Science.gov

Sample records for advection dominated flows

  1. THE LARGE-SCALE MAGNETIC FIELDS OF ADVECTION-DOMINATED ACCRETION FLOWS

    SciTech Connect

    Cao Xinwu

    2011-08-20

    We calculate the advection/diffusion of the large-scale magnetic field threading an advection-dominated accretion flow (ADAF) and find that the magnetic field can be dragged inward by the accretion flow efficiently if the magnetic Prandtl number P{sub m}={eta}/{nu}{approx}1. This is due to the large radial velocity of the ADAF. It is found that the magnetic pressure can be as high as {approx}50% of the gas pressure in the inner region of the ADAF close to the black hole horizon, even if the external imposed homogeneous vertical field strength is {approx}< 5% of the gas pressure at the outer radius of the ADAF, which is caused by the gas in the ADAF plunging rapidly to the black hole within the marginal stable circular orbit. In the inner region of the ADAF, the accretion flow is significantly pressured in the vertical direction by the magnetic fields, and therefore its gas pressure can be two orders of magnitude higher than that in the ADAF without magnetic fields. This means that the magnetic field strength near the black hole is underestimated by assuming equipartition between magnetic and gas pressure with the conventional ADAF model. Our results show that the magnetic field strength of the flow near the black hole horizon can be more than one order of magnitude higher than that in the ADAF at {approx}3R{sub g} (R{sub g} = 2GM/c{sup 2}), which implies that the Blandford-Znajek mechanism could be more important than the Blandford-Payne mechanism for ADAFs. We find that the accretion flow is decelerated near the black hole by the magnetic field when the external imposed field is strong enough or the gas pressure of the flow is low at the outer radius, or both. This corresponds to a critical accretion rate, below which the accretion flow will be arrested by the magnetic field near the black hole for a given external imposed field. In this case, the gas may accrete as magnetically confined blobs diffusing through field lines in the region very close to the black

  2. Formation of Continuous and Episodic Relativistic Outflows in Regions of Stability and Instability in Advection-Dominated Accretion Flows

    NASA Astrophysics Data System (ADS)

    Le, Truong V.; Wood, Kent S.; Wolff, Michael Thomas; Becker, Peter A.; Putney, Joy; Edge, Elizabeth

    2016-01-01

    Previously, we have demonstrated that particle acceleration in the vicinity of a shock in an advection-dominated accretion disk can extract enough energy to power a relativistic jet from a supermassive black hole at the center of a radio-loud active galaxy. However, to maintain a steady jet, a stable shock location is required. By employing the Chevalier & Imamura linearization method and the Nakayama instability boundary conditions, we have also shown that there is a region of the energy and angular momentum parameter space in which disk/shocks with outflows can be either stable or unstable. In a region of instability, the velocity profiles that exhibit pre-shock deceleration and pre-shock acceleration are always unstable to the zeroth mode with zero frequency of oscillation. However, in a region of stability, the zeroth mode, the fundamental, and the overtones are all stable for both pre-shock deceleration as well as pre-shock acceleration. Building on this new insight, in this paper, we explore new parameter values in the regions of stability and instability to explain the production of the observed continuous and episodic relativistic outflows (jets) in M87 and Sgr A*, respectively.

  3. Advective coalescence in chaotic flows.

    PubMed

    Nishikawa, T; Toroczkai, Z; Grebogi, C

    2001-07-16

    We investigate the reaction kinetics of small spherical particles with inertia, obeying coalescence type of reaction, B+B-->B, and being advected by hydrodynamical flows with time-periodic forcing. In contrast to passive tracers, the particle dynamics is governed by the strongly nonlinear Maxey-Riley equations, which typically create chaos in the spatial component of the particle dynamics, appearing as filamental structures in the distribution of the reactants. Defining a stochastic description supported on the natural measure of the attractor, we show that, in the limit of slow reaction, the reaction kinetics assumes a universal behavior exhibiting a t(-1) decay in the amount of reagents, which become distributed on a subset of dimension D2, where D2 is the correlation dimension of the chaotic flow. PMID:11461595

  4. Advection-Dominated Accretion Disks: Geometrically Slim or Thick?

    NASA Astrophysics Data System (ADS)

    Gu, Wei-Min; Xue, Li; Liu, Tong; Lu, Ju-Fu

    2009-12-01

    We revisit the vertical structure of black-hole accretion disks in spherical coordinates. By comparing the advective cooling with the viscous heating, we show that advection-dominated disks are geometrically thick, i.e., with a half-opening angle of Δθ > 2π/5, rather than being slim, as supposed previously in the literature.

  5. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  6. Clay with Desiccation Cracks is an Advection Dominated Environment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    , indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.

  7. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  8. Chaotic advection, diffusion, and reactions in open flows

    SciTech Connect

    Tel, Tamas; Karolyi, Gyoergy; Pentek, Aron; Scheuring, Istvan; Toroczkai, Zoltan; Grebogi, Celso; Kadtke, James

    2000-03-01

    We review and generalize recent results on advection of particles in open time-periodic hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness of the flow. Finally, we investigate the influence of passive advection on chemical or biological activity superimposed on open flows. The nondiffusive approach is shown to carry some features of a weak diffusion, due to the finiteness of the reaction range or reaction velocity. (c) 2000 American Institute of Physics.

  9. Advecting Procedural Textures for 2D Flow Animation

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  10. THE ADVECTION OF SUPERGRANULES BY THE SUN'S AXISYMMETRIC FLOWS

    SciTech Connect

    Hathaway, David H.; Williams, Peter E.; Rosa, Kevin Dela; Cuntz, Manfred E-mail: peter.williams@nasa.go

    2010-12-10

    We show that the motions of supergranules are consistent with a model in which they are simply advected by the axisymmetric flows in the Sun's surface shear layer. We produce a 10 day series of simulated Doppler images at a 15 minute cadence that reproduces most spatial and temporal characteristics seen in the SOHO/MDI Doppler data. Our simulated data have a spectrum of cellular flows with just two components-a granule component that peaks at spherical wavenumbers of about 4000 and a supergranule component that peaks at wavenumbers of about 110. We include the advection of these cellular components by the axisymmetric flows-differential rotation and meridional flow-whose variations with latitude and depth (wavenumber) are consistent with observations. We mimic the evolution of the cellular pattern by introducing random variations to the phases of the spectral components at rates that reproduce the levels of cross-correlation as functions of time and latitude. Our simulated data do not include any wave-like characteristics for the supergranules yet can reproduce the rotation characteristics previously attributed to wave-like behavior. We find rotation rates which appear faster than the actual rotation rates and attribute this to projection effects. We find that the measured meridional flow does accurately represent the actual flow and that the observations indicate poleward flow to 65{sup 0}-70{sup 0} latitude with equatorward countercells in the polar regions.

  11. Deconvolved spectra of Two Component Advective Flow including jet

    NASA Astrophysics Data System (ADS)

    Mondal, Santanu; Debnath, Dipak; Chakrabarti, Sandip Kumar

    2016-07-01

    Outflows and winds are produced when the accretion flows have positive specific energy. Two Component Advective Flow (TCAF) model suggests that the centrifugal pressure supported region of the flow outside the black hole horizon, acts as the base of this outflow. We study the spectral properties of the TCAF which includes a jet component. We consider the jet as a conical in shape which also up-scatters the soft photons from the Keplerian disc. We see that due to the presence of jet component, spectrum become harder as the jet itself behaves like an another Compton cloud above the inner hot corona. We also see how the jet spectra depends on the flow rates. This gives the direct link in timing properties of the X-rays in CENBOL component and the radiation emitted in the jet component.

  12. The slimming effect of advection on black-hole accretion flows

    NASA Astrophysics Data System (ADS)

    Lasota, J.-P.; Vieira, R. S. S.; Sadowski, A.; Narayan, R.; Abramowicz, M. A.

    2016-03-01

    Context. At super-Eddington rates accretion flows onto black holes have been described as slim (aspect ratio H/R ≲ 1) or thick (H/R> 1) discs, also known as tori or (Polish) doughnuts. The relation between the two descriptions has never been established, but it was commonly believed that at sufficiently high accretion rates slim discs inflate, becoming thick. Aims: We wish to establish under what conditions slim accretion flows become thick. Methods: We use analytical equations, numerical 1 + 1 schemes, and numerical radiative MHD codes to describe and compare various accretion flow models at very high accretion rates. Results: We find that the dominant effect of advection at high accretion rates precludes slim discs becoming thick. Conclusions: At super-Eddington rates accretion flows around black holes can always be considered slim rather than thick.

  13. Modelling of terrain-induced advective flow in Tibet: Implications for assessment of crustal heat flow

    SciTech Connect

    Hochstein, M.P.; Yang Zhongke

    1992-01-01

    In steep terrain the effect of advective flow can be significant, as it can distort the temperature field in the upper brittle crust. The effect was studied by modeling advective flow across a large valley system in Tibet which is associated with several geothermal hot spring systems, the Yanbajing Valley. It was found that, in this setting, all near-surface temperature gradients are significantly disturbed, attaining values differing by up to half an order of magnitude from those resulting from conductive heat transfer. Allowing for advective effects, it was found that the crustal heat flux within the Himalayan Geothermal Belt lies within the range of 60 to 90 mW/m{sup 2} in the Lhasa-Yanbajing area.

  14. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    SciTech Connect

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi E-mail: dikpati@ucar.edu

    2015-06-20

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  15. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  16. The predictability of advection-dominated flux-transport solar dynamo models

    SciTech Connect

    Sanchez, Sabrina; Fournier, Alexandre; Aubert, Julien

    2014-01-20

    Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo. Interested in the forecast horizon of such studies, we quantify the predictability window of a representative, advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τ {sub e}. The e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average estimate for τ {sub e} equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After reviewing these, we discuss their implications for solar cycle prediction.

  17. Lateral advection of organic matter in cascading-dominated submarine canyons

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Puig, P.; Palanques, A.; Goñi, M. A.

    2010-03-01

    In the Gulf of Lions (GoL), dense water overflowing off the shelf occurs seasonally and represents the main mechanism affecting the shelf-slope exchange of particulate organic matter (OM). Most of the dense water export takes place in the south-western GoL and in particular through Cap de Creus (CdC) submarine canyon. Here, benthic instruments were deployed to collect down-canyon particulate fluxes whereas surface sediments were taken after the cascading event along the sediment dispersal system on the shelf, in CdC canyon and in the nearby Lacaze-Duthiers (LD) canyon. The chemical composition of the suspended material and surface sediments were investigated using several proxies including organic and inorganic carbon, total nitrogen, biogenic silica, δ 13C, Δ 14C, and alkaline CuO oxidation products. Thermohaline anomalies and high current speed events were measured in CdC canyon since December 2004 until mid-April 2005 indicating a marked off-shelf export of dense water trough the canyon. During the cascading, mud and relatively coarse shelf and upper canyon sediments were the major component of the mass flux. Conversely, advection of fine material via nepheloid layers dominated down-slope fluxes during pre- and post-cascading. The resulting change in grain-size affected the flux of mineral-bound terrigenous OC, indicating that the down-canyon transport of land-derived OM did not occur as bulk but rather its composition is driven by sediment sorting associated with different transport mechanisms. Both surface sediments and sediment trap samples indicated that CdC canyon is well connected to the GoL terrigenous dispersal system. Conversely, our results suggest an overall limited influence of land-derived OM in LD canyon. In spite of the reduced fluvial nutrient supply, a significant pulsed input of modern marine OM was observed in April 2005 at the end of the cascading period. Both intense mixing and lack of strong water column stratification likely played a key

  18. VERTICAL CONVECTION IN NEUTRINO-DOMINATED ACCRETION FLOWS

    SciTech Connect

    Liu, Tong; Gu, Wei-Min; Li, Ang; Kawanaka, Norita E-mail: norita@astron.s.u-tokyo.ac.jp

    2015-05-20

    We present the effects of vertical convection on the structure and luminosity of the neutrino-dominated accretion flow (NDAF) around a stellar-mass black hole in spherical coordinates. We find that the convective energy transfer can suppress the radial advection in the NDAF and that the density, temperature, and opening angle are slightly changed. As a result, the neutrino and annihilation luminosities are increased, which allows the energy requirement of gamma-ray bursts to be achieved.

  19. Modeling velocity in gradient flows with coupled-map lattices with advection.

    PubMed

    Lind, Pedro G; Corte-Real, João; Gallas, Jason A C

    2002-07-01

    We introduce a simple model to investigate large scale behavior of gradient flows based on a lattice of coupled maps which, in addition to the usual diffusive term, incorporates advection, as an asymmetry in the coupling between nearest neighbors. This diffusive-advective model predicts traveling patterns to have velocities obeying the same scaling as wind velocities in the atmosphere, regarding the advective parameter as a sort of geostrophic wind. In addition, the velocity and wavelength of traveling wave solutions are studied. In general, due to the presence of advection, two regimes are identified: for strong diffusion the velocity varies linearly with advection, while for weak diffusion a power law is found with a characteristic exponent proportional to the diffusion.

  20. Update on Advection-Diffusion Purge Flow Model

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.

  1. Subsurface barrier design alternatives for confinement and controlled advection flow

    SciTech Connect

    Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.

    1994-02-01

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described.

  2. Two-Dimensional Advective Transport in Ground-Water Flow Parameter Estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of

  3. A forward-in-time advection scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow

    SciTech Connect

    Stevens, D.E.; Bretherton, S.

    1996-12-01

    This paper presents a new forward-in-time advection method for nearly incompressible flow, MU, and its application to an adaptive multilevel flow solver for atmospheric flows. MU is a modification of Leonard et al.`s UTOPIA scheme. MU, like UTOPIA, is based on third-order accurate semi-Lagrangian multidimensional upwinding for constant velocity flows. for varying velocity fields, MU is a second-order conservative method. MU has greater stability and accuracy than UTOPIA and naturally decomposes into a monotone low-order method and a higher-order accurate correction for use with flux limiting. Its stability and accuracy make it a computationally efficient alternative to current finite-difference advection methods. We present a fully second-order accurate flow solver for the anelastic equations, a prototypical low Mach number flow. The flow solver is based on MU which is used for both momentum and scalar transport equations. This flow solver can also be implemented with any forward-in-time advection scheme. The multilevel flow solver conserves discrete global integrals of advected quantities and includes adaptive mesh refinements. Its second-order accuracy is verified using a nonlinear energy conservation integral for the anelastic equations. For a typical geophysical problem in which the flow is most rapidly varying in a small part of the domain, the multilevel flow solver achieves global accuracy comparable to uniform-resolution simulation for 10% of the computational cost. 36 refs., 10 figs.

  4. Alteration of chaotic advection in blood flow around partial blockage zone: Role of hematocrit concentration

    NASA Astrophysics Data System (ADS)

    Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman

    2013-01-01

    Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.

  5. Does dispersal control population densities in advection-dominated systems? A fresh look at critical assumptions and a direct test.

    PubMed

    Downes, Barbara J; Lancaster, Jill

    2010-01-01

    1. In advection-dominated systems (both freshwater and marine), population dynamics are usually presumed to be dominated by the effects of migrants dispersing by advection, especially over the small spatial scales at which populations can be studied, but few studies have tested this presumption. We tested the hypothesis that benthic densities are controlled by densities of dispersers for two aquatic insects in upland streams. 2. Our study animals were two species of caddisflies (Hydropsychidae), which become sedentary filter-feeders following settlement onto substrata. Densities of dispersers in the drift (advective dispersal) were quantified using nets placed along the upstream edges of riffles, where the latter abruptly abutted a slower, upstream run. Settlement was estimated at each site using brick pavers, half of which had been fenced to prevent colonization of their top surfaces by walking hydropsychids, thus allowing us to distinguish also the mode of movement during settlement. 3. First through fifth instars of two species, Smicrophylax sp. AV2 and Asmicridea sp. AV1, were abundant and showed disparate results. Drift and settlement were relatively strongly related for Smicrophylax. The best fit lines were shown by second and third instars settling on plain bricks, suggesting that drift played a strong role in settlement, but that some drifters dropped to the bottom and located substrata by walking. Quantile regression suggested that drift sets limits to settlement in this species and that settlement success was highly variable. In contrast, settlement by Asmicridea was poorly related to drift; settlers were mainly individuals re-dispersing within sites. 4. Smicrophylax densities appear to be controlled by dispersal from upstream, but benthic density of Asmicridea is more likely linked to local demography. Our data demonstrate the dangers of assuming that supposedly drift-prone species can all be modelled in the same way. Alternative models emphasizing

  6. Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.

    2015-12-01

    In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.

  7. Advection dominated transport of polycyclic aromatic hydrocarbons in amended sediment caps.

    PubMed

    Gidley, Philip T; Kwon, Seokjoon; Yakirevich, Alexander; Magar, Victor S; Ghosh, Upal

    2012-05-01

    Typical sand caps used for sediment remediation have little sorption capacity to retard the migration of hydrophobic contaminants such as PAHs that can be mobilized by significant groundwater flow. Laboratory column experiments were performed using contaminated sediments and capping materials from a creosote contaminated USEPA Superfund site. Azoic laboratory column experiments demonstrated rapid breakthrough of lower molecular weight PAHs when groundwater seepage was simulated through a column packed with coarse sand capping material. After eight pore volumes of flow, most PAHs measured showed at least 50% of initial source pore water concentrations at the surface of 65 cm capping material. PAH concentration in the cap solids was low and comparable to background levels typically seen in urban depositional sediment, but the pore water concentrations were high. Column experiments with a peat amendment delayed PAH breakthrough. The most dramatic result was observed for caps amended with activated carbon at a dose of 2% by dry weight. PAH concentrations in the pore water of the activated carbon amended caps were 3-4 orders of magnitude lower (0.04 ± 0.02 μg/L for pyrene) than concentrations in the pore water of the source sediments (26.2 ± 5.6 μg/L for pyrene) even after several hundred pore volumes of flow. Enhancing the sorption capacity of caps with activated carbon amendment even at a lower dose of 0.2% demonstrated a significant impact on contaminant retardation suggesting consideration of active capping for field sites prone to groundwater upwelling or where thin caps are desired to minimize change in bathymetry and impacts to aquatic habitats.

  8. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    NASA Astrophysics Data System (ADS)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  9. Simulation of advective flow under steady-state and transient recharge conditions, Camp Edwards, Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2003-01-01

    The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths

  10. Tomography-based observation of sublimation and snow metamorphism under temperature gradient and advective flow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-09-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray micro-tomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. The sublimation of water vapor for saturated air flowing across the snow sample was experimentally determined via variations of the porous ice structure. The results showed that the exothermic gas-to-solid phase change is favorable vis-a-vis the endothermic solid-to-gas phase change, thus leading to more ice deposition than ice sublimation. Sublimation has a marked effect on the structural change of the ice matrix but diffusion of water vapor in the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong reposition process of water molecules on the ice grains is relevant for atmospheric chemistry.

  11. Inverse Comptonization in a Two Component Advective Flow: Results of a Monte Carlo simulation

    SciTech Connect

    Ghosh, Himadri; Chakrabarti, S. K.; Laurent, Philippe

    2008-10-08

    We compute the resultant spectrum due to multiple scattering of soft photons emitted from a Keplerian disk by thermal electrons inside a torus axisymmetrically placed around a black hole. In a two component advective flow model, the post-shock region is similar to a thick accretion disk and the pre-shock sub-keplerian flow is highly optically thin. As a preliminary run of the Monte Carlo simulation of the system, we assume the CENBOL to be a small (2-14r{sub g}) thick accretion disk without a cusp to allow bulk motion of the flow. Bulk Motion Comptonization (BMC) has also been added. We show that the spectral behaviour is very similar to what is predicted in Chakrabarti and Titarchuk (1995)

  12. Tell tale signatures of a Two Component Advective Flow around Black holes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Two Component Advective Flow or TCAF naturally explains every observed X-ray/gamma-ray signatures of black hole candidates. Every aspect of this solution has either been derived from Governing equations reproduced by numerical simulations of time dependent hydrodynamic codes of viscous and radiative flows. We discuss how, the same solution, when fitted observational results of several outbursts, consistently and satisfactorily explain evolutions of physical flow parameters, such as the accretion rates of the high and low angular momentum components, QPO frequencies in various spectral states, sizes of the Compton cloud, time lag properties of the high and low inclination angle systems etc. We also discuss possible effects of dynamically important magnetic fields.

  13. New experiment in Plane Poiseuille flow with zero mean advection velocity: observation of stationary turbulent spots

    NASA Astrophysics Data System (ADS)

    Klotz, Lukasz; Lemoult, Gregoire; Wesfreid, Jose Eduardo

    2015-11-01

    We describe a new experimental set-up which allows us to study the sub-critical transition to turbulence in a two dimensional shear flow (including plane Couette, plane Couette-Poiseuille and plane Poiseuille flows). Our facility is an extension of a classical plane Couette experiment, in which one uses a single closed loop of plastic belt to generate the opposite sign velocity at each wall of the test section. However, in our case, we use two independent closed loops of plastic belt, one at each wall of the test section. The speed of these belts may be controlled separately. That enables to set two different velocities (in value and direction) as a boundary conditions at each of two test section's walls. In addition the pressure gradient in streamwise direction can be controlled. In particular, the plane Poiseuille flow with zero mean advection velocity can be created. We characterize by PIV the basic flow for different configurations. For a plane Poiseuille flows as base flow, we were able to observe for the first time the nearly stationary turbulent spots in this flow, with structures of characteristic wavelength ~ the distance between the two plates.

  14. Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows

    NASA Astrophysics Data System (ADS)

    Iyer, Gautam; Kiselev, Alexander; Xu, Xiaoqian

    2014-05-01

    Consider a diffusion-free passive scalar θ being mixed by an incompressible flow u on the torus { T}^d . Our aim is to study how well this scalar can be mixed under an enstrophy constraint on the advecting velocity field. Our main result shows that the mix-norm ({\\Vert}{\\theta(t)}{\\Vert}_{H^{-1}}) is bounded below by an exponential function of time. The exponential decay rate we obtain is not universal and depends on the size of the support of the initial data. We also perform numerical simulations and confirm that the numerically observed decay rate scales similarly to the rigorous lower bound, at least for a significant initial period of time. The main idea behind our proof is to use the recent work of Crippa and De Lellis (2008 J. Reine Angew. Math. 616 15-46) making progress towards the resolution of Bressan's rearrangement cost conjecture.

  15. Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Yoonsang; Engquist, Bjorn

    2016-07-01

    We propose a seamless multiscale method which approximates the macroscopic behavior of the passive advection-diffusion equations with steady incompressible velocity fields with multi-spatial scales. The method uses decompositions of the velocity fields in the Fourier space, which are similar to the decomposition in large eddy simulations. It also uses a hierarchy of local domains with different resolutions as in multigrid methods. The effective diffusivity from finer scale is used for the next coarser level computation and this process is repeated up to the coarsest scale of interest. The grids are only in local domains whose sizes decrease depending on the resolution level so that the overall computational complexity increases linearly as the number of different resolution grids increases. The method captures interactions between finer and coarser scales but has to sacrifice some of interactions between different scales. The proposed method is numerically tested with 2D examples including a successful approximation to a continuous spectrum flow.

  16. Dark energy domination in the Virgocentric flow

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2010-09-01

    Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.

  17. Novel Non-invasive Estimation of Coronary Blood Flow using Contrast Advection in Computed Tomography Angiography

    NASA Astrophysics Data System (ADS)

    Eslami, Parastou; Seo, Jung-Hee; Rahsepar, Amirali; George, Richard; Lardo, Albert; Mittal, Rajat

    2014-11-01

    Coronary computed tomography angiography (CTA) is a promising tool for assessment of coronary stenosis and plaque burden. Recent studies have shown the presence of axial contrast concentration gradients in obstructed arteries, but the mechanism responsible for this phenomenon is not well understood. We use computational fluid dynamics to study intracoronary contrast dispersion and the correlation of concentration gradients with intracoronary blood flow and stenotic severity. Data from our CFD patient-specific simulations reveals that contrast dispersions are generated by intracoronary advection effects, and therefore, encode the coronary flow velocity. This novel method- Transluminal Attenuation Flow Encoding (TAFE) - is used to estimate the flowrate in phantom studies as well as preclinical experiments. Our results indicate a strong correlation between the values estimated from TAFE and the values measured in these experiments. The flow physics of contrast dispersion associated with TAFE will be discussed. This work is funded by grants from Coulter Foundation and Maryland Innovation Initiative. The authors have pending patents in this technology and RM and ACL have other financial interests associated with TAFE.

  18. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGES

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  19. Effect of advective flow in fractures and matrix diffusion on natural gas production

    SciTech Connect

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.

  20. Morphodynamics of debris flow-dominated channels

    NASA Astrophysics Data System (ADS)

    Huebl, Johannes

    2013-04-01

    The mountain environment is mainly shaped by mass movements and glacial, debris flow and fluvial erosion. Therefore the landform ensemble of torrential catchments includes features of several thousand years. Many of them contribute as debris sources to the development of debris flow activity. But the torrential channel is not formed by different types of slope failures only, channel erosion itself plays a dominant role in the development of debris flows. Today LIDAR data allow us to identify different types of debris sources and subsequent channel features. In combination with the lithological setting this information helps us to understand the general morphodynamics of mountain channels. A deeper insight into the development of mountain channels lacks of consistent data sets. Different approaches try to estimate erosional rates of torrents during design events. These methods are mainly based on field survey and on the experience of the person doing this job. To decrease the uncertainty of these data, the collected data have to be checked against already existing data of documented former events. The development of the erosional processes in torrents is directly linked with the dominating morphodynamic process, leading to essential estimates of debris flow hydrographes.

  1. Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle

    NASA Astrophysics Data System (ADS)

    Koshel, K. V.; Sokolovskiy, M. A.; Davies, P. A.

    2008-10-01

    The effect of an isolated submarine obstacle on the motion of fluid particles in a periodic external flow is studied within the framework of the barotropic, quasi-geostrophic approximation on f-plane. The concept of background currents advanced by Kozlov [1995. Background currents in geophysical hydrodynamics. Izvestia, Atmos. Oceanic Phys. 31 (2), 245-250] is used to construct a dynamically consistent stream function satisfying the potential vorticity conservation law. It is shown that a system of two topographic vortices revolving about a rotation center can form in a circular external flow. Unsteady periodic perturbations, associated with either variations in the background current or deviations of the external flow from circulation, are analyzed. Unsteadiness in the external flow essentially complicates the pattern of the motion of fluid particles. Vortex-type quasi-periodic structures, identified with nonlinear resonances that form in Lagrangian equations of fluid particle advection, are examined. They either surround the stationary configuration by a vortex chain—a ringlet-like structure [ Kennelly, M.A., Evans, R.H., Joyce, T.M., 1985. Small-scale cyclones on the periphery of Gulf Stream warm-core rings. J. Geophys. Res. 90(5), 8845-8857], or they form a complex-structure multivortex domain. Asymptotic estimates and numerical modeling are used to study the distribution and widths of the nonlinear resonance domains that appear under unsteady perturbations of different types. The onset of chaotic regimes owing to the overlapping of nonlinear resonance domains is analyzed. Transport fluxes determined by chaotic advection and barriers for transport (KAM-tori) and the conditions of their existence are studied. The relation of the rotation frequency of fluid particles on their initial position (when the dependence is calculated in the undisturbed system) is shown to completely determine the main features of the pattern of Lagrangian trajectories and chaotization

  2. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics

    PubMed Central

    Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network’s structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet. PMID:27128846

  3. Orbital Advection by Interpolation: A Fast and Accurate Numerical Scheme for Super-Fast MHD Flows

    SciTech Connect

    Johnson, B M; Guan, X; Gammie, F

    2008-04-11

    In numerical models of thin astrophysical disks that use an Eulerian scheme, gas orbits supersonically through a fixed grid. As a result the timestep is sharply limited by the Courant condition. Also, because the mean flow speed with respect to the grid varies with position, the truncation error varies systematically with position. For hydrodynamic (unmagnetized) disks an algorithm called FARGO has been developed that advects the gas along its mean orbit using a separate interpolation substep. This relaxes the constraint imposed by the Courant condition, which now depends only on the peculiar velocity of the gas, and results in a truncation error that is more nearly independent of position. This paper describes a FARGO-like algorithm suitable for evolving magnetized disks. Our method is second order accurate on a smooth flow and preserves {del} {center_dot} B = 0 to machine precision. The main restriction is that B must be discretized on a staggered mesh. We give a detailed description of an implementation of the code and demonstrate that it produces the expected results on linear and nonlinear problems. We also point out how the scheme might be generalized to make the integration of other supersonic/super-fast flows more efficient. Although our scheme reduces the variation of truncation error with position, it does not eliminate it. We show that the residual position dependence leads to characteristic radial variations in the density over long integrations.

  4. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    PubMed

    Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.

  5. On the potential importance of transient air flow in advective radon entry into buildings

    SciTech Connect

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y. )

    1990-05-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations.

  6. Coherent and incoherent scattering by a plume of particles advected by turbulent velocity flow.

    PubMed

    Palmer, David R

    2009-08-01

    Studies of acoustic remote sensing of the plumes that result from the injection of particulate matter in the ocean, either naturally or by dumping or dredging activities, have assumed the scattering is incoherent. These plumes are always turbulent, however. The particle density is a passive scalar that is advected by the turbulent velocity flow. The possibility exists, therefore, that the scattered waves from a significant number of particles add coherently as a result of Bragg scattering. In this paper, we investigate this possibility. We derive an expression for the ratio of the coherent intensity to the incoherent one in terms of the turbulent spectrum and the properties of the particles that make up the plume. The sonar is modeled as a high-Q, monostatic, pulsed sonar with arbitrary pulse envelope and arbitrary, but narrow, beam pattern. We apply the formalism to acoustic remote sensing of black smoker hydrothermal plumes. We find that, at most, the coherent intensity is less than 1% of the incoherent one. The implications are that Bragg scattering does not lead to a significant coherent component and in analyses of scattering from this type of plume, one can ignore the complications of turbulence altogether. PMID:19640023

  7. Coherent and incoherent scattering by a plume of particles advected by turbulent velocity flow.

    PubMed

    Palmer, David R

    2009-08-01

    Studies of acoustic remote sensing of the plumes that result from the injection of particulate matter in the ocean, either naturally or by dumping or dredging activities, have assumed the scattering is incoherent. These plumes are always turbulent, however. The particle density is a passive scalar that is advected by the turbulent velocity flow. The possibility exists, therefore, that the scattered waves from a significant number of particles add coherently as a result of Bragg scattering. In this paper, we investigate this possibility. We derive an expression for the ratio of the coherent intensity to the incoherent one in terms of the turbulent spectrum and the properties of the particles that make up the plume. The sonar is modeled as a high-Q, monostatic, pulsed sonar with arbitrary pulse envelope and arbitrary, but narrow, beam pattern. We apply the formalism to acoustic remote sensing of black smoker hydrothermal plumes. We find that, at most, the coherent intensity is less than 1% of the incoherent one. The implications are that Bragg scattering does not lead to a significant coherent component and in analyses of scattering from this type of plume, one can ignore the complications of turbulence altogether.

  8. Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence

    NASA Astrophysics Data System (ADS)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-01

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006–07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ∼3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.

  9. Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence

    NASA Astrophysics Data System (ADS)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-01

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006-07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ˜3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.

  10. Dark Energy Domination In The Virgocentric Flow

    NASA Astrophysics Data System (ADS)

    Byrd, Gene; Chernin, A. D.; Karachentsev, I. D.; Teerikorpi, P.; Valtonen, M.; Dolgachev, V. P.; Domozhilova, L. M.

    2011-04-01

    Dark energy (DE) was first observationally detected at large Gpc distances. If it is a vacuum energy formulated as Einstein's cosmological constant, Λ, DE should also have dynamical effects at much smaller scales. Previously, we found its effects on much smaller Mpc scales in our Local Group (LG) as well as in other nearby groups. We used new HST observations of member 3D distances from the group centers and Doppler shifts. We find each group's gravity dominates a bound central system of galaxies but DE antigravity results in a radial recession increasing with distance from the group center of the outer members. Here we focus on the much larger (but still cosmologically local) Virgo Cluster and systems around it using new observations of velocities and distances. We propose an analytic model whose key parameter is the zero-gravity radius (ZGR) from the cluster center where gravity and DE antigravity balance. DE brings regularity to the Virgocentric flow. Beyond Virgo's 10 Mpc ZGR, the flow curves to approach a linear global Hubble law at larger distances. The Virgo cluster and its outer flow are similar to the Local Group and its local outflow with a scaling factor of about 10; the ZGR for Virgo is 10 times larger than that of the LG. The similarity of the two systems on the scales of 1 to 30 Mpc suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of DE as well as gravity. Chernin, et al 2009 Astronomy and Astrophysics 507, 1271 http://arxiv.org/abs/1006.0066 http://arxiv.org/abs/1006.0555

  11. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow

    NASA Astrophysics Data System (ADS)

    Hansel, Colleen M.; Benner, Shawn G.; Neiss, Jim; Dohnalkova, Alice; Kukkadapu, Ravi K.; Fendorf, Scott

    2003-08-01

    Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by

  12. Investigating redox processes under diffusive and advective flow conditions using a coupled omics and synchrotron approach

    NASA Astrophysics Data System (ADS)

    Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.

    2015-12-01

    FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.

  13. A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation.

    PubMed

    Yao, Yijun; Wu, Yun; Wang, Yue; Verginelli, Iason; Zeng, Tian; Suuberg, Eric M; Jiang, Lin; Wen, Yuezhong; Ma, Jie

    2015-10-01

    At petroleum vapor intrusion (PVI) sites at which there is significant methane generation, upward advective soil gas transport may be observed. To evaluate the health and explosion risks that may exist under such scenarios, a one-dimensional analytical model describing these processes is introduced in this study. This new model accounts for both advective and diffusive transport in soil gas and couples this with a piecewise first-order aerobic biodegradation model, limited by oxygen availability. The predicted results from the new model are shown to be in good agreement with the simulation results obtained from a three-dimensional numerical model. These results suggest that this analytical model is suitable for describing cases involving open ground surface beyond the foundation edge, serving as the primary oxygen source. This new analytical model indicates that the major contribution of upward advection to indoor air concentration could be limited to the increase of soil gas entry rate, since the oxygen in soil might already be depleted owing to the associated high methane source vapor concentration.

  14. Chaotic flow and the finite-time Lyapunov exponent: Competitive autocatalytic reactions in advection-reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.

    2013-11-01

    We investigate chaotic advection and diffusion in competitive autocatalytic reactions. To study this subject, we use a computationally efficient method for solving advection-reaction-diffusion equations for periodic flows using a mapping method with operator splitting. In competitive autocatalytic reactions, there are two species, B and C, which both react autocatalytically with species A (A +B -->2B and A +C -->2C). If there is initially a small amount of spatially localized B and C and a large amount of A, all three species will be advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that the small scale interactions associated with the chaotic velocity field, specifically the local finite-time Lyapunov exponents (FTLEs), can accurately predict the final average concentrations of B and C after the reaction is complete. The species, B or C, that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If species B and C start in regions having similar FTLEs, their average concentrations at the end of the reaction will also be similar. Funded by NSF Grant CMMI-1000469.

  15. A field study of air flow and turbulent features of advection fog

    NASA Technical Reports Server (NTRS)

    Connell, J. D.

    1979-01-01

    The setup and initial operation of a set of specialized meteorological data collection hardware are described. To study the life cycle of advection fogs at a lake test site, turbulence levels in the fog are identified, and correlated with the temperature gradients and mean wind profiles. A meteorological tower was instrumented to allow multiple-level measurements of wind and temperature on a continuous basis. Additional instrumentation was: (1)hydrothermograph, (2)microbarograph, (3)transmissometers, and (4)a boundary layer profiler. Two types of fogs were identified, and important differences in the turbulence scales were noted.

