Science.gov

Sample records for advection diffusion equation

  1. Lattice Boltzmann method for the fractional advection-diffusion equation.

    PubMed

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  2. Lattice Boltzmann method for the fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  3. Lattice Boltzmann method for the fractional advection-diffusion equation.

    PubMed

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering. PMID:27176431

  4. An operator splitting algorithm for the three-dimensional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Khan, Liaqat Ali; Liu, Philip L.-F.

    1998-09-01

    Operator splitting algorithms are frequently used for solving the advection-diffusion equation, especially to deal with advection dominated transport problems. In this paper an operator splitting algorithm for the three-dimensional advection-diffusion equation is presented. The algorithm represents a second-order-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The governing equation is split into an advection equation and a diffusion equation, and they are solved by a backward method of characteristics and a finite element method, respectively. The Hermite interpolation function is used for interpolation of concentration in the advection step. The spatial gradients of concentration in the Hermite interpolation are obtained by solving equations for concentration gradients in the advection step. To make the composite algorithm efficient, only three equations for first-order concentration derivatives are solved in the diffusion step of computation. The higher-order spatial concentration gradients, necessary to advance the solution in a computational cycle, are obtained by numerical differentiations based on the available information. The simulation characteristics and accuracy of the proposed algorithm are demonstrated by several advection dominated transport problems.

  5. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  6. Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a formal exact solution of the linear advection-diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection-diffusion equation into an exclusively diffusive equation. ...

  7. Numerical studies of three-dimensional stochastic Darcy's equation and stochastic advection-diffusion-dispersion equation

    SciTech Connect

    Lin, Guang; Tartakovsky, Alexandre M.

    2010-04-01

    In this study, we solve the three-dimensional stochastic Darcy's equation and stochastic advection-diffusion-dispersion equation using a probabilistic collocation method (PCM) on sparse grids. Karhunen-Lo\\`{e}ve (KL) decomposition is employed to represent the three-dimensional log hydraulic conductivity $Y=\\ln K_s$. The numerical examples which demonstrate the convergence of PCM are presented. It appears that the faster convergence rate in the variance can be obtained by using the Jacobi-chaos representing the truncated Gaussian distributions than using the Hermite-chaos for the Gaussian distribution. The effect of dispersion coefficient on the mean and standard deviation of the hydraulic head and solute concentration is investigated. Additionally, we also study how the statistical properties of the hydraulic head and solute concentration vary while using different types of random distributions and different standard deviations of random hydraulic conductivity.

  8. Generalized Fourier Analyses of Semi-Discretizations of the Advection-Diffusion Equation

    SciTech Connect

    CHRISTON, MARK A.; VOTH, THOMAS E.; MARTINEZ, MARIO J.

    2002-11-01

    This report presents a detailed multi-methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. The errors are reported in terms of non-dimensional phase and group speeds, discrete diffusivity, artificial diffusivity, and grid-induced anisotropy. It is demonstrated that Fourier analysis (aka von Neumann analysis) provides an automatic process for separating the spectral behavior of the discrete advective operator into its symmetric dissipative and skew-symmetric advective components. Further it is demonstrated that streamline upwind Petrov-Galerkin and its control-volume finite element analogue, streamline upwind control-volume, produce both an artificial diffusivity and an artificial phase speed in addition to the usual semi-discrete artifacts observed in the discrete phase speed, group speed and diffusivity. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super-convergent behavior in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second-order behavior. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework.

  9. Quantification of numerical diffusivity due to TVD schemes in the advection equation

    NASA Astrophysics Data System (ADS)

    Bidadi, Shreyas; Rani, Sarma L.

    2014-03-01

    In this study, the numerical diffusivity νnum inherent to the Roe-MUSCL scheme has been quantified for the scalar advection equation. The Roe-MUSCL scheme employed is a combination of: (1) the standard extension of the original Roe's formulation to the advection equation, and (2) van Leer's Monotone Upwind Scheme for Conservation Laws (MUSCL) technique that applies a linear variable reconstruction in a cell along with a scaled limiter function. An explicit expression is derived for the numerical diffusivity in terms of the limiter function, the distance between the cell centers on either side of a face, and the face-normal velocity. The numerical diffusivity formulation shows that a scaled limiter function is more appropriate for MUSCL in order to consistently recover the central-differenced flux at the maximum value of the limiter. The significance of the scaling factor is revealed when the Roe-MUSCL scheme, originally developed for 1-D scenarios, is applied to 2-D scalar advection problems. It is seen that without the scaling factor, the MUSCL scheme may not necessarily be monotonic in multi-dimensional scenarios. Numerical diffusivities of the minmod, superbee, van Leer and Barth-Jesperson TVD limiters were quantified for four problems: 1-D advection of a step function profile, and 2-D advection of step, sinusoidal, and double-step profiles. For all the cases, it is shown that the superbee scheme provides the lowest numerical diffusivity that is also most confined to the vicinity of the discontinuity. The minmod scheme is the most diffusive, as well as active in regions away from high gradients. As expected, the grid resolution study demonstrates that the magnitude and the spatial extent of the numerical diffusivity decrease with increasing resolution.

  10. Comparison of Nonlinear and Linear Stabilization Schemes for Advection-Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Grove, R. R.; Heister, T.

    2015-12-01

    Accurately solving advection-diffusion equations that appear in the finite element discretization of a mantle convection simulation is an important computational issue to the computational geoscience community. This is because it allows for users studying mantle convection to create reliable simulations for something as small and simple as a 2D simulation on their personal laptop to something as complex as a massively parallel 3D simulation on their university supercomputer. Standard finite element discretizations of advection-diffusion equations introduce unphysical oscillations around steep gradients. Therefore, stabilization must be added to the discrete formulation to obtain correct solutions. Using the open source scientific library ASPECT, the SUPG and Entropy Viscosity schemes are compared using stationary and non-stationary test equations. Differences in maximum overshoot and undershoot, smear, and convergence orders are compared to see if improvements can be made to the existing numerical method existing in ASPECT.

  11. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations

    PubMed Central

    Sánchez-Garduño, Faustino

    2016-01-01

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1)  h′(u) is constant k, (2)  h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE.

  12. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations

    PubMed Central

    Sánchez-Garduño, Faustino

    2016-01-01

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1)  h′(u) is constant k, (2)  h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE. PMID:27689131

  13. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport

    NASA Astrophysics Data System (ADS)

    Ancey, C.; Bohorquez, P.; Heyman, J.

    2015-12-01

    The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due

  14. Preconditioned iterative methods for space-time fractional advection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.

    2016-08-01

    In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.

  15. Milstein Approximation for Advection-Diffusion Equations Driven by Multiplicative Noncontinuous Martingale Noises

    SciTech Connect

    Barth, Andrea Lang, Annika

    2012-12-15

    In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, cadlag, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L{sup 2} and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler-Maruyama approximation. Finally, simulations complete the paper.

  16. Application of a Particle Method to the Advection-Diffusion-Reaction Equation

    NASA Astrophysics Data System (ADS)

    Paster, A.; Bolster, D.; Benson, D. A.

    2012-12-01

    A reaction between two chemical species can only happen if molecules collide and react. Thus, the mixing of a system can become a limiting factor in the onset of reaction. Solving for reaction rate in a well-mixed system is typically a straightforward task. However, when incomplete mixing kicks in, obtaining a solution becomes more challenging. Since reaction can only happen in regions where both reactants co-exist, the incomplete mixing may slow down the reaction rate, when compared to a well-mixed system. The effect of incomplete mixing upon reaction is a highly important aspect of various processes in natural and engineered systems, ranging from mineral precipitation in geological formations to groundwater remediation in aquifers. We study a relatively simple system with a bi-molecular irreversible kinetic reaction A+B → Ø where the underlying transport of reactants is governed by an advection-diffusion equation, and the initial concentrations are given in terms of an average and a perturbation. Such a system does not have an analytical solution to date, even for the zero advection case. We model the system by a Monte Carlo particle tracking method, where particles represent some reactant mass. In this method, diffusion is modeled by a random walk of the particles, and reaction is modeled by annihilation of particles. The probability of the annihilation is proportional to the reaction rate constant and the probability density associated with particle co-location. We study the numerical method in depth, characterizing typical numerical errors and time step restrictions. In particular, we show that the numerical method converges to the advection-diffusion-reaction equation at the limit Δt →0. We also rigorously derive the relationship between the initial number of particles in the system and the initial concentrations perturbations represented by that number. We then use the particle simulations of zero-advection system to demonstrate the well

  17. Analytical Solutions of a Fractional Diffusion-advection Equation for Solar Cosmic-Ray Transport

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  18. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    SciTech Connect

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  19. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    SciTech Connect

    Kordilla, Jannes; Pan, Wenxiao Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called “giant fluctuations” of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power −4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  20. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-01

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  1. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.

    PubMed

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  2. Smoothed particle hydrodynamics model for Landau-Lifshitz Navier-Stokes and advection-diffusion equations

    SciTech Connect

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.

    2014-12-14

    We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation of the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  3. Preconditioned time-difference methods for advection-diffusion-reaction equations

    SciTech Connect

    Aro, C.; Rodrigue, G.; Wolitzer, D.

    1994-12-31

    Explicit time differencing methods for solving differential equations are advantageous in that they are easy to implement on a computer and are intrinsically very parallel. The disadvantage of explicit methods is the severe restrictions placed on stepsize due to stability. Stability bounds for explicit time differencing methods on advection-diffusion-reaction problems are generally quite severe and implicit methods are used instead. The linear systems arising from these implicit methods are large and sparse so that iterative methods must be used to solve them. In this paper the authors develop a methodology for increasing the stability bounds of standard explicit finite differencing methods by combining explicit methods, implicit methods, and iterative methods in a novel way to generate new time-difference schemes, called preconditioned time-difference methods.

  4. Reaction-diffusion-advection equation in binary tree networks and optimal size ratio.

    PubMed

    Sakaguchi, Hidetsugu

    2014-10-01

    A simple reaction-diffusion-advection equation is proposed in a dichotomous tree network to discuss an optimal network. An optimal size ratio r is evaluated by the principle of maximization of total reaction rate. In the case of reaction-limited conditions, the optimal ratio can be larger than (1/2)(1/3) for a fixed value of branching number n, which is consistent with observations in mammalian lungs. We find furthermore that there is an optimal branching number nc when the Péclet number is large. Under the doubly optimal conditions with respect to the size ratio and branching number, the optimal value of r is close to (1/2)(1/3).

  5. Reaction-diffusion-advection equation in binary tree networks and optimal size ratio

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu

    2014-10-01

    A simple reaction-diffusion-advection equation is proposed in a dichotomous tree network to discuss an optimal network. An optimal size ratio r is evaluated by the principle of maximization of total reaction rate. In the case of reaction-limited conditions, the optimal ratio can be larger than (1/2)1/3 for a fixed value of branching number n, which is consistent with observations in mammalian lungs. We find furthermore that there is an optimal branching number nc when the Péclet number is large. Under the doubly optimal conditions with respect to the size ratio and branching number, the optimal value of r is close to (1/2)1/3.

  6. Analytical solutions to the fractional advection-diffusion equation with time-dependent pulses on the boundary

    NASA Astrophysics Data System (ADS)

    Rubbab, Qammar; Mirza, Itrat Abbas; Qureshi, M. Zubair Akbar

    2016-07-01

    The time-fractional advection-diffusion equation with Caputo-Fabrizio fractional derivatives (fractional derivatives without singular kernel) is considered under the time-dependent emissions on the boundary and the first order chemical reaction. The non-dimensional problem is formulated by using suitable dimensionless variables and the fundamental solutions to the Dirichlet problem for the fractional advection-diffusion equation are determined using the integral transforms technique. The fundamental solutions for the ordinary advection-diffusion equation, fractional and ordinary diffusion equation are obtained as limiting cases of the previous model. Using Duhamel's principle, the analytical solutions to the Dirichlet problem with time-dependent boundary pulses have been obtained. The influence of the fractional parameter and of the drift parameter on the solute concentration in various spatial positions was analyzed by numerical calculations. It is found that the variation of the fractional parameter has a significant effect on the solute concentration, namely, the memory effects lead to the retardation of the mass transport.

  7. A finite analytic method for solving the 2-D time-dependent advection diffusion equation with time-invariant coefficients

    NASA Astrophysics Data System (ADS)

    Lowry, Thomas; Li, Shu-Guang

    2005-02-01

    Difficulty in solving the transient advection-diffusion equation (ADE) stems from the relationship between the advection derivatives and the time derivative. For a solution method to be viable, it must account for this relationship by being accurate in both space and time. This research presents a unique method for solving the time-dependent ADE that does not discretize the derivative terms but rather solves the equation analytically in the space-time domain. The method is computationally efficient and numerically accurate and addresses the common limitations of numerical dispersion and spurious oscillations that can be prevalent in other solution methods. The method is based on the improved finite analytic (IFA) solution method [Lowry TS, Li S-G. A characteristic based finite analytic method for solving the two-dimensional steady-state advection-diffusion equation. Water Resour Res 38 (7), 10.1029/2001WR000518] in space coupled with a Laplace transformation in time. In this way, the method has no Courant condition and maintains accuracy in space and time, performing well even at high Peclet numbers. The method is compared to a hybrid method of characteristics, a random walk particle tracking method, and an Eulerian-Lagrangian Localized Adjoint Method using various degrees of flow-field heterogeneity across multiple Peclet numbers. Results show the IFALT method to be computationally more efficient while producing similar or better accuracy than the other methods.

  8. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    EPA Science Inventory

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  9. Multiscale analysis of collective motion and decision-making in swarms: an advection-diffusion equation with memory approach.

    PubMed

    Raghib, M; Levin, S A; Kevrekidis, I G

    2010-06-01

    We propose a (time) multiscale method for the coarse-grained analysis of collective motion and decision-making in self-propelled particle models of swarms comprising a mixture of 'naïve' and 'informed' individuals. The method is based on projecting the particle configuration onto a single 'meta-particle' that consists of the elongation of the flock together with the mean group velocity and position. We find that the collective states can be associated with the transient and asymptotic transport properties of the random walk followed by the meta-particle, which we assume follows a continuous time random walk (CTRW). These properties can be accurately predicted at the macroscopic level by an advection-diffusion equation with memory (ADEM) whose parameters are obtained from a mean group velocity time series obtained from a single simulation run of the individual-based model.

  10. Erratum: A Comparison of Closures for Stochastic Advection-Diffusion Equations

    SciTech Connect

    Jarman, Kenneth D.; Tartakovsky, Alexandre M.

    2015-01-01

    This note corrects an error in the authors' article [SIAM/ASA J. Uncertain. Quantif., 1 (2013), pp. 319 347] in which the cited work [Neuman, Water Resour. Res., 29(3) (1993), pp. 633 645] was incorrectly represented and attributed. Concentration covariance equations presented in our article as new were in fact previously derived in the latter work. In the original abstract, the phrase " . . .we propose a closed-form approximation to two-point covariance as a measure of uncertainty. . ." should be replaced by the phrase " . . .we study a closed-form approximation to two-point covariance, previously derived in [Neuman 1993], as a measure of uncertainty." The primary results in our article--the analytical and numerical comparison of existing closure methods for specific example problems are not changed by this correction.

  11. Numerical experiments for advection equation

    SciTech Connect

    Sun, Wen-Yih )

    1993-10-01

    We propose to combine the Crowley fourth-order scheme and the Gadd scheme for solving the linear advection equation. Two new schemes will be presented: the first is to integrate the Crowley scheme and the Gadd scheme alternately (referred to as New1); the second is to integrate the Crowley scheme twice before we apply the Gadd scheme once (referred to as New2). The new schemes are designed such that no additional restriction is placed on the CFL criterion in an integration. The performance of the new schemes is better than that of the original Crowley or Gadd schemes. It is noted that the amplitude obtained from New2 is more accurate than that from New1 for long waves, but less accurate for short waves. The phase speed calculated from New2 is very close to the real phase speed in most cases tested here, but the phase speed of New 1 is faster than the real phase speed. Hence, New2 is a better choice, especially for a model that includes horizontal smoothing to dampen the short waves. 9 refs., 5 figs., 8 tabs.

  12. On enforcing maximum principles and achieving element-wise species balance for advection-diffusion-reaction equations under the finite element method

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Nakshatrala, K. B.

    2016-01-01

    We present a robust computational framework for advective-diffusive-reactive systems that satisfies maximum principles, the non-negative constraint, and element-wise species balance property. The proposed methodology is valid on general computational grids, can handle heterogeneous anisotropic media, and provides accurate numerical solutions even for very high Péclet numbers. The significant contribution of this paper is to incorporate advection (which makes the spatial part of the differential operator non-self-adjoint) into the non-negative computational framework, and overcome numerical challenges associated with advection. We employ low-order mixed finite element formulations based on least-squares formalism, and enforce explicit constraints on the discrete problem to meet the desired properties. The resulting constrained discrete problem belongs to convex quadratic programming for which a unique solution exists. Maximum principles and the non-negative constraint give rise to bound constraints while element-wise species balance gives rise to equality constraints. The resulting convex quadratic programming problems are solved using an interior-point algorithm. Several numerical results pertaining to advection-dominated problems are presented to illustrate the robustness, convergence, and the overall performance of the proposed computational framework.

  13. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation.

    PubMed

    Parker, Jack C; Kim, Ungtae

    2015-11-01

    The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of

  14. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation.

    PubMed

    Parker, Jack C; Kim, Ungtae

    2015-11-01

    The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of

  15. Advection and diffusion in shoreline change prediction

    NASA Astrophysics Data System (ADS)

    Anderson, T. R.; Frazer, L. N.

    2010-12-01

    We added longshore advection and diffusion to the simple cross-shore rate calculation method, as used widely by the USGS and others, to model historic shorelines and to predict future shoreline positions; and applied this to Hawaiian Island beach data. Aerial photographs, sporadically taken throughout the past century, yield usable, albeit limited, historic shoreline data. These photographs provide excellent spatial coverage, but poor temporal resolution, of the shoreline. Due to the sparse historic shoreline data, and the many natural and anthropogenic events influencing coastlines, we constructed a simplistic shoreline change model that can identify long-term behavior of a beach. Our new, two-dimensional model combines the simple rate method to accommodate for cross-shore sediment transport with the classic Pelnard-Considère model for diffusion, as well as a longshore advection speed term. Inverse methods identify cross-shore rate, longshore advection speed, and longshore diffusivity down a sandy coastline. A spatial averaging technique then identifies shoreline segments where one parameter can reasonably account for the cross-shore and longshore transport rates in that area. This produces model results with spatial resolution more appropriate to the temporal spacing of the data. Because changes in historic data can be accounted for by varying degrees of cross-shore and longshore sediment transport - for example, beach erosion can equally be explained by sand moving either off-shore or laterally - we tested several different model scenarios on the data: allowing only cross-shore sediment movement, only longshore movement, and a combination of the two. We used statistical information criteria to determine both the optimal spatial resolution and best-fitting scenario. Finally, we employed a voting method predicting the relaxed shoreline position over time.

  16. Analytical solution for the advection-dispersion transport equation in layered media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  17. Advective and diffusive cosmic ray transport in galactic haloes

    NASA Astrophysics Data System (ADS)

    Heesen, Volker; Dettmar, Ralf-Jürgen; Krause, Marita; Beck, Rainer; Stein, Yelena

    2016-05-01

    We present 1D cosmic ray transport models, numerically solving equations of pure advection and diffusion for the electrons and calculating synchrotron emission spectra. We find that for exponential halo magnetic field distributions advection leads to approximately exponential radio continuum intensity profiles, whereas diffusion leads to profiles that can be better approximated by a Gaussian function. Accordingly, the vertical radio spectral profiles for advection are approximately linear, whereas for diffusion they are of `parabolic' shape. We compare our models with deep Australia Telescope Compact Array observations of two edge-on galaxies, NGC 7090 and 7462, at λλ 22 and 6 cm. Our result is that the cosmic ray transport in NGC 7090 is advection dominated with V=150^{+80}_{-30} km s^{-1}, and that the one in NGC 7462 is diffusion dominated with D=3.0± 1.0 × 10^{28}E_GeV^{0.5} cm^2 s^{-1}. NGC 7090 has both a thin and thick radio disc with respective magnetic field scale heights of hB1 = 0.8 ± 0.1 kpc and hB2 = 4.7 ± 1.0 kpc. NGC 7462 has only a thick radio disc with hB2 = 3.8 ± 1.0 kpc. In both galaxies, the magnetic field scale heights are significantly smaller than what estimates from energy equipartition would suggest. A non-negligible fraction of cosmic ray electrons can escape from NGC 7090, so that this galaxy is not an electron calorimeter.

  18. A hyperbolic equation for turbulent diffusion

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip; Keller, Joseph B.

    2000-09-01

    A hyperbolic equation, analogous to the telegrapher's equation in one dimension, is introduced to describe turbulent diffusion of a passive additive in a turbulent flow. The predictions of this equation, and those of the usual advection-diffusion equation, are compared with data on smoke plumes in the atmosphere and on heat flow in a wind tunnel. The predictions of the hyperbolic equation fit the data at all distances from the source, whereas those of the advection-diffusion equation fit only at large distances. The hyperbolic equation is derived from an integrodifferential equation for the mean concentration which allows it to vary rapidly. If the mean concentration varies sufficiently slowly compared with the correlation time of the turbulence, the hyperbolic equation reduces to the advection-diffusion equation. However, if the mean concentration varies very rapidly, the hyperbolic equation should be replaced by the integrodifferential equation.

  19. Turing-Hopf instabilities through a combination of diffusion, advection, and finite size effects.

    PubMed

    Galhotra, Sainyam; Bhattacharjee, J K; Agarwalla, Bijay Kumar

    2014-01-14

    We show that in a reaction diffusion system on a two-dimensional substrate with advection in the confined direction, the drift (advection) induced instability occurs through a Hopf bifurcation, which can become a double Hopf bifurcation. The box size in the direction of the drift is a vital parameter. Our analysis involves reduction to a low dimensional dynamical system and constructing amplitude equations.

  20. Advection, diffusion, and delivery over a network

    NASA Astrophysics Data System (ADS)

    Heaton, Luke L. M.; López, Eduardo; Maini, Philip K.; Fricker, Mark D.; Jones, Nick S.

    2012-08-01

    Many biological, geophysical, and technological systems involve the transport of a resource over a network. In this paper, we present an efficient method for calculating the exact quantity of the resource in each part of an arbitrary network, where the resource is lost or delivered out of the network at a given rate, while being subject to advection and diffusion. The key conceptual step is to partition the resource into material that does or does not reach a node over a given time step. As an example application, we consider resource allocation within fungal networks, and analyze the spatial distribution of the resource that emerges as such networks grow over time. Fungal growth involves the expansion of fluid filled vessels, and such growth necessarily involves the movement of fluid. We develop a model of delivery in growing fungal networks, and find good empirical agreement between our model and experimental data gathered using radio-labeled tracers. Our results lead us to suggest that in foraging fungi, growth-induced mass flow is sufficient to account for long-distance transport, if the system is well insulated. We conclude that active transport mechanisms may only be required at the very end of the transport pathway, near the growing tips.

  1. A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.

    SciTech Connect

    Siefert, Christopher; Robinson, Allen Conrad

    2009-09-01

    We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.

  2. Dense-gas dispersion advection-diffusion model

    SciTech Connect

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments.

  3. Chaotic advection, diffusion, and reactions in open flows

    SciTech Connect

    Tel, Tamas; Karolyi, Gyoergy; Pentek, Aron; Scheuring, Istvan; Toroczkai, Zoltan; Grebogi, Celso; Kadtke, James

    2000-03-01

    We review and generalize recent results on advection of particles in open time-periodic hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness of the flow. Finally, we investigate the influence of passive advection on chemical or biological activity superimposed on open flows. The nondiffusive approach is shown to carry some features of a weak diffusion, due to the finiteness of the reaction range or reaction velocity. (c) 2000 American Institute of Physics.

  4. Shadowing and the role of small diffusivity in the chaotic advection of scalars

    NASA Technical Reports Server (NTRS)

    Klapper, I.

    1992-01-01

    Using techniques from shadowing theory, the solution of the scalar advection-diffusion equation is studied. It is shown that, under certain circumstances, the effect of small scalar diffusivity is to smooth the zero-diffusivity solution by averaging local fine-scaled structure against a Gaussian. The method of study depends on shadowing and thus fails for nonuniformly stretching systems, its failure suggesting the ways in which the effects of asymptotically small molecular diffusion can become nonlocal in chaotic fluid flows.

  5. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  6. Population persistence under advection-diffusion in river networks.

    PubMed

    Ramirez, Jorge M

    2012-11-01

    An integro-differential equation on a tree graph is used to model the time evolution and spatial distribution of a population of organisms in a river network. Individual organisms become mobile at a constant rate, and disperse according to an advection-diffusion process with coefficients that are constant on the edges of the graph. Appropriate boundary conditions are imposed at the outlet and upstream nodes of the river network. The local rates of population growth/decay and that by which the organisms become mobile, are assumed constant in time and space. Imminent extinction of the population is understood as the situation whereby the zero solution to the integro-differential equation is stable. Lower and upper bounds for the eigenvalues of the dispersion operator, and related Sturm-Liouville problems are found. The analysis yields sufficient conditions for imminent extinction and/or persistence in terms of the values of water velocity, channel length, cross-sectional area and diffusivity throughout the river network.

  7. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  8. Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems

    PubMed Central

    Zhao, Su; Ovadia, Jeremy; Liu, Xinfeng; Zhang, Yong-Tao; Nie, Qing

    2011-01-01

    For reaction-diffusion-advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction-diffusion systems with both stiff reaction and diffusion terms, implicit integration factor (IIF) method and its higher dimensional analog compact IIF (cIIF) serve as an efficient class of time-stepping methods, and their second order version is linearly unconditionally stable. For nonlinear hyperbolic equations, weighted essentially non-oscillatory (WENO) methods are a class of schemes with a uniformly high-order of accuracy in smooth regions of the solution, which can also resolve the sharp gradient in an accurate and essentially non-oscillatory fashion. In this paper, we couple IIF/cIIF with WENO methods using the operator splitting approach to solve reaction-diffusion-advection equations. In particular, we apply the IIF/cIIF method to the stiff reaction and diffusion terms and the WENO method to the advection term in two different splitting sequences. Calculation of local truncation error and direct numerical simulations for both splitting approaches show the second order accuracy of the splitting method, and linear stability analysis and direct comparison with other approaches reveals excellent efficiency and stability properties. Applications of the splitting approach to two biological systems demonstrate that the overall method is accurate and efficient, and the splitting sequence consisting of two reaction-diffusion steps is more desirable than the one consisting of two advection steps, because CWC exhibits better accuracy and stability. PMID:21666863

  9. Update on Advection-Diffusion Purge Flow Model

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.

  10. Horizontal advection, diffusion and plankton spectra at the sea surface.

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Clayton, S.; Pasquero, C.

    2009-04-01

    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

  11. Diapycnal advection by double diffusion and turbulence in the ocean

    NASA Astrophysics Data System (ADS)

    St. Laurent, Louis Christopher

    1999-11-01

    Observations of diapycnal mixing rates are examined and related to diapycnal advection for both double-diffusive and turbulent regimes. The role of double-diffusive mixing at the site of the North Atlantic Tracer Release Experiment is considered. The strength of salt-finger mixing is analyzed in terms of the stability parameters for shear and double- diffusive convection, and a nondimensional ratio of the thermal and energy dissipation rates. While the model for turbulence describes most dissipation occurring in high shear, dissipation in low shear is better described by the salt-finger model, and a method for estimating the salt-finger enhancement of the diapycnal haline diffusivity over the thermal diffusivity is proposed. Best agreement between tracer-inferred mixing rates and microstructure based estimates is achieved when the salt- finger enhancement of haline flux is taken into account. The role of turbulence occurring above rough bathymetry in the abyssal Brazil Basin is also considered. The mixing levels along sloping bathymetry exceed the levels observed on ridge crests and canyon floors. Additionally, mixing levels modulate in phase with the spring-neap tidal cycle. A model of the dissipation rate is derived and used to specify the turbulent mixing rate and constrain the diapycnal advection in an inverse model for the steady circulation. The inverse model solution reveals the presence of a secondary circulation with zonal character. These results suggest that mixing in abyssal canyons plays an important role in the mass budget of Antarctic Bottom Water. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  12. Oxygen Advection and Diffusion in a Three Dimensional Vascular Anatomical Network

    PubMed Central

    Fang, Qianqian; Sakadžić, Sava; Ruvinskaya, Lana; Devor, Anna; Dale, Anders M.; Boas, David A.

    2008-01-01

    There is an increasing need for quantitative and computationally affordable models for analyzing tissue metabolism and hemodynamics in microvascular networks. In this work, we develop a hybrid model to solve for the time-varying oxygen advection-diffusion equation in the vessels and tissue. To obtain a three-dimensional temporal evolution of tissue oxygen concentration for realistic complex vessel networks, we used a graph-based advection model combined with a finite-element based diffusion model and an implicit time-advancing scheme. We validated this algorithm for both static and dynamic conditions. We also applied it to a complex vascular network obtained from a rodent somatosensory cortex. Qualitative agreement was found with in-vivo experiments. PMID:18958033

  13. Solving turbulent diffusion flame in cylindrical frame applying an improved advective kinetics scheme

    NASA Astrophysics Data System (ADS)

    Darbandi, Masoud; Ghafourizadeh, Majid

    2015-12-01

    In this work, we derive a few new advective flux approximation expressions, apply them in a hybrid finite-volume-element (FVE) formulation, and solve the turbulent reacting flow governing equations in the cylindrical frame. To derive these advective-kinetic-based expressions, we benefit from the advantages of a physical influence scheme (PIS) basically, extend it to the cylindrical frame suitably, and approximate the required advective flux terms at the cell faces more accurately. The present numerical scheme not only respects the physics of flow correctly but also resolves the pressure-velocity coupling problem automatically. We also suggest a bi-implicit algorithm to solve the set of coupled turbulent reacting flow governing equations, in which the turbulence and chemistry governing equations are solved simultaneously. To evaluate the accuracy of new derived FVE-PIS expressions, we compare the current solutions with other available numerical solutions and experimental data. The comparisons show that the new derived expressions provide some more advantages over the past numerical approaches in solving turbulent diffusion flame in the cylindrical frame. Indeed, the current method and formulations can be used to solve and analyze the turbulent diffusion flames in the cylindrical coordinates very reliably.

  14. The role of advection and diffusion in waste disposal by sea urchin embryos

    NASA Astrophysics Data System (ADS)

    Clark, Aaron; Licata, Nicholas

    2014-03-01

    We determine the first passage probability for the absorption of waste molecules released from the microvilli of sea urchin embryos. We calculate a perturbative solution of the advection-diffusion equation for a linear shear profile similar to the fluid environment which the embryos inhabit. Rapid rotation of the embryo results in a concentration boundary layer of comparable thickness to the length of the microvilli. A comparison of the results to the regime of diffusion limited transport indicates that fluid flow is advantageous for efficient waste disposal.

  15. A finite element-boundary element method for advection-diffusion problems with variable advective fields and infinite domains

    SciTech Connect

    Driessen, B.J.; Dohner, J.L.

    1998-08-01

    In this paper a hybrid, finite element--boundary element method which can be used to solve for particle advection-diffusion in infinite domains with variable advective fields is presented. In previous work either boundary element, finite element, or difference methods have been used to solve for particle motion in advective-diffusive domains. These methods have a number of limitations. Due to the complexity of computing spatially dependent Green`s functions, the boundary element method is limited to domains containing only constant advective fields, and due to their inherent formulation, finite element and finite difference methods are limited to only domains of finite spatial extent. Thus, finite element and finite difference methods are limited to finite space problems for which the boundary element method is not, and the boundary element method is limited to constant advection field problems for which finite element and finite difference methods are not. In this paper it is proposed to split a domain into two sub-domains, and for each of these sub domains, apply the appropriate solution method; thereby, producing a method for the total infinite space, variable advective field domain.

  16. How Hydrate Saturation Anomalies are Diffusively Constructed and Advectively Smoothed

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.; Irizarry, J. T.; VanderBeek, B. P.; Handwerger, A. L.

    2015-12-01

    The physical processes that control the bulk characteristics of hydrate reservoirs are captured reasonably well by long-established model formulations that are rooted in laboratory-verified phase equilibrium parameterizations and field-based estimates of in situ conditions. More detailed assessments of hydrate distribution, especially involving the occurrence of high-saturation hydrate anomalies have been more difficult to obtain. Spatial variations in sediment properties are of central importance for modifying the phase behavior and promoting focussed fluid flow. However, quantitative predictions of hydrate anomaly development cannot be made rigorously without also addressing the changes in phase behavior and mechanical balances that accompany changes in hydrate saturation level. We demonstrate how pore-scale geometrical controls on hydrate phase stability can be parameterized for incorporation in simulations of hydrate anomaly development along dipping coarse-grained layers embedded in a more fine-grained background that is less amenable to fluid transport. Model simulations demonstrate how hydrate anomaly growth along coarse-layer boundaries is promoted by diffusive gas transport from the adjacent fine-grained matrix, while advective transport favors more distributed growth within the coarse-grained material and so effectively limits the difference between saturation peaks and background levels. Further analysis demonstrates how sediment contacts are unloaded once hydrate saturation reaches sufficient levels to form a load-bearing skeleton that can evolve to produce segregated nodules and lenses. Decomposition of such growth forms poses a significant geohazard that is expected to be particularly sensitive to perturbations induced by gas extraction. The figure illustrates the predicted evolution of hydrate saturation Sh in a coarse-grained dipping layer showing how prominent bounding hydrate anomalies (spikes) supplied by diffusive gas transport at early times

  17. Nonlocal electrical diffusion equation

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

  18. Exact PDF equations and closure approximations for advective-reactive transport

    SciTech Connect

    Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2013-06-01

    Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recently proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.

  19. Multinomial Diffusion Equation

    SciTech Connect

    Balter, Ariel I.; Tartakovsky, Alexandre M.

    2011-06-01

    We have developed a novel stochastic, space/time discrete representation of particle diffusion (e.g. Brownian motion) based on discrete probability distributions. We show that in the limit of both very small time step and large concentration, our description is equivalent to the space/time continuous stochastic diffusion equation. Being discrete in both time and space, our model can be used as an extremely accurate, efficient, and stable stochastic finite-difference diffusion algorithm when concentrations are so small that computationally expensive particle-based methods are usually needed. Through numerical simulations, we show that our method can generate realizations that capture the statistical properties of particle simulations. While our method converges converges to both the correct ensemble mean and ensemble variance very quickly with decreasing time step, but for small concentration, the stochastic diffusion PDE does not, even for very small time steps.

  20. Numerical Modeling of Deep Mantle Convection: Advection and Diffusion Schemes for Marker Methods

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard

    2013-04-01

    Thermal and chemical evolution of Earth's deep mantle can be studied by modeling vigorous convection in a chemically heterogeneous fluid. Numerical modeling of such a system poses several computational challenges. Dominance of heat advection over the diffusive heat transport, and a negligible amount of chemical diffusion results in sharp gradients of thermal and chemical fields. The exponential dependence of the viscosity of mantle materials on temperature also leads to high gradients of the velocity field. The accuracy of many numerical advection schemes degrades quickly with increasing gradient of the solution, while the computational effort, in terms of the scheme complexity and required resolution, grows. Additional numerical challenges arise due to a large range of length-scales characteristic of a thermochemical convection system with highly variable viscosity. To examplify, the thickness of the stem of a rising thermal plume may be a few percent of the mantle thickness. An even thinner filament of an anomalous material that is entrained by that plume may consitute less than a tenth of a percent of the mantle thickness. We have developed a two-dimensional FEM code to model thermochemical convection in a hollow cylinder domain, with a depth- and temperature-dependent viscosity representative of the mantle (Steinberger and Calderwood, 2006). We use marker-in-cell method for advection of chemical and thermal fields. The main advantage of perfoming advection using markers is absence of numerical diffusion during the advection step, as opposed to the more diffusive field-methods. However, in the common implementation of the marker-methods, the solution of the momentum and energy equations takes place on a computational grid, and nodes do not generally coincide with the positions of the markers. Transferring velocity-, temperature-, and chemistry- information between nodes and markers introduces errors inherent to inter- and extrapolation. In the numerical scheme

  1. Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Yoonsang; Engquist, Bjorn

    2016-07-01

    We propose a seamless multiscale method which approximates the macroscopic behavior of the passive advection-diffusion equations with steady incompressible velocity fields with multi-spatial scales. The method uses decompositions of the velocity fields in the Fourier space, which are similar to the decomposition in large eddy simulations. It also uses a hierarchy of local domains with different resolutions as in multigrid methods. The effective diffusivity from finer scale is used for the next coarser level computation and this process is repeated up to the coarsest scale of interest. The grids are only in local domains whose sizes decrease depending on the resolution level so that the overall computational complexity increases linearly as the number of different resolution grids increases. The method captures interactions between finer and coarser scales but has to sacrifice some of interactions between different scales. The proposed method is numerically tested with 2D examples including a successful approximation to a continuous spectrum flow.

  2. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-di...

  3. Fractional Advective-Dispersive Equation as a Model of Solute Transport in Porous Media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. The common model is the advective-dispersive equation (ADE) describing the superposition of the advective transport and the Brownian motion in water-filled pore space. Deviations from...

  4. AN EXACT PEAK CAPTURING AND OSCILLATION-FREE SCHEME TO SOLVE ADVECTION-DISPERSION TRANSPORT EQUATIONS

    EPA Science Inventory

    An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...

  5. Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport.

    PubMed

    Perko, Janez; Patel, Ravi A

    2014-05-01

    The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance.

  6. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  7. Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung

    1999-01-01

    Test problems are used to examine the performance of several one-dimensional numerical schemes based on the space-time conservation and solution element (CE/SE) method. Investigated in this paper are the CE/SE schemes constructed previously for solving the linear unsteady advection-diffusion equation and the schemes derived here for solving the nonlinear viscous and inviscid Burgers equations. In comparison with the numerical solutions obtained using several traditional finite-difference schemes with similar accuracy, the CE/SE solutions display much lower numerical dissipation and dispersion errors.

  8. Advective-diffusive motion on large scales from small-scale dynamics with an internal symmetry

    NASA Astrophysics Data System (ADS)

    Marino, Raffaele; Aurell, Erik

    2016-06-01

    We consider coupled diffusions in n -dimensional space and on a compact manifold and the resulting effective advective-diffusive motion on large scales in space. The effective drift (advection) and effective diffusion are determined as a solvability conditions in a multiscale analysis. As an example, we consider coupled diffusions in three-dimensional space and on the group manifold SO(3) of proper rotations, generalizing results obtained by H. Brenner [J. Colloid Interface Sci. 80, 548 (1981), 10.1016/0021-9797(81)90214-9]. We show in detail how the analysis can be conveniently carried out using local charts and invariance arguments. As a further example, we consider coupled diffusions in two-dimensional complex space and on the group manifold SU(2). We show that although the local operators may be the same as for SO(3), due to the global nature of the solvability conditions the resulting diffusion will differ and generally be more isotropic.

  9. Chaotic flow and the finite-time Lyapunov exponent: Competitive autocatalytic reactions in advection-reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.

    2013-11-01

    We investigate chaotic advection and diffusion in competitive autocatalytic reactions. To study this subject, we use a computationally efficient method for solving advection-reaction-diffusion equations for periodic flows using a mapping method with operator splitting. In competitive autocatalytic reactions, there are two species, B and C, which both react autocatalytically with species A (A +B -->2B and A +C -->2C). If there is initially a small amount of spatially localized B and C and a large amount of A, all three species will be advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that the small scale interactions associated with the chaotic velocity field, specifically the local finite-time Lyapunov exponents (FTLEs), can accurately predict the final average concentrations of B and C after the reaction is complete. The species, B or C, that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If species B and C start in regions having similar FTLEs, their average concentrations at the end of the reaction will also be similar. Funded by NSF Grant CMMI-1000469.

  10. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  11. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  12. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  13. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-12-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ωeτe effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ωeτe as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  14. Scaling the fractional advective-dispersive equation for numerical evaluation of microbial dynamics in confined geometries with sticky boundaries

    SciTech Connect

    Parashar, R.; Cushman, J.H.

    2008-06-20

    Microbial motility is often characterized by 'run and tumble' behavior which consists of bacteria making sequences of runs followed by tumbles (random changes in direction). As a superset of Brownian motion, Levy motion seems to describe such a motility pattern. The Eulerian (Fokker-Planck) equation describing these motions is similar to the classical advection-diffusion equation except that the order of highest derivative is fractional, {alpha} element of (0, 2]. The Lagrangian equation, driven by a Levy measure with drift, is stochastic and employed to numerically explore the dynamics of microbes in a flow cell with sticky boundaries. The Eulerian equation is used to non-dimensionalize parameters. The amount of sorbed time on the boundaries is modeled as a random variable that can vary over a wide range of values. Salient features of first passage time are studied with respect to scaled parameters.

  15. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    PubMed

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  16. High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Nishikawa, Hiroaki

    2014-01-01

    In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations.

  17. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...

