function and behaviour and discusses how these and other advances are paving the way for the development of new biologically based dental therapies. PMID:27381225

  8. Donor Natural Killer Cells After Donor Stem Cell Transplant in Treating Patients With Advanced Cancer

    ClinicalTrials.gov

    2013-02-18

    Brain and Central Nervous System Tumors; Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Lymphoproliferative Disorder; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Unspecified Adult Solid Tumor, Protocol Specific

  9. Stem Cells, Redox Signaling, and Stem Cell Aging

    PubMed Central

    Liang, Raymond

    2014-01-01

    Abstract Significance: Functional stem cell decline has been postulated to result in loss of maintenance of tissue homeostasis leading to organismal decline and diseases of aging. Recent Advances: Recent findings implicate redox metabolism in the control of stem cell pool and stem cell aging. Although reactive oxygen species (ROS) are better known for their damaging properties to DNA, proteins and lipids, recent findings suggest that ROS may also be an integral physiological mediator of cellular signaling in primary cells. Critical Issues: Here we review recent published work on major signaling pathways and transcription factors that are regulated by ROS and mediate ROS regulation of stem cell fate. We will specifically focus on how alterations in this regulation may be implicated in disease and particularly in diseases of stem cell aging. In general, based on the work described here we propose a model in which ROS function as stem cell rheostat. Future Directions: Future work in elucidating how ROS control stem cell cycling, apoptotic machinery, and lineage determination should shed light on mechanisms whereby ROS may control stem cell aging. Antioxid. Redox Signal. 20, 1902–1916. PMID:24383555

  10. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  11. Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin.

    PubMed

    Sadri, Ali-Reza; Jeschke, Marc G; Amini-Nik, Saeid

    2016-01-01

    The liver has evolved to become a highly plastic organ with extraordinary regenerative capabilities. What drives liver regeneration is still being debated. Adult liver stem/progenitor cells have been characterized and used to produce functional hepatocytes and biliary cells in vitro. However, in vivo, numerous studies have questioned whether hepatic progenitor cells have a significant role in liver regeneration. Mature hepatocytes have recently been shown to be more plastic than previously believed and give rise to new hepatocytes after acute and chronic injury. In this review, we discuss current knowledge in the field of liver regeneration and the importance of the serotonin pathway as a clinical target for patients with liver dysfunction. PMID:26798363

  12. Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin

    PubMed Central

    Jeschke, Marc G.; Amini-Nik, Saeid

    2016-01-01

    The liver has evolved to become a highly plastic organ with extraordinary regenerative capabilities. What drives liver regeneration is still being debated. Adult liver stem/progenitor cells have been characterized and used to produce functional hepatocytes and biliary cells in vitro. However, in vivo, numerous studies have questioned whether hepatic progenitor cells have a significant role in liver regeneration. Mature hepatocytes have recently been shown to be more plastic than previously believed and give rise to new hepatocytes after acute and chronic injury. In this review, we discuss current knowledge in the field of liver regeneration and the importance of the serotonin pathway as a clinical target for patients with liver dysfunction. PMID:26798363

  13. Application of biomaterials to advance induced pluripotent stem cell research and therapy

    PubMed Central

    Tong, Zhixiang; Solanki, Aniruddh; Hamilos, Allison; Levy, Oren; Wen, Kendall; Yin, Xiaolei; Karp, Jeffrey M

    2015-01-01

    Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation. PMID:25766254

  14. Stem Cell Research.

    PubMed

    Trounson, Alan; Kolaja, Kyle; Petersen, Thomas; Weber, Klaus; McVean, Maralee; Funk, Kathleen A

    2015-01-01

    Stem cells have great potential in basic research and are being slowly integrated into toxicological research. This symposium provided an overview of the state of the field, stem cell models, described allogenic stem cell treatments and issues of immunogenicity associated with protein therapeutics, and tehn concentrated on stem cell uses in regenerative medicine focusing on lung and testing strategies on engineered tissues from a pathologist's perspective. PMID:25899720

  15. GPCRs in Stem Cell Function

    PubMed Central

    DOZE, VAN A.; PEREZ, DIANNE M.

    2013-01-01

    Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G-protein coupled receptors in the regulation of stem cells and their potential in future clinical applications. PMID:23415095

  16. Information on Stem Cell Research

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS Information on Stem Cell Research Research @ NINDS Stem Cell Highlights Submit a hESC ... found here: Human Induced Pluripotent Stem Cells NINDS Stem Cell Research on Campus The Intramural Research Program of NINDS ...

  17. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis. PMID:22404469

  18. Toward 'SMART' stem cells.

    PubMed

    Cheng, T

    2008-01-01

    Stem cell research is at the heart of regenerative medicine, which holds great promise for the treatment of many devastating disorders. However, in addition to hurdles posed by well-publicized ethical issues, this emerging field presents many biological challenges. What is a stem cell? How are embryonic stem cells different from adult stem cells? What are the physiological bases for therapeutically acceptable stem cells? In this editorial review, I will briefly discuss these superficially simple but actually rather complex issues that surround this fascinating cell type. The goal of this special issue on stem cells in Gene Therapy is to review some fundamental and critical aspects of current stem cell research that have translational potential. PMID:18046429

  19. Stem Cell Information: Glossary

    MedlinePlus

    ... based therapies Cell culture Cell division Chromosome Clone Cloning Cord blood stem cells Culture medium Differentiation Directed ... Pluripotent Polar body Preimplantation Proliferation Regenerative medicine Reproductive cloning Signals Somatic cell Somatic cell nuclear transfer (SCNT) ...

  20. Targeting Breast Cancer Stem Cells

    PubMed Central

    Liu, Suling; Wicha, Max S.

    2010-01-01

    There is increasing evidence that many cancers, including breast cancer, contain populations of cells that display stem-cell properties. These breast cancer stem cells, by virtue of their relative resistance to radiation and cytotoxic chemotherapy, may contribute to treatment resistance and relapse. The elucidation of pathways that regulate these cells has led to the identification of potential therapeutic targets. A number of agents capable of targeting breast cancer stem cells in preclinical models are currently entering clinical trials. Assessment of the efficacy of the agents will require development of innovative clinical trial designs with appropriate biologic and clinical end points. The effective targeting of breast cancer stem cells has the potential to significantly improve outcome for women with both early-stage and advanced breast cancer. PMID:20498387

  1. Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells.

    PubMed

    Li, Shujing; Wang, Xianyun; Li, Jing; Zhang, Jun; Zhang, Fan; Hu, Jie; Qi, Yixin; Yan, Baoyong; Li, Quanhai

    2016-01-01

    Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases. PMID:27293445

  2. Admixed human embryos and stem cells: legislative, ethical and scientific advances.

    PubMed

    Bahadur, G; Iqbal, M; Malik, S; Sanyal, A; Wafa, R; Noble, R

    2008-01-01

    This paper examines the regulatory framework currently governing the creation of animal-human hybrids and chimera embryos in stem cell research, and some of the ethical implications of such research. It discusses the findings of a recent government select committee that considered the topic. It considers the debate around the precise definition of a human embryo, and whether such hybrids therefore fall within the remit of the Human Fertilisation and Embryology Authority. It outlines the advantages of such hybrids, in lessening the need for human egg donors, as well as the moral objections to species boundary violation. It calls for an examination of the scientific benefits of such research to inform debate on the question, and argues for the need to take genuine account of the public's views on this matter. PMID:18644220

  3. Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells

    PubMed Central

    Li, Shujing; Wang, Xianyun; Li, Jing; Zhang, Jun; Zhang, Fan; Hu, Jie; Qi, Yixin; Yan, Baoyong; Li, Quanhai

    2016-01-01

    Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases. PMID:27293445

  4. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy

    PubMed Central

    Schimke, Magdalena M.; Marozin, Sabrina; Lepperdinger, Günter

    2015-01-01

    Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation within any type of stroma in the body of higher animals. Prominently, MSC have been recognized to reside in perivascular locations, supposedly maintaining blood vessel integrity. During tissue damage and injury, MSC/pericytes become activated, evade from their perivascular niche and are thus assumed to support wound healing and tissue regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been performed to address bone, cartilage, or heart regeneration. Furthermore, prominent studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease. Therefore, additional fields of application are presently conceived, in which MSC-based therapies potentially unfold beneficial effects, such as amelioration of non-healing conditions after tendon or spinal cord injury, as well as neuropathies. Working along these lines, MSC-based scientific research has been forged ahead to prominently occupy the clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered a determining factor for outcome and success of clinical therapies? PMID:26696897

  5. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy.

    PubMed

    Schimke, Magdalena M; Marozin, Sabrina; Lepperdinger, Günter

    2015-01-01

    Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation within any type of stroma in the body of higher animals. Prominently, MSC have been recognized to reside in perivascular locations, supposedly maintaining blood vessel integrity. During tissue damage and injury, MSC/pericytes become activated, evade from their perivascular niche and are thus assumed to support wound healing and tissue regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been performed to address bone, cartilage, or heart regeneration. Furthermore, prominent studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease. Therefore, additional fields of application are presently conceived, in which MSC-based therapies potentially unfold beneficial effects, such as amelioration of non-healing conditions after tendon or spinal cord injury, as well as neuropathies. Working along these lines, MSC-based scientific research has been forged ahead to prominently occupy the clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered a determining factor for outcome and success of clinical therapies? PMID:26696897

  6. The regulatory niche of intestinal stem cells.

    PubMed

    Sailaja, Badi Sri; He, Xi C; Li, Linheng

    2016-09-01

    The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders. PMID:27060879

  7. Signaling involved in stem cell reprogramming and differentiation

    PubMed Central

    Tanabe, Shihori

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed. PMID:26328015

  8. Stem cells and repair of lung injuries

    PubMed Central

    Neuringer, Isabel P; Randell, Scott H

    2004-01-01

    Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung. PMID:15285789

  9. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  10. Stem cells sources for intervertebral disc regeneration.

    PubMed

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-05-26

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  11. Allogeneic stem cell transplantation for advanced cutaneous T-cell lymphomas: a study from the French Society of Bone Marrow Transplantation and French Study Group on Cutaneous Lymphomas.

    PubMed

    de Masson, Adèle; Beylot-Barry, Marie; Bouaziz, Jean-David; Peffault de Latour, Régis; Aubin, François; Garciaz, Sylvain; d'Incan, Michel; Dereure, Olivier; Dalle, Stéphane; Dompmartin, Anne; Suarez, Felipe; Battistella, Maxime; Vignon-Pennamen, Marie-Dominique; Rivet, Jacqueline; Adamski, Henri; Brice, Pauline; François, Sylvie; Lissandre, Séverine; Turlure, Pascal; Wierzbicka-Hainaut, Ewa; Brissot, Eolia; Dulery, Rémy; Servais, Sophie; Ravinet, Aurélie; Tabrizi, Reza; Ingen-Housz-Oro, Saskia; Joly, Pascal; Socié, Gérard; Bagot, Martine

    2014-03-01

    The treatment of advanced stage primary cutaneous T-cell lymphomas remains challenging. In particular, large-cell transformation of mycosis fungoides is associated with a median overall survival of two years for all stages taken together. Little is known regarding allogeneic hematopoietic stem cell transplantation in this context. We performed a multicenter retrospective analysis of 37 cases of advanced stage primary cutaneous T-cell lymphomas treated with allogeneic stem cell transplantation, including 20 (54%) transformed mycosis fungoides. Twenty-four patients (65%) had stage IV disease (for mycosis fungoides and Sézary syndrome) or disseminated nodal or visceral involvement (for non-epidermotropic primary cutaneous T-cell lymphomas). After a median follow up of 29 months, 19 patients experienced a relapse, leading to a 2-year cumulative incidence of relapse of 56% (95%CI: 0.38-0.74). Estimated 2-year overall survival was 57% (95%CI: 0.41-0.77) and progression-free survival 31% (95%CI: 0.19-0.53). Six of 19 patients with a post-transplant relapse achieved a subsequent complete remission after salvage therapy, with a median duration of 41 months. A weak residual tumor burden before transplantation was associated with increased progression-free survival (HR=0.3, 95%CI: 0.1-0.8; P=0.01). The use of antithymocyte globulin significantly reduced progression-free survival (HR=2.9, 95%CI: 1.3-6.2; P=0.01) but also transplant-related mortality (HR=10(-7), 95%CI: 4.10(-8)-2.10(-7); P<0.001) in univariate analysis. In multivariate analysis, the use of antithymocyte globulin was the only factor significantly associated with decreased progression-free survival (P=0.04). Allogeneic stem cell transplantation should be considered in advanced stage primary cutaneous T-cell lymphomas, including transformed mycosis fungoides. PMID:24213148

  12. Stress and stem cells.

    PubMed

    Tower, John

    2012-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress. PMID:23799624

  13. Advances in haplo-identical stem cell transplantation in adults with high-risk hematological malignancies

    PubMed Central

    Ricci, Michael J; Medin, Jeffrey A; Foley, Ronan S

    2014-01-01

    Allogeneic bone marrow transplant is a life-saving procedure for adults and children that have high-risk or relapsed hematological malignancies. Incremental advances in the procedure, as well as expanded sources of donor hematopoietic cell grafts have significantly improved overall rates of success. Yet, the outcomes for patients for whom suitable donors cannot be found remain a significant limitation. These patients may benefit from a hematopoietic cell transplant wherein a relative donor is fully haplotype mismatched. Previously this procedure was limited by graft rejection, lethal graft-versus-host disease, and increased treatment-related toxicity. Recent approaches in haplo-identical transplantation have demonstrated significantly improved outcomes. Based on years of incremental pre-clinical research into this unique form of bone marrow transplant, a range of approaches have now been studied in patients in relatively large phase II trials that will be summarized in this review. PMID:25258660

  14. Advances in haplo-identical stem cell transplantation in adults with high-risk hematological malignancies.

    PubMed

    Ricci, Michael J; Medin, Jeffrey A; Foley, Ronan S

    2014-09-26

    Allogeneic bone marrow transplant is a life-saving procedure for adults and children that have high-risk or relapsed hematological malignancies. Incremental advances in the procedure, as well as expanded sources of donor hematopoietic cell grafts have significantly improved overall rates of success. Yet, the outcomes for patients for whom suitable donors cannot be found remain a significant limitation. These patients may benefit from a hematopoietic cell transplant wherein a relative donor is fully haplotype mismatched. Previously this procedure was limited by graft rejection, lethal graft-versus-host disease, and increased treatment-related toxicity. Recent approaches in haplo-identical transplantation have demonstrated significantly improved outcomes. Based on years of incremental pre-clinical research into this unique form of bone marrow transplant, a range of approaches have now been studied in patients in relatively large phase II trials that will be summarized in this review. PMID:25258660

  15. Stem cells - biological update and cell therapy progress

    PubMed Central

    GIRLOVANU, MIHAI; SUSMAN, SERGIU; SORITAU, OLGA; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; MIHU, CARMEN MIHAELA

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine. PMID:26609255

  16. Stem cells - biological update and cell therapy progress.

    PubMed

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine. PMID:26609255

  17. Delivery of Differentiation Factors by Mesoporous Silica Particles Assists Advanced Differentiation of Transplanted Murine Embryonic Stem Cells

    PubMed Central

    Kozhevnikova, Mariya; König, Niclas; Zhou, Chunfang; Leao, Richardson; Knöpfel, Thomas; Pankratova, Stanislava; Trolle, Carl; Berezin, Vladimir; Bock, Elisabeth; Aldskogius, Håkan

    2013-01-01

    Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application. Here, we report the development of a novel technological approach for the local delivery of exogenous trophic factor mimetics to transplanted cells using specifically designed silica nanoporous particles. We demonstrated that delivering Cintrofin and Gliafin, established peptide mimetics of the ciliary neurotrophic factor and glial cell line-derived neurotrophic factor, respectively, with these particles enabled not only robust functional differentiation of motor neurons from transplanted embryonic stem cells but also their long-term survival in vivo. We propose that the delivery of growth factors by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation. PMID:24089415

  18. Dental stem cell patents.

    PubMed

    Morsczeck, Christian; Frerich, Bernhard; Driemel, Oliver

    2009-01-01

    A complex human tissue harbors stem cells that are responsible for its maintenance or repair. These stem cells have been isolated also from dental tissues such as the periodontal ligament, dental papilla or dental follicle and they may offer novel applications in dentistry. This following review summarizes patents about dental stem cells for dental tissue engineering and considers their value for regenerative dentistry. PMID:19149737

  19. Hematopoietic stem and progenitor cell harvesting: technical advances and clinical utility

    PubMed Central

    Hequet, Olivier

    2015-01-01

    Hematopoietic stem and progenitor cell (HSPC) transplantations require prior harvesting of allogeneic or autologous HSPCs. HSPCs are usually present in bone marrow (BM) during the entire life, in cord blood (CB) at birth, or in peripheral blood (PB) under particular circumstances. HSPCs were first harvested in BM and later in CB and PB, as studies showed interesting features of such grafts. All harvesting methods were in use throughout the years, except BM harvesting for HSPC autologous transplantation, which was replaced by PB harvesting. BM, CB, and PB harvesting methods have been developed, and materials and devices technically improved to increase the number of HSPCs harvested. In parallel, knowing the features of the donors or patients associated with successful numbers of HSPCs allows the adaptation of appropriate harvesting methods. Moreover, it is important to ensure the safety of donors or patients while harvesting. This review describes the methods used for harvesting based on recent studies or developments around these methods, and more particularly, the means developed to increase the numbers of HSPCs harvested in each method. It also explains briefly the influence of technical improvements in HSPC harvesting on potential changes in HSPC graft composition. PMID:25733943

  20. Epigenetic Regulation of Mammalian Stem Cells

    PubMed Central

    Li, Xuekun

    2008-01-01

    Two critical properties of stem cells are self-renewal and multipotency. The maintenance of their “stemness” state and commitment to differentiation are therefore tightly controlled by intricate molecular networks. Epigenetic mechanisms, including DNA methylation, chromatin remodeling and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. Recent studies have shown that epigenetic regulators are key players in stem cell biology and their dysfunction can result in human diseases such as cancer and neurodevelopmental disorders. Here, we review the recent evidences that advance our knowledge in epigenetic regulations of mammalian stem cells, with focus on embryonic stem cells and neural stem cells. PMID:18393635

  1. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  2. Brain tumor stem cells.

    PubMed

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies. PMID:20370314

  3. The leukemic stem cell

    PubMed Central

    Jordan, Craig T.

    2007-01-01

    Malignant stem cells have recently been described as the source of several types of human cancer. These unique cell types are typically rare and possess properties that are distinct from most other tumor cells. The properties of leukemic stem cells indicate that current chemotherapy drugs will not be effective. The use of current cytotoxic agents is not effective in leukemia because the agents target both the leukemic and normal stem cell populations. Consequently, new strategies are required that specifically and preferentially target the malignant stem cell population, while sparing normal stem cells. Several well known agents are lethal for the leukemic stem cell in preclinical testing. They include parthenolide, commonly known as feverfew, and TDZD-8. They have undergone various levels of preclinical development, but have not been used in patients as yet in the cancer setting. These drugs and combinations of existing therapies that target the leukemic stem cell population may provide a cure in this disease. This article summarizes recent findings in the leukemic stem cell field and discusses new directions for therapy. PMID:17336250

  4. Stem cells in dermatology*

    PubMed Central

    Ogliari, Karolyn Sassi; Marinowic, Daniel; Brum, Dario Eduardo; Loth, Fabrizio

    2014-01-01

    Preclinical and clinical research have shown that stem cell therapy could be a promising therapeutic option for many diseases in which current medical treatments do not achieve satisfying results or cure. This article describes stem cells sources and their therapeutic applications in dermatology today. PMID:24770506

  5. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  6. Hematopoietic stem cell transplantation

    PubMed Central

    Hatzimichael, Eleftheria; Tuthill, Mark

    2010-01-01

    More than 25,000 hematopoietic stem cell transplantations (HSCTs) are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and myeloproliferative syndromes. Before transplantation, patients receive intensive myeloablative chemoradiotherapy followed by stem cell “rescue.” Autologous HSCT is performed using the patient’s own hematopoietic stem cells, which are harvested before transplantation and reinfused after myeloablation. Allogeneic HSCT uses human leukocyte antigen (HLA)-matched stem cells derived from a donor. Survival after allogeneic transplantation depends on donor–recipient matching, the graft-versus-host response, and the development of a graft versus leukemia effect. This article reviews the biology of stem cells, clinical efficacy of HSCT, transplantation procedures, and potential complications. PMID:24198516

  7. Mesenchymal stem cells.

    PubMed

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  8. Glioblastoma stem cells and stem cell-targeting immunotherapies.

    PubMed

    Esparza, Rogelio; Azad, Tej D; Feroze, Abdullah H; Mitra, Siddhartha S; Cheshier, Samuel H

    2015-07-01

    Advancements in immunotherapeutics promise new possibilities for the creation of glioblastoma (GBM) treatment options. Ongoing work in cancer stem cell biology has progressively elucidated the role of this tumor sub-population in oncogenesis and has distinguished them as prime therapeutic targets. Current clinical trials take a multifaceted approach with the intention of harnessing the intrinsic cytotoxic capabilities of the immune system to directly target glioblastoma cancer stem cells (gCSC) or indirectly disrupt their stromal microenvironment. Monoclonal antibodies (mAbs), dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) T cell therapies have emerged as the most common approaches, with particular iterations incorporating cancer stem cell antigenic markers in their treatment designs. Ongoing work to determine the comprehensive antigenic profile of the gCSC in conjunction with efforts to counter the immunosuppressive tumor microenvironment holds much promise in future immunotherapeutic strategies against GBM. Given recent advancements in these fields, we believe there is tremendous potential to improve outcomes of GBM patients in the continuing evolution of immunotherapies targeted to cancer stem cell populations in GBM. PMID:25682090

  9. Autophagy in stem cells

    PubMed Central

    Guan, Jun-Lin; Simon, Anna Katharina; Prescott, Mark; Menendez, Javier A.; Liu, Fei; Wang, Fen; Wang, Chenran; Wolvetang, Ernst; Vazquez-Martin, Alejandro; Zhang, Jue

    2013-01-01

    Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future. PMID:23486312

  10. “The state of the heart”: Recent advances in engineering human cardiac tissue from pluripotent stem cells

    PubMed Central

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2016-01-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing and regenerative medicine. PMID:26069271

  11. Epithelial stem cells.

    PubMed

    Draheim, Kyle M; Lyle, Stephen

    2011-01-01

    It is likely that adult epithelial stem cells will be useful in the treatment of diseases, such as ectodermal dysplasias, monilethrix, Netherton syndrome, Menkes disease, hereditary epidermolysis bullosa, and alopecias. Additionally, other skin problems such as burn wounds, chronic wounds, and ulcers will benefit from stem cell-related therapies. However, there are many questions that need to be answered before this goal can be realized. The most important of these questions is what regulates the adhesion of stem cells to the niche versus migration to the site of injury. We have started to identify the mechanisms involved in this decision-making process. PMID:21618097

  12. Does quality of life impact the decision to pursue stem cell transplantation for elderly patients with advanced MDS?

    PubMed

    El-Jawahri, A; Kim, H T; Steensma, D P; Cronin, A M; Stone, R M; Watts, C D; Chen, Y-B; Cutler, C S; Soiffer, R J; Abel, G A

    2016-08-01

    The factors that influence utilization of reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (HCT) among medically fit older patients with advanced myelodysplastic syndromes (MDS) are largely unknown. The MDS Transplant-Associated Outcomes (MDS-TAO) study is an ongoing prospective observational study at the Dana-Farber Cancer Institute and Massachusetts General Hospital that enrolls transplant-eligible fit patients aged 60-75 years with advanced MDS and follows them through RIC HCT vs non-HCT treatment. In this analysis of 127 patients enrolled from May 2011 to June 2014, we examined the influence of age, gender, cytogenetics, International Prognostic Scoring System (IPSS) category, performance status, distance from HCT center and baseline patient-reported quality of life (QOL) from the EORTC QLQ-C30 (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire) on the likelihood of receiving RIC HCT using competing risk regression modeling. With a median follow-up of 16 months, 44 patients (35%) had undergone RIC HCT. In multivariable analyses, age (hazard ratio (HR) 0.87 per year, 95% confidence interval (CI): 0.81-0.92, P<0.001) and higher IPSS (intermediate-2/high; HR 2.29, 95% CI: 1.25-4.19, P=0.007) were significantly predictive of receipt of RIC HCT; neither global QOL score nor any QOL subscales scores were predictive. These data suggest that baseline patient-reported QOL has little influence on the decision to undergo RIC HCT for older patients with advanced MDS. PMID:26999469

  13. Limbal Stem Cell Transplantation

    PubMed Central

    2008-01-01

    its goblet cells on the cornea. However, in the opinion of a corneal expert, diagnosis is often based on clinical assessment, and in the expert’s opinion, it is unclear whether impression cytology is more accurate and reliable than clinical assessment, especially for patients with severe LSCD. The incidence of LSCD is not well understood. A variety of underlying disorders are associated with LSCD including chemical or thermal injuries, ultraviolet and ionizing radiation, Stevens-Johnson syndrome, multiple surgeries or cryotherapies, contact lens wear, extensive microbial infection, advanced ocular cicatricial pemphigoid, and aniridia. In addition, some LSCD cases are idiopathic. These conditions are uncommon (e.g., the prevalence of aniridia ranges from 1 in 40,000 to 1 in 100,000 people). Pterygium Pterygium is a wing-shaped fibrovascular tissue growth from the conjunctiva onto the cornea. Pterygium is the result of partial LSCD caused by localized ultraviolet damage to limbal stem cells. As the pterygium invades the cornea, it may cause irregular astigmatism, loss of visual acuity, chronic irritation, recurrent inflammation, double vision, and impaired ocular motility. Pterygium occurs worldwide. Incidence and prevalence rates are highest in the “pterygium belt,” which ranges from 30 degrees north to 30 degrees south of the equator, and lower prevalence rates are found at latitudes greater than 40 degrees. The prevalence of pterygium for Caucasians residing in urban, temperate climates is estimated at 1.2%. Existing Treatments Other Than Technology Being Reviewed Nonpterygium Limbal Stem Cell Deficiency In total LSCD, a patient’s limbal stem cells are completely depleted, so any successful treatment must include new stem cells. Autologous oral mucosal epithelium transplantation has been proposed as an alternative to LSCT. However, this procedure is investigational, and there is very limited level 4c evidence1 to support this technique (fewer than 20 eyes

  14. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  15. Plant Stem Cells.

    PubMed

    Greb, Thomas; Lohmann, Jan U

    2016-09-12

    Among the trending topics in the life sciences, stem cells have received a fair share of attention in the public debate - mostly in connection with their potential for biomedical application and therapies. While the promise of organ regeneration and the end of cancer have captured our imagination, it has gone almost unnoticed that plant stem cells represent the ultimate origin of much of the food we eat, the oxygen we breathe, as well the fuels we burn. Thus, plant stem cells may be ranked among the most important cells for human well-being. Research by many labs in the last decades has uncovered a set of independent stem cell systems that fulfill the specialized needs of plant development and growth in four dimensions. Surprisingly, the cellular and molecular design of these systems is remarkably similar, even across diverse species. In some long-lived plants, such as trees, plant stem cells remain active over hundreds or even thousands of years, revealing the exquisite precision in the underlying control of proliferation, self-renewal and differentiation. In this minireview, we introduce the basic features of the three major plant stem cell systems building on these facts, highlight their modular design at the level of cellular layout and regulatory underpinnings and briefly compare them with their animal counterparts. PMID:27623267

  16. MS Stem Cell Therapy Succeeds but Poses Risks

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_159285.html MS Stem Cell Therapy Succeeds But Poses Risks Toxic side ... HealthDay News) -- A treatment combining chemotherapy and a stem cell transplant could represent a major advance against ...

  17. Donor Peripheral Stem Cell Transplant in Treating Patients With Advanced Hematologic Cancer or Other Disorders

    ClinicalTrials.gov

    2015-12-30

    Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Precancerous/Nonmalignant Condition

  18. Infusing CD19-Directed T Cells to Augment Disease Control in Patients Undergoing Autologous Hematopoietic Stem-Cell Transplantation for Advanced B-Lymphoid Malignancies

    PubMed Central

    Kebriaei, Partow; Huls, Helen; Jena, Bipulendu; Munsell, Mark; Jackson, Rineka; Lee, Dean A.; Hackett, Perry B.; Rondon, Gabriela; Shpall, Elizabeth; Champlin, Richard E.

    2012-01-01

    Abstract Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR+ T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR+ T-cell infusions derived from allogeneic sources. PMID:22107246

  19. Aneuploidy in stem cells

    PubMed Central

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to reality. However, as somatic cells might have accumulated various chromosomal abnormalities, including aneuploidies throughout their lives, the resulting IPSCs might no longer carry the perfect blueprint for the tissue to be generated, or worse, become at risk of adopting a malignant fate. In this review, we discuss the contribution of aneuploidy to healthy tissues and how aneuploidy can lead to disease. Furthermore, we review the differences between how somatic cells and stem cells respond to aneuploidy. PMID:27354891

  20. Applications of Microfluidics in Stem Cell Biology.

    PubMed

    Zhang, Qiucen; Austin, Robert H

    2012-12-01

    Stem cell research can significantly benefit from recent advances of microfluidics technology. In a rationally designed microfluidics device, analyses of stem cells can be done in a much deeper and wider way than in a conventional tissue culture dish. Miniaturization makes analyses operated in a high-throughput fashion, while controls of fluids help to reconstruct the physiological environments. Through integration with present characterization tools like fluorescent microscope, microfluidics offers a systematic way to study the decision-making process of stem cells, which has attractive medical applications. In this paper, recent progress of microfluidics devices on stem cell research are discussed. The purpose of this review is to highlight some key features of microfluidics for stem cell biologists, as well as provide physicists/engineers an overview of how microfluidics has been and could be used for stem cell research. PMID:23336098

  1. Spermatogonial stem cells: progress and prospects

    PubMed Central

    Komeya, Mitsuru; Ogawa, Takehiko

    2015-01-01

    Twenty years ago, the transplantation of spermatogonial stem cells (SSCs) from a mouse to other recipient mice was shown to be feasible, which clearly demonstrated the functional identity of SSCs. Since then, several important new findings and other technical developments have followed, which included a new hypothesis on their cell kinetics and spermatogonial hierarchy in the testis, a culture method allowing their self-renewal and proliferation, a testis tissue organ culture method, which induced their complete differentiation up to sperm, and the in vitro induction of germ cells from embryonic stem cells and induced pluripotent stem cells. These advancements reinforced or advanced our understanding of this unique cell. Nonetheless, there are many unresolved questions in the study of spermatogonial stem cells and a long road remains until these cells can be used clinically in reproductive medicine. PMID:25994650

  2. Spermatogonial stem cells: Progress and prospects.

    PubMed

    Komeya, Mitsuru; Ogawa, Takehiko

    2015-01-01

    Twenty years ago, the transplantation of spermatogonial stem cells (SSCs) from a mouse to other recipient mice was shown to be feasible, which clearly demonstrated the functional identity of SSCs. Since then, several important new findings and other technical developments have followed, which included a new hypothesis on their cell kinetics and spermatogonial hierarchy in the testis, a culture method allowing their self-renewal and proliferation, a testis tissue organ culture method, which induced their complete differentiation up to sperm, and the in vitro induction of germ cells from embryonic stem cells and induced pluripotent stem cells. These advancements reinforced or advanced our understanding of this unique cell. Nonetheless, there are many unresolved questions in the study of spermatogonial stem cells and a long road remains until these cells can be used clinically in reproductive medicine. PMID:25994650

  3. Dental pulp stem cells

    PubMed Central

    Ashri, Nahid Y.; Ajlan, Sumaiah A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors. PMID:26620980

  4. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2009-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  5. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2002-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  6. Hematopoietic stem cells: an overview.