  16. Texture-based visualization of unsteady 3D flow by real-time advection and volumetric illumination.

    PubMed

    Weiskopf, Daniel; Schafhitzel, Tobias; Ertl, Thomas

    2007-01-01

    This paper presents an interactive technique for the dense texture-based visualization of unsteady 3D flow, taking into account issues of computational efficiency and visual perception. High efficiency is achieved by a 3D graphics processing unit (GPU)-based texture advection mechanism that implements logical 3D grid structures by physical memory in the form of 2D textures. This approach results in fast read and write access to physical memory, independent of GPU architecture. Slice-based direct volume rendering is used for the final display. We investigate two alternative methods for the volumetric illumination of the result of texture advection: First, gradient-based illumination that employs a real-time computation of gradients, and, second, line-based lighting based on illumination in codimension 2. In addition to the Phong model, perception-guided rendering methods are considered, such as cool/warm shading, halo rendering, or color-based depth cueing. The problems of clutter and occlusion are addressed by supporting a volumetric importance function that enhances features of the flow and reduces visual complexity in less interesting regions. GPU implementation aspects, performance measurements, and a discussion of results are included to demonstrate our visualization approach.

  17. Modeling Three-Dimensional Groundwater Flow and Advective Contaminant Transport at a Heterogeneous Mountainous Site in Support of Remediation Strategy

    SciTech Connect

    Zhou, Quanlin; Birkholzer, Jens T.; Javandel, Iraj; Jordan, Preston D.

    2004-01-14

    A calibrated groundwater flow model for a contaminated site can provide substantial information for assessing and improving hydraulic measures implemented for remediation. A three-dimensional transient groundwater flow model was developed for a contaminated mountainous site, at which interim corrective measures were initiated to limit further spreading of contaminants. This flow model accounts for complex geologic units that vary considerably in thickness, slope, and hydrogeologic properties, as well as large seasonal fluctuations of the groundwater table and flow rates. Other significant factors are local recharge from leaking underground storm drains and recharge from steep uphill areas. The zonation method was employed to account for the clustering of high and low hydraulic conductivities measured in a geologic unit. A composite model was used to represent the bulk effect of thin layers of relatively high hydraulic conductivity found within bedrock of otherwise low conductivity. The inverse simulator ITOUGH2 was used to calibrate the model for the distribution of rock properties. The model was initially calibrated using data collected between 1994 and 1996. To check the validity of the model, it was subsequently applied to predicting groundwater level fluctuation and groundwater flux between 1996 and 1998. Comparison of simulated and measured data demonstrated that the model is capable of predicting the complex flow reasonably well. Advective transport was approximated using pathways of particles originating from source areas of the plumes. The advective transport approximation was in good agreement with the trend of contaminant plumes observed over the years. The validated model was then refined to focus on a subsection of the large system. The refined model was subsequently used to assess the efficiency of hydraulic measures implemented for remediation.

  18. Efficient mass transport by optical advection

    NASA Astrophysics Data System (ADS)

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-10-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms.

  19. Analysis of steady-state flow and advective transport in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Ackerman, D.J.

    1995-01-01

    Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails

  20. Modelling of Thermal Advective Reactive Flow in Hydrothermal Mineral Systems Using an Implicit Time-stepped Finite Element Method.

    NASA Astrophysics Data System (ADS)

    Hornby, P. G.

    2005-12-01

    Understanding chemical and thermal processes taking place in hydrothermal mineral deposition systems could well be a key to unlocking new mineral reserves through improved targeting of exploration efforts. To aid in this understanding it is very helpful to be able to model such processes with sufficient fidelity to test process hypotheses. To gain understanding, it is often sufficient to obtain semi-quantitative results that model the broad aspects of the complex set of thermal and chemical effects taking place in hydrothermal systems. For example, it is often sufficient to gain an understanding of where thermal, geometric and chemical factors converge to precipitate gold (say) without being perfectly precise about how much gold is precipitated. The traditional approach is to use incompressible Darcy flow together with the Boussinesq approximation. From the flow field, the heat equation is used to advect-conduct the heat. The flow field is also used to transport solutes by solving an advection-dispersion-diffusion equation. The reactions in the fluid and between fluid and rock act as source terms for these advection-dispersion equations. Many existing modelling systems that are used for simulating such systems use explicit time marching schemes and finite differences. The disadvantage of this approach is the need to work on rectilinear grids and the number of time steps required by the Courant condition in the solute transport step. The second factor can be particularly significant if the chemical system is complex, requiring (at a minimum) an equilibrium calculation at each grid point at each time step. In the approach we describe, we use finite elements rather than finite differences, and the pressure, heat and advection-dispersion equations are solved implicitly. The general idea is to put unconditional numerical stability of the time integration first, and let accuracy assume a secondary role. It is in this sense that the method is semi-quantiative. However

  1. Inertia dominated thin-film flows over microdecorated surfaces

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Courbin, Laurent; Crest, Jérome; Stone, Howard A.

    2010-07-01

    We analyze the inertia dominated flow of thin liquid films on microtextured substrates, which here are assemblies of micron-size posts arranged on regular lattices. We focus on situations for which the thin-film thickness and the roughness characteristic length scale are of the same order of magnitude, i.e., a few hundred microns. We assume that the liquid flows isotropically through the roughness at a flow rate that depends on the geometrical features of the porous layer; above the texture, the flow is characterized by a larger Reynolds number and modeled using a boundary layer approach. The influence of the microtexture on the thin-film flow above the microposts is captured by a reduction of the flow rate due to the leakage flow through the texture and a slip boundary condition, which depends on the flow direction as well as on the lattice properties. In this way, the velocity field in the free surface flow adopts the symmetry of the microtexture underneath. The results of this model are in good agreement with experimental observations obtained for thin-film flows formed upon jet impact on microtextures. The characteristics of the polygonal hydraulic jumps that we obtain depend on both the jet parameters and the topographical features of the surface roughness. We use the measurements and the numerical predictions to estimate the flow rate through the shallow porous layer and the effective slip length for this inertia dominated flow regime. We also discuss the limitations of the model.

  2. HYDROMAGNETICS OF ADVECTIVE ACCRETION FLOWS AROUND BLACK HOLES: REMOVAL OF ANGULAR MOMENTUM BY LARGE-SCALE MAGNETIC STRESSES

    SciTech Connect

    Mukhopadhyay, Banibrata; Chatterjee, Koushik E-mail: kchatterjee009@gmail.com

    2015-07-01

    We show that the removal of angular momentum is possible in the presence of large-scale magnetic stresses in geometrically thick, advective, sub-Keplerian accretion flows around black holes in steady state, in the complete absence of α-viscosity. The efficiency of such an angular momentum transfer could be equivalent to that of α-viscosity with α = 0.01–0.08. Nevertheless, the required field is well below its equipartition value, leading to a magnetically stable disk flow. This is essentially important in order to describe the hard spectral state of the sources when the flow is non/sub-Keplerian. We show in our simpler 1.5 dimensional, vertically averaged disk model that the larger the vertical-gradient of the azimuthal component of the magnetic field is, the stronger the rate of angular momentum transfer becomes, which in turn may lead to a faster rate of outflowing matter. Finding efficient angular momentum transfer in black hole disks via magnetic stresses alone, is very interesting when the generic origin of α-viscosity is still being explored.

  3. Blood flow velocity estimation from x-ray densitometric data: an efficient numerical scheme for the inverse advection problem

    NASA Astrophysics Data System (ADS)

    Sarry, L.; Peng, Y. J.; Boire, J. Y.

    2002-01-01

    In previously published studies, blood flow velocity from x-ray biplane angiography was measured by solving an inverse advection problem, relating velocity to bolus densities summed across sections. Both spatial and temporal velocity variations were recovered through a computationally expensive parameter estimation algorithm. Here we prove the existence and uniqueness of the solution on three sub-domains of the plane defined by the axial position along the vessel and the time of the angiographic sequence. A fast direct scheme was designed in conjunction with a regularization step stemming from the volume flow conservation law applied on consecutive segments. Its accuracy and immunity towards noise were tested on both simulated and real densitometric data. The relative error between the estimated and expected velocities was less than 5% for more than 90% of the points of the spatiotemporal plane with simulated densities normalized to 1.0 and a Gaussian additive noise of standard deviation 0.01. For densities reconstructed from a biplane angiographic sequence, increase in velocity is used as a functional index for the stenosis ratio and to characterize the sharing of flow at bifurcation.

  4. Characterization of GX 339-4 outburst of 2010-11: analysis by XSPEC using two component advective flow model

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Mondal, Santanu; Chakrabarti, Sandip K.

    2015-02-01

    We study spectral properties of GX 339-4 during its 2010-11 outburst with two component advective flow (TCAF) model after its inclusion in XSPEC as a table model. We compare results fitted by TCAF model with combined disc blackbody and power-law model. For a spectral fit, we use 2.5-25 keV spectral data of the Proportional Counter Array instrument onboard RXTE satellite. From our fit, accretion flow parameters such as Keplerian (disc) rate, sub-Keplerian (halo) rate, location and strength of shock are extracted. We quantify how the disc and the halo rates vary during the entire outburst. We study how the halo to disc accretion rate ratio (ARR), quasi-periodic oscillations (QPOs), shock locations and its strength vary when the system passes through hard, hard-intermediate, soft-intermediate and soft states. We find pieces of evidence of monotonically increasing and decreasing nature of QPO frequencies depending on the variation of ARR during rising and declining phases. Interestingly, on days of transition from hard state to hard-intermediate spectral state (during the rising phase) or vice-versa (during decline phase), ARR is observed to be locally maximum. Non-constancy of ARR while obtaining reasonable fits points to the presence of two independent components in the flow.

  5. Sweet and Sour: Attenuating Sulfidogenesis in an Advective Flow Column System with Perchlorate or Nitrate Treatment

    NASA Astrophysics Data System (ADS)

    Engelbrektson, A. L.; Hubbard, C. G.; Piceno, Y.; Boussina, A.; Jin, Y.; Dubinsky, E. A.; Tom, L.; Hu, P.; Conrad, M. E.; Anderson, G. L.; Coates, J. D.

    2013-12-01

    Hydrogen sulfide (H2S) biogenesis in oil reservoirs is a primary cause of souring and of associated costs in reservoir and pipeline maintenance. In addition to the corrosive effects of the H2S itself, abiotic and biological oxidation also generates sulfuric acid, further degrading metallic surfaces. Amending these environments with perchlorate (ClO4-) resolves these problems by inhibition of biological sulfate reduction and re-oxidation of H2S to elemental sulfur by dissimilatory (per)chlorate reducing bacteria (DPRB). Triplicate flow through columns packed with San Francisco bay sediment were flushed with bay water ([SO4=] = 25-30 mM) containing yeast extract with 50 mM inhibitor concentrations (NO3-or ClO4-) decreasing to 25 mM and finally 12.5 mM. Influent and effluent geochemistry was monitored and DNA was prepared from the sediment bed for microbial community analysis. Souring was reversed by both treatments (at 50 mM) compared to the control columns that had no ion addition. Nitrate began to re-sour when treatment concentration was decreased to 25 mM but treatment had to be decreased to 12.5 mM before the perchlorate treated columns began to re-sour. However, the treated columns re-soured to a lesser extent than the control columns. Phylochip microbial community analyses indicated microbial community shifts and phylogenetic clustering by treatment. Isotopic analysis of sulfate showed trends that broadly agreed with the geochemistry but also suggested further sulfur cycling was occurring. This study indicates that perchlorate shows great promise as an inhibitor of sulfidogenesis in natural communities and provides insight into which organisms are involved in this process.

  6. Derivation of a Multiparameter Gamma Model for Analyzing the Residence-Time Distribution Function for Nonideal Flow Systems as an Alternative to the Advection-Dispersion Equation

    DOE PAGES

    Embry, Irucka; Roland, Victor; Agbaje, Oluropo; Watson, Valetta; Martin, Marquan; Painter, Roger; Byl, Tom; Sharpe, Lonnie

    2013-01-01

    A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less

  7. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  8. Dominated splitting and zero volume for incompressible three flows

    NASA Astrophysics Data System (ADS)

    Araujo, Vitor; Bessa, Mário

    2008-07-01

    We prove that there exists an open and dense subset of the incompressible 3-flows of class C2 such that, if a flow in this set has a positive volume regular invariant subset with dominated splitting for the linear Poincaré flow, then it must be an Anosov flow. With this result we are able to extend the dichotomies of Bochi-Mañé (see Bessa 2007 Ergod. Theory Dyn. Syst. 27 1445-72, Bochi 2002 Ergod. Theory Dyn. Syst. 22 1667-96, Mañé 1996 Int. Conf. on Dynamical Systems (Montevideo, Uruguay, 1995) (Harlow: Longman) pp 110-9) and of Newhouse (see Newhouse 1977 Am. J. Math. 99 1061-87, Bessa and Duarte 2007 Dyn. Syst. Int. J. submitted Preprint 0709.0700) for flows with singularities. That is, we obtain for a residual subset of the C1 incompressible flows on 3-manifolds that: (i) either all Lyapunov exponents are zero or the flow is Anosov and (ii) either the flow is Anosov or else the elliptic periodic points are dense in the manifold.

  9. Steady-state and transient models of groundwater flow and advective transport, Eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, Idaho

    USGS Publications Warehouse

    Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.

    2010-01-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters

  10. Vortex-dominated flow with viscous core structure

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Krause, E.; Ting, L.

    1985-01-01

    Recent theoretical studies of vortex-dominated flows are reviewed with special emphasis on those for which the viscous core structures play an important role. The problems to be described are: The interaction and merging of two-dimensional vortices and of curved vortex filaments, the roll-up and decay of trailing far wakes, and the initiation of vortex breakdown. The analysis utilizes finite-difference solutions of the Navier-Stokes equations complemented by asymptotic expansion techniques.

  11. Scaling properties in the production range of shear dominated flows.

    PubMed

    Casciola, C M; Gualtieri, P; Jacob, B; Piva, R

    2005-07-01

    In large Reynolds number turbulence, isotropy is recovered as the scale is reduced and homogeneous-isotropic scalings are eventually observed. This picture is violated in many cases, e.g., wall bounded flows, where, due to the shear, different scaling laws emerge. This effect has been ascribed to the contamination of the inertial range by the larger anisotropic scales. The issue is addressed here by analyzing both numerical and experimental data for a homogeneous shear flow. In fact, under strong shear, the alteration of the scaling exponents is not induced by the contamination from the anisotropic sectors. Actually, the exponents are universal properties of the isotropic component of the structure functions of shear dominated flows. The implications are discussed in the context of turbulence near solid walls, where improved closure models would be advisable.

  12. The Magnetohydrodynamics of Convection-dominated Accretion Flows

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Quataert, Eliot; Igumenshchev, Igor V.; Abramowicz, Marek A.

    2002-09-01

    Radiatively inefficient accretion flows onto black holes are unstable due to both an outwardly decreasing entropy (``convection'') and an outwardly decreasing rotation rate (the ``magnetorotational instability'' [MRI]). Using a linear MHD stability analysis, we show that long-wavelength modes with λ/H>>β-1/2 are primarily destabilized by the entropy gradient and that such ``convective'' modes transport angular momentum inward (λ is the wavelength of the mode, H is the scale height of the disk, and β is the ratio of the gas pressure to the magnetic pressure). Moreover, the stability criteria for the convective modes are the standard Høiland criteria of hydrodynamics. By contrast, shorter wavelength modes with λ/H~β-1/2 are primarily destabilized by magnetic tension and differential rotation. These ``MRI'' modes transport angular momentum outward. The convection-dominated accretion flow (CDAF) model, which has been proposed for radiatively inefficient accretion onto a black hole, posits that inward angular momentum transport and outward energy transport by long-wavelength convective fluctuations are crucial for determining the structure of the accretion flow. Our analysis suggests that the CDAF model is applicable to an MHD accretion flow provided that the magnetic field saturates at a value sufficiently below equipartition (β>>1), so that long-wavelength convective fluctuations with λ/H>>β-1/2 can fit inside the accretion disk. Numerical MHD simulations are required to determine whether such a subequipartition field is in fact obtained.

  13. Fast multigrid solution of the advection problem with closed characteristics

    SciTech Connect

    Yavneh, I.; Venner, C.H.; Brandt, A.

    1996-12-31

    The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

  14. Gravity-flow processes and deposits in a tidally dominated coastal environment

    NASA Astrophysics Data System (ADS)

    Eidam, E.; Ogston, A. S.; Nittrouer, C. A.

    2014-12-01

    Small mountainous rivers (SMRs) are characterized by episodic sediment delivery to marine environments, and have been recognized as a source of sediment gravity flows along storm-dominated coasts. These important modes of cross-shelf sediment transport are largely dependent on suspended-sediment concentration (SSC), bottom slope, and energy supplied by waves and currents. The mechanics and deposits of gravity flows are relatively unstudied on tidally dominated coasts receiving episodic SMR sediment discharge. Data collected during and after a March 2014 sediment delivery event from the small mountainous Elwha River (WA, USA) demonstrates the challenges of forming and preserving gravity-flow deposits in a persistently energetic tidal system. The river discharges to a narrow strait; near the river mouth, maximum boundary-layer tidal currents (50 cm above bed) reach 80-100 cm/s during spring tides and 30-60 cm/s during neap tides. Since 2011, the deconstruction of two dams has generated fluvial SSCs from 3 g/L to >9 g/L (max. monitoring value) during rainstorms and freshets. Instruments stationed near the river mouth since 2011 have shown that tidal currents advect this fine-grained sediment for days to weeks after delivery, and ultimately disperse it away from the river mouth. In March 2014, fluvial SSC reached ≥9 g/L during the largest river discharge since dam removal began. One day later, boundary-layer SSCs reached 2 g/L and 1 g/L at 23 and 102 cmab, respectively, and 5-8 days later, the bed under the instrument system aggraded by ~30 cm. Currents subsequently eroded the deposit, and within 3 weeks the bed elevation returned to its pre-event level. This is consistent with evidence of little to no grain-size change of the sand/gravel seabed in 10-60 m water depth up to 5 km from the river mouth since the dam removal began. To date, the only measurable accumulation of new sediment is in an embayment adjacent to the river mouth where currents weaken. These

  15. RELATIVISTIC GLOBAL SOLUTIONS OF NEUTRINO-DOMINATED ACCRETION FLOWS

    SciTech Connect

    Xue Li; Liu Tong; Gu Weimin; Lu Jufu

    2013-08-15

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes are plausible candidates for the central engines of gamma-ray bursts (GRBs). We investigate one-dimensional global solutions of NDAFs, taking into account general relativity in the Kerr metric, neutrino physics, and nucleosynthesis more precisely than previous works. We calculate 16 solutions with different characterized accretion rates and black hole spins to exhibit the radial distributions of various physical properties in NDAFs. We confirm that the electron degeneracy has important effects in NDAFs and we find that the electron fraction is about 0.46 in the outer region for all 16 solutions. From the perspective of the mass fraction, free nucleons, {sup 4}He, and {sup 5}6Fe dominate in the inner, middle, and outer regions, respectively. The influence of neutrino trapping on the annihilation is of importance for the superhigh accretion ( M-dot =10 M{sub sun} s{sup -1}) and most of the 16 solutions have an adequate annihilation luminosity for GRBs.

  16. Efficient mass transport by optical advection

    PubMed Central

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-01-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms. PMID:26440069

  17. Flow structure in canopy models dominated by progressive waves

    NASA Astrophysics Data System (ADS)

    Pujol, Dolors; Serra, Teresa; Colomer, Jordi; Casamitjana, Xavier

    2013-04-01

    SummaryLaboratory experiments were carried out to study the flow structure both inside and above different canopy models which were dominated by progressive waves. A set of experimental conditions were considered in a laboratory flume: three vegetation models (submerged rigid, submerged flexible and emergent rigid), three plant densities (128, 640 and 1280 stems m-2) and three wave frequencies (f = 0.8, 1 and 1.4 Hz). The progressive waves followed the second-order Stokes theory in the intermediate depth range. The observations revealed that submerged and emergent rigid vegetation models modified the wave-induced velocities i.e., both mean current and wave velocity. The submerged rigid vegetation model for plant densities higher than 640 plants m-2 and wave frequency higher than 1 Hz acted akin to a false floor, confining the mean current to above the plant bed. A penetration depth around 2 cm below the top of submerged rigid vegetation was found. For the other runs, the vertical profile of mean current did not present changes with respect to runs without plants. The emergent rigid vegetation model reversed the direction of the induced mean current, with the highest velocity corresponding to the highest plant density. In contrast, the submerged flexible vegetation model had a weak effect on the mean current, with the vertical velocity profile similar to that found in experiments without vegetation. The wave velocities inside the vegetation for the densest submerged rigid vegetation were found to be reduced by 20%, when compared to the wave velocities without vegetation, while in emergent rigid vegetation this reduction was of 45%.

  18. Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada

    SciTech Connect

    Hill, M.C.; Ely, D.M.; Tiedeman, C.R.; O'Brien, G.M.; D'Agnese, F.A.; Faunt, C.C.

    2001-08-01

    When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system (DVRFS). The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 underground Test Area (UGTA) sites. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work.

  19. Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity

    NASA Astrophysics Data System (ADS)

    Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.

    2016-09-01

    A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.

  20. Experiments in Advective and Turbulent Hyporheic Pumping

    NASA Astrophysics Data System (ADS)

    Mccluskey, A. H.; Grant, S.; Stewardson, M. J.

    2014-12-01

    Hyporheic exchange (HE) is the mixing of stream and subsurface waters beneath the sediment-water interface (SWI). At the patch and reach scales, HE is dominated by periodic upwelling and downwelling zones, induced by pressure variation and processes within the turbulent boundary layer (TBL). This can be caused by (1) the geometry of the stream, imposing a stationary wave at the SWI or (2) by a travelling wave associated with the propagation of turbulent pressure waves generated from the TBL. Case (1) has generally been the favoured model of hyporheic exchange and has been referred to as hyporheic 'pumping' by Elliott and Brooks, and subsequently others. Case (2) can be termed turbulent pumping, and has been proposed as a mechanism to model the combined effects of turbulent dispersion alongside steady-state advection. While this has been represented numerically and analytically, conjecture remains about the physical representation of these combined processes. We present initial results from experiments undertaken to classify the spatial and temporal characteristics of pressure variation at and beneath the SWI, with a periodic sinusoidal geometry of wavelength 0.28m and height 0.02m. As an initial characterisation, the advective flow profile has been examined using time-lapse photography of dyes released across the span of a periodic downwelling zone. These tracer tests confirmed delineation of isolated upwelling and downwelling cells as noted by previous authors in modelling studies. However, their distribution deviates from the typical pumping pattern with increased discharge and stream gradient. Empirical orthogonal function (EOF) analysis of high frequency (250Hz) pressure measurements, sampled at an array along the centroid of the flume underneath one wavelength gave further insight into the spatial distribution of turbulent signatures arising from roughness-generated turbulence. A turbulent frequency of 6-10Hz dominates, however the penetration depth appears to

  1. Episodic Jet Power Extracted from a Spinning Black Hole Surrounded by a Neutrino-dominated Accretion Flow in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei

    2014-07-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  2. Episodic jet power extracted from a spinning black hole surrounded by a neutrino-dominated accretion flow in gamma-ray bursts

    SciTech Connect

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei E-mail: lew@gxu.edu.cn

    2014-07-10

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number P{sub m}=η/ν∼1. The maximal BZ jet power can be ∼10{sup 53}-10{sup 54} erg s{sup –1} for an extreme Kerr black hole, if an external magnetic field with 10{sup 14} Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  3. Film Flow Dominated Simultaneous Flow of Two Viscous Incompressible Fluids Through a Porous Medium

    NASA Astrophysics Data System (ADS)

    Aursjø, Olav; Erpelding, Marion; Tallakstad, Ken; Flekkøy, Eirik; Hansen, Alex; Måløy, Knut Jørgen

    2014-11-01

    We present an experimental study of two-phase flow in a quasi-two-dimensional porous medium. The two phases, a water-glycerol solution and a commercial food grade rapeseed/canola oil, having an oil to water-glycerol viscosity ratio of 1.3, are injected simultaneously into a Hele-Shaw cell with a mono-layer of randomly distributed glass beads. The two liquids are injected into the model from alternating point inlets. Initially, the porous model is filled with the water-glycerol solution. We observe that after an initial transient state, an overall static cluster configuration is obtained. While the oil is found to create a connected system spanning cluster, a large part of the water-glycerol clusters left behind the initial invasion front is observed to remain immobile throughout the rest of the experiment. This could suggest that the water-glycerol flow-dynamics is largely dominated by film flow. The flow pathways are thus given through the dynamics of the initial invasion. This behavior is quite different from that observed in systems with large viscosity differences between the two fluids, and where compressibility plays an important part of the process.

  4. Effects of seagrass structure on a wave dominated flow

    NASA Astrophysics Data System (ADS)

    Pujol, D.; Serra, T.; Colomer, J.; Casamitjana, X.

    2012-04-01

    Shallow coastal areas are characterized by the presence of seagrass which occupy ~ 10% of the zone. In natural systems flows are a combination of steady, oscillatory and turbulent flows. Turbulence significantly affects the bottom boundary, therefore the interaction between turbulence and plant canopies is particularly important. In an effort to understand the dynamics of these complex flows we isolated each physical process in a laboratory study. We studied the progressive waves generated by a wavemaker situated at the beginning of the tank impinging on a simulated seagrass meadow. Our experiment is aimed at studying the relationship between flow structure and canopies in terms of a wide variety of parameters. We quantified the vertical distribution of mean current (uc), oscillatory velocity (uw), turbulent kinetic energy (TKE) and shear stress () above and within different types of vegetation, measured by an Acoustic Doppler Velocimeter (Sontek Instruments). Different experimental conditions were considered: two vegetation models (rigid and flexible), vegetation heights (14 and 30 cm, corresponding to submerged and emergent vegetation), plants densities (SPF = 1, 5, 10%) and three oscillatory frequencies (f = 0.8, 1 and 1.4Hz). Our observations suggest that the presence of submerged vegetation alter the flow structure within and above the canopy when the ratio of orbital excursion above the canopy to stem center-center spacing is higher than 1, corresponding to SPF = 5 and 10%. Above the vegetation, the mean current is always higher than without vegetation, whereas within the canopy the mean current is damped by submerged vegetation. The TKE decreases with depth and above the canopy it is higher with vegetation until 2 cm below the top of the canopy, compared to what it is found without vegetation. The presence of vegetation produces a peak of shear stress at the top of the canopy. High levels of shear stress together with fast mean current near the top of the

  5. Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada

    USGS Publications Warehouse

    Hill, Mary C.; Ely, D. Matthew; Tiedeman, Claire R.; O'Brien, Grady M.; D'Agnese, Frank A.; Faunt, Claudia C.

    2001-01-01

    When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system. The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 Underground Test Areas. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work. The methods presented in this report are used in three ways. (1) The ratings for individual observations are obtained by manipulating the measures of prediction uncertainty, and do not involve recalibrating the model. In this analysis, observation locations are each omitted individually and the resulting increase in uncertainty in the predictions is calculated. The uncertainty is quantified as standard deviations on the simulated advective transport. The increase in uncertainty is quantified as the percent increase in the standard deviations caused by omitting the one observation location from the calculation of standard deviations. In general, observation locations associated with larger increases are rated as more important. (2) Ratings for largely geographically based groups are obtained using a straightforward extension of the method used for

  6. Chaotic advection of immiscible fluids

    NASA Astrophysics Data System (ADS)

    Vollmayr-Lee, Benjamin; Beller, Daniel; Yasuda, Sohei

    2012-02-01

    We consider a system of two immiscible fluids advected by a chaotic flow field. A nonequilibrium steady state arises from the competition between the coarsening of the immiscible fluids and the domain bursting caused by the chaotic flow. It has been established that the average domain size in this steady state scales as a inverse power of the Lyapunov exponent. We examine the issue of local structure and look for correlations between the local domain size and the finite-time Lyapunov exponent (FTLE) field. For a variety of chaotic flows, we consistently find the domains to be smallest in regions where the FTLE field is maximal. This raises the possibility of making universal predictions of steady-state characteristics based on Lyapunov analysis of the flow field.

  7. Surfzone alongshore advective accelerations: observations and modeling

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.

  8. HEMP advection model

    SciTech Connect

    Sharp, R.W. Jr.; Barton, R.T.

    1981-01-21

    A continuous rezoning procedure has been implemented in the computational cycle of a version of the HEMP two-dimensional, Lagrange, fluid dynamics code. The rezoning problem is divided into two steps. The first step requires the solving of ordinary Lagrange equations of motion; the second step consists of adding equipotential grid relaxation along with an advective remapping scheme.

  9. Simulation of vortex-dominated aerodynamic flows by a point-vortex method

    SciTech Connect

    Jia, Z.

    1988-01-01

    A numerical study was made to simulate vortex-dominated aerodynamic flows by the point-vortex method. Attention was divided into three different aspects: a nascent vortex-shedding algorithm, numerical demonstration of the point-vortex method, and the calculation of some example of aerodynamic interesting flows, which include two major categories: unsteady flow about a flat plate at a fixed angle of attack with and without a leading edge flap, and the transient, vortical cross flow produced by a slender delta wing. Evolution of the vortex traces, streamlines, surface pressure, and forces are studied. Flow features based on data obtained by different point-vortex shedding rates and different integration time steps and schemes are found to be consistent with each other on length and time scales comparable to as well as considerably smaller than those of the global flow.

  10. The consequences of dominance and gene flow for local adaptation and differentiation at two linked loci

    PubMed Central

    Akerman, Ada; Bürger, Reinhard

    2014-01-01

    For a subdivided population the consequences of dominance and gene flow for the maintenance of multilocus polymorphism, local adaptation, and differentiation are investigated. The dispersing population inhabits two demes in which selection acts in opposite direction. Fitness is determined additively by two linked diallelic loci with arbitrary intermediate dominance (no over- or underdominance). For weak as well as strong migration, the equilibrium structure is derived. As a special case, a continuous-time continent–island model (CI model) is analyzed, with one-way migration from the continent to the island. For this CI model, the equilibrium and stability configuration is obtained explicitly for weak migration, for strong migration, for independent loci, and for complete linkage. For independent loci, the possible bifurcation patterns are derived as functions of the migration rate. These patterns depend strongly on the degree of dominance. The effects of dominance, linkage, and migration on the amount of linkage disequilibrium (LD) and the degree of local adaptation are explored. Explicit formulas are obtained for D   (=x1x4−x2x3) and r2 (the squared correlation in allelic state). They demonstrate that dominant island alleles increase D and decrease r2. Local adaptation is elevated by dominance of the locally adaptive alleles. The effective migration rate at a linked neutral locus is calculated. If advantageous alleles are dominant, it is decreased only slightly below the actual migration rate. For a quantitative trait that is determined by two additive loci, the influence of dominance on measures of differentiation is studied. Explicit expressions for QST and two types of FST at equilibrium are deduced and their relation is discussed. PMID:24793653

  11. Advection in geologic media

    NASA Astrophysics Data System (ADS)

    Moltyaner, G. L.

    1993-10-01

    In situ sensing technology, used in a series of natural-gradient tracer tests at the Chalk River Laboratories in Ontario, leads to the introduction of a conceptually new approach to the study of groundwater motion in porous media. As opposed to the conventional approach, based on the consideration of a fictitious fluid continuum with fluid properties distributed over both voids and solids, in the new approach the actual groundwater motion in the void space of a porous medium is considered and described at the local scale by the statistical characterization of the propagation of gamma-radiation energy associated with the moving water as a tracer. The essential feature of the new approach is that the mean free path of a gamma-energy photon instead of the porosity is used as a scaling factor in transferring information associated with pore-scale fluid motion to the local scale. This scaling factor is employed for reintroducing the familiar particle model of fluid motion but at the local scale. It is shown that when the local-scale dispersion is neglected, the evolution of local-scale fluid particles making up the tracer plume can be described by the advection equation; its equation of characteristics describes trajectories of local-scale particles. A simple analytical solution to the advection equation is then used to produce three-dimensional images of the spatial distribution of local-scale particles observed in the Twin Lake test. It is also shown that the spatial averaging procedure with regard to the weighting function for a spherical averaging volume of one mean free path radius may be used to introduce the three-dimensional field of local-scale concentration. The averaging procedure is then used to illustrate that the concept of the three-dimensional field of plume-scale concentration does not make physical sense and only the one-dimensional plume-scale concentration field may be introduced in shallow aquifers.

  12. Three-dimensional structure of dominant instabilities in turbulent flow over smooth and rough boundaries

    NASA Astrophysics Data System (ADS)

    Grass, A. J.; Stuart, R. J.; Mansour-Tehrani, M.

    1991-01-01

    The current status of knowledge regarding coherent vortical structures in turbulent boundary layers and their role in turbulence generation are reviewed. The investigations reported in the study concentrate attention on rough-wall flows prevailing in the geophysical environment and include an experiment determining the three-dimensional form of the turbulence structures linked to the ejection and inrush events observed over rough walls and an experiment concerned with measuring the actual spanwise scale of the near-wall structures for boundary conditions ranging from hydrodynamically smooth to fully rough. It is demonstrated that horseshoe vortical structures are present and play an important role in rough-wall flows and they increase in scale with increasing wall distance, while a dominant spanwise wavelength occurs in the instantaneous cross-flow distribution of streamwise velocity close to the rough wall.

  13. On the tensorial nature of advective porosity

    NASA Astrophysics Data System (ADS)

    Neuman, Shlomo P.

    2005-02-01

    Field tracer tests indicate that advective porosity, the quantity relating advective velocity to Darcy flux, may exhibit directional dependence. Hydraulic anisotropy explains some but not all of the reported directional results. The present paper shows mathematically that directional variations in advective porosity may arise simply from incomplete mixing of an inert tracer between directional flow channels within a sampling (or support) volume ω of soil or rock that may be hydraulically isotropic or anisotropic. In the traditional fully homogenized case, our theory yields trivially a scalar advective porosity equal to the interconnected porosity ϕ, thus explaining neither the observed directional effects nor the widely reported experimental finding that advective porosity is generally smaller than ϕ. We consider incomplete mixing under conditions in which the characteristic time tD of longitudinal diffusion along channels across ω is much shorter than the characteristic time tH required for homogenization through transverse diffusion between channels. This may happen where flow takes place preferentially through relatively conductive channels and/or fractures of variable orientation separated by material that forms a partial barrier to diffusive transport. Our solution is valid for arbitrary channel Peclet numbers on a correspondingly wide range of time scales tD ⩽ t ≪ tH. It shows that the tracer center of mass is advected at a macroscopic velocity which is generally not collinear with the macroscopic Darcy flux and exceeds it in magnitude. These two vectors are related through a second-rank symmetric advective dispersivity tensor Φ. If the permeability k of ω is a symmetric positive-definite tensor, so is Φ. However, the principal directions and values of these two tensors are generally not the same; whereas those of k are a fixed property of the medium and the length-scale of ω, those of Φ depend additionally on the direction and magnitude of the

  14. LAYER DEPENDENT ADVECTION IN CMAQ

    EPA Science Inventory

    The advection methods used in CMAQ require that the Courant-Friedrichs-Lewy (CFL) condition be satisfied for numerical stability and accuracy. In CMAQ prior to version 4.3, the ADVSTEP algorithm established CFL-safe synchronization and advection timesteps that were uniform throu...

  15. Numerical modelling of convection dominated transport coupled with density driven flow in porous media

    NASA Astrophysics Data System (ADS)

    Frolkovič, Peter; De Schepper, Hennie

    In this paper, we present a numerical model for a problem of coupled flow and transport in porous media. We use a barycentre based finite volume method (FVM), which, in the case of convection dominated transport, is combined with suitable upwind methods, in order to avoid numerical instabilities. We present some relevant and new numerical results for the Elder problem, which offer a better understanding of mutually non-compatible results in other papers, by showing the dependence of the recirculating patterns on the level of grid refinement and on the numerical scheme, as well as on (numerical) perturbations.