  18. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties

  19. Super-diffusion versus competitive advection processes on the solar surface

    NASA Astrophysics Data System (ADS)

    Del Moro, Dario; Berrilli, Francesco; Giovannelli, Luca; Scardigli, Stefano; Giannattasio, Fabio; Consolini, Giuseppe; Lepreti, Fabio

    2016-04-01

    From the analysis of the displacement spectrum of magnetic element, it has recently been agreed that a regime of super-diffusivity dominates the solar surface. Quite habitually this result is discussed in the framework of fully developed turbulence. However, the debate whether the super-diffusivity is generated by a turbulent dispersion process, by the advection due to the convective pattern, or even by another process is still open, as is the question of the amount of diffusivity at the scales relevant to the local dynamo process. To understand how such peculiar diffusion in the solar atmosphere takes place, we compared the results from two different data sets (ground-based and space-borne) and confronted those results also to simulation of passive tracers advection. The displacement spectra of the magnetic elements obtained by the data sets are consistent in retrieving a super-diffusive regime for the solar photosphere, but also the simulation shows a super-diffusive displacement spectrum: its competitive advection process can reproduce the signature of super-diffusion. Therefore, it is not necessary to hypothesize a totally developed turbulence regime to explain the motion of the magnetic elements on the solar surface.

  20. Fractional-calculus diffusion equation

    PubMed Central

    2010-01-01

    Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677

  1. A Comparative Study of Indoor Radon Contributed by Diffusive and Advective Transport through Intact Concrete

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20 Pa to 73.3 kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.

  2. A deterministic Lagrangian particle separation-based method for advective-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Choi, K. W.

    2008-12-01

    A simple and robust Lagrangian particle scheme is proposed to solve the advective-diffusion transport problem. The scheme is based on relative diffusion concepts and simulates diffusion by regulating particle separation. This new approach generates a deterministic result and requires far less number of particles than the random walk method. For the advection process, particles are simply moved according to their velocity. The general scheme is mass conservative and is free from numerical diffusion. It can be applied to a wide variety of advective-diffusion problems, but is particularly suited for ecological and water quality modelling when definition of particle attributes (e.g., cell status for modelling algal blooms or red tides) is a necessity. The basic derivation, numerical stability and practical implementation of the NEighborhood Separation Technique (NEST) are presented. The accuracy of the method is demonstrated through a series of test cases which embrace realistic features of coastal environmental transport problems. Two field application examples on the tidal flushing of a fish farm and the dynamics of vertically migrating marine algae are also presented.

  3. Final Technical Report - Stochastic Analysis of Advection-Diffusion-reaction Systems with Applications to Reactive Transport in Porous Media - DE-FG02-07ER24818

    SciTech Connect

    Karniadakis, George Em

    2014-03-11

    The main objective of this project is to develop new computational tools for uncertainty quantifica- tion (UQ) of systems governed by stochastic partial differential equations (SPDEs) with applications to advection-diffusion-reaction systems. We pursue two complementary approaches: (1) generalized polynomial chaos and its extensions and (2) a new theory on deriving PDF equations for systems subject to color noise. The focus of the current work is on high-dimensional systems involving tens or hundreds of uncertain parameters.

  4. Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method

    PubMed Central

    İbiş, Birol

    2014-01-01

    This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662

  5. Reaction-diffusion-advection approach to spatially localized treadmilling aggregates of molecular motors

    NASA Astrophysics Data System (ADS)

    Yochelis, Arik; Bar-On, Tomer; Gov, Nir S.

    2016-04-01

    Unconventional myosins belong to a class of molecular motors that walk processively inside cellular protrusions towards the tips, on top of actin filament. Surprisingly, in addition, they also form retrograde moving self-organized aggregates. The qualitative properties of these aggregates are recapitulated by a mass conserving reaction-diffusion-advection model and admit two distinct families of modes: traveling waves and pulse trains. Unlike the traveling waves that are generated by a linear instability, pulses are nonlinear structures that propagate on top of linearly stable uniform backgrounds. Asymptotic analysis of isolated pulses via a simplified reaction-diffusion-advection variant on large periodic domains, allows to draw qualitative trends for pulse properties, such as the amplitude, width, and propagation speed. The results agree well with numerical integrations and are related to available empirical observations.

  6. Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.

    PubMed

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal

    2012-05-15

    Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point.

  7. Application of the space-time conservation element and solution element method to two-dimensional advection-diffusion problems

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung

    1995-01-01

    The existing 2-D alpha-mu scheme and alpha-epsilon scheme based on the method of space-time conservation element and solution element, which were constructed for solving the linear 2-D unsteady advection-diffusion equation and unsteady advection equation, respectively, are tested. Also, the alpha-epsilon scheme is modified to become the V-E scheme for solving the nonlinear 2-D inviscid Burgers equation. Numerical solutions of six test problems are presented in comparison with their exact solutions or numerical solutions obtained by traditional finite-difference or finite-element methods. It is demonstrated that the 2-D alpha-mu, alpha-epsilon, and nu-epsilon schemes can be used to obtain numerical results which are more accurate than those based on some of the traditional methods but without using any artificial tuning in the computation. Similar to the previous 1-D test problems, the high accuracy and simplicity features of the space-time conservation element and solution element method have been revealed again in the present 2-D test results.

  8. The diffusion and telegraph equations in diagenetic modeling

    SciTech Connect

    Boudreau, B.P. )

    1989-08-01

    This paper considers the practical aspects of differentiating between the solutions of the Diffusion and Telegraph Equations when they are used to model molecular diffusion in sediment pore waters and the diffusive bioturbation of solids. If molecular diffusion is the only transport mechanism in pore water, then the results from a simple random-walk model coupled to the hydrodynamic or kinetic theories of diffusion indicate that the solute profiles predicted by these two equations differ measurably only for periods up to 10{sup {minus}10} s after the introduction of a transient and for spatial scales less than 10{sup {minus}6} cm. In addition, the distinct propagating front predicted by the Telegraph Equation moves so fast and is so attenuated as to be unmeasurable. In this situation, the Telegraph Equation offers no practical advantage over the Diffusion Equation for the description of diagenetic pore water profiles. These findings also hold when advection due to burial and chemical reaction are included in the model. The time scales associated with bioturbation of solids are sufficiently long compared to normal sampling times that the profiles of some transients, both in deep-sea and near-shore sediments, should exhibit behavior characteristic of the Telegraph Equation if mixing is diffusive (local).

  9. Universal limiter for transient interpolation modeling of the advective transport equations: The ULTIMATE conservative difference scheme

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1988-01-01

    A fresh approach is taken to the embarrassingly difficult problem of adequately modeling simple pure advection. An explicit conservative control-volume formation makes use of a universal limiter for transient interpolation modeling of the advective transport equations. This ULTIMATE conservative difference scheme is applied to unsteady, one-dimensional scalar pure advection at constant velocity, using three critical test profiles: an isolated sine-squared wave, a discontinuous step, and a semi-ellipse. The goal, of course, is to devise a single robust scheme which achieves sharp monotonic resolution of the step without corrupting the other profiles. The semi-ellipse is particularly challenging because of its combination of sudden and gradual changes in gradient. The ULTIMATE strategy can be applied to explicit conservation schemes of any order of accuracy. Second-order schemes are unsatisfactory, showing steepening and clipping typical of currently popular so-called high resolution shock-capturing of TVD schemes. The ULTIMATE third-order upwind scheme is highly satisfactory for most flows of practical importance. Higher order methods give predictably better step resolution, although even-order schemes generate a (monotonic) waviness in the difficult semi-ellipse simulation. Little is to be gained above ULTIMATE fifth-order upwinding which gives results close to the ultimate for which one might hope.

  10. Really TVD advection schemes for the depth-integrated transport equation

    NASA Astrophysics Data System (ADS)

    Mercier, Ch.; Delhez, E. J. M.

    This paper explores the use of TVD advection schemes to solve the depth-integrated transport equation for tracers in finite volume marine models. Numerical experiments show that the blind application of the usual TVD schemes and associated flux limiters can lead to non-TVD solutions when applied in complex geometries. Spatial and/or temporal variations of the local bathymetry can indeed break the TVD property of the usual schemes. Really TVD schemes can be recovered by taking into account the local depth and its variations in the formulation of the flux limiters. Using this approach, a generalized superbee limiter is introduced and validated.

  11. Variational Integration for Ideal MHD with Built-in Advection Equations

    SciTech Connect

    Zhou, Yao; Qin, Hong; Burby, J. W.; Bhattacharjee, A.

    2014-08-05

    Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.

  12. Relative importance of gas-phase diffusive and advective tichloroethene (TCE) fluxes in the unsaturated zone under natural conditions.

    PubMed

    Choi, Jee-Won; Tillman, Fred D; Smith, James A

    2002-07-15

    It was hypothesized that atmospheric pressure changes can induce gas flow in the unsaturated zone to such an extent that the advective flux of organic vapors in unsaturated-zone soil gas can be significant relative to the gas-phase diffusion flux of these organic vapors. To test this hypothesis, a series of field measurements and computer simulations were conducted to simulate and compare diffusion and advection fluxes at a trichloroethene-contaminated field site at Picatinny Arsenal in north-central New Jersey. Moisture content temperature, and soil-gas pressure were measured at multiple depths (including at land surface) and times for three distinct sampling events in August 1996, October 1996, and August 1998. Gas pressures in the unsaturated zone changed significantly over time and followed changes measured in the atmosphere. Gas permeability of the unsaturated zone was estimated using data from a variety of sources, including laboratory gas permeability measurements made on intact soil cores from the site, a field air pump test, and calibration of a gas-flow model to the transient, one-dimensional gas pressure data. The final gas-flow model reproduced small pressure gradients as observed in the field during the three distinct sampling events. The velocities calculated from the gas-flow model were used in transient, one-dimensional transport simulations to quantify advective and diffusive fluxes of TCE vapor from the subsurface to the atmosphere as a function of time for each sampling event. Effective diffusion coefficients used for these simulations were determined from independent laboratory measurements made on intact soil cores collected from the field site. For two of the three sampling events (August 1996 and August 1998), the TCE gas-phase diffusion flux at land surface was significantly greater than the advection flux over the entire sampling period. For the second sampling event (October 1996), the advection flux was frequently larger than the

  13. A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection

    NASA Astrophysics Data System (ADS)

    Bachman, S. D.; Fox-Kemper, B.; Bryan, F. O.

    2015-02-01

    A diagnosis method is presented which inverts a set of tracer flux statistics into an eddy-induced transport intended to apply for all tracers. The underlying assumption is that a linear flux-gradient relationship describes eddy-induced tracer transport, but a full tensor coefficient is assumed rather than a scalar coefficient which allows for down-gradient and skew transports. Thus, Lagrangian advection and anisotropic diffusion not necessarily aligned with the tracer gradient can be diagnosed. In this method, multiple passive tracers are initialized in an eddy-resolving flow simulation. Their spatially-averaged gradients form a matrix, where the gradient of each tracer is assumed to satisfy an identical flux-gradient relationship. The resulting linear system, which is overdetermined when using more than three tracers, is then solved to obtain an eddy transport tensor R which describes the eddy advection (antisymmetric part of R) and potentially anisotropic diffusion (symmetric part of R) in terms of coarse-grained variables. The mathematical basis for this inversion method is presented here, along with practical guidelines for its implementation. We present recommendations for initialization of the passive tracers, maintaining the required misalignment of the tracer gradients, correcting for nonconservative effects, and quantifying the error in the diagnosed transport tensor. A method is proposed to find unique, tracer-independent, distinct rotational and divergent Lagrangian transport operators, but the results indicate that these operators are not meaningfully relatable to tracer-independent eddy advection or diffusion. With the optimal method of diagnosis, the diagnosed transport tensor is capable of predicting the fluxes of other tracers that are withheld from the diagnosis, including even active tracers such as buoyancy, such that relative errors of 14% or less are found.

  14. Advective-diffusive/dispersive transport of chemically reacting species in hydrothermal systems. Final report, FY83-85

    SciTech Connect

    Lichtner, P.C.; Helgeson, H.C.

    1986-06-20

    A general formulation of multi-phase fluid flow coupled to chemical reactions was developed based on a continuum description of porous media. A preliminary version of the computer code MCCTM was constructed which implemented the general equations for a single phase fluid. The computer code MCCTM incorporates mass transport by advection-diffusion/dispersion in a one-dimensional porous medium coupled to reversible and irreversible, homogeneous and heterogeneous chemical reactions. These reactions include aqueous complexing, oxidation/reduction reactions, ion exchange, and hydrolysis reactions of stoichiometric minerals. The code MCCTM uses a fully implicit finite difference algorithm. The code was tested against analytical calculations. Applications of the code included investigation of the propagation of sharp chemical reaction fronts, metasomatic alteration of microcline at elevated temperatures and pressures, and ion-exchange in a porous column. Finally numerical calculations describing fluid flow in crystalline rock in the presence of a temperature gradient were compared with experimental results for quartzite.

  15. Modeling of advection-diffusion-reaction processes using transport dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-11-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. In particular, the transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of Lagrangian particles. To validate the proposed tDPD model and the boundary conditions, three benchmark simulations of one-dimensional diffusion with different boundary conditions are performed, and the results show excellent agreement with the theoretical solutions. Also, two-dimensional simulations of ADR systems are performed and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, an application of tDPD to the spatio-temporal dynamics of blood coagulation involving twenty-five reacting species is performed to demonstrate the promising biological applications of the tDPD model. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.

  16. Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal.

    PubMed

    Richon, Patrick; Perrier, Frédéric; Koirala, Bharat Prasad; Girault, Frédéric; Bhattarai, Mukunda; Sapkota, Soma Nath

    2011-02-01

    Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m(-2) d(-1). Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO(2) concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m(-3), but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO(2) advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m(-3), remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S(1) and semi-diurnal S(2) periodic components. At the advection-dominated points, radon concentration did not exhibit S(1) or S(2) components. At the reference points, however, the S(2) component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S(1) component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the

  17. Exploring a semimechanistic episodic Langevin model for bed load transport: Emergence of normal and anomalous advection and diffusion regimes

    NASA Astrophysics Data System (ADS)

    Fan, Niannian; Singh, Arvind; Guala, Michele; Foufoula-Georgiou, Efi; Wu, Baosheng

    2016-04-01

    Bed load transport is a highly stochastic, multiscale process, where particle advection and diffusion regimes are governed by the dynamics of each sediment grain during its motion and resting states. Having a quantitative understanding of the macroscale behavior emerging from the microscale interactions is important for proper model selection in the absence of individual grain-scale observations. Here we develop a semimechanistic sediment transport model based on individual particle dynamics, which incorporates the episodic movement (steps separated by rests) of sediment particles and study their macroscale behavior. By incorporating different types of probability distribution functions (PDFs) of particle resting times Tr, under the assumption of thin-tailed PDF of particle velocities, we study the emergent behavior of particle advection and diffusion regimes across a wide range of spatial and temporal scales. For exponential PDFs of resting times Tr, we observe normal advection and diffusion at long time scales. For a power-law PDF of resting times (i.e., f>(Tr>)˜Tr-ν), the tail thickness parameter ν is observed to affect the advection regimes (both sub and normal advective), and the diffusion regimes (both subdiffusive and superdiffusive). By comparing our semimechanistic model with two random walk models in the literature, we further suggest that in order to reproduce accurately the emerging diffusive regimes, the resting time model has to be coupled with a particle motion model able to produce finite particle velocities during steps, as the episodic model discussed here.

  18. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  19. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems.

    PubMed

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  20. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    PubMed Central

    Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-01-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  1. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems.

    PubMed

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  2. A numerical theory of lattice gas and lattice Boltzmann methods in the computation of solutions to nonlinear advective-diffusive systems

    SciTech Connect

    Elton, A.B.H.

    1990-09-24

    A numerical theory for the massively parallel lattice gas and lattice Boltzmann methods for computing solutions to nonlinear advective-diffusive systems is introduced. The convergence theory is based on consistency and stability arguments that are supported by the discrete Chapman-Enskog expansion (for consistency) and conditions of monotonicity (in establishing stability). The theory is applied to four lattice methods: Two of the methods are for some two-dimensional nonlinear diffusion equations. One of the methods is for the one-dimensional lattice method for the one-dimensional viscous Burgers equation. And one of the methods is for a two-dimensional nonlinear advection-diffusion equation. Convergence is formally proven in the L{sub 1}-norm for the first three methods, revealing that they are second-order, conservative, conditionally monotone finite difference methods. Computational results which support the theory for lattice methods are presented. In addition, a domain decomposition strategy using mesh refinement techniques is presented for lattice gas and lattice Boltzmann methods. The strategy allows concentration of computational resources on regions of high activity. Computational evidence is reported for the strategy applied to the lattice gas method for the one-dimensional viscous Burgers equation. 72 refs., 19 figs., 28 tabs.

  3. Approximate Solutions Of Equations Of Steady Diffusion

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1992-01-01

    Rigorous analysis yields reliable criteria for "best-fit" functions. Improved "curve-fitting" method yields approximate solutions to differential equations of steady-state diffusion. Method applies to problems in which rates of diffusion depend linearly or nonlinearly on concentrations of diffusants, approximate solutions analytic or numerical, and boundary conditions of Dirichlet type, of Neumann type, or mixture of both types. Applied to equations for diffusion of charge carriers in semiconductors in which mobilities and lifetimes of charge carriers depend on concentrations.

  4. Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes.

    PubMed

    Siero, E; Doelman, A; Eppinga, M B; Rademacher, J D M; Rietkerk, M; Siteur, K

    2015-03-01

    For water-limited arid ecosystems, where water distribution and infiltration play a vital role, various models have been set up to explain vegetation patterning. On sloped terrains, vegetation aligned in bands has been observed ubiquitously. In this paper, we consider the appearance, stability, and bifurcations of 2D striped or banded patterns in an arid ecosystem model. We numerically show that the resilience of the vegetation bands is larger on steeper slopes by computing the stability regions (Busse balloons) of striped patterns with respect to 1D and transverse 2D perturbations. This is corroborated by numerical simulations with a slowly decreasing water input parameter. Here, long wavelength striped patterns are unstable against transverse perturbations, which we also rigorously prove on flat ground through an Evans function approach. In addition, we prove a "Squire theorem" for a class of two-component reaction-advection-diffusion systems that includes our model, showing that the onset of pattern formation in 2D is due to 1D instabilities in the direction of advection, which naturally leads to striped patterns. PMID:25833449

  5. Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes.

    PubMed

    Siero, E; Doelman, A; Eppinga, M B; Rademacher, J D M; Rietkerk, M; Siteur, K

    2015-03-01

    For water-limited arid ecosystems, where water distribution and infiltration play a vital role, various models have been set up to explain vegetation patterning. On sloped terrains, vegetation aligned in bands has been observed ubiquitously. In this paper, we consider the appearance, stability, and bifurcations of 2D striped or banded patterns in an arid ecosystem model. We numerically show that the resilience of the vegetation bands is larger on steeper slopes by computing the stability regions (Busse balloons) of striped patterns with respect to 1D and transverse 2D perturbations. This is corroborated by numerical simulations with a slowly decreasing water input parameter. Here, long wavelength striped patterns are unstable against transverse perturbations, which we also rigorously prove on flat ground through an Evans function approach. In addition, we prove a "Squire theorem" for a class of two-component reaction-advection-diffusion systems that includes our model, showing that the onset of pattern formation in 2D is due to 1D instabilities in the direction of advection, which naturally leads to striped patterns.

  6. The Riesz-Bessel Fractional Diffusion Equation

    SciTech Connect

    Anh, V.V. McVinish, R.

    2004-05-15

    This paper examines the properties of a fractional diffusion equation defined by the composition of the inverses of the Riesz potential and the Bessel potential. The first part determines the conditions under which the Green function of this equation is the transition probability density function of a Levy motion. This Levy motion is obtained by the subordination of Brownian motion, and the Levy representation of the subordinator is determined. The second part studies the semigroup formed by the Green function of the fractional diffusion equation. Applications of these results to certain evolution equations is considered. Some results on the numerical solution of the fractional diffusion equation are also provided.

  7. A reaction-diffusion-advection model of harmful algae growth with toxin degradation

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Bin; Hsu, Sze-Bi; Zhao, Xiao-Qiang

    2015-10-01

    This paper is devoted to the study of a reaction-diffusion-advection system modeling the dynamics of a single nutrient, harmful algae and algal toxin in a flowing water habitat with a hydraulic storage zone. We introduce the basic reproduction ratio R0 for algae and show that R0 serves as a threshold value for persistence and extinction of the algae. More precisely, we prove that the washout steady state is globally attractive if R0 < 1, while there exists a positive steady state and the algae is uniformly persistent if R0 > 1. With an additional assumption, we obtain the uniqueness and global attractivity of the positive steady state in the case where R0 > 1.

  8. Evaluation of realtime spray drift using RTDrift Gaussian advection-diffusion model.

    PubMed

    Lebeau, Frédéric; Verstraete, Arnaud; Schiffers, Bruno; Destain, Marie-France

    2009-01-01

    A spray drift model was developed to deliver real time information to the pesticide applicator. The sprayer is equipped with sensors to deliver real time measurement of operational parameters as spray pressure, boom height, horizontal boom movements and geolocalization. The spray droplet size spectrum as a function of pressure was characterized using PDI measurements. Wind speed and direction were measured using a sprayer mounted 2-D ultrasonic anemometer. For each successive boom position, a diffusion-advection Gaussian tilting plume model is used to compute the spray drift deposits downwind. Drift is computed independently for each droplet classes and each nozzle based on the operating parameters. Field trials were performed on a test plot in various wind conditions. The ground drift was measured for different drift distances using fluorimetry analysis. Results show that drift deposits are mainly affected by wind speed and direction what was correctly accounted for by the model. Short distance drift deposits values were overestimated by the model while long distance drift was underestimated. It appears that this most probably origins from embarked wind speed measurements and diffusion parameter. It is concluded that a treatment of embarked wind speed and diffusion measurement should be used to minimize these errors. PMID:20218507

  9. Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems

    SciTech Connect

    Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2015-07-07

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  10. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGES

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  11. Effect of advective flow in fractures and matrix diffusion on natural gas production

    SciTech Connect

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.

  12. Efficient high-order discontinuous Galerkin schemes with first-order hyperbolic advection-diffusion system approach

    NASA Astrophysics Data System (ADS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2016-09-01

    We propose arbitrary high-order discontinuous Galerkin (DG) schemes that are designed based on a first-order hyperbolic advection-diffusion formulation of the target governing equations. We present, in details, the efficient construction of the proposed high-order schemes (called DG-H), and show that these schemes have the same number of global degrees-of-freedom as comparable conventional high-order DG schemes, produce the same or higher order of accuracy solutions and solution gradients, are exact for exact polynomial functions, and do not need a second-derivative diffusion operator. We demonstrate that the constructed high-order schemes give excellent quality solution and solution gradients on irregular triangular elements. We also construct a Weighted Essentially Non-Oscillatory (WENO) limiter for the proposed DG-H schemes and apply it to discontinuous problems. We also make some accuracy comparisons with conventional DG and interior penalty schemes. A relative qualitative cost analysis is also reported, which indicates that the high-order schemes produce orders of magnitude more accurate results than the low-order schemes for a given CPU time. Furthermore, we show that the proposed DG-H schemes are nearly as efficient as the DG and Interior-Penalty (IP) schemes as these schemes produce results that are relatively at the same error level for approximately a similar CPU time.

  13. Fractional diffusion equations coupled by reaction terms

    NASA Astrophysics Data System (ADS)

    Lenzi, E. K.; Menechini Neto, R.; Tateishi, A. A.; Lenzi, M. K.; Ribeiro, H. V.

    2016-09-01

    We investigate the behavior for a set of fractional reaction-diffusion equations that extend the usual ones by the presence of spatial fractional derivatives of distributed order in the diffusive term. These equations are coupled via the reaction terms which may represent reversible or irreversible processes. For these equations, we find exact solutions and show that the spreading of the distributions is asymptotically governed by the same the long-tailed distribution. Furthermore, we observe that the coupling introduced by reaction terms creates an interplay between different diffusive regimes leading us to a rich class of behaviors related to anomalous diffusion.

  14. The advective-dispersive equation with spatial fractional derivatives as a model for tracer transport in structured soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The classical model to describe solute transport in soil is based on the advective-dispersive equation where Fick’s law is used to explain dispersion. From the microscopic point of view this is equivalent to consider that the motion of the particles of solute may be simulated by the Brownian motion....

  15. A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations

    SciTech Connect

    Wang, H.; Man, S.; Ewing, R.E.; Qin, G.; Lyons, S.L.; Al-Lawatia, M.

    1999-06-10

    Many difficult problems arise in the numerical simulation of fluid flow processes within porous media in petroleum reservoir simulation and in subsurface contaminant transport and remediation. The authors develop a family of Eulerian-Lagrangian localized adjoint methods for the solution of the initial-boundary value problems for first-order advection-reaction equations on general multi-dimensional domains. Different tracking algorithms, including the Euler and Runge-Kutta algorithms, are used. The derived schemes, which are full mass conservative, naturally incorporate inflow boundary conditions into their formulations and do not need any artificial outflow boundary conditions. Moreover, they have regularly structured, well-conditioned, symmetric, and positive-definite coefficient matrices, which can be efficiently solved by the conjugate gradient method in an optimal order number of iterations without any preconditioning needed. Numerical results are presented to compare the performance of the ELLAM schemes with many well studied and widely used methods, including the upwind finite difference method, the Galerkin and the Petrov-Galerkin finite element methods with backward-Euler or Crank-Nicolson temporal discretization, the streamline diffusion finite element methods, the monotonic upstream-centered scheme for conservation laws (MUSCL), and the Minmod scheme.

  16. Characterization of the role of heterogeneous advection and diffusion on transport in weathered and fractured granite

    NASA Astrophysics Data System (ADS)

    Guihéneuf, N.; Boisson, A.; Bour, O.; Le Borgne, T.; Marechal, J.; Nigon, B.; Wajiddudin, M.; Ahmed, S.

    2013-12-01

    The prediction of transport in weathered and fractured rocks is critical as it represents the primary control of contaminant transfer from the subsurface in many parts of the world. This is the case in Southern India, where the subsurface is composed mainly of weathered and fractured granite and where the overexploitation of the groundwater resource since the 70's has led to high water table depletion and strong groundwater quality deterioration. One key issue for modelling transport in such systems is to quantify the respective role of advective heterogeneities and matrix diffusion, which can both lead to strongly non Fickian transport properties. We investigate this question by analysing tracer test experiments performed under different flow configurations at a fractured granite experimental site located in Andhra Pradesh (India). We performed both convergent and push-pull tracer tests within the same fracture and at different scales. Three convergent tracer tests were performed with a solution of fluorescein for different pumping rate and for different distances between injection and pumping boreholes: 6, 30 and 41 meters. To evaluate diffusive process, we performed two long-duration push-pull tests (push time of 3 hours) with a solution of two conservative tracers of different diffusion coefficient (fluorescein and sodium chloride). We performed also six others push-pull tests with only fluorescein but for a variable push times of 14 min and 55 min with or without resting time of about 60 min. The late-time behaviour on the breakthrough curves (BTCs) obtained for all convergent tracer tests showed a power-law slope of -2. Two of them showed an inflexion in the BTCs suggesting the existence of two independent flow paths and thus a highly channelized flow. The long-duration push-pull tests showed similar late-time behaviour with a power-law slope of -2.2 for both tracers. The six others push-pull tests showed a variation of power-law exponent from -3 to -2

  17. Simulation of Field-Scale Non-Fickian Plumes With Spatiotemporal Fractional Advection- Dispersion Equations

    NASA Astrophysics Data System (ADS)

    Benson, D. A.; Zhang, Y.

    2006-12-01

    Conservative solute transport through natural media is typically "anomalous" or non-Fickian. The anomalous transport may be characterized by faster than linear growth of the centered second moment, or non-Gaussian leading or trailing edges of a plume emanating from a point source. These characteristics develop because of non-local dependence on either past (time) or far upstream (space) concentrations. Non-local equations developed to describe anomalous dispersion usually focus on constant transport parameters and/or independence of the transport on space dimension. These simplifications have been useful for fitting simple transport processes, such as laboratory column tests or 1-D projections of field data. However, they may be insufficient for real field settings, where direction-dependent depositional processes and nonstationary heterogeneity can occur. We develop a generalized, multi-dimensional, spatiotemporal fractional advection- dispersion equation (fADE) with variable parameters to characterize regional-scale anomalous dispersion processes including trapping in immobile zones and/or super-Fickian rapid transport. A Lagrangian numerical model of the space-time fractional transport equation is developed in which solute particles can disperse in both space and time, depending on the medium heterogeneity properties, such as the connectivity and statistical distributions of high versus low-permeability deposits. In the generalized fADE, the range of the order of fractional time derivative is (0 2], representing a wide range of possible trapping behavior. The extension of the order to the range (1 2] is novel to transport theory. We apply the numerical model in 1-D and 2-D to the MADE site tritium plumes, and results indicate that this method can capture the main behaviors of realistic plumes, including local variations of spreading, direction-dependent scaling rates, and arbitrary rapid transport along preferential flow paths. Since the governing equation

  18. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics

    PubMed Central

    Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network’s structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet. PMID:27128846

  19. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    PubMed

    Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.

  20. Relative effects of advection, sorption and diffusion on transport and tailing of chlorinated solvents

    NASA Astrophysics Data System (ADS)

    Maghrebi, M.; Jankovic, I.; Rabideau, A. J.; Allen-King, R. M.; Weissmann, G. S.

    2011-12-01

    Effects of three key transport mechanisms (advection, diffusion and sorption) on transport and contaminant tailing of chlorinated solvents have been investigated using a numerical model. Thousands of model simulations have been conducted for various combinations of transport parameters that govern three key mechanisms in order to quantify tailing and relative importance of each mechanism. Hydraulic conductivity model contains a single inclusion of constant conductivity K embedded in a homogeneous anisotropic background of conductivity Kh,Kv. The inclusion is shaped as an oblate ellipsoid and subject to uniform flow. The background represents "average" conductivity of a heterogeneous formation while inclusion is used to represent geologic units that are more or less conductive than the background. The ratio of long to short semi-axis of the inclusion (a/b) models the ratio of horizontal to vertical integral scales (Ih/Iv) of different geologic units, where integral scales can be obtained, for example, using indicator variograms. The flow solution for present problem is obtained analytically as a closed form solution with exact expressions for Darcy velocity valid both inside and outside the inclusion. Sorption is modeled as an equilibrium process governed by a linear isotherm. The effects on transport and tailing are accounted for using retardation factors. Sorption heterogeneity is created by allowing different values of retardation factor for the interior (Ri) and the exterior of the inclusion (Rb). Diffusive displacements have been added to retarded advective displacements using random walk method. Peclet number, defined as Pe=U Ih/D (U is the groundwater velocity, D is the molecular diffusion coefficient for chlorinated solvents), is used to quantify the diffusion process. Very large numbers of particles (hundreds of thousands) have been tracked using very small time steps (as small as a/10,000) to provide sufficient resolution to breakthrough curves and to

  1. Investigating redox processes under diffusive and advective flow conditions using a coupled omics and synchrotron approach

    NASA Astrophysics Data System (ADS)

    Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.

    2015-12-01

    FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.

  2. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection

    USGS Publications Warehouse

    Shapiro, A.M.; Renken, R.A.; Harvey, R.W.; Zygnerski, M.R.; Metge, D.W.

    2008-01-01

    A tracer experiment, using a nonreactive tracer, was conducted as part of an investigation of the potential for chemical and pathogen migration to public supply wells that draw groundwater from the highly transmissive karst limestone of the Biscayne aquifer in southeastern Florida. The tracer was injected into the formation over approximately 1 h, and its recovery was monitored at a pumping well approximately 100 m from the injection well. The first detection of the tracer occurred after approximately 5 h, and the peak concentration occurred at about 8 h after the injection. The tracer was still detected in the production well more than 6 days after injection, and only 42% of the tracer mass was recovered. It is hypothesized that a combination of chemical diffusion and slow advection resulted in significant retention of the tracer in the formation, despite the high transmissivity of the karst limestone. The tail of the breakthrough curve exhibited a straight-line behavior with a slope of -2 on a log-log plot of concentration versus time. The -2 slope is hypothesized to be a function of slow advection, where the velocities of flow paths are hypothesized to range over several orders of magnitude. The flow paths having the slowest velocities result in a response similar to chemical diffusion. Chemical diffusion, due to chemical gradients, is still ongoing during the declining limb of the breakthrough curve, but this process is dwarfed by the magnitude of the mass flux by slow advection.

  3. Advection/diffusion of large scale magnetic field in accretion disks

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Bisnovatyi-Kogan, G. S.; Rothstein, D. M.

    2009-02-01

    Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr(z) which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P=viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1) large-scale field does not diffuse away as suggested by earlier work.

  4. Advection/Diffusion of Large Scale Magnetic Field in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard V. E.; Rothstein, David M.; Bisnovatyi-Kogan, Gennady S.

    Winds and jets of proto-stellar systems are thought to arise from disk accretion involving (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) and (2) a large-scale magnetic field which gives rise to the winds and/or jets. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the surface layers of the disk are non-turbulent and thus highly conducting (or non-diffusive). This is because the MRI is suppressed in the surface layers where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity v r (z) which depends mainly on the midplane thermal to magnetic pressure ratio β > 1 and the magnetic Prandtl number of the turbulence P = viscosity/diffusivity. Boundary conditions at the disk surfaces take into account possible magnetic winds or jets and allow for a surface current flow in the highly conducting surface layers. The stationary solutions we find indicate that a weak (β > 1) large-scale field does not diffuse away as suggested by earlier work.

  5. Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures

    SciTech Connect

    Webb, S.W.

    1996-05-01

    Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the Dusty- Gas Model (DGM). This model applies the kinetic theory of gases to the gaseous components and the porous media (or ``dust``) to develop an approach for combined transport due to ordinary and Knudsen diffusion and advection including porous medium effects. While these two models both consider advection and diffusion, the formulations are considerably different, especially for ordinary diffusion. The various components of flow (advection and diffusion) are compared for both models. Results from these two models are compared to isothermal experimental data for He-Ar gas diffusion in a low-permeability graphite. Air-water vapor comparisons have also been performed, although data are not available, for the low-permeability graphite system used for the helium-argon data. Radial and linear air-water heat pipes involving heat, advection, capillary transport, and diffusion under nonisothermal conditions have also been considered.

  6. Langevin Equations for Reaction-Diffusion Processes.

    PubMed

    Benitez, Federico; Duclut, Charlie; Chaté, Hugues; Delamotte, Bertrand; Dornic, Ivan; Muñoz, Miguel A

    2016-09-01

    For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems. PMID:27636462

  7. Langevin Equations for Reaction-Diffusion Processes

    NASA Astrophysics Data System (ADS)

    Benitez, Federico; Duclut, Charlie; Chaté, Hugues; Delamotte, Bertrand; Dornic, Ivan; Muñoz, Miguel A.

    2016-09-01

    For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.

  8. Computational Bayesian maximum entropy solution of a stochastic advection-reaction equation in the light of site-specific information

    NASA Astrophysics Data System (ADS)

    Kolovos, Alexander; Christakos, George; Serre, Marc L.; Miller, Cass T.

    2002-12-01

    This work presents a computational formulation of the Bayesian maximum entropy (BME) approach to solve a stochastic partial differential equation (PDE) representing the advection-reaction process across space and time. The solution approach provided by BME has some important features that distinguish it from most standard stochastic PDE techniques. In addition to the physical law, the BME solution can assimilate other sources of general and site-specific knowledge, including multiple-point nonlinear space/time statistics, hard measurements, and various forms of uncertain (soft) information. There is no need to explicitly solve the moment equations of the advection-reaction law since BME allows the information contained in them to consolidate within the general knowledge base at the structural (prior) stage of the analysis. No restrictions are posed on the shape of the underlying probability distributions or the space/time pattern of the contaminant process. Solutions of nonlinear systems of equations are obtained in four space/time dimensions and efficient computational schemes are introduced to cope with complexity. The BME solution at the prior stage is in excellent agreement with the exact analytical solution obtained in a controlled environment for comparison purposes. The prior solution is further improved at the integration (posterior) BME stage by assimilating uncertain information at the data points as well as at the solution grid nodes themselves, thus leading to the final solution of the advection-reaction law in the form of the probability distribution of possible concentration values at each space/time grid node. This is the most complete way of describing a stochastic solution and provides considerable flexibility concerning the choice of the concentration realization that is more representative of the physical situation. Numerical experiments demonstrated a high solution accuracy of the computational BME approach. The BME approach can benefit from the

  9. Solves the Multigroup Neutron Diffusion Equation

    1995-06-23

    GNOMER is a program which solves the multigroup neutron diffusion equation in 1D, 2D and 3D cartesian geometry. The program is designed to calculate the global core power distributions (with thermohydraulic feedbacks), as well as power distribution and homogenized cross sections over a fuel assembly.

  10. Terrestrial Fe-oxide Concretions and Mars Blueberries: Comparisons of Similar Advective and Diffusive Chemical Infiltration Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Chan, M. A.

    2006-12-01

    Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.

  11. High order finite difference methods with subcell resolution for advection equations with stiff source terms

    SciTech Connect

    Wang, Wei; Shu, Chi-Wang; Yee, H.C.; Sjögreen, Björn

    2012-01-01

    A new high order finite-difference method utilizing the idea of Harten ENO subcell resolution method is proposed for chemical reactive flows and combustion. In reaction problems, when the reaction time scale is very small, e.g., orders of magnitude smaller than the fluid dynamics time scales, the governing equations will become very stiff. Wrong propagation speed of discontinuity may occur due to the underresolved numerical solution in both space and time. The present proposed method is a modified fractional step method which solves the convection step and reaction step separately. In the convection step, any high order shock-capturing method can be used. In the reaction step, an ODE solver is applied but with the computed flow variables in the shock region modified by the Harten subcell resolution idea. For numerical experiments, a fifth-order finite-difference WENO scheme and its anti-diffusion WENO variant are considered. A wide range of 1D and 2D scalar and Euler system test cases are investigated. Studies indicate that for the considered test cases, the new method maintains high order accuracy in space for smooth flows, and for stiff source terms with discontinuities, it can capture the correct propagation speed of discontinuities in very coarse meshes with reasonable CFL numbers.

  12. Transformed Fourier and Fick equations for the control of heat and mass diffusion

    SciTech Connect

    Guenneau, S.; Petiteau, D.; Zerrad, M.; Amra, C.; Puvirajesinghe, T.

    2015-05-15

    We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves, the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.

  13. Transformed Fourier and Fick equations for the control of heat and mass diffusion

    NASA Astrophysics Data System (ADS)

    Guenneau, S.; Petiteau, D.; Zerrad, M.; Amra, C.; Puvirajesinghe, T.

    2015-05-01

    We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves, the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.

  14. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    SciTech Connect

    Wang, Chi-Jen

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  15. Advection/Diffusion of Large-Scale B Field in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Rothstein, D. M.; Bisnovatyi-Kogan, G. S.

    2009-08-01

    Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magnetorotational instability, MRI), which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field, which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity, which acts to prevent the buildup of a significant large-scale field. Recent work has pointed out that the disk's surface layers are nonturbulent, and thus highly conducting (or nondiffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components) and the profiles of the large-scale magnetic field, taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr (z), which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P= viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1) large-scale field does not diffuse away as suggested by earlier work. For a wide range of parameters β>1 and P≥ 1, we find stationary channel-type flows where the flow is radially outward near the midplane of the disk and radially inward in the top and bottom parts of the disk. Channel flows with inward flow near the midplane and outflow in the top and bottom

  16. Amplitude equations for reaction-diffusion systems with cross diffusion

    NASA Astrophysics Data System (ADS)

    Zemskov, Evgeny P.; Vanag, Vladimir K.; Epstein, Irving R.

    2011-09-01

    Using Taylor series expansion, multiscaling, and further expansion in powers of a small parameter, we develop general amplitude equations for two-variable reaction-diffusion systems with cross-diffusion terms in the cases of Hopf and Turing instabilities. We apply this analysis to the Oregonator and Brusselator models and find that inhibitor cross diffusion induced by the activator and activator cross diffusion induced by the inhibitor have opposite effects in the two models as a result of the different structure of their community matrices. Our analysis facilitates finding regions of supercritical and subcritical bifurcations, as well as wave and antiwave domains and domains of turbulent waves in the case of Hopf instability.

  17. Amplitude equations for reaction-diffusion systems with cross diffusion.

    PubMed

    Zemskov, Evgeny P; Vanag, Vladimir K; Epstein, Irving R

    2011-09-01

    Using Taylor series expansion, multiscaling, and further expansion in powers of a small parameter, we develop general amplitude equations for two-variable reaction-diffusion systems with cross-diffusion terms in the cases of Hopf and Turing instabilities. We apply this analysis to the Oregonator and Brusselator models and find that inhibitor cross diffusion induced by the activator and activator cross diffusion induced by the inhibitor have opposite effects in the two models as a result of the different structure of their community matrices. Our analysis facilitates finding regions of supercritical and subcritical bifurcations, as well as wave and antiwave domains and domains of turbulent waves in the case of Hopf instability. PMID:22060484

  18. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    2003-01-01

    Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.

  19. Solution of the advection-dispersion equation by a finite-volume eulerian-lagrangian local adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1992-01-01

    A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.