    PubMed

    Mosaad, Youssef Mohamed

    2014-12-01

    Considerable efforts have been made in recent years in understanding the mechanisms that govern hematopoietic stem cell (HSC) origin, development, differentiation, self-renewal, aging, trafficking, plasticity and transdifferentiation. Hematopoiesis occurs in sequential waves in distinct anatomical locations during development and these shifts in location are accompanied by changes in the functional status of the stem cells and reflect the changing needs of the developing organism. HSCs make a choice of either self-renewal or committing to differentiation. The balance between self-renewal and differentiation is considered to be critical to the maintenance of stem cell numbers. It is still under debate if HSC can rejuvenate infinitely or if they do not possess ''true" self-renewal and undergo replicative senescence such as any other somatic cell. Gene therapy applications that target HSCs offer a great potential for the treatment of hematologic and immunologic diseases. However, the clinical success has been limited by many factors. This review is intended to summarize the recent advances made in the human HSC field, and will review the hematopoietic stem cell from definition through development to clinical applications. PMID:25457002

  7. Catalyzing stem cell research.

    PubMed

    Willemse, Lisa; Lyall, Drew; Rudnicki, Michael

    2008-09-01

    In 2001, the Stem Cell Network was the first of its kind, a bold initiative to forge and nurture pan-Canadian collaborations involving researchers, engineers, clinicians and private and public sector partners. Canada's broad and deep pool of stem cell talent proved to be a fertile ground for such an initiative, giving rise to a strong, thriving network that, 7 years later, can list innovative cell expansion and screening technologies, early-phase clinical trials for stroke, pulmonary hypertension, muscular dystrophy and cornea replacement, and leading discourse on ethical, legal and social issues among its accomplishments. As it moves into its second and final phase of funding, the Stem Cell Network continues to push boundaries and has set its sights on overcoming the obstacles that impede the transfer of research findings to clinical applications, commercial products and public policy. PMID:18729799

  8. Ethical issues in autologous stem cell transplantation (ASCT) in advanced breast cancer: A systematic literature review

    PubMed Central

    2011-01-01

    Background An effectiveness assessment on ASCT in locally advanced and metastatic breast cancer identified serious ethical issues associated with this intervention. Our objective was to systematically review these aspects by means of a literature analysis. Methods We chose the reflexive Socratic approach as the review method using Hofmann's question list, conducted a comprehensive literature search in biomedical, psychological and ethics bibliographic databases and screened the resulting hits in a 2-step selection process. Relevant arguments were assembled from the included articles, and were assessed and assigned to the question list. Hofmann's questions were addressed by synthesizing these arguments. Results Of the identified 879 documents 102 included arguments related to one or more questions from Hofmann's question list. The most important ethical issues were the implementation of ASCT in clinical practice on the basis of phase-II trials in the 1990s and the publication of falsified data in the first randomized controlled trials (Bezwoda fraud), which caused significant negative effects on recruiting patients for further clinical trials and the doctor-patient relationship. Recent meta-analyses report a marginal effect in prolonging disease-free survival, accompanied by severe harms, including death. ASCT in breast cancer remains a stigmatized technology. Reported health-related-quality-of-life data are often at high risk of bias in favor of the survivors. Furthermore little attention has been paid to those patients who were dying. Conclusions The questions were addressed in different degrees of completeness. All arguments were assignable to the questions. The central ethical dimensions of ASCT could be discussed by reviewing the published literature. PMID:21496244

  9. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  10. Stem cell sources to treat diabetes.

    PubMed

    Furth, Mark E; Atala, Anthony

    2009-03-01

    We review progress towards the goal of utilizing stem cells as a source of engineered pancreatic beta-cells for therapy of diabetes. Protocols for the in vitro differentiation of embryonic stem (ES) cells based on normal developmental cues have generated beta-like cells that produce high levels of insulin, albeit at low efficiency and without full responsiveness to extracellular levels of glucose. Induced pluripotent stem (iPS) cells also can yield insulin-producing cells following similar approaches. An important recent report shows that when transplanted into mice, human ES-derived cells with a phenotype corresponding to pancreatic endoderm matured to yield cells capable of maintaining near-normal regulation of blood sugar [Kroon et al., 2008]. Major hurdles that must be overcome to enable the broad clinical translation of these advances include teratoma formation by ES and iPS cells, and the need for immunosuppressive drugs. Classes of stem cells that can be expanded extensively in culture but do not form teratomas, such as amniotic fluid-derived stem cells and hepatic stem cells, offer possible alternatives for the production of beta-like cells, but further evidence is required to document this potential. Generation of autologous iPS cells should prevent transplant rejection, but may prove prohibitively expensive. Banking strategies to identify small numbers of stem cell lines homozygous for major histocompatibility loci have been proposed to enable beneficial genetic matching that would decrease the need for immunosuppression. PMID:19130494

  11. Epidermal Stem Cells in Orthopaedic Regenerative Medicine

    PubMed Central

    Li, Jin; Zhen, Gehua; Tsai, Shin-Yi; Jia, Xiaofeng

    2013-01-01

    In the last decade, great advances have been made in epidermal stem cell studies at the cellular and molecular level. These studies reported various subpopulations and differentiations existing in the epidermal stem cell. Although controversies and unknown issues remain, epidermal stem cells possess an immune-privileged property in transplantation together with easy accessibility, which is favorable for future clinical application. In this review, we will summarize the biological characteristics of epidermal stem cells, and their potential in orthopedic regenerative medicine. Epidermal stem cells play a critical role via cell replacement, and demonstrate significant translational potential in the treatment of orthopedic injuries and diseases, including treatment for wound healing, peripheral nerve and spinal cord injury, and even muscle and bone remodeling. PMID:23727934

  12. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  13. Bioreactor Engineering of Stem Cell Environments

    PubMed Central

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-01-01

    Stem cells hold promise to revolutionize modern medicine by development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to translation of stem cell based therapies into the clinic. PMID:23531529

  14. Current Biosafety Considerations in Stem Cell Therapy.

    PubMed

    Mousavinejad, Masoumeh; Andrews, Peter W; Shoraki, Elham Kargar

    2016-01-01

    Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient's life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies. PMID:27540533

  15. Current Biosafety Considerations in Stem Cell Therapy

    PubMed Central

    Mousavinejad, Masoumeh; Andrews, Peter W.; Shoraki, Elham Kargar

    2016-01-01

    Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient’s life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies. PMID:27540533

  16. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  17. Nano scaffolds and stem cell therapy in liver tissue engineering

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  18. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  19. Engineering tissue from human embryonic stem cells

    PubMed Central

    Metallo, CM; Azarin, SM; Ji, L; De Pablo, JJ; Palecek, SP

    2008-01-01

    Abstract Recent advances in human embryonic stem cell (hESC) biology now offer an alternative cell source for tissue engineers, as these cells are capable of proliferating indefinitely and differentiating to many clinically relevant cell types. Novel culture methods capable of exerting spatial and temporal control over the stem cell microenvironment allow for more efficient expansion of hESCs, and significant advances have been made toward improving our understanding of the biophysical and biochemical cues that direct stem cell fate choices. Effective production of lineage specific progenitors or terminally differentiated cells enables researchers to incorporate hESC derivatives into engineered tissue constructs. Here, we describe current efforts using hESCs as a cell source for tissue engineering applications, highlighting potential advantages of hESCs over current practices as well as challenges which must be overcome. PMID:18194458

  20. Materials as stem cell regulators

    NASA Astrophysics Data System (ADS)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  1. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  2. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    PubMed

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  3. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  4. Stem cell banking: between traceability and identifiability

    PubMed Central

    2010-01-01

    Stem cell banks are increasingly seen as an essential resource of biological materials for both basic and translational research. Stem cell banks support transnational access to quality-controlled and ethically sourced stem cell lines from different origins and of varying grades. According to the Organisation for Economic Co-operation and Development, advances in regenerative medicine are leading to the development of a bioeconomy, 'a world where biotechnology contributes to a significant share of economic output'. Consequently, stem cell banks are destined to constitute a pillar of the bioeconomy in many countries. While certain ethical and legal concerns are specific to the nature of stem cells, stem cell banking could do well to examine the approaches fostered by tissue banking generally. Indeed, the past decade has seen a move to simplify and harmonize biological tissue and data banking so as to foster international interoperability. In particular, the issues of consent and of traceability illustrate not only commonalities but the opportunity for stem cell banking to appreciate the lessons learned in biobanking generally. This paper analyzes convergence and divergence in issues surrounding policy harmonization, transnational sharing, informed consent, traceability and return of results in the context of stem cell banks. PMID:20923580

  5. [Mesenchymal stem cells. A review.].

    PubMed

    Sigurjónsson, O E; Guðmundsson, K O; Guðmundsson, S

    2001-01-01

    The bone marrow contains various types of stem cells. Among them are hematopoietic stem cells, which are the precursors of all blood cells, and mesenchymal stem cells. Mesenchymal stem cells have recently received a lot of attention in biological research because of their capability to self renewal, to expand and transdifferentiate into many different cell types; bone cells, adipocytes, chondrocytes, tendocytes, neural cells and stromal cells of the bone marrow. Mesenchymal stem cells can be cultured in vitro although their differentiation potential is not yet fully understood. Several experiments have been conducted in animal models where mesenchymal stem cells have been transplanted in order to enhance hematopoiesis or to facilitate the repair of mesenchymal tissue. Similar experiments are being conducted in humans. Mesenchymal stem cells are believed to be able to enhance hematopoietic stem cells transplantation by rebuilding the bone marrow microenvironment which is damaged after radiation- and/or chemotherapy. Mesenchymal stem cells are promising as vehicles for gene transfer and therapy. It may prove possible to tranduce them with a gene coding for a defective protein i.e. collagen I in osteogenesis imperfecta. The cells could then be expanded ex vivo and transplanted to the patients where they home to the bone marrow, differentiate and produce the intact protein. Future medicine will probably involve mesenchymal stem cells in various treatment settings. PMID:17018999

  6. Virotherapy against malignant glioma stem cells.

    PubMed

    Dey, Mahua; Ulasov, Ilya V; Lesniak, Maciej S

    2010-03-01

    Glioblastoma multiforme, the most common primary intracranial malignancy, is associated with very poor outcome despite advances in surgical techniques and chemo- and radiation therapy. Many novel treatment modalities are being investigated with varying amount of success. Evolution of cancer stem cell hypothesis provides a new venue for developmental therapeutics. In this review, we highlight the literature regarding the existence of glioma stem cells and their characteristics. We also discuss the potential for virotherapy, a novel therapeutic approach utilizing conditionally replicative viruses, to directly target this population of self-renewing cancer stem cells. PMID:19643532

  7. Virotherapy Against Malignant Glioma Stem Cells

    PubMed Central

    Dey, Mahua; Ulasov, Ilya V.; Lesniak, Maciej S.

    2009-01-01

    Glioblastoma multiforme, the most common primary intracranial malignancy, is associated with very poor outcome despite advances in surgical techniques and chemo- and radiation therapy. Many novel treatment modalities are being investigated with varying amount of success. Evolution of cancer stem cell hypothesis provides a new venue for developmental therapeutics. In this review, we highlight the literature regarding the existence of glioma stem cells and their characteristics. We also discuss the potential for virotherapy, a novel therapeutic approach utilizing conditionally replicative viruses, to directly target this population of self-renewing cancer stem cells. PMID:19643532

  8. Autologous Stem Cell Mobilization and Collection.

    PubMed

    Hsu, Yen-Michael S; Cushing, Melissa M

    2016-06-01

    Peripheral blood stem cell collection is an effective approach to obtain a hematopoietic graft for stem cell transplantation. Developing hematopoietic stem/progenitor cell (HSPC) mobilization methods and collection algorithms have improved efficiency, clinical outcomes, and cost effectiveness. Differences in mobilization mechanisms may change the HSPC content harvested and result in different engraftment kinetics and complications. Patient-specific factors can affect mobilization. Incorporating these factors in collection algorithms and improving assays for evaluating mobilization further extend the ability to obtain sufficient HSPCs for hematopoietic repopulation. Technological advance and innovations in leukapheresis have improved collection efficiency and reduced adverse effects. PMID:27112997

  9. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    NASA Astrophysics Data System (ADS)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  10. Stem cell aging

    PubMed Central

    Muller-Sieburg, Christa; Sieburg, Hans B.

    2009-01-01

    The question whether stem cells age remains an enigma. Traditionally, aging was thought to change the properties of hematopoietic stem cells (HSC). We discuss here a new model of stem cell aging that challenges this view. It is now well-established that the HSC compartment is heterogeneous, consisting of epigenetically fixed subpopulations of HSC that differ in self-renewal and differentiation capacity. New data show that the representation of these HSC subsets changes during aging. HSC that generate lymphocyte-rich progeny are depleted, while myeloid-biased HSC are enriched in the aged HSC compartment. Myeloid-biased HSC, even when isolated from young donors, have most of the characteristics that had been attributed to aged HSC. Thus, the distinct behavior of the HSC isolated from aged hosts is due to the accumulation of myeloid-biased HSC. By extension this means that the properties of individual HSC are not substantially changed during the lifespan of the organism and that aged hosts do not contain many aged HSC. Myeloid-biased HSC give rise to mature cells slowly but contribute for a long time to peripheral hematopoiesis. We propose that such slow, “lazy” HSC are less likely to be transformed and therefore may safely sustain hematopoiesis for a long time. PMID:19066464

  11. Seeing Stem Cells at Work In Vivo

    PubMed Central

    Srivastava, Amit K.; Bulte, Jeff W. M.

    2013-01-01

    Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities. PMID:23975604

  12. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface.

    PubMed

    Zhang, Yan; Gordon, Andrew; Qian, Weiyi; Chen, Weiqiang

    2015-09-16

    Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response. PMID:26222885

  13. Ionizing radiation promotes advanced malignant traits in nasopharyngeal carcinoma via activation of epithelial-mesenchymal transition and the cancer stem cell phenotype

    PubMed Central

    SU, ZHONGWU; LI, GUO; LIU, CHAO; REN, SHULING; TIAN, YONGQUAN; LIU, YONG; QIU, YUANZHENG

    2016-01-01

    Post-irradiation residual mass and recurrence always suggest a worse prognosis for nasopharyngeal carcinoma (NPC). Our study aimed to investigate the malignant behaviors of post-irradiation residual NPC cells, to identify the potential underlying mechanisms and to search for appropriate bio-targets to overcome this malignancy. Two NPC cell lines were firstly exposed to 60 Gy irradiation, and residual cells were collected. In our previous study, colony formation assay detected the radioresistance of these cells. Here, the CCK-8 assay examined the cell sensitivity to paclitaxel and cisplatin. Wound-healing and Transwell assays were performed to investigate cell motility and invasion capabilities. Inverted phase-contrast microscopy was used to observe and photograph the morphology of cells. Expression levels of epithelial-mesenchymal transition (EMT)-related proteins were detected by western blot assay in NPC cells and tissues. The mRNA levels of cancer stem cell (CSC)-related genes were detected via qRT-PCR. The results revealed that residual NPC cells exhibited enhanced radioresistance and cross-resistance to paclitaxel and cisplatin. Higher capacities of invasion and migration were also observed. An elongated morphology with pseudopodia formation and broadening in the intercellular space was observed in the residual cells. Downregulation of E-cadherin and upregulation of vimentin were detected in the residual NPC cells and tissues. CSC-related Lgr5 and c-myc were significantly upregulated in the CNE-2-Rs and 6-10B-Rs radioresistance cells. Higher proportions of Lgr5+ cells were observed in radioresistant cells via immunofluorescent staining and flow cytometry. In conclusion, our study demonstrated that residual NPC cells had an advanced malignant transition and presented with both EMT and a CSC phenotype. This provides a possible clue and treatment strategy for advanced and residual NPC. PMID:27108809

  14. Successful Isolation of Viable Adipose-Derived Stem Cells from Human Adipose Tissue Subject to Long-Term Cryopreservation: Positive Implications for Adult Stem Cell-Based Therapeutics in Patients of Advanced Age

    PubMed Central

    Devitt, Sean M.; Carter, Cynthia M.; Dierov, Raia; Weiss, Scott; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2–1159 days) from patients of varying ages (26–62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages. PMID:25945096

  15. Nanotechnology in the regulation of stem cell behavior

    NASA Astrophysics Data System (ADS)

    Wu, King-Chuen; Tseng, Ching-Li; Wu, Chi-Chang; Kao, Feng-Chen; Tu, Yuan-Kun; So, Edmund C.; Wang, Yang-Kao

    2013-10-01

    Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell-scaffold combinations in tissue engineering and regenerative medicine.

  16. Biomaterials and Stem Cells for Tissue Engineering

    PubMed Central

    Zhang, Zhanpeng; Gupte, Melanie J.; Ma, Peter X.

    2013-01-01

    Importance of the field Organ failure and tissue loss are challenging health issues due to widespread injury, the lack of organs for transplantation, and limitations of conventional artificial implants. The field of tissue engineering aims to provide alternative living substitutes that restore, maintain or improve tissue function. Areas covered in this review In this paper, a wide range of porous scaffolds are reviewed, with an emphasis on phase separation techniques that generate advantageous nanofibrous 3D scaffolds for stem cell-based tissue engineering applications. In addition, methods for presentation and delivery of bioactive molecules to mimic the properties of stem cell niche are summarized. Recent progress in using these bio-instructive scaffolds to support stem cell differentiation and tissue regeneration is also presented. What the reader will gain Stem cells have great clinical potential because of their capability to differentiate into multiple cell types. Biomaterials have served as artificial extracellular environments to regulate stem cell behavior. Biomaterials with various physical, mechanical, and chemical properties can be designed to control stem cell development for regeneration. Take home message The research at the interface of stem cell biology and biomaterials has made and will continue to make exciting advances in tissue engineering. PMID:23327471

  17. Stem Cells in Aging

    PubMed Central

    Yunis, Edmond J.; Zúñiga, Joaquin; Koka, Prasad S.; Husain, Zaheed; Romero, Viviana; Stern, Joel N.H.; Fridkis-Hareli, Masha

    2008-01-01

    Aging is a genetically programmed decline in the functional effectiveness of the organism. It is manifested by a collective group of changes in cells or organs that occur over the course of a lifespan, limiting the duration of life. Longevity usually refers to long-lived members of a population within species. Organs develop and can involute according to specific timetables. Such timetables correlate with a preordained proliferative capacity of cells mediated by cell and organ clocks. In this review, we discuss different aspects related to genetic and environmental factors that are involved in determining life span. We discuss the influence of ontogenic, genetic and environmental factors in aging. The genetic factors can be studied in embryonic stem cells (ESC) and in niches (microenvironments) of stem cells (SC) using cellular or experimental animal models. We discuss molecular mechanisms involving genes and proteins associated with death pathways, niches, or hubs, on longevity. Moreover, we also discuss genes and proteins, associated with death pathways, on longevity. Unraveling these mechanisms may further our understanding of human aging leading to development of therapeutic interventions with the potential of prolonging life. PMID:19030125

  18. Stem cells and cardiovascular disease.

    PubMed

    Abbott, J Dawn; Giordano, Frank J

    2003-01-01

    Several recent discoveries have shifted the paradigm that there is no potential for myocardial regeneration and have fueled enthusiasm for a new frontier in the treatment of cardiovascular disease-stem cells. Fundamental to this emerging field is the cumulative evidence that adult bone marrow stem cells can differentiate into a wide variety of cell types, including cardiac myocytes and endothelial cells. This phenomenon has been termed stem cell plasticity and is the basis for the explosive recent interest in stem cell-based therapies. Directed to cardiovascular disease, stem cell therapy holds the promise of replacing lost heart muscle and enhancing cardiovascular revascularization. Early evidence of the feasibility of stem cell therapy for cardiovascular disease came from a series of animal experiments demonstrating that adult stem cells could become cardiac muscle cells (myogenesis) and participate in the formation of new blood vessels (angiogenesis and vasculogenesis) in the heart after myocardial infarction. These findings have been rapidly translated to ongoing human trials, but many questions remain. This review focuses on the use of adult bone marrow-derived stem cells for the treatment of ischemic cardiovascular disease and will contrast how far we have come in a short time with how far we still need to go before stem cell therapy becomes routine in cardiovascular medicine. PMID:12900745

  19. Analytical strategies for studying stem cell metabolism

    PubMed Central

    Arnold, James M.; Choi, William T.; Sreekumar, Arun

    2015-01-01

    Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology. PMID:26213533

  20. Stem cell bioprocessing: fundamentals and principles.

    PubMed

    Placzek, Mark R; Chung, I-Ming; Macedo, Hugo M; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Cha, Jae Min; Fauzi, Iliana; Kang, Yunyi; Yeo, David C L; Ma, Chi Yip Joan; Polak, Julia M; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2009-03-01

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications. PMID:19033137

  1. Stem cell bioprocessing: fundamentals and principles

    PubMed Central

    Placzek, Mark R.; Chung, I-Ming; Macedo, Hugo M.; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Min Cha, Jae; Fauzi, Iliana; Kang, Yunyi; Yeo, David C.L.; Yip Joan Ma, Chi; Polak, Julia M.; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2008-01-01

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the ‘omics’ technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical—failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications. PMID:19033137

  2. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    PubMed Central

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  3. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    PubMed

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  4. Why do stem cells exist?

    PubMed

    Heddle, J A; Cosentino, L; Dawod, G; Swiger, R R; Paashuis-Lew, Y

    1996-01-01

    Self-renewing tissues have a differentiation hierarchy such that the stem cells are the only permanent residents of the tissue, and it is in these cells that most cancerous mutations arise. The progeny of the stem cells either remain stem cells or enter a transient proliferating cell population that differentiates to produce the functional cells of the tissue. The reason that this differentiation hierarchy exists has not been established. We show here that alternative hierarchies, in which there would be no stem cells, are feasible and biologically plausible. We show that current evidence from somatic mutation frequencies at both transgenic and endogenous loci implicates cell division in the origin of most somatic mutations. We suggest, therefore, that the existence of stem cells is an evolutionary consequence of a selective pressure to avoid cancer by reducing the number of somatic mutations. The stem cell hierarchy reduces the number of cell divisions of those cells that reside permanently in the tissue, which reduces the number of somatic mutations and thus minimizes the cancer rate. In the small intestine, the existence of stem cells reduces the mutant frequency in the stem cells by about one order of magnitude. Since two or more mutations are required to transform a cell, the protective effect may be 100-fold or more. Similar factors may be expected in other tissues. PMID:8991061

  5. Reduced Intensity Conditioning Before Partially Matched Donor Stem Cell Transplant in Treating Patients With Advanced Cutaneous T Cell Lymphoma

    ClinicalTrials.gov

    2016-04-11

    Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Stage IIB Mycosis Fungoides and Sezary Syndrome; Stage IIIA Mycosis Fungoides and Sezary Syndrome; Stage IIIB Mycosis Fungoides and Sezary Syndrome; Stage IVA Mycosis Fungoides and Sezary Syndrome; Stage IVB Mycosis Fungoides and Sezary Syndrome

  6. Mimicking Stem Cell Niches to Increase Stem Cell Expansion

    PubMed Central

    Dellatore, Shara M.; Garcia, A. Sofia; Miller, William M.

    2008-01-01

    Summary Niches regulate lineage-specific stem cell self-renewal vs. differentiation in vivo and are comprised of supportive cells and extracellular matrix components arranged in a 3-dimensional topography of controlled stiffness in the presence of oxygen and growth factor gradients. Mimicking stem cell niches in a defined manner will facilitate production of the large numbers of stem cells needed to realize the promise of regenerative medicine and gene therapy. Progress has been made in mimicking components of the niche. Immobilizing cell-associated Notch ligands increased the self-renewal of hematopoietic (blood) stem cells. Culture on a fibrous scaffold that mimics basement membrane texture increased the expansion of hematopoietic and embryonic stem cells. Finally, researchers have created intricate patterns of cell-binding domains and complex oxygen gradients. PMID:18725291

  7. Role of liver stem cells in hepatocarcinogenesis

    PubMed Central

    Xu, Lei-Bo; Liu, Chao

    2014-01-01

    Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the “cancer stem cell hypothesis”, which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells (liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future. PMID:25426254

  8. Hematopoietic stem cell engineering at a crossroads

    PubMed Central

    Rivière, Isabelle; Dunbar, Cynthia E.

    2012-01-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead. PMID:22096239

  9. Stem Cells for Neonatal Brain Disorders.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Park, Won Soon

    2016-01-01

    Despite recent advances in neonatal intensive care medicine, neonatal brain injury resulting from intraventricular hemorrhage or hypoxic-ischemic encephalopathy remains a major cause of neonatal mortality and neurologic morbidities in survivors. Several studies have indicated that stem cell therapy is a promising novel therapy for neonatal brain injury resulting from these disorders. This review summarizes recent advances in stem cell research for treating neonatal brain injury due to intraventricular hemorrhage or hypoxic-ischemic encephalopathy with a particular focus on preclinical data, covering important issues for clinical translation such as optimal cell type, route, dose and timing of stem cell therapy, and translation of these preclinical results into a clinical trial. PMID:27251746

  10. Breathing life into the lung stem cell field.

    PubMed

    Fine, Alan

    2009-06-01

    In this issue of Cell Stem Cell, Rawlins et al. (2009) use an elegant lineage-tracing system to circumvent technical obstacles that have long limited advances in lung stem cell research and, as a result, definitively clarify the role of Clara cells in lung growth, homeostasis, and repair. PMID:19497272

  11. Antioxidants inhibit advanced glycosylation end-product-induced apoptosis by downregulation of miR-223 in human adipose tissue-derived stem cells

    PubMed Central

    Wang, Zhe; Li, Hongqiu; Guo, Ran; Wang, Qiushi; Zhang, Dianbao

    2016-01-01

    Advanced glycosylation end products (AGEs) are endogenous inflammatory mediators that induce apoptosis of mesenchymal stem cells. A potential mechanism includes increased generation of reactive oxygen species (ROS). MicroRNA-223 (miR-223) is implicated in the regulation of cell growth and apoptosis in several cell types. Here, we tested the hypothesis that antioxidants N-acetylcysteine (NAC) and ascorbic acid 2-phosphate (AAP) inhibit AGE-induced apoptosis via a microRNA-dependent mechanism in human adipose tissue-derived stem cells (ADSCs). Results showed that AGE-HSA enhanced apoptosis and caspase-3 activity in ADSCs. AGE-HSA also increased ROS generation and upregulated the expression of miR-223. Interestingly, reductions in ROS generation and apoptosis, and upregulation of miR-223 were found in ADSCs treated with antioxidants NAC and AAP. Furthermore, miR-223 mimics blocked antioxidant inhibition of AGE-induced apoptosis and ROS generation. Knockdown of miR-223 amplified the protective effects of antioxidants on apoptosis induced by AGE-HSA. miR-223 acted by targeting fibroblast growth factor receptor 2. These results indicate that NAC and AAP suppress AGE-HSA-induced apoptosis of ADSCs, possibly through downregulation of miR-223. PMID:26964642

  12. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche

    PubMed Central

    Shaker, Anisa; Rubin, Deborah C.

    2010-01-01

    The intestinal epithelium contains a rapidly proliferating and perpetually differentiating epithelium. The principal functional unit of the small intestine is the crypt-villus axis. Stem cells located in the crypts of Lieberkühn give rise to proliferating progenitor or transit amplifying cells that differentiate into the four major epithelial cell types. The study of adult gastrointestinal tract stem cells has progressed rapidly with the recent discovery of a number of putative stem cell markers. Substantial evidence suggests that there are two populations of stem cells: long-term quiescent (reserved) and actively cycling (primed) stem cells. These are in adjoining locations and are presumably maintained by the secretion of specific proteins generated in a unique microenvironment or stem cell niche surrounding each population. The relationship between these two populations, and the cellular sources and composition of the surrounding environment remains to be defined, and is an active area of research. In this review we will outline progress in identifying stem cells and defining epithelial-mesenchymal interactions in the crypt. We will summarize early advances using stem cells for therapy of gastrointestinal disorders. PMID:20801415

  13. Skeletal stem cells.

    PubMed

    Bianco, Paolo; Robey, Pamela G

    2015-03-15

    Skeletal stem cells (SSCs) reside in the postnatal bone marrow and give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow adipocytes in defined in vivo assays. These lineages emerge in a specific sequence during embryonic development and post natal growth, and together comprise a continuous anatomical system, the bone-bone marrow organ. SSCs conjoin skeletal and hematopoietic physiology, and are a tool for understanding and ameliorating skeletal and hematopoietic disorders. Here and in the accompanying poster, we concisely discuss the biology of SSCs in the context of the development and postnatal physiology of skeletal lineages, to which their use in medicine must remain anchored. PMID:25758217

  14. The chiaroscuro stem cell: a unified stem cell theory.

    PubMed

    Quesenberry, Peter J; Colvin, Gerald A; Lambert, Jean-Francois

    2002-12-15

    Hematopoiesis has been considered hierarchical in nature, but recent data suggest that the system is not hierarchical and is, in fact, quite functionally plastic. Existing data indicate that engraftment and progenitor phenotypes vary inversely with cell cycle transit and that gene expression also varies widely. These observations suggest that there is no progenitor/stem cell hierarchy, but rather a reversible continuum. This may, in turn, be dependent on shifting chromatin and gene expression with cell cycle transit. If the phenotype of these primitive marrow cells changes from engraftable stem cell to progenitor and back to engraftable stem cell with cycle transit, then this suggests that the identity of the engraftable stem cell may be partially masked in nonsynchronized marrow cell populations. A general model indicates a marrow cell that can continually change its surface receptor expression and thus responds to external stimuli differently at different points in the cell cycle. PMID:12393432

  15. Mechanotransduction: Tuning Stem Cells Fate

    PubMed Central

    D'Angelo, Francesco; Tiribuzi, Roberto; Armentano, Ilaria; Kenny, Josè Maria; Martino, Sabata; Orlacchio, Aldo

    2011-01-01

    It is a general concern that the success of regenerative medicine-based applications is based on the ability to recapitulate the molecular events that allow stem cells to repair the damaged tissue/organ. To this end biomaterials are designed to display properties that, in a precise and physiological-like fashion, could drive stem cell fate both in vitro and in vivo. The rationale is that stem cells are highly sensitive to forces and that they may convert mechanical stimuli into a chemical response. In this review, we describe novelties on stem cells and biomaterials interactions with more focus on the implication of the mechanical stimulation named mechanotransduction. PMID:24956164

  16. Human pluripotent stem cell-derived products: Advances towards robust, scalable and cost-effective manufacturing strategies

    PubMed Central

    Jenkins, Michael J; Farid, Suzanne S

    2015-01-01

    The ability to develop cost-effective, scalable and robust bioprocesses for human pluripotent stem cells (hPSCs) will be key to their commercial success as cell therapies and tools for use in drug screening and disease modelling studies. This review outlines key process economic drivers for hPSCs and progress made on improving the economic and operational feasibility of hPSC bioprocesses. Factors influencing key cost metrics, namely capital investment and cost of goods, for hPSCs are discussed. Step efficiencies particularly for differentiation, media requirements and technology choice are amongst the key process economic drivers identified for hPSCs. Progress made to address these cost drivers in hPSC bioprocessing strategies is discussed. These include improving expansion and differentiation yields in planar and bioreactor technologies, the development of xeno-free media and microcarrier coatings, identification of optimal bioprocess operating conditions to control cell fate and the development of directed differentiation protocols that reduce reliance on expensive morphogens such as growth factors and small molecules. These approaches offer methods to further optimise hPSC bioprocessing in terms of its commercial feasibility. PMID:25524780

  17. Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies.