  16. Advection around ventilated U-shaped burrows: A model study

    NASA Astrophysics Data System (ADS)

    Brand, Andreas; Lewandowski, JöRg; Hamann, Enrico; Nützmann, Gunnar

    2013-05-01

    Advective transport in the porous matrix of sediments surrounding burrows formed by fauna such as Chironomus plumosus has been generally neglected. A positron emission tomography study recently revealed that the pumping activity of the midge larvae can indeed induce fluid flow in the sediment. We present a numerical model study which explores the conditions at which advective transport in the sediment becomes relevant. A 0.15 m deep U-shaped burrow with a diameter of 0.002 m within the sediment was represented in a 3-D domain. Fluid flow in the burrow was calculated using the Navier-Stokes equation for incompressible laminar flow in the burrow, and flow in the sediment was described by Darcy's law. Nonreactive and reactive transport scenarios were simulated considering diffusion and advection. The pumping activity of the model larva results in considerable advective flow in the sediment at reasonable high permeabilities with flow velocities of up to 7.0 × 10-6 m s-1 close to the larva for a permeability of 3 × 10-12 m2. At permeabilities below 7 × 10-13 m2 advection is negligible compared to diffusion. Reactive transport simulations using first-order kinetics for oxygen revealed that advective flux into the sediment downstream of the pumping larva enhances sedimentary uptake, while the advective flux into the burrow upstream of the larvae inhibits diffusive sedimentary uptake. Despite the fact that both effects cancel each other with respect to total solute uptake, the advection-induced asymmetry in concentration distribution can lead to a heterogeneous solute and redox distribution in the sediment relevant to complex reaction networks.

  17. Effect of advanced and delayed rotation on the dominant flow pattern and its temporal evolution

    NASA Astrophysics Data System (ADS)

    Uksul, Esra; Krishna, Swathi; Mulleners, Karen

    2015-11-01

    During a flapping cycle of an insect, complex time dependent flows are produced as the wing reciprocates, producing a maximum lift at the stroke reversals. By flipping the wing rapidly at the end of each stroke, the insect modulates the flow around the wing and hence the aerodynamic forces necessary to hover. The duration and starting point of the flip play an important role in determining the amount of lift produced. To understand and tailor the effect of wing kinematics on the aerodynamic performance we focussed on the vortex dynamics of the flow field. Phase-averaged data from particle image velocimetry was used to evaluate the flow features inherent to changes in rotation during a stroke of a flat plate, which is modelled based on hoverfly characteristics. The period of rotation is one-third of the total time period. A +10% phase shift is used for delayed rotation, a -10% phase shift for advanced rotation. Vortex detection methods like the λ2 and Γ2 criteria are used to determine the effect of a delay or early rotation on the trajectories, size, shape and location of the prominent vortical structures. Proper orthogonal decomposition is used to study the influence of the phase-shifts on the dominant mode structure and the related time-scales.

  18. Influence of numerical dissipation in computing supersonic vortex-dominated flows

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Chuang, A.

    1986-01-01

    Steady supersonic vortex-dominated flows are solved using the unsteady Euler equations for conical and three-dimensional flows around sharp- and round-edged delta wings. The computational method is a finite-volume scheme which uses a four-stage Runge-Kutta time stepping with explicit second- and fourth-order dissipation terms. The grid is generated by a modified Joukowski transformation. The steady flow solution is obtained through time-stepping with initial conditions corresponding to the freestream conditions, and the bow shock is captured as a part of the solution. The scheme is applied to flat-plate and elliptic-section wings with a leading edge sweep of 70 deg at an angle of attack of 10 deg and a freestream Mach number of 2.0. Three grid sizes of 29 x 39, 65 x 65 and 100 x 100 have been used. The results for sharp-edged wings show that they are consistent with all grid sizes and variation of the artificial viscosity coefficients. The results for round-edged wings show that separated and attached flow solutions can be obtained by varying the artificial viscosity coefficients. They also show that the solutions are independent of the way time stepping is done. Local time-stepping and global minimum time-steeping produce same solutions.

  19. Longitudinal spread of bicomponent contaminant in wetland flow dominated by bank-wall effect

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, Y. J.; Chen, B.; Ji, P.; Wu, Y. H.; Feng, L.

    2014-02-01

    Presented in this paper is a theoretical analysis for longitudinal spread of bicomponent contaminant in a fully developed steady wetland flow dominated by bank-wall effect. Based on the general form of concentration transport equations adopted for wetland flows, an ecological risk assessment model is given for the decay of concentration under the combined action of reversible and irreversible reactions, as well as hydraulic dispersion. Through a combination of the method for solving linear parabolic system and an asymptotic analysis for hydraulic dispersion in the wetland flow, an analytical solution for long time evolution of bicomponent contaminant concentration is rigorously derived and illustrated. The solution is shown to be an extension of known solutions for single component contaminant transport due to an irreversible reaction and hydraulic dispersion, as well as biocomponent contaminant transport due to reversible reactions and hydraulic dispersion. It is found that the concentration ratio of binary components can approach an equilibrium status, with necessary time to obtain the status dependent on transfer and degradation rates of each component. The length and duration of influenced region with concentration of contaminant cloud beyond given environmental standard level are presented for a uniform instantaneous emission into the wetland flow. The result shows that the length increases with time to reach maximum and then decreases to zero, and the duration is sensitive to the variation of a dimensionless parameter to reflect the relative importance of an irreversible action and lateral mass dispersion.

  20. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering

    NASA Astrophysics Data System (ADS)

    de Haas, Tjalling; Ventra, Dario; Carbonneau, Patrice E.; Kleinhans, Maarten G.

    2014-07-01

    Arid alluvial fan aggradation is highly episodic and fans often comprise active and inactive sectors. Hence the morphology and texture of fan surfaces are partly determined by secondary processes of weathering and erosion in addition to primary processes of aggradation. This introduces considerable uncertainty in the identification of formative processes of terrestrial and Martian fans from aerial and satellite imagery. The objectives of this study are (i) to develop a model to describe the sedimentological and morphological evolution of inactive fan surfaces in arid settings, and (ii) to assess the relative importance of primary processes of aggradation and secondary processes of weathering and reworking for surface morphology and sedimentology and for the stratigraphic record. We studied an alluvial fan characterized by a recently active sector and a long-abandoned, inactive sector along the coast of the hyperarid Atacama Desert. Here, rates of primary geomorphic activity are exceptionally low because of extreme aridity, while weathering rates are relatively high because of the effects of coastal fogs. Long-term processes of fan aggradation and reworking were determined through sedimentological facies analysis of stratigraphic sections. Ground surveys for textural and morphological patterns at the fan surface were integrated with remote-sensing by an Unmanned Airborne Vehicle (UAV). Discharges and sediment-transport capacities were calculated to estimate the efficiency of secondary runoff in reshaping the inactive fan sector. Stratigraphic sections reveal that the fan was dominantly aggraded by debris flows, whereas surface morphology is dominated by debris-flow signatures in the active sector and by weathering and runoff on the inactive sector. On the latter, rapid particle breakdown prevents the formation of a coarse desert pavement. Furthermore, relatively frequent local runoff events erode proximal debris-flow channels on the inactive sector to form local lag

  1. The effect of Compton drag on the dynamics of dissipative Poynting-dominated flows: implications for the unification of radio loud AGN

    NASA Astrophysics Data System (ADS)

    Levinson, A.; Globus, N.

    2016-05-01

    The dynamics of a dissipative Poynting-dominated flow subject to a radiation drag due to Compton scattering of ambient photons by relativistic electrons accelerated in reconnecting current sheets is studied. It is found that the efficiency at which magnetic energy is converted to radiation is limited to a maximum value of ɛc = 3ldis σ0/4(σ0 + 1), where σ0 is the initial magnetization of the flow and ldis ≤ 1 the fraction of initial Poynting flux that can dissipate. The asymptotic Lorentz factor satisfies Γ∞ ≥ Γ0(1 + ldis σ0/4), where Γ0 is the initial Lorentz factor. This limit is approached in cases where the cooling time is shorter than the local dissipation time. A somewhat smaller radiative efficiency is expected if radiative losses are dominated by synchrotron and Synchrotron Self-Compton emissions. It is suggested that under certain conditions magnetic field dissipation may occur in two distinct phases: On small scales, asymmetric magnetic fields that are advected into the polar region and dragged out by the outflow dissipate to a more stable configuration. The dissipated energy is released predominantly as gamma rays. On much larger scales, the outflow encounters a flat density profile medium and re-collimates. This leads to further dissipation and wobbling of the jet head by the kink instability, as found recently in 3D magnetohydrodynamic simulations. Within the framework of a model proposed recently to explain the dichotomy of radio loud active galactic nuclei (AGN), this scenario can account for the unification of gamma-ray blazars with Fanaroff-Riley type I and Fanaroff-Riley type II radio sources.

  2. Water movement through blanket peat is dominated by a complicated pattern of near-surface flows

    NASA Astrophysics Data System (ADS)

    Turner, Ed; Baird, Andy; Billett, Mike; Chapman, Pippa; Dinsmore, Kerry; Holden, Joseph

    2015-04-01

    Blanket peatland formation and functioning depend strongly on hydrology. Omitting the potential for pipe flow, the acrotelm-catotelm model is still widely held to apply to blanket peatlands. In the model, water flow through the peat profile is dominated by near-surface flow in the acrotelm, whereas water movement below the level of (near) permanent saturation (the catotelm) is characterised by very low hydraulic conductivity (K). Whilst some work has been done on characterising Kat different depths in blanket peatlands, very little is known about near-surface K, particularly with respect to how it varies between microforms and over fine spatial scales. We undertook a detailed investigation of near-surface (0 - 12 cm) and deeper (30 and 50 cm) K at a blanket peatland site in the Flow Country in Scotland (UK). Near-surface Kof peat samples taken across a range of microforms was measured vertically (Kv) and horizontally (Kh) in the laboratory using a new 'split cylinder' method (n = 48 excluding repeat tests). K30 (n = 20) andK50 (n = 20) were estimated in situ using the piezometer or seepage-tube method. To help our interpretation of the near-surface K measurements we recorded the vegetation cover from where the peat samples were taken and characterised each peat sample in terms of its plant macrofossil assemblage and dry bulk density. We found that Kvand Khwere highly variable between microforms in the near-surface samples, ranging over two orders of magnitude (0.489 - 0.003 cm s-1). Kernel density plots show that Kvwas most commonly in the region of ~0.03 cm s-1 at 0 - 6 cm, and ~0.015 cm s-1 at 6 - 12 cm, whereas Kh was ~0.05 and ~0.001 cm s-1 respectively. These data reveal a high degree of absolute variability and anisotropy in K over small scales. The deeper K30and K50 values were typically an order of magnitude or more lower than the near-surface K, and were less variable between test locations with the exception of poorly humified Sphagnum-dominated peat

  3. Social insect colony as a biological regulatory system: modelling information flow in dominance networks

    PubMed Central

    Nandi, Anjan K.; Sumana, Annagiri; Bhattacharya, Kunal

    2014-01-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata—a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure—the ‘feed-forward loop’—a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. PMID:25320069

  4. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    PubMed

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.

  5. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    PubMed

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-01

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. PMID:25320069

  6. Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Schekochihin, A.; Parker, J.; Highcock, E.; Dellar, P.; Kanekar, A.; Dorland, W.; Hammett, G.; Loureiro, N.; Staines, C.; Stipani, L.

    2015-11-01

    A scaling theory of drift-kinetic turbulence in a weakly collisional plasma is proposed, with account both of the nonlinear advection of the perturbed particle distribution by the fluctuating ExB flow and of its parallel phase mixing, which in a linear problem causes Landau damping. It is found that little free energy leaks into high velocity moments of the distribution, rendering the turbulence in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space free-energy spectra expressed in terms of Hermite moments are steep power laws and so the energy content of the phase space does not diverge and collisional heating due to long-wavelength perturbations vanishes at inifinitesimal collisionality (both in contrast with the linear problem). The ability of the energy to stay in the low moments is facilitated by ``anti-phase-mixing,'' which in the nonlinear system is due to the stochastic version of plasma echo (the advecting flow couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the ``critical balance'' between linear and nonlinear timescales, which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does.

  7. Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2015-11-01

    The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  8. High Order Semi-Lagrangian Advection Scheme

    NASA Astrophysics Data System (ADS)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  9. Advective turbulent transport in the fluid plasma

    NASA Astrophysics Data System (ADS)

    Min, Byung-Hoon; An, Chan-Yong; Kim, Chang-Bae

    2013-10-01

    The Hasegawa-Wakatani model (HWM) has been employed in pedagogical analyses of the physics behind the behavior of the tokamak plasmas. In addition to the geometric simplicity HWM has an appealing feature of sustaining autonomous quasi-steady state, unstable modes providing the power that is being transported by the nonlinear interactions and is eventually dissipated by the collisional damping at small scales. Emergence of the zonal flow out of the turbulence is a main candidate to cause the transition from the low plasma confinement to the high mode. In the study of such LH transition with the HWM, the adiabaticity parameter has been shown to play an important role in forcing the zonal flow that results in the regulation of the drift-wave turbulence. Instead of concentrating on the physics of the feedback loop between the turbulence and the zonal flow the present study focuses on the presence of the advective transport of the energy. Numerical simulations of HWM are performed and the connections between the advective transport and the zonal flow will be presented. This work was supported by the Supercpmputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2013-C1-009).

  10. Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Harris, Robert N.; Werner, Cynthia A.; Murphy, Fred

    2012-10-01

    Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid-sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m-2) and SPTA (35 ± 3 W·m-2) to the ˜35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).

  11. Heat flow in vapor dominated areas of the Yellowstone Plateau volcanic field: implications for the thermal budget of the Yellowstone Caldera

    USGS Publications Warehouse

    Hurwitz, Shaul; Harris, Robert; Werner, Cynthia Anne; Murphy, Fred

    2012-01-01

    Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid-sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ~35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).

  12. Advection by polytropic compressible turbulence

    NASA Astrophysics Data System (ADS)

    Ladeinde, F.; O'Brien, E. E.; Cai, X.; Liu, W.

    1995-11-01

    Direct numerical simulation (DNS) is used to examine scalar correlation in low Mach number, polytropic, homogeneous, two-dimensional turbulence (Ms≤0.7) for which the initial conditions, Reynolds, and Mach numbers have been chosen to produce three types of flow suggested by theory: (a) nearly incompressible flow dominated by vorticity, (b) nearly pure acoustic turbulence dominated by compression, and (c) nearly statistical equipartition of vorticity and compressions. Turbulent flows typical of each of these cases have been generated and a passive scalar field imbedded in them. The results show that a finite-difference based computer program is capable of producing results that are in reasonable agreement with pseudospectral calculations. Scalar correlations have been calculated from the DNS results and the relative magnitudes of terms in low-order scalar moment equations determined. It is shown that the scalar equation terms with explicit compressibility are negligible on a long time-averaged basis. A physical-space EDQNM model has been adapted to provide another estimate of scalar correlation evolution in these same two-dimensional, compressible cases. The use of the solenoidal component of turbulence energy, rather than total turbulence energy, in the EDQNM model gives results closer to those from DNS in all cases.

  13. Straining and advection contributions to the mixing process of the Patos Lagoon coastal plume, Brazil

    NASA Astrophysics Data System (ADS)

    Marques, Wilian C.; Fernandes, Elisa H. L.; Moller, Osmar O.

    2010-06-01

    The Southern Brazilian Shelf is a region influenced by freshwater, and the evolution of stratification can present important ecological consequences in this area. The aim of this paper was to investigate the importance of straining and advection processes that affect the stratification and destratification of the water column along the Southern Brazilian inner shelf, a region that is influenced by the Patos Lagoon coastal plume. The study was carried out through 3-D numerical modeling experiments and the results were analyzed using the potential energy anomaly equation and wavelet analysis. Results showed that the potential energy anomaly showed strong variability over a time scale of several days and followed the wind pattern over the study region, and was accompanied by the monthly modulation of river discharge and remote effects associated with variability in oceanic circulation. However, the most important events in synoptic time scales occurred in periods shorter than 20 days and were coincident with the passage of meteorological systems over the study region. Straining and advection were the most important mechanisms for the evolution of stratification in the adjacent coastal region. Nonlinearities and dispersion terms were as important as modulation effects, mainly during periods of high fluvial discharge. Close to the Patos Lagoon mouth, vertical advection explained most of the stratification evolution, due to the morphological characteristics in this region. In the frontal region and far field of the plume, the following two regions must be considered: the northeast part, which is characterized by the convergence of the coastal currents and ebb flows associated with the freshwater discharge that promote the domination of the cross-shore straining and advection, and the southwest part, which is controlled by the coastal currents that result in the domination by alongshore straining and advection and cross-shore advection terms. Close to the mouth of the

  14. Dual-permeability model for flow in shrinking soil with dominant horizontal deformation

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Gerke, Horst H.; Comegna, Alessandro; Basile, Angelo; Comegna, Vincenzo

    2012-08-01

    In this study, a dual-permeability approach is discussed for modeling preferential flow in shrinking soils by accounting for shrinking effects on macropore and matrix domain hydraulic properties. Conceptually, the soil is treated as a dual-permeability bulk porous medium consisting of two dynamic interacting pore domains: (1) the fracture (from shrinkage) pore domain and (2) the aggregate (interparticles plus structural) or matrix pore domain. The model assumes that the swell-shrink dynamics is represented by the inversely proportional volume changes of the fracture and matrix domains, while the overall porosity of the total soil, and hence the layer thickness, remains constant. This assumption can be justified for soils with dominant horizontal soil deformation in the swelling-shrinkage process (shrinkage geometry factor,rs> 3). The swell-shrink dynamics was included in a one-dimensional dual-permeability model in which water flow in both domains was described with the Richards' equation. Swell-shrink dynamics was incorporated in the model partly by changing the coupled domain-specific hydraulic properties according to the shrinkage characteristics of the matrix and partly by allowing the fractional contribution of the two domains to change with the pressure head. As a first step, the hysteresis in the swell-shrink dynamics was not included. We also assumed that the aggregate behavior and its hydraulic properties depend only on the average aggregate water content and not on its internal real distribution. The model proved, describing successfully effects of shrinkage on the spatial and temporal evolution of water contents measured in a silty loam soil in the field.

  15. Sedimentology of Holocene debris flow-dominated alluvial fans, northwest Wyoming: Contributions to alluvial fan facies models

    SciTech Connect

    Cechovic, M.T.; Schmitt, J.G. . Dept. of Earth Sciences)

    1993-04-01

    Facies models for debris flow-dominated alluvial fans are based exclusively upon studies of relatively few fans in the arid American southwest. Detailed geomorphic, stratigraphic, and sedimentologic analyses of several highly-active, debris flow-dominated alluvial fans in northern Yellowstone National Park, WY (temperature, semi-arid) serve to diversify and increase the usefulness of alluvial fan facies models. These fans display an intricate distributary pattern of incised active (0--6 m deep; 700--900 m long) and abandoned channels (1--4 m deep; 400 m long) with levees/levee complexes (<3 m high; <20 m wide; <750 m long) and lobes constructed by pseudoplastic to plastic debris flows. The complex pattern of debris flow deposits is due to repeated channel back filling and overtopping by debris flows behind in-channel obstructions which subsequently lead to channel abandonment. Debris-flow deposition is dominant due to: (1) small, steep (up to 35 degrees) source area catchments, (2) extensive mud rock outcrops in the source area, and (3) episodic summer rainfall events. Proximal to distal fan surfaces exhibit sheetflood deposits several cm thick and up to 70 m in lateral extent. Vertical lithofacies profiles reveal: (1) massive, matrix- and clast-supported gravel units (1--2 m thick) deposited by clast-poor and clast-rich debris flows respectively, with reworked; scoured tops overlain by thin (<0.25 m) trough cross-bedded gravel and ripple cross-laminated sand intervals, and (2) volumetrically less significant 1--2 m thick intervals comprising fining-upward sequences of interbedded cm-scale trough cross-bedded pebbly gravel, massive sand, horizontally stratified sand, and mud rock deposited by hyperconcentrated flow and stream flow during decelerating sheetflood events. Organic rich layers record periods of non-deposition. Channelized stream flow is restricted to minor reworking of in-channel debris flow and hyperconcentrated flow deposits.

  16. Detectable MeV neutrinos from black hole neutrino-dominated accretion flows

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Bing; Li, Ye; Ma, Ren-Yi; Xue, Li

    2016-06-01

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/antineutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical NDAF has a neutrino luminosity lower than that of a typical supernova (SN), it can reach 1050- 1051 erg s-1 peaking at ˜10 MeV , making NDAFs potentially detectable with the upcoming sensitive MeV neutrino detectors if they are close enough to Earth. Based on the observed gamma-ray burst (GRB) event rate in the local universe and requiring that at least three neutrinos are detected to claim a detection, we estimate a detection rate up to ˜(0.10 - 0.25 ) per century for GRB-related NDAFs by the Hyper-Kamiokande (Hyper-K) detector if one neglects neutrino oscillation. If one assumes that all type Ib/c SNe have an engine-driven NDAF, the Hyper-K detection rate would be ˜(1 - 3 ) per century. By considering neutrino oscillations, the detection rate may decrease by a factor of 2-3. Detecting one such event would establish the observational evidence of NDAFs in the Universe.

  17. Two-dimensional flux-corrected transport solver for convectively dominated flows

    SciTech Connect

    Baer, M.R.; Gross, R.J.

    1986-01-01

    A numerical technique designed to solve a wide class of convectively dominated flow problems is presented. An attractive feature of the technique is its ability to resolve the behavior of field quantities possessing large gradients and/or shocks. The method is a finite-difference technique known as flux-corrected transport (FCT) that maintains four important numerical considerations - stability, accuracy, monotonicity, and conservation. The theory and methodology of two-dimensional FCT is presented. The method is applied in demonstrative example calculations of a 2-D Riemann problem with known exact solutions and to the Euler equations in a study of classical Rayleigh-Taylor and Kelvin-Helmholtz instability problems. The FCT solver has been vectorized for execution on the Cray 1S - a typical call with a 50 by 50 mesh requires about 0.00428 cpu seconds of execution time per call to the routine. Additionally, we have maintained a modular structure for the solver that eases its implementation. Fortran listings of two versions of the 2-D FCT solvers are appended with a driver main program illustrating the call sequence for the modules. 59 refs., 49 figs.

  18. Dynamic typology of hydrothermal systems: competing effects of advection, dispersion and reactivity

    NASA Astrophysics Data System (ADS)

    Dolejs, David

    2016-04-01

    Genetic interpretation hydrothermal systems relies on recognition of (i) hydrothermal fluid source, (ii) fluid migration pathways, and (iii) deposition site identified by hydrothermal alteration and/or mineralization. Frequently, only the last object is of interest or accessible to direct observation, but constraints on the fluid source (volume) and pathways can be obtained from evaluation of the time-integrated fluid flux during hydrothermal event. Successful interpretation of the petrological record, that is, progress of alteration reactions, relies on identification of individual contributions arising from solute advection (to the deposition site), its lateral dispersion, and reaction efficiency. Although these terms are all applicable in a mass-conservation relationship within the framework of the transport theory, they are rarely considered simultaneously and their relative magnitudes evaluated. These phenomena operate on variable length and time scales, and may in turn provide insight into the system dynamics such as flow, diffusion and reaction rates, or continuous vs. episodic behavior of hydrothermal events. In addition, here we demonstrate that they also affect estimate of the net fluid flux, frequently by several orders of magnitude. The extent of alteration and mineralization reactions between the hydrothermal fluid and the host environment is determined by: (i) temperature, pressure or any other gradients across the mineralization site, (ii) magnitude of disequilibrium at inflow to the mineralization site, which is related to physico-chemical gradient between the fluid source and the mineralization site, and (iii) chemical redistribution (dispersion) within the mineralization site. We introduce quantitative mass-transport descriptors - Péclet and Damköhler II numbers - to introduce division into dispersion-dominated, advection-dominated and reaction-constrained systems. Dispersive systems are characterized by lateral solute redistribution, driven by

  19. Waves, advection, and cloud patterns on Venus

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.; Gierasch, Peter J.; Leroy, Stephen S.; Smith, Michael D.

    1990-01-01

    The stable layers adjacent to the nearly neutral layer within the Venus clouds are found to be capable of supporting vertically trapped, horizontally propagating waves with horizontal wavelengths of about 10 km and speeds of a few meters per second relative to the mean wind in the neutral layer. These waves may possibly be excited by turbulence within the neutral layer. Here, the properties of the waves, and the patterns which they might produce within the visible clouds if excited near the subsolar point are examined. The patterns can be in agreement with many features in images. The waves are capable of transferring momentum latitudinally to help maintain the general atmospheric spin, but at present we are not able to evaluate wave amplitudes. We also examine an alternative possibility that the cloud patterns are produced by advection and shearing by the mean zonal and meridional flow of blobs formed near the equator. It is concluded that advection and shearing by the mean flow is the most likely explanation for the general pattern of small scale striations.

  20. Effect of advection on variations in zooplankton at a single location near Cabo Nazca, Peru

    SciTech Connect

    Smith, S L; Brink, K H; Santander, H; Cowles, T J; Huyer, A

    1980-04-01

    Temporal variations in the biomass and species composition of zooplankton at a single midshelf station in an upwelling area off Peru can be explained to a large extent by onshore-offshore advection in the upper 20 m of the water column. During periods of strong or sustained near-surface onshore flow, peaks in biomass of zooplankton were observed at midshelf and typically oceanic species of copepod were collected. In periods of offshore flow at the surface, a copepod capable of migrating into oxygen-depleted layers deeper than 30 m was collected. A simple translocation model of advection applied to the cross-shelf distribution of Paracalanus parvus suggests that the fluctuations in P. pavus observed in the midshelf time-series were closely related to onshore-offshore flow in the upper 20 m. Fluctuations in abundance of the numerically dominant copepod, Acartia tonsa, were apparently affected by near surface flow also. The population age-structure suggests that A. tonsa was growing at maximal rates, due in part to its positive feeding response to the dinoflagellate/diatom assemblage of phytoplankton.

  1. Plan curvature and landslide probability in regions dominated by earth flows and earth slides

    USGS Publications Warehouse

    Ohlmacher, G.C.

    2007-01-01

    Damaging landslides in the Appalachian Plateau and scattered regions within the Midcontinent of North America highlight the need for landslide-hazard mapping and a better understanding of the geomorphic development of landslide terrains. The Plateau and Midcontinent have the necessary ingredients for landslides including sufficient relief, steep slope gradients, Pennsylvanian and Permian cyclothems that weather into fine-grained soils containing considerable clay, and adequate precipitation. One commonly used parameter in landslide-hazard analysis that is in need of further investigation is plan curvature. Plan curvature is the curvature of the hillside in a horizontal plane or the curvature of the contours on a topographic map. Hillsides can be subdivided into regions of concave outward plan curvature called hollows, convex outward plan curvature called noses, and straight contours called planar regions. Statistical analysis of plan-curvature and landslide datasets indicate that hillsides with planar plan curvature have the highest probability for landslides in regions dominated by earth flows and earth slides in clayey soils (CH and CL). The probability of landslides decreases as the hillsides become more concave or convex. Hollows have a slightly higher probability for landslides than noses. In hollows landslide material converges into the narrow region at the base of the slope. The convergence combined with the cohesive nature of fine-grained soils creates a buttressing effect that slows soil movement and increases the stability of the hillside within the hollow. Statistical approaches that attempt to determine landslide hazard need to account for the complex relationship between plan curvature, type of landslide, and landslide susceptibility. ?? 2007 Elsevier B.V. All rights reserved.

  2. NUCLEAR DOMINATED ACCRETION FLOWS IN TWO DIMENSIONS. I. TORUS EVOLUTION WITH PARAMETRIC MICROPHYSICS

    SciTech Connect

    Fernandez, Rodrigo; Metzger, Brian D.

    2013-02-15

    We explore the evolution of radiatively inefficient accretion disks in which nuclear reactions are dynamically important ('Nuclear Dominated Accretion Flows' or NuDAFs). Examples of such disks are those generated by the merger of a white dwarf with a neutron star or black hole, or by the collapse of a rotating star. Here, we present two-dimensional hydrodynamic simulations that systematically explore the effect of adding a single nuclear reaction to a viscous torus. The equation of state, anomalous shear stress, and nuclear reactions are given parametric forms. Our results point to the existence of two qualitatively different regimes of NuDAF evolution: (1) steady accretion with quiescent burning or (2) detonation of the disk. These outcomes are controlled primarily by the ratio {Psi} of the nuclear energy released to the enthalpy at the burning radius. Disks detonate if {Psi} exceeds a critical value {Psi}{sub crit} {approx} 1, and if burning occurs in regions where neutrino cooling is unimportant. Thermonuclear runaways are seeded by the turbulent mixing of hot ash with cold fuel at the burning front. Disks with {Psi} < {Psi}{sub crit} do not explode, but instead power a persistent collimated outflow of unbound material composed primarily of ash, with a mass-loss rate that increases with {Psi}. We discuss the implications of our results for supernova-like counterparts from astrophysical events in the NuDAF regime. In particular, detonations following a white dwarf-neutron star merger could account for some subluminous Type Ia supernovae, such as the class defined by SN 2002cx.

  3. Submarine slumps, slides, and flows dominate sculpting of Beringian Margin, Alaska

    SciTech Connect

    Carlson, P.R.; Karl, H.A.; Edwards, B.D.; Gardner, J.V.; Hall, R. )

    1990-06-01

    The 1,400 km long Beringian margin is characterized by several very large submarine canyons and by a large oceanic plateau at the southern end. GLORIA sidescan-sonar imagery provides a perspective of this margin that is unattainable with conventional acoustic profiles. The broad coverage of GLORIA images emphasizes that, of all the sedimentary processes affecting this vast margin, mass movement is clearly the dominant shaping process. Styles of failure include mud and debris flows, slumps, and massive block slides, some covering areas greater than 1,500 km{sup 2}. GLORIA imagery and seismic-reflection profiles show evidence for a wide variety of slides and slumps in the canyons of the northern margin, Navarin and Pervenets. The 100 km long shelf edge between these two canyons is characterized by a series of scalloped slide scars and incipient scars associated with blocks of sedimentary material, 1 to 2 km across. One of the largest single slide masses is a huge block tens of kilometers wide that occurs on the rise in the central part of the margin beyond the mouth of Zhemchug Canyon. Sliding of this block may have initiated the incision of the world's largest submarine canyon. The removal of this block accelerated headward erosion by retrograde failure until Zhemchug Canyon was cut back to a fault parallel to the shelf edge. Mass movement along the southern margin is widespread at the edges of Umnak Plateau. One mass failure, well-defined by GLORIA, is about 30 km wide and 55 km long. This and other slides along the plateau are associated with diapiric-like structures, suggesting relatively recent tectonism.

  4. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone.

    PubMed

    Bachand, P A M; Bachand, S; Fleck, J; Anderson, F; Windham-Myers, L

    2014-06-15

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment-water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our understanding of

  5. Advective transport and decomposition of chain-forming planktonic diatoms in permeable sediments

    NASA Astrophysics Data System (ADS)

    Ehrenhauss, Sandra; Huettel, Markus

    2004-09-01

    In laboratory chamber experiments we demonstrate that permeable sediments (>7×10 -12 m 2) exposed to boundary flows filter chain-forming coastal bloom diatoms ( Skeletonema costatum and Thalassiosira rotula) from the water column, causing rapid transfer of fresh organic particulate matter into sediment layers as deep as 5 cm within 72 h. The penetration depth of the diatoms depends on the permeability of the bed and the length of the chains. Long chains were not transported as deep into the sediment as short chains or single cells. The fast advective transfer of phytoplankton cells into sandy sediments may be an important process facilitating organic matter uptake and preventing resuspension of deposited organic material in high-energy coastal environments. High advective flushing rates in medium- and coarse-grained sandy sediments enhanced the mineralisation of the trapped diatoms (2300 to 3200 μmol C m -2 d -1), stimulated benthic oxygen consumption (2300 to 3000 μmol O 2 m -2 d -1), as well as nitrification (up to 20 μmol NO 3- m -2 d -1), relative to sediment where diffusion dominated the solute exchange. Advective solute exchange rates that increase with increasing permeability prevent the accumulation of Si(OH) 4 near the dissolving frustules and in the pore water, leading to an effective recycling of dissolved silica to the production process in the water column (95 to 101 μmol Si(OH) 4 m -2 d -1). This process may also enhance dissolution rates of the deposited opal in coarse-grained sands by maintaining higher degrees of undersaturation than in fine-grained sediments. Our results suggest that advective filtration of planktonic diatoms into permeable sediments increases mineralisation and recycling of Si(OH) 4 and organic matter in high energetic shelf areas.

  6. Dominant formation of the microsized carbon coils by a short time SF6 flow incorporation during the initial deposition stage.

    PubMed

    Jeon, Young-Chul; Yi, Soung Soo; Kim, Sung-Hoon

    2013-08-01

    By SF6 gas incorporation for relatively short time during the initial deposition stage, carbon coils could be formed on nickel catalyst layer-deposited silicon oxide substrate using C2H2 and H2 as source gases under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as a function of SF6 flow injection time. 5-min SF6 flow injection time is appropriate to produce the dominant microsized geometry for carbon coils without the appearance of the nanosized carbon coils. The geometry for the microsized carbon coils follows a typical double-helix structure and the shape of the rings constituting the coils is a flat-type. Fluorine's intrinsic etching characteristics for the nanosized carbon coils during the initial deposition stage seems to be the cause for the dominant formation of the microsized carbon coils in the case of 5-min SF6 flow injection time.

  7. Prediction of biopore- and matrix-dominated flow from X-ray CT-derived macropore network characteristics

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Moldrup, Per; Schaap, Marcel G.; Tuller, Markus; Kulkarni, Ramaprasad; Vogel, Hans-Jörg; Wollesen de Jonge, Lis

    2016-10-01

    Prediction and modeling of localized flow processes in macropores is of crucial importance for sustaining both soil and water quality. However, currently there are no reliable means to predict preferential flow due to its inherently large spatial variability. The aim of this study was to investigate the predictive performance of previously developed empirical models for both water and air flow and to explore the potential applicability of X-ray computed tomography (CT)-derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6 cm diameter and 3.5 cm height) were extracted from the topsoil (5 cm to 8.5 cm depth) in a 15 m × 15 m grid from an agricultural field located in Silstrup, Denmark. All soil columns were scanned with an industrial X-ray CT scanner (129 µm resolution) and later employed for measurement of saturated hydraulic conductivity, air permeability at -30 and -100 cm matric potential, and gas diffusivity at -30 and -100 cm matric potential. Distribution maps for saturated hydraulic conductivity, air permeability, and gas diffusivity reflected no autocorrelation irrespective of soil texture and organic matter content. Existing empirical predictive models for saturated hydraulic conductivity and air permeability showed poor performance, as they were not able to realistically capture macropore flow. The tested empirical model for gas diffusivity predicted measurements at -100 cm matric potential reasonably well, but failed at -30 cm matric potential, particularly for soil columns with biopore-dominated flow. X-ray CT-derived macroporosity matched the measured air-filled porosity at -30 cm matric potential well. Many of the CT-derived macropore network characteristics were strongly interrelated. Most of the macropore network characteristics were also significantly correlated with saturated hydraulic conductivity, air permeability, and gas diffusivity. The predictive Ahuja et al. (1984) model for saturated hydraulic

  8. Numerical simulation of fluid/structure interaction phenomena in viscous dominated flows

    NASA Astrophysics Data System (ADS)

    Tran, Hai Duong

    2001-12-01

    The accurate prediction of buffet boundaries is essential in modern military aircraft and suspension bridge design in order to avoid the potentially disastrous consequences of unsteady loads. The design of lightweight structures and thermal protection systems for supersonic and hypersonic vehicles depends on the accurate prediction of the aerothermal loads, the structural temperatures and their gradients, and the structural deformations and stresses. Despite their bounded nature, limit-cycle oscillations can exhibit important amplitudes which affect the fatigue life of aircraft structures. Therefore, the main objective of this thesis is to develop and design an integrated multidisciplinary computational methodology for the analyses of the coupled responses exhibited by these phenomena. To simulate fluid/structure interaction problems in turbulent flows, we formulate the k--epsilon turbulence model and Reichardt's wall law in ALE form for dynamic meshes. This law is used with the generalized boundary conditions on k and epsilon of Jaeger and Dhatt and allows a closer integration to the wall compared to standard logarithmic laws and boundary conditions on k and epsilon. In order to apply the methodology to buffeting problems dominated by vortex shedding, we validate our solution approach on the square cylinder benchmark problem. There, we stress the minimization of numerical dissipation induced by an upwinding scheme, and apply our methodology to the aeroelastic stability analysis of a sectional dynamic model of the Tacoma Narrows Bridge. Then, we extend the three field formulation of aeroelasticity to a four-field formulation of aerothermoelasticity for the analysis of aerodynamic heating on structures. With a k--epsilon model, the time-averaged Navier-Stokes equations are integrated up to a distance delta from the real wall. This gap creates a problem for the transmission of the structural temperature to the fluid system. To resolve this problem, we exchange the

  9. Theory of advection-driven long range biotic transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...

  10. Black Hole Advective Accretion Disks with Optical Depth Transition

    SciTech Connect

    Artemove, Y.V.; Bisnovatyi-Kogan, G.S.; Igumenshchev, I.V.; Novikov, I.D.