  20. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    SciTech Connect

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi E-mail: dikpati@ucar.edu

    2015-06-20

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  1. A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1993-01-01

    Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods for solute transport problems that are dominated by advection. FVELLAM systematically conserves mass globally with all types of boundary conditions. Integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking of characteristic lines intersecting inflow boundaries. FVELLAM extends previous results by obtaining mass conservation locally on Lagrangian space-time elements. -from Authors

  2. Production Density Diffusion Equation Propagation and Production

    NASA Astrophysics Data System (ADS)

    Shirai, Kenji; Amano, Yoshinori

    When we call the production flow to transition elements in the next step in the process of product manufactured one, the production flow is considered to be displaced in the direction of the unit production density. Density and production, as captured from different perspectives, also said production costs per unit of production. However, it is assumed that contributed to the production cost of manufacturing 100 percent. They may not correspond to the physical propagation conditions after each step of the production density, the equations governing the manufacturing process, which is intended to be represented by a single diffusion equation. We can also apply the concept of energy levels in statistical mechanics, production density function, in other words, in statistical mechanics “place” that if you use the world of manufacturing and production term. If the free energy in this production (potential) that are consuming the substance is nothing but the entropy production. That is, productivity is defined as the entropy production has to be. Normally, when we increase the number of production units, the product nears completion at year-end number of units completed and will aim to be delivered to the contractor from the turnover order. However, if you stop at any number of units, that will increase production density over time. Thus, the diffusion does not proceed from that would be irreversible. In other words, the congestion will occur in production. This fact and to report the results of analysis based on real data.

  3. Classical two-dimensional numerical algorithm for ?-Induced charge carrier advection-diffusion in Medipix-3 silicon pixel detectors

    NASA Astrophysics Data System (ADS)

    Biamonte, Mason; Idarraga, John

    2013-04-01

    A classical hybrid alternating-direction implicit difference scheme is used to simulate two-dimensional charge carrier advection-diffusion induced by alpha particles incident upon silicon pixel detectors at room temperature in vacuum. A mapping between the results of the simulation and a projection of the cluster size for each incident alpha is constructed. The error between the simulation and the experimental data diminishes with the increase in the applied voltage for the pixels in the central region of the cluster. Simulated peripheral pixel TOT values do not match the data for any value of applied voltage, suggesting possible modifications to the current algorithm from first principles. Coulomb repulsion between charge carriers is built into the algorithm using the Barnes-Hut tree algorithm. The plasma effect arising from the initial presence of holes in the silicon is incorporated into the simulation. The error between the simulation and the data helps identify physics not accounted for in standard literature simulation techniques.

  4. Far-from-equilibrium sheared colloidal liquids: disentangling relaxation, advection, and shear-induced diffusion.

    PubMed

    Lin, Neil Y C; Goyal, Sushmit; Cheng, Xiang; Zia, Roseanna N; Escobedo, Fernando A; Cohen, Itai

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations.

  5. Efficient numerical solution of the time fractional diffusion equation by mapping from its Brownian counterpart

    NASA Astrophysics Data System (ADS)

    Stokes, Peter W.; Philippa, Bronson; Read, Wayne; White, Ronald D.

    2015-02-01

    The solution of a Caputo time fractional diffusion equation of order 0 < α < 1 is expressed in terms of the solution of a corresponding integer order diffusion equation. We demonstrate a linear time mapping between these solutions that allows for accelerated computation of the solution of the fractional order problem. In the context of an N-point finite difference time discretisation, the mapping allows for an improvement in time computational complexity from O (N2) to O (Nα), given a precomputation of O (N 1 + α ln ⁡ N). The mapping is applied successfully to the least squares fitting of a fractional advection-diffusion model for the current in a time-of-flight experiment, resulting in a computational speed up in the range of one to three orders of magnitude for realistic problem sizes.

  6. Stochastic Analysis of Advection-diffusion-Reactive Systems with Applications to Reactive Transport in Porous Media

    SciTech Connect

    Tartakovsky, Daniel

    2013-08-30

    We developed new CDF and PDF methods for solving non-linear stochastic hyperbolic equations that does not rely on linearization approximations and allows for rigorous formulation of the boundary conditions.

  7. Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion Model

    PubMed Central

    Denaro, Giovanni; Valenti, Davide; Spagnolo, Bernardo; Basilone, Gualtiero; Mazzola, Salvatore; Zgozi, Salem W.; Aronica, Salvatore; Bonanno, Angelo

    2013-01-01

    A stochastic advection-reaction-diffusion model with terms of multiplicative white Gaussian noise, valid for weakly mixed waters, is studied to obtain the vertical stationary spatial distributions of two groups of picophytoplankton, i.e., picoeukaryotes and Prochlorococcus, which account about for 60% of total chlorophyll on average in Mediterranean Sea. By numerically solving the equations of the model, we analyze the one-dimensional spatio-temporal dynamics of the total picophytoplankton biomass and nutrient concentration along the water column at different depths. In particular, we integrate the equations over a time interval long enough, obtaining the steady spatial distributions for the cell concentrations of the two picophytoplankton groups. The results are converted into chlorophyll a and divinil chlorophyll a concentrations and compared with experimental data collected in two different sites of the Sicily Channel (southern Mediterranean Sea). The comparison shows that real distributions are well reproduced by theoretical profiles. Specifically, position, shape and magnitude of the theoretical deep chlorophyll maximum exhibit a good agreement with the experimental values. PMID:23826130

  8. A semi-discrete finite element method for a class of time-fractional diffusion equations.

    PubMed

    Sun, HongGuang; Chen, Wen; Sze, K Y

    2013-05-13

    As fractional diffusion equations can describe the early breakthrough and the heavy-tail decay features observed in anomalous transport of contaminants in groundwater and porous soil, they have been commonly used in the related mathematical descriptions. These models usually involve long-time-range computation, which is a critical obstacle for their application; improvement of computational efficiency is of great significance. In this paper, a semi-discrete method is presented for solving a class of time-fractional diffusion equations that overcome the critical long-time-range computation problem. In the procedure, the spatial domain is discretized by the finite element method, which reduces the fractional diffusion equations to approximate fractional relaxation equations. As analytical solutions exist for the latter equations, the burden arising from long-time-range computation can effectively be minimized. To illustrate its efficiency and simplicity, four examples are presented. In addition, the method is used to solve the time-fractional advection-diffusion equation characterizing the bromide transport process in a fractured granite aquifer. The prediction closely agrees with the experimental data, and the heavy-tail decay of the anomalous transport process is well represented. PMID:23547234

  9. A semi-discrete finite element method for a class of time-fractional diffusion equations.

    PubMed

    Sun, HongGuang; Chen, Wen; Sze, K Y

    2013-05-13

    As fractional diffusion equations can describe the early breakthrough and the heavy-tail decay features observed in anomalous transport of contaminants in groundwater and porous soil, they have been commonly used in the related mathematical descriptions. These models usually involve long-time-range computation, which is a critical obstacle for their application; improvement of computational efficiency is of great significance. In this paper, a semi-discrete method is presented for solving a class of time-fractional diffusion equations that overcome the critical long-time-range computation problem. In the procedure, the spatial domain is discretized by the finite element method, which reduces the fractional diffusion equations to approximate fractional relaxation equations. As analytical solutions exist for the latter equations, the burden arising from long-time-range computation can effectively be minimized. To illustrate its efficiency and simplicity, four examples are presented. In addition, the method is used to solve the time-fractional advection-diffusion equation characterizing the bromide transport process in a fractured granite aquifer. The prediction closely agrees with the experimental data, and the heavy-tail decay of the anomalous transport process is well represented.

  10. Advective and diapycnal diffusive oceanic flux in Tenerife - La Gomera Channel

    NASA Astrophysics Data System (ADS)

    Marrero-Díaz, A.; Rodriguez-Santana, A.; Hernández-Arencibia, M.; Machín, F.; García-Weil, L.

    2012-04-01

    During the year 2008, using the commercial passenger ship Volcán de Tauce of the Naviera Armas company several months, it was possible to obtain vertical profiles of temperature from expandable bathythermograph probes in eight stations across the Tenerife - La Gomera channel. With these data of temperature we have been estimated vertical sections of potential density and geostrophic transport with high spatial and temporal resolution (5 nm between stations, and one- two months between cruises). The seasonal variability obtained for the geostrophic transport in this channel shows important differences with others Canary Islands channels. From potential density and geostrophic velocity data we estimated the vertical diffusion coefficients and diapycnal diffusive fluxes, using a parameterization that depends of Richardson gradient number. In the center of the channel and close to La Gomera Island, we found higher values for these diffusive fluxes. Convergence and divergence of these fluxes requires further study so that we can draw conclusions about its impact on the distribution of nutrients in the study area and its impact in marine ecosystems. This work is being used in research projects TRAMIC and PROMECA.

  11. Lattice Boltzmann model for nonlinear convection-diffusion equations.

    PubMed

    Shi, Baochang; Guo, Zhaoli

    2009-01-01

    A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.

  12. Dissecting diffusive and advective motion in colloidal sedimentation by multi-speckle Ultra-Small-Angle XPCS

    NASA Astrophysics Data System (ADS)

    Möller, Johannes; Narayanan, Theyencheri

    In colloidal suspensions internal or external fields can induce directed motions of particles in addition to Brownian diffusion. Here, gradients in temperature or chemical potential, shear flow as well as gravity can act as an external field. Examples for internal motions can be found in synthetic self-propelling particles and microorganisms, generally coined as active matter. We present multi-speckle X-ray photon correlation spectroscopy measurements in the Ultra-Small-Angle scattering range which probes an expanded length scale comparable to DLS and optical microscopy. To demonstrate the advanced capabilities, we show measurements probing the motions within a settling suspension of sub-micron sized silica particles. A global fitting procedure has been applied to separate the diffusive and advective contributions to the particle dynamics. With this, macroscopic parameters such as the sedimentation velocity can be probed on a microscopic level in highly opaque and concentrated systems, which are in general difficult to access for optical investigations. This procedure may prove its value for investigating various kinds of non-equilibrium systems.

  13. Derivation of a Multiparameter Gamma Model for Analyzing the Residence-Time Distribution Function for Nonideal Flow Systems as an Alternative to the Advection-Dispersion Equation

    DOE PAGES

    Embry, Irucka; Roland, Victor; Agbaje, Oluropo; Watson, Valetta; Martin, Marquan; Painter, Roger; Byl, Tom; Sharpe, Lonnie

    2013-01-01

    A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less

  14. Solution spectrum of nonlinear diffusion equations

    SciTech Connect

    Ulmer, W.

    1992-08-01

    The stationary version of the nonlinear diffusion equation -{partial_derivative}c/{partial_derivative}t+D{Delta}c=A{sub 1}c-A{sub 2}c{sup 2} can be solved with the ansatz c={summation}{sub p=1}{sup {infinity}} A{sub p}(cosh kx){sup -p}, inducing a band structure with regard to the ratio {lambda}{sub 1}/{lambda}{sub 2}. The resulting solution manifold can be related to an equilibrium of fluxes of nonequilibrium thermodynamics. The modification of this ansatz yielding the expansion c={summation}{sub p,q=1}{sup infinity}A{sub pa}(cosh kx){sup -p}[(cosh {alpha}t){sup -q-1} sinh {alpha}t+b(cosh {alpha}t){sup -q}] represents a solution spectrum of the time-dependent nonlinear equations, and the stationary version can be found from the asymptotic behaviour of the expansion. The solutions can be associated with reactive processes such as active transport phenomena and control circuit problems is discussed. There are also applications to cellular kinetics of clonogenic cell assays and spheriods. 33 refs., 1 tab.

  15. Distributed-order diffusion equations and multifractality: Models and solutions

    NASA Astrophysics Data System (ADS)

    Sandev, Trifce; Chechkin, Aleksei V.; Korabel, Nickolay; Kantz, Holger; Sokolov, Igor M.; Metzler, Ralf

    2015-10-01

    We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided.

  16. Distributed-order diffusion equations and multifractality: Models and solutions.

    PubMed

    Sandev, Trifce; Chechkin, Aleksei V; Korabel, Nickolay; Kantz, Holger; Sokolov, Igor M; Metzler, Ralf

    2015-10-01

    We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided. PMID:26565178

  17. Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions

    PubMed Central

    Hohn, Maryann E.; Li, Bo; Yang, Weihua

    2015-01-01

    We consider a system of coupled reaction-diffusion equations that models the interaction between multiple types of chemical species, particularly the interaction between one messenger RNA and different types of non-coding microRNAs in biological cells. We construct various modeling systems with different levels of complexity for the reaction, nonlinear diffusion, and coupled reaction and diffusion of the RNA interactions, respectively, with the most complex one being the full coupled reaction-diffusion equations. The simplest system consists of ordinary differential equations (ODE) modeling the chemical reaction. We present a derivation of this system using the chemical master equation and the mean-field approximation, and prove the existence, uniqueness, and linear stability of equilibrium solution of the ODE system. Next, we consider a single, nonlinear diffusion equation for one species that results from the slow diffusion of the others. Using variational techniques, we prove the existence and uniqueness of solution to a boundary-value problem of this nonlinear diffusion equation. Finally, we consider the full system of reaction-diffusion equations, both steady-state and time-dependent. We use the monotone method to construct iteratively upper and lower solutions and show that their respective limits are solutions to the reaction-diffusion system. For the time-dependent system of reaction-diffusion equations, we obtain the existence and uniqueness of global solutions. We also obtain some asymptotic properties of such solutions. PMID:25601722

  18. BEHAVIOR OF SENSITIVITIES IN THE ONE-DIMENSIONAL ADVECTION-DISPERSION EQUATION: IMPLICATIONS FOR PARAMETER ESTIMATION AND SAMPLING DESIGN.

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases. (3) The frequency of sampling must be 'in phase' with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters.

  19. Design of a hybrid advective-diffusive microfluidic system with ellipsometric detection for studying adsorption.

    PubMed

    Wang, Lei; Zhao, Cunlu; Wijnperlé, Daniel; Duits, Michel H G; Mugele, Frieder

    2016-05-01

    Establishing and maintaining concentration gradients that are stable in space and time is critical for applications that require screening the adsorption behavior of organic or inorganic species onto solid surfaces for wide ranges of fluid compositions. In this work, we present a design of a simple and compact microfluidic device based on steady-state diffusion of the analyte, between two control channels where liquid is pumped through. The device generates a near-linear distribution of concentrations. We demonstrate this via experiments with dye solutions and comparison to finite-element numerical simulations. In a subsequent step, the device is combined with total internal reflection ellipsometry to study the adsorption of (cat)ions on silica surfaces from CsCl solutions at variable pH. Such a combined setup permits a fast determination of an adsorption isotherm. The measured optical thickness is compared to calculations from a triple layer model for the ion distribution, where surface complexation reactions of the silica are taken into account. Our results show a clear enhancement of the ion adsorption with increasing pH, which can be well described with reasonable values for the equilibrium constants of the surface reactions. PMID:27375818

  20. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only ~500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  1. Generalized diffusion equation with fractional derivatives within Renyi statistics

    NASA Astrophysics Data System (ADS)

    Kostrobij, P.; Markovych, B.; Viznovych, O.; Tokarchuk, M.

    2016-09-01

    By using the Zubarev nonequilibrium statistical operator method, and the Liouville equation with fractional derivatives, a generalized diffusion equation with fractional derivatives is obtained within the Renyi statistics. Averaging in generalized diffusion coefficient is performed with a power distribution with the Renyi parameter q.

  2. On stochastic diffusion equations and stochastic Burgers' equations

    NASA Astrophysics Data System (ADS)

    Truman, A.; Zhao, H. Z.

    1996-01-01

    In this paper we construct a strong solution for the stochastic Hamilton Jacobi equation by using stochastic classical mechanics before the caustics. We thereby obtain the viscosity solution for a certain class of inviscid stochastic Burgers' equations. This viscosity solution is not continuous beyond the caustics of the corresponding Hamilton Jacobi equation. The Hopf-Cole transformation is used to identify the stochastic heat equation and the viscous stochastic Burgers' equation. The exact solutions for the above two equations are given in terms of the stochastic Hamilton Jacobi function under a no-caustic condition. We construct the heat kernel for the stochastic heat equation for zero potentials in hyperbolic space and for harmonic oscillator potentials in Euclidean space thereby obtaining the stochastic Mehler formula.

  3. Integro-differential diffusion equation and neutron scattering experiment

    NASA Astrophysics Data System (ADS)

    Sau Fa, Kwok

    2015-02-01

    An integro-differential diffusion equation with linear force, based on the continuous time random walk model, is considered. The equation generalizes the ordinary and fractional diffusion equations which includes short, intermediate and long-time memory effects. Analytical expression for the intermediate scattering function is obtained and applied to ribonucleic acid (RNA) hydration water data from torula yeast. The model can capture the dynamics of hydrogen atoms in RNA hydration water, including the long-relaxation times.

  4. Bounce-averaged advection and diffusion coefficients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models

    NASA Astrophysics Data System (ADS)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Shen, Chao; Wang, Yuming; Wang, Shui

    2012-09-01

    The electromagnetic ion cyclotron (EMIC) wave has long been suggested to be responsible for the rapid loss of radiation belt relativistic electrons. The test-particle simulations are performed to calculate the bounce-averaged pitch angle advection and diffusion coefficients for parallel-propagating monochromatic EMIC waves. The comparison between test-particle (TP) and quasi-linear (QL) transport coefficients is further made to quantify the influence of nonlinear processes. For typical EMIC waves, four nonlinear physical processes, i.e., the boundary reflection effect, finite perturbation effect, phase bunching and phase trapping, are found to occur sequentially from small to large equatorial pitch angles. The pitch angle averaged finite perturbation effect yields slight differences between the transport coefficients of TP and QL models. The boundary reflection effect and phase bunching produce an average reduction of >80% in the diffusion coefficients but a small change in the corresponding average advection coefficients, tending to lower the loss rate predicted by QL theory. In contrast, the phase trapping causes continuous negative advection toward the loss cone and a minor change in the corresponding diffusion coefficients, tending to increase the loss rate predicted by QL theory. For small amplitude EMIC waves, the transport coefficients grow linearly with the square of wave amplitude. As the amplitude increases, the boundary reflection effect, phase bunching and phase trapping start to occur. Consequently, the TP advection coefficients deviate from the linear growth with the square of wave amplitude, and the TP diffusion coefficients become saturated with the amplitude approaching 1 nT or above. The current results suggest that these nonlinear processes can cause significant deviation of transport coefficients from the prediction of QL theory, which should be taken into account in the future simulations of radiation belt dynamics driven by the EMIC waves.

  5. Bounce-averaged advection and diffusion coefficients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models

    NASA Astrophysics Data System (ADS)

    Su, Z.; Zhu, H.; Xiao, F.; Zheng, H.; Shen, C.; Wang, Y.; Wang, S.

    2012-12-01

    The electromagnetic ion cyclotron (EMIC) wave has been long suggested to be responsible for the rapid loss of radiation belt relativistic electrons. The test-particle simulations are performed to calculate the bounce-averaged pitch-angle advection and diffusion coefficients for parallel-propagating monochromatic EMIC waves. The comparison between test-particle (TP) and quasi-linear (QL) transport coefficients is further made to quantify the influence of nonlinear processes. For typical EMIC waves, four nonlinear physical processes, i.e., the boundary reflection effect, finite perturbation effect, phase bunching and phase trapping, are found to occur sequentially from small to large equatorial pitch angles. The pitch-angle averaged finite perturbation effect yields slight differences between the transport coefficients of TP and QL models. The boundary reflection effect and phase bunching produce an average reduction of >80% in the diffusion coefficients but a small change in the corresponding average advection coefficients, tending to lower the loss rate predicted by QL theory. In contrast, the phase trapping causes continuous negative advection toward the loss cone and a minor change in the corresponding diffusion coefficients, tending to increase the loss rate predicted by QL theory. For small amplitude EMIC waves, the transport coefficients grow linearly with the square of wave amplitude. As the amplitude increases, the boundary reflection effect, phase bunching and phase trapping start to occur. Consequently, the TP advection coefficients deviate from the linear growth with the square of wave amplitude, and the TP diffusion coefficients become saturated with the amplitude approaching 1nT or above. The current results suggest that these nonlinear processes can cause significant deviation of transport coefficients from the prediction of QL theory, which should be taken into account in the future simulations of radiation belt dynamics driven by the EMIC waves.

  6. PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach

    NASA Astrophysics Data System (ADS)

    Witherden, F. D.; Farrington, A. M.; Vincent, P. E.

    2014-11-01

    High-order numerical methods for unstructured grids combine the superior accuracy of high-order spectral or finite difference methods with the geometric flexibility of low-order finite volume or finite element schemes. The Flux Reconstruction (FR) approach unifies various high-order schemes for unstructured grids within a single framework. Additionally, the FR approach exhibits a significant degree of element locality, and is thus able to run efficiently on modern streaming architectures, such as Graphical Processing Units (GPUs). The aforementioned properties of FR mean it offers a promising route to performing affordable, and hence industrially relevant, scale-resolving simulations of hitherto intractable unsteady flows within the vicinity of real-world engineering geometries. In this paper we present PyFR, an open-source Python based framework for solving advection-diffusion type problems on streaming architectures using the FR approach. The framework is designed to solve a range of governing systems on mixed unstructured grids containing various element types. It is also designed to target a range of hardware platforms via use of an in-built domain specific language based on the Mako templating engine. The current release of PyFR is able to solve the compressible Euler and Navier-Stokes equations on grids of quadrilateral and triangular elements in two dimensions, and hexahedral elements in three dimensions, targeting clusters of CPUs, and NVIDIA GPUs. Results are presented for various benchmark flow problems, single-node performance is discussed, and scalability of the code is demonstrated on up to 104 NVIDIA M2090 GPUs. The software is freely available under a 3-Clause New Style BSD license (see www.pyfr.org). Catalogue identifier: AETY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: New style BSD license No. of lines in

  7. Wave and pseudo-diffusion equations from squeezed states

    NASA Technical Reports Server (NTRS)

    Daboul, Jamil

    1993-01-01

    We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.

  8. Ages estimated from a diffusion equation model for scarp degradation

    USGS Publications Warehouse

    Colman, Steven M.; Watson, K.E.N.

    1983-01-01

    The diffusion equation derived from the continuity equation for hillslopes is applied to scarp erosion in unconsolidated materials. Solutions to this equation allow direct calculation of the product of the rate coefficient and the age of the scarp from measurements of scarp morphology. Where the rate coefficient can be estimated or can be derived from scarps of known age, this method allows direct calculation of unknown ages of scarps.

  9. Stability of Stationary Solutions of the Multifrequency Radiation Diffusion Equations

    SciTech Connect

    Hald, O H; Shestakov, A I

    2004-01-20

    A nondimensional model of the multifrequency radiation diffusion equation is derived. A single material, ideal gas, equation of state is assumed. Opacities are proportional to the inverse of the cube of the frequency. Inclusion of stimulated emission implies a Wien spectrum for the radiation source function. It is shown that the solutions are uniformly bounded in time and that stationary solutions are stable. The spatially independent solutions are asymptotically stable, while the spatially dependent solutions of the linearized equations approach zero.

  10. Multilevel methods for transport equations in diffusive regimes

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; Ressel, Klaus

    1993-01-01

    We consider the numerical solution of the single-group, steady state, isotropic transport equation. An analysis by means of the moment equations shows that a discrete ordinate S(sub N) discretization in direction (angle) with a least squares finite element discretization in space does not behave properly in the diffusion limit. A scaling of the S(sub N) equations is introduced so that the least squares discretization has the correct diffusion limit. For the resulting discrete system a full multigrid algorithm was developed.

  11. Exact solutions for logistic reaction-diffusion equations in biology

    NASA Astrophysics Data System (ADS)

    Broadbridge, P.; Bradshaw-Hajek, B. H.

    2016-08-01

    Reaction-diffusion equations with a nonlinear source have been widely used to model various systems, with particular application to biology. Here, we provide a solution technique for these types of equations in N-dimensions. The nonclassical symmetry method leads to a single relationship between the nonlinear diffusion coefficient and the nonlinear reaction term; the subsequent solutions for the Kirchhoff variable are exponential in time (either growth or decay) and satisfy the linear Helmholtz equation in space. Example solutions are given in two dimensions for particular parameter sets for both quadratic and cubic reaction terms.

  12. Diffusion MRI/NMR magnetization equations with relaxation times

    NASA Astrophysics Data System (ADS)

    de, Dilip; Daniel, Simon

    2012-10-01

    Bloch-Torrey diffusion magnetization equation ignores relaxation effects of magnetization. Relaxation times are important in any diffusion magnetization studies of perfusion in tissues(Brain and heart specially). Bloch-Torrey equation cannot therefore describe diffusion magnetization in a real-life situation where relaxation effects play a key role, characteristics of tissues under examination. This paper describes derivations of two equations for each of the y and z component diffusion NMR/MRI magnetization (separately) in a rotating frame of reference, where rf B1 field is applied along x direction and bias magnetic field(Bo) is along z direction. The two equations are expected to further advance the science & technology of Diffusion MRI(DMRI) and diffusion functional MRI(DFMRI). These two techniques are becoming increasingly important in the study and treatment of neurological disorders, especially for the management of patients with acute stroke. It is rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fibre structure and provide models of brain connectivity.

  13. Effective Edwards-Wilkinson equation for single-file diffusion.

    PubMed

    Centres, P M; Bustingorry, S

    2010-06-01

    In this work, we present an effective discrete Edwards-Wilkinson equation aimed to describe the single-file diffusion process. The key physical properties of the system are captured defining an effective elasticity, which is proportional to the single particle diffusion coefficient and to the inverse squared mean separation between particles. The effective equation gives a description of single-file diffusion using the global roughness of the system of particles, which presents three characteristic regimes, namely, normal diffusion, subdiffusion, and saturation, separated by two crossover times. We show how these regimes scale with the parameters of the original system. Additional repulsive interaction terms are also considered and we analyze how the crossover times depend on the intensity of the additional terms. Finally, we show that the roughness distribution can be well characterized by the Edwards-Wilkinson universal form for the different single-file diffusion processes studied here.

  14. HEMP advection model

    SciTech Connect

    Sharp, R.W. Jr.; Barton, R.T.

    1981-01-21

    A continuous rezoning procedure has been implemented in the computational cycle of a version of the HEMP two-dimensional, Lagrange, fluid dynamics code. The rezoning problem is divided into two steps. The first step requires the solving of ordinary Lagrange equations of motion; the second step consists of adding equipotential grid relaxation along with an advective remapping scheme.

  15. Circumnutation modeled by reaction-diffusion equations

    SciTech Connect

    Lubkin, S.R.

    1992-01-01

    In studies of biological oscillators, plants are only rarely examined. The authors study a common sub-diurnal oscillation of plants, called circumnutation. Based on experimental evidence that the oscillations consist of a turgor wave traveling around a growing plant part, circumnutation is modeled by a nonlinear reaction-diffusion system with cylindrical geometry. Because of its simplicity, and because biological oscillations are so common, an oscillatory [lambda]-[omega] reaction-diffusion system is chosen for the model. The authors study behavior of traveling waves in [lambda]-[omega] systems. The authors show the existence of Hopf bifurcations and the stability of the limit cycles born at the Hopf bifurcation for some parameter values. Using a Lindstedt-type perturbation scheme, the authors construct periodic solutions of the [lambda]-[omega] system near a Hopf bifurcation and show that the periodic solutions superimposed on the original traveling wave have the effect of altering its overall frequency and amplitude. Circumnutating plants generally display a strong directional preference to their oscillations, which is species-dependent. Circumnutation is modeled by a [lambda]-[omega] system on an annulus of variable width, which does not possess reflection symmetry about any axis. The annulus represents a region of high potassium concentration in the cross-section of the stem. The asymmetry of the annulus represents the anatomical asymmetry of the plant. Traveling waves are constructed on this variable-width annulus by a perturbation scheme, and perturbing the width of the annulus alters the amplitude and frequency of traveling waves on the domain by a small (order [epsilon][sup 2]) amount. The speed, frequency, and stability are unaffected by the direction of travel of the wave on the annulus. This indicates that the [lambda]-[omega] system on a variable-width domain cannot account for directional preferences of traveling waves in biological systems.

  16. Diffusion-equation method for crystallographic figure of merits.

    PubMed

    Markvardsen, Anders J; David, William I F

    2010-09-01

    Global optimization methods play a significant role in crystallography, particularly in structure solution from powder diffraction data. This paper presents the mathematical foundations for a diffusion-equation-based optimization method. The diffusion equation is best known for describing how heat propagates in matter. However, it has also attracted considerable attention as the basis for global optimization of a multimodal function [Piela et al. (1989). J. Phys. Chem. 93, 3339-3346]. The method relies heavily on available analytical solutions for the diffusion equation. Here it is shown that such solutions can be obtained for two important crystallographic figure-of-merit (FOM) functions that fully account for space-group symmetry and allow the diffusion-equation solution to vary depending on whether atomic coordinates are fixed or not. The resulting expression is computationally efficient, taking the same order of floating-point operations to evaluate as the starting FOM function measured in terms of the number of atoms in the asymmetric unit. This opens the possibility of implementing diffusion-equation methods for crystallographic global optimization algorithms such as structure determination from powder diffraction data.

  17. A SIS reaction-diffusion-advection model in a low-risk and high-risk domain

    NASA Astrophysics Data System (ADS)

    Ge, Jing; Kim, Kwang Ik; Lin, Zhigui; Zhu, Huaiping

    2015-11-01

    A simplified SIS model is proposed and investigated to understand the impact of spatial heterogeneity of environment and advection on the persistence and eradication of an infectious disease. The free boundary is introduced to model the spreading front of the disease. The basic reproduction number associated with the diseases in the spatial setting is introduced. Sufficient conditions for the disease to be eradicated or to spread are given. Our result shows that if the spreading domain is high-risk at some time, the disease will continue to spread till the whole area is infected; while if the spreading domain is low-risk, the disease may be vanishing or keep spreading depending on the expanding capability and the initial number of the infective individuals. The spreading speeds are also given when spreading happens, numerical simulations are presented to illustrate the impacts of the advection and the expanding capability on the spreading fronts.

  18. Lie symmetry properties of nonlinear reaction-diffusion equations with gradient-dependent diffusivity

    NASA Astrophysics Data System (ADS)

    Cherniha, Roman; King, John R.; Kovalenko, Sergii

    2016-07-01

    Complete descriptions of the Lie symmetries of a class of nonlinear reaction-diffusion equations with gradient-dependent diffusivity in one and two space dimensions are obtained. A surprisingly rich set of Lie symmetry algebras depending on the form of diffusivity and source (sink) in the equations is derived. It is established that there exists a subclass in 1-D space admitting an infinite-dimensional Lie algebra of invariance so that it is linearisable. A special power-law diffusivity with a fixed exponent, which leads to wider Lie invariance of the equations in question in 2-D space, is also derived. However, it is shown that the diffusion equation without a source term (which often arises in applications and is sometimes called the Perona-Malik equation) possesses no rich variety of Lie symmetries depending on the form of gradient-dependent diffusivity. The results of the Lie symmetry classification for the reduction to lower dimensionality, and a search for exact solutions of the nonlinear 2-D equation with power-law diffusivity, also are included.

  19. Efficient stochastic Galerkin methods for random diffusion equations

    SciTech Connect

    Xiu Dongbin Shen Jie

    2009-02-01

    We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We employ generalized polynomial chaos (gPC) expansion to express the solution in a convergent series and obtain a set of deterministic equations for the expansion coefficients by Galerkin projection. Although the resulting system of diffusion equations are coupled, we show that one can construct fast numerical methods to solve them in a decoupled fashion. The methods are based on separation of the diagonal terms and off-diagonal terms in the matrix of the Galerkin system. We examine properties of this matrix and show that the proposed method is unconditionally stable for unsteady problems and convergent for steady problems with a convergent rate independent of discretization parameters. Numerical examples are provided, for both steady and unsteady random diffusions, to support the analysis.

  20. Multi-scale analysis of collective behavior in 2D self-propelled particle models of swarms: An Advection-Diffusion with Memory Approach

    NASA Astrophysics Data System (ADS)

    Raghib, Michael; Levin, Simon; Kevrekidis, Ioannis

    2010-05-01

    2. The long-time behavior of the msd of the centroid walk scales linearly with time for naïve groups (diffusion), but shows a sharp transition to quadratic scaling (advection) for informed ones. These observations suggest that the mesoscopic variables of interest are the magnitude of the drift, the diffusion coefficient and the time-scales at which the anomalous and the asymptotic behavior respectively dominate transport, the latter being linked to the time scale at which the group reaches a decision. In order to estimate these summary statistics from the msd, we assumed that the configuration centroid follows an uncoupled Continuous Time Random Walk (CTRW) with smooth jump and waiting time pdf's. The mesoscopic transport equation for this type of random walk corresponds to an Advection-Diffusion Equation with Memory (ADEM). The introduction of the memory, and thus non-Markovian effects, is necessary in order to correctly account for the two time scales present. Although we were not able to calculate the memory directly from the individual-level rules, we show that it can estimated from a single, relatively short, simulation run using a Mittag-Leffler function as template. With this function it is possible to predict accurately the behavior of the msd, as well as the full pdf for the position of the centroid. The resulting ADEM is self-consistent in the sense that transport parameters estimated from the memory via a Kubo relationship coincide with those estimated from the moments of the jump size pdf of the associated CTRW for a large number of group sizes, proportions of informed individuals, and degrees of bias along the preferred direction. We also discuss the phase diagrams for the transport coefficients estimated from this method, where we notice velocity-precision trade-offs, where precision is a measure of the deviation of realized group orientations with respect to the informed direction. We also note that the time scale to collective decision is invariant

  1. Explosive instabilities of reaction-diffusion equations including pinch effects

    SciTech Connect

    Wilhelmsson, H. Laboratoire de Physique des Milieux Ionises, Ecole Polytechnique, F-91128 Palaiseau Laboratoire de Physique Theorique et Mathematique, Universite Paris VII, Tour centrale, 3 etage, 2 place Jussieu, Paris CEDEX 05 )

    1993-01-01

    Particular solutions of reaction-diffusion equations for temperature are obtained for explosively unstable situations. As a result of the interplay between inertial, diffusion, pinch, and source processes, certain bell-shaped'' distributions may grow explosively in time while preserving the shape of the spatial distribution. The effect of the pinch, which requires a density inhomogeneity, is found to diminish the effect of diffusion, or inversely to support the inertial and source processes in creating the explosion. The results may be described in terms of elliptic integrals or, more simply, by means of expansions in the spatial coordinate. An application is the temperature evolution of a burning fusion plasma.

  2. Advection around ventilated U-shaped burrows: A model study

    NASA Astrophysics Data System (ADS)

    Brand, Andreas; Lewandowski, JöRg; Hamann, Enrico; Nützmann, Gunnar

    2013-05-01

    Advective transport in the porous matrix of sediments surrounding burrows formed by fauna such as Chironomus plumosus has been generally neglected. A positron emission tomography study recently revealed that the pumping activity of the midge larvae can indeed induce fluid flow in the sediment. We present a numerical model study which explores the conditions at which advective transport in the sediment becomes relevant. A 0.15 m deep U-shaped burrow with a diameter of 0.002 m within the sediment was represented in a 3-D domain. Fluid flow in the burrow was calculated using the Navier-Stokes equation for incompressible laminar flow in the burrow, and flow in the sediment was described by Darcy's law. Nonreactive and reactive transport scenarios were simulated considering diffusion and advection. The pumping activity of the model larva results in considerable advective flow in the sediment at reasonable high permeabilities with flow velocities of up to 7.0 × 10-6 m s-1 close to the larva for a permeability of 3 × 10-12 m2. At permeabilities below 7 × 10-13 m2 advection is negligible compared to diffusion. Reactive transport simulations using first-order kinetics for oxygen revealed that advective flux into the sediment downstream of the pumping larva enhances sedimentary uptake, while the advective flux into the burrow upstream of the larvae inhibits diffusive sedimentary uptake. Despite the fact that both effects cancel each other with respect to total solute uptake, the advection-induced asymmetry in concentration distribution can lead to a heterogeneous solute and redox distribution in the sediment relevant to complex reaction networks.

  3. Green's Function Nodal Algorithm for the Diffusion Equation.

    1989-12-04

    Version 00 GRENADE is a coarse-mesh program designed for neutronic flux and power calculations in nuclear reactors. It solves the static diffusion equation for neutrons in multidimensional problems, assuming Cartesian Geometry. The program yields flux and power distributions and the effective neutron multiplication factor .

  4. Pullback attractors for nonclassical diffusion equations with delays

    NASA Astrophysics Data System (ADS)

    Zhu, Kaixuan; Sun, Chunyou

    2015-09-01

    In this paper, we prove the existence of pullback attractors in C H0 1 ( Ω ) for a nonclassical diffusion equation with delay term g(t, ut) which contains some hereditary characteristics. We consider two types of nonlinearity f: one is the case of critical growth and the other one is the polynomial growth of arbitrary order p - 1(p ≥ 2).

  5. A numerical solution for the diffusion equation in hydrogeologic systems

    USGS Publications Warehouse

    Ishii, A.L.; Healy, R.W.; Striegl, R.G.

    1989-01-01

    The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)

  6. Langevin and diffusion equation of turbulent fluid flow

    NASA Astrophysics Data System (ADS)

    Brouwers, J. J. H.

    2010-08-01

    A derivation of the Langevin and diffusion equations describing the statistics of fluid particle displacement and passive admixture in turbulent flow is presented. Use is made of perturbation expansions. The small parameter is the inverse of the Kolmogorov constant C 0 , which arises from Lagrangian similarity theory. The value of C 0 in high Reynolds number turbulence is 5-6. To achieve sufficient accuracy, formulations are not limited to terms of leading order in C0 - 1 including terms next to leading order in C0 - 1 as well. Results of turbulence theory and statistical mechanics are invoked to arrive at the descriptions of the Langevin and diffusion equations, which are unique up to truncated terms of O ( C0 - 2 ) in displacement statistics. Errors due to truncation are indicated to amount to a few percent. The coefficients of the presented Langevin and diffusion equations are specified by fixed-point averages of the Eulerian velocity field. The equations apply to general turbulent flow in which fixed-point Eulerian velocity statistics are non-Gaussian to a degree of O ( C0 - 1 ) . The equations provide the means to calculate and analyze turbulent dispersion of passive or almost passive admixture such as fumes, smoke, and aerosols in areas ranging from atmospheric fluid motion to flows in engineering devices.

  7. Methods for diffusive relaxation in the Pn equation

    SciTech Connect

    Hauck, Cory D; Mcclarren, Ryan G; Lowrie, Robert B

    2008-01-01

    We present recent progress in the development of two substantially different approaches for simulating the so-called of P{sub N} equations. These are linear hyperbolic systems of PDEs that are used to model particle transport in a material medium, that in highly collisional regimes, are accurately approximated by a simple diffusion equation. This limit is based on a balance between function values and gradients of certain variables in the P{sub N} system. Conventional reconstruction methods based on upwinding approximate such gradients with an error that is dependent on the size of the computational mesh. Thus in order to capture the diffusion limit, a given mesh must resolve the dynamics of the continuum equation at the level of the mean-free-path, which tends to zero in the diffusion limit. The two methods analyzed here produce accurate solutions in both collisional and non-collisional regimes; in particular, they do not require resolution of the mean-free-path in order to properly capture the diffusion limit. The first method is a straight-forward application of the discrete Galerkin (DG) methodology, which uses additional variables in each computational cell to capture the balance between function values and gradients, which are computed locally. The second method uses a temporal splitting of the fast and slow dynamics in the P{sub N} system to derive so-called regularized equations for which the diffusion limit is built-in. We focus specifically on the P{sub N} equations for one-dimensional, slab geometries. Preliminary results for several benchmark problems are presented which highlight the advantages and disadvantages of each method. Further improvements and extensions are also discussed.

  8. Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1998-01-01

    We extend the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) for solution of the advection-dispersion equation to two dimensions. The method can conserve mass globally and is not limited by restrictions on the size of the grid Peclet or Courant number. Therefore, it is well suited for solution of advection-dominated ground-water solute transport problems. In test problem comparisons with standard finite differences, FVELLAM is able to attain accurate solutions on much coarser space and time grids. On fine grids, the accuracy of the two methods is comparable. A critical aspect of FVELLAM (and all other ELLAMs) is evaluation of the mass storage integral from the preceding time level. In FVELLAM this may be accomplished with either a forward or backtracking approach. The forward tracking approach conserves mass globally and is the preferred approach. The backtracking approach is less computationally intensive, but not globally mass conservative. Boundary terms are systematically represented as integrals in space and time which are evaluated by a common integration scheme in conjunction with forward tracking through time. Unlike the one-dimensional case, local mass conservation cannot be guaranteed, so slight oscillations in concentration can develop, particularly in the vicinity of inflow or outflow boundaries. Published by Elsevier Science Ltd.

  9. Optimal prediction for moment models: crescendo diffusion and reordered equations

    NASA Astrophysics Data System (ADS)

    Seibold, Benjamin; Frank, Martin

    2009-12-01

    A direct numerical solution of the radiative transfer equation or any kinetic equation is typically expensive, since the radiative intensity depends on time, space and direction. An expansion in the direction variables yields an equivalent system of infinitely many moments. A fundamental problem is how to truncate the system. Various closures have been presented in the literature. We want to generally study the moment closure within the framework of optimal prediction, a strategy to approximate the mean solution of a large system by a smaller system, for radiation moment systems. We apply this strategy to radiative transfer and show that several closures can be re-derived within this framework, such as P N , diffusion, and diffusion correction closures. In addition, the formalism gives rise to new parabolic systems, the reordered P N equations, that are similar to the simplified P N equations. Furthermore, we propose a modification to existing closures. Although simple and with no extra cost, this newly derived crescendo diffusion yields better approximations in numerical tests.