    PubMed

    Jenkins, Michael J; Farid, Suzanne S

    2015-01-01

    The ability to develop cost-effective, scalable and robust bioprocesses for human pluripotent stem cells (hPSCs) will be key to their commercial success as cell therapies and tools for use in drug screening and disease modelling studies. This review outlines key process economic drivers for hPSCs and progress made on improving the economic and operational feasibility of hPSC bioprocesses. Factors influencing key cost metrics, namely capital investment and cost of goods, for hPSCs are discussed. Step efficiencies particularly for differentiation, media requirements and technology choice are amongst the key process economic drivers identified for hPSCs. Progress made to address these cost drivers in hPSC bioprocessing strategies is discussed. These include improving expansion and differentiation yields in planar and bioreactor technologies, the development of xeno-free media and microcarrier coatings, identification of optimal bioprocess operating conditions to control cell fate and the development of directed differentiation protocols that reduce reliance on expensive morphogens such as growth factors and small molecules. These approaches offer methods to further optimise hPSC bioprocessing in terms of its commercial feasibility. PMID:25524780

  18. [Stem cells and cardiac regeneration].

    PubMed

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research. PMID:17240634

  19. Advanced flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood in a defined model system

    NASA Astrophysics Data System (ADS)

    Cooper, Christy L.; Leary, James F.

    2015-03-01

    Leukemia stem cells are both stem-like and leukemic-like. This complicates their detection as rare circulating tumor cells in the peripheral blood of leukemia patients. Since leukemic stem cells are also resistant to standard chemotherapeutic regimens, new therapeutic strategies need to be designed to kill the leukemic stem cells without killing normal stem cells. In these initial targeting studies we utilized a bioinformatics approach to design an antibodyfluorescent nanoparticle conjugate for targeting to these leukemic stem cells and to minimize targeting to normal stemprogenitor cells. Multicolor flow cytometric analyses were performed on a BD FACS Aria III. Human leukemic stem cell-like cell RS4;11 (with putative immunophenotype CD133+/CD24+/-, CD34+/-, CD38+, CD10-/Flt3+) was spiked into normal hematopoietic stem-progenitor cells obtained from a "buffy coat" prep (with putative immunophenotype CD133- /CD34+/CD38-/CD10-/Flt-3-) to be used as a model human leukemia patient. To analyze the model system, digital data mixtures of the two cell types were first created and assigned classifiers in order to create truth sets. ROC (Receiver Operating Characteristic) and multidimensional cluster analyses were used to evaluate the specificity and sensitivity of the immunophenotyping panel and for automated cell population identification, respectively. Costs of misclassification (false targeting) were also accounted for by this analysis scheme. Ultimately, this analysis scheme will be applied to use of nanoparticle-antibody conjugates at therapeutic doses for targeted killing of leukemia stem cells preferentially to normal stem -progenitor cells.

  20. The ethics of stem cells revisited.

    PubMed

    de Miguel-Beriain, Iñigo

    2015-03-01

    Stem cells constitute one of the most promising tools for regenerative medicine. Thus, it seems morally compelling to explore all the sources that might provide us with them. However, some of these sources, such as somatic cell nuclear transfer, embryo destruction, or even induced pluripotency obtained by reprogramming have raised deep ethical issues. The aim of this paper is to reflect on the stem cell ethical debate at the current moment through an analysis of the academic literature. It will also provide an analysis of the ethical implications of the most relevant scientific advances that have happened in recent months or those which seem about to merge. PMID:25446134

  1. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation

    PubMed Central

    Jiang, Fangwei; Feng, Zhenhua; Liu, Hailiang; Zhu, Jian

    2015-01-01

    Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells) are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation. PMID:26635851

  2. The new stem cell biology.

    PubMed Central

    Quesenberry, Peter J.; Colvin, Gerald A.; Lambert, Jean-Francois; Frimberger, Angela E.; Dooner, Mark S.; Mcauliffe, Christina I.; Miller, Caroline; Becker, Pamela; Badiavas, Evangelis; Falanga, Vincent J.; Elfenbein, Gerald; Lum, Lawrence G.

    2002-01-01

    Recent studies have indicated that bone marrow stem cells are capable of generating muscle, cardiac, hepatic, renal, and bone cells. Purified hematopoietic stem cells have generated cardiac and hepatic cells and reversed disease manifestations in these tissues. Hematopoietic stem cells also alter phenotype with cell cycle transit or circadian phase. During a cytokine stimulated cell cycle transit, reversible alterations of differentiation and engraftment occur. Primitive hematopoietic stem cells express a wide variety of adhesion and cytokine receptors and respond quickly with migration and podia extensions on exposure to cytokines. These data suggest an "Open Chromatin" model of stem cell regulation in which there is a fluctuating continuum in the stem cell/progenitor cell compartments, rather than a hierarchical relationship. These observations, along with progress in using low dose treatments and tolerization approaches, suggest many new therapeutic strategies involving stem cells and the creation of a new medical specialty; stemology. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:12053709

  3. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  4. Stem cells for spine surgery.

    PubMed

    Schroeder, Joshua; Kueper, Janina; Leon, Kaplan; Liebergall, Meir

    2015-01-26

    In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer's disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion. PMID:25621119

  5. Bioprinting for stem cell research

    PubMed Central

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  6. Advances in corneal cell therapy.

    PubMed

    Fuest, Matthias; Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Mehta, Jodhbir S

    2016-09-01

    Corneal integrity is essential for visual function. Transplantation remains the most common treatment option for advanced corneal diseases. A global donor material shortage requires a search for alternative treatments. Different stem cell populations have been induced to express corneal cell characteristics in vitro and in animal models. Yet before their application to humans, scientific and ethical issues need to be solved. The in vitro propagation and implantation of primary corneal cells has been rapidly evolving with clinical practices of limbal epithelium transplantation and a clinical trial for endothelial cells in progress, implying cultivated ocular cells as a promising option for the future. This review reports on the latest developments in primary ocular cell and stem cell research for corneal therapy. PMID:27498943

  7. Pluripotent Stem Cells from Domesticated Mammals.

    PubMed

    Ezashi, Toshihiko; Yuan, Ye; Roberts, R Michael

    2016-01-01

    This review deals with the latest advances in the study of embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) from domesticated species, with a focus on pigs, cattle, sheep, goats, horses, cats, and dogs. Whereas the derivation of fully pluripotent ESC from these species has proved slow, reprogramming of somatic cells to iPSC has been more straightforward. However, most of these iPSC depend on the continued expression of the introduced transgenes, a major drawback to their utility. The persistent failure in generating ESC and the dependency of iPSC on ectopic genes probably stem from an inability to maintain the stability of the endogenous gene networks necessary to maintain pluripotency. Based on work in humans and rodents, achievement of full pluripotency will likely require fine adjustments in the growth factors and signaling inhibitors provided to the cells. Finally, we discuss the future utility of these cells for biomedical and agricultural purposes. PMID:26566158

  8. What Undergraduates Misunderstand about Stem Cell Research

    ERIC Educational Resources Information Center

    Halverson, Kristy Lynn; Freyermuth, Sharyn K.; Siegel, Marcelle A.; Clark, Catharine G.

    2010-01-01

    As biotechnology-related scientific advances, such as stem cell research (SCR), are increasingly permeating the popular media, it has become ever more important to understand students' ideas about this issue. Very few studies have investigated learners' ideas about biotechnology. Our study was designed to understand the types of alternative…

  9. Stem cell mitochondria during aging.

    PubMed

    Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Shyh-Chang, Ng

    2016-04-01

    Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future. PMID:26851627

  10. FDA Warns About Stem Cell Claims

    MedlinePlus

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Claims Share Tweet Linkedin Pin it More sharing ... blood-forming system. back to top Regulation of Stem Cells FDA regulates stem cells in the U.S. to ...

  11. LncRNAs in Stem Cells

    PubMed Central

    Hu, Shanshan; Shan, Ge

    2016-01-01

    Noncoding RNAs are critical regulatory factors in essentially all forms of life. Stem cells occupy a special position in cell biology and Biomedicine, and emerging results show that multiple ncRNAs play essential roles in stem cells. We discuss some of the known ncRNAs in stem cells such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adult stem cells, and cancer stem cells with a focus on long ncRNAs. Roles and functional mechanisms of these lncRNAs are summarized, and insights into current and future studies are presented. PMID:26880946

  12. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  13. Stem cell mechanics: Auxetic nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2014-06-01

    The nuclei of naive mouse embryonic stem cells that are transitioning towards differentiation expand when the cells are stretched and contract when they are compressed. What drives this auxetic phenotype is, however, unclear.

  14. Research Sees Potential to Make Bone, Muscle from Human Stem Cells

    MedlinePlus

    ... Sees Potential to Make Bone, Muscle From Human Stem Cells Could be a major advance for regenerative medicine, ... muscle and 10 other cells types from human stem cells within a matter of days. The researchers from ...

  15. Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment

    PubMed Central

    Edalat, Faramarz; Bae, Hojae; Manoucheri, Sam; Cha, Jae Min; Khademhosseini, Ali

    2012-01-01

    Stem cell-based therapeutics have become a vital component in tissue engineering and regenerative medicine. The microenvironment within which stem cells reside, i.e. the niche, plays a crucial role in regulating stem cell self-renewal and differentiation. However, current biological techniques lack the means to recapitulate the complexity of this microenvironment. Nano- and microengineered materials offer innovative methods to: (1) deconstruct the stem cell niche to understand the effects of individual elements; (2) construct complex tissue-like structures resembling the niche to better predict and control cellular processes; and (3) transplant stem cells or activate endogenous stem cell populations for regeneration of aged or diseased tissues. Here, we highlight some of the latest advances in this field and discuss future applications and directions of the use of nano- and microtechnologies for stem cell engineering. PMID:22101755

  16. Emerging interactions between skin stem cells and their niches

    PubMed Central

    Hsu, Ya-Chieh; Li, Lishi; Fuchs, Elaine

    2015-01-01

    The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. Thus, the skin provides a model for studying interactions between stem cells and their microenvironments, or niches. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny and about the mutual influences between skin stem cells and their niches. Such knowledge may offer novel avenues for therapeutics and regenerative medicine. PMID:25100530

  17. MicroRNAs as novel regulators of stem cell fate

    PubMed Central

    Choi, Eunhyun; Choi, Eunmi; Hwang, Ki-Chul

    2013-01-01

    Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted. PMID:24179605

  18. Epigenetic perturbations in aging stem cells.

    PubMed

    Krauss, Sara Russo; de Haan, Gerald

    2016-08-01

    Stem cells maintain homeostasis in all regenerating tissues during the lifespan of an organism. Thus, age-related functional decline of such tissues is likely to be at least partially explained by molecular events occurring in the stem cell compartment. Some of these events involve epigenetic changes, which may dictate how an aging genome can lead to differential gene expression programs. Recent technological advances have made it now possible to assess the genome-wide distribution of an ever-increasing number of epigenetic marks. As a result, the hypothesis that there may be a causal role for an altered epigenome contributing to the functional decline of cells, tissues, and organs in aging organisms can now be explored. In this paper, we review recent developments in the field of epigenetic regulation of stem cells, and how this may contribute to aging. PMID:27229519

  19. Adult stem cells underlying lung regeneration

    PubMed Central

    2012-01-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue and, in particular, the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease. PMID:22333577

  20. Tissue engineering using adult stem cells.

    PubMed

    Eberli, Daniel; Atala, Anthony

    2006-01-01

    Patients with a variety of diseases may be treated with transplanted tissues and organs. However, there is a shortage of donor tissues and organs, which is worsening yearly because of the aging population. Scientists in the field of tissue engineering are applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new options for cellular therapy and tissue engineering. The use of adult stem cells for tissue engineering applications is promising. This chapter discusses applications of these new technologies for the engineering of tissues and organs. The first part provides an overview of regenerative medicine and tissue engineering techniques; the second highlights different adult stem cell populations used for tissue regeneration. PMID:17161702

  1. Chromatin, epigenetics and stem cells.

    PubMed

    Roloff, Tim C; Nuber, Ulrike A

    2005-03-01

    Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control. PMID:15819395

  2. Stem cells for tooth engineering.

    PubMed

    Bluteau, G; Luder, H U; De Bari, C; Mitsiadis, T A

    2008-01-01

    Tooth development results from sequential and reciprocal interactions between the oral epithelium and the underlying neural crest-derived mesenchyme. The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. Although mesenchymal stem cells from different origins have been extensively studied in their capacity to form dentin in vitro, information is not yet available concerning the use of epithelial stem cells. The odontogenic potential resides in the oral epithelium and thus epithelial stem cells are necessary for both the initiation of tooth formation and enamel matrix production. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal or even adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still problematic and limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field for the years to come. PMID:18671204

  3. Reactive Oxygen Species in Cancer Stem Cells

    PubMed Central

    Shi, Xiaoke; Zhang, Yan; Zheng, Junheng

    2012-01-01

    Abstract Significance: Reactive oxygen species (ROS), byproducts of aerobic metabolism, are increased in many types of cancer cells. Increased endogenous ROS lead to adaptive changes and may play pivotal roles in tumorigenesis, metastasis, and resistance to radiation and chemotherapy. In contrast, the ROS generated by xenobiotics disturb the redox balance and may selectively kill cancer cells but spare normal cells. Recent Advances: Cancer stem cells (CSCs) are integral parts of pathophysiological mechanisms of tumor progression, metastasis, and chemo/radio resistance. Currently, intracellular ROS in CSCs is an active field of research. Critical Issues: Normal stem cells such as hematopoietic stem cells reside in niches characterized by hypoxia and low ROS, both of which are critical for maintaining the potential for self-renewal and stemness. However, the roles of ROS in CSCs remain poorly understood. Future Directions: Based on the regulation of ROS levels in normal stem cells and CSCs, future research may evaluate the potential therapeutic application of ROS elevation by exogenous xenobiotics to eliminate CSCs. Antioxid. Redox Signal. 16, 1215–1228. PMID:22316005

  4. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?

    PubMed

    Ronaghi, Mohammad; Erceg, Slaven; Moreno-Manzano, Victoria; Stojkovic, Miodrag

    2010-01-01

    Spinal cord injury (SCI) causes myelopathy, damage to white matter, and myelinated fiber tracts that carry sensation and motor signals to and from the brain. The gray matter damage causes segmental losses of interneurons and motoneurons and restricts therapeutic options. Recent advances in stem cell biology, neural injury, and repair, and the progress toward development of neuroprotective and regenerative interventions are the basis for increased optimism. This review summarizes the pathophysiological mechanisms following SCI and compares human embryonic, adult neural, and the induced pluripotent stem cell-based therapeutic strategies for SCI. PMID:19904738

  5. Stem Cells as Drug Delivery Methods: Application of Stem Cell Secretome for Regeneration

    PubMed Central

    Tran, Christine; Damaser, Margot S.

    2014-01-01

    Mesenchymal stem cells (MSC) are a unique cell population defined by their ability to indefinitely self-renew, differentiate into multiple cell lineages, and form clonal cell populations. It was originally thought that this ability for broad plasticity defined the therapeutic potential of MSCs. However, an expanding body of recent literature has brought growing awareness to the remarkable array of bioactive molecules produced by stem cells. This protein milieu or “secretome” comprises a diverse host of cytokines, chemokines, angiogenic factors, and growth factors. The autocrine/paracrine role of these molecules is being increasingly recognized as key to the regulation of many physiological processes including directing endogenous and progenitor cells to sites of injury as well as mediating apoptosis, scarring, and tissue revascularization. In fact, the immunomodulatory and paracrine role of these molecules may predominantly account for the therapeutic effects of MSCs given that many in vitro and in vivo studies have demonstrated limited stem cell engraftment at the site of injury. While the study of such a vast protein array remains challenging, technological advances in the field of proteomics have greatly facilitated our ability to analyze and characterize the stem cell secretome. Thus, stem cells can be considered as tunable pharmacological storehouses useful for combinatorial drug manufacture and delivery. As a cell-free option for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including the restoration of function in cardiovascular, neurodegenerative, oncologic, and genitourinary pathologies. PMID:25451858

  6. Stem cell therapy without the cells

    PubMed Central

    Maguire, Greg

    2013-01-01

    As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment. PMID:24567776

  7. Microbioreactors for Stem Cell Research

    NASA Astrophysics Data System (ADS)

    Freytes, Donald O.; Vunjak-Novakovic, Gordana

    During tissue development and regeneration, stem cells respond to the entire milieu of their environment, through dynamic interactions with the surrounding cells, extracellular matrix, and cascades of molecular and physical regulatory factors. A new generation of culture systems is emerging to offer some of the biological fidelity of a whole organism within highly controllable in vitro settings and provide the cultured cells with the combinations of factors they normally encounter in vivo. There is a growing notion that such "biomimetic" systems are essential for unlocking the full potential of stem cells - for tissue regeneration as well as biological research. In this chapter, we discuss the biological principles for designing biologically inspired culture systems for stem cell research and focus on the control of stem cell microenvironment through surface patterning, microfluidics, and electrical stimulation.

  8. Designing materials to direct stem-cell fate

    PubMed Central

    Lutolf, Matthias P.; Gilbert, Penney M.; Blau, Helen M.

    2010-01-01

    Proper tissue function and regeneration rely on robust spatial and temporal control of biophysical and biochemical microenvironmental cues through mechanisms that remain poorly understood. Biomaterials are rapidly being developed to display and deliver stem-cell-regulatory signals in a precise and near-physiological fashion, and serve as powerful artificial microenvironments in which to study and instruct stem-cell fate both in culture and in vivo. Further synergism of cell biological and biomaterials technologies promises to have a profound impact on stem-cell biology and provide insights that will advance stem-cell-based clinical approaches to tissue regeneration. PMID:19940913

  9. Stem cell therapies and regenerative medicine in China.

    PubMed

    Huang, Sha; Fu, XiaoBing

    2014-02-01

    Stem cells are the core of tissue repair and regeneration, and a promising cell source for novel therapies. In recent years, research into stem cell therapies has been particularly exciting in China. The remarkable advancements in basic stem cell research and clinically effective trials have led to fresh insights into regenerative medicine, such as treatments for sweat gland injury after burns, diabetes, and liver injury. High hopes have inspired numerous experimental and clinical trials. At the same time, government investment and policy support of research continues to increase markedly. However, numerous challenges must be overcome before novel stem cell therapies can achieve meaningful clinical outcomes. PMID:24430560

  10. Stem Cells in the Lung

    PubMed Central

    Liu, Xiaoming; Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    The lung is composed of two major anatomically distinct regions—the conducting airways and gas-exchanging airspaces. From a cell biology standpoint, the conducting airways can be further divided into two major compartments, the tracheobronchial and bronchiolar airways, while the alveolar regions of the lung make up the gas-exchanging airspaces. Each of these regions consists of distinct epithelial cell types with unique cellular physiologies and stem cell compartments. This chapter focuses on model systems with which to study stem cells in the adult tracheobronchial airways, also referred to as the proximal airway of the lung. Important in such models is an appreciation for the diversity of stem cell niches in the conducting airways that provide localized environmental signals to both maintain and mobilize stem cells in the setting of airway injury and normal cellular turnover. Because cellular turnover in airways is relatively slow, methods for analysis of stem cells in vivo have required prior injury to the lung. In contrast, ex vivo and in vitro models for analysis of airway stem cells have used genetic markers to track lineage relationships together with reconstitution systems that mimic airway biology. Over the past decades, several widely acceptable methods have been developed and used in the characterization of adult airway stem/ progenitor cells. These include localization of label-retaining cells (LRCs), retroviral tagging of epithelial cells seeded into xenografts, air–liquid interface cultures to track clonal proliferative potential, and multiple transgenic mouse models. This chapter reviews the biologic context and use of these models while providing detailed methods for several of the more broadly useful models for studying adult airway stem/progenitor cell types. PMID:17141060

  11. Dispelling Stem-Cell Ideology.

    PubMed

    Shrader-Frechette, Kristin

    2016-05-01

    Week-old embryos are considered the richest source of stem cells usable in medical treatments. Because the embryos are destroyed when the stem cells are removed, the debate over the embryo's legal, moral, political, and scientific status has exploded. In this debate, Sheldon Krimsky's Stem Cell Dialogues: A Philosophical and Scientific Inquiry into Medical Frontiers (Columbia UP, 2015) is the single best book. Evenhanded, eminently readable, up to date, educational, scientifically precise, powerfully researched, and very entertaining, Krimsky's slim volume is one that no scientist, policy-maker, ethicist, or intelligent reader should miss. PMID:27150419

  12. Harvesting dental stem cells - Overview.

    PubMed

    Sunil, P M; Manikandan, Ramanathan; Muthumurugan; Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Sivakumar, Muniapillai

    2015-08-01

    Dental stem cells have recently become one of the widely researched areas in dentistry. Ever since the identification of stem cells from various dental tissues like deciduous teeth, dental papilla, periodontal ligament and third molars, storing them for future use for various clinical applications was being explored. Dental stem cells were harvested and isolated using various techniques by different investigators and laboratories. This article explains the technical aspects of preparing the patient, atraumatic and aseptic removal of the tooth and its safe transportation and preservation for future expansion. PMID:26538883

  13. Microarrayed Materials for Stem Cells

    PubMed Central

    Mei, Ying

    2013-01-01

    Stem cells hold remarkable promise for applications in disease modeling, cancer therapy and regenerative medicine. Despite the significant progress made during the last decade, designing materials to control stem cell fate remains challenging. As an alternative, materials microarray technology has received great attention because it allows for high throughput materials synthesis and screening at a reasonable cost. Here, we discuss recent developments in materials microarray technology and their applications in stem cell engineering. Future opportunities in the field will also be reviewed. PMID:24311967

  14. Stem cells, dot-com.

    PubMed

    Liang, Bryan A; Mackey, Tim K

    2012-09-12

    Direct-to-consumer (DTC) advertising of suspect goods and services has burgeoned because of the Internet. Despite very limited approval for use, DTC stem cell-marketed "treatments" have emerged for an array of conditions, creating global public health and safety risks. However, it remains unclear whether such use of stem cells is subject to drugs or biologics regulations. To address this gap, regulatory agencies should be given clear authority, and the international community should create a framework for appropriate stem cell use. In addition, consumer protection laws should be used to scrutinize providers. PMID:22972840

  15. Harvesting dental stem cells - Overview

    PubMed Central

    Sunil, P. M.; Manikandan, Ramanathan; Muthumurugan; Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Sivakumar, Muniapillai

    2015-01-01

    Dental stem cells have recently become one of the widely researched areas in dentistry. Ever since the identification of stem cells from various dental tissues like deciduous teeth, dental papilla, periodontal ligament and third molars, storing them for future use for various clinical applications was being explored. Dental stem cells were harvested and isolated using various techniques by different investigators and laboratories. This article explains the technical aspects of preparing the patient, atraumatic and aseptic removal of the tooth and its safe transportation and preservation for future expansion. PMID:26538883

  16. Engineering the niche for stem cells.

    PubMed

    Tan, Shawna; Barker, Nicholas

    2013-12-01

    Much has been made about the potential for stem cells in regenerative medicine but the reality is that the development of actual therapies has been slow. Adult stem cells rely heavily on the assortment of biochemical and biophysical elements that constitute the local microenvironment in which they exist. One goal of biomedicine is to create an artificial yet biofunctional niche to support multipotency, differentiation and proliferation. Such tools would facilitate more conclusive experimentation by biologists, pharmaceutical scientists and tissue engineers. While many bioengineering techniques and platforms are already in use, technological innovations now allow this to be done at a higher resolution and specificity. Ultimately, the multidisciplinary integration of engineering and biology will allow the niche to be generated at a scale that can be clinically exploited. Using the systems that constitute the intestinal, hematopoietic and epidermal tissues, this article summarizes the various approaches and tools currently employed to recreate stem cell niches and also explores recent advances in the field. PMID:24274105

  17. The Clinical Status of Stem Cell Therapy for Ischemic Cardiomyopathy

    PubMed Central

    Wang, Xianyun; Zhang, Jun; Zhang, Fan; Li, Jing; Li, Yaqi; Tan, Zirui; Hu, Jie; Qi, Yixin; Yan, Baoyong

    2015-01-01

    Ischemic cardiomyopathy (ICM) is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ICM. Several stem cell types including cardiac-derived stem cells (CSCs), bone marrow-derived stem cells, mesenchymal stem cells (MSCs), skeletal myoblasts (SMs), and CD34+ and CD 133+ stem cells have been applied in clinical researches. The clinical effect produced by stem cell administration in ICM mainly depends on the transdifferentiation and paracrine effect. One important issue is that low survival and residential rate of transferred stem cells in the infracted myocardium blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ICM mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical condition, the particular microenvironment onto which the cells are delivered, and clinical condition remain to be addressed. Here we provide an overview of the pros and cons of these transferred cells and discuss the current state of their therapeutic potential. We believe that stem cell translation will be an ideal option for patients following ischemic heart disease in the future. PMID:26101528

  18. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics.

    PubMed

    Mahla, Ranjeet Singh

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  19. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics

    PubMed Central

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  20. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  1. Stem cell therapy independent of stemness.

    PubMed

    Lee, Techung

    2012-12-26

    Mesenchymal stem cell (MSC) therapy is entering a new era shifting the focus from initial feasibility study to optimization of therapeutic efficacy. However, how MSC therapy facilitates tissue regeneration remains incompletely characterized. Consistent with the emerging notion that secretion of multiple growth factors/cytokines (trophic factors) by MSC provides the underlying tissue regenerative mechanism, the recent study by Bai et al demonstrated a critical therapeutic role of MSC-derived hepatocyte growth factor (HGF) in two animal models of multiple sclerosis (MS), which is a progressive autoimmune disorder caused by damage to the myelin sheath and loss of oligodendrocytes. Although current MS therapies are directed toward attenuation of the immune response, robust repair of myelin sheath likely requires a regenerative approach focusing on long-term replacement of the lost oligodendrocytes. This approach appears feasible because adult organs contain various populations of multipotent resident stem/progenitor cells that may be activated by MSC trophic factors as demonstrated by Bai et al This commentary highlights and discusses the major findings of their studies, emphasizing the anti-inflammatory function and trophic cross-talk mechanisms mediated by HGF and other MSC-derived trophic factors in sustaining the treatment benefits. Identification of multiple functionally synergistic trophic factors, such as HGF and vascular endothelial growth factor, can eventually lead to the development of efficacious cell-free therapeutic regimens targeting a broad spectrum of degenerative conditions. PMID:23516128

  2. Stem cells in cutaneous wound healing.

    PubMed

    Cha, Jisun; Falanga, Vincent

    2007-01-01

    Treatment of chronic wounds remains difficult, in spite of better understanding of pathophysiologic principles and greater adherence to recognized standards of care. Even with recent advances stemming from breakthroughs in recombinant growth factors and bioengineered skin, up to almost 50% of chronic wounds that have been present for more than a year remain resistant to treatment. Because of these realities, there is excitement in the use of stem cells to offset impaired healing. Early data appear encouraging, but much work remains to be done. Although pilot studies suggest that multipotent adult stem cells can accelerate wound repair or even reconstitute the wound bed, the answers will need to come from randomized clinical trials. Thus far, considerable focus has been placed on bone marrow-derived mesenchymal stem cells, and there are now promising approaches for introducing them into the wound. It might turn out, however, that other types of stem cells will be more effective, including those derived from hair follicles or, perhaps, subsets of bone marrow-derived cultured cells. Still, proper wound care and adherence to basic principles cannot be bypassed, even by the most sophisticated approaches. PMID:17276204

  3. Autologous stem cells for personalised medicine.

    PubMed

    Prasongchean, Weerapong; Ferretti, Patrizia

    2012-09-15

    Increasing understanding of stem cell biology, the ability to reprogramme differentiated cells to a pluripotent state and evidence of multipotency in certain adult somatic stem cells has opened the door to exciting therapeutic advances as well as a great deal of regulatory and ethical issues. Benefits will come from the possibility of modelling human diseases and develop individualised therapies, and from their use in transplantation and bioengineering. The use of autologous stem cells is highly desirable, as it avoids the problem of tissue rejection, and also reduces ethical and regulatory issues. Identification of the most appropriate cell sources for different potential applications, development of appropriate clinical grade methodologies and large scale well controlled clinical trials will be essential to assess safety and value of cell based therapies, which have been generating much hope, but are by and large not yet close to becoming standard clinical practice. We briefly discuss stem cells in the context of tissue repair and regenerative medicine, with a focus on individualised clinical approaches, and give examples of sources of autologous cells with potential for clinical intervention. PMID:22561284

  4. Bone marrow (stem cell) donation

    MedlinePlus

    Stem cell transplant; Allogeneic-donation ... There are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. "Auto" means self. Allogenic bone marrow transplant is when another person ...

  5. Intestinal Stem Cells: Got Calcium?

    PubMed

    Nászai, Máté; Cordero, Julia B

    2016-02-01

    Calcium ions are well-known intracellular signalling molecules. A new study identifies local cytoplasmic calcium as a central integrator of metabolic and proliferative signals in Drosophila intestinal stem cells. PMID:26859268

  6. Large animal models for stem cell therapy

    PubMed Central

    2013-01-01

    for the future development of large animal models to facilitate advances in stem cell-based regenerative medicine. PMID:23672797

  7. Favorable outcome in children and adolescents with a high proportion of advanced phase disease using single/multiple autologous or matched/mismatched allogeneic stem cell transplantations.

    PubMed

    Niederwieser, C; Starke, S; Fischer, L; Krahl, R; Beck, J; Gruhn, B; Ebell, W; Körholz, D; Wößmann, W; Bader, P; Lang, P; Al-Ali, H-K; Cross, M; Eisfeld, A-K; Heyn, S; Vucinic, V; Franke, G-N; Lange, T; Pönisch, W; Behre, G; Christiansen, H

    2016-02-01

    We determined the indication, outcome, and risk factors of single and multiple hematopoietic stem cell transplantation(s) (HSCT) in children and adolescents mostly with advanced disease. Forty-one out of 483 patients (8.5 %; median age 9 years) diagnosed at the University of Leipzig with hematological and oncological diseases required HSCT from 1999 to 2011. Patients had overall survival (OS) of 63 ± 10 and 63 ± 16 %, event-free survival (EFS) of 57 ± 10 and 42 ± 16 %, relapse incidence (RI) of 39 ± 10 and 44 ± 18 % and nonrelapse mortality (NRM) of 4 ± 4 and 13 ± 9 % at 10 years after one or more allogeneic and autologous HSCT, respectively. One patient in CR1 and five with advanced disease received two HSCT. Four of the six patients maintained/achieved CR for a median of 13 months. Three died of progression and one of NRM. Two patients had a third HSCT and one survived in CR +231 days after HSCT. Risk factors for OS and EFS were disease stage at HSCT and EBMT risk score. Center (pediatric or JACIE accredited pediatric/adult) was not a determinant for survival. Pediatric single and multiple HSCT are important curative approaches for high-risk malignant diseases with low NRM. Efforts to reduce high RI remain the major aim. PMID:26696465

  8. Pancreatic Stem Cells Remain Unresolved

    PubMed Central

    Morahan, Grant

    2014-01-01

    Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research. PMID:25132582

  9. Gene and stem cell therapy for diabetes.

    PubMed

    Calne, Roy Y; Ghoneim, Mohamed A; Lee, K O; Uin, Gan Shu

    2013-01-01

    Gene and stem cell therapy has been on the scientific agenda in many laboratories for more than 20 years. The literature is enormous, but practical applications have been few. Recently advances in stem cell biology and gene therapy are clarifying some of the issues. I have made a few observations concerning our own studies on bone marrow mesenchymal stem cells cultured to produce a small percentage of insulin-producing cells and human insulin gene engineered into Lenti and AA viruses. The aim of clinical application would still seem to be several years away, if all goes well. The first step will be to produce enough insulin-secreting cells to be of potential value to patients. The next crucial question will be how to persuade the cells to respond to blood glucose levels swiftly and appropriately. With both stem cell and gene therapy, another important factor will be to ensure that any positive results will continue long enough to be preferable to insulin injections. PMID:25095498

  10. Stem Cells and Calcium Signaling

    PubMed Central

    Tonelli, Fernanda M.P.; Santos, Anderson K.; Gomes, Dawidson A.; da Silva, Saulo L.; Gomes, Katia N.; Ladeira, Luiz O.