    2006-02-01

    We have constructed numerically global solutions of advective accretion disks around black holes that describe a continuous transition between the effectively optically thick outer and optically thin inner disk regions. We have concentrated on models of accretion flows with large mass accretion rates, and we have employed a bridging formula for radiative losses at high and low effective optical depths.

  11. Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions.

    PubMed

    Allesina, Stefano; Bodini, Antonio

    2004-10-01

    In this paper, we investigate the problem of secondary extinction in food webs through the use of dominator trees, network topological structures that reduce food webs to linear pathways that are essential for energy delivery. Each species along these chains is responsible for passing energy to the taxa that follow it, and, as such, it is indispensable for their survival; because of this it is said to dominate them. The higher the number of species a node dominates, the greater the impact resulting from its removal. By computing dominator trees for 13 well-studied food webs we obtained for each of them the number of nodes dominated by a single species and the number of nodes that dominate each species. We illustrate the procedure for the Grassland Ecosystem showing the potential of this method for identifying species that play a major role in energy delivery and are likely to cause the greatest damage if removed. Finally, by means of two indices that measure error and attack sensitivity, we confirm a previous hypothesis that food webs are very robust to random loss of species but very fragile to the selective loss of the hubs.

  12. Simulations of Debris-Flow Dominated Margins with Relevance to Morphologic Evolution of Trough-Mouth Fans

    NASA Astrophysics Data System (ADS)

    O'Grady, D. B.; Syvitski, J. P.

    2001-12-01

    Large-scale morphology of glacier-fed continental slopes is influenced by the rate and method of sediment delivery to the slope through time. Slopes fed by fast flowing ice streams (i.e. at trough-mouth fans) and dominated by debris flow deposition exhibit a morphology that is inherently different from other types of glacial margins. Empirical analyses suggest that the average gradient of a trough mouth fan is related to the width of the adjacent continental shelf and, correlatively, to the amount of sediment delivered to the margin by the ice stream. This gradient relationship is not observed for other polar margins. A process-based stratigraphic model (SedFlux) is used to examine the evolution of debris-flow dominated continental slopes under differing boundary conditions and flow properties. Margins are simulated as building from initial bathymetry of a simple shelf-slope-rise configuration. The angle of the continental slope varies between simulations ranging from 1 to 10 degrees. In addition to boundary conditions, the kinematic viscosity (0.0001 m2/s to 0.1 m2/s) and yield strength (1 pa to 500 pa) of the debris flows varies between model runs. The changing morphology of the margin is tracked by measuring the gradient of the margin profile throughout the simulation. Also tracked are the runout distances of the flows and their deposit thickness. Hydroplaning debris flows are not explicitly modeled but are approximated by implementing very low viscosities. Results show that basin depth influences the runout length of debris flows and subsequently the length of the margin slope. The rate of sediment input influences the number and frequency of slope failures leading to debris flows although the overall morphology does not change in response to sediment input rate. All simulations show an evolution of profile morphology as the margin progrades outward, with the continental slope becoming less steep through time. This morphologic evolution is coupled with a

  13. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  14. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  15. Non-Linear Interactions between Consumers and Flow Determine the Probability of Plant Community Dominance on Maine Rocky Shores

    PubMed Central

    Silliman, Brian R.; McCoy, Michael W.; Trussell, Geoffrey C.; Crain, Caitlin M.; Ewanchuk, Patrick J.; Bertness, Mark D.

    2013-01-01

    Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects. PMID:23940510

  16. Non-linear interactions between consumers and flow determine the probability of plant community dominance on Maine rocky shores.

    PubMed

    Silliman, Brian R; McCoy, Michael W; Trussell, Geoffrey C; Crain, Caitlin M; Ewanchuk, Patrick J; Bertness, Mark D

    2013-01-01

    Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects. PMID:23940510

  17. Analysis and mitigation of numerical dissipation in inviscid and viscid computation of vortex-dominated flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1990-01-01

    The conservative unsteady Euler equations for the flow relative motion in the moving frame of reference are used to solve for the steady and unsteady flows around sharp-edged delta wings. The resulting equations are solved by using an implicit approximately-factored finite volume scheme. Implicit second-order and explicit second- and fourth-order dissipations are added to the scheme. The boundary conditions are explicitly satisfied. The grid is generated by locally using a modified Joukowski transformation in cross flow planes at the grid chord stations. The computational applications cover a steady flow around a delta wing whose results serve as the initial conditions for the unsteady flow around a pitching delta wing about a large angle of attack. The steady results are compared with the experimental data and the periodic solution is achieved within the third cycle of oscillation.

  18. A kinetic study of solar wind electrons in the transition region from collision dominated to collisionless flow

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Leer, E.

    1995-01-01

    We have studied the evolution of the velocity distribution function of a test population of electrons in the solar corona and inner solar wind region, using a recently developed kinetic model. The model solves the time dependent, linear transport equation, with a Fokker-Planck collision operator to describe Coulomb collisions between the 'test population' and a thermal background of charged particles, using a finite differencing scheme. The model provides information on how non-Maxwellian features develop in the distribution function in the transition region from collision dominated to collisionless flow. By taking moments of the distribution the evolution of higher order moments, such as the heat flow, can be studied.

  19. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors.

    PubMed

    Nadezhdina, Nadezhda; Cermák, Jan; Ceulemans, Reinhart

    2002-09-01

    We studied sap flow in dominant coniferous (Pinus sylvestris L.) and broadleaf (Populus canescens L.) species and in understory species (Prunus serotina Ehrh. and Rhododendron ponticum L.) by the heat field deformation (HFD) method. We attempted to identify possible errors arising during flow integration and scaling from single-point measurements to whole trees. Large systematic errors of -90 to 300% were found when it was assumed that sap flow was uniform over the sapwood depth. Therefore, we recommend that the radial sap flow pattern should be determined first using sensors with multiple measuring points along a stem radius followed by single-point measurements with sensors placed at a predetermined depth. Other significant errors occurred in the scaling procedure even when the sap flow radial pattern was known. These included errors associated with uncertainties in the positioning of sensors beneath the cambium (up to 15% per 1 mm error in estimated xylem depth), and differences in environmental conditions when the radial profile applied for integration was determined over the short term (up to 47% error). High temporal variation in the point-to-area correction factor along the xylem radius used for flow integration is also problematic. Compared with midday measurements, measurements of radial variation of sap flow in the morning and evening of sunny days minimized the influence of temporal variations on the point-to-area correction factor, which was especially pronounced in trees with a highly asymmetric sap flow radial pattern because of differences in functioning of the sapwood xylem layers. Positioning a single-point sensor at a depth with maximum sap flow is advantageous because of the high sensitivity of maximum sap flow to water stress conditions and changes in micro-climate, and because of the lower random errors associated with the positioning of a single-point sensor along the xylem radius. PMID:12204847

  20. The dominant role of surface conduction in electro-osmotic flows through periodically varying narrow channels

    NASA Astrophysics Data System (ADS)

    Ludar, Lotan; Yariv, Ehud

    2015-11-01

    As surface conduction has no effect on electro-osmosis in uniform channel flows, where the tangential Debye-layer currents are longitudinally uniform, it may appear as it would only result in a small modifying correction in lubrication analyses of slowly varying channels. This misconception is refuted here by analyzing flows through periodic channels of slowly varying but otherwise arbitrary geometry. Assuming that the channel width is still large compared with the Debye thickness we employ the simplest thin-double-layer model which incorporates surface conduction. We find that surface conduction affects the leading-order flow and the consequent net volumetric flux, introducing a nonlinear dependence upon the zeta potential. Remarkably, as the channel becomes more and more narrow, the scaled flux approaches a limit which is independent of the Dukhin number yet different from that calculated for zero Dukhin number.

  1. Dominating wave regimes in a two-layer film flowing down a vertical wall

    NASA Astrophysics Data System (ADS)

    ćekiç, G.; Sisoev, G. M.

    2014-12-01

    Flows of two-layer falling films are analyzed by an approximate method. Similar to other film flows, there is a non-uniqueness of steady-traveling waves as solutions of the problem. To select the wave regimes developing in two-layer films, systematic transient computations have been carried out to create a map of the attracting wave regimes which can be used to model real-life processes, for example, mass transfer of a gas between the layers or gas absorption into a two-layer film.

  2. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  3. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  4. Determining critical flow conditions for chloride impairment in an effluent-dominated, storm-peaking, Western U.S. stream.

    PubMed

    Duke, L Donald; Erickson, Elizabeth

    2003-01-01

    Extensive agricultural land use and intensive urban residential growth of the Calleguas Creek, California, watershed has increased chloride load and impaired beneficial uses. The hydrology of the watershed is typical of the semiarid U.S. West in that nearly all rainfall occurs in a small number of discrete storm events that each produces peak discharges of a duration of several days or less; conversely, during the dry weather season, discharge has historically been near zero. Currently, a year-round flow is sustained by two factors: base line flow sustained by discharges from publicly owned treatment works (POTWs) and increased groundwater discharge from a shallow water table elevated by intensive agricultural irrigation (deep groundwater basins used for water supply have declined into overdraft). Water quality impairment of Calleguas Creek increases during low-flow days, but cannot be defined seasonally because days not influenced by storm discharge occur at substantial proportions during all months. Impairment is greatest not during lowest flows, which are dominated by POTW effluent, but when groundwater and other nonpoint sources are highest, thereby contributing chloride load disproportionately to their flow. The highest nonstorm days are identified through cumulative frequency of mean daily discharge (MDD) as the transition from nonstorm conditions (described by normal distribution) to storm conditions (described by log-normal distribution). Transition occurs at approximately the 80th to 85th percentile MDD at three Calleguas Creek locations. Critical conditions for chloride impairment are defined as volumetric flow at those percentiles of cumulative MDD distribution. PMID:12683462

  5. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  6. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    USGS Publications Warehouse

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  7. Tomography-based characterization of ice-air interface dynamics of temperature gradient snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Andreoli, Christian; Schneebeli, Martin; Steinfeld, Aldo

    2015-12-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. A functional understanding of this process is essential for many disciplines, from modeling the effects of snow on regional and global climate to assessing avalanche formation. Time-lapse X-ray microtomography was applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Experiments specifically analyzed sublimation and deposition of water vapor on the ice structure. In addition, an analysis of the ice-air interface dynamics was carried out using a macroscopic equivalent model of heat and water vapor transport through a snow layer. The results indicate that sublimation of the ice matrix dominated for flow rates < 10-6 m3 s-1 while during increased mass flow rates the water vapor deposition supplied by the advective flow counteracted sublimation. A flow rate dependence of water vapor deposition at the ice interface was observed, asymptotically approaching an average estimated maximum deposition rate on the whole sample of 1.05 · 10-4 kg m-3 s-1. The growth of microsized whisker-like crystals on larger ice crystals was detected on microscope photographs, leading to an increase of the specific surface area and thus suggest a change of the physical and optical properties of the snow. The estimated values of the curvature effect of the ice crystals and the interface kinetic coefficient are in good agreement with previously published values.

  8. Identifying the representative flow unit for capillary dominated two-phase flow in porous media using morphology-based pore-scale modeling

    NASA Astrophysics Data System (ADS)

    Mu, Yaoming; Sungkorn, Radompon; Toelke, Jonas

    2016-09-01

    In this paper, we extend pore-morphology-based methods proposed by Hazlett (1995) and Hilpert and Miller (2001) to simulate drainage and imbibition in uniformly wetting porous media and add an (optional) entrapment of the (non-)wetting phase. By improving implementation, this method allows us to identify the statistical representative elementary volume and estimate uncertainty by computing fluid flow properties and saturation distributions of hundreds of subsamples within a reasonable time-frame. The method was utilized to study three different porous medium systems and results demonstrate that morphology-based pore-scale modeling is a viable approach to assess the representative elementary volume with respect to capillary dominated two-phase flow. The focus of this paper is the determination of the representative elementary volume for multiphase-flow properties for a digital representation of a rock.

  9. Transonic and supersonic Euler computations of vortex-dominated flow fields about a generic fighter

    NASA Technical Reports Server (NTRS)

    Goodsell, Aga M.; Melton, John E.

    1991-01-01

    Flow fields about a generic flighter model were computed using FL057, a 3-D, finite volume Euler code. Computed pressure coefficients, forces, and moments at several Mach numbers (0.6, 0.8, 1.2, 1.4, and 1.6) are compared with wind tunnel data over a wide range of angles of attack in order to determine the applicability of the code for the analysis of fighter configurations. Two configurations were studied, a wing-body and a wing-body-chine. FL057 predicted pressure distributions, forces, and moments well at low angles of attack, at which the flow was fully attached. The FL057 predictions were also accurate for some test conditions once the leading edge vortex became well established. At the subsonic speeds, FL057 predicted vortex breakdown earlier than that seen in the experimental results. Placing the chine on the forebody delayed the onset of bursting and improved the correlation between numerical and experimental data at the subsonic conditions.

  10. An operator splitting algorithm for the three-dimensional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Khan, Liaqat Ali; Liu, Philip L.-F.

    1998-09-01

    Operator splitting algorithms are frequently used for solving the advection-diffusion equation, especially to deal with advection dominated transport problems. In this paper an operator splitting algorithm for the three-dimensional advection-diffusion equation is presented. The algorithm represents a second-order-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The governing equation is split into an advection equation and a diffusion equation, and they are solved by a backward method of characteristics and a finite element method, respectively. The Hermite interpolation function is used for interpolation of concentration in the advection step. The spatial gradients of concentration in the Hermite interpolation are obtained by solving equations for concentration gradients in the advection step. To make the composite algorithm efficient, only three equations for first-order concentration derivatives are solved in the diffusion step of computation. The higher-order spatial concentration gradients, necessary to advance the solution in a computational cycle, are obtained by numerical differentiations based on the available information. The simulation characteristics and accuracy of the proposed algorithm are demonstrated by several advection dominated transport problems.

  11. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  12. Continuous flow dielectrophoretic particle concentrator

    DOEpatents

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  13. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape.

    PubMed

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human-carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions.

  14. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape

    PubMed Central

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human–carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions. PMID:25691961

  15. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    SciTech Connect

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  16. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape.

    PubMed

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human-carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions. PMID:25691961

  17. Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.

    2016-04-01

    > A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).

  18. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-02-01

    Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Diffusion originating in the Kelvin effect between snow structures dominates and is the main transport process in isothermal snow packs.

  19. Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Yoon, Min; Ahn, Junsun; Hwang, Jinyul; Sung, Hyung Jin

    2016-08-01

    The relationship between the frictional drag and the velocity-vorticity correlations in wall-bounded turbulent flows is derived from the mean vorticity equation. A formula for the skin friction coefficient is proposed and evaluated with regards to three canonical wall-bounded flows: turbulent boundary layer, turbulent channel flow, and turbulent pipe flow. The frictional drag encompasses four terms: advective vorticity transport, vortex stretching, viscous, and inhomogeneous terms. Drag-reduced channel flow with the slip condition is used to test the reliability of the formula. The advective vorticity transport and vortex stretching terms are found to dominate the contributions to the frictional drag.

  20. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.

    2004-01-01

    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.

  1. Numerical experiments for advection equation

    SciTech Connect

    Sun, Wen-Yih )

    1993-10-01

    We propose to combine the Crowley fourth-order scheme and the Gadd scheme for solving the linear advection equation. Two new schemes will be presented: the first is to integrate the Crowley scheme and the Gadd scheme alternately (referred to as New1); the second is to integrate the Crowley scheme twice before we apply the Gadd scheme once (referred to as New2). The new schemes are designed such that no additional restriction is placed on the CFL criterion in an integration. The performance of the new schemes is better than that of the original Crowley or Gadd schemes. It is noted that the amplitude obtained from New2 is more accurate than that from New1 for long waves, but less accurate for short waves. The phase speed calculated from New2 is very close to the real phase speed in most cases tested here, but the phase speed of New 1 is faster than the real phase speed. Hence, New2 is a better choice, especially for a model that includes horizontal smoothing to dampen the short waves. 9 refs., 5 figs., 8 tabs.

  2. Contour advection with surgery: A technique for investigating finescale structure in tracer transport

    NASA Technical Reports Server (NTRS)

    Waugh, Darryn W.; Plumb, R. Alan

    1994-01-01

    We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the deformation field and that CAS can accurately reproduce small scales from low-resolution wind fields. The CAS technique therefore enables examination of atmospheric tracer transport at previously unattainable resolution.

  3. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater

    NASA Astrophysics Data System (ADS)

    Mailloux, Brian J.; Trembath-Reichert, Elizabeth; Cheung, Jennifer; Watson, Marlena; Stute, Martin; Freyer, Greg A.; Ferguson, Andrew S.; Matin Ahmed, Kazi; Jahangir Alam, Md.; Buchholz, Bruce A.; Thomas, James; Layton, Alice C.; Zheng, Yan; Bostick, Benjamin C.; van Geen, Alexander

    2013-04-01

    Chronic exposure to arsenic (As) by drinking shallow groundwater causes widespread disease in Bangladesh and neighboring countries. The release of As naturally present in sediment to groundwater has been linked to the reductive dissolution of iron oxides coupled to the microbial respiration of organic carbon (OC). The source of OC driving this microbial reduction-carbon deposited with the sediments or exogenous carbon transported by groundwater-is still debated despite its importance in regulating aquifer redox status and groundwater As levels. Here, we used the radiocarbon (14C) signature of microbial DNA isolated from groundwater samples to determine the relative importance of surface and sediment-derived OC. Three DNA samples collected from the shallow, high-As aquifer and one sample from the underlying, low-As aquifer were consistently younger than the total sediment carbon, by as much as several thousand years. This difference and the dominance of heterotrophic microorganisms implies that younger, surface-derived OC is advected within the aquifer, albeit more slowly than groundwater, and represents a critical pool of OC for aquifer microbial communities. The vertical profile shows that downward transport of dissolved OC is occurring on anthropogenic timescales, but bomb 14C-labeled dissolved OC has not yet accumulated in DNA and is not fueling reduction. These results indicate that advected OC controls aquifer redox status and confirm that As release is a natural process that predates human perturbations to groundwater flow. Anthropogenic perturbations, however, could affect groundwater redox conditions and As levels in the future.

  4. Flow variations and macroinvertebrate community responses in a small groundwater-dominated stream in south east England

    USGS Publications Warehouse

    Bendix, J.; Hupp, C.R.

    2000-01-01

    Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream and downstream sites, and between drought and non-drought years. Step-wise multiple regression was used to identify hydrological indicators of community variation. Several different indices were used to describe the macroinvertebrate community, including macroinvertebrate community abundance, number of families and species, and individual species. Site characteristics were fundamental in accounting for variation in the unstandardized macroinvertebrate community. However, when differences between sites were controlled, hydrological conditions were found to play a dominant role in explaining ecological variation. Indices of high discharge (or their absence), 4-7 months prior to sampling (i.e. winter-spring), were found to be the most important variables for describing the late-summer community The results are discussed in relation to the role of flow variability in shaping instream communities and management implications. Copyright ?? 2000 John Wiley & Sons, Ltd.Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream

  5. Bicarbonate, sulfate, and chloride water in a shallow, clastic-dominated coastal flow system, Argentina

    SciTech Connect

    Logan, W.S.; Auge, M.P.; Panarello, H.O.

    1999-03-01

    Most of the cities southeast of Buenos Aires, Argentina, depend heavily on ground water for water supply. Whereas ground water quality is generally good in the region, economic development along the coastal plain has been constrained by high salinities. Fifty-four wells were sampled for major ions in zones of recharge, transport and discharge in an area near La Plata, 50 km southeast of Buenos Aires. The shallow, southwest to northeast coastal flow system is >30 km long but is only 50 to 80 m thick. It consists of Plio-Pleistocene fluvial sand overlain by Pleistocene eolian and fluvial silt and Holocene estuarine silty clay. Hydrochemical endmembers include HCO{sub 3}, SO{sub 4}, and Cl water. Bicarbonate-type water includes high plain recharge water that evolves through cation exchange and calcite dissolution to a high pH, pure Na-HCO{sub 3} endmember at the southwest edge of the coastal plain. Similar Na-HCO{sub 3} water is also found underlying recharge areas of the central coastal plain, and a lens of Ca-HCO{sub 3} water is associated with a ridge of shell debris parallel to the coast. Mixed cation-Cl water near the coastline represents intruded sea water that has undergone cation exchange. Chemically similar water underlying the southwest coastal plain, however, can be shown isotopically to have formed from fairly dilute solutions concentrated many times by evapotranspiration.

  6. Minimal model for zero-inertia instabilities in shear-dominated non-Newtonian flows.

    PubMed

    Boi, S; Mazzino, A; Pralits, J O

    2013-09-01

    The emergence of fluid instabilities in the relevant limit of vanishing fluid inertia (i.e., arbitrarily close to zero Reynolds number) has been investigated for the well-known Kolmogorov flow. The finite-time shear-induced order-disorder transition of the non-Newtonian microstructure and the corresponding viscosity change from lower to higher values are the crucial ingredients for the instabilities to emerge. The finite-time low-to-high viscosity change for increasing shear characterizes the rheopectic fluids. The instability does not emerge in shear-thinning or -thickening fluids where viscosity adjustment to local shear occurs instantaneously. The lack of instabilities arbitrarily close to zero Reynolds number is also observed for thixotropic fluids, in spite of the fact that the viscosity adjustment time to shear is finite as in rheopectic fluids. Renormalized perturbative expansions (multiple-scale expansions), energy-based arguments (on the linearized equations of motion), and numerical results (of suitable eigenvalue problems from the linear stability analysis) are the main tools leading to our conclusions. Our findings may have important consequences in all situations where purely hydrodynamic fluid instabilities or mixing are inhibited due to negligible inertia, as in microfluidic applications. To trigger mixing in these situations, suitable (not necessarily viscoelastic) non-Newtonian fluid solutions appear as a valid answer. Our results open interesting questions and challenges in the field of smart (fluid) materials. PMID:24125344

  7. Minimal model for zero-inertia instabilities in shear-dominated non-Newtonian flows.

    PubMed

    Boi, S; Mazzino, A; Pralits, J O

    2013-09-01

    The emergence of fluid instabilities in the relevant limit of vanishing fluid inertia (i.e., arbitrarily close to zero Reynolds number) has been investigated for the well-known Kolmogorov flow. The finite-time shear-induced order-disorder transition of the non-Newtonian microstructure and the corresponding viscosity change from lower to higher values are the crucial ingredients for the instabilities to emerge. The finite-time low-to-high viscosity change for increasing shear characterizes the rheopectic fluids. The instability does not emerge in shear-thinning or -thickening fluids where viscosity adjustment to local shear occurs instantaneously. The lack of instabilities arbitrarily close to zero Reynolds number is also observed for thixotropic fluids, in spite of the fact that the viscosity adjustment time to shear is finite as in rheopectic fluids. Renormalized perturbative expansions (multiple-scale expansions), energy-based arguments (on the linearized equations of motion), and numerical results (of suitable eigenvalue problems from the linear stability analysis) are the main tools leading to our conclusions. Our findings may have important consequences in all situations where purely hydrodynamic fluid instabilities or mixing are inhibited due to negligible inertia, as in microfluidic applications. To trigger mixing in these situations, suitable (not necessarily viscoelastic) non-Newtonian fluid solutions appear as a valid answer. Our results open interesting questions and challenges in the field of smart (fluid) materials.

  8. Advective and diffusive cosmic ray transport in galactic haloes

    NASA Astrophysics Data System (ADS)

    Heesen, Volker; Dettmar, Ralf-Jürgen; Krause, Marita; Beck, Rainer; Stein, Yelena

    2016-05-01

    We present 1D cosmic ray transport models, numerically solving equations of pure advection and diffusion for the electrons and calculating synchrotron emission spectra. We find that for exponential halo magnetic field distributions advection leads to approximately exponential radio continuum intensity profiles, whereas diffusion leads to profiles that can be better approximated by a Gaussian function. Accordingly, the vertical radio spectral profiles for advection are approximately linear, whereas for diffusion they are of `parabolic' shape. We compare our models with deep Australia Telescope Compact Array observations of two edge-on galaxies, NGC 7090 and 7462, at λλ 22 and 6 cm. Our result is that the cosmic ray transport in NGC 7090 is advection dominated with V=150^{+80}_{-30} km s^{-1}, and that the one in NGC 7462 is diffusion dominated with D=3.0± 1.0 × 10^{28}E_GeV^{0.5} cm^2 s^{-1}. NGC 7090 has both a thin and thick radio disc with respective magnetic field scale heights of hB1 = 0.8 ± 0.1 kpc and hB2 = 4.7 ± 1.0 kpc. NGC 7462 has only a thick radio disc with hB2 = 3.8 ± 1.0 kpc. In both galaxies, the magnetic field scale heights are significantly smaller than what estimates from energy equipartition would suggest. A non-negligible fraction of cosmic ray electrons can escape from NGC 7090, so that this galaxy is not an electron calorimeter.

  9. Morphological variation and different branch modularity across contrasting flow conditions in dominant Pocillopora reef-building corals.

    PubMed

    Paz-García, David A; Aldana-Moreno, Alejandro; Cabral-Tena, Rafael A; García-De-León, Francisco J; Hellberg, Michael E; Balart, Eduardo F

    2015-05-01

    Pocillopora corals, the dominant reef-builders in the Eastern Tropical Pacific, exhibit a high level of phenotypic plasticity, making the interpretation of morphological variation and the identification of species challenging. To test the hypothesis that different coral morphospecies represent phenotypes that develop in different flow conditions, we compared branch characters in three Pocillopora morphospecies (P. damicornis, P. verrucosa, and P. meandrina) from two communities in the Gulf of California exposed to contrasting flow conditions. Morphological variation and branch modularity (i.e., the tendency of different sets of branch traits to vary in a coordinated way) were assessed in colonies classified as Pocillopora type 1 according to two mitochondrial regions. Our results can be summarized as follows. (1) Pocillopora type 1 morphospecies corresponded to a pattern of morphological variation in the Gulf of California. Overall, P. damicornis had the thinnest branches and its colonies the highest branch density, followed by P. verrucosa, and then by P. meandrina, which had the thickest branches and its colonies the lowest branch density. (2) The differentiation among morphospecies was promoted by different levels of modularity of traits. P. verrucosa had the highest coordination of traits, followed by P. damicornis, and P. meandrina. (3) The variation and modularity of branch traits were related to water flow condition. Morphology under the high-flow condition was more similar among morphospecies than under the low-flow condition and seemed to be related to mechanisms for coping with these conditions. Our results provide the first evidence that in scleractinian corals different levels of modularity can be promoted by different environmental conditions.

  10. Advection, diffusion, and delivery over a network

    NASA Astrophysics Data System (ADS)

    Heaton, Luke L. M.; López, Eduardo; Maini, Philip K.; Fricker, Mark D.; Jones, Nick S.

    2012-08-01

    Many biological, geophysical, and technological systems involve the transport of a resource over a network. In this paper, we present an efficient method for calculating the exact quantity of the resource in each part of an arbitrary network, where the resource is lost or delivered out of the network at a given rate, while being subject to advection and diffusion. The key conceptual step is to partition the resource into material that does or does not reach a node over a given time step. As an example application, we consider resource allocation within fungal networks, and analyze the spatial distribution of the resource that emerges as such networks grow over time. Fungal growth involves the expansion of fluid filled vessels, and such growth necessarily involves the movement of fluid. We develop a model of delivery in growing fungal networks, and find good empirical agreement between our model and experimental data gathered using radio-labeled tracers. Our results lead us to suggest that in foraging fungi, growth-induced mass flow is sufficient to account for long-distance transport, if the system is well insulated. We conclude that active transport mechanisms may only be required at the very end of the transport pathway, near the growing tips.

  11. Utilizing Kernelized Advection Schemes in Ocean Models

    NASA Astrophysics Data System (ADS)

    Zadeh, N.; Balaji, V.

    2008-12-01

    There has been a recent effort in the ocean model community to use a set of generic FORTRAN library routines for advection of scalar tracers in the ocean. In a collaborative project called Hybrid Ocean Model Environement (HOME), vastly different advection schemes (space-differencing schemes for advection equation) become available to modelers in the form of subroutine calls (kernels). In this talk we explore the possibility of utilizing ESMF data structures in wrapping these kernels so that they can be readily used in ESMF gridded components.

  12. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    SciTech Connect

    Mills, Brantley

    2016-01-01

    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.

  13. DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE

    EPA Science Inventory

    A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...

  14. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii.

    PubMed

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.

  15. Toward enhanced subsurface intervention methods using chaotic advection

    NASA Astrophysics Data System (ADS)

    Trefry, Michael G.; Lester, Daniel R.; Metcalfe, Guy; Ord, Alison; Regenauer-Lieb, Klaus

    2012-01-01

    Many intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media. These scalars can be targeted by pump-and-treat methods or by amendment technologies. Application examples include in-situ leaching for metals, recovery of dissolved contaminant plumes, or utilizing heat energy in geothermal reservoirs. While conventional pumping methods work reasonably well, costs associated with maintaining pumping schedules are high and improvements in efficiency would be welcome. In this paper we discuss how transient switching of the pressure at different wells can intimately control subsurface flow, generating a range of "programmed" flows with various beneficial characteristics. Some programs produce chaotic flows which accelerate mixing, while others create encapsulating flows which can isolate fluid zones for lengthy periods. In a simplified model of an aquifer subject to balanced pumping, chaotic flow topologies have been predicted theoretically and verified experimentally using Hele-Shaw cells. Here, a survey of the key characteristics of chaotic advection is presented. Mathematical methods are used to show how these characteristics may translate into practical situations involving regional flows and heterogeneity. The results are robust to perturbations, and withstand significant aquifer heterogeneity. It is proposed that chaotic advection may form the basis of new efficient technologies for groundwater interventions.

  16. Toward enhanced subsurface intervention methods using chaotic advection.

    PubMed

    Trefry, Michael G; Lester, Daniel R; Metcalfe, Guy; Ord, Alison; Regenauer-Lieb, Klaus

    2012-01-01

    Many intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media. These scalars can be targeted by pump-and-treat methods or by amendment technologies. Application examples include in-situ leaching for metals, recovery of dissolved contaminant plumes, or utilizing heat energy in geothermal reservoirs. While conventional pumping methods work reasonably well, costs associated with maintaining pumping schedules are high and improvements in efficiency would be welcome. In this paper we discuss how transient switching of the pressure at different wells can intimately control subsurface flow, generating a range of "programmed" flows with various beneficial characteristics. Some programs produce chaotic flows which accelerate mixing, while others create encapsulating flows which can isolate fluid zones for lengthy periods. In a simplified model of an aquifer subject to balanced pumping, chaotic flow topologies have been predicted theoretically and verified experimentally using Hele-Shaw cells. Here, a survey of the key characteristics of chaotic advection is presented. Mathematical methods are used to show how these characteristics may translate into practical situations involving regional flows and heterogeneity. The results are robust to perturbations, and withstand significant aquifer heterogeneity. It is proposed that chaotic advection may form the basis of new efficient technologies for groundwater interventions.

  17. Toward enhanced subsurface intervention methods using chaotic advection.

    PubMed

    Trefry, Michael G; Lester, Daniel R; Metcalfe, Guy; Ord, Alison; Regenauer-Lieb, Klaus

    2012-01-01

    Many intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media. These scalars can be targeted by pump-and-treat methods or by amendment technologies. Application examples include in-situ leaching for metals, recovery of dissolved contaminant plumes, or utilizing heat energy in geothermal reservoirs. While conventional pumping methods work reasonably well, costs associated with maintaining pumping schedules are high and improvements in efficiency would be welcome. In this paper we discuss how transient switching of the pressure at different wells can intimately control subsurface flow, generating a range of "programmed" flows with various beneficial characteristics. Some programs produce chaotic flows which accelerate mixing, while others create encapsulating flows which can isolate fluid zones for lengthy periods. In a simplified model of an aquifer subject to balanced pumping, chaotic flow topologies have been predicted theoretically and verified experimentally using Hele-Shaw cells. Here, a survey of the key characteristics of chaotic advection is presented. Mathematical methods are used to show how these characteristics may translate into practical situations involving regional flows and heterogeneity. The results are robust to perturbations, and withstand significant aquifer heterogeneity. It is proposed that chaotic advection may form the basis of new efficient technologies for groundwater interventions. PMID:21600670

  18. Macrophyte decomposition in a surface-flow ammonia-dominated constructed wetland: Rates associated with environmental and biotic variables

    USGS Publications Warehouse

    Thullen, J.S.; Nelson, S.M.; Cade, B.S.; Sartoris, J.J.

    2008-01-01

    Decomposition of senesced culm material of two bulrush species was studied in a surface-flow ammonia-dominated treatment wetland in southern California. Decomposition of the submerged culm material during summer months was relatively rapid (k = 0.037 day-1), but slowed under extended submergence (up to 245 days) and during fall and spring sampling periods (k = 0.009-0.014 day-1). Stepwise regression of seasonal data indicated that final water temperature and abundance of the culm-mining midge, Glyptotendipes, were significantly associated with culm decomposition. Glyptotendipes abundance, in turn, was correlated with water quality parameters such as conductivity and dissolved oxygen and ammonia concentrations. No differences were detected in decomposition rates between the bulrush species, Schoenoplectus californicus and Schoenoplectus acutus.

  19. Electrohydrodynamically Driven Chaotic Advection in Drops

    NASA Astrophysics Data System (ADS)

    Ward, Thomas; Homsy, G. M.