  10. An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like

    SciTech Connect

    Pierantozzi, T.; Vazquez, L.

    2005-11-01

    Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case.

  11. Langevin equation with fluctuating diffusivity: A two-state model.

    PubMed

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool. PMID:27575079

  12. Langevin equation with fluctuating diffusivity: A two-state model

    NASA Astrophysics Data System (ADS)

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.

  13. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: application to the Indian ocean skipjack tuna fishery.

    PubMed

    Faugeras, Blaise; Maury, Olivier

    2005-10-01

    We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.

  14. Simple jumping process with memory: Transport equation and diffusion

    NASA Astrophysics Data System (ADS)

    Kamińska, A.; Srokowski, T.

    2004-06-01

    We present a stochastic jumping process, defined in terms of jump-size probability density and jumping rate, which is a generalization of the well-known kangaroo process. The definition takes into account two process values: after and before the jump. Therefore, the process is able to preserve memory about its previous values. It possesses a simple stationary limit. Its master equation is interpreted as the kinetic equation with variable collision rate. The process can be easily applied to model systems which relax to distributions other than Maxwellian. The case of a constant jumping rate corresponds to the diffusion process, either normal or ballistic.

  15. Support Operators Method for the Diffusion Equation in Multiple Materials

    SciTech Connect

    Winters, Andrew R.; Shashkov, Mikhail J.

    2012-08-14

    A second-order finite difference scheme for the solution of the diffusion equation on non-uniform meshes is implemented. The method allows the heat conductivity to be discontinuous. The algorithm is formulated on a one dimensional mesh and is derived using the support operators method. A key component of the derivation is that the discrete analog of the flux operator is constructed to be the negative adjoint of the discrete divergence, in an inner product that is a discrete analog of the continuum inner product. The resultant discrete operators in the fully discretized diffusion equation are symmetric and positive definite. The algorithm is generalized to operate on meshes with cells which have mixed material properties. A mechanism to recover intermediate temperature values in mixed cells using a limited linear reconstruction is introduced. The implementation of the algorithm is verified and the linear reconstruction mechanism is compared to previous results for obtaining new material temperatures.

  16. Reaction diffusion equation with spatio-temporal delay

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihong; Rong, Erhua

    2014-07-01

    We investigate reaction-diffusion equation with spatio-temporal delays, the global existence, uniqueness and asymptotic behavior of solutions for which in relation to constant steady-state solution, included in the region of attraction of a stable steady solution. It is shown that if the delay reaction function satisfies some conditions and the system possesses a pair of upper and lower solutions then there exists a unique global solution. In terms of the maximal and minimal constant solutions of the corresponding steady-state problem, we get the asymptotic stability of reaction-diffusion equation with spatio-temporal delay. Applying this theory to Lotka-Volterra model with spatio-temporal delay, we get the global solution asymptotically tend to the steady-state problem's steady-state solution.

  17. Weighted average finite difference methods for fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.

    2006-07-01

    A class of finite difference methods for solving fractional diffusion equations is considered. These methods are an extension of the weighted average methods for ordinary (non-fractional) diffusion equations. Their accuracy is of order (Δ x) 2 and Δ t, except for the fractional version of the Crank-Nicholson method, where the accuracy with respect to the timestep is of order (Δ t) 2 if a second-order approximation to the fractional time-derivative is used. Their stability is analyzed by means of a recently proposed procedure akin to the standard von Neumann stability analysis. A simple and accurate stability criterion valid for different discretization schemes of the fractional derivative, arbitrary weight factor, and arbitrary order of the fractional derivative, is found and checked numerically. Some examples are provided in which the new methods' numerical solutions are obtained and compared against exact solutions.

  18. Fundamental solution of the tempered fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Liemert, André; Kienle, Alwin

    2015-11-01

    In this paper, we consider the space-time fractional diffusion equation Dt β u ( x , t ) + K ( - ∞ Dx α , λ ) u ( x , t ) = 0 , x ∈ R , t > 0 , with the tempered Riemann-Liouville derivative of order 0 < α ≤ 1 in space and the Caputo derivative of order 0 < β ≤ 1 in time. The fundamental solution, which turns out to be a spatial probability density function, is given in computable series form as well as in integral representation. The spatial moments of the probability density function are determined explicitly for an arbitrary order n ∈ ℕ0. Moreover, Green's function of the untempered neutral-fractional diffusion equation is analyzed in view of absolute and relative extreme points. At the end of this article, we point out a remarkably and important integral representation for accurate evaluation of the M-Wright/Mainardi function Mα(x) of order 0 < α < 1 and arguments x ∈ R0 + .

  19. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  20. Reaction rates for a generalized reaction-diffusion master equation

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  1. Reaction rates for a generalized reaction-diffusion master equation.

    PubMed

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  2. INFLUENCES OF DIFFUSION AND ADVECTIVE FLOW ON THE DISTRIBUTION OF RADON ACTIVITY WITHIN U.S. EPA'S SOIL CHAMBER

    EPA Science Inventory

    The paper presents an analysis of steady-state diffusion in the soil for two different conditions of moisture. The model accounts for multiphase emanation and transport. When the position dependence of the moisture profile is taken into account, the model and measurements agree w...

  3. Characterization of Cocycle Attractors for Nonautonomous Reaction-Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Cardoso, C. A.; Langa, J. A.; Obaya, R.

    In this paper, we describe in detail the global and cocycle attractors related to nonautonomous scalar differential equations with diffusion. In particular, we investigate reaction-diffusion equations with almost-periodic coefficients. The associated semiflows are strongly monotone which allow us to give a full characterization of the cocycle attractor. We prove that, when the upper Lyapunov exponent associated to the linear part of the equations is positive, the flow is persistent in the positive cone, and we study the stability and the set of continuity points of the section of each minimal set in the global attractor for the skew product semiflow. We illustrate our result with some nontrivial examples showing the richness of the dynamics on this attractor, which in some situations shows internal chaotic dynamics in the Li-Yorke sense. We also include the sublinear and concave cases in order to go further in the characterization of the attractors, including, for instance, a nonautonomous version of the Chafee-Infante equation. In this last case we can show exponentially forward attraction to the cocycle (pullback) attractors in the positive cone of solutions.

  4. Laser speckle contrast imaging is sensitive to advective flux

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Unlike laser Doppler flowmetry, there has yet to be presented a clear description of the physical variables that laser speckle contrast imaging (LSCI) is sensitive to. Herein, we present a theoretical basis for demonstrating that LSCI is sensitive to total flux and, in particular, the summation of diffusive flux and advective flux. We view LSCI from the perspective of mass transport and briefly derive the diffusion with drift equation in terms of an LSCI experiment. This equation reveals the relative sensitivity of LSCI to both diffusive flux and advective flux and, thereby, to both concentration and the ordered velocity of the scattering particles. We demonstrate this dependence through a short series of flow experiments that yield relationships between the calculated speckle contrast and the concentration of the scatterers (manifesting as changes in scattering coefficient), between speckle contrast and the velocity of the scattering fluid, and ultimately between speckle contrast and advective flux. Finally, we argue that the diffusion with drift equation can be used to support both Lorentzian and Gaussian correlation models that relate observed contrast to the movement of the scattering particles and that a weighted linear combination of these two models is likely the most appropriate model for relating speckle contrast to particle motion.

  5. Analysis of a mixed space-time diffusion equation

    NASA Astrophysics Data System (ADS)

    Momoniat, Ebrahim

    2015-06-01

    An energy method is used to analyze the stability of solutions of a mixed space-time diffusion equation that has application in the unidirectional flow of a second-grade fluid and the distribution of a compound Poisson process. Solutions to the model equation satisfying Dirichlet boundary conditions are proven to dissipate total energy and are hence stable. The stability of asymptotic solutions satisfying Neumann boundary conditions coincides with the condition for the positivity of numerical solutions of the model equation from a Crank-Nicolson scheme. The Crank-Nicolson scheme is proven to yield stable numerical solutions for both Dirichlet and Neumann boundary conditions for positive values of the critical parameter. Numerical solutions are compared to analytical solutions that are valid on a finite domain.

  6. On three explicit difference schemes for fractional diffusion and diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Quintana Murillo, Joaquín; Bravo Yuste, Santos

    2009-10-01

    Three explicit difference schemes for solving fractional diffusion and fractional diffusion-wave equations are studied. We consider these equations in both the Riemann-Liouville and the Caputo forms. We find that the Gorenflo et al (2000 J. Comput. Appl. Math. 118 175) and the Yuste-Acedo (2005 SIAM J. Numer. Anal. 42 1862) methods when applied to fractional diffusion equations are equivalent when BDF1 coefficients are used to discretize the fractional derivative operators, but that this is not the case for fractional diffusion-wave equations. The accuracy and stability of the three methods are studied. Surprisingly, the third method, that of Ciesielski-Leszczynski (2003 Proc. 15th Conf. on Computer Methods in Mechanics), although closely related to the Gorenflo et al method, is the least accurate, especially for short times. The stability analysis is carried out by means of a procedure close to the standard von Neumann method. We find that the stability bounds of the three methods are the same.

  7. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, Kβ(t)D radβ/sα, where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γβgβδβDf1 tα), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γβgβδβDf2 tα), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α = 1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1 ∫0τ Kβ (t)dtα ] . The results obtained in this study are in good agreement with the results in literature. Several expressions that describe signal

  8. Cellular Automata for Spatiotemporal Pattern Formation from Reaction-Diffusion Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Ohmori, Shousuke; Yamazaki, Yoshihiro

    2016-01-01

    Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.

  9. Reaction-diffusion master equation in the microscopic limit

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2012-04-01

    Stochastic modeling of reaction-diffusion kinetics has emerged as a powerful theoretical tool in the study of biochemical reaction networks. Two frequently employed models are the particle-tracking Smoluchowski framework and the on-lattice reaction-diffusion master equation (RDME) framework. As the mesh size goes from coarse to fine, the RDME initially becomes more accurate. However, recent developments have shown that it will become increasingly inaccurate compared to the Smoluchowski model as the lattice spacing becomes very fine. Here we give a general and simple argument for why the RDME breaks down. Our analysis reveals a hard limit on the voxel size for which no local RDME can agree with the Smoluchowski model and lets us quantify this limit in two and three dimensions. In this light we review and discuss recent work in which the RDME has been modified in different ways in order to better agree with the microscale model for very small voxel sizes.

  10. Time Fractional Diffusion Equations and Analytical Solvable Models

    NASA Astrophysics Data System (ADS)

    Bakalis, Evangelos; Zerbetto, Francesco

    2016-08-01

    The anomalous diffusion of a particle that moves in complex environments is analytically studied by means of the time fractional diffusion equation. The influence on the dynamics of a random moving particle caused by a uniform external field is taken into account. We extract analytical solutions in terms either of the Mittag-Leffler functions or of the M- Wright function for the probability distribution, for the velocity autocorrelation function as well as for the mean and the mean square displacement. Discussion of the applicability of the model to real systems is made in order to provide new insight of the medium from the analysis of the motion of a particle embedded in it.

  11. Dynamic hysteresis modeling including skin effect using diffusion equation model

    NASA Astrophysics Data System (ADS)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  12. An Exact Solution of the Linearized Multifrequency Radiation Diffusion Equation

    SciTech Connect

    Shestakov, A

    2002-02-01

    An exact solution, based on Fourier and Laplace (FL) transforms, is developed for a linearization of the system modeling the multifrequency radiation diffusion and matter energy balance equations. The model uses an ideal gas equation of state. Opacities are proportional to the inverse of the cube of the frequency, thereby simulating free-free transitions. The solution is obtained in terms of integrals over the FL coefficients of the initial conditions and explicit sources. Results are presented for two special cases. (1) No sources, initially cold radiation field, and a localized matter energy profile. (2) Initially cold matter and radiation fields and a source of matter energy extending over finite space and time intervals.

  13. New variable separation solutions for the generalized nonlinear diffusion equations

    NASA Astrophysics Data System (ADS)

    Fei-Yu, Ji; Shun-Li, Zhang

    2016-03-01

    The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u,ux)uxx + B(u,ux) is studied by using the conditional Lie-Bäcklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie-Bäcklund symmetries, are characterized. To construct functionally generalized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11371293, 11401458, and 11501438), the National Natural Science Foundation of China, Tian Yuan Special Foundation (Grant No. 11426169), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JQ1014).

  14. Bifurcations of diffusive soliton solutions to Kuznetsov's equation

    NASA Astrophysics Data System (ADS)

    Jordan, Pedro M.

    2003-04-01

    Exact traveling wave solutions are determined for Kuznetsov's equation, a nonlinear PDE of 3rd order which describes finite amplitude acoustic disturbances in thermoviscous Newtonian fluids. Specifically, it is shown that traveling wave solutions exist, and assume the form of diffusive solitons, if and only if the Mach number is less than or equal to a bifurcation value. It is also shown that the wave speed v is always supersonic, that Max[v] occurs at the bifurcation value of the Mach number, and that a shock develops as the Reynolds number tends to infinity. Finally, special cases and asymptotic results are listed, a relationship to Burgers' equation is noted, and 3-D bifurcation diagrams are given.

  15. Chaotic dynamics and diffusion in a piecewise linear equation

    SciTech Connect

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-15

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  16. Chaotic dynamics and diffusion in a piecewise linear equation

    NASA Astrophysics Data System (ADS)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  17. Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection and reaction

    NASA Technical Reports Server (NTRS)

    Kooi, Henk; Beaumont, Christopher

    1994-01-01

    Experiments with a surface processes model of large-scale (1-1000 km) long-term (1-100 m.y.) erosional denudation are used to establish the controls on the evolution of a model escarpment that is related to the rifting of a continent. The mdoel describes changes in topographic form as a result of sumultaneous short- and long-range mass transport representing hillslope (diffusive) processes and fluvial transport (advection), repsectively. Fluvial entrainment is modeled as a first-order kinetic reaction which reflects the erodibility of the substrate, and therefore the fluvial system is not necessarily carrying at capacity. One dimensional and planform models demonstrate that the principal controls on the evolution of an initially steep model escarpment are (1) antecedent topography/drainage; (2) the timesale (or equivalently a length scale) in the fluvial entrainment reaction; (3) the flexural response of the lithosphere to denudation; and (4) the relative efficiencies of the short- and long-range transport processes. When rainfall and substrate lithology are uniform, a significant amount of discharge draining over the escarpment top causes it to degrade. Only when the top of the model escarpment coincides with a drainage divide can escarpment retreat occur for these conditions. An additional requirement for retreat of a model escarpment without decline is a long reaction time scale for fluvial entrainment. This corresponds to a substrate that is hard to detach by flucial erosion, and therefore to fluvial erosion that is not transport limited. Coninuous backtilting of an escarpment due ot flexural isostatic uplift in response to denudational unloading helps maintain the scarp top as a divide. It is essntial if the escarpment gradient is to be preserved during retreat in a uniform lithology. Low flexural rigidieties propote steep and slowly retreating escarpments. For given rainfall and substrate conditions, the morphology of a retraeating model escarpment is

  18. Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems

    NASA Astrophysics Data System (ADS)

    Colli, Pierluigi; Fukao, Takeshi

    2016-05-01

    An asymptotic limit of a class of Cahn-Hilliard systems is investigated to obtain a general nonlinear diffusion equation. The target diffusion equation may reproduce a number of well-known model equations: Stefan problem, porous media equation, Hele-Shaw profile, nonlinear diffusion of singular logarithmic type, nonlinear diffusion of Penrose-Fife type, fast diffusion equation and so on. Namely, by setting the suitable potential of the Cahn-Hilliard systems, all these problems can be obtained as limits of the Cahn-Hilliard related problems. Convergence results and error estimates are proved.

  19. Parallel solutions of the two-group neutron diffusion equations

    SciTech Connect

    Zee, K.S.; Turinsky, P.J.

    1987-01-01

    Recent efforts to adapt various numerical solution algorithms to parallel computer architectures have addressed the possibility of substantially reducing the running time of few-group neutron diffusion calculations. The authors have developed an efficient iterative parallel algorithm and an associated computer code for the rapid solution of the finite difference method representation of the two-group neutron diffusion equations on the CRAY X/MP-48 supercomputer having multi-CPUs and vector pipelines. For realistic simulation of light water reactor cores, the code employees a macroscopic depletion model with trace capability for selected fission product transients and critical boron. In addition to this, moderator and fuel temperature feedback models are also incorporated into the code. The validity of the physics models used in the code were benchmarked against qualified codes and proved accurate. This work is an extension of previous work in that various feedback effects are accounted for in the system; the entire code is structured to accommodate extensive vectorization; and an additional parallelism by multitasking is achieved not only for the solution of the matrix equations associated with the inner iterations but also for the other segments of the code, e.g., outer iterations.

  20. Modelling coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian Clay

    NASA Astrophysics Data System (ADS)

    Baechler, S.; Croisé, J.; Altmann, S.

    2012-12-01

    Chemico-osmosis is a recognized phenomenon taking place in clay mineral-rich sedimentary formations and a number of questions have been raised concerning its potential effects on pressure fields in and around underground radioactive waste repositories installed in such formations. Certain radioactive waste packages contain large quantities of nitrate salts whose release might result in the presence of highly concentrated salt solutions in the disposal cells, during their resaturation after closure of the facility. This would lead to large solute concentration gradients within the formation's porewater which could then potentially induce significant chemico-osmotic fluxes. In this paper, we assess the impact of chemico-osmotic fluxes on the water pressure during the post-closure period of a typical disposal cell for intermediate-level, long-lived bituminised radioactive waste in the Callovo-Oxfordian Clay formation. A numerical model of chemico-osmotic water flow and solute transport has been developed based on the work of Bader and Kooi (2005) [5], and including Bresler's dependence of osmotic efficiency on concentration and compaction state [9]. Model validity has been extended to highly concentrated solutions by incorporating a concentration-dependent activity coefficient, based on the Pitzer's equations. Results show that due to the strong dependence of the osmotic coefficient on concentration, the impact of chemico-osmosis on water flow and on the pressure field around the disposal cell is relatively low. A maximum overpressure of the order of 1 MPa was obtained. No difference in the simulation results were noticed for disposal cell solutions having concentrations higher than 1 M NaNO3. Differences between simulations were found to be almost entirely due to Bresler's relationship i.e., the model of the dependence between osmotic efficiency and concentration, and only slightly on the activity coefficient correction. Questions remain regarding the appropriate

  1. Mapping Spatio-Temporal Diffusion inside the Human Brain Using a Numerical Solution of the Diffusion Equation

    PubMed Central

    Zhan, Wang; Jiang, Li; Loew, Murray; Yang, Yihong

    2008-01-01

    Diffusion is an important mechanism for molecular transport in living biological tissues. Diffusion magnetic resonance imaging (dMRI) provides a unique probe to examine microscopic structures of the tissues in vivo, but current dMRI techniques usually ignore the spatio-temporal evolution process of the diffusive medium. In the present study, we demonstrate the feasibility to reveal the spatio-temporal diffusion process inside the human brain based on a numerical solution of the diffusion equation. Normal human subjects were scanned with a diffusion tensor imaging (DTI) technique on a 3-Tesla MRI scanner, and the diffusion tensor in each voxel was calculated from the DTI data. The diffusion equation, a partial-derivative description of Fick’s Law for the diffusion process, was discretized into equivalent algebraic equations. A finite-difference method was employed to obtain the numerical solution of the diffusion equation with a Crank-Nicholson iteration scheme to enhance the numerical stability. By specifying boundary and initial conditions, the spatio-temporal evolution of the diffusion process inside the brain can be virtually reconstructed. Our results exhibit similar medium profiles and diffusion coefficients as those of light fluorescence dextrans measured in integrative optical imaging experiments. The proposed method highlights the feasibility to non-invasively estimate the macroscopic diffusive transport time for a molecule in a given region of the brain. PMID:18440744

  2. Traveling wave solutions of density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method

    NASA Astrophysics Data System (ADS)

    Kengne, Emmanuel; Saydé, Michel; Ben Hamouda, Fathi; Lakhssassi, Ahmed

    2013-11-01

    Analytical entire traveling wave solutions to the 1+1 density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method are presented in this paper. This equation can be regarded as an extension case of the Fisher-Kolmogoroff equation, which is used for studying insect and animal dispersal with growth dynamics. The analytical solutions are then used to investigate the effect of equation parameters on the population distribution.

  3. Guiding brine shrimp through mazes by solving reaction diffusion equations

    NASA Astrophysics Data System (ADS)

    Singal, Krishma; Fenton, Flavio

    Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.

  4. From baking a cake to solving the diffusion equation

    NASA Astrophysics Data System (ADS)

    Olszewski, Edward A.

    2006-06-01

    We explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. We restrict our consideration to the génoise and obtain a semiempirical relation for the baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The relation, which is based on the diffusion equation, has three parameters whose values are estimated from data obtained by baking cakes in cylindrical pans of various diameters. The relation takes into account the evaporation of moisture at the top surface of the cake, which is the dominant factor affecting the baking time of a cake.

  5. Lattice Boltzmann model for the convection-diffusion equation.

    PubMed

    Chai, Zhenhua; Zhao, T S

    2013-06-01

    We propose a lattice Boltzmann (LB) model for the convection-diffusion equation (CDE) and show that the CDE can be recovered correctly from the model by the Chapman-Enskog analysis. The most striking feature of the present LB model is that it enables the collision process to be implemented locally, making it possible to retain the advantage of the lattice Boltzmann method in the study of the heat and mass transfer in complex geometries. A local scheme for computing the heat and mass fluxes is then proposed to replace conventional nonlocal finite-difference schemes. We further validate the present model and the local scheme for computing the flux against analytical solutions to several classical problems, and we show that both the model for the CDE and the computational scheme for the flux have a second-order convergence rate in space. It is also demonstrated the present model is more accurate than existing LB models for the CDE.

  6. Local multiplicative Schwarz algorithms for convection-diffusion equations

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Sarkis, Marcus

    1995-01-01

    We develop a new class of overlapping Schwarz type algorithms for solving scalar convection-diffusion equations discretized by finite element or finite difference methods. The preconditioners consist of two components, namely, the usual two-level additive Schwarz preconditioner and the sum of some quadratic terms constructed by using products of ordered neighboring subdomain preconditioners. The ordering of the subdomain preconditioners is determined by considering the direction of the flow. We prove that the algorithms are optimal in the sense that the convergence rates are independent of the mesh size, as well as the number of subdomains. We show by numerical examples that the new algorithms are less sensitive to the direction of the flow than either the classical multiplicative Schwarz algorithms, and converge faster than the additive Schwarz algorithms. Thus, the new algorithms are more suitable for fluid flow applications than the classical additive or multiplicative Schwarz algorithms.

  7. Microscopic selection principle for a diffusion-reaction equation

    SciTech Connect

    Bramson, M.; Calderoni, P.; De Masi, A.; Ferrari, P.; Lebowitz, J.; Schonmann, R.H.

    1986-12-01

    The authors consider a model of stochastically interacting particles on Z, where each site is assumed to be empty or occupied by at most one particle. Particles jump to each empty neighboring site with rate ..gamma../2 and also create new particles with rate 1/2 at these sites. They show that as seen from the rightmost particle, this process has precisely one invariant distribution. The average velocity of this particle V(..gamma..) then satisfies ..gamma../sup -1/2/V(..gamma..) ..-->.. ..sqrt..2 as ..gamma.. ..-->.. infinity. This limit corresponds to that of the macroscopic density obtained by rescaling lengths by a factor ..gamma../sup 1/2/ and letting ..gamma.. ..-->.. infinity. This density solves the reaction-diffusion equation u/sub 1/ = 1/2u/sub xx/ + u(1-u), and under Heaviside initial data converges to a traveling wave moving at the same rate ..sqrt..2.

  8. INSTRUCTIONAL CONFERENCE ON THE THEORY OF STOCHASTIC PROCESSES: Stochastic partial differential equations and diffusion processes

    NASA Astrophysics Data System (ADS)

    Krylov, N. V.; Rozovskii, B. L.

    1982-12-01

    CONTENTS § 1. Introduction § 2. Solubility of the direct and inverse Cauchy problems § 3. The direct equation of inverse diffusion. The method of variation of constants § 4. The method of characteristics. First integrals and the Liouville equations for diffusion processes § 5. Inverse filtration equations References

  9. Curves to determine the relative importance of advection and dispersion for solute and vapor transport

    USGS Publications Warehouse

    Garges, J.A.; Baehr, A.L.

    1998-01-01

    The relative importance of advection and dispersion for both solute and vapor transport can be determined from type curves or concentration, flux, or cumulative flux. The dimensionless form of the type curves provides a means to directly evaluate the importance of mass transport by advection relative to that of mass transport by diffusion and dispersion. Type curves based on an analytical solution to the advection-dispersion equation are plotted in terms of dimensionless time and Peclet number. Flux and cumulative flux type curves provide additional rationale for transport regime determination in addition to the traditional concentration type curves. The extension of type curves to include vapor transport with phase partitioning in the unsaturated zone is a new development. Type curves for negative Peclet numbers also are presented. A negative Peclet number characterizes a problem in which one direction of flow is toward the contamination source, and thereby diffusion and advection can act in opposite directions. Examples are the diffusion of solutes away from the downgradient edge of a pump-and-treat capture zone, the upward diffusion of vapors through the unsaturated zone with recharge, and the diffusion of solutes through a low hydraulic conductivity cutoff wall with an inward advective gradient.

  10. Advection in geologic media

    NASA Astrophysics Data System (ADS)

    Moltyaner, G. L.

    1993-10-01

    In situ sensing technology, used in a series of natural-gradient tracer tests at the Chalk River Laboratories in Ontario, leads to the introduction of a conceptually new approach to the study of groundwater motion in porous media. As opposed to the conventional approach, based on the consideration of a fictitious fluid continuum with fluid properties distributed over both voids and solids, in the new approach the actual groundwater motion in the void space of a porous medium is considered and described at the local scale by the statistical characterization of the propagation of gamma-radiation energy associated with the moving water as a tracer. The essential feature of the new approach is that the mean free path of a gamma-energy photon instead of the porosity is used as a scaling factor in transferring information associated with pore-scale fluid motion to the local scale. This scaling factor is employed for reintroducing the familiar particle model of fluid motion but at the local scale. It is shown that when the local-scale dispersion is neglected, the evolution of local-scale fluid particles making up the tracer plume can be described by the advection equation; its equation of characteristics describes trajectories of local-scale particles. A simple analytical solution to the advection equation is then used to produce three-dimensional images of the spatial distribution of local-scale particles observed in the Twin Lake test. It is also shown that the spatial averaging procedure with regard to the weighting function for a spherical averaging volume of one mean free path radius may be used to introduce the three-dimensional field of local-scale concentration. The averaging procedure is then used to illustrate that the concept of the three-dimensional field of plume-scale concentration does not make physical sense and only the one-dimensional plume-scale concentration field may be introduced in shallow aquifers.

  11. A New Contraction Family for Porous Medium and Fast Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Chmaycem, G.; Jazar, M.; Monneau, R.

    2016-08-01

    In this paper, we present a surprising two-dimensional contraction family for porous medium and fast diffusion equations. This approach provides new a priori estimates on the solutions, even for the standard heat equation.

  12. Generalized symmetry classifications, integrable properties and exact solutions to the general nonlinear diffusion equations

    NASA Astrophysics Data System (ADS)

    Liu, Hanze

    2016-07-01

    In this paper, the combination of generalized symmetry classification and recursion operator method is developed for dealing with nonlinear diffusion equations (NLDEs). Through the combination approach, all of the second and third-order generalized symmetries of the general nonlinear diffusion equation are obtained. As its special case, the recursion operators of the nonlinear heat conduction equation are constructed, and the integrable properties of the nonlinear equations are considered. Furthermore, the exact and explicit solutions generated from the generalized symmetries are investigated.

  13. Delay-induced Turing instability in reaction-diffusion equations.

    PubMed

    Zhang, Tonghua; Zang, Hong

    2014-11-01

    Time delays have been commonly used in modeling biological systems and can significantly change the dynamics of these systems. Quite a few works have been focused on analyzing the effect of small delays on the pattern formation of biological systems. In this paper, we investigate the effect of any delay on the formation of Turing patterns of reaction-diffusion equations. First, for a delay system in a general form, we propose a technique calculating the critical value of the time delay, above which a Turing instability occurs. Then we apply the technique to a predator-prey model and study the pattern formation of the model due to the delay. For the model in question, we find that when the time delay is small it has a uniform steady state or irregular patterns, which are not of Turing type; however, in the presence of a large delay we find spiral patterns of Turing type. For such a model, we also find that the critical delay is a decreasing function of the ratio of carrying capacity to half saturation of the prey density. PMID:25493859

  14. Delay-induced Turing instability in reaction-diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhang, Tonghua; Zang, Hong

    2014-11-01

    Time delays have been commonly used in modeling biological systems and can significantly change the dynamics of these systems. Quite a few works have been focused on analyzing the effect of small delays on the pattern formation of biological systems. In this paper, we investigate the effect of any delay on the formation of Turing patterns of reaction-diffusion equations. First, for a delay system in a general form, we propose a technique calculating the critical value of the time delay, above which a Turing instability occurs. Then we apply the technique to a predator-prey model and study the pattern formation of the model due to the delay. For the model in question, we find that when the time delay is small it has a uniform steady state or irregular patterns, which are not of Turing type; however, in the presence of a large delay we find spiral patterns of Turing type. For such a model, we also find that the critical delay is a decreasing function of the ratio of carrying capacity to half saturation of the prey density.

  15. Rotationally symmetric solutions of the Landau-Lifshitz and diffusion equations

    SciTech Connect

    Mayergoyz, I. D.; Bertotti, G.; Serpico, C.

    2000-05-01

    The problem of isotropic conducting ferromagnetic film subject to in-plane circular polarized magnetic fields is discussed. This problem requires simultaneous solution of diffusion and Landau-Lifshitz equations. It is observed that the mathematical formulation of the problem is invariant with respect to rotations in the film plane. By exploiting this invariance, the rotationally symmetric solutions of the Landau-Lifshitz equation coupled with the diffusion equation are obtained and examined. (c) 2000 American Institute of Physics.

  16. Distributional behaviors of time-averaged observables in the Langevin equation with fluctuating diffusivity: Normal diffusion but anomalous fluctuations

    NASA Astrophysics Data System (ADS)

    Akimoto, Takuma; Yamamoto, Eiji

    2016-06-01

    We consider the Langevin equation with dichotomously fluctuating diffusivity, where the diffusion coefficient changes dichotomously over time, in order to study fluctuations of time-averaged observables in temporally heterogeneous diffusion processes. We find that the time-averaged mean-square displacement (TMSD) can be represented by the occupation time of a state in the asymptotic limit of the measurement time and hence occupation time statistics is a powerful tool for calculating the TMSD in the model. We show that the TMSD increases linearly with time (normal diffusion) but the time-averaged diffusion coefficients are intrinsically random when the mean sojourn time for one of the states diverges, i.e., intrinsic nonequilibrium processes. Thus, we find that temporally heterogeneous environments provide anomalous fluctuations of time-averaged diffusivity, which have relevance to large fluctuations of the diffusion coefficients obtained by single-particle-tracking trajectories in experiments.

  17. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  18. Classification and Approximate Functional Separable Solutions to the Generalized Diffusion Equations with Perturbation

    NASA Astrophysics Data System (ADS)

    Ji, Fei-Yu; Zhang, Shun-Li

    2013-11-01

    In this paper, the generalized diffusion equation with perturbation ut = A(u;ux)uII+eB(u;ux) is studied in terms of the approximate functional variable separation approach. A complete classification of these perturbed equations which admit approximate functional separable solutions is presented. Some approximate solutions to the resulting perturbed equations are obtained by examples.

  19. Innovation diffusion equations on correlated scale-free networks

    NASA Astrophysics Data System (ADS)

    Bertotti, M. L.; Brunner, J.; Modanese, G.

    2016-07-01

    We introduce a heterogeneous network structure into the Bass diffusion model, in order to study the diffusion times of innovation or information in networks with a scale-free structure, typical of regions where diffusion is sensitive to geographic and logistic influences (like for instance Alpine regions). We consider both the diffusion peak times of the total population and of the link classes. In the familiar trickle-down processes the adoption curve of the hubs is found to anticipate the total adoption in a predictable way. In a major departure from the standard model, we model a trickle-up process by introducing heterogeneous publicity coefficients (which can also be negative for the hubs, thus turning them into stiflers) and a stochastic term which represents the erratic generation of innovation at the periphery of the network. The results confirm the robustness of the Bass model and expand considerably its range of applicability.

  20. Utilizing Kernelized Advection Schemes in Ocean Models

    NASA Astrophysics Data System (ADS)

    Zadeh, N.; Balaji, V.

    2008-12-01

    There has been a recent effort in the ocean model community to use a set of generic FORTRAN library routines for advection of scalar tracers in the ocean. In a collaborative project called Hybrid Ocean Model Environement (HOME), vastly different advection schemes (space-differencing schemes for advection equation) become available to modelers in the form of subroutine calls (kernels). In this talk we explore the possibility of utilizing ESMF data structures in wrapping these kernels so that they can be readily used in ESMF gridded components.

  1. Application of The Full-Sweep AOR Iteration Concept for Space-Fractional Diffusion Equation

    NASA Astrophysics Data System (ADS)

    Sunarto, A.; Sulaiman, J.; Saudi, A.

    2016-04-01

    The aim of this paper is to investigate the effectiveness of the Full-Sweep AOR Iterative method by using Full-Sweep Caputo’s approximation equation to solve space-fractional diffusion equations. The governing space-fractional diffusion equations were discretized by using Full-Sweep Caputo’s implicit finite difference scheme to generate a system of linear equations. Then, the Full-Sweep AOR iterative method is applied to solve the generated linear system To examine the application of FSAOR method two numerical tests are conducted to show that the FSAOR method is superior to the FSSOR and FSGS methods.

  2. Generalized Langevin equation for tracer diffusion in atomic liquids

    NASA Astrophysics Data System (ADS)

    Mendoza-Méndez, Patricia; López-Flores, Leticia; Vizcarra-Rendón, Alejandro; Sánchez-Díaz, Luis E.; Medina-Noyola, Magdaleno

    2014-01-01

    We derive the time-evolution equation that describes the Brownian motion of labeled individual tracer particles in a simple model atomic liquid (i.e., a system of N particles whose motion is governed by Newton’s second law, and interacting through spherically symmetric pairwise potentials). We base our derivation on the generalized Langevin equation formalism, and find that the resulting time evolution equation is formally identical to the generalized Langevin equation that describes the Brownian motion of individual tracer particles in a colloidal suspension in the absence of hydrodynamic interactions. This formal dynamic equivalence implies the long-time indistinguishability of some dynamic properties of both systems, such as their mean squared displacement, upon a well-defined time scaling. This prediction is tested here by comparing the results of molecular and Brownian dynamics simulations performed on the hard sphere system.

  3. Numerical results using the conforming VEM for the convection-diffusion-reaction equation with variable coefficients.

    SciTech Connect

    Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver

    2014-10-02

    This document presents the results of a set of preliminary numerical experiments using several possible conforming virtual element approximations of the convection-reaction-diffusion equation with variable coefficients.

  4. A comparison of implicit numerical methods for solving the transient spherical diffusion equation

    NASA Technical Reports Server (NTRS)

    Curry, D. M.

    1977-01-01

    Comparative numerical temperature results obtained by using two implicit finite difference procedures for the solution of the transient diffusion equation in spherical coordinates are presented. The validity and accuracy of these solutions are demonstrated by comparison with exact analytical solutions.

  5. Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations

    SciTech Connect

    Zhou Tao; Tang Tao

    2010-11-01

    In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.

  6. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.

    PubMed

    Horowitz, Jordan M

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  7. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    SciTech Connect

    Horowitz, Jordan M.

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  8. The effective boundary conditions and their lifespan of the logistic diffusion equation on a coated body

    NASA Astrophysics Data System (ADS)

    Li, Huicong; Wang, Xuefeng; Wu, Yanxia

    2014-11-01

    We consider the logistic diffusion equation on a bounded domain, which has two components with a thin coating surrounding a body. The diffusion tensor is isotropic on the body, and anisotropic on the coating. The size of the diffusion tensor on these components may be very different; within the coating, the diffusion rates in the normal and tangent directions may be in different scales. We find effective boundary conditions (EBCs) that are approximately satisfied by the solution of the diffusion equation on the boundary of the body. We also prove that the lifespan of each EBC, which measures how long the EBC remains effective, is infinite. The EBCs enable us to see clearly the effect of the coating and ease the difficult task of solving the PDE in a thin region with a small diffusion tensor. The motivation of the mathematics includes a nature reserve surrounded by a buffer zone.

  9. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: Application to the theory of Neolithic transition

    NASA Astrophysics Data System (ADS)

    Vlad, Marcel Ovidiu; Ross, John

    2002-12-01

    We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.

  10. Symmetry analysis and group-invariant solutions to inhomogeneous nonlinear diffusion equation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ji, Lina

    2015-11-01

    A classification of point symmetries for inhomogeneous nonlinear diffusion equation is discussed. The optimal systems of one-dimensional subalgebra for the equation are constructed. Explicit group-invariant solutions are derived by corresponding symmetry reductions. These solutions include static solutions, separable solutions and functionally separable solutions. The behaviors of blow-up, extinction and asymptotical behavior for these solutions are also described.

  11. Solution of the nonlinear Poisson-Boltzmann equation: Application to ionic diffusion in cementitious materials

    SciTech Connect

    Arnold, J.; Kosson, D.S.; Garrabrants, A.; Meeussen, J.C.L.; Sloot, H.A. van der

    2013-02-15

    A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.

  12. Diffusion Solution of the Equation of Magnetic Induction in a Moving Medium

    NASA Astrophysics Data System (ADS)

    Lasukov, V. V.; Malik, Kh. K.; Moldovanova, E. A.; Abdrashitova, M. O.; Gorbacheva, E. S.; Rozhkova, S. V.

    2016-09-01

    It is shown that there exist solutions for which the linear differential equations of physics are transformed into nonlinear equations. The corresponding diffusion Maxwellian solution of the equation of magnetic induction in a moving medium can be used to describe the emergence and subsequent evolution of the magnetic fields of the Earth, Sun, and other planets and stars. If the magnetic viscosity is complex, the evolution of the magnetic induction is cyclic, in which case the magnetic induction can change sign.

  13. An asymptotic induced numerical method for the convection-diffusion-reaction equation

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.; Sorensen, Danny C.

    1988-01-01

    A parallel algorithm for the efficient solution of a time dependent reaction convection diffusion equation with small parameter on the diffusion term is presented. The method is based on a domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. Parallelism is evident at two levels. Domain decomposition provides parallelism at the highest level, and within each domain there is ample opportunity to exploit parallelism. Run time results demonstrate the viability of the method.

  14. Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution.

    PubMed

    Malacarne, L C; Mendes, R S; Pedron, I T; Lenzi, E K

    2001-03-01

    The nonlinear diffusion equation partial delta rho/delta t=D Delta rho(nu) is analyzed here, where Delta[triple bond](1/r(d-1))(delta/delta r)r(d-1-theta) delta/delta r, and d, theta, and nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact point-source solution is obtained, enabling us to describe a large class of subdiffusion [ theta>(1-nu)d], "normal" diffusion [theta=(1-nu)d] and superdiffusion [theta<(1-nu)d]. Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.

  15. Fractional diffusion equation for an n -dimensional correlated Lévy walk

    NASA Astrophysics Data System (ADS)

    Taylor-King, Jake P.; Klages, Rainer; Fedotov, Sergei; Van Gorder, Robert A.

    2016-07-01

    Lévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n -dimensional correlated Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in terms of quantities that can be measured experimentally.

  16. Fractional diffusion equation for an n-dimensional correlated Lévy walk.

    PubMed

    Taylor-King, Jake P; Klages, Rainer; Fedotov, Sergei; Van Gorder, Robert A

    2016-07-01

    Lévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in terms of quantities that can be measured experimentally. PMID:27575074

  17. Multifrequency radiation diffusion equations for homogeneous, refractive, lossy media and their interface conditions

    SciTech Connect

    Shestakov, Aleksei I.

    2013-06-15

    We derive time-dependent multifrequency diffusion equations for homogeneous, refractive lossy media. The equations are applicable for a domain composed of several materials with distinct refractive indexes. In such applications, the fundamental radiation variable, the intensity I, is discontinuous across material interfaces. The diffusion equations evolve a variable ξ, the integral of I over all directions divided by the square of the refractive index. Attention is focused on boundary and internal interface conditions for ξ. For numerical solutions using finite elements, it is shown that at material interfaces, the usual diffusion coefficient 1/3κ of the multifrequency equation, where κ is the opacity, is modified by a tensor diffusion term consisting of integrals of the reflectivity. Numerical results are presented. For a single material simulation, the ξ equations yield the same result as diffusion equations that evolve the spectral radiation energy density. A second simulation solves a test problem that models radiation transport in a domain comprised of materials with different refractive indexes. Results qualitatively agree with those previously published.

  18. Lie group invariant finite difference schemes for the neutron diffusion equation

    SciTech Connect

    Jaegers, P.J.