    2014-01-01

    The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca2+ concentration [Ca2+]i. Acting as an intracellular messenger, Ca2+ has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca2+-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential. PMID:22453975

  11. Plasticity of spermatogonial stem cells.

    PubMed

    Cooke, Paul S; Simon, Liz; Nanjappa, Manjunatha K; Medrano, Theresa I; Berry, Suzanne E

    2015-01-01

    There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs), and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES) cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine. PMID:25677134

  12. Plasticity of spermatogonial stem cells

    PubMed Central

    Cooke, Paul S; Simon, Liz; Nanjappa, Manjunatha K; Medrano, Theresa I; Berry, Suzanne E

    2015-01-01

    There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs), and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES) cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine. PMID:25677134

  13. Stem cell isolation: Differential stickiness

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2013-06-01

    Technologies to isolate colonies of human pluripotent stem cells from other cell types in a high-throughput manner are lacking. A microfluidic-based approach that exploits differences in the adhesion strength between these cells and a substrate may soon fill the gap.

  14. MS Stem Cell Therapy Succeeds but Poses Risks

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159285.html MS Stem Cell Therapy Succeeds But Poses Risks Toxic ... transplant could represent a major advance against aggressive multiple sclerosis, experts say. This new treatment destroys the immune ...

  15. Reprogrammed pluripotent stem cells from somatic cells.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  16. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  17. New perspectives in human stem cell therapeutic research

    PubMed Central

    Trounson, Alan

    2009-01-01

    Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating β islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine) has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for advances in health. PMID

  18. Stem cell therapies for treating osteoarthritis: prescient or premature?

    PubMed

    Whitworth, Deanne J; Banks, Tania A

    2014-12-01

    There has been unprecedented interest in recent years in the use of stem cells as therapy for an array of diseases in companion animals. Stem cells have already been deployed therapeutically in a number of clinical settings, in particular the use of mesenchymal stem cells to treat osteoarthritis in horses and dogs. However, an assessment of the scientific literature highlights a marked disparity between the purported benefits of stem cell therapies and their proven abilities as defined by rigorously controlled scientific studies. Although preliminary data generated from clinical trials in human patients are encouraging, therapies currently available to treat animals are supported by very limited clinical evidence, and the commercialisation of these treatments may be premature. This review introduces the three main types of stem cells relevant to veterinary applications, namely, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells, and draws together research findings from in vitro and in vivo studies to give an overview of current stem cell therapies for the treatment of osteoarthritis in animals. Recent advances in tissue engineering, which is proposed as the future direction of stem cell-based therapy for osteoarthritis, are also discussed. PMID:25457267

  19. 25 YEARS OF EPIDERMAL STEM CELLS

    PubMed Central

    Ghadially, Ruby

    2012-01-01

    This is a chronicle of concepts in the field of epidermal stem cell biology and a historic look at their development over time. The last 25 years have seen the evolution of epidermal stem cell science, from first fundamental studies to a sophisticated science. The study of epithelial stem cell biology was aided by the ability to visualize the distribution of stem cells and their progeny through lineage analysis studies. The excellent progress we have made in understanding epidermal stem cell biology is discussed in this article. The challenges we still face in understanding epidermal stem cell include defining molecular markers for stem and progenitor subpopulations, determining the locations and contributions of the different stem cell niches, and mapping regulatory pathways of epidermal stem cell proliferation and differentiation. However, our rapidly evolving understanding of epidermal stem cells has many potential uses that promise to translate into improved patient therapy. PMID:22205306

  20. Application of Stem Cell Technology in Dental Regenerative Medicine

    PubMed Central

    Feng, Ruoxue; Lengner, Chistopher

    2013-01-01

    Significance In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Recent Advances Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. Critical Issues We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. Future Directions From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach. PMID:24527351

  1. Engineering stem cell niches in bioreactors

    PubMed Central

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “niches”, to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering. PMID:24179601

  2. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  3. Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration

    PubMed Central

    Brown, Patrick T.; Handorf, Andrew M.; Jeon, Won Bae; Li, Wan-Ju

    2014-01-01

    The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation. PMID:23432679

  4. Molecular Culprits Generating Brain Tumor Stem Cells

    PubMed Central

    Oh, Se-Yeong

    2013-01-01

    Despite current advances in multimodality therapies, such as surgery, radiotherapy, and chemotherapy, the outcome for patients with high-grade glioma remains fatal. Understanding how glioma cells resist various therapies may provide opportunities for developing new therapies. Accumulating evidence suggests that the main obstacle for successfully treating high-grade glioma is the existence of brain tumor stem cells (BTSCs), which share a number of cellular properties with adult stem cells, such as self-renewal and multipotent differentiation capabilities. Owing to their resistance to standard therapy coupled with their infiltrative nature, BTSCs are a primary cause of tumor recurrence post-therapy. Therefore, BTSCs are thought to be the main glioma cells representing a novel therapeutic target and should be eliminated to obtain successful treatment outcomes. PMID:24904883

  5. Current stem cell delivery methods for myocardial repair.

    PubMed

    Sheng, Calvin C; Zhou, Li; Hao, Jijun

    2013-01-01

    Heart failure commonly results from an irreparable damage due to cardiovascular diseases (CVDs), the leading cause of morbidity and mortality in the United States. In recent years, the rapid advancements in stem cell research have garnered much praise for paving the way to novel therapies in reversing myocardial injuries. Cell types currently investigated for cellular delivery include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cell lineages such as skeletal myoblasts, bone-marrow-derived stem cells (BMSCs), mesenchymal stem cells (MSCs), and cardiac stem cells (CSCs). To engraft these cells into patients' damaged myocardium, a variety of approaches (intramyocardial, transendocardial, transcoronary, venous, intravenous, intracoronary artery and retrograde venous administrations and bioengineered tissue transplantation) have been developed and explored. In this paper, we will discuss the pros and cons of these delivery modalities, the current state of their therapeutic potentials, and a multifaceted evaluation of their reported clinical feasibility, safety, and efficacy. While the issues of optimal delivery approach, the best progenitor stem cell type, the most effective dose, and timing of administration remain to be addressed, we are highly optimistic that stem cell therapy will provide a clinically viable option for myocardial regeneration. PMID:23509740

  6. Current Stem Cell Delivery Methods for Myocardial Repair

    PubMed Central

    Sheng, Calvin C.; Zhou, Li; Hao, Jijun

    2013-01-01

    Heart failure commonly results from an irreparable damage due to cardiovascular diseases (CVDs), the leading cause of morbidity and mortality in the United States. In recent years, the rapid advancements in stem cell research have garnered much praise for paving the way to novel therapies in reversing myocardial injuries. Cell types currently investigated for cellular delivery include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cell lineages such as skeletal myoblasts, bone-marrow-derived stem cells (BMSCs), mesenchymal stem cells (MSCs), and cardiac stem cells (CSCs). To engraft these cells into patients' damaged myocardium, a variety of approaches (intramyocardial, transendocardial, transcoronary, venous, intravenous, intracoronary artery and retrograde venous administrations and bioengineered tissue transplantation) have been developed and explored. In this paper, we will discuss the pros and cons of these delivery modalities, the current state of their therapeutic potentials, and a multifaceted evaluation of their reported clinical feasibility, safety, and efficacy. While the issues of optimal delivery approach, the best progenitor stem cell type, the most effective dose, and timing of administration remain to be addressed, we are highly optimistic that stem cell therapy will provide a clinically viable option for myocardial regeneration. PMID:23509740

  7. Induced pluripotent stem cell-derived mesenchymal stem cells: A leap toward personalized therapies.

    PubMed

    Whitt, Jason; Vallabhaneni, Krishna C; Penfornis, Patrice; Pochampally, Radhika

    2016-01-01

    Mesenchymal Stem/stromal cell (MSCs) transplantation procedures have been used since the 1960's to treat leukemia and other diseases, but due to the risks involved only patients with life threatening illnesses were typically subjected to the transplantation procedure until the last decade. Recent advancements in transplantation techniques have made it more feasible to use it for non-life-threatening diseases. However, the potential uses for stem cells are still limited by their rarity, and, in the case of allogeneic transplants, graft-vs.-host complications. An evolving alternative to conventional stem cell therapies is induced pluripotent stem-cell derived mesenchymal stem/stromal cells (iPSC- MSCs), which have a multi-lineage potential comparable to conventionally acquired MSCs with the added benefit of being less immunoreactive. However there are still many hurdles left to be overcome before they can be used regularly for personalized therapies. This review will focus on recent advancements that have been made regarding the role MSCs play in tumor development and the potential uses iPSC-MSCs may have in future cancer treatment. PMID:26423301

  8. Alkaline Phosphatase in Stem Cells

    PubMed Central

    Štefková, Kateřina; Procházková, Jiřina; Pacherník, Jiří

    2015-01-01

    Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells. PMID:25767512

  9. Tenascins in stem cell niches.

    PubMed

    Chiquet-Ehrismann, Ruth; Orend, Gertraud; Chiquet, Matthias; Tucker, Richard P; Midwood, Kim S

    2014-07-01

    Tenascins are extracellular matrix proteins with distinct spatial and temporal expression during development, tissue homeostasis and disease. Based on their expression patterns and knockout phenotypes an important role of tenascins in tissue formation, cell adhesion modulation, regulation of proliferation and differentiation has been demonstrated. All of these features are of importance in stem cell niches where a precise regulation of growth versus differentiation has to be guaranteed. In this review we summarize the expression and possible functions of tenascins in neural, epithelial and osteogenic stem cell niches during normal development and organ turnover, in the hematopoietic and pro-inflammatory niche as well as in the metastatic niche during cancer progression. PMID:24472737

  10. Hematopoietic stem cells: multiparameter regulation.

    PubMed

    Song, Kedong; Li, Liying; Wang, Yiwei; Liu, Tianqing

    2016-04-01

    Hematopoietic stem cells (HSCs) are capable to self-renew with multi-potency which generated much excitement in clinical therapy. However, the main obstacle of HSCs in clinical application was insufficient number of HSCs which were derived from either bone marrow, peripheral blood or umbilical cord blood. This review briefly discusses the indispensable utility of growth factors and cytokines, stromal cells, extracellular matrix, bionic scaffold and microenvironment aiming to control the hematopoiesis in all directions and provide a better and comprehensive understanding for in vitro expansion of hematopoietic stem cells. PMID:26883144

  11. Stem cells: sources and therapies.

    PubMed

    Monti, Manuela; Perotti, Cesare; Del Fante, Claudia; Cervio, Marila; Redi, Carlo Alberto

    2012-01-01

    The historical, lexical and conceptual issues embedded in stem cell biology are reviewed from technical, ethical, philosophical, judicial, clinical, economic and biopolitical perspectives. The mechanisms assigning the simultaneous capacity to self-renew and to differentiate to stem cells (immortal template DNA and asymmetric division) are evaluated in the light of the niche hypothesis for the stemness state. The induction of cell pluripotency and the different stem cells sources are presented (embryonic, adult and cord blood). We highlight the embryonic and adult stem cell properties and possible therapies while we emphasize the particular scientific and social values of cord blood donation to set up cord blood banks. The current scientific and legal frameworks of cord blood banks are reviewed at an international level as well as allogenic, dedicated and autologous donations. The expectations and the challenges in relation to present-day targeted diseases like diabetes mellitus type I, Parkinson's disease and myocardial infarction are evaluated in the light of the cellular therapies for regenerative medicine. PMID:23283430

  12. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-01

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest. PMID:18522846

  13. Stem-cell ecology and stem cells in motion

    PubMed Central

    Scadden, David T.

    2008-01-01

    This review highlights major scientific developments over the past 50 years or so in concepts related to stem-cell ecology and to stem cells in motion. Many thorough and eloquent reviews have been presented in the last 5 years updating progress in these issues. Some paradigms have been challenged, others validated, or new ones brought to light. In the present review, we will confine our remarks to the historical development of progress. In doing so, we will refrain from a detailed analysis of controversial data, emphasizing instead widely accepted views and some challenging novel ones. PMID:18398055

  14. Common stemness regulators of embryonic and cancer stem cells

    PubMed Central

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies. PMID:26516408

  15. Concise Review: Mesenchymal Stem Cells for Diabetes

    PubMed Central

    Domínguez-Bendala, Juan; Lanzoni, Giacomo

    2012-01-01

    Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes. PMID:23197641

  16. Concise review: mesenchymal stem cells for diabetes.

    PubMed

    Domínguez-Bendala, Juan; Lanzoni, Giacomo; Inverardi, Luca; Ricordi, Camillo

    2012-01-01

    Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes. PMID:23197641

  17. Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy.

    PubMed

    Li, Ning; Yousefi, Maryam; Nakauka-Ddamba, Angela; Jain, Rajan; Tobias, John; Epstein, Jonathan A; Jensen, Shane T; Lengner, Christopher J

    2014-11-11

    The recent development of targeted murine reporter alleles as proxies for intestinal stem cell activity has led to significant advances in our understanding of somatic stem cell hierarchies and dynamics. Analysis of these reporters has led to a model in which an indispensable reserve stem cell at the top of the hierarchy (marked by Bmi1 and Hopx reporters) gives rise to active intestinal stem cells (marked by an Lgr5 reporter). Despite these advances, controversy exists regarding the specificity and fidelity with which these alleles distinguish intestinal stem cell populations. Here, we undertake a comprehensive comparison of widely used proxy reporters including both CreERT2 and EGFP cassettes targeted to the Lgr5, Bmi1, and Hopx loci. Single-cell transcriptional profiling of these populations and their progeny reveals that reserve and active intestinal stem cells are molecularly and functionally distinct, supporting a two-stem-cell model for intestinal self-renewal. PMID:25418730

  18. Stem cells for the treatment of neurological disorders

    NASA Astrophysics Data System (ADS)

    Lindvall, Olle; Kokaia, Zaal

    2006-06-01

    Many common neurological disorders, such as Parkinson's disease, stroke and multiple sclerosis, are caused by a loss of neurons and glial cells. In recent years, neurons and glia have been generated successfully from stem cells in culture, fuelling efforts to develop stem-cell-based transplantation therapies for human patients. More recently, efforts have been extended to stimulating the formation and preventing the death of neurons and glial cells produced by endogenous stem cells within the adult central nervous system. The next step is to translate these exciting advances from the laboratory into clinically useful therapies.

  19. Cancer stem cell signaling pathways.

    PubMed

    Matsui, William H

    2016-09-01

    Tissue development and homeostasis are governed by the actions of stem cells. Multipotent cells are capable of self-renewal during the course of one's lifetime. The accurate and appropriate regulation of stem cell functions is absolutely critical for normal biological activity. Several key developmental or signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the Janus-activated kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Unsurprisingly, many of these crucial signaling pathways are dysregulated in cancer. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of cancer stem cells (CSCs). CSCs are a relatively rare population of cancer cells capable of self-renewal, differentiation, and generation of serially transplantable heterogeneous tumors of several types of cancer. PMID:27611937

  20. Cell adhesion in regulation of asymmetric stem cell division

    PubMed Central

    Yamashita, Yukiko M.

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the recent discovery that cell adhesion molecules govern the behavior of stem cells. PMID:20724132

  1. Recent advances in phytoplasma research: from genetic diversity and genome evolution to pathogenic redirection of plant stem cell fate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parasitizing phloem sieve cells and being transmitted by insects, phytoplasmas are a unique group of cell wall-less bacteria responsible for numerous plant diseases worldwide. Due to difficulties in establishing axenic culture of phytoplasmas, phenotypic characters suitable for conventional microbia...

  2. Stem Cell Transplantation for Neuroprotection in Stroke

    PubMed Central

    Shinozuka, Kazutaka; Dailey, Travis; Tajiri, Naoki; Ishikawa, Hiroto; Kaneko, Yuji; Borlongan, Cesar V.

    2013-01-01

    Stem cell-based therapies for stroke have expanded substantially over the last decade. The diversity of embryonic and adult tissue sources provides researchers with the ability to harvest an ample supply of stem cells. However, the optimal conditions of stem cell use are still being determined. Along this line of the need for optimization studies, we discuss studies that demonstrate effective dose, timing, and route of stem cells. We recognize that stem cell derivations also provide uniquely individual difficulties and limitations in their therapeutic applications. This review will outline the current knowledge, including benefits and challenges, of the many current sources of stem cells for stroke therapy. PMID:24147217

  3. Clinical results of high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation in children with advanced stage rhabdomyosarcoma.

    PubMed

    Kim, Nam Kyun; Kim, Hyo Sun; Suh, Chang-Ok; Kim, Hyun Ok; Lyu, Chuhl Joo

    2012-09-01

    Regardless of improvement in cure of Rhabdomyosarcoma (RMS), the results in treatment of advanced stage of RMS in children are still dismal. Recently, high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation (HDC/APBSCT) has been tried to manage the advanced high-risk RMS patients. We investigated the effectiveness of HDC/APBSCT by reviewing the clinical records of high-risk pediatric RMS patients in single institute database. Over twenty years, 37 patients were diagnosed as RMS with high-risk at the time of first diagnosis. These patients were classified as two groups according to treatment method. The first group was HDC/APBSCT and the other was conventional multi-agent chemotherapy group. Differences of clinical results between the two groups were analyzed. The median age of patients was 5 yr, ranging from 6 months to 15 yr. The 5-yr event free survival rate (EFS) of all patients was 24.8% ± 4.8%. HDC/APBSCT group and conventional multi-agent chemotherapy group were 41.3% ± 17.8% and 16.7% ± 7.6% for 5-yr EFS, respectively (P = 0.023). There was a significant difference in the result of HDC/APBSCT between complete remission or very good partial response group and poor response group (50% ± 20.4% vs 37.5% ± 28.6%, P = 0.018). HDC/APBSCT can be a promising treatment modality in high-risk RMS patients. PMID:22969254

  4. Satellite Cells and the Muscle Stem Cell Niche

    PubMed Central

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  5. Stem Cells in the Limbal Stroma.

    PubMed

    Funderburgh, James L; Funderburgh, Martha L; Du, Yiqin

    2016-04-01

    The corneal stroma contains a population of mesenchymal cells subjacent to the limbal basement membrane with characteristics of adult stem cells. These 'niche cells' support limbal epithelial stem cell viability. In culture by themselves, the niche cells display a phenotype typical of mesenchymal stem cells. These stromal stem cells exhibit a potential to differentiate to multiple cell types, including keratocytes, thus providing an abundant source of these rare cells for experimental and bioengineering applications. Stromal stem cells have also shown the ability to remodel pathological stromal tissue, suppressing inflammation and restoring transparency. Because stromal stem cells can be obtained by biopsy, they offer a potential for autologous stem cell treatment for stromal opacities. This review provides an overview of the status of work on this interesting cell population. PMID:26804252

  6. Leydig cells: From stem cells to aging.

    PubMed

    Chen, Haolin; Ge, Ren-Shan; Zirkin, Barry R

    2009-07-10

    Leydig cells are the testosterone-producing cells of the testis. The adult Leydig cell population ultimately develops from undifferentiated mesenchymal-like stem cells present in the interstitial compartment of the neonatal testis. Four distinct stages of adult Leydig cell development have been identified and characterized: stem Leydig cells, progenitor Leydig cells, immature Leydig cells and adult Leydig cells. The stem Leydig cells are undifferentiated cells that are capable of indefinite self-renewal, differentiation, and replenishment of the Leydig cell niche. Progenitor Leydig cells are derived from the stem Leydig cells. These spindle-shaped cells are luteinizing hormone (LH) receptor positive, have high mitotic activity, and produce little testosterone but rather testosterone metabolites. The progenitor Leydig cells give rise to immature Leydig cells which are round, contain large amounts of smooth endoplasmic reticulum, and produce some testosterone but also very high levels of testosterone metabolites. A single division of these cells produces adult Leydig cells, which are terminally differentiated cells that produce high levels of testosterone. As men age, serum testosterone levels decline, and this is associated with alterations in body composition, energy level, muscle strength, physical, sexual and cognitive functions, and mood. In the Brown Norway rat, used extensively as a model for male reproductive aging, age-related reductions in serum testosterone result from significant decline in the ability of aged Leydig cells to produce testosterone in response to LH stimulation. This review describes Leydig cell development and aging. Additionally, the molecular mechanisms by which testosterone synthesis declines with aging are discussed. PMID:19481681

  7. Transplant related ocular surface disorders: Advanced techniques for ocular surface rehabilitation after ocular complications secondary to hematopoietic stem cell transplantation.

    PubMed

    Stahl, Erin D; Mahomed, Faheem; Hans, Amneet K; Dalal, Jignesh D

    2016-05-01

    HSCT has been linked to the development of an assortment of ocular surface complications with the potential to lead to permanent visual impairment if left untreated or if not treated early in the course of disease. Strategies for therapy include maintenance of lubrication and tear preservation, prevention of evaporation, decreasing inflammation, and providing epithelial support. The ultimate aim of treatment is to prevent permanent ocular sequelae through prompt ophthalmology consultation and the use of advanced techniques for ocular surface rehabilitation. We describe several rehabilitation options of ocular surface complications occurring secondarily during the post-HSCT course. PMID:26869458

  8. Alternative splicing: An important mechanism in stem cell biology

    PubMed Central

    Chen, Kenian; Dai, Xiaojing; Wu, Jiaqian

    2015-01-01

    Alternative splicing (AS) is an essential mechanism in post-transcriptional regulation and leads to protein diversity. It has been shown that AS is prevalent in metazoan genomes, and the splicing pattern is dynamically regulated in different tissues and cell types, including embryonic stem cells. These observations suggest that AS may play critical roles in stem cell biology. Since embryonic stem cells and induced pluripotent stem cells have the ability to give rise to all types of cells and tissues, they hold the promise of future cell-based therapy. Many efforts have been devoted to understanding the mechanisms underlying stem cell self-renewal and differentiation. However, most of the studies focused on the expression of a core set of transcription factors and regulatory RNAs. The role of AS in stem cell differentiation was not clear. Recent advances in high-throughput technologies have allowed the profiling of dynamic splicing patterns and cis-motifs that are responsible for AS at a genome-wide scale, and provided novel insights in a number of studies. In this review, we discuss some recent findings involving AS and stem cells. An emerging picture from these findings is that AS is integrated in the transcriptional and post-transcriptional networks and together they control pluripotency maintenance and differentiation of stem cells. PMID:25621101

  9. Stem cell route to neuromuscular therapies.

    PubMed

    Partridge, Terence A

    2003-02-01

    As applied to skeletal muscle, stem cell therapy is a reincarnation of myoblast transfer therapy that has resulted from recent advances in the cell biology of skeletal muscle. Both strategies envisage the reconstruction of damaged muscle from its precursors, but stem cell therapy employs precursors that are earlier in the developmental hierarchy. It is founded on demonstrations of apparently multipotential cells in a wide variety of tissues that can assume, among others, a myogenic phenotype. The main demonstrated advantage of such cells is that they are capable of colonizing many tissues, including skeletal and cardiac muscle via the blood vascular system, thereby providing the potential for a body-wide distribution of myogenic progenitors. From a practical viewpoint, the chief disadvantage is that such colonization has been many orders of magnitude too inefficient to be useful. Proposals for overcoming this drawback are the subject of much speculation but, so far, relatively little experimentation. This review attempts to give some perspective to the status of the stem cell as a therapeutic instrument for neuromuscular disease and to identify issues that need to be addressed for application of this technology. PMID:12548520

  10. Stem cell update: highlights from the 2010 Lugano Stem Cell Meeting.

    PubMed

    Bardelli, Silvana; Astori, Giuseppe; Sürder, Daniel; Tallone, Tiziano; Terzic, Andre; Soldati, Gianni; Moccetti, Tiziano

    2011-04-01

    The 2010 edition of the Lugano Stem Cell Meeting, under the auspices of the Swiss center of excellence in cardiovascular diseases "Cardiocentro Ticino" and the Swiss Stem Cell Foundation, offered an update on clinical, translational, and biotechnological advances in regenerative science and medicine pertinent to cardiovascular applications. Highlights from the international forum ranged from innate mechanisms of heart repair, safety, and efficacy of ongoing and completed clinical trials, novel generations of stem cell biologics, bioengineered platforms, and regulatory processes. In the emerging era of regenerative medicine, accelerating the critical path from discovery to product development will require integrated multidisciplinary teams to ensure timely translation of new knowledge into validated algorithms for practice adoption. PMID:21052883

  11. Mesenchymal Stem Cells as Therapeutics

    PubMed Central

    Parekkadan, Biju; Milwid, Jack M.

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases. First heralded as a regenerative therapy for skeletal tissue repair, MSCs have recently been shown to modulate endogenous tissue and immune cells. Preclinical studies of the mechanism of action suggest that the therapeutic effects afforded by MSC transplantation are short-lived and related to dynamic, paracrine interactions between MSCs and host cells. Therefore, representations of MSCs as drug-loaded particles may allow for pharmacokinetic models to predict the therapeutic activity of MSC transplants as a function of drug delivery mode. By integrating principles of MSC biology, therapy, and engineering, the field is armed to usher in the next generation of stem cell therapeutics. PMID:20415588

  12. Allogenic banking of dental pulp stem cells for innovative therapeutics

    PubMed Central

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-01-01

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat. PMID:26328017

  13. Stem Cells Deemed Safe for ALS Patients

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159627.html Stem Cells Deemed Safe for ALS Patients But further research ... June 29, 2016 (HealthDay News) -- Scientists report that stem cell therapy appears to be safe for people with ...

  14. International Society for Stem Cell Research

    MedlinePlus

    ... Industry Committee Session RUCDR Humanity in a Dish Stem Cell Engineering Junior Investigator Events Career Panel Meet the ... Scientific Program Confirmed Speakers Support/Exhibit Meeting Supporters Stem Cell Engineering 2014 Program Committee Featured Speakers Deepak Srivastava ...

  15. Stem Cell Transplant Patients and Fungal Infections

    MedlinePlus

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  16. Stem Cells Deemed Safe for ALS Patients

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_159627.html Stem Cells Deemed Safe for ALS Patients But further ... June 29, 2016 (HealthDay News) -- Scientists report that stem cell therapy appears to be safe for people ...

  17. Biomaterials Approach to Expand and Direct Differentiation of Stem Cells

    PubMed Central

    Chai, Chou; Leong, Kam W

    2008-01-01

    Stem cells play increasingly prominent roles in tissue engineering and regenerative medicine. Pluripotent embryonic stem (ES) cells theoretically allow every cell type in the body to be regenerated. Adult stem cells have also been identified and isolated from every major tissue and organ, some possessing apparent pluripotency comparable to that of ES cells. However, a major limitation in the translation of stem cell technologies to clinical applications is the supply of cells. Advances in biomaterials engineering and scaffold fabrication enable the development of ex vivo cell expansion systems to address this limitation. Progress in biomaterial design has also allowed directed differentiation of stem cells into specific lineages. In addition to delivering biochemical cues, various technologies have been developed to introduce micro- and nano-scale features onto culture surfaces to enable the study of stem cell responses to topographical cues. Knowledge gained from these studies portends the alteration of stem cell fate in the absence of biological factors, which would be valuable in the engineering of complex organs comprising multiple cell types. Biomaterials may also play an immunoprotective role by minimizing host immunoreactivity toward transplanted cells or engineered grafts. PMID:17264853

  18. Induced stem cells as a novel multiple sclerosis therapy

    PubMed Central

    Xie, Chong; Liu, Yan-qun; Guan, Yang-tai; Zhang, Guang-Xian

    2016-01-01

    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS. PMID:25732737

  19. Induced Stem Cells as a Novel Multiple Sclerosis Therapy.

    PubMed

    Xie, Chong; Liu, Yan-Qun; Guan, Yang-Tai; Zhang, Guang-Xian

    2016-01-01

    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS. PMID:25732737

  20. Monitoring stem cells in phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  1. Clinical Trials of Adult Stem Cell Therapy in Patients with Ischemic Stroke

    PubMed Central

    2016-01-01

    Stem cell therapy is considered a potential regenerative strategy for patients with neurologic deficits. Studies involving animal models of ischemic stroke have shown that stem cells transplanted into the brain can lead to functional improvement. With current advances in the understanding regarding the effects of introducing stem cells and their mechanisms of action, several clinical trials of stem cell therapy have been conducted in patients with stroke since 2005, including studies using mesenchymal stem cells, bone marrow mononuclear cells, and neural stem/progenitor cells. In addition, several clinical trials of the use of adult stem cells to treat ischemic stroke are ongoing. This review presents the status of our understanding of adult stem cells and results from clinical trials, and introduces ongoing clinical studies of adult stem cell therapy in the field of stroke. PMID:26610894

  2. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia

    PubMed Central

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-01-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class–based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation. PMID:22553502

  3. Salivary Gland Cancer Stem Cells

    PubMed Central

    Adams, April; Warner, Kristy; Nör, Jacques E.

    2013-01-01

    Emerging evidence suggests the existence of a tumorigenic population of cancer cells that demonstrate stem cell-like properties such as self-renewal and multipotency. These cells, termed cancer stem cells (CSC), are able to both initiate and maintain tumor formation and progression. Studies have shown that CSC are resistant to traditional chemotherapy treatments preventing complete eradication of the tumor cell population. Following treatment, CSC are able to re-initiate tumor growth leading to patient relapse. Salivary gland cancers are relatively rare but constitute a highly significant public health issue due to the lack of effective treatments. In particular, patients with mucoepidermoid carcinoma or adenoid cystic carcinoma, the two most common salivary malignancies, have low long-term survival rates due to the lack of response to current therapies. Considering the role of CSC in resistance to therapy in other tumor types, it is possible that this unique sub-population of cells is involved in resistance of salivary gland tumors to treatment. Characterization of CSC can lead to better understanding of the pathobiology of salivary gland malignancies as well as to the development of more effective therapies. Here, we make a brief overview of the state-of-the-science in salivary gland cancer, and discuss possible implications of the cancer stem cell hypothesis to the treatment of salivary gland malignancies. PMID:23810400

  4. The Glycans of Stem Cells

    PubMed Central

    Lanctot, Pascal M.; Gage, Fred H.; Varki, Ajit P.

    2009-01-01

    Summary Glycans cover all cellular surfaces and, not surprisingly, are involved in many facets of stem cell biology and technology. For instance, coaxing stem cells to either proliferate or differentiate into the specific cell types needed for transplantation requires intricate glycan-dependent modulation of signalling molecules such as FGF-2, Wnt and Notch. Moreover, due to their prominent cell-surface localization and lineage-specific signatures, glycan epitopes such as the stage-specific embryonic antigens (Lewis X/SSEA-1, SSEA3–4) and tumor-rejection antigens (TRA1–60, 1–81) are ideally suited for identifying and isolating specific cell types from heterogeneous populations. Finally, the non-human sialic acid Neu5Gc has been detected on the surface of human embryonic stem cells due to metabolic incorporation from animal products used for their culture. Transplantation of Neu5Gc-contaminated cells poses immunological risks due to the presence, in humans, of circulating antibodies recognizing this glycan epitope. PMID:17681848

  5. Stem Cell Research Policies around the World

    PubMed Central

    Dhar, Deepali; Hsi-en Ho, John

    2009-01-01

    The proliferation of stem cell research, conflated with its ethical and moral implications, has led governments to attempt regulation of both the science and funding of stem cells. Due to a diversity of opinions and cultural viewpoints, no single policy or set of rules exist to govern stem cell research. Instead, each country has developed its own policy. The following map catalogs the general legal and political milleu regarding stem cell research by country. PMID:19774124

  6. Cancer stem cells in haematological malignancies

    PubMed Central

    Golab, Jakub

    2015-01-01

    At least several types of human haematological malignancies can now be seen as ‘stem-cell diseases’. The best-studied in this context is acute myeloid leukaemia (AML). It has been shown that these diseases are driven by a pool of ‘leukaemia stem cells (LSC)’, which remain in the quiescent state, have the capacity to survive and self-renew, and are responsible for the recurrence of cancer after classical chemotherapy. It has been understood that LSC must be eliminated in order to cure patients suffering from haematological cancers. Recent advances in LSC research have allowed for description of LSC phenotype and identification of potential targets for anti-LSC therapies. This concise review summarises the current view on LSC biology and targeted approaches against LSC. PMID:25691816

  7. Adult stem cell-based apexogenesis

    PubMed Central

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-01-01

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  8. Adult stem cell-based apexogenesis.