    2002-11-01

    When a liquid drop of given dielectric constant, resistivity and viscosity is translating in a liquid of different dielectric constant, resistivity and viscosity under Stokes flow conditions in the presence of an electric field, the resulting internal circulation is a superposition of the Hadamard-Rybcynski circulation and the circulation first described theoretically by G. I. Taylor. For sufficiently strong electric field strengths, the quadrapole structure of the Taylor circulation can cause an internal stagnation disk to occur. Our interest is in the situation where a modulation of the electric field causes the stagnation disk to modulate its position, potentially leading to chaotic flows within the drop. The dimensionless electric field strength is characterized by W = 4V(1+lambda)/U where V is the maximum interfacial velocity of the Taylor circulation, U the translational velocity, and lambda the viscosity ratio. The streamfunction for the flow is: 1) psi = (r4-r2) sin2)(theta + W(t) (r3 - r5) sin2 (theta) cos(theta) 2) W(t) = W1 + W2 cos ((epsilon)t) where epsilon is the dimensionless frequency, and W1, W2 are the amplitudes of the DC and AC components, respectively. We have found it useful to replace these parameters by a secondary set, epsilon, Wmax and delta = (1 / W1 - 1 / W2) - (1 / W1 + 1 / W2). As shown in Figure 1a, delta is the dimensionless distance the stagnation disk moves over one period of modulation. The advection equations corresponding to the flow were integrated by standard techniques, and it was found that the trajectories were chaotic over a wide range of parameters. Experiments were conducted to test the predictions of rapid mixing on convective time scales. Drops of silicon oil were suspended in a small 60 mm x 120 mm x 120 mm test cell filled with castor oil, and subject to time-modulated axial electric fields with a wave form corresponding to eq(2). The drops were typically 5 mm in diameter and settled with typical speeds of O(10-1 mm

  20. Distinguishing resuspension and advection signals in a hypertidal estuary

    NASA Astrophysics Data System (ADS)

    Todd, David; Souza, Alex; Jago, Colin

    2015-04-01

    Terrestrial material is supplied to an estuary system by the river, while marine material is supplied by the sea. Whether the estuary acts as a trap or a bypass zone for SPM (suspended particulate matter) depends upon the properties and dynamics of both the estuary, including the tidal and residual behaviour of the currents, and the SPM, including particle sizes and settling velocities and concentration gradients, which together control the dynamics, such as the trapping efficiency, of the estuary. Whether an SPM signal is regarded as being one of resuspension or advection depends upon the area of interest, and therefore distinguishing between resuspension and advection can be complex. Material that is resuspended within the area of study is regarded as resuspension, while that which is resuspended outside, but passes through, the area of interest, is regarded as advection. The results of a measurement campaign undertaken in a hypertidal UK estuary during the pre-spring bloom February-March and post-spring bloom May-June are presented utilising a combination of acoustic and optical instruments, moorings, and CTD stations. A characteristic asymmetric "twin peak" signal is present during both time periods, implying the presence of both resuspension and advection. This is confirmed through the use of harmonic analysis. A seasonal variation in the relative importance of the resuspension and advection components is seen between the two observation periods, with the small (<122µm) and large (>122µm) particles displaying different behaviours and providing a strong indication of the presence of flocculation. Approximate point flux calculations showed a reduction in the horizontal gradient of concentration, and subsequently the flood dominance of sediment transport, between May-June and February-March. This has been attributed to changes in biological activity and atmospheric forcing between the two observational periods. Ebb-dominant concentrations brought about by the

  1. The necessity of field research in prescription of Environmental Flows - A case of the hydropower dominated Middle Zambezi Catchment

    NASA Astrophysics Data System (ADS)

    Mwelwa, Elenestina; Crosato, Alessandra; Wright, Nigel; Beevers, Lindsay

    2013-04-01

    The research work in the Middle Zambezi sub-catchment has the key objective to investigate the state of the river and its flood plain in terms of flow variation, river and flood plain morphological variation for both the pre and post hydropower schemes. From the rich biodiversity that this area supports, both Zambia and Zimbabwe has established National Parks with Mana Pools National Park, Sapi and Chewore safari areas being designated as UNESCO World Heritage Site in 1984. The habitat sustenance depend on the river channels and the associated morphological features with the flood and recession interaction whose modification can lead to negative environmental consequences. The research findings on the state of the sub-catchment flows and morphology will be outlined. Highlights will be given on the following findings: dominance of hydropower regulation in the water balance of the river reach, historical map analysis and related rates of river channel morphology changes associated to dam operating events and, bed load sediment characterisation and distribution. With the use of SOBEK-Rural (1D/2D) model, analysis of future state of the sub-catchment will be outlined, taking into account the following scenarios: no dam state of the river reach; continue with current water regulation and operations; modification in water regulation to take into account favorable changes and; climate related variation of droughts. The research deductions and implications for maintaining the current dam operation practices will be outline as relates to the sustainability of the hydro-morphology and ecosystem of the catchment which support a rich wildlife habitat. The research observed critical water needs form the basis for environmental flows prescription and recommendation. Whereas the restoration of regular flooding has been identified to be important, the most critical need however is the timing of flood gate regulation which has been observed as a trigger to loss of islands and bars

  2. Laser speckle contrast imaging is sensitive to advective flux

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Unlike laser Doppler flowmetry, there has yet to be presented a clear description of the physical variables that laser speckle contrast imaging (LSCI) is sensitive to. Herein, we present a theoretical basis for demonstrating that LSCI is sensitive to total flux and, in particular, the summation of diffusive flux and advective flux. We view LSCI from the perspective of mass transport and briefly derive the diffusion with drift equation in terms of an LSCI experiment. This equation reveals the relative sensitivity of LSCI to both diffusive flux and advective flux and, thereby, to both concentration and the ordered velocity of the scattering particles. We demonstrate this dependence through a short series of flow experiments that yield relationships between the calculated speckle contrast and the concentration of the scatterers (manifesting as changes in scattering coefficient), between speckle contrast and the velocity of the scattering fluid, and ultimately between speckle contrast and advective flux. Finally, we argue that the diffusion with drift equation can be used to support both Lorentzian and Gaussian correlation models that relate observed contrast to the movement of the scattering particles and that a weighted linear combination of these two models is likely the most appropriate model for relating speckle contrast to particle motion.

  3. Debris flow dominated alluvial fans in the Australian high country indicate that landscape denudation through the Holocene has been dominated by post-bushfire runoff events

    NASA Astrophysics Data System (ADS)

    Marren, Philip; Nyman, Petter; Kermode, Stephanie

    2016-04-01

    Bushfires play a major role in shaping landscapes across the globe. Whilst the role of fire in shaping and changing vegetation assemblages is relatively well understood, there is still debate about the significance of fire in driving landscape denudation, relative to other processes, such as major rainfall and flood events and questions remain about the frequency of extreme fire events over longer timescales in response to climate forcing. Studies of post-fire landscape impact of recent bushfires in southeast Australia indicate that where storm events occur shortly after a major bushfire, hillslope erosion is enhanced, due to debris flows and erosion of both primary hillslope sediment and sediment stored in hillslope channel networks. In Australia, knowledge of long-term bushfire frequency is largely derived from pollen and micro-charcoal records in lake-sediment archives and is not directly relevant to resolving questions regarding fire impacts on landscape denudation and sediment transfer. We excavated trenches in four alluvial fans at the base of hillslopes in the high country of northeast Victoria, Australia. This area was burnt by bushfires in 1939 and 2003, and regional climate and hydrology are strongly controlled by El Niño. The trenches were up to 3.5m deep, and in most cases intersected underlying floodplain sediment at the base of the trench, indicating that they provide a full record of sedimentation for that sector of the fan. Fan stratigraphy consisted of sub-horizontal (parallel to the fan surface) units 0.3-0.5m thick, with occasional units 1-1.2m thick, and cross-cutting channelized units. Debris flow deposits accounted for 70-80% of the observed sediments, with water-laid gravels and soil units forming the remainder. Most soil layers were burnt, and most (but not all) debris flow units contained charcoal. A typical stratigraphy consisted of 6-8 debris flow units per fan, with four units containing a fire signature or overlying a burnt soil layer

  4. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods

    USGS Publications Warehouse

    Cox, T.J.; Runkel, R.L.

    2008-01-01

    Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.

  5. Integrative assessment of structures and processes: Recharge, flow systems and interactions in a forested groundwater dominated lake system

    NASA Astrophysics Data System (ADS)

    Blume, Theresa; Tecklenburg, Christina; Wilke, Henriette; Dreibrodt, Janek; Simard, Sonia; Heidbüchel, Ingo; Güntner, Andreas

    2014-05-01

    Investigating hydrological processes in a groundwater dominated lake district is a challenge due to the fact that a) most of these processes happen in the subsurface and b) we are not looking at a single process but a complex interplay of structures, controls and boundary conditions. Groundwater recharge for example is controlled by rainfall dynamics, evaporation, tree water uptake, interception and stem flow. Subsurface structures determine the subsurface catchment itself as well as the connectivity between catchment and lake. These interactions of lake and groundwater are the result of processes and structures which can be highly variable in space and time. Focus area of this study is the catchment of Lake Hinnensee, situated in the lake district north of Berlin in Germany. The lake is a seepage lake with no surface inflows or outflows. The interconnected processes described above are currently investigated with an integrative study which allows for a tight coupling of the experimental work: Tree water uptake is investigated with sapflow sensors in 3 different tree species. For these same species interception, stemflow and the resulting soil moisture dynamics are determined with high spatial and temporal resolution. Subsurface structures and their influence on groundwater flow are investigated using invasive, non-invasive and modeling approaches. Groundwater-surface water interactions on the other hand are determined with high spatial resolution, using both piezometer transects and heat transport modeling approaches. Vertical hydraulic gradients along the lake shore are measured with high accuracy and high temporal resolution. Instrumentation started in 2012 and is part of the Terrestrial Environmental Observatory TERENO funded by the Helmholtz Association. The integrative experimental approach, the applied modeling techniques and first results are presented.

  6. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wu, D. J.

    2013-09-01

    The use of concrete bridges in urban rail transit systems has raised many concerns regarding low-frequency (20-200 Hz) structure-borne noise due to the vibration of bridges when subjected to moving trains. Understanding the mechanism that determines the dominant frequencies of bridge vibrations is essential for both vibration and noise reduction. This paper presents a general procedure based on the force method to obtain the power flows within a coupled vehicle-track-bridge system, the point mobility of the system and the dynamic interaction forces connecting various components. The general coupling system consists of multi-rigid-bodies for the vehicles, infinite Euler beams representing the rails, two-dimensional or three-dimensional elements of the concrete bridges, and spring-dashpot pairs to model the wheel-rail contacts, the vehicle suspensions, the rail pads and the bridge bearings. The dynamic interaction of the coupled system is solved in the frequency domain by assuming the combined wheel-rail roughness moves forward relative to the stationary vehicles. The proposed procedure is first applied to a rail on discrete supports and then to a real urban rail transit U-shaped concrete bridge. The computed results show that the wheel-rail contact forces, the power flows to the rail/bridge subsystem and the accelerations of the bridge are primarily dominated by the contents around the natural frequency of a single wheel adhered to the elastically supported rail. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same rigid body, then δmnab(ω) can be expressed as δmnab(ω)=-{(}/{Mlω}, where Ml is the mass of the lth rigid body. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same infinite rail, δmnab(ω) can be expressed as [8] δmnab(ω)=-j{((e-je)}/{4EIk}, where xm and xn are the x-coordinates of the mth and nth spring

  7. Dense-gas dispersion advection-diffusion model

    SciTech Connect

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments.

  8. Coronary Flow Velocity Reserve and Carotid Intima Media Thickness in Patients with Autosomal Dominant Polycystic Kidney Disease: From Impaired Tubules to Impaired Carotid and Coronary Arteries

    PubMed Central

    Turkmen, Kultigin; Oflaz, Huseyin; Uslu, Bora; Cimen, Arif O.; Elitok, Ali; Kasikcioglu, Erdem; Alisir, Sabahat; Tufan, Fatih; Namli, Sule; Uysal, Mukremin; Ecder, Tevfik

    2008-01-01

    Background and objectives: Cardiovascular problems are a major cause of morbidity and mortality in patients with autosomal dominant polycystic kidney disease. Endothelial dysfunction, an early and reversible feature in the pathogenesis of atherosclerosis, is associated with increased vascular smooth muscle tone, arterial stiffening, and increased intima-media thickness. Coronary flow velocity reserve is a noninvasive test showing endothelial function of epicardial coronary arteries and coronary microcirculatory function. The aim of the study was to investigate the carotid intima-media thickness and coronary flow velocity reserve in patients with autosomal dominant polycystic kidney disease. Design, setting, participants, & measurements: Thirty normotensive patients with autosomal dominant polycystic kidney disease (10 male, 20 female) with well-preserved renal function and 30 healthy subjects (12 male, 18 female) were included in the study. Coronary flow velocity reserve was measured at baseline and after dipyridamole infusion by echocardiography. Coronary flow velocity reserve was calculated as the ratio of hyperemic to baseline diastolic peak velocities. Results: Carotid intima-media thickness was significantly higher in patients than in control subjects (0.80 ± 0.29 versus 0.54 ± 0.14 mm, respectively; P < 0.001). Moreover, coronary flow velocity reserve was significantly lower in patients than in control subjects (1.84 ± 0.39 versus 2.65 ± 0.68, respectively; P < 0.001). Conclusions: Normotensive patients with autosomal dominant polycystic kidney disease with well-preserved renal function have significantly increased carotid intima-media thickness and significantly decreased coronary flow velocity reserve compared with healthy subjects. These findings suggest that atherosclerosis starts at an early stage in the course of their disease in patients with autosomal dominant polycystic kidney disease. PMID:18354076

  9. An ecological economic assessment of flow regimes in a hydropower dominated river basin: the case of the lower Zambezi River, Mozambique.

    PubMed

    Fanaian, Safa; Graas, Susan; Jiang, Yong; van der Zaag, Pieter

    2015-02-01

    The flow regime of rivers, being an integral part of aquatic ecosystems, provides many important services benefiting humans in catchments. Past water resource developments characterized by river embankments and dams, however, were often dominated by one (or few) economic use(s) of water. This results in a dramatically changed flow regime negatively affecting the provision of other ecosystem services sustained by the river flow. This study is intended to demonstrate the value of alternative flow regimes in a river that is highly modified by the presence of large hydropower dams and reservoirs, explicitly accounting for a broad range of flow-dependent ecosystem services. In this study, we propose a holistic approach for conducting an ecological economic assessment of a river's flow regime. This integrates recent advances in the conceptualization and classification of ecosystem services (UK NEA, 2011) with the flow regime evaluation technique developed by Korsgaard (2006). This integrated approach allows for a systematic comparison of the economic values of alternative flow regimes, including those that are considered beneficial for aquatic ecosystems. As an illustration, we applied this combined approach to the Lower Zambezi Basin, Mozambique. Empirical analysis shows that even though re-operating dams to create environmentally friendly flow regimes reduces hydropower benefits, the gains to goods derived from the aquatic ecosystem may offset the forgone hydropower benefits, thereby increasing the total economic value of river flow to society. The proposed integrated flow assessment approach can be a useful tool for welfare-improving decision-making in managing river basins.

  10. Simulated ground-water flow for a pond-dominated aquifer system near Great Sandy Bottom Pond, Pembroke, Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Lyford, Forest P.

    2005-01-01

    A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply. A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to

  11. Effects of chaotic advection on the timescales of cooling and crystallization of magma bodies at mid crustal levels

    NASA Astrophysics Data System (ADS)

    Petrelli, Maurizio; El Omari, Kamal; Le Guer, Yves; Perugini, Diego

    2016-02-01

    We numerically define the thermochemical evolution of a subduction-related crystal-bearing magmatic mass at mid crustal levels (0.7 GPa, 20-25 km). Two main dynamic mechanisms are considered: (1) a pure buoyancy-driven system where the convective flow is induced by density changes during magma cooling; (2) a buoyancy-driven convective system governed by chaotic advection. The non-Newtonian rheology of natural magmas is taken into account linking the Herschel-Bulkley formulation with the results of fractional crystallization experiments of magmas with the same composition and at the same conditions of temperature and pressure of the studied system. The latent heat of crystallization is also considered in order to address the thermal release in the system induced by the crystallization. Results indicate that the development of chaotic advection generates a complex thermochemical evolution of the system speeding up the crystallization process and the timing required to reach the jamming condition relative to the pure buoyancy-driven convective system (nearly 2 times faster). Our results have important implications for both the rheological history of the magmatic body and the refilling of shallower magmatic systems. In particular, (1) a time-dependent composition ranging from basalt to andesite can be extracted from an initial basaltic magmatic batch; (2) at the attainment of the maximum packing fraction (i.e., just before the jamming condition), homogeneous andesitic melts can be potentially extracted from the system; and (3) the development of chaotic advection within the system allows for the extraction of andesitic melt in shorter times compared to a buoyancy-dominated system.

  12. Positivity-preserving numerical schemes for multidimensional advection

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Macvean, M. K.; Lock, A. P.

    1993-01-01

    This report describes the construction of an explicit, single time-step, conservative, finite-volume method for multidimensional advective flow, based on a uniformly third-order polynomial interpolation algorithm (UTOPIA). Particular attention is paid to the problem of flow-to-grid angle-dependent, anisotropic distortion typical of one-dimensional schemes used component-wise. The third-order multidimensional scheme automatically includes certain cross-difference terms that guarantee good isotropy (and stability). However, above first-order, polynomial-based advection schemes do not preserve positivity (the multidimensional analogue of monotonicity). For this reason, a multidimensional generalization of the first author's universal flux-limiter is sought. This is a very challenging problem. A simple flux-limiter can be found; but this introduces strong anisotropic distortion. A more sophisticated technique, limiting part of the flux and then restoring the isotropy-maintaining cross-terms afterwards, gives more satisfactory results. Test cases are confined to two dimensions; three-dimensional extensions are briefly discussed.

  13. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  14. Horizontal advection, diffusion and plankton spectra at the sea surface.

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Clayton, S.; Pasquero, C.

    2009-04-01

    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

  15. Influence of porewater advection on denitrification in carbonate sands: Evidence from repacked sediment column experiments

    NASA Astrophysics Data System (ADS)

    Santos, Isaac R.; Eyre, Bradley D.; Glud, Ronnie N.

    2012-11-01

    Porewater flow enhances mineralization rates in organic-poor permeable sands. Here, a series of sediment column experiments were undertaken to assess the potential effect of advective porewater transport on denitrification in permeable carbonate sands collected from Heron Island (Great Barrier Reef). Experimental conditions (flow path length, advection rate, and temperature) were manipulated to represent conditions similar to near shore tropical environments. HgCl2-poisoned controls were used to assess whether reactions were microbially mediated. Overall, significant correlations were found between oxygen consumption and N2 production. The N:O2 slope of 0.114 implied that about 75% of all the nitrogen mineralized was denitrified. A 4-fold increase in sediment column length (from 10 to 40 cm) resulted in an overall increase in oxygen consumption (1.6-fold), TCO2 production (1.8-fold), and denitrification (1.9-fold). Oxic respiration increased quickly until advection reached 80 L m-2 h-1 and then plateaued at higher advection rates. Interestingly, denitrification peaked (up to 336 μmol N2 m-2 h-1) at intermediate advection rates (30-80 L m-2 h-1). We speculate that intermediate advection rates enhance the development of microniches (i.e., steep oxygen gradients) within porous carbonate sands, perhaps providing optimum conditions for denitrification. The denitrification peak fell within the broad range of advection rates (often on scales of 1-100 L m-2 h-1) typically found on continental shelves implying that carbonate sands may play a major, but as yet unquantified, role in oceanic nitrogen budgets.

  16. Distributed Parallel Particle Advection using Work Requesting

    SciTech Connect

    Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph

    2013-09-30

    Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.

  17. [Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan, Guangdong Province of South China].

    PubMed

    Huang, De-Wei; Zhang, De-Qiang; Zhou, Guo-Yi; Liu, Shi-Zhong; Otieno, Dennis; Li, Yue-Lin

    2012-05-01

    By the method of Granier' s thermal dissipation probe, the stem sap flow density of four dominant tree species (Pinus massoniana, Castanopsis chinensis, Schima superba, and Machilus kwangtungensis) in a mixed conifer-broadleaf forest in Dinghushan Reserve of South China was continuously measured in the dry season (November) and wet season (July) in 2010, and the environmental factors including air temperature, relative humidity, and photosynthetically active radiation (PAR) were measured synchronically, aimed to study the characteristics of the stem sap flow of the tree species in response to environmental factors. During the dry and wet seasons, the diurnal changes of the stem sap flow velocity of the tree species all presented a typical single-peak curve, with high values in the daytime and low values in the nighttime. The average and maximum sap flow velocities and the daily sap flow flux of broad-leaved trees (C. chinensis, S. superba, and M. kwangtungensis) were significantly higher than those of coniferous tree (P. massoniana), and the maximum sap flow velocity of P. massoniana, C. valueschinensis, S. superba, and M. kwangtungensis was 29.48, 38.54, 51.67 and 58.32 g H2O x m(-2) x s(-1), respectively. A time lag was observed between the sap flow velocity and the diurnal variations of PAR, vapor pressure deficiency, and air temperature, and there existed significant positive correlations between the sap flow velocity and the three environmental factors. The PAR in wet season and the air temperature in dry season were the leading factors affecting the stem sap flow velocity of the dominant tree species.

  18. [Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan, Guangdong Province of South China].

    PubMed

    Huang, De-Wei; Zhang, De-Qiang; Zhou, Guo-Yi; Liu, Shi-Zhong; Otieno, Dennis; Li, Yue-Lin

    2012-05-01

    By the method of Granier' s thermal dissipation probe, the stem sap flow density of four dominant tree species (Pinus massoniana, Castanopsis chinensis, Schima superba, and Machilus kwangtungensis) in a mixed conifer-broadleaf forest in Dinghushan Reserve of South China was continuously measured in the dry season (November) and wet season (July) in 2010, and the environmental factors including air temperature, relative humidity, and photosynthetically active radiation (PAR) were measured synchronically, aimed to study the characteristics of the stem sap flow of the tree species in response to environmental factors. During the dry and wet seasons, the diurnal changes of the stem sap flow velocity of the tree species all presented a typical single-peak curve, with high values in the daytime and low values in the nighttime. The average and maximum sap flow velocities and the daily sap flow flux of broad-leaved trees (C. chinensis, S. superba, and M. kwangtungensis) were significantly higher than those of coniferous tree (P. massoniana), and the maximum sap flow velocity of P. massoniana, C. valueschinensis, S. superba, and M. kwangtungensis was 29.48, 38.54, 51.67 and 58.32 g H2O x m(-2) x s(-1), respectively. A time lag was observed between the sap flow velocity and the diurnal variations of PAR, vapor pressure deficiency, and air temperature, and there existed significant positive correlations between the sap flow velocity and the three environmental factors. The PAR in wet season and the air temperature in dry season were the leading factors affecting the stem sap flow velocity of the dominant tree species. PMID:22919822

  19. Finite amplitude gravity waves: Harmonics, advective steepening, breaking and saturation

    NASA Technical Reports Server (NTRS)

    Weinstock, J.

    1985-01-01

    A simple theory is presented which determines details of the breaking and saturation of a gravity wave as it propagates upward in the atmosphere. Breaking and saturation are here due to nonlinear advection analogous to the breaching of a surface wave and to the breaking of a planetary wave. Much simplification is obtained by the assumption that in a wave packet consisting of a primary wave and its harmonics, the primary wave remains dominant. This assumption, referred to a quasi-monochromatic approximation, is suggested by observations. Determined by this approximate theory are: a detailed picture of the waveform as it steepens and breaks; harmonics of the wave; the turbulence generation; and an underlying relationship between superadiabatic lapse rate and saturation by wave-wave interactions.

  20. The effect of advection at luminosities close to Eddington: The ULX in M 31

    NASA Astrophysics Data System (ADS)

    Straub, O.; Done, C.; Middleton, M.

    2013-05-01

    The transient, ultra-luminous X-ray source CXOM31 J004253.1+411422 in the Andromeda galaxy is most likely a 10 solar mass black hole, with super-Eddington luminosity at its peak. The XMM-Newton spectra taken during the decline then trace luminosities of 0.86-0.27 LEdd. These spectra are all dominated by a hot disc component, which roughly follows a constant inner radius track in luminosity and temperature as the source declines. At the highest luminosity the disc structure should change due to advection of radiation through the disc. This advected flux can be partly released at lower radii thus modifying the spectral shape. To study the effect of advection at luminosities close to Eddington we employ a fully relativistic slim disc model, SLIMBH, that includes advective cooling and full radiative transfer through the photosphere based on tlusty. The model also incorporates relativistic photon ray-tracing from the proper location of the disc photosphere rather than the mid-plane as the slim disc is no longer geometrically thin. We find that these new models differ only slightly from the non-advective (standard) BHSPEC models even at the highest luminosities considered here. While both discs can fit the highest luminosity data, neither is a very good fit to the lower luminosities. This could indicate a missing physical process that acts in low luminosity discs and subsides as the disc luminosity approaches the Eddington limit.

  1. OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION

    SciTech Connect

    Zeng Zhicheng; Cao Wenda; Ji Haisheng

    2013-06-01

    We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.

  2. A cryogenic circulating advective multi-pass absorption cell

    SciTech Connect

    Stockett, M. H.; Lawler, J. E.

    2012-03-15

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10{sup 7} cm{sup -3}. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  3. A cryogenic circulating advective multi-pass absorption cell

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Lawler, J. E.

    2012-03-01

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 107 cm-3. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  4. Chaotic advection in 2D anisotropic porous media

    NASA Astrophysics Data System (ADS)

    Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico

    2015-11-01

    Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.

  5. Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 2013 Colorado Front Range floods

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Lefsky, Michael A.

    2016-01-01

    The Colorado Front Range has a large elevation gradient with deep seasonal snowpack in the mountains and limited snow accumulation in the foothills and plains. This study examines how the sources of annual peak flows (snowmelt, rainfall, mixed) change with the fraction of time snow persists on the ground, snow persistence (SP), and whether these sources have changed over time. Sources of peak flows for 20 gaging stations are estimated using a gridded rain and snow model forced with PRISM daily precipitation and both PRISM and TopoWx temperature. The mean snowmelt contribution to peak flow is highly correlated with SP (r2 = 0.86-0.90). Watersheds with SP < 0.3 (low snow, elevation <2000 m) are rainfall-dominated, and watersheds with SP > 0.7 (persistent snow, elevation >3100 m) are mostly snowmelt-dominated, with mixed sources between these thresholds. Rainfall runoff peak flows are possible at all elevations, but their likelihood declines with increasing SP. Rainfall runoff from an extreme storm in September 2013 produced the highest annual peaks at many stations, including some snowmelt-dominated watersheds. Regional Kendall trend tests indicate that the contributions of snowmelt to peak flows and total annual inputs have declined in the mixed source zone. These changes may affect hydrographs, as analyses confirm that snowmelt runoff generally produces more attenuated peaks than rainfall runoff. Discrimination of peak flow source is sensitive to input data and model structure for mixed rain and snowmelt events, and both observation and modeling research are needed to help understand potential runoff changes in these conditions.

  6. An ecological economic assessment of flow regimes in a hydropower dominated river basin: the case of the lower Zambezi River, Mozambique.

    PubMed

    Fanaian, Safa; Graas, Susan; Jiang, Yong; van der Zaag, Pieter

    2015-02-01

    The flow regime of rivers, being an integral part of aquatic ecosystems, provides many important services benefiting humans in catchments. Past water resource developments characterized by river embankments and dams, however, were often dominated by one (or few) economic use(s) of water. This results in a dramatically changed flow regime negatively affecting the provision of other ecosystem services sustained by the river flow. This study is intended to demonstrate the value of alternative flow regimes in a river that is highly modified by the presence of large hydropower dams and reservoirs, explicitly accounting for a broad range of flow-dependent ecosystem services. In this study, we propose a holistic approach for conducting an ecological economic assessment of a river's flow regime. This integrates recent advances in the conceptualization and classification of ecosystem services (UK NEA, 2011) with the flow regime evaluation technique developed by Korsgaard (2006). This integrated approach allows for a systematic comparison of the economic values of alternative flow regimes, including those that are considered beneficial for aquatic ecosystems. As an illustration, we applied this combined approach to the Lower Zambezi Basin, Mozambique. Empirical analysis shows that even though re-operating dams to create environmentally friendly flow regimes reduces hydropower benefits, the gains to goods derived from the aquatic ecosystem may offset the forgone hydropower benefits, thereby increasing the total economic value of river flow to society. The proposed integrated flow assessment approach can be a useful tool for welfare-improving decision-making in managing river basins. PMID:25461048

  7. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  8. Semi-Lagrangian advection-propagation (SLAP) scheme for three-dimensional interface tracking

    NASA Astrophysics Data System (ADS)

    Aldredge, R. C.

    2010-06-01

    A fully three-dimensional semi-Lagrangian scheme is developed for computing the evolution of advected self-propagating surfaces (e.g., premixed flames) governed by a level-set advection-propagation equation. The scheme provides third-order spatial accuracy and shape preservation. Example numerical simulations of three-dimensional front propagation are presented to illustrate the capability of the scheme of capturing cusp formation and associated surface-area annihilation as well as the formation and consumption of detached closed-surface pockets behind fronts propagating in highly vortical flow.

  9. Stream flow, salmon and beaver dams: roles in the structuring of stream fish communities within an anadromous salmon dominated stream.

    PubMed

    Mitchell, Sean C; Cunjak, Richard A

    2007-11-01

    The current paradigm of fish community distribution is one of a downstream increase in species richness by addition, but this concept is based on a small number of streams from the mid-west and southern United States, which are dominated by cyprinids. Further, the measure of species richness traditionally used, without including evenness, may not be providing an accurate reflection of the fish community. We hypothesize that in streams dominated by anadromous salmonids, fish community diversity will be affected by the presence of the anadromous species, and therefore be influenced by those factors affecting the salmonid population. Catamaran Brook, New Brunswick, Canada, provides a long-term data set to evaluate fish community diversity upstream and downstream of an obstruction (North American beaver Castor canadensis dam complex), which affects distribution of Atlantic salmon Salmo salar. The Shannon Weiner diversity index and community evenness were calculated for sample sites distributed throughout the brook and over 15 years. Fish community diversity was greatest upstream of the beaver dams and in the absence of Atlantic salmon. The salmon appear to depress the evenness of the community but do not affect species richness. The community upstream of the beaver dams changes due to replacement of slimy sculpin Cottus cognatus by salmon, rather than addition, when access is provided. Within Catamaran Brook, location of beaver dams and autumn streamflow interact to govern adult Atlantic salmon spawner distribution, which then dictates juvenile production and effects on fish community. These communities in an anadromous Atlantic salmon dominated stream do not follow the species richness gradient pattern shown in cyprinid-dominated streams and an alternative model for stream fish community distribution in streams dominated by anadromous salmonids is presented. This alternative model suggests that community distribution may be a function of semipermeable obstructions

  10. Curves to determine the relative importance of advection and dispersion for solute and vapor transport

    USGS Publications Warehouse

    Garges, J.A.; Baehr, A.L.

    1998-01-01

    The relative importance of advection and dispersion for both solute and vapor transport can be determined from type curves or concentration, flux, or cumulative flux. The dimensionless form of the type curves provides a means to directly evaluate the importance of mass transport by advection relative to that of mass transport by diffusion and dispersion. Type curves based on an analytical solution to the advection-dispersion equation are plotted in terms of dimensionless time and Peclet number. Flux and cumulative flux type curves provide additional rationale for transport regime determination in addition to the traditional concentration type curves. The extension of type curves to include vapor transport with phase partitioning in the unsaturated zone is a new development. Type curves for negative Peclet numbers also are presented. A negative Peclet number characterizes a problem in which one direction of flow is toward the contamination source, and thereby diffusion and advection can act in opposite directions. Examples are the diffusion of solutes away from the downgradient edge of a pump-and-treat capture zone, the upward diffusion of vapors through the unsaturated zone with recharge, and the diffusion of solutes through a low hydraulic conductivity cutoff wall with an inward advective gradient.

  11. Advection and diffusion in shoreline change prediction

    NASA Astrophysics Data System (ADS)

    Anderson, T. R.; Frazer, L. N.

    2010-12-01

    We added longshore advection and diffusion to the simple cross-shore rate calculation method, as used widely by the USGS and others, to model historic shorelines and to predict future shoreline positions; and applied this to Hawaiian Island beach data. Aerial photographs, sporadically taken throughout the past century, yield usable, albeit limited, historic shoreline data. These photographs provide excellent spatial coverage, but poor temporal resolution, of the shoreline. Due to the sparse historic shoreline data, and the many natural and anthropogenic events influencing coastlines, we constructed a simplistic shoreline change model that can identify long-term behavior of a beach. Our new, two-dimensional model combines the simple rate method to accommodate for cross-shore sediment transport with the classic Pelnard-Considère model for diffusion, as well as a longshore advection speed term. Inverse methods identify cross-shore rate, longshore advection speed, and longshore diffusivity down a sandy coastline. A spatial averaging technique then identifies shoreline segments where one parameter can reasonably account for the cross-shore and longshore transport rates in that area. This produces model results with spatial resolution more appropriate to the temporal spacing of the data. Because changes in historic data can be accounted for by varying degrees of cross-shore and longshore sediment transport - for example, beach erosion can equally be explained by sand moving either off-shore or laterally - we tested several different model scenarios on the data: allowing only cross-shore sediment movement, only longshore movement, and a combination of the two. We used statistical information criteria to determine both the optimal spatial resolution and best-fitting scenario. Finally, we employed a voting method predicting the relaxed shoreline position over time.

  12. MECHANISM OF OUTFLOWS IN ACCRETION SYSTEM: ADVECTIVE COOLING CANNOT BALANCE VISCOUS HEATING?

    SciTech Connect

    Gu, Wei-Min

    2015-01-20

    Based on the no-outflow assumption, we investigate steady-state, axisymmetric, optically thin accretion flows in spherical coordinates. By comparing the vertically integrated advective cooling rate with the viscous heating rate, we find that the former is generally less than 30% of the latter, which indicates that the advective cooling itself cannot balance the viscous heating. As a consequence, for radiatively inefficient flows with low accretion rates such as M-dot ≲10{sup −3} M-dot {sub Edd}, where M-dot {sub Edd} is the Eddington accretion rate, the viscous heating rate will be larger than the sum of the advective cooling rate and the radiative cooling one. Thus, no thermal equilibrium can be established under the no-outflow assumption. We therefore argue that in such cases outflows ought to occur and take away more than 70% of the thermal energy generated by viscous dissipation. Similarly, for optically thick flows with extremely large accretion rates such as M-dot ≳10 M-dot {sub Edd}, outflows should also occur owing to the limited advection and the low efficiency of radiative cooling. Our results may help to understand the mechanism of outflows found in observations and numerical simulations.

  13. Anomalous transport and chaotic advection in homogeneous porous media.

    PubMed

    Lester, D R; Metcalfe, G; Trefry, M G

    2014-12-01

    The topological complexity inherent to all porous media imparts persistent chaotic advection under steady flow conditions, which, in concert with the no-slip boundary condition, generates anomalous transport. We explore the impact of this mechanism upon longitudinal dispersion via a model random porous network and develop a continuous-time random walk that predicts both preasymptotic and asymptotic transport. In the absence of diffusion, the ergodicity of chaotic fluid orbits acts to suppress longitudinal dispersion from ballistic to superdiffusive transport, with asymptotic variance scaling as σ(L)(2)(t)∼t(2)/(ln t)(3). These results demonstrate that anomalous transport is inherent to homogeneous porous media and has significant implications for macrodispersion.

  14. Magnetic field advection in two interpenetrating plasma streams

    SciTech Connect

    Ryutov, D. D.; Kugland, N. L.; Levy, M. C.; Plechaty, C.; Ross, J. S.; Park, H. S.