    1994-06-01

    Finite difference techniques are used to solve a variety of differential equations. For the neutron diffusion equation, the typical local truncation error for standard finite difference approximation is on the order of the mesh spacing squared. To improve the accuracy of the finite difference approximation of the diffusion equation, the invariance properties of the original differential equation have been incorporated into the finite difference equations. Using the concept of an invariant difference operator, the invariant difference approximations of the multi-group neutron diffusion equation were determined in one-dimensional slab and two-dimensional Cartesian coordinates, for multiple region problems. These invariant difference equations were defined to lie upon a cell edged mesh as opposed to the standard difference equations, which lie upon a cell centered mesh. Results for a variety of source approximations showed that the invariant difference equations were able to determine the eigenvalue with greater accuracy, for a given mesh spacing, than the standard difference approximation. The local truncation errors for these invariant difference schemes were found to be highly dependent upon the source approximation used, and the type of source distribution played a greater role in determining the accuracy of the invariant difference scheme than the local truncation error.

  19. Correlation function induced by a generalized diffusion equation with the presence of a harmonic potential

    SciTech Connect

    Fa, Kwok Sau

    2015-02-15

    An integro-differential diffusion equation with linear force, based on the continuous time random walk model, is considered. The equation generalizes the ordinary and fractional diffusion equations, which includes short, intermediate and long-time memory effects described by the waiting time probability density function. Analytical expression for the correlation function is obtained and analyzed, which can be used to describe, for instance, internal motions of proteins. The result shows that the generalized diffusion equation has a broad application and it may be used to describe different kinds of systems. - Highlights: • Calculation of the correlation function. • The correlation function is connected to the survival probability. • The model can be applied to the internal dynamics of proteins.

  20. Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Lu, Jianfang; Fang, Jinwei; Tan, Sirui; Shu, Chi-Wang; Zhang, Mengping

    2016-07-01

    We consider numerical boundary conditions for high order finite difference schemes for solving convection-diffusion equations on arbitrary geometry. The two main difficulties for numerical boundary conditions in such situations are: (1) the wide stencil of the high order finite difference operator requires special treatment for a few ghost points near the boundary; (2) the physical boundary may not coincide with grid points in a Cartesian mesh and may intersect with the mesh in an arbitrary fashion. For purely convection equations, the so-called inverse Lax-Wendroff procedure [28], in which we convert the normal derivatives into the time derivatives and tangential derivatives along the physical boundary by using the equations, has been quite successful. In this paper, we extend this methodology to convection-diffusion equations. It turns out that this extension is non-trivial, because totally different boundary treatments are needed for the diffusion-dominated and the convection-dominated regimes. We design a careful combination of the boundary treatments for the two regimes and obtain a stable and accurate boundary condition for general convection-diffusion equations. We provide extensive numerical tests for one- and two-dimensional problems involving both scalar equations and systems, including the compressible Navier-Stokes equations, to demonstrate the good performance of our numerical boundary conditions.

  1. Efficient mass transport by optical advection

    NASA Astrophysics Data System (ADS)

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-10-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms.

  2. An anomalous non-self-similar infiltration and fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Gerasimov, D. N.; Kondratieva, V. A.; Sinkevich, O. A.

    2010-08-01

    Problems of anomalous infiltration in porous media are considered. As follows from the analysis of experimental data, modification of the infiltration equation is necessary. A fractional diffusion equation with variable order of the time-derivative operator for describing the liquid infiltration in porous media is proposed. The physical meaning of this fractional equation is explained. This equation provides good agreement with existing experimental data for both the subdiffusion and the superdiffusion. The treatment of experimental data for the absorption of water in a fired-clay brick and for water infiltration in cement mortar using this fractional equation of diffusion is presented. Various formulae, which can be useful for applications, have been developed.

  3. Kinetic-equation approach to diffusive superconducting hybrid devices

    SciTech Connect

    Stoof, T.H.; Nazarov, Y.V.

    1996-06-01

    We present calculations of the temperature-dependent electrostatic and chemical potential distributions in disordered normal metal-superconductor structures. We show that they differ appreciably in the presence of a superconducting terminal and propose an experiment to measure these two different potential distributions. We also compute the resistance change in these structures due to a recently proposed mechanism which causes a finite effect at zero temperature. The relative resistance change due to this effect is of the order of the interaction parameter in the normal metal. Finally a detailed calculation of the resistance change due to the temperature dependence of Andreev reflection in diffusive systems is presented. We find that the maximal magnitude due to this thermal effect is in general much larger than the magnitude of the interaction effect. {copyright} {ital 1996 The American Physical Society.}

  4. Group iterative methods for the solution of two-dimensional time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Balasim, Alla Tareq; Ali, Norhashidah Hj. Mohd.

    2016-06-01

    Variety of problems in science and engineering may be described by fractional partial differential equations (FPDE) in relation to space and/or time fractional derivatives. The difference between time fractional diffusion equations and standard diffusion equations lies primarily in the time derivative. Over the last few years, iterative schemes derived from the rotated finite difference approximation have been proven to work well in solving standard diffusion equations. However, its application on time fractional diffusion counterpart is still yet to be investigated. In this paper, we will present a preliminary study on the formulation and analysis of new explicit group iterative methods in solving a two-dimensional time fractional diffusion equation. These methods were derived from the standard and rotated Crank-Nicolson difference approximation formula. Several numerical experiments were conducted to show the efficiency of the developed schemes in terms of CPU time and iteration number. At the request of all authors of the paper an updated version of this article was published on 7 July 2016. The original version supplied to AIP Publishing contained an error in Table 1 and References 15 and 16 were incomplete. These errors have been corrected in the updated and republished article.

  5. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  6. Application of a diffusion-desorption rate equation model in astrochemistry.

    PubMed

    He, Jiao; Vidali, Gianfranco

    2014-01-01

    Desorption and diffusion are two of the most important processes on interstellar grain surfaces; knowledge of them is critical for the understanding of chemical reaction networks in the interstellar medium (ISM). However, a lack of information on desorption and diffusion is preventing further progress in astrochemistry. To obtain desorption energy distributions of molecules from the surfaces of ISM-related materials, one usually carries out adsorption-desorption temperature programmed desorption (TPD) experiments, and uses rate equation models to extract desorption energy distributions. However, the often-used rate equation models fail to adequately take into account diffusion processes and thus are only valid in situations where adsorption is strongly localized. As adsorption-desorption experiments show that adsorbate molecules tend to occupy deep adsorption sites before occupying shallow ones, a diffusion process must be involved. Thus, it is necessary to include a diffusion term in the model that takes into account the morphology of the surface as obtained from analyses of TPD experiments. We take the experimental data of CO desorption from the MgO(100) surface and of D2 desorption from amorphous solid water ice as examples to show how a diffusion-desorption rate equation model explains the redistribution of adsorbate molecules among different adsorption sites. We extract distributions of desorption energies and diffusion energy barriers from TPD profiles. These examples are contrasted with a system where adsorption is strongly localized--HD from an amorphous silicate surface. Suggestions for experimental investigations are provided.

  7. Conservation Laws of a Family of Reaction-Diffusion-Convection Equations

    NASA Astrophysics Data System (ADS)

    Bruzón, M. S.; Gandarias, M. L.; de la Rosa, R.

    Ibragimov introduced the concept of nonlinear self-adjoint equations. This definition generalizes the concept of self-adjoint and quasi-self-adjoint equations. Gandarias defined the concept of weak self-adjoint. In this paper, we found a class of nonlinear self-adjoint nonlinear reaction-diffusion-convection equations which are neither self-adjoint nor quasi-self-adjoint nor weak self-adjoint. From a general theorem on conservation laws proved by Ibragimov we obtain conservation laws for these equations.

  8. Nonlinear diffusion-wave equation for a gas in a regenerator subject to temperature gradient

    NASA Astrophysics Data System (ADS)

    Sugimoto, N.

    2015-10-01

    This paper derives an approximate equation for propagation of nonlinear thermoacoustic waves in a gas-filled, circular pore subject to temperature gradient. The pore radius is assumed to be much smaller than a thickness of thermoviscous diffusion layer, and the narrow-tube approximation is used in the sense that a typical axial length associated with temperature gradient is much longer than the radius. Introducing three small parameters, one being the ratio of the pore radius to the thickness of thermoviscous diffusion layer, another the ratio of a typical speed of thermoacoustic waves to an adiabatic sound speed and the other the ratio of a typical magnitude of pressure disturbance to a uniform pressure in a quiescent state, a system of fluid dynamical equations for an ideal gas is reduced asymptotically to a nonlinear diffusion-wave equation by using boundary conditions on a pore wall. Discussion on a temporal mean of an excess pressure due to periodic oscillations is included.

  9. Fourier spectral method for higher order space fractional reaction-diffusion equations

    NASA Astrophysics Data System (ADS)

    Pindza, Edson; Owolabi, Kolade M.

    2016-11-01

    Evolution equations containing fractional derivatives can provide suitable mathematical models for describing important physical phenomena. In this paper, we propose a fast and accurate method for numerical solutions of space fractional reaction-diffusion equations. The proposed method is based on an exponential integrator scheme in time and the Fourier spectral method in space. The main advantages of this method are that it yields a fully diagonal representation of the fractional operator, with increased accuracy and efficiency, and a completely straightforward extension to high spatial dimensions. Although, in general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives, we introduce them to describe fractional hyper-diffusions in reaction diffusion. The scheme justified by a number of computational experiments, this includes two and three dimensional partial differential equations. Numerical experiments are provided to validate the effectiveness of the proposed approach.

  10. Long-term behavior of reaction-diffusion equations with nonlocal boundary conditions on rough domains

    NASA Astrophysics Data System (ADS)

    Gal, Ciprian G.; Warma, Mahamadi

    2016-08-01

    We investigate the long term behavior in terms of finite dimensional global and exponential attractors, as time goes to infinity, of solutions to a semilinear reaction-diffusion equation on non-smooth domains subject to nonlocal Robin boundary conditions, characterized by the presence of fractional diffusion on the boundary. Our results are of general character and apply to a large class of irregular domains, including domains whose boundary is Hölder continuous and domains which have fractal-like geometry. In addition to recovering most of the existing results on existence, regularity, uniqueness, stability, attractor existence, and dimension, for the well-known reaction-diffusion equation in smooth domains, the framework we develop also makes possible a number of new results for all diffusion models in other non-smooth settings.

  11. Exact Solutions of Coupled Multispecies Linear Reaction–Diffusion Equations on a Uniformly Growing Domain

    PubMed Central

    Simpson, Matthew J.; Sharp, Jesse A.; Morrow, Liam C.; Baker, Ruth E.

    2015-01-01

    Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit. PMID:26407013

  12. Exact Solutions of Coupled Multispecies Linear Reaction-Diffusion Equations on a Uniformly Growing Domain.

    PubMed

    Simpson, Matthew J; Sharp, Jesse A; Morrow, Liam C; Baker, Ruth E

    2015-01-01

    Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction-diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially-confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially-confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.

  13. A Piecewise Linear Finite Element Discretization of the Diffusion Equation for Arbitrary Polyhedral Grids

    SciTech Connect

    Bailey, T S; Adams, M L; Yang, B; Zika, M R

    2005-07-15

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.

  14. Heavy (or large) ions in a fluid in an electric field: The diffusion equation exactly following from the Fokker-Planck equation.

    PubMed

    Ferrari, Leonardo

    2008-07-28

    The problem of the derivation of the diffusion equation exactly following from the Fokker-Planck (or Klein-Kramers) equation for heavy (or large) particles in a fluid in an external force field is solved in the case in which the particles are ions subject to a uniform (but in general time-varying) electric field. It is found that such a diffusion equation maintains memory of the initial ion velocity distribution, unless sufficiently large values of time are considered. In such temporal asymptotic limit, the diffusion equation exactly becomes (i) the Smoluchowski equation when the electric field is constant in time, and (ii) a new equation generalizing the Smoluchowski equation, when the electric field is arbitrarily time varying. Finally, it is shown that the obtained exact (or asymptotic) results make questionable the procedures and the results of approximate theories developed in the past to get a "corrected" Smoluchowski equation when the external force can also be, in general, position dependent.

  15. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.

    PubMed

    Xie, Jiaquan; Huang, Qingxue; Yang, Xia

    2016-01-01

    In this paper, we are concerned with nonlinear one-dimensional fractional convection diffusion equations. An effective approach based on Chebyshev operational matrix is constructed to obtain the numerical solution of fractional convection diffusion equations with variable coefficients. The principal characteristic of the approach is the new orthogonal functions based on Chebyshev polynomials to the fractional calculus. The corresponding fractional differential operational matrix is derived. Then the matrix with the Tau method is utilized to transform the solution of this problem into the solution of a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via examples. It is shown that the proposed algorithm yields better results. Finally, error analysis shows that the algorithm is convergent.

  16. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.

    PubMed

    Xie, Jiaquan; Huang, Qingxue; Yang, Xia

    2016-01-01

    In this paper, we are concerned with nonlinear one-dimensional fractional convection diffusion equations. An effective approach based on Chebyshev operational matrix is constructed to obtain the numerical solution of fractional convection diffusion equations with variable coefficients. The principal characteristic of the approach is the new orthogonal functions based on Chebyshev polynomials to the fractional calculus. The corresponding fractional differential operational matrix is derived. Then the matrix with the Tau method is utilized to transform the solution of this problem into the solution of a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via examples. It is shown that the proposed algorithm yields better results. Finally, error analysis shows that the algorithm is convergent. PMID:27504247

  17. Algorithm for the Time-Propagation of the Radial Diffusion Equation Based on a Gaussian Quadrature.

    PubMed

    Gillespie, Dirk

    2015-01-01

    The numerical integration of the time-dependent spherically-symmetric radial diffusion equation from a point source is considered. The flux through the source can vary in time, possibly stochastically based on the concentration produced by the source itself. Fick's one-dimensional diffusion equation is integrated over a time interval by considering a source term and a propagation term. The source term adds new particles during the time interval, while the propagation term diffuses the concentration profile of the previous time step. The integral in the propagation term is evaluated numerically using a combination of a new diffusion-specific Gaussian quadrature and interpolation on a diffusion-specific grid. This attempts to balance accuracy with the least number of points for both integration and interpolation. The theory can also be extended to include a simple reaction-diffusion equation in the limit of high buffer concentrations. The method is unconditionally stable. In fact, not only does it converge for any time step Δt, the method offers one advantage over other methods because Δt can be arbitrarily large; it is solely defined by the timescale on which the flux source turns on and off.

  18. A moving mesh finite difference method for equilibrium radiation diffusion equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor-corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  19. A moving mesh finite difference method for equilibrium radiation diffusion equations

    SciTech Connect

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  20. Evolution equation for tagged-particle density and correlations in single-file diffusion.

    PubMed

    Suárez, Gonzalo; Hoyuelos, Miguel; Mártin, Héctor O

    2013-08-01

    We derive and study a theoretical description for single-file diffusion, i.e., diffusion in a one-dimensional lattice of particles with hard core interaction. It is well known that for this system a tagged particle has anomalous diffusion for long times. The novelty of the present approach is that it allows for the derivation of correlations between a tagged particle and other particles of the system at a given distance with empty sites in between. The behavior of the correlation gives deeper insights into the processes involved. The numerical integration of differential equations are in good agreement with Monte Carlo simulations.

  1. Monotone waves for non-monotone and non-local monostable reaction-diffusion equations

    NASA Astrophysics Data System (ADS)

    Trofimchuk, Elena; Pinto, Manuel; Trofimchuk, Sergei

    2016-07-01

    We propose a new approach for proving existence of monotone wavefronts in non-monotone and non-local monostable diffusive equations. This allows to extend recent results established for the particular case of equations with local delayed reaction. In addition, we demonstrate the uniqueness (modulo translations) of obtained monotone wavefront within the class of all monotone wavefronts (such a kind of conditional uniqueness was recently established for the non-local KPP-Fisher equation by Fang and Zhao). Moreover, we show that if delayed reaction is local then each monotone wavefront is unique (modulo translations) within the class of all non-constant traveling waves. Our approach is based on the construction of suitable fundamental solutions for linear integral-differential equations. We consider two alternative scenarios: in the first one, the fundamental solution is negative (typically holds for the Mackey-Glass diffusive equations) while in the second one, the fundamental solution is non-negative (typically holds for the KPP-Fisher diffusive equations).

  2. Note: From reaction-diffusion systems to confined Brownian motion

    NASA Astrophysics Data System (ADS)

    Martens, S.

    2016-07-01

    In this note, we demonstrated for the first time that one can derive an expression for the effective diffusion coefficient, equal to the Lifson-Jackson formula, using a subsequent homogenization of the 1D reaction-diffusion-advection equation. The latter has been derived by applying asymptotic perturbation analysis to the underlying 3D reaction-diffusion equation with spatially dependent no-flux boundary conditions and incorporates the effects of boundary interactions on the reactants via a boundary-induced advection term [S. Martens et al, Phys. Rev. E 91, 022902 (2015)].

  3. How to Find a Bug in Ten Thousand Lines Transport Solver? Outline of Experiences from AN Advection-Diffusion Code Verification

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F.

    2011-12-01

    Almost all natural phenomena on Earth are highly nonlinear. Even simplifications to the equations describing nature usually end up being nonlinear partial differential equations. Transport (ADR) equation is a pivotal equation in atmospheric sciences and water quality. This nonlinear equation needs to be solved numerically for practical purposes so academicians and engineers thoroughly rely on the assistance of numerical codes. Thus, numerical codes require verification before they are utilized for multiple applications in science and engineering. Model verification is a mathematical procedure whereby a numerical code is checked to assure the governing equation is properly solved as it is described in the design document. CFD verification is not a straightforward and well-defined course. Only a complete test suite can uncover all the limitations and bugs. Results are needed to be assessed to make a distinction between bug-induced-defect and innate limitation of a numerical scheme. As Roache (2009) said, numerical verification is a state-of-the-art procedure. Sometimes novel tricks work out. This study conveys the synopsis of the experiences we gained during a comprehensive verification process which was done for a transport solver. A test suite was designed including unit tests and algorithmic tests. Tests were layered in complexity in several dimensions from simple to complex. Acceptance criteria defined for the desirable capabilities of the transport code such as order of accuracy, mass conservation, handling stiff source term, spurious oscillation, and initial shape preservation. At the begining, mesh convergence study which is the main craft of the verification is performed. To that end, analytical solution of ADR equation gathered. Also a new solution was derived. In the more general cases, lack of analytical solution could be overcome through Richardson Extrapolation and Manufactured Solution. Then, two bugs which were concealed during the mesh convergence

  4. Nodally exact Ritz discretizations of 1D diffusion-absorption and Helmholtz equations by variational FIC and modified equation methods

    NASA Astrophysics Data System (ADS)

    Felippa, C. A.; Oñate, E.

    2007-01-01

    This article presents the first application of the Finite Calculus (FIC) in a Ritz-FEM variational framework. FIC provides a steplength parametrization of mesh dimensions, which is used to modify the shape functions. This approach is applied to the FEM discretization of the steady-state, one-dimensional, diffusion-absorption and Helmholtz equations. Parametrized linear shape functions are directly inserted into a FIC functional. The resulting Ritz-FIC equations are symmetric and carry a element-level free parameter coming from the function modification process. Both constant- and variable-coefficient cases are studied. It is shown that the parameter can be used to produce nodally exact solutions for the constant coefficient case. The optimal value is found by matching the finite-order modified differential equation (FOMoDE) of the Ritz-FIC equations with the original field equation. The inclusion of the Ritz-FIC models in the context of templates is examined. This inclusion shows that there is an infinite number of nodally exact models for the constant coefficient case. The ingredients of these methods (FIC, Ritz, MoDE and templates) can be extended to multiple dimensions

  5. Axial expansion methods for solution of the multi-dimensional neutron diffusion equation

    SciTech Connect

    Beaklini Filho, J.F.

    1984-01-01

    The feasibility and practical implementation of axial expansion methods for the solution of the multi-dimensional multigroup neutron diffusion (MGD) equations is investigated. The theoretical examination which is applicable to the general MGD equations in arbitrary geometry includes the derivation of a new weak (reduced) form of the MGD equations by expanding the axial component of the neutron flux in a series of known trial functions and utilizing the Galerkin weighting. A general two-group albedo boundary condition is included in the weak form as a natural boundary condition. The application of different types of trial functions is presented.

  6. Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain

    SciTech Connect

    Hagmeijer, R.

    1994-11-01

    A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of the computational coordinates.

  7. Analytical solutions for a nonlinear diffusion equation with convection and reaction

    NASA Astrophysics Data System (ADS)

    Valenzuela, C.; del Pino, L. A.; Curilef, S.

    2014-12-01

    Nonlinear diffusion equations with the convection and reaction terms are solved by using a power-law ansatz. This kind of equations typically appears in nonlinear problems of heat and mass transfer and flows in porous media. The solutions that we introduce in this work are analytical. At least, in the convection case, the result recovers its linear form as a special limit. In the reaction case, we define a class of nonlinearity to discuss the evolution of general solutions, we also add the Verhulst-like dynamics and global regulation. We think this method, based on this kind of ansatz, can also be applied to solve other nonlinear partial differential equations.

  8. A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation.

    PubMed

    Wang, Kangle; Liu, Sanyang

    2016-01-01

    In this paper, a new Sumudu transform iterative method is established and successfully applied to find the approximate analytical solutions for time-fractional Cauchy reaction-diffusion equations. The approach is easy to implement and understand. The numerical results show that the proposed method is very simple and efficient. PMID:27386314

  9. The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion

    SciTech Connect

    Guo, Ran; Du, Jiulin

    2015-08-15

    We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.

  10. Multigrid solution of the convection-diffusion equation with high-Reynolds number

    SciTech Connect

    Zhang, Jun

    1996-12-31

    A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.

  11. Solution of a Two-Dimensional Diffusion Equation Using an Advanced Spreadsheet Program.

    ERIC Educational Resources Information Center

    Kharab, Abdelwahab

    1997-01-01

    Spreadsheet programs are used increasingly by engineering students to solve problems, especially problems requiring repetitive calculations, as they provide rapid and simple numerical solutions. This article shows how advanced spreadsheet programs are used in the learning of numerical solutions of two-dimensional diffusion equation using the…

  12. Breakdown of the reaction-diffusion master equation with nonelementary rates.

    PubMed

    Smith, Stephen; Grima, Ramon

    2016-05-01

    The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.

  13. Breakdown of the reaction-diffusion master equation with nonelementary rates

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Grima, Ramon

    2016-05-01

    The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.

  14. The Conforming Virtual Element Method for the convection-diffusion-reaction equation with variable coeffcients.

    SciTech Connect

    Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver

    2014-10-02

    This document describes the conforming formulations for virtual element approximation of the convection-reaction-diffusion equation with variable coefficients. Emphasis is given to construction of the projection operators onto polynomial spaces of appropriate order. These projections make it possible the virtual formulation to achieve any order of accuracy. We present the construction of the internal and the external formulation. The difference between the two is in the way the projection operators act on the derivatives (laplacian, gradient) of the partial differential equation. For the diffusive regime we prove the well-posedness of the external formulation and we derive an estimate of the approximation error in the H1-norm. For the convection-dominated case, the streamline diffusion stabilization (aka SUPG) is also discussed.

  15. An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yan, Bokai

    2016-05-01

    We present a new asymptotic-preserving scheme for the linear Boltzmann equation which, under appropriate scaling, leads to a fractional diffusion limit. Our scheme rests on novel micro-macro decomposition to the distribution function, which splits the original kinetic equation following a reshuffled Hilbert expansion. As opposed to classical diffusion limit, a major difficulty comes from the fat tail in the equilibrium which makes the truncation in velocity space depending on the small parameter. Our idea is, while solving the macro-micro part in a truncated velocity domain (truncation only depends on numerical accuracy), to incorporate an integrated tail over the velocity space that is beyond the truncation, and its major component can be precomputed once with any accuracy. Such an addition is essential to drive the solution to the correct asymptotic limit. Numerical experiments validate its efficiency in both kinetic and fractional diffusive regimes.

  16. Derivation and Solution of Multifrequency Radiation Diffusion Equations for Homogeneous Refractive Lossy Media

    SciTech Connect

    Shestakov, A I; Vignes, R M; Stolken, J S

    2010-01-05

    Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The system is coupled to a diffusion equation for the matter temperature. We are interested in modeling annealing of silica (SiO{sub 2}). We derive boundary conditions at a planar air-silica interface taking account of reflectivities. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO{sub 2} laser, {lambda} = 10.59 {micro}m. In 2D, we anneal a disk (radius = 0.4, thickness = 0.4 cm) with a laser, Gaussian profile (r{sub 0} = 0.5 mm for 1/e decay).

  17. Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings

    SciTech Connect

    Jin, Shi; Xiu, Dongbin; Zhu, Xueyu

    2015-05-15

    In this paper we develop a set of stochastic numerical schemes for hyperbolic and transport equations with diffusive scalings and subject to random inputs. The schemes are asymptotic preserving (AP), in the sense that they preserve the diffusive limits of the equations in discrete setting, without requiring excessive refinement of the discretization. Our stochastic AP schemes are extensions of the well-developed deterministic AP schemes. To handle the random inputs, we employ generalized polynomial chaos (gPC) expansion and combine it with stochastic Galerkin procedure. We apply the gPC Galerkin scheme to a set of representative hyperbolic and transport equations and establish the AP property in the stochastic setting. We then provide several numerical examples to illustrate the accuracy and effectiveness of the stochastic AP schemes.

  18. A perturbational h[sup 4] exponential finite difference scheme for the convective diffusion equation

    SciTech Connect

    Chen, G.Q.; Gao, Z. ); Yang, Z.F. )

    1993-01-01

    A perturbational h[sup 4] compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h[sup 2] exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h[sup 4] accuracy of the perturbational scheme is verified using double precision arithmetic.

  19. Prediction equations for diffusing capacity (transfer factor) of lung for North Indians

    PubMed Central

    Chhabra, Sunil Kumar; Kumar, Rajeev; Gupta, Uday A

    2016-01-01

    Background: Prediction equations for diffusing capacity of lung for carbon monoxide (DLCO), alveolar volume (VA), and DLCO/VA using the current standardization guidelines are not available for Indian population. The present study was carried out to develop equations for these parameters for North Indian adults and examine the ethnic diversity in predictions. Materials and Methods: DLCO was measured by single-breath technique and VA by single-breath helium dilution using standardized methodology in 357 (258 males, 99 females) normal nonsmoker adult North Indians and DLCO/VA was computed. The subjects were randomized into training and test datasets for development of prediction equations by multiple linear regressions and for validation, respectively. Results: For males, the following equations were developed: DLCO, −7.813 + 0.318 × ht −0.624 × age + 0.00552 × age2; VA, −8.152 + 0.087 × ht −0.019 × wt; DLCO/VA, 7.315 − 0.037 × age. For females, the equations were: DLCO, −44.15 + 0.449 × ht −0.099 × age; VA, −6.893 + 0.068 × ht. A statistically acceptable prediction equation was not obtained for DLCO/VA in females. It was therefore computed from predicted DLCO and predicted VA. All equations were internally valid. Predictions of DLCO by Indian equations were lower than most Caucasian predictions in both males and females and greater than the Chinese predictions for males. Conclusion: This study has developed validated prediction equations for DLCO, VA, and DLCO/VA in North Indians. Substantial ethnic diversity exists in predictions for DLCO and VA with Caucasian equations generally yielding higher values than the Indian or Chinese equations. However, DLCO/VA predicted by the Indian equations is slightly higher than that by other equations. PMID:27625439

  20. Prediction equations for diffusing capacity (transfer factor) of lung for North Indians

    PubMed Central

    Chhabra, Sunil Kumar; Kumar, Rajeev; Gupta, Uday A

    2016-01-01

    Background: Prediction equations for diffusing capacity of lung for carbon monoxide (DLCO), alveolar volume (VA), and DLCO/VA using the current standardization guidelines are not available for Indian population. The present study was carried out to develop equations for these parameters for North Indian adults and examine the ethnic diversity in predictions. Materials and Methods: DLCO was measured by single-breath technique and VA by single-breath helium dilution using standardized methodology in 357 (258 males, 99 females) normal nonsmoker adult North Indians and DLCO/VA was computed. The subjects were randomized into training and test datasets for development of prediction equations by multiple linear regressions and for validation, respectively. Results: For males, the following equations were developed: DLCO, −7.813 + 0.318 × ht −0.624 × age + 0.00552 × age2; VA, −8.152 + 0.087 × ht −0.019 × wt; DLCO/VA, 7.315 − 0.037 × age. For females, the equations were: DLCO, −44.15 + 0.449 × ht −0.099 × age; VA, −6.893 + 0.068 × ht. A statistically acceptable prediction equation was not obtained for DLCO/VA in females. It was therefore computed from predicted DLCO and predicted VA. All equations were internally valid. Predictions of DLCO by Indian equations were lower than most Caucasian predictions in both males and females and greater than the Chinese predictions for males. Conclusion: This study has developed validated prediction equations for DLCO, VA, and DLCO/VA in North Indians. Substantial ethnic diversity exists in predictions for DLCO and VA with Caucasian equations generally yielding higher values than the Indian or Chinese equations. However, DLCO/VA predicted by the Indian equations is slightly higher than that by other equations.

  1. On the tensorial nature of advective porosity

    NASA Astrophysics Data System (ADS)

    Neuman, Shlomo P.

    2005-02-01

    Field tracer tests indicate that advective porosity, the quantity relating advective velocity to Darcy flux, may exhibit directional dependence. Hydraulic anisotropy explains some but not all of the reported directional results. The present paper shows mathematically that directional variations in advective porosity may arise simply from incomplete mixing of an inert tracer between directional flow channels within a sampling (or support) volume ω of soil or rock that may be hydraulically isotropic or anisotropic. In the traditional fully homogenized case, our theory yields trivially a scalar advective porosity equal to the interconnected porosity ϕ, thus explaining neither the observed directional effects nor the widely reported experimental finding that advective porosity is generally smaller than ϕ. We consider incomplete mixing under conditions in which the characteristic time tD of longitudinal diffusion along channels across ω is much shorter than the characteristic time tH required for homogenization through transverse diffusion between channels. This may happen where flow takes place preferentially through relatively conductive channels and/or fractures of variable orientation separated by material that forms a partial barrier to diffusive transport. Our solution is valid for arbitrary channel Peclet numbers on a correspondingly wide range of time scales tD ⩽ t ≪ tH. It shows that the tracer center of mass is advected at a macroscopic velocity which is generally not collinear with the macroscopic Darcy flux and exceeds it in magnitude. These two vectors are related through a second-rank symmetric advective dispersivity tensor Φ. If the permeability k of ω is a symmetric positive-definite tensor, so is Φ. However, the principal directions and values of these two tensors are generally not the same; whereas those of k are a fixed property of the medium and the length-scale of ω, those of Φ depend additionally on the direction and magnitude of the

  2. Advective coalescence in chaotic flows.

    PubMed

    Nishikawa, T; Toroczkai, Z; Grebogi, C

    2001-07-16

    We investigate the reaction kinetics of small spherical particles with inertia, obeying coalescence type of reaction, B+B-->B, and being advected by hydrodynamical flows with time-periodic forcing. In contrast to passive tracers, the particle dynamics is governed by the strongly nonlinear Maxey-Riley equations, which typically create chaos in the spatial component of the particle dynamics, appearing as filamental structures in the distribution of the reactants. Defining a stochastic description supported on the natural measure of the attractor, we show that, in the limit of slow reaction, the reaction kinetics assumes a universal behavior exhibiting a t(-1) decay in the amount of reagents, which become distributed on a subset of dimension D2, where D2 is the correlation dimension of the chaotic flow. PMID:11461595

  3. Singular solution of the Feller diffusion equation via a spectral decomposition.

    PubMed

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.

  4. Singular solution of the Feller diffusion equation via a spectral decomposition.

    PubMed

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability. PMID:25679586

  5. Singular solution of the Feller diffusion equation via a spectral decomposition

    NASA Astrophysics Data System (ADS)

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.

  6. Anomalous scaling of a scalar field advected by turbulence

    SciTech Connect

    Kraichnan, R.H.

    1995-12-31

    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  7. Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen; Magin, Richard L.

    2016-07-01

    Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.

  8. Jump-diffusion unravelling of a non-Markovian generalized Lindblad master equation

    SciTech Connect

    Barchielli, A.; Pellegrini, C.

    2010-11-15

    The ''correlated-projection technique'' has been successfully applied to derive a large class of highly non-Markovian dynamics, the so called non-Markovian generalized Lindblad-type equations or Lindblad rate equations. In this article, general unravelings are presented for these equations, described in terms of jump-diffusion stochastic differential equations for wave functions. We show also that the proposed unraveling can be interpreted in terms of measurements continuous in time but with some conceptual restrictions. The main point in the measurement interpretation is that the structure itself of the underlying mathematical theory poses restrictions on what can be considered as observable and what is not; such restrictions can be seen as the effect of some kind of superselection rule. Finally, we develop a concrete example and discuss possible effects on the heterodyne spectrum of a two-level system due to a structured thermal-like bath with memory.

  9. Propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion.

    PubMed

    Curtis, Christopher W; Bortz, David M

    2012-12-01

    The propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion coefficients is studied. Using coordinate changes, WKB approximations, and multiple scales analysis, we provide an analytic framework that describes propagation of the front up to the minimum of the diffusion coefficient. We also present results showing the behavior of the front after it passes the minimum. In each case, we show that standard traveling coordinate frames do not properly describe front propagation. Last, we provide numerical simulations to support our analysis and to show, that around the minimum, the motion of the front is arrested on asymptotically significant time scales.

  10. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    SciTech Connect

    Rohmer, Damien; Gullberg, Grant T.

    2006-12-29

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing

  11. Modeling ballistic effects in frequency-dependent transient thermal transport using diffusion equations

    NASA Astrophysics Data System (ADS)

    Maassen, Jesse; Lundstrom, Mark

    2016-03-01

    Understanding ballistic phonon transport effects in transient thermoreflectance experiments and explaining the observed deviations from classical theory remains a challenge. Diffusion equations are simple and computationally efficient but are widely believed to break down when the characteristic length scale is similar or less than the phonon mean-free-path. Building on our prior work, we demonstrate how well-known diffusion equations, namely, the hyperbolic heat equation and the Cattaneo equation, can be used to model ballistic phonon effects in frequency-dependent periodic steady-state thermal transport. Our analytical solutions are found to compare excellently to rigorous numerical results of the phonon Boltzmann transport equation. The correct physical boundary conditions can be different from those traditionally used and are paramount for accurately capturing ballistic effects. To illustrate the technique, we consider a simple model problem using two different, commonly used heating conditions. We demonstrate how this framework can easily handle detailed material properties, by considering the case of bulk silicon using a full phonon dispersion and mean-free-path distribution. This physically transparent approach provides clear insights into the nonequilibrium physics of quasi-ballistic phonon transport and its impact on thermal transport properties.

  12. Turing-Hopf bifurcation in the reaction-diffusion equations and its applications

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Peng, Yahong

    2016-04-01

    In this paper, we consider the Turing-Hopf bifurcation arising from the reaction-diffusion equations. It is a degenerate case and where the characteristic equation has a pair of simple purely imaginary roots and a simple zero root. First, the normal form theory for partial differential equations (PDEs) with delays developed by Faria is adopted to this degenerate case so that it can be easily applied to Turing-Hopf bifurcation. Then, we present a rigorous procedure for calculating the normal form associated with the Turing-Hopf bifurcation of PDEs. We show that the reduced dynamics associated with Turing-Hopf bifurcation is exactly the dynamics of codimension-two ordinary differential equations (ODE), which implies the ODE techniques can be employed to classify the reduced dynamics by the unfolding parameters. Finally, we apply our theoretical results to an autocatalysis model governed by reaction-diffusion equations; for such model, the dynamics in the neighbourhood of this bifurcation point can be divided into six categories, each of which is exactly demonstrated by the numerical simulations; and then according to this dynamical classification, a stable spatially inhomogeneous periodic solution has been found.

  13. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    SciTech Connect

    Bailey, Teresa S. Adams, Marvin L. Yang, Brian Zika, Michael R.

    2008-04-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.

  14. Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR

    SciTech Connect

    Fisher, A C; Bailey, D S; Kaiser, T B; Gunney, B N; Masters, N D; Koniges, A E; Eder, D C; Anderson, R W

    2009-10-06

    The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.

  15. Global stability of travelling wave fronts for non-local diffusion equations with delay

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lv, G.

    2014-04-01

    This paper is concerned with the global stability of travelling wave fronts for non-local diffusion equations with delay. We prove that the non-critical travelling wave fronts are globally exponentially stable under perturbations in some exponentially weighted L^\\infty-spaces. Moreover, we obtain the decay rates of \\sup_{x\\in{R}}\\vert u(x,t)-\\varphi(x+ct)\\vert using weighted energy estimates.

  16. Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.

    SciTech Connect

    Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael; Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl

    2011-09-01

    Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.

  17. Equation of Diffusion of a Composite Mixture into a Composite Medium

    NASA Astrophysics Data System (ADS)

    Kravchuk, A. S.; Kravchuk, A. I.; Popova, T. S.

    2016-07-01

    The equation of diffusion of a composite mixture into a composite medium has been obtained for the first time. The assumption used is that the macropoint of the medium, i.e., an elementary macrovolume, in which the statistical parameters of distribution of inhomogeneities coincide with the corresponding values assigned for the medium as a whole, is small compared to the geometric dimensions of the volume considered. The ″Reuss-Voigt fork″ has been obtained for determining the limits of the change in the diffusion coefficient. Thereafter the fork is narrowed to the ″Kravchuk-Tarasyuk fork.″ Effective diffusion coefficients are obtained as an arithmetic mean value of the Kravchuk-Tarasyuk fork. The found averaged physical parameters can be used in solving specific physical problems for inhomogeneous media.

  18. Travelling Waves for a Density Dependent Diffusion Nagumo Equation over the Real Line

    NASA Astrophysics Data System (ADS)

    Robert, A. Van Gorder

    2012-07-01

    We consider the density dependent diffusion Nagumo equation, where the diffusion coefficient is a simple power function. This equation is used in modelling electrical pulse propagation in nerve axons and in population genetics (amongst other areas). In the present paper, the δ-expansion method is applied to a travelling wave reduction of the problem, so that we may obtain globally valid perturbation solutions (in the sense that the perturbation solutions are valid over the entire infinite domain, not just locally; hence the results are a generalization of the local solutions considered recently in the literature). The resulting boundary value problem is solved on the real line subject to conditions at z → ±∞. Whenever a perturbative method is applied, it is important to discuss the accuracy and convergence properties of the resulting perturbation expansions. We compare our results with those of two different numerical methods (designed for initial and boundary value problems, respectively) and deduce that the perturbation expansions agree with the numerical results after a reasonable number of iterations. Finally, we are able to discuss the influence of the wave speed c and the asymptotic concentration value α on the obtained solutions. Upon recasting the density dependent diffusion Nagumo equation as a two-dimensional dynamical system, we are also able to discuss the influence of the nonlinear density dependence (which is governed by a power-law parameter m) on oscillations of the travelling wave solutions.

  19. Analytical solutions to matrix diffusion problems

    SciTech Connect

    Kekäläinen, Pekka

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  20. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C072)

    EPA Science Inventory

    Abstract

    Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  1. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C048)

    EPA Science Inventory

    Abstract

    Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  2. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1993-01-01

    An enhanced diffusion-reaction reaction system (DRS) is proposed as a statistical model for the evolution of multiple scalars undergoing mixing and reaction in an isotropic turbulence field. The DRS model is close enough to the scalar equations in a reacting flow that other statistical models of turbulent mixing that decouple the velocity field from scalar mixing and reaction (e.g. mapping closure model, assumed-pdf models) cannot distinguish the model equations from the original equations. Numerical simulations of DRS are performed for three scalars evolving from non-premixed initial conditions. A simple one-step reversible reaction is considered. The data from the simulations are used (1) to study the effect of chemical conversion on the evolution of scalar statistics, and (2) to evaluate other models (mapping-closure model, assumed multivariate beta-pdf model).

  3. A deterministic particle method for one-dimensional reaction-diffusion equations

    NASA Technical Reports Server (NTRS)

    Mascagni, Michael

    1995-01-01

    We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.

  4. Multi-moment advection scheme in three dimension for Vlasov simulations of magnetized plasma

    SciTech Connect

    Minoshima, Takashi; Matsumoto, Yosuke; Amano, Takanobu

    2013-03-01

    We present an extension of the multi-moment advection scheme [T. Minoshima, Y. Matsumoto, T. Amano, Multi-moment advection scheme for Vlasov simulations, Journal of Computational Physics 230 (2011) 6800–6823] to the three-dimensional case, for full electromagnetic Vlasov simulations of magnetized plasma. The scheme treats not only point values of a profile but also its zeroth to second order piecewise moments as dependent variables, and advances them on the basis of their governing equations. Similar to the two-dimensional scheme, the three-dimensional scheme can accurately solve the solid body rotation problem of a gaussian profile with little numerical dispersion or diffusion. This is a very important property for Vlasov simulations of magnetized plasma. We apply the scheme to electromagnetic Vlasov simulations. Propagation of linear waves and nonlinear evolution of the electron temperature anisotropy instability are successfully simulated with a good accuracy of the energy conservation.

  5. A study of turbulent transport of an advective nature in a fluid plasma

    NASA Astrophysics Data System (ADS)

    Min, Byunghoon; An, Chan-Yong; Kim, Chang-Bae

    2014-08-01

    The advective nature of the electrostatic turbulent flux of plasma energy in Fourier space is studied numerically in a nearly adiabatic state. Such a state is represented by the Hasegawa-Mima equation, which is driven by a noise that may model the destabilization due to the phase mismatch of the plasma density and the electric potential. The noise is assumed to be Gaussian and not to be invariant under reflection along a direction ŝ. The flux density induced by such noise is found to be anisotropic: While it is random along ŝ, it is not along the perpendicular direction ŝ ⊥, and the flux is not diffusive. The renormalized response may be approximated as advective, with the velocity being proportional to ( kρ s )2, in the Fourier space.