    PubMed

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-06-26

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  9. A highly selective fluorescent probe for direct detection and isolation of mouse embryonic stem cells.

    PubMed

    Chandran, Yogeswari; Kang, Nam-Young; Park, Sung-Jin; Alamudi, Samira Husen; Kim, Jun-Young; Sahu, Srikanta; Su, Dongdong; Lee, Jungyeol; Vendrell, Marc; Chang, Young-Tae

    2015-11-01

    Stem cell research has gathered immense attention in the past decade due to the remarkable ability of stem cells for self-renewal and tissue-specific differentiation. Despite having numerous advancements in stem cell isolation and manipulation techniques, there is a need for highly reliable probes for the specific detection of live stem cells. Herein we developed a new fluorescence probe (CDy9) with high selectivity for mouse embryonic stem cells. CDy9 allows the detection and isolation of intact stem cells with marginal impact on their function and capabilities. PMID:26115574

  10. Stem Cell Treatment of the Heart

    PubMed Central

    Angelini, Paolo; Markwald, Roger R.

    2005-01-01

    Stem cells are multipotent, undifferentiated cells capable of multiplication and differentiation. Preliminary experimental evidence suggests that stem cells derived from embryonic or adult tissues (especially bone marrow) may develop into myocardial cells. Some experts believe that this phenomenon occurs naturally in human beings, specifically during recovery from a myocardial infarction. Recently, stem cells have been used with the therapeutic intention of regenerating damaged tissues. Cardiac experiments, mainly with adult homologous stem cells, have proved that this therapy is safe and may improve myocardial vascularization and pump function. We review current fundamental concepts regarding the normal development of embryonic stem cells into myocardial tissue and the heart as a whole. We describe the multiple conditions that naturally enable a stem cell to become a myocardial cell and a group of stem cells to become a heart. We also discuss the challenge of translating basic cellular and molecular mechanisms into effective, clinically relevant treatment options. PMID:16429891

  11. The different roles of molecular classification according to upfront autologous stem cell transplantation in advanced-stage diffuse large B cell lymphoma patients with elevated serum lactate dehydrogenase.

    PubMed

    Kim, Yu Ri; Kim, Soo-Jeong; Cheong, June-Won; Yang, Deok-Hwan; Lee, Hyewon; Eom, Hyeon-Seok; Sung, Yong Oh; Kim, Hyo Jung; Kang, Hye Jin; Lee, Won-Sik; Park, Yong; Yang, Woo-Ick; Min, Yoo Hong; Kim, Jin Seok

    2016-09-01

    The non-germinal center B cell (non-GCB) subtype of diffuse large B cell lymphoma (DLBCL) is more related to poor prognosis than the GCB subtype. To investigate the role of molecular classification according to upfront autologous hematopoietic stem cell transplantation (ASCT), we retrospectively evaluated 219 newly diagnosed high-risk DLBCL patients. Eighty-one patients were in the ASCT group, and 138 patients were in the non-ASCT group. The ASCT group yielded significantly better overall survival (OS) and progression-free survival (PFS) than the non-ASCT group (p = 0.038 and p = 0.007), and patients with the non-GCB subtype were more related to inferior PFS than those with the GCB subtype (p = 0.020). After performing age-matching by using propensity scores, upfront ASCT continued to show better OS and PFS than non-ASCT (p = 0.046 and p = 0.026). In the non-ASCT group, the non-GCB subtype showed worse OS and PFS than the GCB subtype (p = 0.039 and p = 0.007). Patients who achieved complete response showed differences in OS and PFS according to molecular subtype (p = 0.007 and p = 0.002). In the ASCT group, there were no significant differences in OS and PFS according to molecular classification (p = 0.277 and p = 0.892). In conclusion, non-GCB subtype DLBCL patients showed poor OS and PFS in the non-ASCT group while they did not show clinical significance in the ASCT group. This suggests the possibility that upfront ASCT may improve the poor prognosis of non-GCB subtype in high-risk DLBCL. PMID:27324387

  12. Identify multiple myeloma stem cells: Utopia?

    PubMed Central

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-01

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs. PMID:25621108

  13. Identify multiple myeloma stem cells: Utopia?

    PubMed

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs. PMID:25621108

  14. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  15. Current focus of stem cell application in retinal repair.

    PubMed

    Alonso-Alonso, María L; Srivastava, Girish K

    2015-04-26

    The relevance of retinal diseases, both in society's economy and in the quality of people's life who suffer with them, has made stem cell therapy an interesting topic for research. Embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adipose derived mesenchymal stem cells (ADMSCs) are the focus in current endeavors as a source of different retinal cells, such as photoreceptors and retinal pigment epithelial cells. The aim is to apply them for cell replacement as an option for treating retinal diseases which so far are untreatable in their advanced stage. ESCs, despite the great potential for differentiation, have the dangerous risk of teratoma formation as well as ethical issues, which must be resolved before starting a clinical trial. iPSCs, like ESCs, are able to differentiate in to several types of retinal cells. However, the process to get them for personalized cell therapy has a high cost in terms of time and money. Researchers are working to resolve this since iPSCs seem to be a realistic option for treating retinal diseases. ADMSCs have the advantage that the procedures to obtain them are easier. Despite advancements in stem cell application, there are still several challenges that need to be overcome before transferring the research results to clinical application. This paper reviews recent research achievements of the applications of these three types of stem cells as well as clinical trials currently based on them. PMID:25914770

  16. Stem cells as a source of regenerative cardiomyocytes.

    PubMed

    Fukuda, Keiichi; Yuasa, Shinsuke

    2006-04-28

    The realization of regenerative cardiac medicine depends on the availability of cardiomyocytes in sufficient numbers for transplantation of cardiac tissue and the accompanying blood vessels. Embryonic stem (ES) cells, bone marrow (BM) stem cells, and tissue-derived stem cells are all potential cell sources. Although ES cells are highly proliferative and suitable for mass production, an efficient protocol is yet to be established to ensure selective cardiomyocyte induction using these cells. Recent advances in developmental biology have clarified the involvement of critical factors in cardiomyocyte differentiation, including bone morphogenic protein and Wnt signaling proteins, and such factors have the potential to improve the efficiency of stem cell induction. Initial studies of the intracoronary administration of BM mononuclear cells after myocardial infarction has yielded promising results; however, intensive investigation of the underlying molecular mechanisms at play as well as double-blinded clinical trials will be necessary to establish the extent of both migration of the BM stem cells into the damaged cardiac tissue and their differentiation into cardiomyocytes. Several types of cardiac tissue stem cells have also been reported, but an accurate and extensive comparison of these cells with regard to their characteristics and multipotency remains to be done. An integrative study involving developmental biology, stem cell biology, and tissue engineering is required to achieve the full potential of cardiac regeneration. PMID:16645150

  17. Setting FIRES to Stem Cell Research

    ERIC Educational Resources Information Center

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  18. Blood-Forming Stem Cell Transplants

    MedlinePlus

    ... Health Professionals Questions to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment ... are the donor’s stem cells matched to the patient’s stem cells in allogeneic ...

  19. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  20. Control of stem cell fate by engineering their micro and nanoenvironment

    PubMed Central

    Griffin, Michelle F; Butler, Peter E; Seifalian, Alexander M; Kalaskar, Deepak M

    2015-01-01

    Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix (ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine. PMID:25621104

  1. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Claudio, Pier Paolo (Inventor); Valluri, Jagan V. (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  2. 28. Embryonic and adult stem cell therapy.

    PubMed

    Henningson, Carl T; Stanislaus, Marisha A; Gewirtz, Alan M

    2003-02-01

    Stem cells are characterized by the ability to remain undifferentiated and to self-renew. Embryonic stem cells derived from blastocysts are pluripotent (able to differentiate into many cell types). Adult stem cells, which were traditionally thought to be monopotent multipotent, or tissue restricted, have recently also been shown to have pluripotent properties. Adult bone marrow stem cells have been shown to be capable of differentiating into skeletal muscle, brain microglia and astroglia, and hepatocytes. Stem cell lines derived from both embryonic stem and embryonic germ cells (from the embryonic gonadal ridge) are pluripotent and capable of self-renewal for long periods. Therefore embryonic stem and germ cells have been widely investigated for their potential to cure diseases by repairing or replacing damaged cells and tissues. Studies in animal models have shown that transplantation of fetal, embryonic stem, or embryonic germ cells may be able to treat some chronic diseases. In this review, we highlight recent developments in the use of stem cells as therapeutic agents for three such diseases: Diabetes, Parkinson disease, and congestive heart failure. We also discuss the potential use of stem cells as gene therapy delivery cells and the scientific and ethical issues that arise with the use of human stem cells. PMID:12592319

  3. Cancer stem cells: the lessons from pre-cancerous stem cells

    PubMed Central

    Gao, Jian-Xin

    2008-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not contradictory to the CSC hypothesis but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respect to their phenotype, differentiation and tumourigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumour stromal components such as tumour vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumour-initiating cells (TIC) → pCSC → CSC → cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) → pre-cancerous lesions (pCSC) → malignant lesions (CSC → cancer). The embryonic stem (ES) cell and germ line stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC → pCSC → CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC cannot be made at this time. However, this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer. PMID:18053092

  4. Immune response to stem cells and strategies to induce tolerance.

    PubMed

    Batten, Puspa; Rosenthal, Nadia A; Yacoub, Magdi H

    2007-08-29

    Although recent progress in cardiovascular tissue engineering has generated great expectations for the exploitation of stem cells to restore cardiac form and function, the prospects of a common mass-produced cell resource for clinically viable engineered tissues and organs remain problematic. The refinement of stem cell culture protocols to increase induction of the cardiomyocyte phenotype and the assembly of transplantable vascularized tissue are areas of intense current research, but the problem of immune rejection of heterologous cell type poses perhaps the most significant hurdle to overcome. This article focuses on the potential advantages and problems encountered with various stem cell sources for reconstruction of the damaged or failing myocardium or heart valves and also discusses the need for integrating advances in developmental and stem cell biology, immunology and tissue engineering to achieve the full potential of cardiac tissue engineering. The ultimate goal is to produce 'off-the-shelf' cells and tissues capable of inducing specific immune tolerance. PMID:17584730

  5. Cancer stem cells: the final frontier for glioma virotherapy.

    PubMed

    Dey, Mahua; Ulasov, Ilya V; Tyler, Matthew A; Sonabend, Adam M; Lesniak, Maciej S

    2011-03-01

    Cancer stem cells (CSC) are a very small subset of all cancer cells and possess characteristics very similar to normal stem cells, in particular, the capacity for self-renewal, multipotency and relative quiescence. These chemo- and radiation resistant cells are responsible for maintaining tumor volume leading to therapy failure and recurrence. In glioblastoma multiforme (GBM), the most common primary intracranial malignancy, glioma stem cells have been implicated as one of the key players in treatment failure. Many novel treatment modalities are being investigated to specifically target this small group of cells. In this review, we shed light on one such targeted therapy, specifically, oncolytic virotherapy, and review the literature to highlight the advances and challenges in designing effective oncolytic virotherapy for glioma stem cells. PMID:20237963

  6. Cancer Stem Cells: The Final Frontier for Glioma Virotherapy

    PubMed Central

    Dey, Mahua; Ulasov, Ilya V.; Tyler, Matthew A.; Sonabend, Adam M.

    2010-01-01

    Cancer stem cells (CSC) are a very small subset of all cancer cells and possess characteristics very similar to normal stem cells, in particular, the capacity for self-renewal, multipotency and relative quiescence. These chemo- and radiation resistant cells are responsible for maintaining tumor volume leading to therapy failure and recurrence. In glioblastoma multiforme (GBM), the most common primary intracranial malignancy, glioma stem cells have been implicated as one of the key players in treatment failure. Many novel treatment modalities are being investigated to specifically target this small group of cells. In this review, we shed light on one such targeted therapy, specifically, oncolytic virotherapy, and review the literature to highlight the advances and challenges in designing effective oncolytic virotherapy for glioma stem cells. PMID:20237963

  7. Muscle stem cells at a glance.

    PubMed

    Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2014-11-01

    Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment. PMID:25300792

  8. Microfluidic systems for stem cell-based neural tissue engineering.

    PubMed

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-01

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering. PMID:27296463

  9. Our Fat Future: Translating Adipose Stem Cell Therapy

    PubMed Central

    Nordberg, Rachel C.

    2015-01-01

    Summary Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. Significance This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research. PMID:26185256

  10. Advancing the STEM Workforce through STEM-Centric Career Development

    ERIC Educational Resources Information Center

    Feller, Rich

    2011-01-01

    Preparing for the future is not what it used to be. Yet, advising students, preparing lessons, and promoting the value of STEM options remains constant. As a result, technical and engineering educators seek clarity about the future of careers, career development, and ways to promote STEM options. Recently, the ITEEA conference allowed the author…

  11. Stem cell therapy: from bench to bedside.

    PubMed

    Tamarat, R; Lataillade, J J; Bey, E; Gourmelon, P; Benderitter, M

    2012-10-01

    Several countries have increased efforts to develop medical countermeasures to protect against radiation toxicity due to acts of bioterrorism as well as cancer treatment. Both acute radiation injuries and delayed effects such as cutaneous effects and impaired wound repair depend, to some extent, on angiogenesis deficiency. Vascular damage influences levels of nutrients, oxygen available to skin tissue and epithelial cell viability. Consequently, the evolution of radiation lesions often becomes uncontrolled and surgery is the final option--amputation leading to a disability. Therefore, the development of strategies designed to promote healing of radiation injuries is a major therapeutic challenge. Adult mesenchymal stem cell therapy has been combined with surgery in some cases and not in others and successfully applied in patients with accidental radiation injuries. Although research in the field of radiation skin injury management has made substantial progress in the past 10 y, several strategies are still needed in order to enhance the beneficial effect of stem cell therapy and to counteract the deleterious effect of an irradiated tissue environment. This review summarises the current and evolving advances concerning basic and translational research based on stem cell therapy for the management of radiological burns. PMID:22969031

  12. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?

    PubMed

    Kahraman, Sevim; Okawa, Erin R; Kulkarni, Rohit N

    2016-08-01

    Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases. PMID:27313072

  13. Biology of hematopoietic stem cells and progenitors: implications for clinical application.

    PubMed

    Kondo, Motonari; Wagers, Amy J; Manz, Markus G; Prohaska, Susan S; Scherer, David C; Beilhack, Georg F; Shizuru, Judith A; Weissman, Irving L

    2003-01-01

    Stem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases. PMID:12615892

  14. Arrhythmia in Stem Cell Transplantation

    PubMed Central

    Almeida, Shone O.; Skelton, Rhys J.; Adigopula, Sasikanth; Ardehali, Reza

    2015-01-01

    Synopsis Stem cell regenerative therapies hold promise for treating diseases across the spectrum of medicine. Recent clinical trials have confirmed the safety of stem cell delivery to the heart with promising but variable results. While significant progress has been made in the preclinical stages, the clinical application of cardiac cell therapy is limited by technical challenges, including inability to isolate a pure population of cardiac-specific progenitors capable of robust engraftment and regeneration, lack of appropriate pre-clinical animal models, uncertainty about the best mode of delivery, paucity of adequate imaging modalities, and lack of knowledge about the fate of transplanted cells. The inability of transplanted cells to structurally and functionally integrate into the host myocardium may pose arrhythmogenic risk to patients. This is in part dependent on the type of cell transplanted, where the expression of gap junctions such as connexin-43 is essential not only for electromechanical integration, but has also been found to be protective against electrical instability post-transplant. Additionally, certain methods of cell delivery, such as intramyocardial injection, carry a higher rate of arrhythmias. Other potential contributors to the arrhythmogenicity of cell transplantation include re-entrant pathways due to heterogeneity in conduction velocities between graft and host as well as graft automaticity. In this paper, we discuss the arrhythmogenic potential of cell delivery to the heart. PMID:26002399

  15. Microengineered synthetic cellular microenvironment for stem cells

    PubMed Central

    Sun, Yubing; Weng, Shinuo

    2014-01-01

    Stem cells possess the ability of self-renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. PMID:22639443

  16. Human embryonic stem cells: preclinical perspectives

    PubMed Central

    Deb, Kaushik Dilip; Sarda, Kanchan

    2008-01-01

    Human embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic. PMID:18230169

  17. Advancing STEM Education: A 2020 Vision

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2010-01-01

    STEM (an acronym for science, technology, engineering and mathematics) had its origins in the 1990s at the National Science Foundation (NSF) and has been used as a generic label for any event, policy, program, or practice that involves one or several of the STEM disciplines. However, a recent survey on the "perception of STEM" found that most…

  18. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  19. Stem Cells in Teeth and Craniofacial Bones.

    PubMed

    Zhao, H; Chai, Y

    2015-11-01

    Stem cells are remarkable, and stem cell-based tissue engineering is an emerging field of biomedical science aiming to restore damaged tissue or organs. In dentistry and reconstructive facial surgery, it is of great interest to restore lost teeth or craniofacial bone defects using stem cell-mediated therapy. In the craniofacial region, various stem cell populations have been identified with regeneration potential. In this review, we provide an overview of the current knowledge concerning the various types of tooth- and craniofacial bone-related stem cells and discuss their in vivo identities and regulating mechanisms. PMID:26350960

  20. Steroid hormones, steroid receptors, and breast cancer stem cells.

    PubMed

    Finlay-Schultz, Jessica; Sartorius, Carol A

    2015-06-01

    The ovarian hormones progesterone and estrogen play important roles in breast cancer etiology, proliferation, and treatment. Androgens may also contribute to breast cancer risk and progression. In recent years, significant advances have been made in defining the roles of these steroid hormones in stem cell homeostasis in the breast. Stem cells are potential origins of breast cancer and may dictate tumor phenotype. At least a portion of breast cancers are proposed to be driven by cancer stem cells (CSCs), cells that mimic the self-renewing and repopulating properties of normal stem cells, and can confer drug resistance. Progesterone has been identified as the critical hormone regulating normal murine mammary stem cell (MaSC) populations and normal human breast stem cells. Synthetic progestins increase human breast cancer risk; one theory speculates that this occurs through increased stem cells. Progesterone treatment also increases breast CSCs in established breast cancer cell lines. This is mediated in part through progesterone regulation of transcription factors, signal transduction pathways, and microRNAs. There is also emerging evidence that estrogens and androgens can regulate breast CSC numbers. The evolving concept that a breast CSC phenotype is dynamic and can be influenced by cell signaling and external cues emphasizes that steroid hormones could be crucial players in controlling CSC number and function. Here we review recent studies on steroid hormone regulation of breast CSCs, and discuss mechanisms by which this occurs. PMID:26265122

  1. Synthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors

    PubMed Central

    Chandra, Prafulla; Lee, Sang Jin

    2015-01-01

    The innate ability of stem cells to self-renew and differentiate into multiple cell types makes them a promising source for tissue engineering and regenerative medicine applications. Their capacity for self-renewal and differentiation is largely influenced by the combination of physical, chemical, and biological signals found in the stem cell niche, both temporally and spatially. Embryonic and adult stem cells are potentially useful for cell-based approaches; however, regulating stem cell behavior remains a major challenge in their clinical use. Most of the current approaches for controlling stem cell fate do not fully address all of the complex signaling pathways that drive stem cell behaviors in their natural microenvironments. To overcome this limitation, a new generation of biomaterials is being developed for use as three-dimensional synthetic microenvironments that can mimic the regulatory characteristics of natural extracellular matrix (ECM) proteins and ECM-bound growth factors. These synthetic microenvironments are currently being investigated as a substrate with surface immobilization and controlled release of bioactive molecules to direct the stem cell fate in vitro, as a tissue template to guide and improve the neo-tissue formation both in vitro and in vivo, and as a delivery vehicle for cell therapy in vivo. The continued advancement of such an intelligent biomaterial system as the synthetic extracellular microenvironment holds the promise of improved therapies for numerous debilitating medical conditions for which no satisfactory cure exists today. PMID:26106260

  2. CMV in Hematopoietic Stem Cell Transplantation

    PubMed Central

    de la Cámara, Rafael

    2016-01-01

    Due to its negative impact on the outcome of stem cell transplant (SCT) and solid organ transplant patients (SOT) CMV has been called “the troll of transplantation”. One of the greatest advances in the management of SCT has been the introduction of the preemptive strategy. Since its introduction, the incidence of the viremia, as expected, remains unchanged but there has been a marked decline in the incidence of early CMV disease. However, in spite of the advances in prevention of CMV disease, CMV is still today an important cause of morbidity and mortality. Late CMV disease is still occurring in a significant proportion of patients and the so-called indirect effects of CMV are causing significant morbidity and mortality. Fortunately there have been several advances in the development of new antivirals, adoptive immunotherapy and DNA-CMV vaccines that might transform the management of CMV in the near future. PMID:27413524

  3. Klotho, stem cells, and aging

    PubMed Central

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders. PMID:26346243

  4. Gametogenesis from Pluripotent Stem Cells.

    PubMed

    Saitou, Mitinori; Miyauchi, Hidetaka

    2016-06-01

    The germ cell lineage originates early in development and undergoes a series of complex developmental processes that culminate in the generation of fully matured gametes, the spermatozoa and the oocytes. Remarkably, researchers have been recapitulating these developmental pathways using mouse and human pluripotent stem cells (PSCs). With further studies, including those involving non-human primate models, human gametogenesis may be fully reconstituted from PSCs, which would profoundly facilitate our understanding of human germ cell development and infertility. Here we discuss groundbreaking studies that lay the foundation for this achievement, the current state of the field, and challenges for deriving gametes from hPSCs. PMID:27257761

  5. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body. PMID:26590762

  6. Cancer stem cells and exosome signaling.

    PubMed

    Hannafon, Bethany N; Ding, Wei-Qun

    2015-01-01

    Exosomes have been recognized as mediators of intercellular communication among different cell populations in various biological model systems. By transfer of signaling molecules such as proteins, lipids, and RNAs between different cell types, exosomes are implicated in both physiological and pathological processes. The tumor microenvironment consists of multiple types of cells including adult stem cells, cancer stem cells, and stromal cells. These cells are known to intercommunicate with each other thereby modulating tumor progression. Recent studies have provided evidence demonstrating that exosomes mediate the interactions among different types of cells within the tumor microenvironment, providing new insight into how these cells interact with each other through exosome signaling. This review is focused on recent studies that have examined exosome-mediated intercommunication among cancer stem cells, adult stem cells, cancer cells, and stromal cells within the tumor microenvironment. Based on the current literature, it seems clear that adult stem cells and cancer stem cells secret exosomes that can be transferred to their surrounding cells thereby modulating cancer progression. Likewise, cancer cells and stromal cells also release exosomes that can be taken up by cancer stem cells or adult stem cells, leading to alterations to their phenotype. The molecular mechanisms and biological consequences of the exosome-mediated interactions of these cells remain to be further elucidated. A better understanding of how exosomes mediate intercellular communication in the tumor microenvironment and the specific biological consequences of these interactions will likely offer new opportunities in the development of diagnostic or therapeutic strategies against cancer. PMID:27358879

  7. Cancer stem cells and exosome signaling

    PubMed Central

    Hannafon, Bethany N.

    2015-01-01

    Exosomes have been recognized as mediators of intercellular communication among different cell populations in various biological model systems. By transfer of signaling molecules such as proteins, lipids, and RNAs between different cell types, exosomes are implicated in both physiological and pathological processes. The tumor microenvironment consists of multiple types of cells including adult stem cells, cancer stem cells, and stromal cells. These cells are known to intercommunicate with each other thereby modulating tumor progression. Recent studies have provided evidence demonstrating that exosomes mediate the interactions among different types of cells within the tumor microenvironment, providing new insight into how these cells interact with each other through exosome signaling. This review is focused on recent studies that have examined exosome-mediated intercommunication among cancer stem cells, adult stem cells, cancer cells, and stromal cells within the tumor microenvironment. Based on the current literature, it seems clear that adult stem cells and cancer stem cells secret exosomes that can be transferred to their surrounding cells thereby modulating cancer progression. Likewise, cancer cells and stromal cells also release exosomes that can be taken up by cancer stem cells or adult stem cells, leading to alterations to their phenotype. The molecular mechanisms and biological consequences of the exosome-mediated interactions of these cells remain to be further elucidated. A better understanding of how exosomes mediate intercellular communication in the tumor microenvironment and the specific biological consequences of these interactions will likely offer new opportunities in the development of diagnostic or therapeutic strategies against cancer.

  8. Stem cells news update: a personal perspective.

    PubMed

    Wong, Sc

    2013-12-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy. PMID:24778557

  9. Stem cell facelift: between reality and fiction.

    PubMed

    Atiyeh, Bishara S; Ibrahim, Amir E; Saad, Dibo A

    2013-03-01

    Stem cells are "big business" throughout medical technology, and their potential application in cosmetic procedures is no exception. One of the latest nonsurgical facial treatments (and new catchphrases) in plastic surgery is the "stem cell facelift." It is evident from the currently available scientific literature that the use of stem cell therapy for facial rejuvenation is limited to the theoretical induction of skin tightening and can in no way be equated to a facelift. In fact, what is advertised and promoted as a new and original technique of stem cell facelifting is mostly stem cell-enriched lipofilling. Despite encouraging data suggesting that adult stem cells hold promise for future applications, the data from clinical evidence available today do not substantiate the marketing and promotional claims being made to patients. To claim that the "stem cell facelift" is a complete facial rejuvenation procedure surgery is unethical. PMID:23417722

  10. Stem Cells News Update: A Personal Perspective

    PubMed Central

    Wong, SC

    2013-01-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy. PMID:24778557

  11. Stem Cells, Science, and Public Reasoning

    ERIC Educational Resources Information Center

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  12. Learning about Cancer by Studying Stem Cells

    MedlinePlus

    ... About Cancer by Studying Stem Cells Inside Life Science View All Articles | Inside Life Science Home Page Learning About Cancer by Studying Stem ... Once Upon a Stem Cell This Inside Life Science article also appears on LiveScience . Learn about related ...

  13. Adult stem cells and tissue repair.

    PubMed

    Körbling, M; Estrov, Z; Champlin, R

    2003-08-01

    Recently, adult stem cells originating from bone marrow or peripheral blood have been suggested to contribute to repair and genesis of cells specific for liver, cardiac and skeletal muscle, gut, and brain tissue. The mechanism involved has been termed transdifferentiation, although other explanations including cell fusion have been postulated. Using adult stem cells to generate or repair solid organ tissue obviates the immunologic, ethical, and teratogenic issues that accompany embryonic stem cells. PMID:12931235

  14. The dynamics of murine mammary stem/progenitor cells

    PubMed Central

    DONG, Qiaoxiang; SUN, Lu-Zhe

    2014-01-01

    The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups. PMID:25580105

  15. The Role of MicroRNAs in Cardiac Stem Cells

    PubMed Central

    Purvis, Nima; Bahn, Andrew; Katare, Rajesh

    2015-01-01

    Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases. PMID:25802528

  16. Stem Cell Therapy: A New Treatment for Burns?

    PubMed Central

    Arno, Anna; Smith, Alexandra H.; Blit, Patrick H.; Shehab, Mohammed Al; Gauglitz, Gerd G.; Jeschke, Marc G.

    2011-01-01

    Stem cell therapy has emerged as a promising new approach in almost every medicine specialty. This vast, heterogeneous family of cells are now both naturally (embryonic and adult stem cells) or artificially obtained (induced pluripotent stem cells or iPSCs) and their fates have become increasingly controllable, thanks to ongoing research in this passionate new field. We are at the beginning of a new era in medicine, with multiple applications for stem cell therapy, not only as a monotherapy, but also as an adjunct to other strategies, such as organ transplantation or standard drug treatment. Regrettably, serious preclinical concerns remain and differentiation, cell fusion, senescence and signalling crosstalk with growth factors and biomaterials are still challenges for this promising multidisciplinary therapeutic modality. Severe burns have several indications for stem cell therapy, including enhancement of wound healing, replacement of damaged skin and perfect skin regeneration – incorporating skin appendages and reduced fibrosis –, as well as systemic effects, such as inflammation, hypermetabolism and immunosuppression. The aim of this review is to describe well established characteristics of stem cells and to delineate new advances in the stem cell field, in the context of burn injury and wound healing.

  17. Haploidentical stem cell transplantation after a reduced-intensity conditioning regimen for the treatment of advanced hematologic malignancies: posttransplantation CD8-depleted donor lymphocyte infusions contribute to improve T-cell recovery.

    PubMed

    Dodero, Anna; Carniti, Cristiana; Raganato, Anna; Vendramin, Antonio; Farina, Lucia; Spina, Francesco; Carlo-Stella, Carmelo; Di Terlizzi, Simona; Milanesi, Marco; Longoni, Paolo; Gandola, Lorenza; Lombardo, Claudia; Corradini, Paolo

    2009-05-01

    Haploidentical hematopoietic stem cell transplantation provides an option for patients with advanced hematologic malignancies lacking a compatible donor. In this prospective phase 1/2 trial, we evaluated the role of reduced-intensity conditioning (RIC) followed by early add-backs of CD8-depleted donor lymphocyte infusions (DLIs). The RIC regimen consisted of thiotepa, fludarabine, cyclophosphamide, and 2 Gy total body irradiation. Twenty-eight patients with advanced lymphoproliferative diseases (n = 24) or acute myeloid leukemia (n = 4) were enrolled. Ex vivo and in vivo T-cell depletion was carried out by CD34(+) cell selection and alemtuzumab treatment. The 2-year cumulative incidence of nonrelapse mortality was 26% and the 2-year overall survival (OS) was 44%, with a better outcome for patients with chemosensitive disease (OS, 75%). Overall, 54 CD8-depleted DLIs were administered to 23 patients (82%) at 3 different dose levels without loss of engraftment or acute toxicities. Overall, 6 of 23 patients (26%) developed grade II-IV graft-versus-host disease, mainly at dose level 2. In conclusion, our RIC regimen allowed a stable engraftment with a rather low nonrelapse mortality in poor-risk patients; OS is encouraging with some long-term remissions in lymphoid malignancies. CD8-depleted DLIs are feasible and promote the immune reconstitution. PMID:19211934

  18. Targeting Aggressive Cancer Stem Cells in Glioblastoma

    PubMed Central

    Seymour, Tracy; Nowak, Anna; Kakulas, Foteini

    2015-01-01

    Glioblastoma (GBM) is the most common and fatal type of primary brain tumor. Gliosarcoma (GSM) is a rarer and more aggressive variant of GBM that has recently been considered a potentially different disease. Current clinical treatment for both GBM and GSM includes maximal surgical resection followed by post-operative radiotherapy and concomitant and adjuvant chemotherapy. Despite recent advances in treating other solid tumors, treatment for GBM and GSM still remains palliative, with a very poor prognosis and a median survival rate of 12–15 months. Treatment failure is a result of a number of causes, including resistance to radiotherapy and chemotherapy. Recent research has applied the cancer stem cells theory of carcinogenesis to these tumors, suggesting the existence of a small subpopulation of glioma stem-like cells (GSCs) within these tumors. GSCs are thought to contribute to tumor progression, treatment resistance, and tumor recapitulation post-treatment and have become the focus of novel therapy strategies. Their isolation and investigation suggest that GSCs share critical signaling pathways with normal embryonic and somatic stem cells, but with distinct alterations. Research must focus on identifying these variations as they may present novel therapeutic targets. Targeting pluripotency transcription factors, SOX2, OCT4, and Nanog homeobox, demonstrates promising therapeutic potential that if applied in isolation or together with current treatments may improve overall survival, reduce tumor relapse, and achieve a cure for these patients. PMID:26258069

  19. What Undergraduates Misunderstand about Stem Cell Research

    NASA Astrophysics Data System (ADS)

    Halverson, Kristy Lynn; Freyermuth, Sharyn K.; Siegel, Marcelle A.; Clark, Catharine G.