    2013-03-15

    Laser-generated colliding plasma streams can serve as a test-bed for the study of various astrophysical phenomena and the general physics of self-organization. For streams of a sufficiently high kinetic energy, collisions between the ions of one stream with the ions of the other stream are negligible, and the streams can penetrate through each other. On the other hand, the intra-stream collisions for high-Mach-number flows can still be very frequent, so that each stream can be described hydrodynamically. This paper presents an analytical study of the effects that these interpenetrating streams have on large-scale magnetic fields either introduced by external coils or generated in the plasma near the laser targets. Specifically, a problem of the frozen-in constraint is assessed and paradoxical features of the field advection in this system are revealed. A possibility of using this system for studies of magnetic reconnection is mentioned.

  15. Anomalous transport and chaotic advection in homogeneous porous media.

    PubMed

    Lester, D R; Metcalfe, G; Trefry, M G

    2014-12-01

    The topological complexity inherent to all porous media imparts persistent chaotic advection under steady flow conditions, which, in concert with the no-slip boundary condition, generates anomalous transport. We explore the impact of this mechanism upon longitudinal dispersion via a model random porous network and develop a continuous-time random walk that predicts both preasymptotic and asymptotic transport. In the absence of diffusion, the ergodicity of chaotic fluid orbits acts to suppress longitudinal dispersion from ballistic to superdiffusive transport, with asymptotic variance scaling as σ(L)(2)(t)∼t(2)/(ln t)(3). These results demonstrate that anomalous transport is inherent to homogeneous porous media and has significant implications for macrodispersion. PMID:25615192

  16. How Hydrate Saturation Anomalies are Diffusively Constructed and Advectively Smoothed

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.; Irizarry, J. T.; VanderBeek, B. P.; Handwerger, A. L.

    2015-12-01

    The physical processes that control the bulk characteristics of hydrate reservoirs are captured reasonably well by long-established model formulations that are rooted in laboratory-verified phase equilibrium parameterizations and field-based estimates of in situ conditions. More detailed assessments of hydrate distribution, especially involving the occurrence of high-saturation hydrate anomalies have been more difficult to obtain. Spatial variations in sediment properties are of central importance for modifying the phase behavior and promoting focussed fluid flow. However, quantitative predictions of hydrate anomaly development cannot be made rigorously without also addressing the changes in phase behavior and mechanical balances that accompany changes in hydrate saturation level. We demonstrate how pore-scale geometrical controls on hydrate phase stability can be parameterized for incorporation in simulations of hydrate anomaly development along dipping coarse-grained layers embedded in a more fine-grained background that is less amenable to fluid transport. Model simulations demonstrate how hydrate anomaly growth along coarse-layer boundaries is promoted by diffusive gas transport from the adjacent fine-grained matrix, while advective transport favors more distributed growth within the coarse-grained material and so effectively limits the difference between saturation peaks and background levels. Further analysis demonstrates how sediment contacts are unloaded once hydrate saturation reaches sufficient levels to form a load-bearing skeleton that can evolve to produce segregated nodules and lenses. Decomposition of such growth forms poses a significant geohazard that is expected to be particularly sensitive to perturbations induced by gas extraction. The figure illustrates the predicted evolution of hydrate saturation Sh in a coarse-grained dipping layer showing how prominent bounding hydrate anomalies (spikes) supplied by diffusive gas transport at early times

  17. Higher Education Co-operation and Western Dominance of Knowledge Creation and Flows in Third World Countries.

    ERIC Educational Resources Information Center

    Selvaratnam, Viswanathan

    1988-01-01

    Third World adoption of the Western university and the accompanying Eurocentric system of information flow is criticized as sometimes being counterproductive and alien to developing nations. The potential for a self-reliant, interdependent higher education system among Third World countries is discussed. (MSE)

  18. Effects of upstream-biased third-order space correction terms on multidimensional Crowley advection schemes

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1985-01-01

    The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.

  19. Perturbation analysis of steady and unsteady electrohydrodynamic chaotic advection inside translating drops

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Vainchtein, Dmitri; Ward, Thomas

    2015-08-01

    A drop translating in the presence of an electric field is studied analytically. The flow is a combination of a Hadamard-Rybczynski and a Taylor circulation due to the translation and electric field, respectively. We consider chaotic advection that is generated by (1) tilting and (2) time-dependent modulation of the electric field. For the analysis we consider small perturbations in time and space to what is otherwise an integrable flow. By using a robust analytical technique we find an adiabatic invariant (AI) for the system by averaging the equations of motion. The chaotic advection is due to quasirandom jumps of the AI after crossing the separatrix of the unperturbed flow. We demonstrate that the asymptotic analysis leads to a set of criteria that can be used to optimize stirring in these systems.

  20. A positive finite-difference advection scheme

    SciTech Connect

    Hundsdorfer, W.; Koren, B.; Loon, M. van

    1995-03-01

    This paper examines a class of explicit finite-difference advection schemes derived along the method of lines. An important application field is large-scale atmospheric transport. The paper therefore focuses on the demand of positivity. For the spatial discretization, attention is confined to conservative schemes using five points per direction. The fourth-order central scheme and the family of {kappa}-schemes, comprising the second-order central, the second-order upwind, and the third-order upwind biased, are studied. Positivity is enforced through flux limiting. It is concluded that the limited third-order upwind discretization is the best candidate from the four examined. For the time integration attention is confined to a number of explicit Runge-Kutta methods of orders two to four. With regard to the demand of positivity, these integration methods turn out to behave almost equally and no best method could be identified. 16 refs., 4 figs., 4 tabs.

  1. Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica)

    NASA Astrophysics Data System (ADS)

    Sanfilippo, Alessio; Tribuzio, Riccardo; Tiepolo, Massimo; Berno, Davide

    2015-10-01

    The Jurassic Pineto ophiolite from Corsica exposes a ~1-km-thick troctolite-olivine-gabbro sequence, interpreted to represent a lowermost sector of the gabbroic oceanic crust from a (ultra-)slow spreading system. To constrain the petrogenesis of the olivine-gabbros, minor and trace element analyses of olivine (forsterite = 84-82 mol%) were carried out. Olivine from the olivine-gabbros is depleted in incompatible trace elements (Sc, V, Ti, Y, Zr and heavy rare earth elements) with respect to olivines from associated troctolites. Depleted incompatible element compositions are also shown by olivine (forsterite = 86 mol%) from a clinopyroxene-rich troctolite. The incompatible element compositions of olivine argue against a petrogenetic process entirely driven by fractional crystallization. We propose that melts migrating through an olivine-plagioclase crystal mush chemically evolved by reaction with the existing minerals, changing in composition as it flowed upward. The melt residual from these interactions led to partial dissolution of preexisting olivine and to crystallization of clinopyroxene, generating olivine-gabbro bodies within a troctolite matrix. Reactive flow was the major evolution process active in the ~1-km crustal transect exposed at the Pineto ophiolite, producing lithological variations classically attributed to fractional crystallization processes.

  2. Relative importance of gas-phase diffusive and advective tichloroethene (TCE) fluxes in the unsaturated zone under natural conditions.

    PubMed

    Choi, Jee-Won; Tillman, Fred D; Smith, James A

    2002-07-15

    It was hypothesized that atmospheric pressure changes can induce gas flow in the unsaturated zone to such an extent that the advective flux of organic vapors in unsaturated-zone soil gas can be significant relative to the gas-phase diffusion flux of these organic vapors. To test this hypothesis, a series of field measurements and computer simulations were conducted to simulate and compare diffusion and advection fluxes at a trichloroethene-contaminated field site at Picatinny Arsenal in north-central New Jersey. Moisture content temperature, and soil-gas pressure were measured at multiple depths (including at land surface) and times for three distinct sampling events in August 1996, October 1996, and August 1998. Gas pressures in the unsaturated zone changed significantly over time and followed changes measured in the atmosphere. Gas permeability of the unsaturated zone was estimated using data from a variety of sources, including laboratory gas permeability measurements made on intact soil cores from the site, a field air pump test, and calibration of a gas-flow model to the transient, one-dimensional gas pressure data. The final gas-flow model reproduced small pressure gradients as observed in the field during the three distinct sampling events. The velocities calculated from the gas-flow model were used in transient, one-dimensional transport simulations to quantify advective and diffusive fluxes of TCE vapor from the subsurface to the atmosphere as a function of time for each sampling event. Effective diffusion coefficients used for these simulations were determined from independent laboratory measurements made on intact soil cores collected from the field site. For two of the three sampling events (August 1996 and August 1998), the TCE gas-phase diffusion flux at land surface was significantly greater than the advection flux over the entire sampling period. For the second sampling event (October 1996), the advection flux was frequently larger than the

  3. Mechanisms for trapping and mobilization of residual fluids during capillary-dominated three-phase flow in porous rock

    NASA Astrophysics Data System (ADS)

    Helland, J. O.; Jettestuen, E.

    2016-07-01

    We use a multiphase level set approach to simulate capillary-controlled motions of isolated fluid ganglia surrounded by two other continuous fluids (i.e., double displacements) during three-phase flow on 3-D porous rock geometries. Double displacements and three-phase snap-off mechanisms are closely related. Water snap-off on gas/oil interfaces can initiate double displacements that mobilize isolated oil ganglia in water-wet rock, but it can also terminate ongoing double displacements and trap oil in water. The multiphase level set approach allows for calculating the evolution of disconnected-phase pressure during the motion. In the events of pore filling by double displacement of oil ganglia, and water snap-off on gas/oil interfaces, we find that the local gas/oil capillary pressure drops, while local oil/water capillary pressure increases, by a similar magnitude as observed for the capillary pressure drops during single-pore filling events in dynamic pore-scale experiments of two-phase drainage. We also find that oil ganglia decrease their surface area, and achieve a more compact shape, when the gas/oil interfacial area decreases at the expense of increased oil/water interfacial area during double displacement. By comparison with similar two-phase gas/water simulations, we find that the level of the gas/water capillary pressure curves, including hysteresis loops, are smaller when a mobile, disconnected oil is present, which suggests double displacement of oil is more favorable than direct gas/water displacement. We also present cases in which phase trapping occurred in the three-phase simulations, but not in the corresponding two-phase simulations, supporting the view that more trapping is possible in three-phase flow.

  4. On the kinematics and efficiency of advective mixing during gastric digestion - A numerical analysis.

    PubMed

    Ferrua, Maria J; Xue, Zhengjun; Singh, R Paul

    2014-11-28

    The mixing performance of gastric contents during digestion is expected to have a major role on the rate and final bioavailability of nutrients within the body. The aim of this study was to characterize the ability of the human stomach to advect gastric contents with different rheological properties. The flow behavior of two Newtonian fluids (10(-3)Pas, 1Pas) and a pseudoplastic solution (K=0.223Pas(0.59)) during gastric digestion were numerically characterized within a simplified 3D model of the stomach geometry and motility during the process (ANSYS-FLUENT). The advective performances of each of these gastric flows were determined by analyzing the spatial distribution and temporal history of their stretching abilities (Lagrangian analysis). Results illustrate the limited influence that large retropulsive and vortex structures have on the overall dynamics of gastric flows. Even within the distal region, more than 50% of the flow experienced velocity and shear values lower than 10% of their respective maximums. While chaotic, gastric advection was always relatively poor (with Lyapunov exponents an order of magnitude lower than those of a laminar stirred tank). Contrary to expectations, gastric rheology had only a minor role on the advective properties of the flow (particularly within the distal region). As viscosity increased above 1St, the role of fluid viscosity became largely negligible. By characterizing the fluid dynamic and mixing conditions that develop during digestion, this work will inform the design of novel in vitro systems of enhanced biomechanical performance and facilitate a more accurate diagnosis of gastric digestion processes. PMID:25446267

  5. Contrasting mass-wasting activity in two debris flow-dominated catchments of the Venosta Valley/Vinschgau (Italy): 1945-2014

    NASA Astrophysics Data System (ADS)

    Lazzarini, Simone; Brardinoni, Francesco; Draganits, Erich; Cavalli, Marco

    2015-04-01

    combines zones with colluvial transport regimes with areas in which fluvial transport prevails, whereas Plaies is essentially dominated by mass-wasting processes strongly controlled by the dynamics of the overhanging Ortler Glacier. Further, Cengles is a supply-limited system, since there the occurrence of debris flows is strongly controlled by in-channel sediment evacuation and recharge cycles that interact with the overcoming of variable hydrometeorological thresholds. In contrast, Plaies is a transport-limited resulting from the almost unlimited availability of loose, mainly glacigenic material that can be mobilized. The debris-flow activity in Plaies is strongly controlled by a combination of hydrometeorological forcing and glacier dynamics. This work is part of SedAlp (www.sedalp.eu), a project funded through the Alpine Space Programme.

  6. Effects of advection on the seasonal abundance patterns of three species of planktonic calanoid copepods in Dabob Bay, Washington

    NASA Astrophysics Data System (ADS)

    Osgood, Kenric E.; Frost, Bruce W.

    1996-08-01

    The copepodid stage abundances of Calanus marshallae, Calanus pacificus and Metridia pacifica in Dabob Bay, Washington were followed through two years. Based on the species' life histories, vertical distributions, abundances inside and outside the bay, and the hydrographic setting, times when advection was important were explored. During the first study-year, 1973, advection acted to keep the copepod concentrations inside and outside Dabob Bay similar through the early summer. During the summer, a period of very little advective exchange, the copepod concentrations diverged at the two stations. In the fall, when advection picked up again, the copepod concentrations at the two stations once again became similar. During the summer of the other study-year, 1982, flow of deep water into Dabob Bay occurred. This may have caused some of the differences observed in the abundances of the copepods during the summer of 1982 vs 1973. Due in part to the advective events, the seasonal abundance patterns of the copepods could not be predicted based upon their locally expressed life history patterns. The most striking example of this was C. pacificus. Its population decreased during the spring and increased during the fall, despite having its major reproductive peak in the spring. Advective effects clearly contributed to this.

  7. Nonlinear Advection Algorithms Applied to Inter-related Tracers: Errors and Implications for Modeling Aerosol-Cloud Interactions

    SciTech Connect

    Ovtchinnikov, Mikhail; Easter, Richard C.

    2009-02-01

    Monotonicity constraints and gradient preserving flux corrections employed by many advection algorithms used in atmospheric models make these algorithms non-linear. Consequently, any relations among model variables transported separately are not necessarily preserved in such models. These errors cannot be revealed by traditional algorithm testing based on advection of a single tracer. New type of tests are developed and conducted to evaluate the preservation of a sum of several number mixing ratios advected independently of each other, as is the case, for example, in models using bin or sectional representation of aerosol or cloud particle size distribution. The tests show that when three tracers are advected in 1D uniform constant velocity flow, local errors in the sum can be on the order of 10%. When cloud-like interactions are allowed among the tracers, errors in total sum of three mixing ratios can reach up to 30%. Several approaches to eliminate the error are suggested, all based on advecting the sum as a separate variable and then normalizing mixing ratios for individual tracers to match the total sum. A simple scalar normalization preserves the total number mixing ratio and positive definiteness of the variables but the monotonicity constraint for individual tracers is no longer maintained. More involved flux normalization procedures are developed for the flux based advection algorithms to maintain the monotonicity for individual scalars and their sum.

  8. Scalar variance decay in chaotic advection and Batchelor-regime turbulence.

    PubMed

    Fereday, D R; Haynes, P H; Wonhas, A; Vassilicos, J C

    2002-03-01

    The decay of the variance of a diffusive scalar in chaotic advection flow (or equivalently Batchelor-regime turbulence) is analyzed using a model in which the advection is represented by an inhomogeneous baker's map on the unit square. The variance decays exponentially at large times, with a rate that has a finite limit as the diffusivity kappa tends to zero and is determined by the action of the inhomogeneous map on the gravest Fourier modes in the scalar field. The decay rate predicted by recent theoretical work that follows scalar evolution in linear flow and then averages over all stretching histories is shown to be incorrect. The exponentially decaying scalar field is shown to have a spatial power spectrum of the form P(k) approximately k(-sigma) at wave numbers small enough for diffusion to be neglected, with sigma<1.

  9. A Comparative Study of Indoor Radon Contributed by Diffusive and Advective Transport through Intact Concrete

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20 Pa to 73.3 kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.

  10. Shadowing and the role of small diffusivity in the chaotic advection of scalars

    NASA Technical Reports Server (NTRS)

    Klapper, I.

    1992-01-01

    Using techniques from shadowing theory, the solution of the scalar advection-diffusion equation is studied. It is shown that, under certain circumstances, the effect of small scalar diffusivity is to smooth the zero-diffusivity solution by averaging local fine-scaled structure against a Gaussian. The method of study depends on shadowing and thus fails for nonuniformly stretching systems, its failure suggesting the ways in which the effects of asymptotically small molecular diffusion can become nonlocal in chaotic fluid flows.

  11. Solving turbulent diffusion flame in cylindrical frame applying an improved advective kinetics scheme

    NASA Astrophysics Data System (ADS)

    Darbandi, Masoud; Ghafourizadeh, Majid

    2015-12-01

    In this work, we derive a few new advective flux approximation expressions, apply them in a hybrid finite-volume-element (FVE) formulation, and solve the turbulent reacting flow governing equations in the cylindrical frame. To derive these advective-kinetic-based expressions, we benefit from the advantages of a physical influence scheme (PIS) basically, extend it to the cylindrical frame suitably, and approximate the required advective flux terms at the cell faces more accurately. The present numerical scheme not only respects the physics of flow correctly but also resolves the pressure-velocity coupling problem automatically. We also suggest a bi-implicit algorithm to solve the set of coupled turbulent reacting flow governing equations, in which the turbulence and chemistry governing equations are solved simultaneously. To evaluate the accuracy of new derived FVE-PIS expressions, we compare the current solutions with other available numerical solutions and experimental data. The comparisons show that the new derived expressions provide some more advantages over the past numerical approaches in solving turbulent diffusion flame in the cylindrical frame. Indeed, the current method and formulations can be used to solve and analyze the turbulent diffusion flames in the cylindrical coordinates very reliably.

  12. Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal.

    PubMed

    Richon, Patrick; Perrier, Frédéric; Koirala, Bharat Prasad; Girault, Frédéric; Bhattarai, Mukunda; Sapkota, Soma Nath

    2011-02-01

    Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m(-2) d(-1). Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO(2) concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m(-3), but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO(2) advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m(-3), remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S(1) and semi-diurnal S(2) periodic components. At the advection-dominated points, radon concentration did not exhibit S(1) or S(2) components. At the reference points, however, the S(2) component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S(1) component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the

  13. The prediction of sea-surface temperature variations by means of an advective mixed-layer ocean model

    NASA Technical Reports Server (NTRS)

    Atlas, R. M.

    1976-01-01

    An advective mixed layer ocean model was developed by eliminating the assumption of horizontal homogeneity in an already existing mixed layer model, and then superimposing a mean and anomalous wind driven current field. This model is based on the principle of conservation of heat and mechanical energy and utilizes a box grid for the advective part of the calculation. Three phases of experiments were conducted: evaluation of the model's ability to account for climatological sea surface temperature (SST) variations in the cooling and heating seasons, sensitivity tests in which the effect of hypothetical anomalous winds was evaluated, and a thirty-day synoptic calculation using the model. For the case studied, the accuracy of the predictions was improved by the inclusion of advection, although nonadvective effects appear to have dominated.

  14. Advective transport in heterogeneous aquifers: Are proxy models predictive?

    NASA Astrophysics Data System (ADS)

    Fiori, A.; Zarlenga, A.; Gotovac, H.; Jankovic, I.; Volpi, E.; Cvetkovic, V.; Dagan, G.

    2015-12-01

    We examine the prediction capability of two approximate models (Multi-Rate Mass Transfer (MRMT) and Continuous Time Random Walk (CTRW)) of non-Fickian transport, by comparison with accurate 2-D and 3-D numerical simulations. Both nonlocal in time approaches circumvent the need to solve the flow and transport equations by using proxy models to advection, providing the breakthrough curves (BTC) at control planes at any x, depending on a vector of five unknown parameters. Although underlain by different mechanisms, the two models have an identical structure in the Laplace Transform domain and have the Markovian property of independent transitions. We show that also the numerical BTCs enjoy the Markovian property. Following the procedure recommended in the literature, along a practitioner perspective, we first calibrate the parameters values by a best fit with the numerical BTC at a control plane at x1, close to the injection plane, and subsequently use it for prediction at further control planes for a few values of σY2≤8. Due to a similar structure and Markovian property, the two methods perform equally well in matching the numerical BTC. The identified parameters are generally not unique, making their identification somewhat arbitrary. The inverse Gaussian model and the recently developed Multi-Indicator Model (MIM), which does not require any fitting as it relates the BTC to the permeability structure, are also discussed. The application of the proxy models for prediction requires carrying out transport field tests of large plumes for a long duration.

  15. Predicting salt advection in groundwater from saline aquaculture ponds

    NASA Astrophysics Data System (ADS)

    Verrall, D. P.; Read, W. W.; Narayan, K. A.

    2009-01-01

    SummaryThis paper predicts saltwater advection in groundwater from leaky aquaculture ponds. A closed form solution for the potential function, stream function and velocity field is derived via the series solutions method. Numerically integrating along different streamlines gives the location (or advection front) of saltwater throughout the domain for any predefined upper time limit. Extending this process produces a function which predicts advection front location against time. The models considered in this paper are easily modified given knowledge of the required physical parameters.

  16. Advection and the Efficiency of Spectral Energy Transfer in Two-Dimensional Turbulence.

    PubMed

    Fang, Lei; Ouellette, Nicholas T

    2016-09-01

    We report measurements of the geometric alignment of the small-scale turbulent stress and the large-scale rate of strain that together lead to the net flux of energy from small scales to large scales in two-dimensional turbulence. We find that the instantaneous alignment between these two tensors is weak and, thus, that the spectral transport of energy is inefficient. We show, however, that the strain rate is much better aligned with the stress at times in the past, suggesting that the differential advection of the two is responsible for the inefficient spectral transfer. We provide evidence for this conjecture by measuring the alignment statistics conditioned on weakly changing stress history. Our results give new insight into the relationship between scale-to-scale energy transfer, geometric alignment, and advection in turbulent flows.

  17. Advection and the Efficiency of Spectral Energy Transfer in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Fang, Lei; Ouellette, Nicholas T.

    2016-09-01

    We report measurements of the geometric alignment of the small-scale turbulent stress and the large-scale rate of strain that together lead to the net flux of energy from small scales to large scales in two-dimensional turbulence. We find that the instantaneous alignment between these two tensors is weak and, thus, that the spectral transport of energy is inefficient. We show, however, that the strain rate is much better aligned with the stress at times in the past, suggesting that the differential advection of the two is responsible for the inefficient spectral transfer. We provide evidence for this conjecture by measuring the alignment statistics conditioned on weakly changing stress history. Our results give new insight into the relationship between scale-to-scale energy transfer, geometric alignment, and advection in turbulent flows.

  18. Advection and the Efficiency of Spectral Energy Transfer in Two-Dimensional Turbulence.

    PubMed

    Fang, Lei; Ouellette, Nicholas T

    2016-09-01

    We report measurements of the geometric alignment of the small-scale turbulent stress and the large-scale rate of strain that together lead to the net flux of energy from small scales to large scales in two-dimensional turbulence. We find that the instantaneous alignment between these two tensors is weak and, thus, that the spectral transport of energy is inefficient. We show, however, that the strain rate is much better aligned with the stress at times in the past, suggesting that the differential advection of the two is responsible for the inefficient spectral transfer. We provide evidence for this conjecture by measuring the alignment statistics conditioned on weakly changing stress history. Our results give new insight into the relationship between scale-to-scale energy transfer, geometric alignment, and advection in turbulent flows. PMID:27636478

  19. Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.

    PubMed

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal

    2012-05-15

    Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point.

  20. Anomalous scaling of a scalar field advected by turbulence

    SciTech Connect

    Kraichnan, R.H.

    1995-12-31

    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  1. Super-diffusion versus competitive advection processes on the solar surface

    NASA Astrophysics Data System (ADS)

    Del Moro, Dario; Berrilli, Francesco; Giovannelli, Luca; Scardigli, Stefano; Giannattasio, Fabio; Consolini, Giuseppe; Lepreti, Fabio

    2016-04-01

    From the analysis of the displacement spectrum of magnetic element, it has recently been agreed that a regime of super-diffusivity dominates the solar surface. Quite habitually this result is discussed in the framework of fully developed turbulence. However, the debate whether the super-diffusivity is generated by a turbulent dispersion process, by the advection due to the convective pattern, or even by another process is still open, as is the question of the amount of diffusivity at the scales relevant to the local dynamo process. To understand how such peculiar diffusion in the solar atmosphere takes place, we compared the results from two different data sets (ground-based and space-borne) and confronted those results also to simulation of passive tracers advection. The displacement spectra of the magnetic elements obtained by the data sets are consistent in retrieving a super-diffusive regime for the solar photosphere, but also the simulation shows a super-diffusive displacement spectrum: its competitive advection process can reproduce the signature of super-diffusion. Therefore, it is not necessary to hypothesize a totally developed turbulence regime to explain the motion of the magnetic elements on the solar surface.

  2. Straining and advection contributions to the mixing process in the Patos Lagoon estuary, Brazil

    NASA Astrophysics Data System (ADS)

    Marques, Wilian C.; Fernandes, Elisa H. L.; Rocha, Luiz A. O.

    2011-03-01

    The estuarine area of coastal lagoons and freshwater-influenced regions presents periodically stratified and destratified conditions. The Patos Lagoon, one of the most important hydrological resources in South America, is located in the southernmost part of Brazil and exhibits such variable conditions. Therefore the aim of this study was to investigate the contributions of straining and advection to the modulation of stratification conditions in the Patos Lagoon estuarine region using potential energy anomaly budgets. This study was based a three-dimensional hydrodynamic numerical model that provided information for the potential energy anomaly equation and wavelet analysis. Results from the potential energy anomaly time series revealed strong variability over a timescale of several days following local wind action and the river discharge pattern. Each part of the estuary exhibited contrasting regimes that were spatially distributed with a different balance of terms. The upper part was dominated by along-shore currents associated with east-west wind component and gravitational flux. Contribution from cross-shore advection became important in the middle part of the estuary, where there was an increase in superficial area observed. The lower region was controlled by the north-south wind component being influenced by advection, cross-shore straining, and transversal circulation, suggesting that current velocity maintained transversal pressure gradients and further circulation. Nonlinear interactions between deviations in the dispersion terms and vertical density and velocity were important everywhere but were associated with modulation effects.

  3. A spatial SIS model in advective heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Cui, Renhao; Lou, Yuan

    2016-09-01

    We study the effects of diffusion and advection for a susceptible-infected-susceptible epidemic reaction-diffusion model in heterogeneous environments. The definition of the basic reproduction number R0 is given. If R0 < 1, the unique disease-free equilibrium (DFE) is globally asymptotically stable. Asymptotic behaviors of R0 for advection rate and mobility of the infected individuals (denoted by dI) are established, and the existence of the endemic equilibrium when R0 > 1 is studied. The effects of diffusion and advection rates on the stability of the DFE are further investigated. Among other things, we find that if the habitat is a low-risk domain, there may exist one critical value for the advection rate, under which the DFE changes its stability at least twice as dI varies from zero to infinity, while the DFE is unstable for any dI when the advection rate is larger than the critical value. These results are in strong contrast with the case of no advection, where the DFE changes its stability at most once as dI varies from zero to infinity.

  4. A Method for Measuring Subcanopy CO2 Advection

    NASA Astrophysics Data System (ADS)

    Staebler, R. M.; Fitzjarrald, D. R.

    2004-12-01

    Underestimation of nocturnal CO2 respiration under calm conditions remains an unsolved problem at many forest flux stations, and several groups are currently investigating the direct measurement of horizontal advection of CO2. This presentation will describe a systematic, relatively low-cost methodology developed to determine whether horizontal mean transport of CO2 accounts for the missing CO2 at the Harvard Forest (Petersham, MA). This methodology includes the characterization of subcanopy motions, determining the appropriate size of the subcanopy network required to make the measurements, developing a method of integrating the measurements in the vertical, and determining the required averaging time. Measurements were conducted over 4 years and produced data for 310 nights covering all seasons. Subcanopy flows were decoupled from the flows aloft 75% of the time. Conditions conducive to the generation of negative buoyancy near the forest floor, necessary for drainage flows to develop, were given in 92% of all nights. The occurrence of nocturnal drainage flows correlated well with "missing flux" problems ("deficit nights"), prompting us to propose an improvement on the commonly used friction velocity criterion (which requires u* to be larger than some empirical cut-off for the eddy fluxes to be considered credible). The "negative buoyancy forcing fraction", i.e. negative buoyancy as a fraction of the sum of the dynamic driving forces, can be shown to predict deficit nights significantly better than the u* cut-off. The appropriate horizontal size of the network of wind and CO2 sensors at the Harvard Forest was shown to be on the order of 100 m, ensuring that sensors were generally observing coherent processes on this scale or larger and thus displaying some correlation. Horizontal transport of CO2 was found to be restricted to the bottom ~10 m of the forest, facilitating the development of a method of integrating the horizontal CO2 gradients in the vertical

  5. Propagating longitudinal contractions in the ileum of the rabbit--efficiency of advective mixing.

    PubMed

    Fullard, Luke; Lammers, Willem; Wake, Graeme C; Ferrua, Maria J

    2014-11-01

    Three longitudinal motions of the rabbit small intestine were modelled in the CFD software Polyflow using ex vivo experimental data previously reported in literature. Consideration was given to chyme rheology and mixing performance of the macro-scale lumenal motions, as triggered by the observed wall motions. Simulations were performed to qualitatively assess the flow behaviour. The advective properties of the flow were universally characterised by analysing the stretching ability of the flow. Two Newtonian fluids, with viscosities of μ = 1 Pa s and μ = 0.001 Pa s, and a non-Newtonian shear-thinning fluid (Bird-Carreau relationship with n = 0.41, λ = 0.1, η∞ = 5.01 × 10(-9) Pa s and η0 = 0.65 Pa s) were investigated. It was found that both the type of contraction and chyme rheology significantly affected the flow and subsequent efficiency of advective motions in the intestinal core. Results also showed that shear rates generated were too small to unveil the pseudo-plastic behaviour of the non-Newtonian fluid. Of the longitudinal motions analysed, the oral propagation was the one leading to the higher, but also the most localised levels of stretching in the rabbit small intestine. This oral propagation was largely characterised by an ordered axial flow and was able to facilitate mixing by stretching material elements in the vicinity of the intestinal wall, particularly in the case of a low viscous water like fluid. PMID:25000221

  6. Role of advection in Arctic Ocean lower trophic dynamics: A modeling perspective

    NASA Astrophysics Data System (ADS)

    Popova, E. E.; Yool, A.; Aksenov, Y.; Coward, A. C.

    2013-03-01

    The Arctic Ocean (AO) is an oligotrophic system with a pronounced subsurface Chl-a maximum dominating productivity over the majority of the basin. Strong haline stratification of the AO and substantial ice cover suppress vertical mixing and restrict the vertical supply of nutrients to the photic zone. In such a vertically stratified oligotrophic system, the horizontal supply of nutrients by advection plays an important role in sustaining primary production. In this paper, we attempt to characterize the role of nutrient advection in the maintenance of the subsurface Chl-a maximum, using timescales to determine the connectivity between the photic zone of the deep AO, nutrient-rich Pacific and Atlantic inflow waters, and bottom waters of the wide continental shelves of the AO. Our study uses output from a general circulation model, Nucleus for European Modeling of the Ocean, coupled to a model of ocean biogeochemistry, Model of Ecosystem Dynamics, carbon Utilization, Sequestration, and Acidification. A Lagrangian particle tracking approach is used to back-track water from where it forms subsurface Chl-a maxima to the points of entry into the AO and to analyze nutrient transformation along the route. Our experiments show that advective timescales linking subsurface layers of the central AO with the nutrient-rich Pacific and Atlantic waters do not exceed 15-20 years and that the advective supply of shelf nutrients to the deep AO occurs on the timescale of about 5 years. We show substantial role of the continental shelf pump in sustaining up to 20% of total AO primary production.

  7. A finite element-boundary element method for advection-diffusion problems with variable advective fields and infinite domains

    SciTech Connect

    Driessen, B.J.; Dohner, J.L.

    1998-08-01

    In this paper a hybrid, finite element--boundary element method which can be used to solve for particle advection-diffusion in infinite domains with variable advective fields is presented. In previous work either boundary element, finite element, or difference methods have been used to solve for particle motion in advective-diffusive domains. These methods have a number of limitations. Due to the complexity of computing spatially dependent Green`s functions, the boundary element method is limited to domains containing only constant advective fields, and due to their inherent formulation, finite element and finite difference methods are limited to only domains of finite spatial extent. Thus, finite element and finite difference methods are limited to finite space problems for which the boundary element method is not, and the boundary element method is limited to constant advection field problems for which finite element and finite difference methods are not. In this paper it is proposed to split a domain into two sub-domains, and for each of these sub domains, apply the appropriate solution method; thereby, producing a method for the total infinite space, variable advective field domain.

  8. Stationary spots and stationary arcs induced by advection in a one-activator, two-inhibitor reactive system.

    PubMed

    Berenstein, Igal; Bullara, Domenico; De Decker, Yannick

    2014-09-01

    This paper studies the spatiotemporal dynamics of a reaction-diffusion-advection system corresponding to an extension of the Oregonator model, which includes two inhibitors instead of one. We show that when the reaction-diffusion, two-dimensional problem displays stationary patterns the addition of a plug flow can induce the emergence of new types of stationary structures. These patterns take the form of spots or arcs, the size and the spacing of which can be controlled by the flow.

  9. Diel Drift Patterns and Spatio-temporal Distribution of Macroinvertebrates in the Blanco River, Texas: A Groundwater Dominated Stream Subject to Intermittent Flow

    NASA Astrophysics Data System (ADS)

    Pendergrass, D. R.; Arsuffi, T. L.

    2005-05-01

    The Blanco River is a relatively pristine karst stream in central Texas and designated a conservation target by The Nature Conservancy. It is fed primarily by groundwater in the upper reaches and dominated by runoff and intermittency downstream. The spatial and temporal structure of macroinvertebrates in the Blanco River was assessed with seasonal Hess and d-net samples during 2003-2004 and three diel drift samples from May to October 2004. Our downstream site showed a 47% drop in diversity, but comparable abundances to up- and mid-stream sites. Ephemeropteran and trichopteran taxa (e.g. Tricorythodes and Cheumatopsyche) comprised about 60% of drift and benthic samples alike, however, non-insect taxa were nearly absent from the drift. Some taxa not present in the benthic samples were present in the drift. Post-dusk and pre-dawn peaks in diel drift were discerned. No strong seasonal patterns were detected which may be attributable to an unusually wet year and asynchronous, multivoltinous life cycles associated with mild seasonality in subtropical regions. The Blanco River's historically variable hydrological regime may be further exacerbated by long-term flow alteration associated with increasing anthropogenic development and could alter the composition and distribution of macroinvertebrate assemblages.

  10. Universal limiter for transient interpolation modeling of the advective transport equations: The ULTIMATE conservative difference scheme

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1988-01-01

    A fresh approach is taken to the embarrassingly difficult problem of adequately modeling simple pure advection. An explicit conservative control-volume formation makes use of a universal limiter for transient interpolation modeling of the advective transport equations. This ULTIMATE conservative difference scheme is applied to unsteady, one-dimensional scalar pure advection at constant velocity, using three critical test profiles: an isolated sine-squared wave, a discontinuous step, and a semi-ellipse. The goal, of course, is to devise a single robust scheme which achieves sharp monotonic resolution of the step without corrupting the other profiles. The semi-ellipse is particularly challenging because of its combination of sudden and gradual changes in gradient. The ULTIMATE strategy can be applied to explicit conservation schemes of any order of accuracy. Second-order schemes are unsatisfactory, showing steepening and clipping typical of currently popular so-called high resolution shock-capturing of TVD schemes. The ULTIMATE third-order upwind scheme is highly satisfactory for most flows of practical importance. Higher order methods give predictably better step resolution, although even-order schemes generate a (monotonic) waviness in the difficult semi-ellipse simulation. Little is to be gained above ULTIMATE fifth-order upwinding which gives results close to the ultimate for which one might hope.