  6. Local error estimates for adaptive simulation of the Reaction–Diffusion Master Equation via operator splitting

    PubMed Central

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2015-01-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735

  7. Local error estimates for adaptive simulation of the reaction-diffusion master equation via operator splitting

    NASA Astrophysics Data System (ADS)

    Hellander, Andreas; Lawson, Michael J.; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps were adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the diffusive finite-state projection (DFSP) method, to incorporate temporal adaptivity.

  8. Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1998-01-01

    The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.

  9. Calculation of the second term of the exact Green's function of the diffusion equation for diffusion-controlled chemical reactions

    NASA Astrophysics Data System (ADS)

    Plante, Ianik

    2016-01-01

    The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.

  10. Complete numerical solution of the diffusion equation of random genetic drift.

    PubMed

    Zhao, Lei; Yue, Xingye; Waxman, David

    2013-08-01

    A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size.

  11. Thermal diffusion segregation in granular binary mixtures described by the Enskog equation

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente

    2011-05-01

    The diffusion induced by a thermal gradient in a granular binary mixture is analyzed here in the context of the (inelastic) Enskog equation. Although the Enskog equation neglects velocity correlations among particles that are about to collide, it retains the spatial correlations arising from volume exclusion effects and thus is expected to be applicable for moderate densities. In the steady state with gradients only along a given direction, a segregation criterion is obtained from the thermal diffusion factor Λ by measuring the amount of segregation parallel to the thermal gradient. As expected, the sign of the factor Λ provides a criterion for the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the parameters of the mixture (the masses and sizes of particles, concentration, solid volume fraction and coefficients of restitution). The form of the phase diagrams for the BNE/RBNE transition is illustrated in detail for several systems, with special emphasis on the significant role played by the inelasticity of collisions. In particular, an effect already found in dilute gases (segregation in a binary mixture of identical masses and sizes but different coefficients of restitution) is extended to dense systems. A comparison with recent computer simulation results reveals good qualitative agreement at the level of the thermal diffusion factor. The present analysis generalizes to arbitrary concentration previous theoretical results derived in the tracer limit case.

  12. Efficient mass transport by optical advection

    PubMed Central

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-01-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms. PMID:26440069

  13. Time dependence of spin currents in noncollinear magnetic multilayers:the diffusion equation approach

    NASA Astrophysics Data System (ADS)

    Zhang, Jianwei; Levy, Peter

    2005-03-01

    We used the time dependent diffusion equations to study the time evolution of spin torque in noncollinear magnetic multilayers. For 3d transition-metal ferromagnetic layers we find this torque build up in femtoseconds; it reach its steady state in about 75 femtoseconds after undergoing damped oscillations with a period of about 5 femtoseconds. In our approach the initial discontinuity of the spin current at the interface between noncollinear magnetic layers does not directly create spin torque; rather it is the source term that creates transverse spin accumulation and thereby removes the discontinuity in the spin current when steady state is achieved. In this view the spin torque comes from the transverse spin accumulation. We find the dependence of the spin torque on the angle between the magnetizations predicted by the diffusion equation is close to that found by using the Boltzmann equation [1]. Work supported by the National Science Foundation, Grant DMR 0131883. [1] Jianwei Zhang and P.M. Levy, Phys. Rev. B70, 184442(2004).

  14. A mapping method for distributive mixing with diffusion: Interplay between chaos and diffusion in time-periodic sine flow

    NASA Astrophysics Data System (ADS)

    Schlick, Conor P.; Christov, Ivan C.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2013-05-01

    We present an accurate and efficient computational method for solving the advection-diffusion equation in time-periodic chaotic flows. The method uses operator splitting, which allows the advection and diffusion steps to be treated independently. Taking advantage of flow periodicity, the advection step is solved using a mapping method, and diffusion is "added" discretely after each iteration of the advection map. This approach results in the construction of a composite mapping matrix over an entire period of the chaotic advection-diffusion process and provides a natural framework for the analysis of mixing. To test the approach, we consider two-dimensional time-periodic sine flow. By comparing the numerical solutions obtained by our method to reference solutions, we find qualitative agreement for large time steps (structure of concentration profile) and quantitative agreement for small time steps (low error). Further, we study the interplay between mixing through chaotic advection and mixing through diffusion leading to an analytical model for the evolution of the intensity of segregation with time. Additionally, we demonstrate that our operator splitting mapping approach can be readily extended to three dimensions.

  15. A spatial SIS model in advective heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Cui, Renhao; Lou, Yuan

    2016-09-01

    We study the effects of diffusion and advection for a susceptible-infected-susceptible epidemic reaction-diffusion model in heterogeneous environments. The definition of the basic reproduction number R0 is given. If R0 < 1, the unique disease-free equilibrium (DFE) is globally asymptotically stable. Asymptotic behaviors of R0 for advection rate and mobility of the infected individuals (denoted by dI) are established, and the existence of the endemic equilibrium when R0 > 1 is studied. The effects of diffusion and advection rates on the stability of the DFE are further investigated. Among other things, we find that if the habitat is a low-risk domain, there may exist one critical value for the advection rate, under which the DFE changes its stability at least twice as dI varies from zero to infinity, while the DFE is unstable for any dI when the advection rate is larger than the critical value. These results are in strong contrast with the case of no advection, where the DFE changes its stability at most once as dI varies from zero to infinity.

  16. Diffusion-equation representations of landform evolution in the simplest circumstances: Appendix C

    USGS Publications Warehouse

    Hanks, Thomas C.

    2009-01-01

    Most of us here know that the diffusion equation has also been used to describe the evolution through time of scarp-like landforms, including fault scarps, shoreline scarps, or a set of marine terraces. The methods, models, and data employed in such studies have been described in the literature many times over the past 25 years. For most situations, everything you will ever need (or want) to know can be found in Hanks et al. (1984) and Hanks (2000), the latter being a review of numerous studies of the 1980s and 1990s and a summary of available estimates of the mass diffusivity κ. The geometric parameterization of scarp-like landforms is shown in Figure 1.

  17. Retinal Image Enhancement Using Robust Inverse Diffusion Equation and Self-Similarity Filtering

    PubMed Central

    Fu, Shujun; Xu, Lingzhong; Zhao, Kun; Zhang, Caiming

    2016-01-01

    As a common ocular complication for diabetic patients, diabetic retinopathy has become an important public health problem in the world. Early diagnosis and early treatment with the help of fundus imaging technology is an effective control method. In this paper, a robust inverse diffusion equation combining a self-similarity filtering is presented to detect and evaluate diabetic retinopathy using retinal image enhancement. A flux corrected transport technique is used to control diffusion flux adaptively, which eliminates overshoots inherent in the Laplacian operation. Feature preserving denoising by the self-similarity filtering ensures a robust enhancement of noisy and blurry retinal images. Experimental results demonstrate that this algorithm can enhance important details of retinal image data effectively, affording an opportunity for better medical interpretation and subsequent processing. PMID:27388503

  18. Retinal Image Enhancement Using Robust Inverse Diffusion Equation and Self-Similarity Filtering.

    PubMed

    Wang, Lu; Liu, Guohua; Fu, Shujun; Xu, Lingzhong; Zhao, Kun; Zhang, Caiming

    2016-01-01

    As a common ocular complication for diabetic patients, diabetic retinopathy has become an important public health problem in the world. Early diagnosis and early treatment with the help of fundus imaging technology is an effective control method. In this paper, a robust inverse diffusion equation combining a self-similarity filtering is presented to detect and evaluate diabetic retinopathy using retinal image enhancement. A flux corrected transport technique is used to control diffusion flux adaptively, which eliminates overshoots inherent in the Laplacian operation. Feature preserving denoising by the self-similarity filtering ensures a robust enhancement of noisy and blurry retinal images. Experimental results demonstrate that this algorithm can enhance important details of retinal image data effectively, affording an opportunity for better medical interpretation and subsequent processing.

  19. Retinal Image Enhancement Using Robust Inverse Diffusion Equation and Self-Similarity Filtering.

    PubMed

    Wang, Lu; Liu, Guohua; Fu, Shujun; Xu, Lingzhong; Zhao, Kun; Zhang, Caiming

    2016-01-01

    As a common ocular complication for diabetic patients, diabetic retinopathy has become an important public health problem in the world. Early diagnosis and early treatment with the help of fundus imaging technology is an effective control method. In this paper, a robust inverse diffusion equation combining a self-similarity filtering is presented to detect and evaluate diabetic retinopathy using retinal image enhancement. A flux corrected transport technique is used to control diffusion flux adaptively, which eliminates overshoots inherent in the Laplacian operation. Feature preserving denoising by the self-similarity filtering ensures a robust enhancement of noisy and blurry retinal images. Experimental results demonstrate that this algorithm can enhance important details of retinal image data effectively, affording an opportunity for better medical interpretation and subsequent processing. PMID:27388503

  20. LAYER DEPENDENT ADVECTION IN CMAQ

    EPA Science Inventory

    The advection methods used in CMAQ require that the Courant-Friedrichs-Lewy (CFL) condition be satisfied for numerical stability and accuracy. In CMAQ prior to version 4.3, the ADVSTEP algorithm established CFL-safe synchronization and advection timesteps that were uniform throu...

  1. Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.

    2016-01-01

    We present a model of technological evolution due to interaction between multiple countries and the resultant effects on the corresponding macro variables. The world consists of a set of economies where some countries are leaders and some are followers in the technology ladder. All of them potentially gain from technological breakthroughs. Applying Lotka-Volterra (LV) equations to model evolution of the technology frontier, we show that the way technology diffuses creates repercussions in the partner economies. This process captures the spill-over effects on major macro variables seen in the current highly globalized world due to trickle-down effects of technology.

  2. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  3. Stability and Bifurcation in a Delayed Reaction-Diffusion Equation with Dirichlet Boundary Condition

    NASA Astrophysics Data System (ADS)

    Guo, Shangjiang; Ma, Li

    2016-04-01

    In this paper, we study the dynamics of a diffusive equation with time delay subject to Dirichlet boundary condition in a bounded domain. The existence of spatially nonhomogeneous steady-state solution is investigated by applying Lyapunov-Schmidt reduction. The existence of Hopf bifurcation at the spatially nonhomogeneous steady-state solution is derived by analyzing the distribution of the eigenvalues. The direction of Hopf bifurcation and stability of the bifurcating periodic solution are also investigated by means of normal form theory and center manifold reduction. Moreover, we illustrate our general results by applications to the Nicholson's blowflies models with one- dimensional spatial domain.

  4. Analytic solutions of the time-dependent quasilinear diffusion equation with source and loss terms

    SciTech Connect

    Hassan, M.H.A. ); Hamza, E.A. )

    1993-08-01

    A simplified one-dimensional quasilinear diffusion equation describing the time evolution of collisionless ions in the presence of ion-cyclotron-resonance heating, sources, and losses is solved analytically for all harmonics of the ion cyclotron frequency. Simple time-dependent distribution functions which are initially Maxwellian and vanish at high energies are obtained and calculated numerically for the first four harmonics of resonance heating. It is found that the strongest ion tail of the resulting anisotropic distribution function is driven by heating at the second harmonic followed by heating at the fundamental frequency.

  5. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  6. A Monte Carlo synthetic-acceleration method for solving the thermal radiation diffusion equation

    NASA Astrophysics Data System (ADS)

    Evans, Thomas M.; Mosher, Scott W.; Slattery, Stuart R.; Hamilton, Steven P.

    2014-02-01

    We present a novel synthetic-acceleration-based Monte Carlo method for solving the equilibrium thermal radiation diffusion equation in three spatial dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that our Monte Carlo method is an effective solver for sparse matrix systems. For solutions converged to the same tolerance, it performs competitively with deterministic methods including preconditioned conjugate gradient and GMRES. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

  7. Multi-Dimensional Asymptotically Stable 4th Order Accurate Schemes for the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Ditkowski, Adi

    1996-01-01

    An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes to 4th-order accuracy and is asymptotically stable in time. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions fail.

  8. Boundary layer theory for convection-diffusion equations in a circle

    NASA Astrophysics Data System (ADS)

    Jung, Ch-Y.; Temam, R.

    2014-06-01

    This paper is devoted to boundary layer theory for singularly perturbed convection-diffusion equations in the unit circle. Two characteristic points appear, (+/- 1,0), in the context of the equations considered here, and singularities may occur at these points depending on the behaviour there of a given function f, namely, the flatness or compatibility of f at these points as explained below. Two previous articles addressed two particular cases: \\lbrack24\\rbrack dealt with the case where the function f is sufficiently flat at the characteristic points, the so-called compatible case; \\lbrack25\\rbrack dealt with a generic non-compatible case ( f polynomial). This survey article recalls the essential results from those papers, and continues with the general case ( f non-flat and non-polynomial) for which new specific boundary layer functions of parabolic type are introduced in addition. Bibliography: 49 titles.

  9. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    PubMed

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. PMID:24418010

  10. Scalable implicit methods for reaction-diffusion equations in two and three space dimensions

    SciTech Connect

    Veronese, S.V.; Othmer, H.G.

    1996-12-31

    This paper describes the implementation of a solver for systems of semi-linear parabolic partial differential equations in two and three space dimensions. The solver is based on a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies for the linearized equations are used to reduce the stride and improve the overall effectiveness of the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion problems in computational biology and medicine in which the desired solution is a traveling wave that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy of the method are given here; the theoretical analysis will be presented.

  11. Using adaptive proper orthogonal decomposition to solve the reaction-diffusion equation

    SciTech Connect

    Singer, M A; Green, W H

    2007-12-03

    We introduce an adaptive POD method to reduce the computational cost of reacting flow simulations. The scheme is coupled with an operator-splitting algorithm to solve the reaction-diffusion equation. For the reaction sub-steps, locally valid basis vectors, obtained via POD and the method of snapshots, are used to project the minor species mass fractions onto a reduced dimensional space thereby decreasing the number of equations that govern combustion chemistry. The method is applied to a one-dimensional laminar premixed CH{sub 4}-air flame using GRImech 3.0; with errors less than 0:25%, a speed-up factor of 3:5 is observed. The speed-up results from fewer source term evaluations required to compute the Jacobian matrices.

  12. Nodal approximations of varying order by energy group for solving the diffusion equation

    SciTech Connect

    Broda, J.T.

    1992-02-01

    The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined.

  13. A Mapping method for mixing with diffusion

    NASA Astrophysics Data System (ADS)

    Schlick, Conor P.; Christov, Ivan C.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2012-11-01

    We present an accurate and efficient computational method for solving the advection-diffusion equation in time-periodic chaotic flows. The method uses operator splitting which allows advection and diffusion steps to be treated independently. Taking advantage of flow periodicity, the advection step is solved with a mapping method, and diffusion is added discretely after each iteration of the advection map. This approach allows for a ``composite'' mapping matrix to be constructed for an entire period of a chaotic advection-diffusion process, which provides a natural approach to the spectral analysis of mixing. To test the approach, we consider the two-dimensional time-periodic sine flow. When compared to the exact solution for this simple velocity field, the operator splitting method exhibits qualitative agreement (overall concentration structure) for large time steps and is quantitatively accurate (average and maximum error) for small time steps. We extend the operator splitting approach to three-dimensional chaotic flows. Funded by NSF Grant CMMI-1000469. Present affiliation: Princeton University. Supported by NSF Grant DMS-1104047.

  14. Modeling velocity in gradient flows with coupled-map lattices with advection.

    PubMed

    Lind, Pedro G; Corte-Real, João; Gallas, Jason A C

    2002-07-01

    We introduce a simple model to investigate large scale behavior of gradient flows based on a lattice of coupled maps which, in addition to the usual diffusive term, incorporates advection, as an asymmetry in the coupling between nearest neighbors. This diffusive-advective model predicts traveling patterns to have velocities obeying the same scaling as wind velocities in the atmosphere, regarding the advective parameter as a sort of geostrophic wind. In addition, the velocity and wavelength of traveling wave solutions are studied. In general, due to the presence of advection, two regimes are identified: for strong diffusion the velocity varies linearly with advection, while for weak diffusion a power law is found with a characteristic exponent proportional to the diffusion.

  15. Diffusive Barrier and Getter Under Waste Packages VA Reference Design Feature Evaluations

    SciTech Connect

    MacNeil, K.

    1999-05-24

    This technical document evaluates those aspects of the diffusive barrier and getter features which have the potential for enhancing the performance of the Viability Assessment Reference Design and are also directly related to the key attributes for the repository safety strategy of that design. The effects of advection, hydrodynamic dispersion, and diffusion on the radionuclide migration rates through the diffusive barrier were determined through the application of the one-dimensional, advection/dispersion/diffusion equation. The results showed that because advective flow described by the advection-dispersion equation dominates, the diffusive barrier feature alone would not be effective in retarding migration of radiocuclides. However, if the diffusive barrier were combined with one or more features that reduced the potential for advection, then transport of radionuclides would be dominated by diffusion and their migration from the EBS would be impeded. Apatite was chosen as the getter material used for this report. Two getter configurations were developed, Case 1 and Case 2. As in the evaluation of the diffusive barrier, the effects of advection, hydrodynamic dispersion, and diffusion on the migration of radionuclides through the getter are evaluated. However, in addition to these mechanisms, the one-dimensional advection/dispersion/diffusion model is modified to include the effect of sorption on radionuclide migration rates through the sorptive medium (getter). As a result of sorption, the longitudinal dispersion coefficient, and the average linear velocity are effectively reduced by the retardation factor. The retardation factor is a function of the getter material's dry bulk density, sorption coefficient and moisture content. The results of the evaluation showed that a significant delay in breakthrough through the getter can be achieved if the thickness of the getter barrier is increased.

  16. Classical non-Markovian Boltzmann equation

    SciTech Connect

    Alexanian, Moorad

    2014-08-01

    The modeling of particle transport involves anomalous diffusion, (x²(t) ) ∝ t{sup α} with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.

  17. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  18. Simulating dislocation loop internal dynamics and collective diffusion using stochastic differential equations

    SciTech Connect

    Derlet, P. M.; Gilbert, M. R.; Dudarev, S. L.

    2011-10-01

    Nanoscale prismatic loops are modeled via a partial stochastic differential equation that describes an overdamped continuum elastic string, with a view to describing both the internal and collective dynamics of the loop as a function of temperature. Within the framework of the Langevin equation, expressions are derived that relate the empirical parameters of the model, the friction per unit length, and the elastic stiffness per unit length, to observables that can be obtained directly via molecular-dynamics simulations of interstitial or vacancy prismatic loop mobility. The resulting expressions naturally exhibit the properties that the collective diffusion coefficient of the loop (i) scales inversely with the square root of the number of interstitials, a feature that has been observed in both atomistic simulation and in situ TEM investigations of loop mobility, and (ii) the collective diffusion coefficient is not at all dependent on the internal interactions within the loop, thus qualitatively rationalizing past simulation results showing that the characteristic migration energy barrier is comparable to that of a single interstitial, and cluster migration is a result of individual (but correlated) interstitial activity.

  19. A non-scale-invariant form for coarse-grained diffusion-reaction equations

    NASA Astrophysics Data System (ADS)

    Ostvar, Sassan; Wood, Brian D.

    2016-09-01

    The process of mixing and reaction is a challenging problem to understand mathematically. Although there have been successes in describing the effective properties of mixing and reaction under a number of regimes, process descriptions for early times have been challenging for cases where the structure of the initial conditions is highly segregated. In this paper, we use the method of volume averaging to develop a rigorous theory for diffusive mixing with reactions from initial to asymptotic times under highly segregated initial conditions in a bounded domain. One key feature that arises in this development is that the functional form of the averaged differential mass balance equations is not, in general, scale invariant. Upon upscaling, an additional source term arises that helps to account for the initial configuration of the reacting chemical species. In this development, we derive the macroscopic parameters (a macroscale source term and an effectiveness factor modifying the reaction rate) defined in the macroscale diffusion-reaction equation and provide example applications for several initial configurations.

  20. PLUS family: a set of computer programs to evaluate analytical solutions of the diffusion equation

    SciTech Connect

    Montan, D.N.

    1986-02-01

    This report is intended to describe, document and provide instructions for the use of a set of computer programs commonly referred to as the PLUS family. These programs were designed to numerically evaluate simple analytic solutions of the diffusion equation. The original member of the family, a program called PLUS, was written to provide calculational support for a study of the storage of nuclear waste in geological media. Originally, PLUS computed temperture changes at points in space and time due to a finite length line source. The need to handle arrays of sources led to modifications. To this end, PLUS was changed to subroutine status and new programs were written: CELERY, to control the I/O chores; STALKS, with storage space for an arbitrary array of sources; MIDNITE, to produce thermal contours in and/or about the array. The newest members of the family, TWIGS, and DAYLITE were created to do some of the things (uniform arrays of identical sources) that STALKS and MIDNITE could do but without the need for additional storage space. The original design of these programs was for thermal calculations, however, diffusion equation is used in the study of a number of other field, for example, fluid flow in porous media (hydrology, petroleum reservoirs), and the PLUS family may find other possible homes. 9 refs., 13 figs.

  1. Converged accelerated finite difference scheme for the multigroup neutron diffusion equation

    SciTech Connect

    Terranova, N.; Mostacci, D.; Ganapol, B. D.

    2013-07-01

    Computer codes involving neutron transport theory for nuclear engineering applications always require verification to assess improvement. Generally, analytical and semi-analytical benchmarks are desirable, since they are capable of high precision solutions to provide accurate standards of comparison. However, these benchmarks often involve relatively simple problems, usually assuming a certain degree of abstract modeling. In the present work, we show how semi-analytical equivalent benchmarks can be numerically generated using convergence acceleration. Specifically, we investigate the error behavior of a 1D spatial finite difference scheme for the multigroup (MG) steady-state neutron diffusion equation in plane geometry. Since solutions depending on subsequent discretization can be envisioned as terms of an infinite sequence converging to the true solution, extrapolation methods can accelerate an iterative process to obtain the limit before numerical instability sets in. The obtained results have been compared to the analytical solution to the 1D multigroup diffusion equation when available, using FORTRAN as the computational language. Finally, a slowing down problem has been solved using a cascading source update, showing how a finite difference scheme performs for ultra-fine groups (104 groups) in a reasonable computational time using convergence acceleration. (authors)

  2. Theory of advection-driven long range biotic transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...

  3. Studies of the accuracy of time integration methods for reaction-diffusion equations

    NASA Astrophysics Data System (ADS)

    Ropp, David L.; Shadid, John N.; Ober, Curtis C.

    2004-03-01

    In this study we present numerical experiments of time integration methods applied to systems of reaction-diffusion equations. Our main interest is in evaluating the relative accuracy and asymptotic order of accuracy of the methods on problems which exhibit an approximate balance between the competing component time scales. Nearly balanced systems can produce a significant coupling of the physical mechanisms and introduce a slow dynamical time scale of interest. These problems provide a challenging test for this evaluation and tend to reveal subtle differences between the various methods. The methods we consider include first- and second-order semi-implicit, fully implicit, and operator-splitting techniques. The test problems include a prototype propagating nonlinear reaction-diffusion wave, a non-equilibrium radiation-diffusion system, a Brusselator chemical dynamics system and a blow-up example. In this evaluation we demonstrate a "split personality" for the operator-splitting methods that we consider. While operator-splitting methods often obtain very good accuracy, they can also manifest a serious degradation in accuracy due to stability problems.

  4. Sound energy decay in coupled spaces using a parametric analytical solution of a diffusion equation.

    PubMed

    Luizard, Paul; Polack, Jean-Dominique; Katz, Brian F G

    2014-05-01

    Sound field behavior in performance spaces is a complex phenomenon. Issues regarding coupled spaces present additional concerns due to sound energy exchanges. Coupled volume concert halls have been of increasing interest in recent decades because this architectural principle offers the possibility to modify the hall's acoustical environment in a passive way by modifying the coupling area. Under specific conditions, the use of coupled reverberation chambers can provide non-exponential sound energy decay in the main room, resulting in both high clarity and long reverberation which are antagonistic parameters in a single volume room. Previous studies have proposed various sound energy decay models based on statistical acoustics and diffusion theory. Statistical acoustics assumes a perfectly uniform sound field within a given room whereas measurements show an attenuation of energy with increasing source-receiver distance. While previously proposed models based on diffusion theory use numerical solvers, the present study proposes a heuristic model of sound energy behavior based on an analytical solution of the commonly used diffusion equation and physically justified approximations. This model is validated by means of comparisons to scale model measurements and numerical geometrical acoustics simulations, both applied to the same simple concert hall geometry.

  5. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM

    PubMed Central

    Singh, Brajesh K.; Srivastava, Vineet K.

    2015-01-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639

  6. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    PubMed

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  7. Fast multigrid solution of the advection problem with closed characteristics

    SciTech Connect

    Yavneh, I.; Venner, C.H.; Brandt, A.

    1996-12-31

    The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

  8. The Spatial Chemical Langevin and Reaction Diffusion Master Equations: Moments and Qualitative Solutions

    NASA Astrophysics Data System (ADS)

    Ghosh, Atiyo; Leier, Andre; Marquez-Lago, Tatiana

    2014-03-01

    Spatial stochastic effects are prevalent in many biological systems spanning a variety of scales, from intracellular (e.g. gene expression) to ecological (plankton aggregation). The most common ways of simulating such systems involve drawing sample paths from either the Reaction Diffusion Master Equation (RDME) or the Smoluchowski Equation, using methods such as Gillespie's Simulation Algorithm, Green's Function Reaction Dynamics and Single Particle Tracking. The simulation times of such techniques scale with the number of simulated particles, leading to much computational expense when considering large systems. The Spatial Chemical Langevin Equation (SCLE) can be simulated with fixed time intervals, independent of the number of particles, and can thus provide significant computational savings. However, very little work has been done to investigate the behavior of the SCLE. In this talk we summarize our findings on comparing the SCLE to the well-studied RDME. We use both analytical and numerical procedures to show when one should expect the moments of the SCLE to be close to the RDME, and also when they should differ.

  9. High Order Semi-Lagrangian Advection Scheme

    NASA Astrophysics Data System (ADS)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  10. Stochastic order parameter equation of isometric force production revealed by drift-diffusion estimates

    NASA Astrophysics Data System (ADS)

    Frank, T. D.; Friedrich, R.; Beek, P. J.

    2006-11-01

    We address two questions that are central to understanding human motor control variability: what kind of dynamical components contribute to motor control variability (i.e., deterministic and/or random ones), and how are those components structured? To this end, we derive a stochastic order parameter equation for isometric force production from experimental data using drift-diffusion estimates. We show that the force variability increases with the required force output because of a decrease of deterministic stability and an accompanying increase of noise intensity. A structural analysis reveals that the deterministic component consists of a linear control loop, while the random component involves a noise source that scales with force output. In addition, we present evidence for the existence of a subject-independent overall noise level of human isometric force production.

  11. An inverse time-dependent source problem for a time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Wei, T.; Li, X. L.; Li, Y. S.

    2016-08-01

    This paper is devoted to identifying a time-dependent source term in a multi-dimensional time-fractional diffusion equation from boundary Cauchy data. The existence and uniqueness of a strong solution for the corresponding direct problem with homogeneous Neumann boundary condition are firstly proved. We provide the uniqueness and a stability estimate for the inverse time-dependent source problem. Then we use the Tikhonov regularization method to solve the inverse source problem and propose a conjugate gradient algorithm to find a good approximation to the minimizer of the Tikhonov regularization functional. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed method. This paper was supported by the NSF of China (11371181) and the Fundamental Research Funds for the Central Universities (lzujbky-2013-k02).

  12. Numerical methods for one-dimensional reaction-diffusion equations arising in combustion theory

    NASA Technical Reports Server (NTRS)

    Ramos, J. I.

    1987-01-01

    A review of numerical methods for one-dimensional reaction-diffusion equations arising in combustion theory is presented. The methods reviewed include explicit, implicit, quasi-linearization, time linearization, operator-splitting, random walk and finite-element techniques and methods of lines. Adaptive and nonadaptive procedures are also reviewed. These techniques are applied first to solve two model problems which have exact traveling wave solutions with which the numerical results can be compared. This comparison is performed in terms of both the wave profile and computed wave speed. It is shown that the computed wave speed is not a good indicator of the accuracy of a particular method. A fourth-order time-linearized, Hermitian compact operator technique is found to be the most accurate method for a variety of time and space sizes.

  13. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  14. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the

  15. Computations of ion diffusion coefficients from the Boltzmann-Fokker-Planck equation

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1981-01-01

    The Boltzmann-Fokker-Planck equation is solved with the Chapman-Enskog method of analysis for the velocity distribution functions of helium, carbon, nitrogen, and oxygen. The analysis is a perturbation scheme based on the assumption of a collision-dominated gas, and the calculations are carried out to first order. The elements considered are treated as trace constituents in an electron-proton gas. From the resulting distribution functions, diffusion coefficients are computed which are found to be 20-30% less than those obtained by Chapman and Burgers. In addition, it is shown that the return current of cold electrons needed to maintain quasi-neutrality in a plasma with a temperature gradient contributes a term in the thermal diffusion coefficient omitted erroneously in previous works. This added term resolves the longstanding controversy over the discrepancy between the coefficients of Chapman and Burgers, which are seen to be completely equivalent in the light of this analysis. The viscosity coefficient for an electron-proton gas is also computed and found to be 7% less than that obtained by Braginskii.

  16. Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions

    NASA Astrophysics Data System (ADS)

    Hu, Zexi; Huang, Juntao; Yong, Wen-An

    2016-04-01

    In this work, we propose an interfacial scheme accompanying the lattice Boltzmann method for convection-diffusion equations with general interfacial conditions, including conjugate conditions with or without jumps in heat and mass transfer, continuity of macroscopic variables and normal fluxes in ion diffusion in porous media with different porosity, and the Kapitza resistance in heat transfer. The construction of this scheme is based on our boundary schemes [Huang and Yong, J. Comput. Phys. 300, 70 (2015), 10.1016/j.jcp.2015.07.045] for Robin boundary conditions on straight or curved boundaries. It gives second-order accuracy for straight interfaces and first-order accuracy for curved ones. In addition, the new scheme inherits the advantage of the boundary schemes in which only the current lattice nodes are involved. Such an interfacial scheme is highly desirable for problems with complex geometries or in porous media. The interfacial scheme is numerically validated with several examples. The results show the utility of the constructed scheme and very well support our theoretical predications.

  17. Competing computational approaches to reaction-diffusion equations in clusters of cells

    NASA Astrophysics Data System (ADS)

    Stella, Sabrina; Chignola, Roberto; Milotti, Edoardo

    2014-03-01

    We have developed a numerical model that simulates the growth of small avascular solid tumors. At its core lies a set of partial differential equations that describe diffusion processes as well as transport and reaction mechanisms of a selected number of nutrients. Although the model relies on a restricted subset of molecular pathways, it compares well with experiments, and its emergent properties have recently led us to uncover a metabolic scaling law that stresses the common mechanisms that drive tumor growth. Now we plan to expand the biochemical model at the basis of the simulator to extend its reach. However, the introduction of additional molecular pathways requires an extensive revision of the reaction-diffusion part of the C++ code to make it more modular and to boost performance. To this end, we developed a novel computational abstract model where the individual molecular species represent the basic computational building blocks. Using a simple two-dimensional toy model to benchmark the new code, we find that the new implementation produces a more modular code without affecting performance. Preliminary results also show that a factor 2 speedup can be achieved with OpenMP multithreading, and other very preliminary results indicate that at least an order-of-magnitude speedup can be obtained using an NVidia Fermi GPU with CUDA code.

  18. Analysis and Dynamically Consistent Numerical Schemes for the SIS Model and Related Reaction Diffusion Equation

    NASA Astrophysics Data System (ADS)

    Lubuma, J. M.-S.; Mureithi, E.; Terefe, Y. A.

    2011-11-01

    The classical SIS epidemiological model is extended in two directions: (a) The number of adequate contacts per infective in unit time is assumed to be a function of the total population in such a way that this number grows less rapidly as the total population increases; (b) A diffusion term is added to the SIS model and this leads to a reaction diffusion equation, which governs the spatial spread of the disease. With the parameter R0 representing the basic reproduction number, it is shown that R0 = 1 is a forward bifurcation for the model (a), with the disease-free equilibrium being globally asymptotic stable when R0 is less than 1. In the case when R0 is greater than 1, traveling wave solutions are found for the model (b). Nonstandard finite difference (NSFD) schemes that replicate the dynamics of the continuous models are presented. In particular, for the model (a), a nonstandard version of the Runge-Kutta method having high order of convergence is investigated. Numerical experiments that support the theory are provided.

  19. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  20. Concentration polarization, surface currents, and bulk advection in a microchannel

    NASA Astrophysics Data System (ADS)

    Nielsen, Christoffer P.; Bruus, Henrik

    2014-10-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction.

  1. Concentration polarization, surface currents, and bulk advection in a microchannel.

    PubMed

    Nielsen, Christoffer P; Bruus, Henrik

    2014-10-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction. PMID:25375606

  2. Diffusion in heterogeneous media: An iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Bologna, Mauro; Svenkeson, Adam; West, Bruce J.; Grigolini, Paolo

    2015-07-01

    Diffusion processes in heterogeneous media, and biological systems in particular, are riddled with the difficult theoretical issue of whether the true origin of anomalous behavior is renewal or memory, or a special combination of the two. Accounting for the possible mixture of renewal and memory sources of subdiffusion is challenging from a computational point of view as well. This problem is exacerbated by the limited number of techniques available for solving fractional diffusion equations with time-dependent coefficients. We propose an iterative scheme for solving fractional differential equations with time-dependent coefficients that is based on a parametric expansion in the fractional index. We demonstrate how this method can be used to predict the long-time behavior of nonautonomous fractional differential equations by studying the anomalous diffusion process arising from a mixture of renewal and memory sources.

  3. Numerical Calculation and Exergy Equations of Spray Heat Exchanger Attached to a Main Fan Diffuser

    NASA Astrophysics Data System (ADS)

    Cui, H.; Wang, H.; Chen, S.

    2015-04-01

    In the present study, the energy depreciation rule of spray heat exchanger, which is attached to a main fan diffuser, is analyzed based on the second law of thermodynamics. Firstly, the exergy equations of the exchanger are deduced. The equations are numerically calculated by the fourth-order Runge-Kutta method, and the exergy destruction is quantitatively effected by the exchanger structure parameters, working fluid (polluted air, i.e., PA; sprayed water, i.e., SW) initial state parameters and the ambient reference parameters. The results are showed: (1) heat transfer is given priority to latent transfer at the bottom of the exchanger, and heat transfer of convection and is equivalent to that of condensation in the upper. (2) With the decrease of initial temperature of SW droplet, the decrease of PA velocity or the ambient reference temperature, and with the increase of a SW droplet size or initial PA temperature, exergy destruction both increase. (3) The exergy efficiency of the exchanger is 72.1 %. An approach to analyze the energy potential of the exchanger may be provided for engineering designs.

  4. Bifurcation analysis of brown tide by reaction-diffusion equation using finite element method

    SciTech Connect

    Kawahara, Mutsuto; Ding, Yan

    1997-03-01

    In this paper, we analyze the bifurcation of a biodynamics system in a two-dimensional domain by virtue of reaction-diffusion equations. The discretization method in space is the finite element method. The computational algorithm for an eigenspectrum is described in detail. On the basis of an analysis of eigenspectra according to Helmholtz`s equation, the discrete spectra in regards to the physical variables are numerically obtained in two-dimensional space. In order to investigate this mathematical model in regards to its practical use, we analyzed the stability of two cases, i.e., hydranth regeneration in the marine hydroid Tubularia and a brown tide in a harbor in Japan. By evaluating the stability according to the linearized stability definition, the critical parameters for outbreaks of brown tide can be theoretically determined. In addition, results for the linear combination of eigenspectrum coincide with the distribution of the observed brown tide. Its periodic characteristic was also verified. 10 refs., 8 figs., 5 tabs.

  5. Computation and visualization of spreading depression based on reaction-diffusion equation with recovery

    NASA Astrophysics Data System (ADS)

    Ding, Hongxia; Chen, Shangbin; Zeng, Shuai; Zeng, Shaoqun; Liu, Qian; Luo, Qingming

    2008-12-01

    Spreading depression (SD) shows as propagating suppression of electrical activity, which relates with migraine and focal cerebral ischaemia. The putative mechanism of SD is the reaction-diffusion hypothesis involving potassium ions. In part inspired by optical imaging of two SD waves collision, we aimed to show the merged and large wavefront but not annihilation during collision by experimental and computational study. This paper modified Reggia et al established bistable equation with recovery to compute and visualize SD. Firstly, the media tissue of SD was assumed as one-dimensional continuum. The Crank-Nicholson method was used to solve the modified equations with recovery term. Then, the computation results were extended to two-dimensional space by symmetry. One individual SD was visualized as a concentric wave initiating from the stimulation point. The mergence but not annihilation of two colliding waves of SD was demonstrated. In addition, the dynamics of SD depending on the parameters was studied and presented. The results allied SD with the emerging concepts of volume transmission. This work not only supplied a paradigm to compute and visualize SD but also became a tool to explore the mechanisms of SD.

  6. Convergence properties of iterative algorithms for solving the nodal diffusion equations

    SciTech Connect

    Azmy, Y Y; Kirk, B L

    1990-01-01

    We drive the five point form of the nodal diffusion equations in two-dimensional Cartesian geometry and develop three iterative schemes to solve the discrete-variable equations: the unaccelerated, partial Successive Over Relaxation (SOR), and the full SOR methods. By decomposing the iteration error into its Fourier modes, we determine the spectral radius of each method for infinite medium, uniform model problems, and for the unaccelerated and partial SOR methods for finite medium, uniform model problems. Also for the two variants of the SOR method we determine the optimal relaxation factor that results in the smallest number of iterations required for convergence. Our results indicate that the number of iterations for the unaccelerated and partial SOR methods is second order in the number of nodes per dimension, while, for the full SOR this behavior is first order, resulting in much faster convergence for very large problems. We successfully verify the results of the spectral analysis against those of numerical experiments, and we show that for the full SOR method the linear dependence of the number of iterations on the number of nodes per dimension is relatively insensitive to the value of the relaxation parameter, and that it remains linear even for heterogenous problems. 14 refs., 1 fig.

  7. A simulation and time series analysis of reaction- diffusion equations in biological pattern formation

    NASA Astrophysics Data System (ADS)

    Cooper, Crystal Diane

    A computer program was modified to model the dynamics of morphogen concentrations in a developing eye of a Xenopus laevis frog. The dynamics were modelled because it is believed that the behavior of the morphogen concentrations determine how the developing eye maps to the brain. The eye in the xenophus grows as a series of rings, and thus this is the model used. The basis for the simulation are experiments done by Sullivan et al. Following the experiment, aIl eye ring is 'split' in half, inverted, and then 'pasted' onto a donor half. The purpose of the program is to replicate and analyze the results that were found experimentally: a graft made on a north to south axis (dorsal to ventral) produces a change in vision along the east to west axis (anterior to posterior). Four modified Gierer-Meinhardt reaction- diffusion equations are used to simulate the operation. In the second part of the research, the program was further modified and a time series analysis was done on the results. It was found that the modified Gierer- Meinhardt equations demonstrated chaotic behavior under certain conditions. The dynamics included fixed points, limit cycles, transient chaos, intermittent chaos, and strange attractors. The creation and destruction of fractal torii was found.

  8. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation.

    PubMed

    Kekenes-Huskey, P M; Gillette, A K; McCammon, J A

    2014-05-01

    The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded

  9. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation

    SciTech Connect

    Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.

    2014-05-07

    The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute “obstacles” and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as “buffers” that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in

  10. Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions.

    PubMed

    Cisternas, Jaime; Descalzi, Orazio; Albers, Tony; Radons, Günter

    2016-05-20

    We demonstrate the occurrence of anomalous diffusion of dissipative solitons in a "simple" and deterministic prototype model: the cubic-quintic complex Ginzburg-Landau equation in two spatial dimensions. The main features of their dynamics, induced by symmetric-asymmetric explosions, can be modeled by a subdiffusive continuous-time random walk, while in the case dominated by only asymmetric explosions, it becomes characterized by normal diffusion. PMID:27258868

  11. Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion

    NASA Astrophysics Data System (ADS)

    Antonopoulou, Dimitra C.; Karali, Georgia; Millet, Annie

    2016-02-01

    The Cahn-Hilliard/Allen-Cahn equation with noise is a simplified mean field model of stochastic microscopic dynamics associated with adsorption and desorption-spin flip mechanisms in the context of surface processes. For such an equation we consider a multiplicative space-time white noise with diffusion coefficient of linear growth. Applying techniques from semigroup theory, we prove local existence and uniqueness in dimensions d = 1 , 2 , 3. Moreover, when the diffusion coefficient satisfies a sub-linear growth condition of order α bounded by 1/3, which is the inverse of the polynomial order of the nonlinearity used, we prove for d = 1 global existence of solution. Path regularity of stochastic solution, depending on that of the initial condition, is obtained a.s. up to the explosion time. The path regularity is identical to that proved for the stochastic Cahn-Hilliard equation in the case of bounded noise diffusion. Our results are also valid for the stochastic Cahn-Hilliard equation with unbounded noise diffusion, for which previous results were established only in the framework of a bounded diffusion coefficient. As expected from the theory of parabolic operators in the sense of Petrovskıı̆, the bi-Laplacian operator seems to be dominant in the combined model.