    2010-11-01

    As biotechnology-related scientific advances, such as stem cell research (SCR), are increasingly permeating the popular media, it has become ever more important to understand students' ideas about this issue. Very few studies have investigated learners' ideas about biotechnology. Our study was designed to understand the types of alternative conceptions students hold concerning SCR. The qualitative research design allowed us to examine college students' understandings about stem cells and SCR. More specifically, we addressed the following questions: How can alternative conceptions about stem cell topics be categorized? What types of alternative conceptions are most common? Participants included 132 students enrolled in a biotechnology course that focused on the scientific background of biotechnology applications relevant to citizens. In this study, we used an inductive approach to develop a taxonomy of alternative ideas about SCR by analyzing student responses to multiple open-ended data sources. We identified five categories of conceptions: alternative conceptions about what, alternative conceptions about how, alternative conceptions about medical potential, terminology confusion, and political and legal alternative conceptions. In order to improve instruction, it is important to understand students' ideas when entering the classroom. Our findings highlight a need to teach how science can be applied to societal issues and improve science literacy and citizenship.

  20. Effects of nanotopography on stem cell phenotypes

    PubMed Central

    Ravichandran, Rajeswari; Liao, Susan; Ng, Clarisse CH; Chan, Casey K; Raghunath, Michael; Ramakrishna, Seeram

    2009-01-01

    Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes. PMID:21607108

  1. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  2. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion.

    PubMed

    Notsu, Masakazu; Yamaguchi, Toru; Okazaki, Kyoko; Tanaka, Ken-ichiro; Ogawa, Noriko; Kanazawa, Ippei; Sugimoto, Toshitsugu

    2014-07-01

    In diabetic patients, advanced glycation end products (AGEs) cause bone fragility because of deterioration of bone quality. We previously showed that AGEs suppressed the mineralization of mouse stromal ST2 cells. TGF-β is abundant in bone, and enhancement of its signal causes bone quality deterioration. However, whether TGF-β signaling is involved in the AGE-induced suppression of mineralization during the osteoblast lineage remains unknown. We therefore examined the roles of TGF-β in the AGE-induced suppression of mineralization of ST2 cells and human mesenchymal stem cells. AGE3 significantly (P < .001) inhibited mineralization in both cell types, whereas transfection with small interfering RNA for the receptor for AGEs (RAGEs) significantly (P < .05) recovered this process in ST2 cells. AGE3 increased (P < .001) the expression of TGF-β mRNA and protein, which was partially antagonized by transfection with RAGE small interfering RNA. Treatment with a TGF-β type I receptor kinase inhibitor, SD208, recovered AGE3-induced decreases in osterix (P < .001) and osteocalcin (P < .05) and antagonized the AGE3-induced increase in Runx2 mRNA expression in ST2 cells (P < .001). Moreover, SD208 completely and dose dependently rescued AGE3-induced suppression of mineralization in both cell types. In contrast, SD208 intensified AGE3-induced suppression of cell proliferation as well as AGE3-induced apoptosis in proliferating ST2 cells. These findings indicate that, after cells become confluent, AGE3 partially inhibits the differentiation and mineralization of osteoblastic cells by binding to RAGE and increasing TGF-β expression and secretion. They also suggest that TGF-β adversely affects bone quality not only in primary osteoporosis but also in diabetes-related bone disorder. PMID:24758301

  3. Adult Mesenchymal Stem Cells and Radiation Injury.

    PubMed

    Kiang, Juliann G

    2016-08-01

    Recent understanding of the cellular and molecular signaling activations in adult mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal for tissue repair and recovery after radiation injury. Thus far, MSCs have been characterized extensively and shown to be useful in mitigation and therapy for acute radiation syndrome and cognitive dysfunction. Use of MSCs for treating radiation injury alone or in combination with additional trauma is foreseeable. PMID:27356065

  4. Direct reprogramming of human neural stem cells by OCT4.

    PubMed

    Kim, Jeong Beom; Greber, Boris; Araúzo-Bravo, Marcos J; Meyer, Johann; Park, Kook In; Zaehres, Holm; Schöler, Hans R

    2009-10-01

    Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors (OCT4 (also called POU5F1), SOX2, c-Myc and KLF4). We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells. Here we report the generation of one-factor human iPS cells from human fetal neural stem cells (one-factor (1F) human NiPS cells) by ectopic expression of OCT4 alone. One-factor human NiPS cells resemble human embryonic stem cells in global gene expression profiles, epigenetic status, as well as pluripotency in vitro and in vivo. These findings demonstrate that the transcription factor OCT4 is sufficient to reprogram human neural stem cells to pluripotency. One-factor iPS cell generation will advance the field further towards understanding reprogramming and generating patient-specific pluripotent stem cells. PMID:19718018

  5. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  6. The gap between law and ethics in human embryonic stem cell research: overcoming the effect of U.S. federal policy on research advances and public benefit.

    PubMed

    Taylor, Patrick L

    2005-10-01

    Key ethical issues arise in association with the conduct of stem cell research by research institutions in the United States. These ethical issues, summarized in detail, receive no adequate translation into federal laws or regulations, also described in this article. U.S. Federal policy takes a passive approach to these ethical issues, translating them simply into limitations on taxpayer funding, and foregoes scientific and ethical leadership while protecting intellectual property interests through a laissez faire approach to stem cell patents and licenses. Those patents and licenses, far from being scientifically and ethically neutral in effect, virtually prohibit commercially sponsored research that could otherwise be a realistic alternative to the federal funding gap. The lack of federal funding and related data-sharing principles, combined with the effect of U.S. patent policy, the lack of key agency guidance, and the proliferation of divergent state laws arising from the lack of Federal leadership, significantly impede ethical stem cell research in the United States, without coherently supporting any consensus ethical vision. Research institutions must themselves implement steps, described in the article, to integrate addressing ethical review with the many legal compliance issues U.S. federal and state laws create. PMID:16279757

  7. Therapeutic Implications of Leukemic Stem Cell Pathways

    PubMed Central

    Chumsri, Saranya; Matsui, William; Burger, Angelika M.

    2008-01-01

    An emerging concept in cancer biology is that a rare population of cancer stem cells exists among the heterogeneous cell mass that constitutes a tumor. This concept is best understood in human myeloid leukemia. Normal and malignant hematopoietic stem cell functions are defined by a common set of critical stemness genes that regulate self-renewal and developmental pathways. Several stemness factors, such as Notch or telomerase, show differential activation in normal hematopoietic versus leukemia stem cells. These differences could be exploited therapeutically even with drugs that are already in clinical use for the treatment of leukemia. The translation of novel and existing leukemic stem cell – directed therapies into clinical practice, however, will require changes in clinical trial design and the inclusion of stem cell biomarkers as correlative end points. PMID:18006753

  8. Stem cells: a model for screening, discovery and development of drugs

    PubMed Central

    Kitambi, Satish Srinivas; Chandrasekar, Gayathri

    2011-01-01

    The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson’s disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed. PMID:24198530

  9. Embryonic Stem Cells/Induced Pluripotent Stem Cells

    PubMed Central

    Feng, Xuezhu; Zhang, Jiuchun; Smuga-Otto, Kimberly; Tian, Shulan; Yu, Junying; Stewart, Ron; Thomson, James A.

    2012-01-01

    Unlike mouse embryonic stem cells (ESCs), which are closely related to the inner cell mass, human ESCs appear to be more closely related to the later primitive ectoderm. For example, human ESCs and primitive ectoderm share a common epithelial morphology, growth factor requirements, and the potential to differentiate to all three embryonic germ layers. However, it has previously been shown that human ESCs can also differentiate to cells expressing markers of trophoblast, an extraembryonic lineage formed before the formation of primitive ectoderm. Here, we show that phorbol ester 12-O-tetradecanoylphorbol 13-acetate causes human ESCs to undergo an epithelial mesenchymal transition and to differentiate into cells expressing markers of parietal endoderm, another extraembryonic lineage. We further confirmed that this differentiation is through the activation of protein kinase C (PKC) pathway and demonstrated that a particular PKC subtype, PKC-δ, is most responsible for this transition. PMID:22213079

  10. The stem cell secretome and its role in brain repair.

    PubMed

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2013-12-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. PMID:23827856

  11. The Role of Stem Cells in Wound Angiogenesis

    PubMed Central

    King, Alice; Balaji, Swathi; Keswani, Sundeep G.; Crombleholme, Timothy M.

    2014-01-01

    Significance: Revascularization plays a critical role in wound healing and is regulated by a complex milieu of growth factors and cytokines. Deficiencies in revascularization contribute to the development of chronic nonhealing wounds. Recent Advances: Stem-cell-based therapy provides a novel strategy to enhance angiogenesis and improve wound healing. With bioethical concerns associated with embryonic stem cells, focus has shifted to different populations of vascular precursors, isolated from adult somatic tissue. Three main populations have been identified: endothelial progenitor cells, mesenchymal stem cells, and induced-pluripotent stem cells. These populations demonstrate great promise to positively influence neovascularization and wound repair. Critical Issues: Further studies to more definitively define each population are necessary to efficiently translate stem-cell-based therapeutic angiogenesis to the bedside. Better understanding of the physiologic pathways of how stem cells contribute to angiogenesis in normal tissue repair will help identify targets for successful therapeutic angiogenesis. Future Directions: Active studies in both animal models and clinical trials are being conducted to develop effective delivery routes, including dosing, route, and timing. Stem-cell-based therapy holds significant potential as a strategy for therapeutic angiogenesis in the care of patients with chronic nonhealing wounds. PMID:25300298

  12. The stem cell secretome and its role in brain repair

    PubMed Central

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2014-01-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. PMID:23827856

  13. The therapeutic potential of stem cells

    PubMed Central

    Watt, Fiona M.; Driskell, Ryan R.

    2010-01-01

    In recent years, there has been an explosion of interest in stem cells, not just within the scientific and medical communities but also among politicians, religious groups and ethicists. Here, we summarize the different types of stem cells that have been described: their origins in embryonic and adult tissues and their differentiation potential in vivo and in culture. We review some current clinical applications of stem cells, highlighting the problems encountered when going from proof-of-principle in the laboratory to widespread clinical practice. While some of the key genetic and epigenetic factors that determine stem cell properties have been identified, there is still much to be learned about how these factors interact. There is a growing realization of the importance of environmental factors in regulating stem cell behaviour and this is being explored by imaging stem cells in vivo and recreating artificial niches in vitro. New therapies, based on stem cell transplantation or endogenous stem cells, are emerging areas, as is drug discovery based on patient-specific pluripotent cells and cancer stem cells. What makes stem cell research so exciting is its tremendous potential to benefit human health and the opportunities for interdisciplinary research that it presents. PMID:20008393

  14. Engineering Stem Cells for Biomedical Applications.

    PubMed

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  15. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  16. Reforming craniofacial orthodontics via stem cells

    PubMed Central

    Mohanty, Pritam; Prasad, N.K.K.; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics. PMID:25767761

  17. Pituitary stem cells: candidates and implications.

    PubMed

    Nassiri, Farshad; Cusimano, Michael; Zuccato, Jeff A; Mohammed, Safraz; Rotondo, Fabio; Horvath, Eva; Syro, Luis V; Kovacs, Kalman; Lloyd, Ricardo V

    2013-09-01

    The pituitary is the master endocrine gland of the body. It undergoes many changes after birth, and these changes may be mediated by the differentiation of pituitary stem cells. Stem cells in any tissue source must display (1) pluripotent capacity, (2) capacity for indefinite self-renewal, and (3) a lack of specialization. Unlike neural stem cells identified in the hippocampus and subventricular zone, pituitary stem cells are not associated with one specific cell type. There are many major candidates that are thought to be potential pituitary stem cell sources. This article reviews the evidence for each of the major cell types and discuss the implications of identifying a definitive pituitary stem cell type. PMID:23423660

  18. Cellular mechanisms of somatic stem cell aging.

    PubMed

    Jung, Yunjoon; Brack, Andrew S

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  19. Combination stem cell therapy for heart failure

    PubMed Central

    2010-01-01

    Patients with congestive heart failure (CHF) that are not eligible for transplantation have limited therapeutic options. Stem cell therapy such as autologous bone marrow, mobilized peripheral blood, or purified cells thereof has been used clinically since 2001. To date over 1000 patients have received cellular therapy as part of randomized trials, with the general consensus being that a moderate but statistically significant benefit occurs. Therefore, one of the important next steps in the field is optimization. In this paper we discuss three ways to approach this issue: a) increasing stem cell migration to the heart; b) augmenting stem cell activity; and c) combining existing stem cell therapies to recapitulate a "therapeutic niche". We conclude by describing a case report of a heart failure patient treated with a combination stem cell protocol in an attempt to augment beneficial aspects of cord blood CD34 cells and mesenchymal-like stem cells. PMID:20398245

  20. Cryopreservation of Hematopoietic Stem Cells

    PubMed Central

    Berz, David; McCormack, Elise M.; Winer, Eric S.; Colvin, Gerald A.; Quesenberry, Peter J.

    2007-01-01

    Stem cell transplantation represents a critical approach for the treatment of many malignant and non-malignant diseases. The foundation for these approaches is the ability to cryopreserve marrow cells for future use. This technique is routinely employed in all autologous settings and is critical for cord blood transplantation. A variety of cryopreservatives have been used with multiple freezing and thawing techniques as outlined in the later chapters. Freezing efficiency has been proven repeatedly and the ability of long-term stored marrow to repopulate has been established. Standard approaches outlined here are used in many labs as the field continues to evolve. PMID:17266054

  1. Adult Stem Cell Responses to Nanostimuli

    PubMed Central

    Tsimbouri, Penelope M.

    2015-01-01

    Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called “stem cell niches”. They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review. PMID:26193326

  2. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  3. Stem cell strategies for Alzheimer's disease therapy.

    PubMed

    Sugaya, K; Alvarez, A; Marutle, A; Kwak, Y D; Choumkina, E

    2006-06-01

    We have found much evidence that the brain is capable of regenerating neurons after maturation. In our previous study, human neural stem cells (HNSCs) transplanted into aged rat brains differentiated into neural cells and significantly improved the cognitive functions of the animals, indicating that HNSCs may be a promising candidate for cell-replacement therapies for neurodegenerative diseases including Alzheimer's disease (AD). However, ethical and practical issues associated with HNSCs compel us to explore alternative strategies. Here, we report novel technologies to differentiate adult human mesenchymal stem cells, a subset of stromal cells in the bone marrow, into neural cells by modifying DNA methylation or over expression of nanog, a homeobox gene expressed in embryonic stem cells. We also report peripheral administrations of a pyrimidine derivative that increases endogenous stem cell proliferation improves cognitive function of the aged animal. Although these results may promise a bright future for clinical applications used towards stem cell strategies in AD therapy, we must acknowledge the complexity of AD. We found that glial differentiation takes place in stem cells transplanted into amyloid-( precursor protein (APP) transgenic mice. We also found that over expression of APP gene or recombinant APP treatment causes glial differentiation of stem cells. Although further detailed mechanistic studies may be required, RNA interference of APP or reduction of APP levels in the brain can significantly reduced glial differentiation of stem cells and may be useful in promoting neurogenesis after stem cell transplantation. PMID:16953146

  4. Bioengineered stem cells as an alternative for islet cell transplantation

    PubMed Central

    Moore, Sarah J; Gala-Lopez, Boris L; Pepper, Andrew R; Pawlick, Rena L; Shapiro, AM James

    2015-01-01

    Type 1 diabetes is an autoimmune and increasingly prevalent condition caused by immunological destruction of beta cells. Insulin remains the mainstay of therapy. Endeavours in islet transplantation have clearly demonstrated that type 1 diabetes is treatable by cellular replacement. Many challenges remain with this approach. The opportunity to use bioengineered embryonic or adult pluripotential stem cells, or islets derived from porcine xenograft sources could address future demands, but are still associated with considerable challenges. This detailed review outlines current progress in clinical islet transplantation, and places this in perspective for the remarkable scientific advances now occurring in stem cell and regenerative medicine approaches in the treatment of future curative treatment of diabetes. PMID:25815266

  5. Lifting the Mist on Gastric Stem Cells.

    PubMed

    Varga, Julia; Greten, Florian R

    2016-01-01

    In a recent issue of Cancer Cell, Hayakawa et al. (2015) demonstrate that Mist1(+) gastric stem cells are supported by a specialized niche composed of Cxcl12(+) endothelium and Wnt5a-producing Cxcr4(+) innate lymphoid cells. In diffuse-type gastric cancer this perivascular stem cell niche is expanded and can be exploited for cancer therapy. PMID:26748749

  6. Imported Stem Cells Strike against Stroke.

    PubMed

    Péron, Sophie; Berninger, Benedikt

    2015-11-01

    Cells with neural stem cell (NSC)-like properties can be isolated from the cortex of adult brains following injury, but their origins and function are unclear. Now in Cell Stem Cell, Faiz et al. (2015) show that subventricular-zone-derived NSCs home to injured cortical area following stroke, where they generate reactive astrocytes. PMID:26544109

  7. Stem cells from amniotic fluid - Potential for regenerative medicine.

    PubMed

    Loukogeorgakis, Stavros P; De Coppi, Paolo

    2016-02-01

    Regenerative medicine has recently been established as an emerging field focussing on repair, replacement or regeneration of cells, tissues and whole organs. The significant recent advances in the field have intensified the search for novel sources of stem cells with potential for therapy. Recently, researchers have identified the amniotic fluid as an untapped source of stem cells that are multipotent, possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. Stem cells from the amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumours, which make them an ideal candidate for tissue engineering applications. In addition, their ability to engraft in injured organs and modulate immune and repair responses of host tissues suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases affecting major tissues/organs. This review summarises the evidence on amniotic fluid cells over the past 15 years and explores the potential therapeutic applications of amniotic fluid stem cells and amniotic fluid mesenchymal stem cells. PMID:26542929

  8. Stem Cell Research in Pakistan; Past, Present and Future

    PubMed Central

    Zahra, Sayeda Anum; Muzavir, Sayed Raheel; Ashraf, Sadia; Ahmad, Aftab

    2015-01-01

    Background and Objectives Stem cells have proved to have great therapeutic potential as stem cell treatment is replacing traditional ways of treatment in different disorders like cancer, aplastic anemia, stroke, heart disorders. The developed and developing countries are investing differently in this area of research so research output and clinical translation of research greatly vary among developed and developing countries. Present study was done to investigate the current status of stem cells research in Pakistan and ways to improve it. Results Many advanced countries (USA, UK and Canada etc.) are investing heavily in stem cell research and treatment. Different developing countries like Iran, Turkey and India are also following the developed countries and investing a lot in stem cells research. Pakistan is also making efforts in establishing this field to get desired benefits but unfortunately the progress is at very low pace. If Government plays an active role along with private sector, stem cell research in Pakistan can be boosted up. The numbers of publications from Pakistan are very less compared to developed and neighboring countries and Pakistan also has very less number of institutes working in this area of research. Conclusions Stem cells research is at its initial stages in Pakistan and there is great need to bring Government, academia and industry together so they could make serious efforts to promote research in this very important field. This will help millions of patients suffering from incurable disorders and will also reduce economic loss. PMID:26019749

  9. Probing stem cell behavior using nanoparticle-based approaches.

    PubMed

    Patel, Sahishnu; Lee, Ki-Bum

    2015-01-01

    Stem cells hold significant clinical potential to treat numerous debilitating diseases and injures that currently have no treatment plan. While several advances have been made in developing stem cell platforms and methods to induce their differentiation, there are two critical aspects need to be addressed: (1) efficient delivery of nucleic acids and small molecules for stem cell differentiation, and (2) effective, noninvasive, and real-time tracking of transplanted stem cells. To address this, there has been a trend of utilizing various types of nanoparticles to not only deliver biomolecules to targeted site but also track the location of transplanted stem cells in real time. Over the past decade, various types of nanoparticles, including magnetic nanoparticles, silica nanoparticles, quantum dots, and gold nanoparticles, have been developed to serve as vehicles for targeted biomolecule delivery. In addition of being biocompatible without causing adverse side effect to stem cells, these nanoparticles have unique chemical and physical properties that allow tracking and imaging in real time using different imaging instruments that are commonly found in hospitals. A summary of the landmark and progressive demonstrations that utilize nanoparticles for stem cell application is described. PMID:25903468

  10. Multiple Myeloma Cancer Stem Cells

    PubMed Central

    Huff, Carol Ann; Matsui, William

    2008-01-01

    Multiple myeloma is characterized by the clonal expansion of neoplastic plasma cells within the bone marrow, elevated serum immunoglobulin, and osteolytic bone disease. The disease is highly responsive to a wide variety of anticancer treatments including conventional cytotoxic chemotherapy, corticosteroids, radiation therapy, and a growing number of agents with novel mechanisms of action. However, few if any patients are cured with these modalities and relapse remains a critical issue. A better understanding of clonogenic multiple myleoma cells is essential to ultimately improving long-term outcomes, but the nature of the cells responsible for myeloma regrowth and disease relapse is unclear. We review evidence that functional heterogeneity exists in multiple myeloma and discuss potential strategies and clinical implications of the stem-cell model of cancer in this disease. PMID:18539970

  11. Stem Cell Therapy for Autism

    PubMed Central

    Ichim, Thomas E; Solano, Fabio; Glenn, Eduardo; Morales, Frank; Smith, Leonard; Zabrecky, George; Riordan, Neil H

    2007-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism. PMID:17597540

  12. Mesenchymal Stem Cells in Cardiology.

    PubMed

    White, Ian A; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M

    2016-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  13. Medical perspectives of adults and embryonic stem cells.

    PubMed

    Cavazzana-Calvo, Marina; André-Schmutz, Isabelle; Lagresle, Chantal; Fischer, Alain

    2002-10-01

    In the last 30 years, allogeneic bone marrow transplantation has become the treatment of choice for many hematologic malignancies or inherited disorders and a number of changes have been registered in terms of long-term survival rate of transplanted patients as well as of available sources of hematopoietic stem cell (HSC). In parallel to the publication of better results in HSC transplantation, several recent discoveries have opened a scientific and ethical debate on the therapeutical potential of stem cells isolated from adult or embryonic tissues. One of the major discoveries in this field is the capacity of bone marrow-derived stem cells to treat a genetic liver disease in a mouse model, thus justifying the concept of transdifferentiation of adult stem cell and raising hopes on its possible therapeutical applications. We have tried here to summarise the advances in this field and to discuss the limits of these biological data. PMID:12494504

  14. Stem cells: Balancing resistance and sensitivity to DNA damage

    PubMed Central

    Liu, Julia C.; Lerou, Paul H.; Lahav, Galit

    2015-01-01

    Embryonic stem cells are known to be very sensitive to DNA damage and undergo rapid apoptosis even after low damage doses. In contrast, adult stem cells show variable sensitivity to damage. Here we describe the multiple pathways that have been proposed to affect the sensitivity of stem cells to damage, including proximity to the apoptotic threshold (mitochondrial priming) and the p53 signaling pathway, through activation of transcription or direct interaction with pro apoptotic proteins in the cytoplasm. We also discuss which cellular factors might connect mitochondrial priming with pluripotency and the potential therapeutic advances that can be achieved by better understanding the molecular mechanisms leading to sensitivity or resistance of embryonic or adult stem cells from different tissues. PMID:24721782

  15. Translating stem cell therapies: the role of companion animals in regenerative medicine

    PubMed Central

    Volk, Susan W.; Theoret, Christine

    2013-01-01

    Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell research in veterinary medicine has facilitated the development and in some instances clinical translation of a variety of cell-based therapies involving hematopoietic (HSC) and mesenchymal stem cells (MSC) as well as other adult regenerative cells and recently embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC). In fact, many of the pioneering developments in these fields of stem cell research have been achieved through collaborations of veterinary and human scientists. This review aims to provide an overview of the contribution of large animal veterinary models in advancing stem cell therapies for both human and clinical veterinary applications. Moreover, in the context of the “One Health Initiative”, the role veterinary patients may play in the future evolution of stem cell therapies for both human and animal patients will be explored. PMID:23627495

  16. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass.

    PubMed

    Guo, Ge; von Meyenn, Ferdinand; Santos, Fatima; Chen, Yaoyao; Reik, Wolf; Bertone, Paul; Smith, Austin; Nichols, Jennifer

    2016-04-12

    Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals. PMID:26947977

  17. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass

    PubMed Central

    Guo, Ge; von Meyenn, Ferdinand; Santos, Fatima; Chen, Yaoyao; Reik, Wolf; Bertone, Paul; Smith, Austin; Nichols, Jennifer

    2016-01-01

    Summary Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals. PMID:26947977

  18. Wnt signaling in adult intestinal stem cells and cancer.

    PubMed

    Krausova, Michaela; Korinek, Vladimir

    2014-03-01

    Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer. The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum. PMID:24308963

  19. Of Microenvironments and Mammary Stem Cells

    SciTech Connect

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  20. Stem cells in the light of evolution

    PubMed Central

    Chakraborty, Chiranjib; Agoramoorthy, Govindasamy

    2012-01-01

    All organisms depend on stem cells for their survival. As a result, stem cells may be a prerequisite for the evolution of specific characteristics in organisms that include regeneration, multicellularity and coloniality. Stem cells have attracted the attention of biologists and medical scientists for a long time. These provide materials for regenerative medicine. We review in this paper, the link between modern stem cell research and early studies in ancient organisms. It also outlines details on stem cells in the light of evolution with an emphasis on their regeneration potential, coloniality and multicellularity. The information provided might be of use to molecular biologists, medical scientists and developmental biologists who are engaged in integrated research involving the stem cells. PMID:22825600

  1. Two-photon imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  2. Current Status and Perspectives in Stem Cell Therapy for Heart

    PubMed Central

    Lin, Fen-Chiung; Chen, Wen-Pin; Chu, Pao-Hsien; Shyu, Kou-Gi; Wen, Ming-Shien

    2014-01-01

    For most patients, the prognosis of heart failure remains poor despite therapeutic advancement in recent decades. The option of cardiac transplantation is high risk and limited by a shortage of donors. Traditionally, the heart had been considered a terminally differentiated organ incapable of regeneration. However, numerous preclinical and clinical studies have been performed since the first report of cell therapy in heart failure using skeletal myoblasts in 2001. These investigations looked at the promising potential and use of several kinds of stem cells, which could some day dramatically alter the understanding of the regenerative capacity of the heart. To date, although there is no existing cardiac cell therapy that has been conclusively reported to be effective, stem cell-related cardiomyocyte regeneration strategies have become significant areas of research in modern cardiovascular medicine. In this review, we outline a variety of common cell sources, surface biomarkers of stem cells, and provide information related to cardiac cell therapy clinical trials. PMID:27122815

  3. Short communication: Effect of commercial or depurinized milk diet on plasma advanced oxidation protein products, cardiovascular markers, and bone marrow CD34+ stem cell potential in rat experimental hyperuricemia.

    PubMed

    Kocic, Gordana; Sokolovic, Dusan; Jevtovic, Tatjana; Cvetkovic, Tatjana; Veljkovic, Andrej; Kocic, Hristina; Stojanovic, Svetlana; Jovanovic, Aneta; Jovanovic, Jelena; Zivkovic, Petar

    2014-11-01

    Cardiovascular repair and myocardial contractility may be improved by migration of bone marrow stem cells (BMSC) and their delivery to the site of injury, a process known as BMSC homing. The aim of our study was to examine the dietary effect of a newly patented depurinized milk (DP) that is almost free of uric acid and purine and pyrimidine compounds compared with a standard commercial 1.5% fat UHT milk diet or allopurinol therapy in rat experimental hyperuricemia. Bone marrow stem cell potential (BMCD34(+), CD34-postive bone marrow cells), plasma oxidative stress parameters [advanced oxidation protein products, AOPP) and thiobarbituric acid reactive substances (TBARS)], myocardial damage markers [creatine phosphokinase (CPK), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH)], plasma cholesterol, and high-density lipoprotein cholesterol were investigated. The DP milk diet significantly increased the number of BMCD34(+) stem cells compared with commercial UHT milk. Allopurinol given alone also increased the number of BMCD34(+). Hyperuricemia caused a significant increase in all plasma enzyme markers for myocardial damage (CPK, LDH, and AST). A cardioprotective effect was achieved with allopurinol but almost equally with DP milk and more than with commercial milk. Regarding plasma AOPP, TBARS, and cholesterol levels, the most effective treatment was DP milk. In conclusion, the protective role of a milk diet on cardiovascular function may be enhanced through the new depurinized milk diet, which may improve cardiovascular system function via increased bone marrow stem cell regenerative potential, decreased plasma oxidative stress parameters, and decreased levels of myocardial damage markers and cholesterol. New dairy technology strategies focused on eliminating harmful milk compounds should be completely nontoxic. Novel milk products should be tested for their ability to improve tissue repair and function. PMID:25218755

  4. Neural Stem Cells (NSCs) and Proteomics*

    PubMed Central

    Shoemaker, Lorelei D.; Kornblum, Harley I.

    2016-01-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  5. Neural Stem Cells (NSCs) and Proteomics.

    PubMed

    Shoemaker, Lorelei D; Kornblum, Harley I

    2016-02-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  6. Canine Pluripotent Stem Cells: Are They Ready for Clinical Applications?

    PubMed

    Betts, Dean H; Tobias, Ian C

    2015-01-01

    The derivation of canine embryonic stem cells and generation of canine-induced pluripotent stem cells are significant achievements that have unlocked the potential for developing novel cell-based disease models, drug discovery platforms, and transplantation therapies in the dog. A progression from concept to cure in this clinically relevant companion animal will not only help our canine patients but also help advance human regenerative medicine. Nevertheless, many issues remain to be resolved before pluripotent cells can be used clinically in a safe and reproducible manner. PMID:26664969

  7. Genome Editing in Human Pluripotent Stem Cells.

    PubMed

    Smith, Cory; Ye, Zhaohui; Cheng, Linzhao

    2016-01-01

    Pluripotent stem cells (PSCs), defined by their capacity for self-renewal and differentiation into all cell types, are an integral tool for basic biological research and disease modeling. However, full use of PSCs for research and regenerative medicine requires the ability to precisely edit their DNA to correct disease-causing mutations and for functional analysis of genetic variations. Recent advances in DNA editing of human stem cells (including PSCs) have benefited from the use of designer nucleases capable of making double-strand breaks (DSBs) at specific sequences that stimulate endogenous DNA repair. The clustered, regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has become the preferred designer nuclease for genome editing in human PSCs and other cell types. Here we describe the principles for designing a single guide RNA to uniquely target a gene of interest and describe strategies for disrupting, inserting, or replacing a specific DNA sequence in human PSCs. The improvements in efficiency and ease provided by these techniques allow individuals to precisely engineer PSCs in a way previously limited to large institutes and core facilities. PMID:27037079

  8. Stem Cells and Lung Regeneration

    PubMed Central

    El-Badrawy, Mohammad K.; Shalabi, Nesrein M.; Mohamed, Mie A.; Ragab, Amany; Abdelwahab, Heba Wagih

    2016-01-01

    Background:Tissues such as the lung, liver, and pancreas that have a low steady-state cell turnover yet can respond robustly after injury to replace damaged cells. The airway epithelium is exposed to inhaled particles and pathogens that may lead to the development of a many infectious and inflammatory respiratory diseases. Lung transplantation is an accepted modality of treatment for end-stage lung diseases. Since the early 1990 s, more than 26,000 lung transplants have been performed at centers worldwide. However, the availability of donor tissues and organs is limited, which presents a serious limitation for widespread transplantation surgery. The appearance of bioengineered lung and tracheal tissue transplants is considered a promising alternative to the classical transplantation of donor organ/tissue. Stem cells therapy arises as a new therapeutic approach, with a wide application potential. PMID:27426083

  9. Stem cell reprogramming: A 3D boost

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2016-03-01

    Biophysical factors in an optimized three-dimensional microenvironment enhance the reprogramming efficiency of human somatic cells into pluripotent stem cells when compared to traditional cell-culture substrates.