  11. Round window membrane intracochlear drug delivery enhanced by induced advection.

    PubMed

    Borkholder, David A; Zhu, Xiaoxia; Frisina, Robert D

    2014-01-28

    Delivery of therapeutic compounds to the inner ear via absorption through the round window membrane (RWM) has advantages over direct intracochlear infusions; specifically, minimizing impact upon functional hearing measures. However, previous reports show that significant basal-to-apical concentration gradients occur, with the potential to impact treatment efficacy. Here we present a new approach to inner ear drug delivery with induced advection aiding distribution of compounds throughout the inner ear in the murine cochlea. Polyimide microtubing was placed near the RWM niche through a bullaostomy into the middle ear cavity allowing directed delivery of compounds to the RWM. We hypothesized that a posterior semicircular canalostomy would induce apical flow from the patent cochlear aqueduct to the canalostomy due to influx of cerebral spinal fluid. To test this hypothesis, young adult CBA/CaJ mice were divided into two groups: bullaostomy approach only (BA) and bullaostomy+canalostomy (B+C). Cochlear function was evaluated by distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) thresholds during and after middle ear infusion of salicylate in artificial perilymph (AP), applied near the RWM. The mice recovered for 1week, and were re-tested. The results demonstrate there was no significant impact on auditory function utilizing the RWM surgical procedure with or without the canalostomy, and DPOAE thresholds were elevated reversibly during the salicylate infusion. Comparing the threshold shifts for both methods, the B+C approach had more of a physiological effect than the BA approach, including at lower frequencies representing more apical cochlear locations. Unlike mouse cochleostomies, there was no deleterious auditory functional impact after 1week recovery from surgery. The B+C approach had more drug efficacy at lower frequencies, underscoring potential benefits for more precise control of delivery of inner ear therapeutic compounds

  12. Round window membrane intracochlear drug delivery enhanced by induced advection.

    PubMed

    Borkholder, David A; Zhu, Xiaoxia; Frisina, Robert D

    2014-01-28

    Delivery of therapeutic compounds to the inner ear via absorption through the round window membrane (RWM) has advantages over direct intracochlear infusions; specifically, minimizing impact upon functional hearing measures. However, previous reports show that significant basal-to-apical concentration gradients occur, with the potential to impact treatment efficacy. Here we present a new approach to inner ear drug delivery with induced advection aiding distribution of compounds throughout the inner ear in the murine cochlea. Polyimide microtubing was placed near the RWM niche through a bullaostomy into the middle ear cavity allowing directed delivery of compounds to the RWM. We hypothesized that a posterior semicircular canalostomy would induce apical flow from the patent cochlear aqueduct to the canalostomy due to influx of cerebral spinal fluid. To test this hypothesis, young adult CBA/CaJ mice were divided into two groups: bullaostomy approach only (BA) and bullaostomy+canalostomy (B+C). Cochlear function was evaluated by distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) thresholds during and after middle ear infusion of salicylate in artificial perilymph (AP), applied near the RWM. The mice recovered for 1week, and were re-tested. The results demonstrate there was no significant impact on auditory function utilizing the RWM surgical procedure with or without the canalostomy, and DPOAE thresholds were elevated reversibly during the salicylate infusion. Comparing the threshold shifts for both methods, the B+C approach had more of a physiological effect than the BA approach, including at lower frequencies representing more apical cochlear locations. Unlike mouse cochleostomies, there was no deleterious auditory functional impact after 1week recovery from surgery. The B+C approach had more drug efficacy at lower frequencies, underscoring potential benefits for more precise control of delivery of inner ear therapeutic compounds.

  13. Round Window Membrane Intracochlear Drug Delivery Enhanced by Induced Advection

    PubMed Central

    Borkholder, David A.; Zhu, Xiaoxia; Frisina, Robert D.

    2014-01-01

    Delivery of therapeutic compounds to the inner ear via absorption through the round window membrane (RWM) has advantages over direct intracochlear infusions; specifically, minimizing impact upon functional hearing measures. However, previous reports show that significant basal-to-apical concentration gradients occur, with the potential to impact treatment efficacy. Here we present a new approach to inner ear drug delivery with induced advection aiding distribution of compounds throughout the inner ear in the murine cochlea. Polyimide microtubing was placed near the RWM niche through a bullaostomy into the middle ear cavity allowing directed delivery of compounds to the RWM. We hypothesized that a posterior semicircular canalostomy would induce apical flow from the patent cochlear aqueduct to the canalostomy due to influx of cerebral spinal fluid. To test this hypothesis, young adult CBA/CaJ mice were divided into two groups: bullaostomy approach only (BA) and bullaostomy + canalostomy (B+C). Cochlear function was evaluated by distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) thresholds during and after middle ear infusion of salicylate in artificial perilymph (AP), applied near the RWM. The mice recovered for 1 week, and were re-tested. The results demonstrate there was no significant impact on auditory function utilizing the RWM surgical procedure with or without the canalostomy, and DPOAE thresholds were elevated reversibly during the salicylate infusion. Comparing the threshold shifts for both methods, the B+C approach had more of a physiological effect than the BA approach, including at lower frequencies representing more apical cochlear locations. Unlike mouse cochleostomies, there was no deleterious auditory functional impact after 1 week recovery from surgery. The B+C approach had more drug efficacy at lower frequencies, underscoring potential benefits for more precise control of delivery of inner ear therapeutic compounds

  14. Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport

    NASA Astrophysics Data System (ADS)

    Lester, D. R.; Trefry, M. G.; Metcalfe, G.

    2016-11-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.

  15. Trophodynamic and advective influences on Georges Bank larval cod and haddock

    NASA Astrophysics Data System (ADS)

    Werner, Francisco E.; Ian Perry, R.; Gregory Lough, R.; Naimie, Christopher E.

    Using a model-based approach, the relative effects of advective and trophodynamic (feeding and growth) processes are considered on populations of larval cod ( Gadus morhua) and haddock ( Melanogrammus aeglefinus) on Georges Bank. Building on previous studies that describe the role of advection, this study incorporates trophodynamic relationships to examine starvation mortality and growth rates at the level of individual larvae on the Bank. Estimates of prey concentrations and flow fields appropriate for late winter/early spring are used. Both trophodynamic processes and advection influence larval losses from the Bank where, in the absence of starvation, advective losses are on the order of one-fifth of the eggs and larvae spawned on the Bank. Starvation is most important in the first feeding larvae and is much reduced for older larvae. The contact rates between larval fish and zooplankton prey when turbulence is included are 2-5 times greater than the contact rates with no turbulence, and allow the model cod larvae to achieve growth rates similar to those observed on the Bank, although mean rates for larval haddock are still lower than observed. Turbulence-enhanced contact rates are thus determined to be a necessary component in our description of the growth of cod and haddock larvae on Georges Bank. Model cod larvae with growth rates comparable to those observed in the field are located below the surface layer (deeper than 25 m) and inside the 60 m isobath. The region of highest retention due to circulation processes (Werner et al., 1993; Fisheries Oceanography, 2, 43-64) coincides with the region of highest growth rates and highest larval survival. Therefore, there is a complementary interaction between trophodynamic and circulation processes, with those larvae most likely to remain on the Bank also being those in the most favorable feeding regions. Haddock larvae require higher prey densities than cod larvae to survive.

  16. Investigation of the influence of groundwater advection on energy extraction rates for sustainable borehole heat exchanger operation

    NASA Astrophysics Data System (ADS)

    Schelenz, Sophie; Dietrich, Peter; Vienken, Thomas

    2016-04-01

    A sustainable thermal exploitation of the shallow subsurface requires a precise understanding of all relevant heat transport processes. Currently, planning practice of shallow geothermal systems (especially for systems < 30 kW) focuses on conductive heat transport as the main energy source while the impact of groundwater flow as the driver for advective heat transport is neglected or strongly simplified. The presented study proves that those simplifications of complex geological and hydrogeological subsurface characteristics are insufficient for a precise evaluation of site-specific energy extraction rates. Based on synthetic model scenarios with varying subsurface conditions (groundwater flow velocity and aquifer thickness) the impact of advection on induced long term temperature changes in 5 and 10 m distance of the borehole heat exchanger is presented. Extending known investigations, this study enhances the evaluation of shallow geothermal energy extraction rates by considering conductive and advective heat transport under varying aquifer thicknesses. Further, it evaluates the impact of advection on installation lengths of the borehole heat exchanger to optimize the initial financial investment. Finally, an evaluation approach is presented that classifies relevant heat transport processes according to their Péclet number to enable a first quantitative assessment of the subsurface energy regime and recommend further investigation and planning procedures.

  17. Gaining a Better Understanding of Surface-Subsurface Reactive Transport using a High-Order Advection Approach

    NASA Astrophysics Data System (ADS)

    Beisman, J. J., III; Maxwell, R. M.; Navarre-Sitchler, A.; Steefel, C. I.

    2014-12-01

    Understanding the interactions between physical, geochemical, and biological processes in the shallow subsurface is prerequisite to the development of effective contamination remediation techniques, or the accurate quantification of nutrient fluxes and biogeochemical cycling. Here we present recent developments to the massively parallel reactive transport code ParCrunchFlow. This model, previously applicable only to steady-state, saturated subsurface flows, has been extended to transient, surface-subsurface systems. Proof-of-concept simulations detailing reactive transport processes in hillslope and floodplain settings will be presented. In order to reduce the numerical dispersion inherent in grid based advection schemes, which can lead to an over prediction of reaction rates, a weighted, essentially non-oscillatory (WENO) advection scheme has been implemented, providing formal fifth-order spatial and third-order temporal accuracy. We use a mass-conservative, positivity-preserving flux limiter while advecting solute concentrations to prevent non-physical solutions. The effects of advection schemes and their associated numerical dispersion on reaction rates are evaluated by comparing our scheme to a monotonic lower order scheme in a transverse mixing scenario. The work presented here allows a better understanding of nutrient cycling dynamics in watershed systems.

  18. Using stable water isotopes to delineate dominant flow path along hillslopes under varying land uses in a tropical mountain region of South Ecuador

    NASA Astrophysics Data System (ADS)

    Windhorst, David; Timbe, Edison; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz

    2013-04-01

    Knowing the dominant flow paths within a hydrological system is challenging and crucial to assess the relevant discharge generating processes and the fate of water and solutes in the system. However especially the interpretation of those path ways seems controversy within our study area of the Rio San Francisco in the outskirts of the Amazon basin in a tropical mountainous region of South Ecuador. E.g. the recorded flashiness of the hydrograph contravenes the long mean residence time and hydrogeochemical signature of the event water marking it as old water. Even though theories exist which could reveal these contradictions (e.g. the concept of transmissivity feedback which could be used to explain the rapid mobilization of old water) proof is currently missing to support those concepts. To further study the fate of the water and water pound solutes we installed along two hillslopes (length about 500m each and decline 230m under forest and 157m under pasture) three wick samplers collecting weekly bulk samples of soil water in 10, 25, 40 cm depths for 2 years. The isotopic signature (δ18O and δ2H) of the soil water as well as the incoming rainfall was analyzed using an isotope laser spectrometer (Picarro). We propose the usage of stable water isotopes as conservative tracers to validate a 2D setup of the Catchment Modeling Framework (CMF) simulating the water flow and fate of solutes along the hillslopes. The usage of conservative tracers, such as δ18O and δ2H, to validate hydrological models, bears the advantage that not only the amount of transported solute needs to be correctly simulated but also the concentration of the modeled tracer needs to be correctly accounted for. Model structures derived by such a tracer driven calibration procedure thereby are more likely to represent the actual nature of the hydrological system. Results proving the suitability of the model setup to reproduce the collected isotope data will be shown and the discharge generating

  19. Distinguished ENSO response and moisture supply of dominant intraseasonal modes in the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Oh, Hyoeun; Ha, Kyung-Ja; Chu, Jung-Eun; Yun, Kyung-Sook

    2013-04-01

    On the basis of various self-organizing map (SOM) analysis, a kind of artificial neural network, the dominant modes of the East Asian summer monsoon (EASM) are identified as the Meiyu-Baiu, Changma, post-Changma, and the dry-spell modes. The SOM approach supposes that sudden phase change during summer monsoon period results from the presence of non-linear coupled features of intraseasonal phases. Thus, the origin and nature of the moisture supply in the dominant intraseasonal modes of the EASM rainfall can be identified in terms of each mode. To discuss the uniqueness of EASM major modes, the horizontal and vertical moisture supply are examined using moisture budget equation consisting of convergence, advection and transient eddy terms. Strong moisture convergence region can be found over the southern part of Meiyu-Baiu rainband. The Changma mode has zonal-oriented moisture source which confined to low-level from surface to 925-hPa over the Korean peninsula. Furthermore, convective instability deeply developed in the Changma mode. It means advection of moist, warm air by low-level wind from the south and cold, dry air from the north are fundamental for generating convective instability and sustaining convective activity. On the contrary to Changma mode, post-Changma mode has meridional-oriented moisture source with its deep vertical profile. Moisture divergence regions cover the northern China, Korea, and Japan for dry-spell mode. Besides the moisture convergence and advection, the transient eddies play a role in supplying moisture over the boundary region of mean flow. Detailed analyses for the relationship between external components such as El Niño Southern Oscillation which can be affected slowly on the inter-annual time scale have been discussed.

  20. Concentration polarization, surface currents, and bulk advection in a microchannel

    NASA Astrophysics Data System (ADS)

    Nielsen, Christoffer P.; Bruus, Henrik

    2014-10-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction.

  1. Concentration polarization, surface currents, and bulk advection in a microchannel.

    PubMed

    Nielsen, Christoffer P; Bruus, Henrik

    2014-10-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction. PMID:25375606

  2. The role of advection and diffusion in waste disposal by sea urchin embryos

    NASA Astrophysics Data System (ADS)

    Clark, Aaron; Licata, Nicholas

    2014-03-01

    We determine the first passage probability for the absorption of waste molecules released from the microvilli of sea urchin embryos. We calculate a perturbative solution of the advection-diffusion equation for a linear shear profile similar to the fluid environment which the embryos inhabit. Rapid rotation of the embryo results in a concentration boundary layer of comparable thickness to the length of the microvilli. A comparison of the results to the regime of diffusion limited transport indicates that fluid flow is advantageous for efficient waste disposal.

  3. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  4. Application of a Particle Method to the Advection-Diffusion-Reaction Equation

    NASA Astrophysics Data System (ADS)

    Paster, A.; Bolster, D.; Benson, D. A.

    2012-12-01

    -known phenomena of incomplete mixing (Ovchinnikov-Zeldovich segregation). The numerical results of the particle-tracking simulations are compared to an approximate analytical solution and the late time discrepancy is explained. We also study, for a two dimensional system, how shear flow effects the reaction rate. We do so since shear flow is the simplest form of a spatially variable advection. For the shear flow system, we find that shear flow leads to better mixing of the system on one hand, and a surprising one dimensional segregation at late times, on the other hand. This is in contrast with zero-advection two-dimensional system, where the late time behavior is characterized by the formation of two-dimensional islands. References (Manuscripts in submission): Paster A., D. Bolster and D.A. Benson. Connecting the dots: application of a particle method to the diffusion-reaction equation. Submitted to Advances in Water Resources. Paster A., D. Bolster and D.A. Benson. Particle Tracking and the Diffusion-Reaction Equation. Submitted to Water Resources Research.

  5. Invasions in heterogeneous habitats in the presence of advection.

    PubMed

    Vergni, Davide; Iannaccone, Sandro; Berti, Stefano; Cencini, Massimo

    2012-05-21

    We investigate invasions from a biological reservoir to an initially empty, heterogeneous habitat in the presence of advection. The habitat consists of a periodic alternation of favorable and unfavorable patches. In the latter the population dies at fixed rate. In the former it grows either with the logistic or with an Allee effect type dynamics, where the population has to overcome a threshold to grow. We study the conditions for successful invasions and the speed of the invasion process, which is numerically and analytically investigated in several limits. Generically advection enhances the downstream invasion speed but decreases the population size of the invading species, and can even inhibit the invasion process. Remarkably, however, the rate of population increase, which quantifies the invasion efficiency, is maximized by an optimal advection velocity. In models with Allee effect, differently from the logistic case, above a critical unfavorable patch size the population localizes in a favorable patch, being unable to invade the habitat. However, we show that advection, when intense enough, may activate the invasion process.

  6. Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures

    SciTech Connect

    Webb, S.W.

    1996-05-01

    Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the Dusty- Gas Model (DGM). This model applies the kinetic theory of gases to the gaseous components and the porous media (or ``dust``) to develop an approach for combined transport due to ordinary and Knudsen diffusion and advection including porous medium effects. While these two models both consider advection and diffusion, the formulations are considerably different, especially for ordinary diffusion. The various components of flow (advection and diffusion) are compared for both models. Results from these two models are compared to isothermal experimental data for He-Ar gas diffusion in a low-permeability graphite. Air-water vapor comparisons have also been performed, although data are not available, for the low-permeability graphite system used for the helium-argon data. Radial and linear air-water heat pipes involving heat, advection, capillary transport, and diffusion under nonisothermal conditions have also been considered.

  7. Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.

    2012-01-01

    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.

  8. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  9. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  10. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  11. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-12-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ωeτe effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ωeτe as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  12. Exact PDF equations and closure approximations for advective-reactive transport

    SciTech Connect

    Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2013-06-01

    Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recently proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.

  13. A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection

    NASA Astrophysics Data System (ADS)

    Bachman, S. D.; Fox-Kemper, B.; Bryan, F. O.

    2015-02-01

    A diagnosis method is presented which inverts a set of tracer flux statistics into an eddy-induced transport intended to apply for all tracers. The underlying assumption is that a linear flux-gradient relationship describes eddy-induced tracer transport, but a full tensor coefficient is assumed rather than a scalar coefficient which allows for down-gradient and skew transports. Thus, Lagrangian advection and anisotropic diffusion not necessarily aligned with the tracer gradient can be diagnosed. In this method, multiple passive tracers are initialized in an eddy-resolving flow simulation. Their spatially-averaged gradients form a matrix, where the gradient of each tracer is assumed to satisfy an identical flux-gradient relationship. The resulting linear system, which is overdetermined when using more than three tracers, is then solved to obtain an eddy transport tensor R which describes the eddy advection (antisymmetric part of R) and potentially anisotropic diffusion (symmetric part of R) in terms of coarse-grained variables. The mathematical basis for this inversion method is presented here, along with practical guidelines for its implementation. We present recommendations for initialization of the passive tracers, maintaining the required misalignment of the tracer gradients, correcting for nonconservative effects, and quantifying the error in the diagnosed transport tensor. A method is proposed to find unique, tracer-independent, distinct rotational and divergent Lagrangian transport operators, but the results indicate that these operators are not meaningfully relatable to tracer-independent eddy advection or diffusion. With the optimal method of diagnosis, the diagnosed transport tensor is capable of predicting the fluxes of other tracers that are withheld from the diagnosis, including even active tracers such as buoyancy, such that relative errors of 14% or less are found.

  14. Advection of passive magnetic field by the Gaussian velocity field with finite correlations in time and spatial parity violation

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2013-03-01

    Using the field theoretic renormalization group technique the model of passively advected weak magnetic field by an incompressible isotropic helical turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation) in the framework of an extended Kazantsev-Kraichnan model of kinematic magnetohydrodynamics. Statistical fluctuations of the velocity field are taken in the form of a Gaussian distribution with zero mean and defined noise with finite correlations in time. The two-loop analysis of all possible scaling regimes is done and the influence of helicity on the stability of scaling regimes is discussed and shown in the plane of exponents ɛ - η, where ɛ characterizes the energy spectrum of the velocity field in the inertial range E ∞ k 1 - 2ɛ, and η is related to the correlation time at the wave number k which is scaled as k -2 + η. It is shown that in non-helical case the scaling regimes of the present vector model are completely identical and have also the same properties as those obtained in the corresponding model of passively advected scalar field. Besides, it is also shown that when the turbulent environment under consideration is helical then the properties of the scaling regimes in models of passively advected scalar and vector (magnetic) fields are essentially different. The results demonstrate the importance of the presence of a symmetry breaking in a given turbulent environment for investigation of the influence of an internal tensor structure of the advected field on the inertial range scaling properties of the model under consideration and will be used in the analysis of the influence of helicity on the anomalous scaling of correlation functions of passively advected magnetic field.

  15. Numerical Modeling of Deep Mantle Convection: Advection and Diffusion Schemes for Marker Methods

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard

    2013-04-01

    Thermal and chemical evolution of Earth's deep mantle can be studied by modeling vigorous convection in a chemically heterogeneous fluid. Numerical modeling of such a system poses several computational challenges. Dominance of heat advection over the diffusive heat transport, and a negligible amount of chemical diffusion results in sharp gradients of thermal and chemical fields. The exponential dependence of the viscosity of mantle materials on temperature also leads to high gradients of the velocity field. The accuracy of many numerical advection schemes degrades quickly with increasing gradient of the solution, while the computational effort, in terms of the scheme complexity and required resolution, grows. Additional numerical challenges arise due to a large range of length-scales characteristic of a thermochemical convection system with highly variable viscosity. To examplify, the thickness of the stem of a rising thermal plume may be a few percent of the mantle thickness. An even thinner filament of an anomalous material that is entrained by that plume may consitute less than a tenth of a percent of the mantle thickness. We have developed a two-dimensional FEM code to model thermochemical convection in a hollow cylinder domain, with a depth- and temperature-dependent viscosity representative of the mantle (Steinberger and Calderwood, 2006). We use marker-in-cell method for advection of chemical and thermal fields. The main advantage of perfoming advection using markers is absence of numerical diffusion during the advection step, as opposed to the more diffusive field-methods. However, in the common implementation of the marker-methods, the solution of the momentum and energy equations takes place on a computational grid, and nodes do not generally coincide with the positions of the markers. Transferring velocity-, temperature-, and chemistry- information between nodes and markers introduces errors inherent to inter- and extrapolation. In the numerical scheme

  16. Phase Segregation of Passive Advective Particles in an Active Medium

    NASA Astrophysics Data System (ADS)

    Das, Amit; Polley, Anirban; Rao, Madan

    2016-02-01

    Localized contractile configurations or asters spontaneously appear and disappear as emergent structures in the collective stochastic dynamics of active polar actomyosin filaments. Passive particles which (un)bind to the active filaments get advected into the asters, forming transient clusters. We study the phase segregation of such passive advective scalars in a medium of dynamic asters, as a function of the aster density and the ratio of the rates of aster remodeling to particle diffusion. The dynamics of coarsening shows a violation of Porod behavior; the growing domains have diffuse interfaces and low interfacial tension. The phase-segregated steady state shows strong macroscopic fluctuations characterized by multiscaling and intermittency, signifying rapid reorganization of macroscopic structures. We expect these unique nonequilibrium features to manifest in the actin-dependent molecular clustering at the cell surface.

  17. Time-Lapse Micro-Tomography Measurements and Determination of Effective Transport Properties of Snow Metamorphism Under Advective Conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S.; Steen-Larsen, H. C.; Schneebeli, M.; Steinfeld, A.

    2014-12-01

    The metamorphism of snow under advective air flow, with and without temperature gradient, was never experimentally investigated. We developed a new sample holder where metamorphism under advective conditions can be observed and measured using time-lapse micro-tomography [1]. Long-term experiments were performed and direct pore-level simulation (DPLS) [2,3] was directly applied on the extracted 3D digital geometry of the snow to calculate the effective transport properties by solving the governing fluid flow equations. The results showed no effect of isothermal advection, compared to rates typical for isothermal metamorphism. Appling a temperature gradient, the results showed increased snow metamorphism compared to rates typical for temperature gradient metamorphism. However, for both cases a change in the isotopic composition in the air as well as in the snow sample could be observed. These measurements could be influential to better understand snow-air exchange processes relevant for atmospheric chemistry and isotopic composition. REFERENCES[1] Ebner P. P., Grimm S., Schneebeli M., and Steinfeld A.: An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow. Geoscientific Instrumentation, Methods and Data Systems 4(2014), 353-373. [2] Zermatten E., Haussener S., Schneebeli M., and Steinfeld A.: Tomography-based determination of permeability and Dupuit-Forchheimer coefficient of characteristic snow samples. Journal of Glaciology 57(2011), 811-816. [3] Zermatten E., Schneebeli M., Arakawa H., and Steinfeld A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. Cold Regions Science and Technology 97 (2014), 33-40. Fig. 1: 3-D surface rendering of a refrozen wet snow sample with fluid flow streamline.

  18. Lattice Boltzmann method for the fractional advection-diffusion equation.

    PubMed

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  19. Lattice Boltzmann method for the fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  20. Lattice Boltzmann method for the fractional advection-diffusion equation.

    PubMed

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering. PMID:27176431

  1. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.

    PubMed

    Atis, S; Saha, S; Auradou, H; Martin, J; Rakotomalala, N; Talon, L; Salin, D

    2012-09-01

    Autocatalytic reaction fronts between two reacting species in the absence of fluid flow, propagate as solitary waves. The coupling between autocatalytic reaction front and forced simple hydrodynamic flows leads to stationary fronts whose velocity and shape depend on the underlying flow field. We address the issue of the chemico-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. Towards that purpose, we perform experiments over a wide range of flow velocities with the well characterized iodate arsenious acid and chlorite-tetrathionate autocatalytic reactions in transparent packed beads porous media. The characteristics of these porous media such as their porosity, tortuosity, and hydrodynamics dispersion are determined. In a pack of beads, the characteristic pore size and the velocity field correlation length are of the order of the bead size. In order to address these two length scales separately, we perform lattice Boltzmann numerical simulations in a stochastic porous medium, which takes into account the log-normal permeability distribution and the spatial correlation of the permeability field. In both experiments and numerical simulations, we observe stationary fronts propagating at a constant velocity with an almost constant front width. Experiments without flow in packed bead porous media with different bead sizes show that the front propagation depends on the tortuous nature of diffusion in the pore space. We observe microscopic effects when the pores are of the size of the chemical front width. We address both supportive co-current and adverse flows with respect to the direction of propagation of the chemical reaction. For supportive flows, experiments and simulations allow observation of two flow regimes. For adverse flow, we observe upstream and downstream front motion as well as static front behaviors over a wide range of flow rates. In order to understand better these observed static state fronts, flow

  2. Drift by drift: effective population size is limited by advection

    PubMed Central

    2008-01-01

    Background Genetic estimates of effective population size often generate surprising results, including dramatically low ratios of effective population size to census size. This is particularly true for many marine species, and this effect has been associated with hypotheses of "sweepstakes" reproduction and selective hitchhiking. Results Here we show that in advective environments such as oceans and rivers, the mean asymmetric transport of passively dispersed reproductive propagules will act to limit the effective population size in species with a drifting developmental stage. As advection increases, effective population size becomes decoupled from census size as the persistence of novel genetic lineages is restricted to those that arise in a small upstream portion of the species domain. Conclusion This result leads to predictions about the maintenance of diversity in advective systems, and complements the "sweepstakes" hypothesis and other hypotheses proposed to explain cases of low allelic diversity in species with high fecundity. We describe the spatial extent of the species domain in which novel allelic diversity will be retained, thus determining how large an appropriately placed marine reserve must be to allow the persistence of endemic allelic diversity. PMID:18710549

  3. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  4. Advective pathways near the tip of the Antarctic Peninsula: Trends, variability and ecosystem implications

    NASA Astrophysics Data System (ADS)

    Renner, Angelika H. H.; Thorpe, Sally E.; Heywood, Karen J.; Murphy, Eugene J.; Watkins, Jon L.; Meredith, Michael P.

    2012-05-01

    Pathways and rates of ocean flow near the Antarctic Peninsula are strongly affected by frontal features, forcings from the atmosphere and the cryosphere. In the surface mixed layer, the currents advect material from the northwestern Weddell Sea on the eastern side of the Peninsula around the tip of the Peninsula to its western side and into the Scotia Sea, connecting populations of Antarctic krill (Euphausia superba) and supporting the ecosystem of the region. Modelling of subsurface drifters using a particle tracking algorithm forced by the velocity fields of a coupled sea ice-ocean model (ORCA025-LIM2) allows analysis of the seasonal and interannual variability of drifter pathways over 43 years. The results show robust and persistent connections from the Weddell Sea both to the west into the Bellingshausen Sea and across the Scotia Sea towards South Georgia, reproducing well the observations. The fate of the drifters is sensitive to their deployment location, in addition to other factors. From the shelf of the eastern Antarctic Peninsula, the majority enter the Bransfield Strait and subsequently the Bellingshausen Sea. When originating further offshore over the deeper Weddell Sea, drifters are more likely to cross the South Scotia Ridge and reach South Georgia. However, the wind field east and southeast of Elephant Island, close to the tip of the Peninsula, is crucial for the drifter trajectories and is highly influenced by the Southern Annular Mode (SAM). Increased advection and short travel times to South Georgia, and reduced advection to the western Antarctic Peninsula can be linked to strong westerlies, a signature of the positive phase of the SAM. The converse is true for the negative phase. Strong westerlies and shifts of ocean fronts near the tip of the Peninsula that are potentially associated with both the SAM and the El Niño-Southern Oscillation restrict the connection from the Weddell Sea to the west, and drifters then predominantly follow the open

  5. Atmospheric Surface Layer Flow over Distributions of Cubes and Evaluation of Transient Dynamics

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Li, Q.; Bou-Zeid, E.

    2014-12-01

    The vertical transition from roughness sublayer to inertial layer is a well-established concept in turbulent boundary layer flows over complex topographies. The transition occurs at approximately three times the canopy height, below which the turbulence statistics resemble a turbulent mixing layer. Turbulent momentum fluxes in `canopy turbulence' or `obstructed shear flows' (Ghisalberti, 2008 JFM 641, 51—61) are typically dominated by turbulent sweep events (downward excursions of high momentum fluid), owing to the presence of coherent motions that occupy the region of fluid above the canopy. We have used large-eddy simulation with an immersed boundary method to study turbulent flows over a distribution of uniform height, staggered cubes. The computational domain has been designed such that both the roughness sublayer and a region of the inertial layer are resolved. With this, we record vertical profiles of time series of fluctuations of streamwise velocity, , and vertical velocity, . Contour images of fluctuating velocity component (where fluctuation is computed as a quantity's deviation from its time-averaged value during a time period over which the simulation exhibits statistical stationarity) shown relative to vertical position and time reveals an advective-lag between the passage of a high- or low-momentum region in the aloft inertial layer and excitation or relaxation of cube-scale coherent vortices in the sublayer. We quantify this advective lag and demonstrate how these events precede elevated Reynolds stresses associated with turbulent sweeps at the cube height. We propose that coherent, low and high momentum regions in the inertial layer are responsible for the reported advective lag. Vortex identification techniques are used to illustrate the presence of hairpin packets encapsulating low momentum regions. A simple, semi-empirical model for prediction of advective lag with height is developed. In spite of its simplicity, the model manages to capture

  6. Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations

    NASA Astrophysics Data System (ADS)

    Kirchner, James W.; Feng, Xiahong; Neal, Colin

    2001-12-01

    Time series of chemical tracers in rainfall and streamflow can be used to probe the internal workings of catchments. We have recently proposed that catchments act as fractal filters for inert chemical tracers like chloride, converting 'white noise' rainfall chemistry inputs into fractal ' 1/f noise' chemical time series in runoff [Nature 403 (2000) 524]. This implies that catchments have long-tailed travel-time distributions, and thus retain soluble contaminants for unexpectedly long timespans. Here we show that these long-tailed travel-time distributions, and the fractal tracer time series that they imply, can be generated by advection and dispersion of spatially distributed rainfall inputs as they travel toward a channel. Tracer pulses that land close to the stream reach it promptly, with relatively little dispersion. Tracer pulses that land farther upslope must travel farther to reach the stream, and undergo more dispersion. The tracer signal in the stream will be the integral of the contributions from each point along the length of the hillslope, with a peak at short lag times (reflecting tracers landing near the stream) and a long tail (reflecting tracers landing farther from the stream). Here we integrate the advection-dispersion equation for rainfall tracers landing at all points on a simple model hillslope, and show that it yields fractal tracer behavior, as well as a travel-time distribution nearly equivalent to that found empirically [Nature 403 (2000) 524]. However, it does so only when the dispersion length scale approaches the length of the hillslope, implying that subsurface transport is dominated by large conductivity contrasts related to macropores, fracture networks, and similar large-scale heterogeneities in subsurface conductivity. Thus, the 1/ f scaling observed at our study sites indicates that these catchments are dominated by flowpaths that exhibit macro-dispersion over the longest possible length scales.

  7. A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Lee, D.; Lowrie, R.; Petersen, M.; Ringler, T.; Hecht, M.

    2016-11-01

    A new characteristic discontinuous Galerkin (CDG) advection scheme is presented. In contrast to standard discontinuous Galerkin schemes, the test functions themselves follow characteristics in order to ensure conservation and the edges of each element are also traced backwards along characteristics in order to create a swept region, which is integrated in order to determine the mass flux across the edge. Both the accuracy and performance of the scheme are greatly improved by the use of large Courant-Friedrichs-Lewy numbers for a shear flow test case and the scheme is shown to scale sublinearly with the number of tracers being advected, outperforming a standard flux corrected transport scheme for 10 or more tracers with a linear basis. Moreover the CDG scheme may be run to arbitrarily high order spatial accuracy and on unstructured grids, and is shown to give the correct order of error convergence for piecewise linear and quadratic bases on regular quadrilateral and hexahedral planar grids. Using a modal Taylor series basis, the scheme may be made monotone while preserving conservation with the use of a standard slope limiter, although this reduces the formal accuracy of the scheme to first order. The second order scheme is roughly as accurate as the incremental remap scheme with nonlocal gradient reconstruction at half the horizontal resolution. The scheme is being developed for implementation within the Model for Prediction Across Scales (MPAS) Ocean model, an unstructured grid finite volume ocean model.

  8. Feasibility of Measuring Mean Vertical Motion for Estimating Advection. Chapter 6

    NASA Technical Reports Server (NTRS)

    Vickers, Dean; Mahrt, L.

    2005-01-01

    Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence.

  9. On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions

    NASA Astrophysics Data System (ADS)

    Dörenkämper, Martin; Optis, Michael; Monahan, Adam; Steinfeld, Gerald

    2015-06-01

    The coastal discontinuity imposes strong signals to the atmospheric conditions over the sea that are important for wind-energy potential. Here, we provide a comprehensive investigation of the influence of the land-sea transition on wind conditions in the Baltic Sea using data from an offshore meteorological tower, data from a wind farm, and mesoscale model simulations. Results show a strong induced stable stratification when warm inland air flows over a colder sea. This stratification demonstrates a strong diurnal pattern and is most pronounced in spring when the land-sea temperature difference is greatest. The strength of the induced stratification is proportional to this parameter and inversely proportional to fetch. Extended periods of stable stratification lead to increased influence of inertial oscillations and increased frequency of low-level jets. Furthermore, heterogeneity in land-surface roughness along the coastline is found to produce pronounced horizontal streaks of reduced wind speeds that under stable stratification are advected several tens of kilometres over the sea. The intensity and length of the streaks dampen as atmospheric stability decreases. Increasing sea surface roughness leads to a deformation of these streaks with increasing fetch. Slight changes in wind direction shift the path of these advective streaks, which when passing through an offshore wind farm are found to produce large fluctuations in wind power. Implications of these coastline effects on the accurate modelling and forecasting of offshore wind conditions, as well as damage risk to the turbine, are discussed.