  12. From the Highly Compressible Navier-Stokes Equations to Fast Diffusion and Porous Media Equations, Existence of Global Weak Solution for the Quasi-Solutions

    NASA Astrophysics Data System (ADS)

    Haspot, Boris

    2016-06-01

    We consider the compressible Navier-Stokes equations for viscous and barotropic fluids with density dependent viscosity. The aim is to investigate mathematical properties of solutions of the Navier-Stokes equations using solutions of the pressureless Navier-Stokes equations, that we call quasi solutions. This regime corresponds to the limit of highly compressible flows. In this paper we are interested in proving the announced result in Haspot (Proceedings of the 14th international conference on hyperbolic problems held in Padova, pp 667-674, 2014) concerning the existence of global weak solution for the quasi-solutions, we also observe that for some choice of initial data (irrotationnal) the quasi solutions verify the porous media, the heat equation or the fast diffusion equations in function of the structure of the viscosity coefficients. In particular it implies that it exists classical quasi-solutions in the sense that they are {C^{∞}} on {(0,T)× {R}N} for any {T > 0}. Finally we show the convergence of the global weak solution of compressible Navier-Stokes equations to the quasi solutions in the case of a vanishing pressure limit process. In particular for highly compressible equations the speed of propagation of the density is quasi finite when the viscosity corresponds to {μ(ρ)=ρ^{α}} with {α > 1}. Furthermore the density is not far from converging asymptotically in time to the Barrenblatt solution of mass the initial density {ρ0}.

  13. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    USGS Publications Warehouse

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  14. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone.

    PubMed

    Bachand, P A M; Bachand, S; Fleck, J; Anderson, F; Windham-Myers, L

    2014-06-15

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment-water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our understanding of

  15. A new Differential Equation for Anomalous Diffusion with Potential Applications to Nonlinear Space Plasmas

    NASA Astrophysics Data System (ADS)

    Watkins, N. W.; Credgington, D.; Sanchez, R.; Chapman, S. C.

    2007-12-01

    Since the 1960s Mandelbrot has advocated the use of fractals for the description of the non-Euclidean geometry of many aspects of nature. In particular he proposed two kinds of model to capture persistence in time (his Joseph effect, common in hydrology and with fractional Brownian motion as the prototpe) and/or prone to heavy tailed jumps (the Noah effect, typical of economic indices, for which he proposed Lévy flights as an exemplar). Both effects are now well demonstrated in space plasmas, notably in indices quantifying Earth's auroral currents and in the turbulent solar wind. Models have, however, typically emphasised one of the Noah and Joseph parameters (the Lévy exponent μ and the temporal exponent β) at the other's expense. I will describe recent work [1] in which we studied a simple self-affine stable model-linear fractional stable motion, LFSM, which unifies both effects. I will discuss how this resolves some contradictions seen in earlier work. Such Noah-Joseph hybrid ("ambivalent" [2]) behaviour is highly topical in physics but is typically studied in the paradigm of the continuous time random walk (CTRW) [2,3] rather than LFSM. I will clarify the physical differences between these two pictures and present a recently-derived diffusion equation for LFSM. This replaces the second order spatial derivative in the equation of fBm [4] with a fractional derivative of order μ, but retains a diffusion coefficient with a power law time dependence rather than a fractional derivative in time (c.f. [2,3]). Intriguingly the self-similarity exponent extracted from the CTRW differs from that seen in LFSM. In the CTRW it is the ratio of μ to a temporal exponent, in LFSM it is an additive function of them. I will also show work in progress using an LFSM model and simple analytic scaling arguments to study the problem of the area between an LFSM curve and a threshold-related to the burst size measure introduced by Takalo and Consolini into solar- terrestrial physics

  16. Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation

    NASA Astrophysics Data System (ADS)

    Benguria, R. D.; Depassier, M. C.

    2016-04-01

    We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy Kd is much larger than the easy-axis anisotropy Ku, there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.

  17. Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions

    NASA Astrophysics Data System (ADS)

    Hooshmandasl, M. R.; Heydari, M. H.; Cattani, C.

    2016-08-01

    Fractional calculus has been used to model physical and engineering processes that are best described by fractional differential equations. Therefore designing efficient and reliable techniques for the solution of such equations is an important task. In this paper, we propose an efficient and accurate Galerkin method based on the fractional-order Legendre functions (FLFs) for solving the fractional sub-diffusion equation (FSDE) and the time-fractional diffusion-wave equation (FDWE). The time-fractional derivatives for FSDE are described in the Riemann-Liouville sense, while for FDWE are described in the Caputo sense. To this end, we first derive a new operational matrix of fractional integration (OMFI) in the Riemann-Liouville sense for FLFs. Next, we transform the original FSDE into an equivalent problem with fractional derivatives in the Caputo sense. Then the FLFs and their OMFI together with the Galerkin method are used to transform the problems under consideration into the corresponding linear systems of algebraic equations, which can be simply solved to achieve the numerical solutions of the problems. The proposed method is very convenient for solving such kind of problems, since the initial and boundary conditions are taken into account automatically. Furthermore, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient.

  18. The intrinsic periodic fluctuation of forest: a theoretical model based on diffusion equation

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Lin, G., Sr.

    2015-12-01

    Most forest dynamic models predict the stable state of size structure as well as the total basal area and biomass in mature forest, the variation of forest stands are mainly driven by environmental factors after the equilibrium has been reached. However, although the predicted power-law size-frequency distribution does exist in analysis of many forest inventory data sets, the estimated distribution exponents are always shifting between -2 and -4, and has a positive correlation with the mean value of DBH. This regular pattern can not be explained by the effects of stochastic disturbances on forest stands. Here, we adopted the partial differential equation (PDE) approach to deduce the systematic behavior of an ideal forest, by solving the diffusion equation under the restricted condition of invariable resource occupation, a periodic solution was gotten to meet the variable performance of forest size structure while the former models with stable performance were just a special case of the periodic solution when the fluctuation frequency equals zero. In our results, the number of individuals in each size class was the function of individual growth rate(G), mortality(M), size(D) and time(T), by borrowing the conclusion of allometric theory on these parameters, the results perfectly reflected the observed "exponent-mean DBH" relationship and also gave a logically complete description to the time varying form of forest size-frequency distribution. Our model implies that the total biomass of a forest can never reach a stable equilibrium state even in the absence of disturbances and climate regime shift, we propose the idea of intrinsic fluctuation property of forest and hope to provide a new perspective on forest dynamics and carbon cycle research.

  19. A GENERALIZED MATHEMATICAL SCHEME TO ANALYTICALLY SOLVE THE ATMOSPHERIC DIFFUSION EQUATION WITH DRY DEPOSITION. (R825689C072)

    EPA Science Inventory

    Abstract

    A generalized mathematical scheme is developed to simulate the turbulent dispersion of pollutants which are adsorbed or deposit to the ground. The scheme is an analytical (exact) solution of the atmospheric diffusion equation with height-dependent wind speed a...

  20. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE PAGES

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    2016-07-26

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  1. Computer program VARI-QUIR 3 provides solution of steady-state, multigroup, two-dimensional neutron diffusion equations

    NASA Technical Reports Server (NTRS)

    Collier, G.

    1967-01-01

    Computer program VARI-QUIR 3 provides Gauss-Seidel type of solution with inner and outer iterations for steady-state, multigroup, two-dimensional neutron diffusion equations. The program has no restrictions on any of the input parameters such as the number of groups, regions, or materials.

  2. Nonlinear diffusion acceleration for the multigroup transport equation discretized with S{sub N} and continuous FEM with rattlesnake

    SciTech Connect

    Wang, Y.

    2013-07-01

    Nonlinear diffusion acceleration (NDA) can improve the performance of a neutron transport solver significantly especially for the multigroup eigenvalue problems. The high-order transport equation and the transport-corrected low-order diffusion equation form a nonlinear system in NDA, which can be solved via a Picard iteration. The consistency of the correction of the low-order equation is important to ensure the stabilization and effectiveness of the iteration. It also makes the low-order equation preserve the scalar flux of the high-order equation. In this paper, the consistent correction for a particular discretization scheme, self-adjoint angular flux (SAAF) formulation with discrete ordinates method (S{sub N}) and continuous finite element method (CFEM) is proposed for the multigroup neutron transport equation. Equations with the anisotropic scatterings and a void treatment are included. The Picard iteration with this scheme has been implemented and tested with RattleS{sub N}ake, a MOOSE-based application at INL. Convergence results are presented. (authors)

  3. Discontinuous finite element solution of the radiation diffusion equation on arbitrary polygonal meshes and locally adapted quadrilateral grids

    SciTech Connect

    Ragusa, Jean C.

    2015-01-01

    In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement.

  4. Modeling diffusion and reaction in soils: 9. The Buckingham-Burdine-Campbell equation for gas diffusivity in undisturbed soil

    SciTech Connect

    Moldrup, P.; Olesen, T.; Yamaguchi, T.; Schjoenning, P.; Rolston, D.E.

    1999-08-01

    Accurate description of gas diffusivity (ratio of gas diffusion coefficients in soil and free air, D{sub s}/D{sub 0}) in undisturbed soils is a prerequisite for predicting in situ transport and fate of volatile organic chemicals and greenhouse gases. Reference point gas diffusivities (R{sub p}) in completely dry soil were estimated for 20 undisturbed soils by assuming a power function relation between gas diffusivity and air-filled porosity ({epsilon}). Among the classical gas diffusivity models, the Buckingham (1904) expression, equal to the soil total porosity squared, best described R{sub p}. Inasmuch, as their previous works implied a soil-type dependency of D{sub s}/D{sub 0}({epsilon}) in undisturbed soils, the Buckingham R{sub p} expression was inserted in two soil-type-dependent D{sub s}/D{sub 0}({epsilon}) models. One D{sub s}/D{sub 0}({epsilon}) model is a function of pore-size distribution (the Campbell water retention parameter used in a modified Burdine capillary tube model), and the other is a calibrated, empirical function of soil texture (silt + sand fraction). Both the Buckingham-Burdine-Campbell (BBC) and the Buckingham/soil texture-based D{sub s}/D{sub 0}({epsilon}) models described well the observed soil type effects on gas diffusivity and gave improved predictions compared with soil type independent models when tested against an independent data set for six undisturbed surface soils. This study emphasizes that simple but soil-type-dependent power function D{sub s}/D{sub 0}({epsilon}) models can adequately describe and predict gas diffusivity in undisturbed soil. The authors recommend the new BBC model as basis for modeling gas transport and reactions in undisturbed soil systems.

  5. A generalized spin diffusion equation with four electrochemical potentials for channels with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Hong, Seokmin; Datta, Supriyo

    We will present a general semiclassical theory for an arbitrary channel with spin-orbit coupling (SOC), that uses four electrochemical potential (U + , D + , U - , and D -) depending on the sign of z-component of the spin (up (U) , down (D)) and the sign of the x-component of the group velocity (+ , -) . This can be considered as an extension of the standard spin diffusion equation that uses two electrochemical potentials for up and down spin states, allowing us to take into account the unique coupling between charge and spin degrees of freedom in channels with SOC. We will describe applications of this model to answer a number of interesting questions in this field such as: (1) whether topological insulators can switch magnets, (2) how the charge to spin conversion is influenced by the channel resistivity, and (3) how device structures can be designed to enhance spin injection. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  6. Simulation of the radiolysis of water using Green's functions of the diffusion equation.

    PubMed

    Plante, I; Cucinotta, F A

    2015-09-01

    Radiation chemistry is of fundamental importance in the understanding of the effects of ionising radiation, notably with regard to DNA damage by indirect effect (e.g. damage by ·OH radicals created by the radiolysis of water). In the recent years, Green's functions of the diffusion equation (GFDEs) have been used extensively in biochemistry, notably to simulate biochemical networks in time and space. In the present work, an approach based on the GFDE will be used to refine existing models on the indirect effect of ionising radiation on DNA. As a starting point, the code RITRACKS (relativistic ion tracks) will be used to simulate the radiation track structure and calculate the position of all radiolytic species formed during irradiation. The chemical reactions between these radiolytic species and with DNA will be done by using an efficient Monte Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state that has been developed recently. These simulations should help the understanding of the contribution of the indirect effect in the formation of DNA damage, particularly with regards to the formation of double-strand breaks. PMID:25897139

  7. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2015-12-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5-3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners.

  8. Modelling the effect of temperature on the range expansion of species by reaction-diffusion equations.

    PubMed

    Richter, Otto; Moenickes, Sylvia; Suhling, Frank

    2012-02-01

    The spatial dynamics of range expansion is studied in dependence of temperature. The main elements population dynamics, competition and dispersal are combined in a coherent approach based on a system of coupled partial differential equations of the reaction-diffusion type. The nonlinear reaction terms comprise population dynamic models with temperature dependent reproduction rates subject to an Allee effect and mutual competition. The effect of temperature on travelling wave solutions is investigated for a one dimensional model version. One main result is the importance of the Allee effect for the crossing of regions with unsuitable habitats. The nonlinearities of the interaction terms give rise to a richness of spatio-temporal dynamic patterns. In two dimensions, the resulting non-linear initial boundary value problems are solved over geometries of heterogeneous landscapes. Geo referenced model parameters such as mean temperature and elevation are imported into the finite element tool COMSOL Multiphysics from a geographical information system. The model is applied to the range expansion of species at the scale of middle Europe.

  9. Rényi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations

    NASA Astrophysics Data System (ADS)

    Carrillo, J. A.; Toscani, G.

    2014-12-01

    We investigate the large-time asymptotics of nonlinear diffusion equations ut = Δup in dimension n ⩾ 1, in the exponent interval p > n/(n + 2), when the initial datum u0 is of bounded second moment. Precise rates of convergence to the Barenblatt profile in terms of the relative Rényi entropy are demonstrated for finite-mass solutions defined in the whole space when they are re-normalized at each time t > 0 with respect to their own second moment, as proposed by Carrillo et al (2006 Arch. Ration. Mech. Anal. 180 127-49) and Toscani (2005 J. Evol. Eqns 5 185-203). The analysis shows that, in the range p > max((n - 1)/n, n/(n + 2)), the relative Rényi entropy exhibits a better decay, for intermediate times, with respect to the standard Ralston-Newman entropy. The result follows by a suitable use of sharp Gagliardo-Nirenberg-Sobolev inequalities considered by Dolbeault and Toscani (2013 Ann. Inst. Henri Poincare (C) Non Linear Anal. 30 917-34), and their information-theoretical proof (Savaré and Toscani 2014 IEEE Trans. Inform. Theory 60 2687-93), known as concavity of Rényi entropy power.

  10. Lattice Boltzmann methods for some 2-D nonlinear diffusion equations:Computational results

    SciTech Connect

    Elton, B.H.; Rodrigue, G.H. . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Levermore, C.D. . Dept. of Mathematics)

    1990-01-01

    In this paper we examine two lattice Boltzmann methods (that are a derivative of lattice gas methods) for computing solutions to two two-dimensional nonlinear diffusion equations of the form {partial derivative}/{partial derivative}t u = v ({partial derivative}/{partial derivative}x D(u){partial derivative}/{partial derivative}x u + {partial derivative}/{partial derivative}y D(u){partial derivative}/{partial derivative}y u), where u = u({rvec x},t), {rvec x} {element of} R{sup 2}, v is a constant, and D(u) is a nonlinear term that arises from a Chapman-Enskog asymptotic expansion. In particular, we provide computational evidence supporting recent results showing that the methods are second order convergent (in the L{sub 1}-norm), conservative, conditionally monotone finite difference methods. Solutions computed via the lattice Boltzmann methods are compared with those computed by other explicit, second order, conservative, monotone finite difference methods. Results are reported for both the L{sub 1}- and L{sub {infinity}}-norms.

  11. Simulation of the radiolysis of water using Green's functions of the diffusion equation.

    PubMed

    Plante, I; Cucinotta, F A

    2015-09-01

    Radiation chemistry is of fundamental importance in the understanding of the effects of ionising radiation, notably with regard to DNA damage by indirect effect (e.g. damage by ·OH radicals created by the radiolysis of water). In the recent years, Green's functions of the diffusion equation (GFDEs) have been used extensively in biochemistry, notably to simulate biochemical networks in time and space. In the present work, an approach based on the GFDE will be used to refine existing models on the indirect effect of ionising radiation on DNA. As a starting point, the code RITRACKS (relativistic ion tracks) will be used to simulate the radiation track structure and calculate the position of all radiolytic species formed during irradiation. The chemical reactions between these radiolytic species and with DNA will be done by using an efficient Monte Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state that has been developed recently. These simulations should help the understanding of the contribution of the indirect effect in the formation of DNA damage, particularly with regards to the formation of double-strand breaks.

  12. Convergence of a random walk method for the Burgers equation

    SciTech Connect

    Roberts, S.

    1985-10-01

    In this paper we consider a random walk algorithm for the solution of Burgers' equation. The algorithm uses the method of fractional steps. The non-linear advection term of the equation is solved by advecting ''fluid'' particles in a velocity field induced by the particles. The diffusion term of the equation is approximated by adding an appropriate random perturbation to the positions of the particles. Though the algorithm is inefficient as a method for solving Burgers' equation, it does model a similar method, the random vortex method, which has been used extensively to solve the incompressible Navier-Stokes equations. The purpose of this paper is to demonstrate the strong convergence of our random walk method and so provide a model for the proof of convergence for more complex random walk algorithms; for instance, the random vortex method without boundaries.

  13. Waves, advection, and cloud patterns on Venus

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.; Gierasch, Peter J.; Leroy, Stephen S.; Smith, Michael D.

    1990-01-01

    The stable layers adjacent to the nearly neutral layer within the Venus clouds are found to be capable of supporting vertically trapped, horizontally propagating waves with horizontal wavelengths of about 10 km and speeds of a few meters per second relative to the mean wind in the neutral layer. These waves may possibly be excited by turbulence within the neutral layer. Here, the properties of the waves, and the patterns which they might produce within the visible clouds if excited near the subsolar point are examined. The patterns can be in agreement with many features in images. The waves are capable of transferring momentum latitudinally to help maintain the general atmospheric spin, but at present we are not able to evaluate wave amplitudes. We also examine an alternative possibility that the cloud patterns are produced by advection and shearing by the mean zonal and meridional flow of blobs formed near the equator. It is concluded that advection and shearing by the mean flow is the most likely explanation for the general pattern of small scale striations.

  14. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.; Carpenter, Mark H.

    2001-01-01

    Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta ARK2 methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z(exp [I]) goes to infinity, and retain high stability efficiency in the absence of stiffness, z(exp [I]) goes to zero. Extrapolation-type stage-value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods while offering error control and stage-value predictors.

  15. Vectorized and multitasked solution of the few-group neutron diffusion equations

    SciTech Connect

    Zee, S.K.; Turinsky, P.J.; Shayer, Z.

    1989-03-01

    A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. For the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model.

  16. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-02-01

    Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Diffusion originating in the Kelvin effect between snow structures dominates and is the main transport process in isothermal snow packs.

  17. Measurement of diffusion coefficients in supercritical carbon dioxide and correlation with the equation of Wilke and Chang

    SciTech Connect

    Sassiat, P.R.; Mourier, P.; Caude, M.H.; Rosset, R.H.

    1987-04-15

    Diffusion coefficients of acetone, benzene, naphthalene, 1,3,5-trimethylbenzene, phenanthrene, pyrene, and chrysene have been measured by a chromatographic broadening technique in an open capillary tube (950 x 0.103 cm) filled with pure supercritical carbon dioxide or, in the case of benzene, with CO/sub 2/-methanol mixtures ranging from 0 to 100% in methanol. In pure supercritical CO/sub 2/, diffusion coefficients decrease when density increases; they increase linearly vs. the reciprocal of the viscosity; a linear relationship exists between the logarithms of the diffusion coefficients and the molar volumes with a slope of 0.6. Finally, in the range 0.6-0.9 g cm/sup -3/, the Wilke and Chang equation for the calculation of diffusion coefficients is valid for supercritical CO/sub 2/. For methanol-CO/sub 2/ mixtures there is no discontinuity of the diffusion coefficient of benzene when the methanol content varies from 0 to 100%. In the usual supercritical chromatographic conditions with a methanol content less than 10%, diffusion coefficients are at least 4 times higher than in pure methanol.

  18. Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko

    2014-11-01

    Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, including diffuse optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative transfer and diffusion equations (RTE and DE, respectively) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions are separated into space and time by using a crossover length and the time from the ballistic regime to the diffusive regime, ρDA~10/μt‧ and tDA~20/vμt‧ where μt‧ and v represent a reduced transport coefficient and light velocity, respectively. The present model succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computation of the RTE.

  19. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGES

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  20. Development of an efficient multigrid method for the NEM form of the multigroup neutron diffusion equation

    NASA Astrophysics Data System (ADS)

    Al-Chalabi, Rifat M. Khalil

    1997-09-01

    reconstruction methodology. The relaxation method, which is the power method, utilizes a constant coefficient matrix within the NEM non-linear iterative strategy. The choice of the MG nesting within the nested iterative strategy enables the incorporation of other non-linear effects with no additional coding effort. In addition, if an eigenvalue problem is being solved, it remains an eigenvalue problem at all grid levels, simplifying coding implementation. The merit of the developed MG method was tested by incorporating it into the NESTLE iterative solver, and employing it to solve four different benchmark problems. In addition to the base cases, three different sensitivity studies are performed, examining the effects of number of MG levels, homogenized coupling coefficients correction (i.e. restriction operator), and fine-mesh reconstruction algorithm (i.e. prolongation operator). The multilevel acceleration scheme developed in this research provides the foundation for developing adaptive multilevel acceleration methods for steady-state and transient NEM nodal neutron diffusion equations. (Abstract shortened by UMI.)

  1. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data.

    PubMed

    Hormuth, David A; Weis, Jared A; Barnes, Stephanie L; Miga, Michael I; Rericha, Erin C; Quaranta, Vito; Yankeelov, Thomas E

    2015-06-04

    Reaction-diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction-diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor 'grown' for ten days as dictated by the reaction-diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model's accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error <8.8%, Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction-diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions.

  2. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Hormuth, David A., II; Weis, Jared A.; Barnes, Stephanie L.; Miga, Michael I.; Rericha, Erin C.; Quaranta, Vito; Yankeelov, Thomas E.

    2015-07-01

    Reaction-diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction-diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor ‘grown’ for ten days as dictated by the reaction-diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model’s accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error <8.8%, Dice >0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction-diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions.

  3. Phase Segregation of Passive Advective Particles in an Active Medium

    NASA Astrophysics Data System (ADS)

    Das, Amit; Polley, Anirban; Rao, Madan

    2016-02-01

    Localized contractile configurations or asters spontaneously appear and disappear as emergent structures in the collective stochastic dynamics of active polar actomyosin filaments. Passive particles which (un)bind to the active filaments get advected into the asters, forming transient clusters. We study the phase segregation of such passive advective scalars in a medium of dynamic asters, as a function of the aster density and the ratio of the rates of aster remodeling to particle diffusion. The dynamics of coarsening shows a violation of Porod behavior; the growing domains have diffuse interfaces and low interfacial tension. The phase-segregated steady state shows strong macroscopic fluctuations characterized by multiscaling and intermittency, signifying rapid reorganization of macroscopic structures. We expect these unique nonequilibrium features to manifest in the actin-dependent molecular clustering at the cell surface.

  4. Renormalization group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George

    1993-01-01

    The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.

  5. Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Tambue, Antoine; Ben-Bolie, Germain H.; Kofané, Timoléon C.

    2016-10-01

    We investigate localized wave solutions in a network of Hindmarsh-Rose neural model taking into account the long-range diffusive couplings. We show by a specific analytical technique that the model equations in the infrared limit (wave number k → 0) can be governed by the complex fractional Ginzburg-Landau (CFGL) equation. According to the stiffness of the system, we propose both the semi and the linearly implicit Riesz fractional finite-difference schemes to solve efficiently the CFGL equation. The obtained fractional numerical solutions for the nerve impulse reveal localized short impulse properties. We also show the equivalence between the continuous CFGL and the discrete Hindmarsh-Rose models for relatively large network.

  6. Determination of transport wind speed in the gaussian plume diffusion equation for low-lying point sources

    NASA Astrophysics Data System (ADS)

    Wang, I. T.

    A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.

  7. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method.

    PubMed

    Bahşı, Ayşe Kurt; Yalçınbaş, Salih

    2016-01-01

    In this study, the Fibonacci collocation method based on the Fibonacci polynomials are presented to solve for the fractional diffusion equations with variable coefficients. The fractional derivatives are described in the Caputo sense. This method is derived by expanding the approximate solution with Fibonacci polynomials. Using this method of the fractional derivative this equation can be reduced to a set of linear algebraic equations. Also, an error estimation algorithm which is based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation algorithm. If the exact solution of the problem is not known, the absolute error function of the problems can be approximately computed by using the Fibonacci polynomial solution. By using this error estimation function, we can find improved solutions which are more efficient than direct numerical solutions. Numerical examples, figures, tables are comparisons have been presented to show efficiency and usable of proposed method. PMID:27610294

  8. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.

    PubMed

    Yang, Xuguang; Shi, Baochang; Chai, Zhenhua

    2014-07-01

    In this paper, two modified lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models for incompressible Navier-Stokes equations and convection-diffusion equations are proposed via the addition of correction terms in the evolution equations. Utilizing this modification, the value of the dimensionless relaxation time in the LBGK model can be kept in a proper range, and thus the stability of the LBGK model can be improved. Although some gradient operators are included in the correction terms, they can be computed efficiently using local computational schemes such that the present LBGK models still retain the intrinsic parallelism characteristic of the lattice Boltzmann method. Numerical studies of the steady Poiseuille flow and unsteady Womersley flow show that the modified LBGK model has a second-order convergence rate in space, and the compressibility effect in the common LBGK model can be eliminated. In addition, to test the stability of the present models, we also performed some simulations of the natural convection in a square cavity, and we found that the results agree well with those reported in the previous work, even at a very high Rayleigh number (Ra = 10(12)).

  9. Molecular dynamics and analytical Langevin equation approach for the self-diffusion constant of an anisotropic fluid.

    PubMed

    Colmenares, Pedro J; López, Floralba; Olivares-Rivas, Wilmer

    2009-12-01

    We carried out a molecular-dynamics (MD) study of the self-diffusion tensor of a Lennard-Jones-type fluid, confined in a slit pore with attractive walls. We developed Bayesian equations, which modify the virtual layer sampling method proposed by Liu, Harder, and Berne (LHB) [P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 108, 6595 (2004)]. Additionally, we obtained an analytical solution for the corresponding nonhomogeneous Langevin equation. The expressions found for the mean-squared displacement in the layers contain naturally a modification due to the mean force in the transverse component in terms of the anisotropic diffusion constants and mean exit time. Instead of running a time consuming dual MD-Langevin simulation dynamics, as proposed by LHB, our expression was used to fit the MD data in the entire survival time interval not only for the parallel but also for the perpendicular direction. The only fitting parameter was the diffusion constant in each layer. PMID:20365134

  10. Specification of the process of chloride extraction from reinforced concrete based on the inverse task of the diffusion equation

    NASA Astrophysics Data System (ADS)

    Alsabry, A.; Zybura, A.

    2016-05-01

    When the structure of reinforcement is in danger of chloride corrosion it is possible to prevent this disadvantageous phenomenon through exposing the cover to the influence of an electric field. The forces of an electric field considerably reduce chloride ions in pore liquid in concrete, which helps to rebuild a passive layer on the surface of the reinforcement and stops corrosion. The process of removing chlorides can be described with multi-component diffusion equations. However, an essential parameter of these equations, the diffusion coefficient, can be determined on the basis of an inverse task. Since the solution was achieved for one-dimension flow, the method applied can be confirmed by experimental results and the material parameters of the process can be determined theoretically. Some examples of numerical calculations of the effective electro-diffusion coefficient of chloride ions confirmed the usefulness of the theoretical solution for generalizing experimental results. Moreover, the calculation process of the numerical example provides some practical clues for future experimental research, which could be carried out in close connection with the theoretical solution.

  11. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method.

    PubMed

    Chai, Zhenhua; Zhao, T S

    2014-07-01

    In this paper, we propose a local nonequilibrium scheme for computing the flux of the convection-diffusion equation with a source term in the framework of the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). Both the Chapman-Enskog analysis and the numerical results show that, at the diffusive scaling, the present nonequilibrium scheme has a second-order convergence rate in space. A comparison between the nonequilibrium scheme and the conventional second-order central-difference scheme indicates that, although both schemes have a second-order convergence rate in space, the present nonequilibrium scheme is more accurate than the central-difference scheme. In addition, the flux computation rendered by the present scheme also preserves the parallel computation feature of the LBM, making the scheme more efficient than conventional finite-difference schemes in the study of large-scale problems. Finally, a comparison between the single-relaxation-time model and the MRT model is also conducted, and the results show that the MRT model is more accurate than the single-relaxation-time model, both in solving the convection-diffusion equation and in computing the flux.

  12. Molecular dynamics and analytical Langevin equation approach for the self-diffusion constant of an anisotropic fluid

    NASA Astrophysics Data System (ADS)

    Colmenares, Pedro J.; López, Floralba; Olivares-Rivas, Wilmer

    2009-12-01

    We carried out a molecular-dynamics (MD) study of the self-diffusion tensor of a Lennard-Jones-type fluid, confined in a slit pore with attractive walls. We developed Bayesian equations, which modify the virtual layer sampling method proposed by Liu, Harder, and Berne (LHB) [P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 108, 6595 (2004)]. Additionally, we obtained an analytical solution for the corresponding nonhomogeneous Langevin equation. The expressions found for the mean-squared displacement in the layers contain naturally a modification due to the mean force in the transverse component in terms of the anisotropic diffusion constants and mean exit time. Instead of running a time consuming dual MD-Langevin simulation dynamics, as proposed by LHB, our expression was used to fit the MD data in the entire survival time interval not only for the parallel but also for the perpendicular direction. The only fitting parameter was the diffusion constant in each layer.

  13. Molecular dynamics and analytical Langevin equation approach for the self-diffusion constant of an anisotropic fluid.

    PubMed

    Colmenares, Pedro J; López, Floralba; Olivares-Rivas, Wilmer

    2009-12-01

    We carried out a molecular-dynamics (MD) study of the self-diffusion tensor of a Lennard-Jones-type fluid, confined in a slit pore with attractive walls. We developed Bayesian equations, which modify the virtual layer sampling method proposed by Liu, Harder, and Berne (LHB) [P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B 108, 6595 (2004)]. Additionally, we obtained an analytical solution for the corresponding nonhomogeneous Langevin equation. The expressions found for the mean-squared displacement in the layers contain naturally a modification due to the mean force in the transverse component in terms of the anisotropic diffusion constants and mean exit time. Instead of running a time consuming dual MD-Langevin simulation dynamics, as proposed by LHB, our expression was used to fit the MD data in the entire survival time interval not only for the parallel but also for the perpendicular direction. The only fitting parameter was the diffusion constant in each layer.

  14. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    SciTech Connect

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  15. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGES

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  16. A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging

    SciTech Connect

    Nguyen, Dang Van; Li, Jing-Rebecca; Grebenkov, Denis; Le Bihan, Denis

    2014-04-15

    The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch–Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the Bloch–Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge–Kutta–Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.

  17. Method for estimating closed-form solutions of the light diffusion equation for turbid media of any boundary shape

    PubMed Central

    Alqasemi, Umar; Salehi, Hassan S.; Zhu, Quing

    2016-01-01

    This paper reports a method of estimating an approximate closed-form solution to the light diffusion equation for any type of geometry involving Dirichlet’s boundary condition with known source location. It is based on estimating the optimum locations of multiple imaginary point sources to cancel the fluence at the extrapolated boundary by constrained optimization using a genetic algorithm. The mathematical derivation of the problem to approach the optimum solution for the direct-current type of diffuse optical systems is described in detail. Our method is first applied to slab geometry and compared with a truncated series solution. After that, it is applied to hemispherical geometry and compared with Monte Carlo simulation results. The method provides a fast and sufficiently accurate fluence distribution for optical reconstruction. PMID:26831771

  18. Asymptotic solution of the diffusion equation in slender impermeable tubes of revolution. I. The leading-term approximation

    SciTech Connect

    Traytak, Sergey D.

    2014-06-14

    The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.

  19. Chaotic advection of immiscible fluids

    NASA Astrophysics Data System (ADS)

    Vollmayr-Lee, Benjamin; Beller, Daniel; Yasuda, Sohei

    2012-02-01

    We consider a system of two immiscible fluids advected by a chaotic flow field. A nonequilibrium steady state arises from the competition between the coarsening of the immiscible fluids and the domain bursting caused by the chaotic flow. It has been established that the average domain size in this steady state scales as a inverse power of the Lyapunov exponent. We examine the issue of local structure and look for correlations between the local domain size and the finite-time Lyapunov exponent (FTLE) field. For a variety of chaotic flows, we consistently find the domains to be smallest in regions where the FTLE field is maximal. This raises the possibility of making universal predictions of steady-state characteristics based on Lyapunov analysis of the flow field.

  20. Modeling Laser-Tissue Interactions: Implementing the Heat Diffusion Equation and Wave Equation to Simulate Thermal Interactions of Absorber Distributions in Biological Tissues

    NASA Astrophysics Data System (ADS)

    Barrera, Frederick; Ahmed, Elharith; Nash, Patrick; Sardar, Dhiraj

    2011-03-01

    The tracking of photons through turbid media (e.g. tissues) has been studied extensively from an experimental vantage point. These turbid media are difficult to characterize- since their components are exceedingly variegated- and thus present many challenges to clinicians who require models which precisely predict the location and time evolution of energy deposition. Furthermore, the interaction of the turbid media sample with the source of radiation typically involves many dynamic mechanisms (e.g. photothermal etc.) Using diffuse light transport, and an electromagnetic wave approach (e.g. Maxwell's equations), an analysis of thermal energy distribution in tissues is performed. Assuming a highly absorbing chromophore model of melanocytes in tissues, a comparison of the variation of thermal energy is determined for different collections of melanocyte spatial distributions. This work was funded by NIH/NIGMS MBRS-RISE GM60655.

  1. Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method.

    PubMed

    Yuan, Zhen; Wang, Qiang; Jiang, Huabei

    2007-12-24

    We describe a novel reconstruction method that allows for quantitative recovery of optical absorption coefficient maps of heterogeneous media using tomographic photoacoustic measurements. Images of optical absorption coefficient are obtained from a diffusion equation based regularized Newton method where the absorbed energy density distribution from conventional photoacoustic tomography serves as the measured field data. We experimentally demonstrate this new method using tissue-mimicking phantom measurements and simulations. The reconstruction results show that the optical absorption coefficient images obtained are quantitative in terms of the shape, size, location and optical property values of the heterogeneities examined.

  2. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  3. Explicit and implicit ode solvers using Krylov subspace optimization: Application to the diffusion equation and parabolic Maxwell`s system

    SciTech Connect

    Druskin, V.; Knizhnerman, L.

    1994-12-31

    The authors solve the Cauchy problem for an ODE system Au + {partial_derivative}u/{partial_derivative}t = 0, u{vert_bar}{sub t=0} = {var_phi}, where A is a square real nonnegative definite symmetric matrix of the order N, {var_phi} is a vector from R{sup N}. The stiffness matrix A is obtained due to semi-discretization of a parabolic equation or system with time-independent coefficients. The authors are particularly interested in large stiff 3-D problems for the scalar diffusion and vectorial Maxwell`s equations. First they consider an explicit method in which the solution on a whole time interval is projected on a Krylov subspace originated by A. Then they suggest another Krylov subspace with better approximating properties using powers of an implicit transition operator. These Krylov subspace methods generate optimal in a spectral sense polynomial approximations for the solution of the ODE, similar to CG for SLE.

  4. Diffusive KPP equations with free boundaries in time almost periodic environments: II. Spreading speeds and semi-wave solutions

    NASA Astrophysics Data System (ADS)

    Li, Fang; Liang, Xing; Shen, Wenxian

    2016-08-01

    In this series of papers, we investigate the spreading and vanishing dynamics of time almost periodic diffusive KPP equations with free boundaries. Such equations are used to characterize the spreading of a new species in time almost periodic environments with free boundaries representing the spreading fronts. In the first part of the series, we showed that a spreading-vanishing dichotomy occurs for such free boundary problems (see [16]). In this second part of the series, we investigate the spreading speeds of such free boundary problems in the case that the spreading occurs. We first prove the existence of a unique time almost periodic semi-wave solution associated to such a free boundary problem. Using the semi-wave solution, we then prove that the free boundary problem has a unique spreading speed.

  5. Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guymer, T. M.; Moore, A. S.; Morton, J.; Kline, J. L.; Allan, S.; Bazin, N.; Benstead, J.; Bentley, C.; Comley, A. J.; Cowan, J.; Flippo, K.; Garbett, W.; Hamilton, C.; Lanier, N. E.; Mussack, K.; Obrey, K.; Reed, L.; Schmidt, D. W.; Stevenson, R. M.; Taccetti, J. M.; Workman, J.

    2015-04-01

    A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C8H7Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets in both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.

  6. Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility

    SciTech Connect

    Guymer, T. M. Moore, A. S.; Morton, J.; Allan, S.; Bazin, N.; Benstead, J.; Bentley, C.; Comley, A. J.; Garbett, W.; Reed, L.; Stevenson, R. M.; Kline, J. L.; Cowan, J.; Flippo, K.; Hamilton, C.; Lanier, N. E.; Mussack, K.; Obrey, K.; Schmidt, D. W.; Taccetti, J. M.; and others

    2015-04-15

    A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C{sub 8}H{sub 7}Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets in both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.

  7. Simulating Diffusive and Preferential Water Flow in Soils with a Coupled Source-Responsive/Richards-Equation Model

    NASA Astrophysics Data System (ADS)

    Healy, R. W.

    2015-12-01

    Water movement through soils is often dominated by preferential flow processes such as fingering and macropore flow. Traditional models of flow in the unsaturated zone are based on the diffusion or Richards equation and assume that diffusive (surface-tension viscous) flow is the only flow process. These models are incapable of accurately simulating preferential flow. Several alternative approaches, including kinematic wave, transfer function, and water-content wave models, have been suggested for simulating water movement through preferential flow paths. The source-responsive model proposed by Nimmo (2010) and Nimmo and Mitchell (2013) is unique among such models in that water transfer from land surface to depth is controlled by the water-application rate at land surface. The source-responsive model has been coupled with a one-dimensional version of the Richards-equation based model of variably saturated flow, VS2DT. The new model, can simulate flow within the preferential (S) domain alone, within the diffuse (D) domain alone, or within both the S and D domains simultaneously. Water exchange between the two domains is treated as a first-order diffusive process, with the exchange coefficient being a function of soil-water content. The new model was used to simulate field and laboratory infiltration experiments described in the literature. Simulations were calibrated against measured soil water contents with the PEST parameter estimation package; values for hydraulic conductivity and 3 van Genuchten and 3 source-responsive parameters were optimized. Although exact matches between measured and simulated water contents were not obtained, the simulation results captured the salient characteristics of the published data sets, including features typical of preferential as well as diffusive flow. Results obtained from simulating flow simultaneously in both the S and D domain provided better matches to measured data than results obtained from simulating flow independently

  8. Feynman path integral application on deriving black-scholes diffusion equation for european option pricing

    NASA Astrophysics Data System (ADS)

    Utama, Briandhika; Purqon, Acep

    2016-08-01

    Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods.

  9. The augmented Lagrangian method for estimating the diffusion coefficient in an elliptic equation

    NASA Technical Reports Server (NTRS)

    Ito, K.; Kunisch, K.

    1987-01-01

    A hybrid method is presented for the estimation of parameters, combining the output-least-squares and the equation-error approaches. The mathematical framework is given by an augmented Lagrangian formulation. The resulting algorithm has proved to be very effective numerically.

  10. Numerical solutions of reaction-diffusion equations: Application to neural and cardiac models

    NASA Astrophysics Data System (ADS)

    Ji, Yanyan Claire; Fenton, Flavio H.

    2016-08-01

    We describe the implementation of the explicit Euler, Crank-Nicolson, and implicit alternating direction methods for solving partial differential equations and apply these methods to obtain numerical solutions of three excitable-media models used to study neurons and cardiomyocyte dynamics. We discuss the implementation, accuracy, speed, and stability of these numerical methods.

  11. Analysis of some identification problems for the reaction-diffusion-convection equation

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Mashkov, D. V.; Yashenko, E. N.

    2016-04-01

    Identification problems for a linear stationary reaction-diffusion-convection model, considered in the bounded domain under Dirichlet boundary condition, are studied. Using an optimization method these problems are reduced to respective control problems. The reaction coefficient and the volume density of substance source play the role of controls in this control problem. The solvability of the direct and control problems is proved, the optimality system, which describes the necessary optimality conditions, is derived and the numerical algorithm is developed.

  12. Coupling of dynamical micromagnetism and a stationary spin drift-diffusion equation: A step towards a fully self-consistent spintronics framework

    NASA Astrophysics Data System (ADS)

    Ruggeri, Michele; Abert, Claas; Hrkac, Gino; Suess, Dieter; Praetorius, Dirk

    2016-04-01

    We consider the coupling of the Landau-Lifshitz-Gilbert equation with a quasilinear diffusion equation to describe the interplay of magnetization and spin accumulation in magnetic-nonmagnetic multilayer structures. For this problem, we propose and analyze a convergent finite element integrator, where, in contrast to prior work, we consider the stationary limit for the spin diffusion. Numerical experiments underline that the new approach is more effective, since it leads to the same experimental results as for the model with time-dependent spin diffusion, but allows for larger time-steps of the numerical integrator.