  10. The Alpha Stem Cell Clinic: a model for evaluating and delivering stem cell-based therapies.

    PubMed

    Trounson, Alan; DeWitt, Natalie D; Feigal, Ellen G

    2012-01-01

    Cellular therapies require the careful preparation, expansion, characterization, and delivery of cells in a clinical environment. There are major challenges associated with the delivery of cell therapies and high costs that will limit the companies available to fully evaluate their merit in clinical trials, and will handicap their application at the present financial environment. Cells will be manufactured in good manufacturing practice or near-equivalent facilities with prerequisite safety practices in place, and cell delivery systems will be specialized and require well-trained medical and nursing staff, technicians or nurses trained to handle cells once delivered, patient counselors, as well as statisticians and database managers who will oversee the monitoring of patients in relatively long-term follow-up studies. The model proposed for Alpha Stem Cell Clinics will initially use the capacities and infrastructure that exist in the most advanced tertiary medical clinics for delivery of established bone marrow stem cell therapies. As the research evolves, they will incorporate improved procedures and cell preparations. This model enables commercialization of medical devices, reagents, and other products required for cell therapies. A carefully constructed cell therapy clinical infrastructure with the requisite scientific, technical, and medical expertise and operational efficiencies will have the capabilities to address three fundamental and critical functions: 1) fostering clinical trials; 2) evaluating and establishing safe and effective therapies, and 3) developing and maintaining the delivery of therapies approved by the Food and Drug Administration, or other regulatory agencies. PMID:23197634

  11. The Alpha Stem Cell Clinic: A Model for Evaluating and Delivering Stem Cell-Based Therapies

    PubMed Central

    DeWitt, Natalie D.; Feigal, Ellen G.

    2012-01-01

    Summary Cellular therapies require the careful preparation, expansion, characterization, and delivery of cells in a clinical environment. There are major challenges associated with the delivery of cell therapies and high costs that will limit the companies available to fully evaluate their merit in clinical trials, and will handicap their application at the present financial environment. Cells will be manufactured in good manufacturing practice or near-equivalent facilities with prerequisite safety practices in place, and cell delivery systems will be specialized and require well-trained medical and nursing staff, technicians or nurses trained to handle cells once delivered, patient counselors, as well as statisticians and database managers who will oversee the monitoring of patients in relatively long-term follow-up studies. The model proposed for Alpha Stem Cell Clinics will initially use the capacities and infrastructure that exist in the most advanced tertiary medical clinics for delivery of established bone marrow stem cell therapies. As the research evolves, they will incorporate improved procedures and cell preparations. This model enables commercialization of medical devices, reagents, and other products required for cell therapies. A carefully constructed cell therapy clinical infrastructure with the requisite scientific, technical, and medical expertise and operational efficiencies will have the capabilities to address three fundamental and critical functions: 1) fostering clinical trials; 2) evaluating and establishing safe and effective therapies, and 3) developing and maintaining the delivery of therapies approved by the Food and Drug Administration, or other regulatory agencies. PMID:23197634

  12. Head and Neck Cancer Stem Cells

    PubMed Central

    Krishnamurthy, S.; Nör, J.E.

    2012-01-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signaling events are critical for the survival and self-renewal of these stem cells. Markers such as aldehyde dehydrogenase (ALDH), CD133, and CD44 have been successfully used to identify highly tumorigenic cancer stem cells in HNSCC. This review briefly describes the orosphere assay, a method for in vitro culture of undifferentiated head and neck cancer stem cells under low attachment conditions. Notably, recent evidence suggests that cancer stem cells are exquisitely resistant to conventional therapy and are the “drivers” of local recurrence and metastatic spread. The emerging understanding of the role of cancer stem cells in the pathobiology of head and neck squamous cell carcinomas might have a profound impact on the treatment paradigms for this malignancy. PMID:21933937

  13. Head and neck cancer stem cells.

    PubMed

    Krishnamurthy, S; Nör, J E

    2012-04-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signaling events are critical for the survival and self-renewal of these stem cells. Markers such as aldehyde dehydrogenase (ALDH), CD133, and CD44 have been successfully used to identify highly tumorigenic cancer stem cells in HNSCC. This review briefly describes the orosphere assay, a method for in vitro culture of undifferentiated head and neck cancer stem cells under low attachment conditions. Notably, recent evidence suggests that cancer stem cells are exquisitely resistant to conventional therapy and are the "drivers" of local recurrence and metastatic spread. The emerging understanding of the role of cancer stem cells in the pathobiology of head and neck squamous cell carcinomas might have a profound impact on the treatment paradigms for this malignancy. PMID:21933937

  14. Burning Fat Fuels Leukemic Stem Cell Heterogeneity.

    PubMed

    Thomas, Daniel; Majeti, Ravindra

    2016-07-01

    Obese leukemia patients exhibit reduced survival after chemotherapy, suggesting an important role of adipose tissue in disease progression. In this issue of Cell Stem Cell, Ye et al. (2016) reveal metabolic heterogeneity in leukemic stem cell (LSC) subpopulations and show that chemotherapy-resistant CD36+ LSCs co-opt gonadal adipose tissue to support their metabolism and survival. PMID:27392217

  15. Stem cell treatment of degenerative eye disease☆

    PubMed Central

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A.H.; Leadbeater, Wendy; Scheven, Ben A.

    2015-01-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. PMID:25752437

  16. Germline Stem Cell Transplantation and Transgenesis

    PubMed Central

    Brinster, Ralph L.

    2016-01-01

    The recently developed testis cell transplantation method provides a powerful approach to studying the biology of the male germline stem cell and its microenvironment, the stem cell niche. The technique also is being used to examine spermatogenic defects, correct male infertility, and generate transgenic animals. PMID:12077400

  17. Preconditioning Stem Cells for In Vivo Delivery

    PubMed Central

    Sart, Sébastien; Ma, Teng

    2014-01-01

    Abstract Stem cells have emerged as promising tools for the treatment of incurable neural and heart diseases and tissue damage. However, the survival of transplanted stem cells is reported to be low, reducing their therapeutic effects. The major causes of poor survival of stem cells in vivo are linked to anoikis, potential immune rejection, and oxidative damage mediating apoptosis. This review investigates novel methods and potential molecular mechanisms for stem cell preconditioning in vitro to increase their retention after transplantation in damaged tissues. Microenvironmental preconditioning (e.g., hypoxia, heat shock, and exposure to oxidative stress), aggregate formation, and hydrogel encapsulation have been revealed as promising strategies to reduce cell apoptosis in vivo while maintaining biological functions of the cells. Moreover, this review seeks to identify methods of optimizing cell dose preparation to enhance stem cell survival and therapeutic function after transplantation. PMID:25126478

  18. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  19. Breaking ground on translational stem cell research.

    PubMed

    Hall, Zach W; Kahler, David; Manganiello, Michael; Egli, Dieter; James, Daylon; Marolt, Darja; Marlot, Darja; Fasano, Christopher; Ichida, Justin; Noggle, Scott; Solomon, Susan L; McKeon, David; Smith, Kristin; Marshall, Caroline

    2010-03-01

    Sponsored by the New York Stem Cell Foundation (NYSCF), the "Fourth Annual Translational Stem Cell Research Conference: Breaking Ground" convened October 13-14, 2009 at The Rockefeller University in New York City to discuss translational stem cell research. Attracting over 400 scientists, patient advocates, and stem cell research supporters from fifteen countries, the two-day conference featured an afternoon of panel discussions, intended for a broad audience, followed by a second day of scientific talks and poster presentations. This report summarizes both days of this exciting conference. PMID:20233361

  20. The Patentability of Stem Cells in Australia.

    PubMed

    Petering, Jenny; Cowin, Prue

    2015-10-01

    The potential therapeutic applications of stem cells are unlimited. However, the ongoing political and social debate surrounding the intellectual property and patenting considerations of stem cell research has led to the implementation of strict legislative regulations. In Australia the patent landscape surrounding stem cells has evolved considerably over the past 20 years. The Australian Patents Act 1990 includes a specific exclusion to the patentability of human beings and of biological processes for their generation. However, this exclusion has received no judicial consideration to date, and so its scope and potential impact on stem cell patents is unclear. PMID:26134481

  1. Transforming ocular surface stem cell research into successful clinical practice

    PubMed Central

    Sangwan, Virender S; Jain, Rajat; Basu, Sayan; Bagadi, Anupam B; Sureka, Shraddha; Mariappan, Indumathi; MacNeil, Sheila

    2014-01-01

    It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed. PMID:24492499

  2. Stem Cells for Temporomandibular Joint Repair and Regeneration.

    PubMed

    Zhang, Shipin; Yap, Adrian U J; Toh, Wei Seong

    2015-10-01

    Temporomandibular Disorders (TMD) represent a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles and/or associated structures. They are a major cause of non-dental orofacial pain. As a group, they are often multi-factorial in nature and have no common etiology or biological explanations. TMD can be broadly divided into masticatory muscle and TMJ disorders. TMJ disorders are characterized by intra-articular positional and/or structural abnormalities. The most common type of TMJ disorders involves displacement of the TMJ articular disc that precedes progressive degenerative changes of the joint leading to osteoarthritis (OA). In the past decade, progress made in the development of stem cell-based therapies and tissue engineering have provided alternative methods to attenuate the disease symptoms and even replace the diseased tissue in the treatment of TMJ disorders. Resident mesenchymal stem cells (MSCs) have been isolated from the synovia of TMJ, suggesting an important role in the repair and regeneration of TMJ. The seminal discovery of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have provided promising cell sources for drug discovery, transplantation as well as for tissue engineering of TMJ condylar cartilage and disc. This review discusses the most recent advances in development of stem cell-based treatments for TMJ disorders through innovative approaches of cell-based therapeutics, tissue engineering and drug discovery. PMID:26123357

  3. [Stem cells - biology and therapeutic application].

    PubMed

    Sikora, Magdalena A; Olszewski, Waldemar L

    2004-04-01

    Enormous hope is connected with stem cells with regard to cell therapy, and this has become one of the most dynamically developing areas of science at the moment. A stem cell has unlimited potential for self-renewal. It appears that it can be a source of in vitro differentiated progeny cells capable of repairing damaged tissue. These review provides information about the biological properties of embryonic stem cells, i.e. ESs (embryonic stem cells), EGs (embryonic germ cells), and ECs (embryonic carcinoma cells). Possible human embryonic stem cell applications are described, with consideration of the desired cell line and the signals involved in their differentiation. The information about adult stem cells present - hemopoietic stem cells and the cells residing in selected tissues and organs: endothelium, pancreas, liver, epithelium, and gastrointestinal tract. Methods of their identification using the cell surfaces are also presented: the possibilities of in vitro transdifferentation, the phenomenon of in vivo plasticity, as well as morphological and genetic properties. Some topics of cell therapy and its clinical application in diabetics amplification are included. PMID:15114255

  4. Stem Cell-Based Therapy in Idiopathic Pulmonary Fibrosis.

    PubMed

    Barczyk, Marek; Schmidt, Matthias; Mattoli, Sabrina

    2015-08-01

    Idiopathic pulmonary fibrosis is a progressive fibrosing disorder for which there is no cure and no pharmacological treatment capable of increasing in a meaningful way the survival rate. Lung transplantation remains the only possible treatment for patients with advanced disease, although the increase in 5-year survival is only 45 %. Some preclinical studies have generated promising results about the therapeutic potential of exogenous stem cells. However, two initial clinical trials involving the endobronchial or systemic delivery of autologous adipose tissue-derived or unrelated-donor, placenta-derived mesenchymal stem cells have not convincingly demonstrated that these treatments are acceptably safe. The results of other ongoing clinical trials may help to identify the best source and delivery route of mesenchymal stem cells and to estimate the risk of unwanted effects related to the mesenchymal nature of the transplanted cells. Considering that most of the therapeutic potential of these cells has been ascribed to paracrine signaling, the use of mesenchymal stem cell-derived secretome as an alternative to the transplantation of single cell suspension may circumvent many regulatory and clinical problems. Technical and safety concerns still limit the possibility of clinical applications of other promising interventions that are based on the use of human amnion stem cells, embryonic stem cells or induced pluripotent stem cells to replace or regenerate the dysfunctional alveolar epithelium. We summarize the current status of the field and identify major challenges and opportunities for the possible future integration of stem cell-based treatments into the currently recommended clinical management strategy for idiopathic pulmonary fibrosis. PMID:25896401

  5. The biology of hematopoietic stem cells.

    PubMed

    Szilvassy, Stephen J

    2003-01-01

    Rarely has so much interest from the lay public, government, biotechnology industry, and special interest groups been focused on the biology and clinical applications of a single type of human cell as is today on stem cells, the founder cells that sustain many, if not all, tissues and organs in the body. Granting organizations have increasingly targeted stem cells as high priority for funding, and it appears clear that the evolving field of tissue engineering and regenerative medicine will require as its underpinning a thorough understanding of the molecular regulation of stem cell proliferation, differentiation, self-renewal, and aging. Despite evidence suggesting that embryonic stem (ES) cells might represent a more potent regenerative reservoir than stem cells collected from adult tissues, ethical considerations have redirected attention upon primitive cells residing in the bone marrow, blood, brain, liver, muscle, and skin, from where they can be harvested with relative sociological impunity. Among these, it is arguably the stem and progenitor cells of the mammalian hematopoietic system that we know most about today, and their intense study in rodents and humans over the past 50 years has culminated in the identification of phenotypic and molecular genetic markers of lineage commitment and the development of functional assays that facilitate their quantitation and prospective isolation. This review focuses exclusively on the biology of hematopoietic stem cells (HSCs) and their immediate progeny. Nevertheless, many of the concepts established from their study can be considered fundamental tenets of an evolving stem cell paradigm applicable to many regenerating cellular systems. PMID:14734085

  6. Generation of new islets from stem cells.

    PubMed

    Roche, Enrique; Soria, Bernat

    2004-01-01

    Spain ranks number one in organ donors (35 per million per yr). Although the prevalence of diabetes is low (100,000 type 1 diabetic patients and 2 million type 2 diabetic patients), the expected number of patients receiving islet transplants should be estimated at 200 per year. Islet replacement represents a promising cure for diabetes and has been successfully applied in a limited number of type 1 diabetic patients, resulting in insulin independence for periods longer than 3 yr. However, it has been difficult to obtain sufficient numbers of islets from cadaveric donors. Interesting alternatives include acquiring renewable sources of cells using either embryonic or adult stem cells to overcome the islet scarcity problem. Stem cells are capable of extensive proliferation rates and are capable of differentiating into other cell types of the body. In particular, totipotent stem cells are capable of differentiating into all cell types in the body, whereas pluripotent stem cells are limited to the development of a certain number of differentiated cell types. Insulin-producing cells have been obtained from both embryonic and adult stem cells using several approaches. In animal models of diabetes, the therapeutic application of bioengineered insulin-secreting cells derived from stem cells has delivered promising results. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells and highlights the key points that will allow in vitro differentiation and subsequent transplantation in the future. PMID:15289648

  7. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34pos Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction

    PubMed Central

    Moslem, Mohsen; Eberle, Irina; Weber, Iuliia; Henschler, Reinhard; Cantz, Tobias

    2015-01-01

    Mesenchymal stem/stromal cells (MSCs) represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs) that can be easily expanded as undifferentiated cells even in mass culture. Here, we investigated a differentiation protocol enabling the generation and selection of human iPSC-derived MSCs exhibiting relevant surface marker expression profiles (CD105 and CD73) and functional characteristics. We generated such iPSC-MSCs from fibroblasts and bone marrow MSCs utilizing two different reprogramming constructs. All such iPSC-MSCs exhibited the characteristics of normal bone marrow-derived (BM) MSCs. In direct comparison to BM-MSCs our iPSC-MSCs exhibited a similar surface marker expression profile but shorter doubling times without reaching senescence within 20 passages. Considering functional capabilities, iPSC-MSCs provided supportive feeder layer for CD34+ hematopoietic stem cells' self-renewal and colony forming capacities. Furthermore, iPSC-MSCs gained immunomodulatory function to suppress CD4+ cell proliferation, reduce proinflammatory cytokines in mixed lymphocyte reaction, and increase regulatory CD4+/CD69+/CD25+ T-lymphocyte population. In conclusion, we generated fully functional MSCs from various iPSC lines irrespective of their starting cell source or reprogramming factor composition and we suggest that such iPSC-MSCs allow repetitive cell applications for advanced therapeutic approaches. PMID:26185499

  8. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction.

    PubMed

    Moslem, Mohsen; Eberle, Irina; Weber, Iuliia; Henschler, Reinhard; Cantz, Tobias

    2015-01-01

    Mesenchymal stem/stromal cells (MSCs) represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs) that can be easily expanded as undifferentiated cells even in mass culture. Here, we investigated a differentiation protocol enabling the generation and selection of human iPSC-derived MSCs exhibiting relevant surface marker expression profiles (CD105 and CD73) and functional characteristics. We generated such iPSC-MSCs from fibroblasts and bone marrow MSCs utilizing two different reprogramming constructs. All such iPSC-MSCs exhibited the characteristics of normal bone marrow-derived (BM) MSCs. In direct comparison to BM-MSCs our iPSC-MSCs exhibited a similar surface marker expression profile but shorter doubling times without reaching senescence within 20 passages. Considering functional capabilities, iPSC-MSCs provided supportive feeder layer for CD34(+) hematopoietic stem cells' self-renewal and colony forming capacities. Furthermore, iPSC-MSCs gained immunomodulatory function to suppress CD4(+) cell proliferation, reduce proinflammatory cytokines in mixed lymphocyte reaction, and increase regulatory CD4(+)/CD69(+)/CD25(+) T-lymphocyte population. In conclusion, we generated fully functional MSCs from various iPSC lines irrespective of their starting cell source or reprogramming factor composition and we suggest that such iPSC-MSCs allow repetitive cell applications for advanced therapeutic approaches. PMID:26185499

  9. Nonclinical safety strategies for stem cell therapies

    SciTech Connect

    Sharpe, Michaela E.; Morton, Daniel; Rossi, Annamaria

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  10. Adult stem-like cells in kidney.

    PubMed

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-03-26

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  11. Designing Biomaterials To Direct Stem Cell Fate

    PubMed Central

    Cha, Chaenyung; Liechty, William B.; Khademhosseini, Ali; Peppas, Nicholas A.

    2012-01-01

    As stem cells are a cornerstone of regenerative medicine, research efforts have been extensively focused on controlling their self-renewal and differentiation. It is well known that stem cells are tightly regulated by a combination of physical and chemical factors from their complex extracellular surroundings; thus, conventional cell culture approaches based purely on using soluble factors to direct stem cell fate have resulted in limited success. To account for the complexities of native stem-cell niches, biomaterials are actively investigated as artificial extracellular matrices in order to mimic the natural microenvironment. This Perspective highlights important areas related to the design of biomaterials to control stem cell behavior, such as cell-responsive ligands, mechanical signals, and delivery of soluble factors. PMID:23136849

  12. Designing biomaterials to direct stem cell fate.

    PubMed

    Cha, Chaenyung; Liechty, William B; Khademhosseini, Ali; Peppas, Nicholas A

    2012-11-27

    As stem cells are a cornerstone of regenerative medicine, research efforts have been extensively focused on controlling their self-renewal and differentiation. It is well-known that stem cells are tightly regulated by a combination of physical and chemical factors from their complex extracellular surroundings; thus, conventional cell culture approaches based purely on using soluble factors to direct stem cell fate have resulted in limited success. To account for the complexities of native stem-cell niches, biomaterials are actively investigated as artificial extracellular matrices in order to mimic the natural microenvironment. This Perspective highlights important areas related to the design of biomaterials to control stem cell behavior, such as cell-responsive ligands, mechanical signals, and delivery of soluble factors. PMID:23136849

  13. Proteomic Analysis of Mesenchymal Stem Cells.

    PubMed

    Faça, Vitor Marcel; Orellana, Maristela Delgado; Greene, Lewis Joel; Covas, Dimas Tadeu

    2016-01-01

    Mesenchymal stem or stromal cells (MSCs) are of great interest in biomedical sciences and disease treatment because of their multipotency and wide range of applications for tissue repair and suppression of the immune system. Proteomic analysis of these unique cells has contributed to the identification of important pathways utilized by MSCs to differentiate into distinct tissues as well as important proteins responsible for their special function in vivo and in vitro. However, comparison of proteomic studies in MSCs still suffers from the heterogeneity of MSC preparations. In addition, as proteomics technology advances, several studies can be revisited in order to increase the depth of analysis and, therefore, elucidate more refined mechanisms involved in MSC functionalities. Here, we present detailed protocols to obtain MSCs, as well as protocols to perform in-depth profiling and quantification of alterations in MSC proteomes. PMID:27236693

  14. Anchoring stem cells in the niche by cell adhesion molecules

    PubMed Central

    2009-01-01

    Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells. PMID:19421010

  15. Intestinal stem cells and celiac disease

    PubMed Central

    Piscaglia, Anna Chiara

    2014-01-01

    Stem cells (SCs) are the key to tissue genesis and regeneration. Given their central role in homeostasis, dysfunctions of the SC compartment play a pivotal role in the development of cancers, degenerative disorders, chronic inflammatory pathologies and organ failure. The gastrointestinal tract is constantly exposed to harsh mechanical and chemical conditions and most of the epithelial cells are replaced every 3 to 5 d. According to the so-called Unitarian hypothesis, this renewal is driven by a common intestinal stem cell (ISC) residing within the crypt base at the origin of the crypt-to-villus hierarchical migratory pattern. Celiac disease (CD) can be defined as a chronic immune-mediated disease that is triggered and maintained by dietary proteins (gluten) in genetically predisposed individuals. Many advances have been achieved over the last years in understanding of the pathogenic interactions among genetic, immunological and environmental factors in CD, with a particular emphasis on intestinal barrier and gut microbiota. Conversely, little is known about ISC modulation and deregulation in active celiac disease and upon a gluten-free diet. Nonetheless, bone marrow-derived SC transplantation has become an option for celiac patients with complicated or refractory disease. This manuscript summarizes the “state of the art” regarding CD and ISCs, their niche and potential role in the development and treatment of the disease. PMID:24772248

  16. Intestinal stem cells and celiac disease.

    PubMed

    Piscaglia, Anna Chiara

    2014-04-26

    Stem cells (SCs) are the key to tissue genesis and regeneration. Given their central role in homeostasis, dysfunctions of the SC compartment play a pivotal role in the development of cancers, degenerative disorders, chronic inflammatory pathologies and organ failure. The gastrointestinal tract is constantly exposed to harsh mechanical and chemical conditions and most of the epithelial cells are replaced every 3 to 5 d. According to the so-called Unitarian hypothesis, this renewal is driven by a common intestinal stem cell (ISC) residing within the crypt base at the origin of the crypt-to-villus hierarchical migratory pattern. Celiac disease (CD) can be defined as a chronic immune-mediated disease that is triggered and maintained by dietary proteins (gluten) in genetically predisposed individuals. Many advances have been achieved over the last years in understanding of the pathogenic interactions among genetic, immunological and environmental factors in CD, with a particular emphasis on intestinal barrier and gut microbiota. Conversely, little is known about ISC modulation and deregulation in active celiac disease and upon a gluten-free diet. Nonetheless, bone marrow-derived SC transplantation has become an option for celiac patients with complicated or refractory disease. This manuscript summarizes the "state of the art" regarding CD and ISCs, their niche and potential role in the development and treatment of the disease. PMID:24772248

  17. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  18. Cancer stem cells: progress and challenges in lung cancer

    PubMed Central

    Templeton, Amanda K.; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called “cancer stem cells” (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs.

  19. Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells.

    PubMed

    Campbell, C R; Berman, A E; Weintraub, N L; Tang, Y L

    2016-03-01

    Injured or ischemic cardiac tissue has limited intrinsic capacity for regeneration. While stem cell transplantation is a promising approach to stimulating cardiac repair, its success in humans has thus far been limited. Harnessing the therapeutic benefits of stem cells requires a better understanding of their mechanisms of action and methods to optimize their function. Cardiac stem cells (CSC) represent a particularly effective cellular source for cardiac repair, and pre-conditioning CSC with electrical stimulation (EleS) was demonstrated to further enhance their function, although the mechanisms are unknown. Recent studies suggest that transplanted stem cells primarily exert their effects through communicating with endogenous tissues via the release of exosomes containing cardioprotective molecules such as miRNAs, which upon uptake by recipient cells may stimulate survival, proliferation, and angiogenesis. Exosomes are also effective therapeutic agents in isolation and may provide a feasible alternative to stem cell transplantation. We hypothesize that EleS enhances CSC-mediated cardiac repair through its beneficial effects on production of cardioprotective exosomes. Moreover, we hypothesize that the beneficial effects of biventricular pacing in patients with heart failure may in part result from EleS-induced preconditioning of endogenous CSC to promote cardiac repair. With future research, our hypothesis may provide applications to optimize stem cell therapy and augment current pacing protocols, which may significantly advance the treatment of patients with heart disease. PMID:26880625

  20. Mesenchymal stem cells for cardiac cell therapy.

    PubMed

    Choi, Yeong-Hoon; Kurtz, Andreas; Stamm, Christof

    2011-01-01

    Despite refinements of medical and surgical therapies, heart failure remains a fatal disease. Myocardial infarction is the most common cause of heart failure, and only palliative measures are available to relieve symptoms and prolong the patient's life span. Because mammalian cardiomyocytes irreversibly exit the cell cycle at about the time of birth, the heart has traditionally been considered to lack any regenerative capacity. This paradigm, however, is currently shifting, and the cellular composition of the myocardium is being targeted by various regeneration strategies. Adult progenitor and stem cell treatment of diseased human myocardium has been carried out for more than 10 years (Menasche et al., 2001; Stamm et al., 2003), and it has become clear that, in humans, the regenerative capacity of hematopoietic stem cells and endothelial progenitor cells, despite potent proangiogenic effects, is limited (Stamm et al., 2009). More recently, mesenchymal stem cells (MSCs) and related cell types are being evaluated in preclinical models of heart disease as well as in clinical trials (see Published Clinical Trials, below). MSCs have the capacity to self-renew and to differentiate into lineages that normally originate from the embryonic mesenchyme (connective tissues, blood vessels, blood-related organs) (Caplan, 1991; Prockop, 1997; Pittenger et al., 1999). The current definition of MSCs includes plastic adherence in cell culture, specific surface antigen expression (CD105(+)/CD90(+)/CD73(+), CD34(-)/CD45(-)/CD11b(-) or CD14(-)/CD19(-) or CD79α(-)/HLA-DR1(-)), and multilineage in vitro differentiation potential (osteogenic, chondrogenic, and adipogenic) (Dominici et al., 2006 ). If those criteria are not met completely, the term "mesenchymal stromal cells" should be used for marrow-derived adherent cells, or other terms for MSC-like cells of different origin. For the purpose of this review, MSCs and related cells are discussed in general, and cell type

  1. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    PubMed Central

    El-Badri, Nagwa; Ghoneim, Mohamed A.

    2013-01-01

    Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs) therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed. PMID:23762531

  2. Stem Cells and Regenerative Medicine in Lung Biology and Diseases

    PubMed Central

    Lau, Allison N; Goodwin, Meagan; Kim, Carla F; Weiss, Daniel J

    2012-01-01

    A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below. PMID:22395528

  3. Immunotolerant Properties of Mesenchymal Stem Cells: Updated Review

    PubMed Central

    Faiella, Whitney; Atoui, Rony

    2016-01-01

    Stem cell transplantation is a potential therapeutic option to regenerate damaged myocardium and restore function after infarct. Current research is focused on the use of allogeneic mesenchymal stem cells (MSCs) due to their unique immunomodulatory characteristics and ability to be harvested from young and healthy donors. Both animal and human studies support the immunoprivileged state of MSCs and even demonstrate improvements in cardiac function after transplantation. This research continues to be a topic of interest, as advances will ultimately enable the clinical use of these universal cells for therapy after a myocardial infarction. Updated in vitro, in vivo, and clinical trial studies are discussed in detail in the following review. PMID:26839557

  4. Enhancing spontaneous stem cell healing (Review)

    PubMed Central

    MAGUIRE, GREG; FRIEDMAN, PETER

    2014-01-01

    Adult stem cells are distributed throughout the human body and are responsible to a great extent for the body’s ability to maintain and heal itself. Accumulating data since the 1990s regarding stem cells have demonstrated that the beneficial effects of stem cells are not restricted to their ability to differentiate and are more likely due to their ability to release a multitude of molecules. Recent studies indicated that ≤80% of the therapeutic benefit of adult stem cells is manifested by the stem cell released molecules (SRM) rather than the differentiation of the stem cells into mature tissue. Stem cells may release potent combinations of factors that modulate the molecular composition of the cellular milieu to evoke a multitude of responses from neighboring cells. A multitude of pathways are involved in cellular and tissue function and, when the body is in a state of disease or trauma, a multitude of pathways are involved in the underlying mechanisms of that disease or trauma. Therefore, stem cells represent a natural systems-based biological factory for the production and release of a multitude of molecules that interact with the system of biomolecular circuits underlying disease or tissue damage. Currently, efforts are aimed at defining, stimulating, enhancing and harnessing SRM mechanisms, in order to develop systems-based methods for tissue regeneration, develop drugs/biologics or other therapeutics and enhance the release of SRM into the body for natural healing through proper dietary, exercise and other lifestyle strategies. PMID:24649089

  5. Mesenchymal stem cells: From stem cells to sarcomas.

    PubMed

    Lye, Kwan Liang; Nordin, Norshariza; Vidyadaran, Sharmili; Thilakavathy, Karuppiah

    2016-06-01

    Mesenchymal stem cells (MSCs) have garnered vast interests in clinical settings, especially in regenerative medicine due to their unique properties-they are reliably isolated and expanded from various tissue sources; they are able to differentiate into mesodermal tissues such as bones, cartilages, adipose tissues, and muscles; and they have unique immunosuppressive properties. However, there are some concerns pertaining to the role of MSCs in the human body. On one hand, they are crucial component in the regeneration and repair of the human body. On the contrary, they are shown to transform into sarcomas. Although the exact mechanisms are still unknown, many new leads have pointed to the belief that MSCs do play a role in sarcomagenesis. This review focuses on the current updates and findings of the role of MSCs in their transformation process into sarcomas. PMID:26992453

  6. Transdifferentiation of Stem Cells: A Critical View

    NASA Astrophysics Data System (ADS)

    Gruh, Ina; Martin, Ulrich

    Recently a large amount of new data on the plasticity of stem cells of various lineages have emerged, providing new perspectives especially for the therapeutic application of adult stem cells. Previously unknown possibilities of cell differentiation beyond the known commitment of a given stem cell have been described using keywords such as "blood to liver," or "bone to brain." Controversies on the likelihood, as well as the biological significance, of these conversions almost immediately arose within this young field of stem cell biology. This chapter will concentrate on these controversies and focus on selected examples demonstrating the technical aspects of stem cell transdifferentiation and the evaluation of the tools used to analyze these events.

  7. Metabolic regulation of stem cell function.

    PubMed

    Burgess, R J; Agathocleous, M; Morrison, S J

    2014-07-01

    Stem cell function is regulated by intrinsic mechanisms, such as transcriptional and epigenetic regulators, as well as extrinsic mechanisms, such as short-range signals from the niche and long-range humoral signals. Interactions between these regulatory mechanisms and cellular metabolism are just beginning to be identified. In multiple systems, differentiation is accompanied by changes in glycolysis, oxidative phosphorylation and the levels of reactive oxygen species. Indeed, metabolic pathways regulate proliferation and differentiation by regulating energy production and the generation of substrates for biosynthetic pathways. Some metabolic pathways appear to function differently in stem cells as compared with restricted progenitors and differentiated cells. They also appear to influence stem cell function by regulating signal transduction, epigenetic marks and oxidative stress. Studies to date illustrate the importance of metabolism in the regulation of stem cell function and suggest complex cross-regulation likely exists between metabolism and other stem cell regulatory mechanisms. PMID:24697828

  8. Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey

    PubMed Central

    Jones, Kyle B; Klein, Ophir D

    2013-01-01

    The identification and characterization of stem cells is a major focus of developmental biology and regenerative medicine. The advent of genetic inducible fate mapping techniques has made it possible to precisely label specific cell populations and to follow their progeny over time. When combined with advanced mathematical and statistical methods, stem cell division dynamics can be studied in new and exciting ways. Despite advances in a number of tissues, relatively little attention has been paid to stem cells in the oral epithelium. This review will focus on current knowledge about adult oral epithelial stem cells, paradigms in other epithelial stem cell systems that could facilitate new discoveries in this area and the potential roles of epithelial stem cells in oral disease. PMID:23887128

  9. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation

    PubMed Central

    Kolf, Catherine M; Cho, Elizabeth; Tuan, Rocky S

    2007-01-01

    Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells. PMID:17316462

  10. Clonogenicity: holoclones and meroclones contain stem cells.

    PubMed

    Beaver, Charlotte M; Ahmed, Aamir; Masters, John R

    2014-01-01

    When primary cultures of normal cells are cloned, three types of colony grow, called holoclones, meroclones and paraclones. These colonies are believed to be derived from stem cells, transit-amplifying cells and differentiated cells respectively. More recently, this approach has been extended to cancer cell lines. However, we observed that meroclones from the prostate cancer cell line DU145 produce holoclones, a paradoxical observation as meroclones are thought to be derived from transit-amplifying cells. The purpose of this study was to confirm this observation and determine if both holoclones and meroclones from cancer cell lines contain stem cells. We demonstrated that both holoclones and meroclones can be serially passaged indefinitely, are highly proliferative, can self-renew to form spheres, are serially tumorigenic and express stem cell markers. This study demonstrates that the major difference between holoclones and meroclones derived from a cancer cell line is the proportion of stem cells within each colony, not the presence or absence of stem cells. These findings may reflect the properties of cancer as opposed to normal cells, perhaps indicating that the hierarchy of stem cells is more extensive in cancer. PMID:24587067

  11. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  12. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches

    PubMed Central

    Akram, Khondoker M.; Patel, Neil; Spiteri, Monica A.; Forsyth, Nicholas R.

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  13. Pathological modifications of plant stem cell destiny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  14. Stem Cell Research and Health Education

    ERIC Educational Resources Information Center

    Eve, David J.; Marty, Phillip J.; McDermott, Robert J.; Klasko, Stephen K.; Sanberg, Paul R.

    2008-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the…

  15. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  16. Representations of stem cell clinics on Twitter.

    PubMed

    Kamenova, Kalina; Reshef, Amir; Caulfield, Timothy

    2014-12-01

    The practice of travelling abroad to receive unproven and unregulated stem cell treatments has become an increasingly problematic global phenomenon known as 'stem cell tourism'. In this paper, we examine representations of nine major clinics and providers of such treatments on the microblogging network Twitter. We collected and conducted a content analysis of Twitter posts (n = 363) by these establishments and by other users mentioning them, focusing specifically on marketing claims about treatment procedures and outcomes, discussions of safety and efficacy of stem cell transplants, and specific representations of patients' experiences. Our analysis has shown that there were explicit claims or suggestions of benefits associated with unproven stem cell treatments in approximately one third of the tweets and that patients' experiences, whenever referenced, were presented as invariably positive and as testimonials about the efficacy of stem cell transplants. Furthermore, the results indicated that the tone of most tweets (60.2 %) was overwhelmingly positive and there were rarely critical discussions about significant health risks associated with unproven stem cell therapies. When placed in the context of past research on the problems associated with the marketing of unproven stem cell therapies, this analysis of representations on Twitter suggests that discussions in social media have also remained largely uncritical of the stem cell tourism phenomenon, with inaccurate representations of risks and benefits for patients. PMID:24970380

  17. Stem Cell Fate Is a Touchy Subject.

    PubMed

    Smith, Quinton; Gerecht, Sharon

    2016-09-01

    Uncoupling synergistic interactions between physio-chemical cues that guide stem cell fate may improve efforts to direct their differentiation in culture. Using supramolecular hydrogels, Alakpa et al. (2016) demonstrate that mesenchymal stem cell differentiation is paired to depletion of bioactive metabolites, which can be utilized to chemically induce osteoblast and chondrocyte fate. PMID:27588745

  18. Organ or Stem Cell Transplant and Your Mouth

    MedlinePlus

    ... Stem Cell Transplant and Your Mouth Organ or Stem Cell Transplant and Your Mouth Main Content Key Points​ ... Your Dentist Before Transplant Before an organ or stem cell transplant, have a dental checkup. Your mouth should ...

  19. Stem Cell Research: Unlocking the Mystery of Disease

    MedlinePlus

    ... Home Current Issue Past Issues From the Director: Stem Cell Research: Unlocking the Mystery of Disease Past ... Zerhouni, NIH Director, described the need for expanding stem cell research. Recently, he spoke about stem cell ...

  20. Clinical trials for stem cell transplantation: when are they needed?

    PubMed

    Van Pham, Phuc

    2016-01-01

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies. PMID:27121227

  1. Overcoming Multidrug Resistance in Cancer Stem Cells

    PubMed Central

    Moitra, Karobi

    2015-01-01

    The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed. PMID:26649310

  2. The New York Stem Cell Foundation. Interview with Susan Solomon.

    PubMed

    Solomon, Susan

    2012-11-01

    We caught up with Susan Solomon, Co-Founder of The New York Stem Cell Foundation, to discuss the role of the Foundation in facilitating some of the top advances in stem cell science in recent years. Susan L Solomon is Chief Executive Officer and Co-Founder of The New York Stem Cell Foundation (NYSCF), a nonprofit organization established in 2005 to accelerate cures through stem cell research. A longtime healthcare advocate, Susan is a founding member and current President of New Yorkers for the Advancement of Medical Research, is on the Executive Committee for the Alliance for Regenerative Medicine, and she has been a member of the Board of Directors of the Juvenile Diabetes Research Foundation, New York Chapter. Susan was also a member of the Strategic Planning Committee of the Empire State Stem Cell Board. In March 2008, Susan received a New York State Women of Excellence Award from the Governor of New York. In September 2008, she received the Triumph Award from the Brooke Ellison Foundation for her work in establishing NYSCF. Prior to founding NYSCF, Susan, an attorney, spent much of her career building businesses. She established and ran Solomon Partners LLC to provide strategic management consulting to corporations, cultural institutions, foundations and nonprofit organizations. She has also held executive positions at MacAndrews and Forbes Holdings and MMG Patricof and Co. She was the founding Chief Executive Officer of Sothebys.com and was President of Sony Worldwide Networks. PMID:23210823

  3. Artificial gametes from stem cells

    PubMed Central

    Moreno, Inmaculada; Míguez-Forjan, Jose Manuel

    2015-01-01

    The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn. PMID:26161331

  4. The biology of cancer stem cells.

    PubMed

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies. PMID:17645413

  5. Are stem cells a cure for diabetes?

    PubMed

    McCall, Michael D; Toso, Christian; Baetge, Emmanuel E; Shapiro, A M James

    2010-01-01

    With the already heightened demand placed on organ donation, stem cell therapy has become a tantalizing idea to provide glucose-responsive insulin-producing cells to Type 1 diabetic patients as an alternative to islet transplantation. Multiple groups have developed varied approaches to create a population of cells with the appropriate characteristics. Both adult and embryonic stem cells have received an enormous amount of attention as possible sources of insulin-producing cells. Although adult stem cells lack the pluripotent nature of their embryonic counterparts, they appear to avoid the ethical debate that has centred around the latter. This may limit the eventual application of embryonic stem cells, which have already shown promise in early mouse models. One must also consider the potential of stem cells to form teratomas, a complication which would prove devastating in an immunologically compromised transplant recipient. The present review looks at the progress to date in both the adult and embryonic stem cells fields as potential treatments for diabetes. We also consider some of the limitations of stem cell therapy and the potential complications that may develop with their use. PMID:19807695

  6. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy.

    PubMed

    Ding, Dah-Ching; Chang, Yu-Hsun; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2015-01-01

    The human umbilical cord is a promising source of mesenchymal stem cells (HUCMSCs). Unlike bone marrow stem cells, HUCMSCs have a painless collection procedure and faster self-renewal properties. Different derivation protocols may provide different amounts and populations of stem cells. Stem cell populations have also been reported in other compartments of the umbilical cord, such as the cord lining, perivascular tissue, and Wharton's jelly. HUCMSCs are noncontroversial sources compared to embryonic stem cells. They can differentiate into the three germ layers that promote tissue repair and modulate immune responses and anticancer properties. Thus, they are attractive autologous or allogenic agents for the treatment of malignant and nonmalignant solid and soft cancers. HUCMCs also can be the feeder layer for embryonic stem cells or other pluripotent stem cells. Regarding their therapeutic value, storage banking system and protocols should be established immediately. This review critically evaluates their therapeutic value, challenges, and future directions for their clinical applications. PMID:25622293

  7. Alternative sources of pluripotency: science, ethics, and stem cells.

    PubMed

    Kastenberg, Zachary J; Odorico, Jon S

    2008-07-01

    Despite many advances in human embryonic stem cell (hESC) technology the ethical dilemma involving the destruction of a human embryo is one factor that has limited the development of hESC based clinical therapies. Two recent reports describing the production of pluripotent stem cells following the in vitro reprogramming of human somatic cells with certain defined factors illustrate one potential method of bypassing the ethical debate surrounding hESCs (Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec;318(5858):1917-1920; Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov;131(5): 861-872.). Other alternative methods include nuclear transfer, altered nuclear transfer, and parthenogenesis; each with its own set of advantages and disadvantages. This review discusses recent advances in these technologies with specific focus on the issues of embryo destruction, oocyte recovery, and the potential of each technology to produce large scale, patient specific cell transplantation therapies that would require little or no immunosuppression. PMID:18631882

  8. Breast cancer stem cells and radiation

    NASA Astrophysics Data System (ADS)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  9. Age-associated changes in the ecological niche: implications for mesenchymal stem cell aging

    PubMed Central

    2013-01-01

    Adult stem cells are critical for organ-specific regeneration and self-renewal with advancing age. The prospect of being able to reverse tissue-specific post-injury sequelae by harvesting, culturing and transplanting a patient’s own stem and progenitor cells is exciting. Mesenchymal stem cells have emerged as a reliable stem cell source for this treatment modality and are currently being tested in numerous ongoing clinical trials. Unfortunately, the fervor over mesenchymal stem cells is mitigated by several lines of evidence suggesting that their efficacy is limited by natural aging. This article discusses the mechanisms and manifestations of age-associated deficiencies in mesenchymal stem cell efficacy. A consideration of recent experimental findings suggests that the ecological niche might be responsible for mesenchymal stem cell aging. PMID:23673056

  10. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment.

    PubMed

    Das, Rajat K; Zouani, Omar F

    2014-07-01

    Physicochemical features of a cell nanoenvironment exert important influence on stem cell behavior and include the influence of matrix elasticity and topography on differentiation processes. The presence of growth factors such as TGF-β and BMPs on these matrices provides chemical cues and thus plays vital role in directing eventual stem cell fate. Engineering of functional biomimetic scaffolds that present programmed spatio-temporal physical and chemical signals to stem cells holds great promise in stem cell therapy. Progress in this field requires tacit understanding of the mechanistic aspects of cell-environment nanointeractions, so that they can be manipulated and exploited for the design of sophisticated next generation biomaterials. In this review, we report and discuss the evolution of these processes and pathways in the context of matrix adhesion as they might relate to stemness and stem cell differentiation. Super-resolution microscopy and single-molecule methods for in vitro nano-manipulation are helping to identify and characterize the molecules and mechanics of structural transitions within stem cells and matrices. All these advances facilitate research toward understanding of stem cell niche and consequently to developing new class of biomaterials helping the "used biomaterials" for applications in tissue engineering and regenerative medicine. PMID:24720880

  11. Resident cardiac stem cells and their role in stem cell therapies for myocardial repair.

    PubMed

    Mayfield, Audrey E; Tilokee, Everad L; Davis, Darryl R

    2014-11-01

    Despite advances in treatment, heart failure remains one of the top killers in Canada. This recognition motivated a new research focus to harness the fundamental repair properties of the human heart. Since then, cardiac stem cells (CSCs) have emerged as a promising cell candidate to regenerate damaged hearts. The rationale of this approach is simple with ex vivo amplification of CSCs from clinical-grade biopsies, followed by delivery to areas of injury, where they engraft and regenerate the heart. In this review we will summarize recent advances and discuss future developments in CSC-mediated cardiac repair to treat the growing number of Canadians living with and dying from heart failure. PMID:25092406

  12. Stem Cells in Skin Wound Healing: Are We There Yet?

    PubMed Central

    Cerqueira, Mariana Teixeira; Pirraco, Rogério Pedro; Marques, Alexandra Pinto

    2016-01-01

    Significance: Cutaneous wound healing is a serious problem worldwide that affects patients with various wound types, resulting from burns, traumatic injuries, and diabetes. Despite the wide range of clinically available skin substitutes and the different therapeutic alternatives, delayed healing and scarring are often observed. Recent Advances: Stem cells have arisen as powerful tools to improve skin wound healing, due to features such as effective secretome, self-renewal, low immunogenicity, and differentiation capacity. They represent potentially readily available biological material that can particularly target distinct wound-healing phases. In this context, mesenchymal stem cells have been shown to promote cell migration, angiogenesis, and a possible regenerative rather than fibrotic microenvironment at the wound site, mainly through paracrine signaling with the surrounding cells/tissues. Critical Issues: Despite the current insights, there are still major hurdles to be overcome to achieve effective therapeutic effects. Limited engraftment and survival at the wound site are still major concerns, and alternative approaches to maximize stem cell potential are a major demand. Future Directions: This review emphasizes two main strategies that have been explored in this context. These comprise the exploration of hypoxic conditions to modulate stem cell secretome, and the use of adipose tissue stromal vascular fraction as a source of multiple cells, including stem cells and factors requiring minimal manipulation. Nonetheless, the attainment of these approaches to target successfully skin regeneration will be only evident after a significant number of in vivo works in relevant pre-clinical models. PMID:27076994

  13. Sequential Differentiation of Embryonic Stem Cells into Neural Epithelial-Like Stem Cells and Oligodendrocyte Progenitor Cells

    PubMed Central

    Bian, Jing; Zheng, Jiao; Li, Shen; Luo, Lan; Ding, Fei

    2016-01-01

    Background Recent advances in stem cell technology afford an unlimited source of neural progenitors and glial cells for cell based therapy in central nervous system (CNS) disorders. However, current differentiation strategies still need to be improved due to time-consuming processes, poorly defined culture conditions, and low yield of target cell populations. Methodology/Principle Findings This study aimed to provide a precise sequential differentiation to capture two transient stages: neural epithelia-like stem cells (NESCs) and oligodendrocytes progenitor cells (OPCs) derived from mouse embryonic stem cells (ESCs). CHIR99021, a glycogen synthase kinase 3 (GSK-3) inhibitor, in combination with dual SMAD inhibitors, could induce ESCs to rapidly differentiate into neural rosette-like colonies, which facilitated robust generation of NESCs that had a high self-renewal capability and stable neuronal and glial differentiation potentials. Furthermore, SHH combined with FGF-2 and PDGF-AA could induce NESCs to differentiate into highly expandable OPCs. These OPCs not only robustly differentiated into oligodendrocytes, but also displayed an increased migratory activity in vitro. Conclusions/Significance We developed a precise and reliable strategy for sequential differentiation to capture NESCs and OPCs derived from ESCs, thus providing unlimited cell source for cell transplantation and drug screening towards CNS repair. PMID:27192219

  14. Preconditioning Strategy in Stem Cell Transplantation Therapy

    PubMed Central

    Yu, Shan Ping; Wei, Zheng; Wei, Ling

    2013-01-01

    Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of the cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sub-lethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy. PMID:23914259

  15. Stem cells: therapeutic present and future.

    PubMed

    Khurdayan, Valeria K

    2007-03-01

    Ever since the first embryonic stem cells were isolated in the 1990s scientists and clinicians as well as the general public have followed the development of the field with great attention. As unspecialized cells capable of dividing, renewing and differentiating into specialized cells, stem cells hold great promise as a therapeutic strategy for many diseases, especially those of degenerative nature. In 2006, stem cells were actively investigated in preclinical and clinical settings to manage heart failure, amyotrophic lateral sclerosis, spinal cord injury, stroke, hematologic disorders, renal cell carcinoma, solid tumor cancer, Crohn's disease and cirrhosis, among other disorders. Likewise, biotech and pharmaceutical industry highlighted stem cells and associated products and technologies as useful tools for drug discovery that provide relevant clinical models and ensure efficacious transition of investigational compounds into preclinical testing. PMID:17440635

  16. Differentiation of hepatocytes from pluripotent stem cells

    PubMed Central

    Mallanna, Sunil K.

    2014-01-01

    Differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells into hepatocyte-like cells provides a platform to study the molecular basis of human hepatocyte differentiation, to develop cell culture models of liver disease, and to potentially provide hepatocytes for treatment of end-stage liver disease. Additionally, hepatocyte-like cells generated from human pluripotent stem cells could serve as platforms for drug discovery, determination of pharmaceutical induced hepatotoxicity, and evaluation of idiosyncratic drug-drug interactions. Here, we describe a step-wise protocol previously developed in our laboratory that facilitates the highly efficient and reproducible differentiation of human pluripotent stem cells into hepatocyte-like cells. Our protocol uses defined culture conditions and closely recapitulates key developmental events that are found to occur during hepatogenesis. PMID:24510789

  17. Tissue-Derived Stem and Progenitor Cells

    PubMed Central

    Tesche, Leora J.; Gerber, David A.

    2010-01-01

    The characterization and isolation of various stem cell populations, from embryonic through tissue-derived stem cells, have led a rapid growth in the field of stem cell research. These research efforts have often been interrelated as to the markers that identify a select cell population are frequently analyzed to determine their expression in cells of distinct organs/tissues. In this review, we will expand the current state of research involving select tissue-derived stem cell populations including the liver, central nervous system, and cardiac tissues as examples of the success and challenges in this field of research. Lastly, the challenges of clinical therapies will be discussed as it applies to these unique cell populations. PMID:21048854

  18. Odontogenic epithelial stem cells: hidden sources.

    PubMed

    Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh

    2015-12-01

    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed. PMID:26367485

  19. Signaling in colon cancer stem cells.

    PubMed

    Roy, Sanchita; Majumdar, Adhip Pn

    2012-01-01

    : Colorectal cancer is the fourth most common form of cancer worldwide and ranks third among the cancer-related deaths in the US and other Western countries. It occurs with equal frequency in men and women, constituting 10% of new cancer cases in men and 11% in women. Despite recent advancement in therapeutics, the survival rates from metastatic are less than 5%. Growing evidence supports the contention that epithelial cancers including colorectal cancer, the incidence of which increases with aging, are diseases driven by the pluripotent, self-renewing cancer stem cells (CSCs). Dysregulation of Wnt, Notch, Hedgehog and/or TGF-β signaling pathways that are involved in proliferation and maintenance of CSCs leads to the development of CRC. This review focuses on the signaling pathways relevant for CRC to understand the mechanisms leading to tumor progression and therapy resistance, which may help in the development of therapeutic strategies for CRC. PMID:22866952

  20. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  1. Speculation on the evolution of stem cells.

    PubMed

    Shostak, Stanley

    2008-01-01

    Profoundly different patterns of potency and division are exhibited by mammalian embryonic and adult stem cells. Additional confusion surrounds stem-cell surrogates, cache and reserve cells having some characteristics of stem cells and not others. Mystification may have been introduced historically with the concepts of determinate and regulative development, but, hopefully, the muddle can be resolved by tracing the evolution of stem cells in Metazoa. Blastomeres in marine sponges, cnidarians, lophotrochozoans, small ecdysozoans (e.g., Caenorhabditis elegans), and some deuterostomes (e.g., echinoderms and ascidians) exhibit determinative development. Their larval and adult cells have narrow potencies, sometimes coupled to virtually unlimited proliferation, and function in the growth, maintenance and regulation of body size. The embryos of larger arthropods and deuterostomes with well-provisioned eggs or viviparity, on the other hand, exhibit regulative development, while their larval "set-aside" or adult stem cells function in the growth, maintenance, and regulation of organ size coupled to constrained proliferation and cell turnover. Mammalian embryonic stem cells would seem adapted to rapid proliferation, functioning in part to enclose yolk or to acquire access to maternal resources. The cellular products of embryonic stem cells routinely come under global influences and give rise to the cells of germ layers and organ rudiments. Mammalian adult stem cells resemble the blastomeres of planktonic and benthic organisms with small eggs and may have evolved in mature organisms as an adaptation to the growth and maintenance of tissues via proliferation and the regulation of organ size via cell loss (e.g., terminal differentiation). Cancer stem cells, instrumental in metastasis, would seem to ignore mechanisms normally functioning in the removal of excess cells. Strategies for regenerative therapies in adult mammals, therefore, might be based on stimulating growth of

  2. Current understanding concerning intestinal stem cells.

    PubMed

    Cui, Shuang; Chang, Peng-Yu

    2016-08-21

    In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same. PMID:27610020

  3. Uterine stem cells: what is the evidence?

    PubMed

    Gargett, C E

    2007-01-01

    The mucosal lining (endometrium) of the human uterus undergoes cyclical processes of regeneration, differentiation and shedding as part of the menstrual cycle. Endometrial regeneration also follows parturition, almost complete resection and in post-menopausal women taking estrogen replacement therapy. In non-menstruating species, there are cycles of endometrial growth and apoptosis rather than physical shedding. The concept that endometrial stem/progenitor cells are responsible for the remarkable regenerative capacity of endometrium was proposed many years ago. However, attempts to isolate, characterize and locate endometrial stem cells have only been undertaken in the last few years as experimental approaches to identify adult stem/progenitor cells in other tissues have been developed. Adult stem cells are defined by their functional properties rather than by marker expression. Evidence for the existence of adult stem/progenitor cells in human and mouse endometrium is now emerging because functional stem cell assays are being applied to uterine cells and tissues. These fundamental studies on endometrial stem/progenitor cells will provide new insights into the pathophysiology of various gynaecological disorders associated with abnormal endometrial proliferation, including endometrial cancer, endometrial hyperplasia, endometriosis and adenomyosis. PMID:16960017

  4. Stem cell applications in military medicine

    PubMed Central

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers - and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  5. Current understanding concerning intestinal stem cells

    PubMed Central

    Cui, Shuang; Chang, Peng-Yu

    2016-01-01

    In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same. PMID:27610020

  6. Union is strength: matrix elasticity and microenvironmental factors codetermine stem cell differentiation fate.

    PubMed

    Lv, Hongwei; Li, Lisha; Zhang, Yin; Chen, Zhishen; Sun, Meiyu; Xu, Tiankai; Tian, Licheng; Lu, Man; Ren, Min; Liu, Yuanyuan; Li, Yulin

    2015-09-01

    Stem cells are an attractive cellular source for regenerative medicine and tissue engineering applications due to their multipotency. Although the elasticity of the extracellular matrix (ECM) has been shown to have crucial impacts in directing stem cell differentiation, it is not the only contributing factor. Many researchers have recently attempted to design microenvironments that mimic the stem cell niche with combinations of ECM elasticity and other cues, such as ECM physical properties, soluble biochemical factors and cell-cell interactions, thereby driving cells towards their preferred lineages. Here, we briefly discuss the effect of matrix elasticity on stem cell lineage specification and then summarize recent advances in the study of the combined effects of ECM elasticity and other cues on the differentiation of stem cells, focusing on two aspects: biophysical and biochemical factors. In the future, biomedical scientists will continue investigating the union strength of matrix elasticity and microenvironmental cues for manipulating stem cell fates. PMID:25956590

  7. Stem cells of the beetle midgut epithelium.

    PubMed

    Nardi, James B; Bee, Charles Mark; Miller, Lou Ann

    2010-03-01

    At the completion of metamorphosis, adult insect cells have traditionally been assumed to halt cell divisions and terminally differentiate. While this model of differentiation holds for adult ectodermal epithelia that secrete cuticular specializations of exoskeletons, adult endodermal epithelia are populated by discrete three-dimensional aggregates of stem cells that continue to divide and differentiate after adult emergence. Aggregates of these presumptive adult stem cells are scattered throughout larval and pupal midgut monolayers. At the beginning of adult development (pupal-adult apolysis), the number of cells within each aggregate begins to increase rapidly. Dividing cells form three-dimensional, coherent populations that project as regenerative pouches of stem cells into the hemocoel surrounding the midgut. Stem cell pouches are regularly spaced throughout endodermal monolayers, having adopted a spacing pattern suggesting that each incipient pouch inhibits the formation of a similar pouch within a certain radius of itself-a process referred to as lateral inhibition. At completion of adult development (pupal-adult ecdysis), a distinct basal-luminal polarity has been established within each regenerative pouch. Dividing stem cells occupying the basal region are arranged in three-dimensional aggregates. As these are displaced toward the lumen, they transform into two-dimensional monolayers of differentiated epithelial cells whose apical surfaces are covered by microvilli. This organization of stem cell pouches in insect midguts closely parallels that of regenerative crypts in mammalian intestines. PMID:19909756

  8. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis.

    PubMed

    Voog, Justin; D'Alterio, Cecilia; Jones, D Leanne

    2008-08-28

    Adult stem cells reside in specialized microenvironments, or niches, that have an important role in regulating stem cell behaviour. Therefore, tight control of niche number, size and function is necessary to ensure the proper balance between stem cells and progenitor cells available for tissue homeostasis and wound repair. The stem cell niche in the Drosophila male gonad is located at the tip of the testis where germline and somatic stem cells surround the apical hub, a cluster of approximately 10-15 somatic cells that is required for stem cell self-renewal and maintenance. Here we show that somatic stem cells in the Drosophila testis contribute to both the apical hub and the somatic cyst cell lineage. The Drosophila orthologue of epithelial cadherin (DE-cadherin) is required for somatic stem cell maintenance and, consequently, the apical hub. Furthermore, our data indicate that the transcriptional repressor escargot regulates the ability of somatic cells to assume and/or maintain hub cell identity. These data highlight the dynamic relationship between stem cells and the niche and provide insight into genetic programmes that regulate niche size and function to support normal tissue homeostasis and organ regeneration throughout life. PMID:18641633

  9. Mesenchymal stem cell tracking in the intervertebral disc

    PubMed Central

    Handley, Charles; Goldschlager, Tony; Oehme, David; Ghosh, Peter; Jenkin, Graham

    2015-01-01

    Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc (IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure. Conservative management, including analgesia and physiotherapy often fails and surgical treatment, such as spinal fusion, is required. Stem cells offer an exciting possible regenerative approach to IVD disease. Preclinical research has demonstrated promising biochemical, histological and radiological results in restoring degenerate IVDs. Cell tracking provides an opportunity to develop an in-depth understanding of stem cell survival, differentiation and migration, enabling optimization of stem cell treatment. Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing imaging modality with high spatial resolution, ideally suited for stem cell tracking. Furthermore, novel MRI sequences have the potential to quantitatively assess IVD disease, providing an improved method to review response to biological treatment. Superparamagnetic iron oxide nanoparticles have been extensively researched for the purpose of cell tracking. These particles are biocompatible, non-toxic and act as excellent MRI contrast agents. This review will explore recent advances and issues in stem cell tracking and molecular imaging in relation to the IVD. PMID:25621106

  10. Epigenetic regulation in adult stem cells and cancers

    PubMed Central

    2013-01-01

    Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells. PMID:24172544

  11. Stem cells as promising therapeutic options for neurological disorders.

    PubMed

    Yoo, Jongman; Kim, Han-Soo; Hwang, Dong-Youn

    2013-04-01

    Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell-mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed. PMID:23097262

  12. Advanced STEM Characterization of Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Dey, Sanchita

    Nanoscale materials are the key structures in determining the properties of many technologically-important materials. Two such important nanoscale materials for different technological applications are investigated in this dissertation. They are: Fischer-Tropsch (FT) catalysts and irradiated metallic bi-layers. Catalytic activity depends on the structural parameters such as size, shape, and distribution on support. On the other hand, the radiation resistance of the model metallic multi-layers is influenced by the presence of interphase, phase-boundaries, and grain-boundaries. The focus of this dissertation is to use different TEM and STEM techniques to understand the structure of these materials. This dissertation begins with a review of the microscopy techniques used in the experiments. Then, in the next two chapters, literature review followed by results and discussions on the two above-mentioned nano materials are presented. Future research directions are included in the concluding chapter. To obtain three-dimensional morphological information of the FT catalysts during reduced/active state, STEM tomography is used. The oxidized state and reduced state is clarified by using STEM-EELS (in the form of spectrum imaging). We used a special vacuum transfer tomography holder and ex-situ gas assembly for reduction, and the reduction parameters are optimized for complete reduction. It was observed that the particle was reduced with 99.99% H2, and at 400°C for 15 minutes. The tomographic results in before-reduction condition depict that the Co-oxide particles are distributed randomly inside the alumina support. After reduction, the tomogram reveals that metallic Co nucleated and sintered towards the surface of the alumina support. The overall metallic Co distribution shows an outward segregation by subsurface diffusion mechanism. In the study of metallic bi-layer, He-irradiated gold twist grain boundary (AuTGB) was chosen as it is one of the least-studied systems in the

  13. Stem Cell Therapy for Pediatric Dilated Cardiomyopathy

    PubMed Central

    Selem, Sarah M.; Kaushal, Sunjay; Hare, Joshua M.

    2014-01-01

    Dilated cardiomyopathy is a serious and life-threatening disorder in children. It is the most common form of pediatric cardiomyopathy. Therapy for this condition has varied little over the last several decades and mortality continues to be high. Currently, children with dilated cardiomyopathy are treated with pharmacological agents and mechanical support, but most require heart transplantation and survival rates are not optimal. The lack of common treatment guidelines and inadequate survival rates after transplantation necessitates more therapeutic clinical trials. Stem cell and cell-based therapies offer an innovative approach to restore cardiac structure and function towards normal, possibly reducing the need for aggressive therapies and cardiac transplantation. Mesenchymal stem cells and cardiac stem cells may be the most promising cell types for treating children with dilated cardiomyopathy. The medical community must begin a systematic investigation of the benefits of current and novel treatments such as stem cell therapies for treating pediatric dilated cardiomyopathy. PMID:23666883

  14. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  15. Adult Stem Cells and Diseases of Aging.

    PubMed

    Boyette, Lisa B; Tuan, Rocky S

    2014-01-21

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526