  13. Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach

    NASA Astrophysics Data System (ADS)

    Abad, E.; Yuste, S. B.; Lindenberg, Katja

    2012-12-01

    We calculate the survival probability of an immobile target surrounded by a sea of uncorrelated diffusive or subdiffusive evanescent traps (i.e., traps that disappear in the course of their motion). Our calculation is based on a fractional reaction-subdiffusion equation derived from a continuous time random walk model of the system. Contrary to an earlier method valid only in one dimension (d=1), the equation is applicable in any Euclidean dimension d and elucidates the interplay between anomalous subdiffusive transport, the irreversible evanescence reaction, and the dimension in which both the traps and the target are embedded. Explicit results for the survival probability of the target are obtained for a density ρ(t) of traps which decays (i) exponentially and (ii) as a power law. In the former case, the target has a finite asymptotic survival probability in all integer dimensions, whereas in the latter case there are several regimes where the values of the decay exponent for ρ(t) and the anomalous diffusion exponent of the traps determine whether or not the target has a chance of eternal survival in one, two, and three dimensions.

  14. On the modeling of the bottom particles segregation with non-linear diffusion equations: application to the marine sand ripples

    NASA Astrophysics Data System (ADS)

    Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander

    2015-04-01

    The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.

  15. A dynamic DFT approach to generalized diffusion equations in a system with long-ranged and hydrodynamic interactions.

    PubMed

    Bleibel, Johannes; Domínguez, Alvaro; Oettel, Martin

    2016-06-22

    We build on an existing approximation scheme to the Smoluchowski equation in order to derive a dynamic density functional theory (DDFT) including two-body hydrodynamic interactions. A generalized diffusion equation and a wavenumber-dependent diffusion coefficient D(k) are derived by linearization in the density fluctuations. The result is applied to a colloidal monolayer at a fluid interface, having bulk-like hydrodynamic interactions and/or interacting via long-ranged capillary forces. In these cases, D(k) shows characteristic singularities as [Formula: see text]. The consequences of these singularities are studied by means of analytical perturbation theory, numerical solution of DDFT and simulations for an explicit example: the capillary collapse of a finite, disk-like distribution of particles. There is in general a good agreement between DDFT and simulations if the initial density distributions for the theoretical prediction correspond to the actual initial configurations of simulations, rather than to an average over them. Otherwise, discrepancies arise that are discussed in detail. PMID:27115236

  16. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  17. Comparison of thermal advection measurements by clear-air radar and radiosonde techniques

    SciTech Connect

    Crochet, M.; Rougier, G.; Bazile, G. Meteorologie Nationale, Trappes )

    1990-10-01

    Vertical profiles of the horizontal wind have been measured every 4 min by a clear-air radar (stratospheric-troposphere radar), and vertical profiles of temperature have been obtained every 2 hours by three radiosonde soundings in the same zone in Brittany during the Mesoscale Frontal Dynamics Project FRONTS 87 campaign. Radar thermal advection is deduced from the thermal wind equation using the measured real horizontal wind instead of the geostrophic wind. Radiosonde thermal advection is determined directly from the sounding station data sets of temperature gradients and also approximately from the thermodynamic equation by the temperature tendency. These approximations, applied during a frontal passage, show the same general features and magnitude of the thermal advection, giving a preliminary but encouraging conclusion for a possible real-time utilization of clear-air radars to monitor thermal advection and to identify its characteristic features. 6 refs.

  18. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    PubMed

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  19. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    PubMed

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  20. The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2007-01-01

    A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  1. THE INTERPLAY BETWEEN GEOCHEMICAL REACTIONS AND ADVECTION-DISPERSION IN CONTAMINANT TRANSPORT AT A URANIUM MILL TAILINGS SITE

    EPA Science Inventory

    It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...

  2. The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. I. Isotropic pitch-angle scattering

    SciTech Connect

    Effenberger, Frederic; Litvinenko, Yuri E.

    2014-03-01

    The diffusion approximation to the Fokker-Planck equation is commonly used to model the transport of solar energetic particles in interplanetary space. In this study, we present exact analytical predictions of a higher order telegraph approximation for particle transport and compare them with the corresponding predictions of the diffusion approximation and numerical solutions of the full Fokker-Planck equation. We specifically investigate the role of the adiabatic focusing effect of a spatially varying magnetic field on an evolving particle distribution. Comparison of the analytical and numerical results shows that the telegraph approximation reproduces the particle intensity profiles much more accurately than does the diffusion approximation, especially when the focusing is strong. However, the telegraph approximation appears to offer no significant advantage over the diffusion approximation for calculating the particle anisotropy. The telegraph approximation can be a useful tool for describing both diffusive and wave-like aspects of the cosmic-ray transport.

  3. Differential operator multiplication method for fractional differential equations

    NASA Astrophysics Data System (ADS)

    Tang, Shaoqiang; Ying, Yuping; Lian, Yanping; Lin, Stephen; Yang, Yibo; Wagner, Gregory J.; Liu, Wing Kam

    2016-11-01

    Fractional derivatives play a very important role in modeling physical phenomena involving long-range correlation effects. However, they raise challenges of computational cost and memory storage requirements when solved using current well developed numerical methods. In this paper, the differential operator multiplication method is proposed to address the issues by considering a reaction-advection-diffusion equation with a fractional derivative in time. The linear fractional differential equation is transformed into an integer order differential equation by the proposed method, which can fundamentally fix the aforementioned issues for select fractional differential equations. In such a transform, special attention should be paid to the initial conditions for the resulting differential equation of higher integer order. Through numerical experiments, we verify the proposed method for both fractional ordinary differential equations and partial differential equations.

  4. Differential operator multiplication method for fractional differential equations

    NASA Astrophysics Data System (ADS)

    Tang, Shaoqiang; Ying, Yuping; Lian, Yanping; Lin, Stephen; Yang, Yibo; Wagner, Gregory J.; Liu, Wing Kam

    2016-08-01

    Fractional derivatives play a very important role in modeling physical phenomena involving long-range correlation effects. However, they raise challenges of computational cost and memory storage requirements when solved using current well developed numerical methods. In this paper, the differential operator multiplication method is proposed to address the issues by considering a reaction-advection-diffusion equation with a fractional derivative in time. The linear fractional differential equation is transformed into an integer order differential equation by the proposed method, which can fundamentally fix the aforementioned issues for select fractional differential equations. In such a transform, special attention should be paid to the initial conditions for the resulting differential equation of higher integer order. Through numerical experiments, we verify the proposed method for both fractional ordinary differential equations and partial differential equations.

  5. A Monte Carlo Synthetic-Acceleration Method for Solving the Thermal Radiation Diffusion Equation

    SciTech Connect

    Evans, Thomas M; Mosher, Scott W; Slattery, Stuart

    2014-01-01

    We present a novel synthetic-acceleration based Monte Carlo method for solving the equilibrium thermal radiation diusion equation in three dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that not only can our Monte Carlo method be an eective solver for sparse matrix systems, but also that it performs competitively with deterministic methods including preconditioned Conjugate Gradient while producing numerically identical results. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

  6. Quantifying the Effects of Noise on Diffuse Interface Models: Cahn-Hilliard-Cook equations

    NASA Astrophysics Data System (ADS)

    Pfeifer, Spencer; Ganapathysubramanian, Baskar

    2015-03-01

    We present an investigation into the dynamics of phase separation through numerical simulations of the Cahn-Hilliard-Cook (CHC) equation. This model is an extension of the well-known Cahn- Hilliard equation, perturbed by an additive white noise. Studies have shown that random fluctuations are critical for proper resolution of physical phenomena. This is especially true for phase critical systems. We explore the transient behavior of the solution space for varying levels of noise. This is enabled by our massively scalable finite element-based numerical framework. We briefly examine the interplay between noise level and discretization (spatial and temporal) in obtaining statistically consistent solutions. We show that the added noise accelerates progress towards phase separation, but retards dynamics throughout subsequent coarsening. We identify a scaling exponent relating morphology metrics with the level of noise. We observe a very clear scaling effect of finite domain size, which is observed to be offset by increasing levels of noise. Domain scaling reveals a clear microstructural asymmetry at various stages of the evolution for lower noise levels. In contrast, higher noise levels tend to produce more uniform morphologies.

  7. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    SciTech Connect

    Maassen, Jesse Lundstrom, Mark

    2015-04-07

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.

  8. Implementation of two-equation soot flamelet models for laminar diffusion flames

    SciTech Connect

    Carbonell, D.; Oliva, A.; Perez-Segarra, C.D.

    2009-03-15

    The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)

  9. Nonlocal diffusion problems that approximate a parabolic equation with spatial dependence

    NASA Astrophysics Data System (ADS)

    Molino, Alexis; Rossi, Julio D.

    2016-06-01

    In this paper, we show that smooth solutions to the Dirichlet problem for the parabolic equation v_t(x,t)=sum_{i,j=1}N a_{ij}(x)partial2v(x,t)/partial{xipartial{x}j} + sum_{i =1}N bi(x)partial{v}(x,t)/partial{x_i} qquad x in Ω, with v( x, t) = g( x, t), {x in partial Ω,} can be approximated uniformly by solutions of nonlocal problems of the form ut^{\\varepsilon}(x,t)=int_{mathbb{R}n} K_{\\varepsilon}(x,y)(u^{\\varepsilon}(y,t)-u^{\\varepsilon}(x,t))dy, quad x in Ω, with {u^{\\varepsilon}(x,t)=g(x,t)}, {x notin Ω}, as {\\varepsilon to 0}, for an appropriate rescaled kernel {K_{\\varepsilon}}. In this way, we show that the usual local evolution problems with spatial dependence can be approximated by nonlocal ones. In the case of an equation in divergence form, we can obtain an approximation with symmetric kernels, that is, {K_{\\varepsilon}(x,y) = K_{\\varepsilon}(y,x)}.

  10. Application of implicit numerical techniques to the solution of the three-dimensional diffusion equation

    NASA Technical Reports Server (NTRS)

    Peltier, Leonard Joel; Biringen, Sedat; Chait, Arnon

    1990-01-01

    Implicit techniques for calculating three-dimensional, time-dependent heat diffusion in a cube are tested with emphasis on storage efficiency, accuracy, and speed of calculation. For this purpose, a tensor product technique with both Chebyshev collocation and finite differences and a generalized conjugate gradient technique with finite differences are used in conjunction with Crank-Nicolson discretization. An Euler explicit finite difference calculation is performed for use as a benchmark. The implicit techniques are found to be competitive with the Euler explicit method in terms of storage efficiency and speed of calculation and offer advantages both in accuracy and stability. Mesh stretching in the finite difference calculations is shown to markedly improve the accuracy of the solution.

  11. Numerical Treatment of Degenerate Diffusion Equations via Feller's Boundary Classification, and Applications

    NASA Technical Reports Server (NTRS)

    Cacio, Emanuela; Cohn, Stephen E.; Spigler, Renato

    2011-01-01

    A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration.

  12. On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion

    NASA Astrophysics Data System (ADS)

    Lazar, Omar

    2016-11-01

    We study a 1D transport equation with nonlocal velocity with subcritical or supercritical dissipation. For all data in the weighted Sobolev space Hk (wλ,κ) ∩L∞, where k = max ⁡ (0 , 3 / 2 - α) and wλ,κ is a given family of Muckenhoupt weights, we prove a global existence result in the subcritical case α ∈ (1 , 2). We also prove a local existence theorem for large data in H2 (wλ,κ) ∩L∞ in the supercritical case α ∈ (0 , 1). The proofs are based on the use of the weighted Littlewood-Paley theory, interpolation along with some new commutator estimates.

  13. Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

    DOE PAGES

    Chen, Zheng; Huang, Hongying; Yan, Jue

    2015-12-21

    We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods [8], [9], [19] and [21] for convection diffusion equations on unstructured triangular mesh. We carefully calculate the normal derivative numerical flux across element edges and prove that, with proper choice of parameter pair (β0,β1) in the numerical flux formula, the quadratic polynomial solution satisfies strict maximum principle. The polynomial solution is bounded within the given range and third order accuracy is maintained. There is no geometric restriction on the meshes and obtuse triangles are allowed in the partition. As a result, a sequence of numerical examples are carried out to demonstratemore » the accuracy and capability of the maximum-principle-satisfying limiter.« less

  14. Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation.

    PubMed

    Yoshida, Hiroaki; Kobayashi, Takayuki; Hayashi, Hidemitsu; Kinjo, Tomoyuki; Washizu, Hitoshi; Fukuzawa, Kenji

    2014-07-01

    A boundary scheme in the lattice Boltzmann method (LBM) for the convection-diffusion equation, which correctly realizes the internal boundary condition at the interface between two phases with different transport properties, is presented. The difficulty in satisfying the continuity of flux at the interface in a transient analysis, which is inherent in the conventional LBM, is overcome by modifying the collision operator and the streaming process of the LBM. An asymptotic analysis of the scheme is carried out in order to clarify the role played by the adjustable parameters involved in the scheme. As a result, the internal boundary condition is shown to be satisfied with second-order accuracy with respect to the lattice interval, if we assign appropriate values to the adjustable parameters. In addition, two specific problems are numerically analyzed, and comparison with the analytical solutions of the problems numerically validates the proposed scheme.

  15. Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

    SciTech Connect

    Chen, Zheng; Huang, Hongying; Yan, Jue

    2015-12-21

    We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods [8], [9], [19] and [21] for convection diffusion equations on unstructured triangular mesh. We carefully calculate the normal derivative numerical flux across element edges and prove that, with proper choice of parameter pair (β01) in the numerical flux formula, the quadratic polynomial solution satisfies strict maximum principle. The polynomial solution is bounded within the given range and third order accuracy is maintained. There is no geometric restriction on the meshes and obtuse triangles are allowed in the partition. As a result, a sequence of numerical examples are carried out to demonstrate the accuracy and capability of the maximum-principle-satisfying limiter.

  16. A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation

    NASA Astrophysics Data System (ADS)

    Lin, Xue-lei; Lu, Xin; Ng, Micheal K.; Sun, Hai-Wei

    2016-10-01

    A fast accurate approximation method with multigrid solver is proposed to solve a two-dimensional fractional sub-diffusion equation. Using the finite difference discretization of fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea is to make use of the block ɛ-circulant approximation via fast Fourier transforms, so that the resulting task is to solve a block diagonal system, where each diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show that the accuracy of the approximation scheme is of O (ɛ). Because of the special diagonal block structure, we employ the multigrid method to solve the resulting linear systems. The convergence of the multigrid method is studied. Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of the proposed solver.

  17. The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests

    NASA Astrophysics Data System (ADS)

    Su, Ninghu; Nelson, Paul N.; Connor, Sarah

    2015-10-01

    We present a distributed-order fractional diffusion-wave equation (dofDWE) to describe radial groundwater flow to or from a well, and three sets of solutions of the dofDWE for flow from a well for aquifer tests: one for pumping tests, and two for slug tests. The dofDWE is featured by two temporal orders of fractional derivatives, β1 and β2, which characterise small and large pores, respectively. By fitting the approximate solutions of the dofDWE to data from slug tests in the field, we determined the effective saturated hydraulic conductivity, Ke, transmissivity, Tf, and the order of fractional derivatives, β2 in one test and β2 and β1 in the second test. We found that the patterns of groundwater flow from a well during the slug tests at this site belong to the class of sub-diffusion with β2 < 1 and β1 < 1 using both the short-time and large-time solutions. We introduce the concept of the critical time to link Ke as a function of β2 and β1. The importance of the orders of fractional derivatives is obvious in the approximate solutions: for short time slug tests only the parameter β2 for flow in large pores is present while for long time slug tests the parameters β2 and β1 are present indicating both large and small pores are functioning.

  18. Self-similar solutions of the non-linear diffusion equation and application to near-critical fluids

    NASA Astrophysics Data System (ADS)

    Fröhlich, T.; Bouquet, S.; Bonetti, M.; Garrabos, Y.; Beysens, D.

    1995-02-01

    We use analytic self-similar solutions of both the linear and non-linear diffusion equation to determine the behavior of a heat conducting system experiencing a time-dependent energy production. Supposing a power law evolution of the system parameters, we calculate the corresponding exponents to describe the temporal behavior of the system. In the non-linear case, we are able to introduce a variation of both the coefficient of diffusion and the amplitude of the heat source. The analytic solutions are checked numerically. These results can be considered, for example, as the basis for further developments on the non-linear behavior of supercritical fluids in a microgravity environment, e.g. the “Piston Effect” (M. Bonetti et al., Phys. Rev. E 49 (1994) 4779) or the “Jet Instability” (D. Beysens et al., Near-critical Fluids in Space, in: Lectures on Thermodynamics and Statistical Mechanics, M. Costas et al., eds. (World Scientific, Singapore, 1994) p. 88).

  19. An arbitrary order diffusion algorithm for solving Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Chin, S. A.; Janecek, S.; Krotscheck, E.

    2009-09-01

    We describe a simple and rapidly converging code for solving the local Schrödinger equation in one, two, and three dimensions that is particularly suited for parallel computing environments. Our algorithm uses high-order imaginary time propagators to project out the eigenfunctions. A recently developed multi-product, operator splitting method permits, in principle, convergence to any even order of the time step. We review briefly the theory behind the method and discuss strategies for assessing convergence and accuracy. A forward time step, single product fourth-order factorization of the imaginary time evolution operator can also be used. Our code requires one user defined function which specifies the local external potential. We describe the definition of this function as well as input and output functionalities and convergence criteria. Compared to our previously published code [Computer Physics Communications 178 (2008) 835], the new algorithms can converge at a rate that is only limited by machine precision. Program summaryProgram title: ndsch Catalogue identifier: AEDR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9282 No. of bytes in distributed program, including test data, etc.: 77 824 Distribution format: tar.gz Programming language: Fortran 90 Computer: Tested on x86, amd64, and Itanium2 architectures. Should run on any architecture providing a Fortran 90 compiler Operating system: So far tested under UNIX/Linux, Mac OSX and Windows. Any OS with a Fortran 90 compiler available should suffice RAM: 2 MB to 16 GB, depending on system size Classification: 6.10 External routines: FFTW3 ( http://www.fftw.org/), Lapack ( http://www.netlib.org/lapack/) Nature of problem: Numerical calculation of the

  20. Coupled third-order simplified spherical harmonics and diffusion equation-based fluorescence tomographic imaging of liver cancer

    NASA Astrophysics Data System (ADS)

    Chen, Xueli; Sun, Fangfang; Yang, Defu; Liang, Jimin

    2015-09-01

    For fluorescence tomographic imaging of small animals, the liver is usually regarded as a low-scattering tissue and is surrounded by adipose, kidneys, and heart, all of which have a high scattering property. This leads to a breakdown of the diffusion equation (DE)-based reconstruction method as well as a heavy computational burden for the simplified spherical harmonics equation (SPN). Coupling the SPN and DE provides a perfect balance between the imaging accuracy and computational burden. The coupled third-order SPN and DE (CSDE)-based reconstruction method is developed for fluorescence tomographic imaging. This is achieved by doubly using the CSDE for the excitation and emission processes of the fluorescence propagation. At the same time, the finite-element method and hybrid multilevel regularization strategy are incorporated in inverse reconstruction. The CSDE-based reconstruction method is first demonstrated with a digital mouse-based liver cancer simulation, which reveals superior performance compared with the SPN and DE-based methods. It is more accurate than the DE-based method and has lesser computational burden than the SPN-based method. The feasibility of the proposed approach in applications of in vivo studies is also illustrated with a liver cancer mouse-based in situ experiment, revealing its potential application in whole-body imaging of small animals.

  1. A preconditioned numerical solver for stiff nonlinear reaction-diffusion equations with fractional Laplacians that avoids dense matrices

    NASA Astrophysics Data System (ADS)

    Simmons, Alex; Yang, Qianqian; Moroney, Timothy

    2015-04-01

    The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction-diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton-Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.

  2. A comparative study of penalization and phase field methods for the solution of the diffusion equation in complex geometries

    NASA Astrophysics Data System (ADS)

    Tauriello, Gerardo; Koumoutsakos, Petros

    2015-02-01

    We present a comparative study of penalization and phase field methods for the solution of the diffusion equation in complex geometries embedded using simple Cartesian meshes. The two methods have been widely employed to solve partial differential equations in complex and moving geometries for applications ranging from solid and fluid mechanics to biology and geophysics. Their popularity is largely due to their discretization on Cartesian meshes thus avoiding the need to create body-fitted grids. At the same time, there are questions regarding their accuracy and it appears that the use of each one is confined by disciplinary boundaries. Here, we compare penalization and phase field methods to handle problems with Neumann and Robin boundary conditions. We discuss extensions for Dirichlet boundary conditions and in turn compare with methods that have been explicitly designed to handle Dirichlet boundary conditions. The accuracy of all methods is analyzed using one and two dimensional benchmark problems such as the flow induced by an oscillating wall and by a cylinder performing rotary oscillations. This comparative study provides information to decide which methods to consider for a given application and their incorporation in broader computational frameworks. We demonstrate that phase field methods are more accurate than penalization methods on problems with Neumann boundary conditions and we present an error analysis explaining this result.

  3. The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space

    NASA Astrophysics Data System (ADS)

    Xie, Yongqin; Zhu, Kaixuan; Sun, Chunyou

    2012-08-01

    In this paper, we introduce a new class of functions satisfying spacial absolutely continuous (see Definition 3.1), denoted by L2_{sac}({R};{R}n), which are translation bounded but not normal (see [S. S. Lu, H. Q. Wu, and C. K. Zhong, "Attractors for non-autonomous 2D Navier-Stokes equations with normal external forces," Discrete Contin. Dyn. Syst. A 13(3), 701-719 (2005)], 10.3934/dcds.2005.13.701 and Definition 3.1) in L2_{loc}({R};{R}n). Then the asymptotic a priori estimate is applied to some nonlinear reaction-diffusion equations with external forces g(x,s)in L2_{sac}({R};{R}n). We obtain the existence of uniform attractor together with its structure in the bi-spaces (L2({R}n), L2({R}n)) and (L2({R}n), Lp({R}n))(p>2) without any restriction on the growing order of the nonlinear term.

  4. Optimal control of wind farms for power tracking using simplified one-dimensional convection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Shapiro, Carl; Bauweraerts, Pieter; Meyers, Johan; Meneveau, Charles; Gayme, Dennice

    2015-11-01

    Coordinated control of wind turbines within a wind farm, accounting for wake interactions and associated flow phenomena, has the potential to provide a number of important services to the power grid. In this work we develop a simple time-dependent extension of a standard steady-state wake model that is used to obtain an optimal control strategy for tracking a time-varying power signal. First, we introduce a one-dimensional convection-diffusion equation for wind turbine wakes that is based on the Jensen wake model and the actuator disk model. This equation is tested during wind farm start up by comparing to large-eddy simulations of wind farms with both aligned and staggered turbine arrangements. Second, we investigate optimal control for power tracking applications, where turbines are controlled via the local thrust coefficient. The control strategy is designed to minimize the squared difference between the modeled farm power and a given power reference signal. Finally, the control strategies obtained are tested using large-eddy simulations. CS, CM, and DG are supported by NSF (SEP-1230788 and IIA-1243482, the WINDINSPIRE project). PB and JM are supported by ERC (ActiveWindFarms, grant no: 306471).

  5. Waiting-time solutions of a nonlinear diffusion equation: Experimental study of a creeping flow near a waiting front

    NASA Astrophysics Data System (ADS)

    Marino, B. M.; Thomas, L. P.; Gratton, R.; Diez, J. A.; Betelú, S.; Gratton, J.

    1996-09-01

    We investigate an unsteady plane viscous gravity current of silicone oil on a horizontal glass substrate. Within the lubrication approximation with gravity as the dominant force, this current is described by the nonlinear diffusion equation φt=(φmφx)x (φ is proportional to the liquid thickness h and m=3>0), which is of interest in many other physical processes. The solutions of this equation display a fine example of the competition between diffusive smoothening and nonlinear steepening. This work concerns the so-called waiting-time solutions, whose distinctive character is the presence of an interface or front, separating regions with h≠/0 and h=0, that remains motionless for a finite time interval tw meanwhile a redistribution of h takes place behind the interface. We start the experiments from an initial wedge-shape configuration [h(x)~=α'(x0-x)] with a small angle (α'<=0.12 rad). In this situation, the tip of the wedge, situated at x0 from the rear wall (15 cm<=x0<=75 cm), waits at least several seconds before moving. During this waiting stage, a region characterized by a strong variation of the free surface slope (corner layer) develops and propagates toward the front while it gradually narrows and ∂2h/∂x2 peaks. The stage ends when the corner layer overtakes the front. At this point, the liquid begins to spread over the uncovered substrate. We measure the slope of the free surface in a range ~=10 cm around x0, and, by integration, we determine the fluid thickness h(x) there. We find that the flow tends to a self-similar behavior when the corner layer position tends to x0; however, near the end of the waiting stage, it is perturbed by capillarity. Even if some significant effects are not included in the above equation, the main properties of its solutions are well displayed in the experiments

  6. Neutrality condition and response law for nonlinear reaction-diffusion equations, with application to population genetics

    NASA Astrophysics Data System (ADS)

    Vlad, Marcel Ovidiu; Moran, Federico; Tsuchiya, Masa; Cavalli-Sforza, L. Luca; Oefner, Peter J.; Ross, John

    2002-06-01

    We study a general class of nonlinear macroscopic evolution equations with ``transport'' and ``reaction'' terms which describe the dynamics of a species of moving individuals (atoms, molecules, quasiparticles, organisms, etc.). We consider that two types of individuals exist, ``not marked'' and ``marked,'' respectively. We assume that the concentrations of both types of individuals are measurable and that they obey a neutrality condition, that is, the kinetic and transport properties of the ``not marked'' and ``marked'' individuals are identical. We suggest a response experiment, which consists in varying the fraction of ``marked'' individuals with the preservation of total fluxes, and show that the response of the system can be represented by a linear superposition law even though the underlying dynamics of the system is in general highly nonlinear. The linear response law is valid even for large perturbations and is not the result of a linearization procedure but rather a necessary consequence of the neutrality condition. First, we apply the response theorem to chemical kinetics, where the ``marked species'' is a molecule labeled with a radioactive isotope and there is no kinetic isotope effect. The susceptibility function of the response law can be related to the reaction mechanism of the process. Secondly we study the geographical distribution of the nonrecurrent, nonreversible neutral mutations of the nonrecombining portion of the Y chromosome from human populations and show that the fraction of mutants at a given point in space and time obeys a linear response law of the type introduced in this paper. The theory may be used for evaluating the geographic position and the moment in time where and when a mutation originated.

  7. Fluctuation analysis of time-averaged mean-square displacement for the Langevin equation with time-dependent and fluctuating diffusivity

    NASA Astrophysics Data System (ADS)

    Uneyama, Takashi; Miyaguchi, Tomoshige; Akimoto, Takuma

    2015-09-01

    The mean-square displacement (MSD) is widely utilized to study the dynamical properties of stochastic processes. The time-averaged MSD (TAMSD) provides some information on the dynamics which cannot be extracted from the ensemble-averaged MSD. In particular, the relative standard deviation (RSD) of the TAMSD can be utilized to study the long-time relaxation behavior. In this work, we consider a class of Langevin equations which are multiplicatively coupled to time-dependent and fluctuating diffusivities. Various interesting dynamics models such as entangled polymers and supercooled liquids can be interpreted as the Langevin equations with time-dependent and fluctuating diffusivities. We derive a general formula for the RSD of the TAMSD for the Langevin equation with the time-dependent and fluctuating diffusivity. We show that the RSD can be expressed in terms of the correlation function of the diffusivity. The RSD exhibits the crossover at the long time region. The crossover time is related to a weighted average relaxation time for the diffusivity. Thus the crossover time gives some information on the relaxation time of fluctuating diffusivity which cannot be extracted from the ensemble-averaged MSD. We discuss the universality and possible applications of the formula via some simple examples.

  8. Kinetic equation for nonlinear resonant wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.

    2016-09-01

    We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.

  9. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Oberlack, Martin

    2014-05-01

    In the literature, it is pointed out that non-Brownian particles tend to show shear-induced diffusive behavior due to hydrodynamic interactions. Several authors indicate a long correlation time of the particle velocities in comparison to Brownian particle velocities modeled by a white noise. This work deals with the derivation of a Fokker-Planck equation both in position and velocity space which describes the process of shear-induced self-diffusion, whereas, so far, this problem has been described by Fokker-Planck equations restricted to position space. The long velocity correlation times actually would necessitate large time-step sizes in the mathematical description of the problem in order to capture the diffusive regime. In fact, time steps of specific lengths pose problems to the derivation of the corresponding Fokker-Planck equation because the whole particle configuration changes during long time-step sizes. On the other hand, small time-step sizes, i.e., in the range of the velocity correlation time, violate the Markov property of the position variable. In this work we regard the problem of shear-induced self-diffusion with respect to the Markov property and reformulate the problem with respect to small time-step sizes. In this derivation, we regard the nondimensionalized Langevin equation and develop a new compact form which allows us to analyze the Langevin equation for all time scales of interest for both Brownian and non-Brownian particles starting from a single equation. This shows that the Fokker-Planck equation in position space should be extended to a colored-noise Fokker-Planck equation in both position and colored-noise velocity space, which we will derive.

  10. The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems

    NASA Astrophysics Data System (ADS)

    Stevens, D.; Power, H.

    2015-10-01

    We propose a node-based local meshless method for advective transport problems that is capable of operating on centrally defined stencils and is suitable for shock-capturing purposes. High spatial convergence rates can be achieved; in excess of eighth-order in some cases. Strongly-varying smooth profiles may be captured at infinite Péclet number without instability, and for discontinuous profiles the solution exhibits neutrally stable oscillations that can be damped by introducing a small artificial diffusion parameter, allowing a good approximation to the shock-front to be maintained for long travel times without introducing spurious oscillations. The proposed method is based on local collocation with radial basis functions (RBFs) in a "finite collocation" configuration. In this approach the PDE governing and boundary equations are enforced directly within the local RBF collocation systems, rather than being reconstructed from fixed interpolating functions as is typical of finite difference, finite volume or finite element methods. In this way the interpolating basis functions naturally incorporate information from the governing PDE, including the strength and direction of the convective velocity field. By using these PDE-enhanced interpolating functions an "implicit upwinding" effect is achieved, whereby the flow of information naturally respects the specifics of the local convective field. This implicit upwinding effect allows high-convergence solutions to be obtained on centred stencils for advection problems. The method is formulated using a high-convergence implicit timestepping algorithm based on Richardson extrapolation. The spatial and temporal convergence of the proposed approach is demonstrated using smooth functions with large gradients. The capture of discontinuities is then investigated, showing how the addition of a dynamic stabilisation parameter can damp the neutrally stable oscillations with limited smearing of the shock front.

  11. Advection by polytropic compressible turbulence

    NASA Astrophysics Data System (ADS)

    Ladeinde, F.; O'Brien, E. E.; Cai, X.; Liu, W.

    1995-11-01

    Direct numerical simulation (DNS) is used to examine scalar correlation in low Mach number, polytropic, homogeneous, two-dimensional turbulence (Ms≤0.7) for which the initial conditions, Reynolds, and Mach numbers have been chosen to produce three types of flow suggested by theory: (a) nearly incompressible flow dominated by vorticity, (b) nearly pure acoustic turbulence dominated by compression, and (c) nearly statistical equipartition of vorticity and compressions. Turbulent flows typical of each of these cases have been generated and a passive scalar field imbedded in them. The results show that a finite-difference based computer program is capable of producing results that are in reasonable agreement with pseudospectral calculations. Scalar correlations have been calculated from the DNS results and the relative magnitudes of terms in low-order scalar moment equations determined. It is shown that the scalar equation terms with explicit compressibility are negligible on a long time-averaged basis. A physical-space EDQNM model has been adapted to provide another estimate of scalar correlation evolution in these same two-dimensional, compressible cases. The use of the solenoidal component of turbulence energy, rather than total turbulence energy, in the EDQNM model gives results closer to those from DNS in all cases.

  12. An explicit approach to capture diffusive effects in finite water-content method for solving vadose zone flow

    NASA Astrophysics Data System (ADS)

    Zhu, Jianting; Ogden, Fred L.; Lai, Wencong; Chen, Xiangfeng; Talbot, Cary A.

    2016-04-01

    Vadose zone flow problems are usually solved from the Richards equation. Solution to the Richards equation is generally challenging because the hydraulic conductivity and diffusivity in the equation are strongly non-linear functions of water content. The finite water-content method was proposed as an alternative general solution method of the vadose zone flow problem for infiltration, falling slugs, and vadose zone response to water table dynamics based on discretizing the water content domain into numerous bins instead of the traditional spatial discretization. In this study, we develop an improved approach to the original finite water-content method (referred to as TO method hereinafter) that better simulates diffusive effects but retains the robustness of the TO method. The approach treats advection and diffusion separately and considers diffusion on a bin by bin basis. After discretizing into water content bins, we treat the conductivity and diffusivity in individual bins as water content dependent constant evaluated at given water content corresponding to each bin. For each bin, we can solve the flow equations analytically since the hydraulic conductivity and diffusivity can be treated as a constant. We then develop solutions for each bin to determine the diffusive water amounts at each time step. The water amount ahead of the convective front for each bin is redistributed among water content bins to account for diffusive effects. The application of developed solution is straightforward only involving algebraic manipulations at each time step. The method can mainly improve water content profiles, but has no significant difference for the total infiltration rate and cumulative infiltration compared to the TO method. Although the method separately deals with advection and diffusion, it can account for the coupling effects of advection and diffusion reasonably well.

  13. Numerical modeling of DNA-chip hybridization with chaotic advection

    PubMed Central

    Raynal, Florence; Beuf, Aurélien; Carrière, Philippe

    2013-01-01

    We present numerical simulations of DNA-chip hybridization, both in the “static” and “dynamical” cases. In the static case, transport of free targets is limited by molecular diffusion; in the dynamical case, an efficient mixing is achieved by chaotic advection, with a periodic protocol using pumps in a rectangular chamber. This protocol has been shown to achieve rapid and homogeneous mixing. We suppose in our model that all free targets are identical; the chip has different spots on which the probes are fixed, also all identical, and complementary to the targets. The reaction model is an infinite sink potential of width dh, i.e., a target is captured as soon as it comes close enough to a probe, at a distance lower than dh. Our results prove that mixing with chaotic advection enables much more rapid hybridization than the static case. We show and explain why the potential width dh does not play an important role in the final results, and we discuss the role of molecular diffusion. We also recover realistic reaction rates in the static case. PMID:24404027

  14. Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry

    NASA Technical Reports Server (NTRS)

    Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.

    2003-01-01

    Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson s Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.

  15. Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry

    NASA Technical Reports Server (NTRS)

    Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.

    2003-01-01

    Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson's Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.

  16. Seismological comparisons of solar models with element diffusion using the MHD, OPAL, and SIREFF equations of state

    SciTech Connect

    Guzik, J.A.; Swenson, F.J.

    1997-12-01

    We compare the thermodynamic and helioseismic properties of solar models evolved using three different equation of state (EOS) treatments: the Mihalas, D{umlt a}ppen & Hummer EOS tables (MHD); the latest Rogers, Swenson, & Iglesias EOS tables (OPAL), and a new analytical EOS (SIREFF) developed by Swenson {ital et al.} All of the models include diffusive settling of helium and heavier elements. The models use updated OPAL opacity tables based on the 1993 Grevesse & Noels solar element mixture, incorporating 21 elements instead of the 14 elements used for earlier tables. The properties of solar models that are evolved with the SIREFF EOS agree closely with those of models evolved using the OPAL or MHD tables. However, unlike the MHD or OPAL EOS tables, the SIREFF in-line EOS can readily account for variations in overall Z abundance and the element mixture resulting from nuclear processing and diffusive element settling. Accounting for Z abundance variations in the EOS has a small, but non-negligible, effect on model properties (e.g., pressure or squared sound speed), as much as 0.2{percent} at the solar center and in the convection zone. The OPAL and SIREFF equations of state include electron exchange, which produces models requiring a slightly higher initial helium abundance, and increases the convection zone depth compared to models using the MHD EOS. However, the updated OPAL opacities are as much as 5{percent} lower near the convection zone base, resulting in a small decrease in convection zone depth. The calculated low-degree nonadiabatic frequencies for all of the models agree with the observed frequencies to within a few microhertz (0.1{percent}). The SIREFF analytical calibrations are intended to work over a wide range of interior conditions found in stellar models of mass greater than 0.25M{sub {circle_dot}} and evolutionary states from pre-main-sequence through the asymptotic giant branch (AGB). It is significant that the SIREFF EOS produces solar models

  17. Electrohydrodynamically Driven Chaotic Advection in Drops

    NASA Astrophysics Data System (ADS)

    Ward, Thomas; Homsy, G. M.

    2002-11-01

    When a liquid drop of given dielectric constant, resistivity and viscosity is translating in a liquid of different dielectric constant, resistivity and viscosity under Stokes flow conditions in the presence of an electric field, the resulting internal circulation is a superposition of the Hadamard-Rybcynski circulation and the circulation first described theoretically by G. I. Taylor. For sufficiently strong electric field strengths, the quadrapole structure of the Taylor circulation can cause an internal stagnation disk to occur. Our interest is in the situation where a modulation of the electric field causes the stagnation disk to modulate its position, potentially leading to chaotic flows within the drop. The dimensionless electric field strength is characterized by W = 4V(1+lambda)/U where V is the maximum interfacial velocity of the Taylor circulation, U the translational velocity, and lambda the viscosity ratio. The streamfunction for the flow is: 1) psi = (r4-r2) sin2)(theta + W(t) (r3 - r5) sin2 (theta) cos(theta) 2) W(t) = W1 + W2 cos ((epsilon)t) where epsilon is the dimensionless frequency, and W1, W2 are the amplitudes of the DC and AC components, respectively. We have found it useful to replace these parameters by a secondary set, epsilon, Wmax and delta = (1 / W1 - 1 / W2) - (1 / W1 + 1 / W2). As shown in Figure 1a, delta is the dimensionless distance the stagnation disk moves over one period of modulation. The advection equations corresponding to the flow were integrated by standard techniques, and it was found that the trajectories were chaotic over a wide range of parameters. Experiments were conducted to test the predictions of rapid mixing on convective time scales. Drops of silicon oil were suspended in a small 60 mm x 120 mm x 120 mm test cell filled with castor oil, and subject to time-modulated axial electric fields with a wave form corresponding to eq(2). The drops were typically 5 mm in diameter and settled with typical speeds of O(10-1 mm

  18. Surfzone alongshore advective accelerations: observations and modeling

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.

  19. Mixed weak-perturbative solution method for Maxwell's equations of diffusion with Müller's partial stress tensor in the low velocity limit

    NASA Astrophysics Data System (ADS)

    Faliagas, A. C.

    2016-03-01

    Maxwell's theory of multicomponent diffusion and subsequent extensions are based on systems of mass and momentum conservation equations. The partial stress tensor, which is involved in these equations, is expressed in terms of the gradients of velocity fields by statistical and continuum mechanical methods. We propose a method for the solution of Maxwell's equations of diffusion coupled with Müller's expression for the partial stress tensor. The proposed method consists in a singular perturbation process, followed by a weak (finite element) analysis of the resulting PDE systems. The singularity involved in the obtained equations was treated by a special technique, by which lower-order systems were supplemented by proper combinations of higher-order equations. The method proved particularly efficient for the solution of the Maxwell-Müller system, eventually reducing the number of unknown fields to that of the classical Navier-Stokes/Fick system. It was applied to the classical Stefan tube problem and the Hagen-Poiseuille flow in a hollow-fiber membrane tube. Numerical results for these problems are presented, and compared with the Navier-Stokes/Fick approximation. It is shown that the 0-th order term of the Maxwell-Müller equations differs from a properly formulated Navier-Stokes/Fick system, by a numerically insignificant amount. Numerical results for 1st-order terms indicate a good agreement of the classical approximation (with properly formulated Navier-Stokes and Fick's equations) with the Maxwell-Müller system, in the studied cases.

  20. Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility

    NASA Astrophysics Data System (ADS)

    Dai, Shibin; Du, Qiang

    2016-04-01

    We study computationally coarsening rates of the Cahn-Hilliard equation with a smooth double-well potential, and with phase-dependent diffusion mobilities. The latter is a feature of many materials systems and makes accurate numerical simulations challenging. Our numerical simulations confirm earlier theoretical predictions on the coarsening dynamics based on asymptotic analysis. We demonstrate that the numerical solutions are consistent with the physical Gibbs-Thomson effect, even if the mobility is degenerate in one or both phases. For the two-sided degenerate mobility, we report computational results showing that the coarsening rate is on the order of l ∼ ct 1 / 4, independent of the volume fraction of each phase. For the one-sided degenerate mobility, that is non-degenerate in the positive phase but degenerate in the negative phase, we illustrate that the coarsening rate depends on the volume fraction of the positive phase. For large positive volume fractions, the coarsening rate is on the order of l ∼ ct 1 / 3 and for small positive volume fractions, the coarsening rate becomes l ∼ ct 1 / 4.