  10. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection

    USGS Publications Warehouse

    Shapiro, A.M.; Renken, R.A.; Harvey, R.W.; Zygnerski, M.R.; Metge, D.W.

    2008-01-01

    A tracer experiment, using a nonreactive tracer, was conducted as part of an investigation of the potential for chemical and pathogen migration to public supply wells that draw groundwater from the highly transmissive karst limestone of the Biscayne aquifer in southeastern Florida. The tracer was injected into the formation over approximately 1 h, and its recovery was monitored at a pumping well approximately 100 m from the injection well. The first detection of the tracer occurred after approximately 5 h, and the peak concentration occurred at about 8 h after the injection. The tracer was still detected in the production well more than 6 days after injection, and only 42% of the tracer mass was recovered. It is hypothesized that a combination of chemical diffusion and slow advection resulted in significant retention of the tracer in the formation, despite the high transmissivity of the karst limestone. The tail of the breakthrough curve exhibited a straight-line behavior with a slope of -2 on a log-log plot of concentration versus time. The -2 slope is hypothesized to be a function of slow advection, where the velocities of flow paths are hypothesized to range over several orders of magnitude. The flow paths having the slowest velocities result in a response similar to chemical diffusion. Chemical diffusion, due to chemical gradients, is still ongoing during the declining limb of the breakthrough curve, but this process is dwarfed by the magnitude of the mass flux by slow advection.

  11. Early Holocene variability in the Arctic Gateway - High-resolution records reflecting Atlantic Water advection and ice coverage

    NASA Astrophysics Data System (ADS)

    Spielhagen, Robert F.; Bauch, Henning A.; Maudrich, Martin; Not, Christelle; Telesinski, Maciej M.; Werner, Kirstin

    2015-04-01

    The Arctic Gateway between Greenland and Svalbard is the main passage for the advection of Atlantic Water to the Arctic Ocean. Water temperature and intensity of this advection largely determine the degree of ice coverage which is fed by sea ice export from the north. Supported by a maximum in insolation, the Early Holocene was a period of extraordinarily strong advection and relatively high near-surface water temperatures in the eastern Nordic Seas (cf. Risebrobakken et al., 2011, Paleoceanography v. 26). Here we present a synthesis of radiocarbon-dated records from the northern and western part of this area, reaching from the SW Greenland Sea (73°N) to the Yermak Plateau (81°N) and revealing temporal and spatial differences in the development of the so-called Holocene Thermal Maximum (HTM). In the northern part of this region, the HTM started ca. 11-10.5 ka as indicated by rapidly increasing amounts of subpolar planktic foraminifers in the sediments. In the eastern Fram Strait and on the Yermak Plateau, our records of (sub)millennial scale resolution show that the maximum influx terminated already 2,000 years later (9-8 ka). Most likely, this development went along with a N-S relocation of the sea ice margin. According to the current stratigraphic model for a core with submillennial-scale resolution from Vesterisbanken seamount (73°N) in the Greenland Sea, the timing was different there. Increasing total amounts of planktic foraminifers in the sediment indicate an early (11-10 ka) reduction in sea ice coverage also in this region. However, evidence from subpolar planktic foraminifers for maximum Atlantic Water advection is younger (9-6 ka) than in the north. Apparently, the site in the SW Greenland Sea was affected by Atlantic Water in the Greenland Gyre that decoupled from the northward flowing Norwegian Atlantic Current/Westspitsbergen Current south of the Fram Strait. Thus, in a suite of events, strong Atlantic Water advection first affected the

  12. Modelling transport in media with heterogeneous advection properties and mass transfer with a Continuous Time Random Walk approach

    NASA Astrophysics Data System (ADS)

    Comolli, Alessandro; Moussey, Charlie; Dentz, Marco

    2016-04-01

    Transport processes in groundwater systems are strongly affected by the presence of heterogeneity. The heterogeneity leads to non-Fickian features, that manifest themselves in the heavy-tailed breakthrough curves, as well as in the non-linear growth of the mean squared displacement and in the non-Gaussian plumes of solute particles. The causes of non-Fickian transport can be the heterogeneity in the flow fields and the processes of mass exchange between mobile and immobile phases, such as sorption/desorption reactions and diffusive mass transfer. Here, we present a Continuous Time Random Walk (CTRW) model that describes the transport of solutes in d-dimensional systems by taking into account both heterogeneous advection and mobile-immobile mass transfer. In order to account for these processes in the CTRW, the heterogeneities are mapped onto a distribution of transition times, which can be decomposed into advective transition times and trapping times, the latter being treated as a compound Poisson process. While advective transition times are related to the Eulerian flow velocities and, thus, to the conductivity distribution, trapping times depend on the sorption/desorption time scale, in case of reactive problems, or on the distribution of diffusion times in the immobile zones. Since the trapping time scale is typically much larger than the advective time scale, we observe the existence of two temporal regimes. The pre-asymptotic regime is defined by a characteristic time scale at which the properties of transport are fully determined by the heterogeneity of the advective field. On the other hand, in the asymptotic regime both the heterogeneity and the mass exchange processes play a role in conditioning the behaviour of transport. We consider different scenarios to discuss the relative importance of the advective heterogeneity and the mass transfer for the occurrence of non-Fickian transport. For each case we calculate analytically the scalings of the breakthrough

  13. North Atlantic Surface Winds Examined as the Source of Warm Advection into Europe in Winter

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Angell, J. K.; Ardizzone, J.; Atlas, Robert; Schubert, S.; Starr, D.; Wu, M.-L.

    2002-01-01

    When from the southwest, North Atlantic ocean surface winds are known to bring warm and moist airmasses into central Europe in winter. By tracing backward trajectories from western Europe, we establish that these airmasses originate in the southwestern North Atlantic, in the very warm regions of the Gulf Stream. Over the eastern North Atlantic, Lt the gateway to Europe, the ocean-surface winds changed directions in the second half of the XXth century, those from the northwest and from the southeast becoming so infrequent, that the direction from the southwest became even more dominant. For the January-to-March period, the strength of south-westerlies in this region, as well as in the source region, shows in the years 1948-1995 a significant increase, above 0.2 m/sec/ decade. Based on the sensitivity of the surface temperature in Europe, slightly more than 1 C for a 1m/sec increase in the southwesterly wind, found in the previous studies, the trend in the warm advection accounts for a large part of the warming in Europe established for this period in several reports. However, for the most recent years, 1996-2001, the positive trend in the southwesterly advection appears to be is broken, which is consistent with unseasonally cold events reported in Europe in those winters. This study had, some bearing on evaluating the respective roles of the North Atlantic Oscillation and the Greenhouse Gas Global warming, GGG, in the strong winter warming observed for about half a century over the northern-latitude continents. Changes in the ocean-surface temperatures induced by GGG may have produced the dominant southwesterly direction of the North Atlantic winds. However, this implies a monotonically (apart from inherent interannual variability) increasing advection, and if the break in the trend which we observe after 1995 persists, this mechanism is counter-indicated. The 1948-1995 trend in the south-westerlies could then be considered to a large degree attributable to the

  14. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    USGS Publications Warehouse

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  15. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  16. Passive advection-dispersion in networks of pipes: Effect of connectivity and relationship to permeability

    NASA Astrophysics Data System (ADS)

    Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.

    2016-02-01

    The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.

  17. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  18. Self-advection of density perturbations on a sloping continental shelf

    SciTech Connect

    Ping-Tung Shaw; Csanady, G.T.

    1983-05-01

    Bottom water movement on the continental shelf is modeled by the nonlinear interaction between longshore bottom geostrophic flow and the density field. Bottom geostrophic velocity, subject to linear steady momentum equations with linear bottom friction, can be generated by along-isobath density variations over a sloping bottom. At the same time, the density field is slowly advected by the velocity field. Away from boundary layers, the interplay is governed by Burgers' equation, which shows the formation and self-propulsion of strong density gradients along an isobath. The direction of propagation of a dense water blob is to have shallow water on the right- (left-) hand side facing downstream in the Northern (Southern) Hemisphere. The propagation of a light water blob is opposite to that of a dense water blob.

  19. A reaction-diffusion-advection model of harmful algae growth with toxin degradation

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Bin; Hsu, Sze-Bi; Zhao, Xiao-Qiang

    2015-10-01

    This paper is devoted to the study of a reaction-diffusion-advection system modeling the dynamics of a single nutrient, harmful algae and algal toxin in a flowing water habitat with a hydraulic storage zone. We introduce the basic reproduction ratio R0 for algae and show that R0 serves as a threshold value for persistence and extinction of the algae. More precisely, we prove that the washout steady state is globally attractive if R0 < 1, while there exists a positive steady state and the algae is uniformly persistent if R0 > 1. With an additional assumption, we obtain the uniqueness and global attractivity of the positive steady state in the case where R0 > 1.

  20. The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest.

    PubMed

    Yi, Chuixiang; Anderson, Dean E; Turnipseed, Andrew A; Burns, Sean P; Sparks, Jed P; Stannard, David I; Monson, Russell K

    2008-09-01

    The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, USA) using a measurement approach consisting of multiple towers. We observed relatively high rates of both horizontal (F(hadv)) and vertical (F(vadv)) advective fluxes at low surface friction velocities (u(*)) which were associated with downslope katabatic flows. We observed that F(hadv) was confined to a relatively thin layer (0-6 m thick) of subcanopy air that flowed beneath the eddy covariance sensors principally at night, carrying with it respired CO2 from the soil and lower parts of the canopy. The observed F(vadv) came from above the canopy and was presumably due to the convergence of drainage flows at the tower site. The magnitudes of both F(hadv) and F(vadv) were similar, of opposite sign, and increased with decreasing u(*), meaning that they most affected estimates of the total CO2 flux on calm nights with low wind speeds. The mathematical sign, temporal variation and dependence on u(*) of both F(hadv) and F(vadv) were determined by the unique terrain of the Niwot Ridge site. Therefore, the patterns we observed may not be broadly applicable to other sites. We evaluated the influence of advection on the cumulative annual and monthly estimates of the total CO2 flux (F(c)), which is often used as an estimate of NEE, over six years using the dependence of F(hadv) and F(vadv) on u(*). When the sum of F(hadv) and F(vadv) was used to correct monthly F(c), we observed values that were different from the monthly F(c) calculated using the traditional u(*)-filter correction by--16 to 20 g C x m(-2) x mo(-1); the mean percentage difference in monthly Fc for these two methods over the six-year period was 10%. When the sum of F(hadv) and F(vadv) was used to correct annual Fc

  1. Report on Hydrologic Flow in Low-Permeability Media

    SciTech Connect

    Liu, Hui-Hai; Birkholzer, Jens

    2013-11-13

    We demonstrate that under normal conditions (under which there are no intersections between tunnels/drifts and conductive geological structures, such as faults), the water flow velocity in the damage zone, as a result of non-Darcian flow behavior, is extremely small such that solute transport is dominated by diffusion, rather than advection. We show that unless non-Darcian flow behavior is considered, significant errors can occur in the “measured” relative-permeability values. We propose a hypothesis to consider the temperature impact based on limited test results from the petroleum literature. To consider the bedding effects, we present an empirical relationship between water flux and hydraulic gradient for non-Darcian water flow in anisotropic cases.

  2. Dominant simple-shear deformation during peak metamorphism for the lower portion of the Greater Himalayan Sequence in West Nepal: New implications for hybrid channel flow-type mechanisms in the Dolpo region

    NASA Astrophysics Data System (ADS)

    Frassi, Chiara

    2015-12-01

    I conducted new vorticity and deformation temperatures studies to test competing models of the exhumation of the mid-crustal rocks exposed in the Dolpo region (West Nepal). My results indicate that the Main Central Thrust is located ∼5 km structurally below the previous mapped locations. Deformation temperature increasing up structural section from ∼450 °C to ∼650 °C and overlap with peak metamorphic temperature indicating that penetrative shearing was responsible for the exhumation of the GHS occurred at "close" to peak metamorphic conditions. I interpreted the telescoping and the inversion of the paleo-isotherms at the base of the GHS as produced mainly by a sub-simple shearing (Wm = 0.88-1) pervasively distributed through the lower portion of the GHS. My results are consistent with hybrid channel flow-type models where the boundary between lower and upper portions of the GHS, broadly corresponding to the tectonometamorphic discontinuity recently documented in west Nepal, represents the limit between buried material, affected by dominant simple shearing, and exhumed material affected by a general flow dominates by pure shearing. This interpretation is consistent with the recent models suggesting the simultaneous operation of channel flow- and critical wedge-type processes at different structural depth.

  3. Local- and field-scale stochastic-advective vertical solute transport in horizontally heterogeneous unsaturated soils

    NASA Astrophysics Data System (ADS)

    Ojha, Richa; Prakash, A.; Govindaraju, Rao S.

    2014-08-01

    Description of field-scale solute transport in unsaturated soils is essential for assessing the degree of contamination, estimating fluxes past a control plane and for designing remedial measures. The flow field is usually described by numerical solution of the Richards equation followed by numerical solution of the advection-dispersion equation to describe contaminant movement. These numerical solutions are highly complex, and do not provide the insights that are possible from simpler analytical representations. In this study, analytical solutions at the local scale are developed to describe purely advective vertical transport of a conservative solute along the principle characteristic of the flow field. Local-scale model development is simplified by using a sharp-front approximation for water movement. These local solutions are then upscaled to field-scale solute transport by adopting a lognormally distributed horizontal hydraulic conductivity field to represent the natural heterogeneity observed in field soils. Analytical expressions are developed for the mean behavior of solute transport at the field scale. Comparisons with experimental observations find that trends of field-scale solute behavior are reasonably reproduced by the model. The accuracy of the proposed solution improves with increasing spatial variability in the hydraulic conductivity as revealed by further comparisons with numerical results of the Richards equation-based field-scale solute movement. In some cases, the sharp-front approximation may lead to anomalous field-scale behavior depending on the role of pre and postponded conditions in the field, and this limitation is discussed. The proposed method shows promise for describing field-scale solute movement in loamy sand and sandy loam soils.

  4. A Dynamic and Spatial Scaling Approach to Advection Forecasting.

    NASA Astrophysics Data System (ADS)

    Seed, A. W.

    2003-03-01

    Quantitative nowcasts of rainfall are frequently based on the advection of rain fields observed by weather radar. Spectral Prognosis (S-PROG) is an advection-based nowcasting system that uses the observations that rain fields commonly exhibit both spatial and dynamic scaling properties, that is, the lifetime of a feature in the field is dependent on the scale of the feature (large features evolve more slowly than small features), and that features at all scales between the outer and inner observed scales are present in the field. The logarithm of the radar reflectivity field is disaggregated into a set or cascade of fields, in which each field in the set (or level in the cascade) represents the features of the original field over a limited range of scales. The Lagrangian temporal evolution of each level in the cascade is modeled using a simple autoregressive (lag 2) model, which automatically causes the forecast field to become smooth as the structures at the various scales evolve through their life cycles, or can be used to generate conditional simulations if the noise term is included. This paper describes the model and presents preliminary results.

  5. Numerical modeling of DNA-chip hybridization with chaotic advection

    PubMed Central

    Raynal, Florence; Beuf, Aurélien; Carrière, Philippe

    2013-01-01

    We present numerical simulations of DNA-chip hybridization, both in the “static” and “dynamical” cases. In the static case, transport of free targets is limited by molecular diffusion; in the dynamical case, an efficient mixing is achieved by chaotic advection, with a periodic protocol using pumps in a rectangular chamber. This protocol has been shown to achieve rapid and homogeneous mixing. We suppose in our model that all free targets are identical; the chip has different spots on which the probes are fixed, also all identical, and complementary to the targets. The reaction model is an infinite sink potential of width dh, i.e., a target is captured as soon as it comes close enough to a probe, at a distance lower than dh. Our results prove that mixing with chaotic advection enables much more rapid hybridization than the static case. We show and explain why the potential width dh does not play an important role in the final results, and we discuss the role of molecular diffusion. We also recover realistic reaction rates in the static case. PMID:24404027

  6. Backward fractional advection dispersion model for contaminant source prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Meerschaert, Mark M.; Neupauer, Roseanna M.

    2016-04-01

    The forward Fractional Advection Dispersion Equation (FADE) provides a useful model for non-Fickian transport in heterogeneous porous media. The space FADE captures the long leading tail, skewness, and fast spreading typically seen in concentration profiles from field data. This paper develops the corresponding backward FADE model, to identify source location and release time. The backward method is developed from the theory of inverse problems, and then explained from a stochastic point of view. The resultant backward FADE differs significantly from the traditional backward Advection Dispersion Equation (ADE) because the fractional derivative is not self-adjoint and the probability density function for backward locations is highly skewed. Finally, the method is validated using tracer data from a well-known field experiment, where the peak of the backward FADE curve predicts source release time, while the median or a range of percentiles can be used to determine the most likely source location for the observed plume. The backward ADE cannot reliably identify the source in this application, since the forward ADE does not provide an adequate fit to the concentration data.

  7. A finite analytic method for solving the 2-D time-dependent advection diffusion equation with time-invariant coefficients

    NASA Astrophysics Data System (ADS)

    Lowry, Thomas; Li, Shu-Guang

    2005-02-01

    Difficulty in solving the transient advection-diffusion equation (ADE) stems from the relationship between the advection derivatives and the time derivative. For a solution method to be viable, it must account for this relationship by being accurate in both space and time. This research presents a unique method for solving the time-dependent ADE that does not discretize the derivative terms but rather solves the equation analytically in the space-time domain. The method is computationally efficient and numerically accurate and addresses the common limitations of numerical dispersion and spurious oscillations that can be prevalent in other solution methods. The method is based on the improved finite analytic (IFA) solution method [Lowry TS, Li S-G. A characteristic based finite analytic method for solving the two-dimensional steady-state advection-diffusion equation. Water Resour Res 38 (7), 10.1029/2001WR000518] in space coupled with a Laplace transformation in time. In this way, the method has no Courant condition and maintains accuracy in space and time, performing well even at high Peclet numbers. The method is compared to a hybrid method of characteristics, a random walk particle tracking method, and an Eulerian-Lagrangian Localized Adjoint Method using various degrees of flow-field heterogeneity across multiple Peclet numbers. Results show the IFALT method to be computationally more efficient while producing similar or better accuracy than the other methods.

  8. Advection, pelagic food webs and the biogeography of seabirds in Beringia

    USGS Publications Warehouse

    Piatt, J.F.; Springer, A.M.

    2003-01-01

    Despite its great distance from productive shelf-edge habitat, the inner shelf area of the Bering Sea, from St. Lawrence Island to the Bering Strait, supports a surprisingly large number (>5 million) of seabirds during summer, mostly small plantivorous auklets (65%) and large piscivorous murres (19%) and kittiwakes (5%). This paradox of seabird biogeography is explained by the Anadyr "Green Belt" - a current that advects nutrients and plankton over 1200 km from the outer Bering Sea shelf-edge to the central Chukchi Sea. Turbulent upwelling of this nutrient-rich water at Anadyr and Bering straits further enhances high levels of primary production:(360 gC m-2y-1) and helps sustain the enormous biomass of zooplankton entrained in the Anadyr Current. Primary production in adjacent waters of the Chukchi Sea (420 gC m-2y-1) exceeds that observed below Bering Strait, and zooplankton are equally abundant. Auklets account for 49% of total food consumption below Bering Strait (411 mt d-1), whereas piscivores dominate (88% of 179 mt d-1) in the Chukchi Sea. Of 2 million seabirds in the Chukchi region, auklets (6%) are supplanted by planktivorous phalaropes (25%), and piscivorous murres (38%) and kittiwakes (15%). Average carbon flux to seabirds (0.65 mgC m -2d-1) over the whole region is more typical of upwelling than shelf ecosystems. The pelagic distribution of seabirds in the region appears to be a function of advection, productivity and water column stability. Planktivores flourish in areas with high zooplankton concentrations on the edge of productive upwelling and frontal zones along the "Green Belt", whereas piscivores avoid turbulent, mixed waters and forage in stable, stratified waters along the coast and in the central Chukchi Sea.

  9. Transport and Recruitment of Blue Crab Larvae:a Model with Advection and Mortality

    NASA Astrophysics Data System (ADS)

    Garvine, R. W.; Epifanio, C. E.; Epifanio, C. C.; Wong, K.-C.

    1997-07-01

    The present paper develops a mathematical model for the transport and recruitment of blue crab (Callinectes sapidus) larvae, and applies it to the inner continental shelf of the Middle Atlantic Bight near Delaware Bay, U.S.A. Blue crab larvae develop through seven or eight planktonic zoeal stages to a megalopa stage suitable for recruitment to adult populations of east coast estuaries. The larvae are concentrated near the surface, and the currents are primarily forced by alongshelf winds and river discharge through major estuaries. Model currents are prescribed based on a realistic synthesis of their observed relationship to wind and river discharge. Besides the resulting advection, particle diffusion and biological mortality are added to determine the fate of larvae released from their parent estuary. Groups of particles were released across the source region of the outflowing buoyancy-driven current in the model estuary mouth. Most larvae were swept alongshelf to the south with the buoyancy-driven coastal current, and thus were lost as recruits to the population of their parent estuary. However, some larvae released close to the seaward edge of the emerging coastal current were able to cross the coastal current front and move seaward into inner shelf water during upwelling-favorable (northward) wind events. Some of these, in turn, were suitably placed near the parent estuary mouth so that they could be advected landward as megalopae into the estuary during a subsequent downwelling-favorable (southward) wind event and thus join the adult population. The model results for megalopae returns were computed from consecutive daily release of 1000 particles, and were compared with 4 years of blue crab megalopa settlement data for Delaware Bay. The model results for 1989 and 1990 matched the observed data remarkably well, with both years showing dominance by a single return event of a few days duration. For 1991 and 1992, the observed results showed multiple return events

  10. Investigating the role of hydromechanical coupling on flow and transport in shallow fractured-rock aquifers

    NASA Astrophysics Data System (ADS)

    Earnest, Evan; Boutt, David

    2014-06-01

    Fractured-rock aquifers display spatially and temporally variable hydraulic conductivity generally attributed to variable fracture intensity and connectivity. Empirical evidence suggests fracture aperture and hydraulic conductivity are sensitive to in situ stress. This study investigates the sensitivity of fractured-rock hydraulic conductivity, groundwater flow paths, and advection-dominated transport to variable shear and normal fracture stiffness magnitudes for a range of deviatoric stress states. Fracture aperture and hydraulic conductivity are solved for analytically using empirical hydromechanical coupling equations; groundwater flow paths and ages are then solved for numerically using groundwater flow and advection-dispersion equations in a traditional Toth basin. Results suggest hydraulic conductivity alteration is dominated by fracture normal closure, resulting in decreasing hydraulic conductivity and increasing groundwater age with depth, and decreased depth of long flow paths with decreasing normal stiffness. Shear dilation has minimal effect on hydraulic conductivity alteration for stress states investigated here. Results are interpreted to suggest that fracture normal stiffness influences hydraulic conductivity of hydraulically active fractures and, thus, affects flow and transport in shallow (<1 km) fractured-rock aquifers. It is suggested that observed depth-dependent hydraulic conductivity trends in fractured-rock aquifers throughout the world may be partly a manifestation of hydromechanical phenomena.

  11. Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico

    NASA Astrophysics Data System (ADS)

    Carrera-Hernández, J. J.; Carreón-Freyre, D.; Cerca-Martínez, M.; Levresse, G.

    2016-03-01

    The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21 × 106 m3/yr in 1970 to 104 × 106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer's potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62 × 106 m3/yr), and (2) a further reduction in 2021 to 1 × 106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.

  12. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  13. Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media

    NASA Astrophysics Data System (ADS)

    Crane, R. A.; Cuthbert, M. O.; Timms, W.

    2015-09-01

    We present an interrupted-flow centrifugation technique to characterise preferential flow in low permeability media. The method entails a minimum of three phases: centrifuge-induced flow, no flow and centrifuge-induced flow, which may be repeated several times in order to most effectively characterise multi-rate mass transfer behaviour. In addition, the method enables accurate simulation of relevant in situ total stress conditions during flow by selecting an appropriate centrifugal force. We demonstrate the utility of the technique for characterising the hydraulic properties of smectite-clay-dominated core samples. All core samples exhibited a non-Fickian tracer breakthrough (early tracer arrival), combined with a decrease in tracer concentration immediately after each period of interrupted flow. This is indicative of dual (or multi-)porosity behaviour, with solute migration predominately via advection during induced flow, and via molecular diffusion (between the preferential flow network(s) and the low hydraulic conductivity domain) during interrupted flow. Tracer breakthrough curves were simulated using a bespoke dual porosity model with excellent agreement between the data and model output (Nash-Sutcliffe model efficiency coefficient was > 0.97 for all samples). In combination, interrupted-flow centrifuge experiments and dual porosity transport modelling are shown to be a powerful method to characterise preferential flow in low permeability media.

  14. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport

    USGS Publications Warehouse

    Baehr, A.L.; Hoag, G.E.; Marley, M.C.

    1989-01-01

    Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.

  15. Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Angell, J.; Atlas, R.; Bungato, D.; Shubert, S.; Starr, David OC.; Susskind, J.; Wu, M.-L. C.

    2002-01-01

    In winter, large interannual fluctuations in the surface temperature are observed over central Europe. Comparing warm February 1990 with cold February 1996, a satellite-retrieved surface (skin) temperature difference of 9.8 K is observed for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average I(sub na) for February 1990 was 10.6 m/s, but for February 1996 I(sub na) was only 2.4 m/s. A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into central Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions at 700 mb are observed in association with the occurrence of enhanced warm, moist advection from the ocean in February 1990 producing clouds and precipitation. Total precipitable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios, this reduction in heat loss to space, can be translated into a virtual radiative heating of 2.6 W/square m above the February 1990 surface/atmosphere system, which contributes to a warming of the surface on the order of 2.6 K. Accepting this estimate as quantitatively meaningful, we evaluate the direct effect, the rise in the surface temperature in Europe as a result of maritime-air inflow, as 7.2 K (9.8 K-2.6 K). Thus, fractional reinforcement by the greenhouse effect is 2.6/7.2, or 36%, a substantial positive feedback.

  16. Tracing the contribution of debris flow-dominated channels to gravel-bed torrential river channel: implementing pit-tags in the upper Guil River (French Alps)

    NASA Astrophysics Data System (ADS)

    Arnaud-Fassetta, Gilles; Lissak, Candide; Fort, Monique; Bétard, François; Carlier, Benoit; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    In the upper, wider reaches of Alpine valleys, shaping of active channels is usually subject to rapid change. It mostly depends upon hydro-climatic variability, runoff concentration and sediment supply, and may result in alternating sequences of fluvial and debris-flow pulses, as recorded in alluvial fans and terraces. Our study, carried in the frame of SAMCO (ANR) project, focuses on the upper Guil River Valley (Queyras, Southern French Alps) cut into the slaty shale "schistes lustrés". Steep, lower order drains carry a contrasted solid discharge, including predominantly sandy-loam particles mixed with gravels and boulders (sandstone schists, ophiolites). Abundant sediment supply by frost shattering, snow avalanche and landslides is then reworked during snowmelt or summer storm runoff events, and may result in catastrophic, very destructive floods along the main channel, as shown by historical records. Following the RI-30 year 2000 flood, our investigations included sediment budgets, i.e. balance of erosion and deposition, and the mapping of the source, transport and storage of various sediments (talus, colluvium, torrential fans, terraces). To better assess sediment fluxes and sediment delivery into the main channel network, we implemented tracers (pit-tags) in selected sub-catchments, significantly contributing to the sediment yield of the valley bottoms during the floods and/or avalanches: Maloqueste, Combe Morel, Bouchouse and Peyronnelle catchments. The first three are direct tributaries of the Guil River whereas the Peyronnelle is a left bank tributary of the Peynin River, which joins the Guil River via an alluvial cone with high human and material stakes. The Maloqueste and the Combe Morel are two tributaries facing each other in the Guil valley, representing a double lateral constraint for the road during flood events of the Guil River. After pit-tag initialisation in laboratory, we set them up along the four tributaries: Maloqueste (20 pit-tags), Combe

  17. Fabric development in syn-tectonic intrusive sheets as a consequence of melt-dominated flow and thermal softening of the crust

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry L.

    1996-03-01

    The temperature dependence of ductile deformational processes suggests that the thermal anomaly associated with a cooling, syn-tectonic intrusion will produce a crustal low-viscosity horizon that will concentrate deformation in the vicinity of the pluton during cooling. This effect should be most prominent when magma is present but should also occur after solidification of the magma when flow is by solid-state processes. This paper evaluates this hypothesis for sheet-like intrusions using one-dimensional, time-dependent thermal models and accompanying predictions of viscosity vs. time history based on experimental flow laws. These models predict that for systems with an initial "normal" geothermal gradient (e.g., extensional systems, strike-slip systems, or thrust systems with low displacement rates), the base of a large plutonic sheet cools more slowly than the top and fabric development should be most pronounced on the floor of the pluton. In contrast, in megathrust systems where displacements are sufficiently rapid to produce temperature inversions, cooling is also "upside-down" and fabric development should preferentially occur along the top of plutonic sheets. Moreover, when a pluton is emplaced within a zone of inverted isotherms, the heat may be trapped within the inversion. A natural system characterized by this history should show a sharp thermal front coincident with the top of a paleo-temperature inversion. If a pluton is weaker than its country rock it will form a weak horizon in the crust throughout its cooling history and the plutonic sheet should take up the bulk of the deformation throughout its cooling history. If a pluton is stronger than its country rock under conditions of solid-state flow, however, models predict a two-phase deformational history: prior to solidification the deformation should be concentrated in the pluton with the magma representing a weak horizon in the crust, but upon crystallization the pluton should become relatively rigid

  18. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation (Lower-Middle Devonian, Argentine Precordillera): A turbiditic deep-water or storm-dominated prodelta inner-shelf system?

    NASA Astrophysics Data System (ADS)

    Basilici, Giorgio; de Luca, Pedro Henrique Vieira; Poiré, Daniel G.

    2012-08-01

    Turbidity-current and storm-induced deposits may exhibit similarities, in particularly when the latter is laid down by a combination of oscillatory and unidirectional flows. Recent progress in facies analysis helps to discriminate the sedimentary effects of oscillatory from unidirectional components of the flow. On the basis of detailed analysis of sedimentary facies, strata geometry, and palaeocurrent data, the present study reinterprets the Punta Negra Formation (PNF) (Lower-Middle Devonian, Argentine Precordillera), previously considered as a depositional system of deep-water, as a storm-dominated prodeltaic shelf depositional system. In the sandstone beds of the PNF, planar, low-angle and undulating laminations with weakly asymmetric hummocky and swaley bedforms, combined-flow ripples, accretionary hummocky cross-stratification-like (HCS-like), and anisotropic HCS-like suggest the action of oscillatory currents combined with unidirectional currents in forming the deposits. Different hypotheses on the origin of the oscillatory currents have been examined. The most convincing interpretation is that the oscillatory component of the velocity is attributed to storm-induced waves. The palaeocurrent data indicate offshore current directions, suggesting that the unidirectional flow was a gravity-induced bottom current. Inverse grading at the base and overlying normally graded divisions of the sandstone beds testify to waxing-waning behaviour of the depositional flows; interbedding of sedimentary structures (undulating laminations, low-angle and parallel laminations, and combined-flow ripples) in the lower and intermediate divisions of the beds indicate fluctuations of flow velocity. This organisation of the sedimentary structures permits association of the unidirectional component with hyperpycnal bottom currents. The terrestrial origin of the hyperpycnal flows is suggested by the abundance of terrestrial plant remains, the mineralogical and textural immaturity of the

  19. Groundwater flux characterization using distributed temperature sensing: Separating advection from thermal conduction

    NASA Astrophysics Data System (ADS)

    Liu, G.; Knobbe, S.; Butler, J. J., Jr.

    2015-12-01

    Direct measurement of groundwater flux is difficult to obtain in the field so hydrogeologists often use easily-detectable environmental tracers, such as heat or chemicals, as an indirect way to characterize flux. Previously, we developed a groundwater flux characterization (GFC) probe by using distributed temperature sensing (DTS) to monitor the temperature responses to active heating in a well. The temperature responses were consistent with the hydraulic conductivity profiles determined at the same location, and provided high-resolution information (approx. 1.5 cm) about vertical variations in horizontal flux through the screen. One of the key assumptions in the previous GFC approach was that the vertical variations in the thermal conductivity of the aquifer materials near the well are negligible, so that the temperature differences with depth are primarily a result of groundwater flux instead of thermal conduction. Although this assumption is likely valid for wells constructed with an artificial filter pack, it might become questionable for wells with natural filter packs (such as the wells constructed by direct push where the sediments are allowed to directly collapse onto the well screen). In this work, we develop a new procedure for separating advection from thermal conduction during GFC measurement. In addition to the normal open-screen GFC profiling, an impermeable sleeve was used so that heating tests could be performed without advective flow entering the well. The heating tests under sleeved conditions were primarily controlled by the thermal conduction around the well, and therefore could be used to remove the impact of thermal conduction from the normal GFC results obtained under open-screen conditions. This new procedure was tested in a laboratory sandbox, where a series of open-screen and sleeved GFC tests were performed under different flow rates. Results indicated that for the tested range of rates (Darcy velocity 0 - 0.78 m/d), the relation between

  20. Diapycnal advection by double diffusion and turbulence in the ocean

    NASA Astrophysics Data System (ADS)

    St. Laurent, Louis Christopher

    1999-11-01

    Observations of diapycnal mixing rates are examined and related to diapycnal advection for both double-diffusive and turbulent regimes. The role of double-diffusive mixing at the site of the North Atlantic Tracer Release Experiment is considered. The strength of salt-finger mixing is analyzed in terms of the stability parameters for shear and double- diffusive convection, and a nondimensional ratio of the thermal and energy dissipation rates. While the model for turbulence describes most dissipation occurring in high shear, dissipation in low shear is better described by the salt-finger model, and a method for estimating the salt-finger enhancement of the diapycnal haline diffusivity over the thermal diffusivity is proposed. Best agreement between tracer-inferred mixing rates and microstructure based estimates is achieved when the salt- finger enhancement of haline flux is taken into account. The role of turbulence occurring above rough bathymetry in the abyssal Brazil Basin is also considered. The mixing levels along sloping bathymetry exceed the levels observed on ridge crests and canyon floors. Additionally, mixing levels modulate in phase with the spring-neap tidal cycle. A model of the dissipation rate is derived and used to specify the turbulent mixing rate and constrain the diapycnal advection in an inverse model for the steady circulation. The inverse model solution reveals the presence of a secondary circulation with zonal character. These results suggest that mixing in abyssal canyons plays an important role in the mass budget of Antarctic Bottom Water. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  1. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  2. A mass-conserving advection scheme for offline simulation of scalar transport in coastal ocean models

    NASA Astrophysics Data System (ADS)

    Gillibrand, P. A.; Herzfeld, M.

    2016-05-01

    We present a flux-form semi-Lagrangian (FFSL) advection scheme designed for offline scalar transport simulation with coastal ocean models using curvilinear horizontal coordinates. The scheme conserves mass, overcoming problems of mass conservation typically experienced with offline transport models, and permits long time steps (relative to the Courant number) to be used by the offline model. These attributes make the method attractive for offline simulation of tracers in biogeochemical or sediment transport models using archived flow fields from hydrodynamic models. We describe the FFSL scheme, and test it on two idealised domains and one real domain, the Great Barrier Reef in Australia. For comparison, we also include simulations using a traditional semi-Lagrangian advection scheme for the offline simulations. We compare tracer distributions predicted by the offline FFSL transport scheme with those predicted by the original hydrodynamic model, assess the conservation of mass in all cases and contrast the computational efficiency of the schemes. We find that the FFSL scheme produced very good agreement with the distributions of tracer predicted by the hydrodynamic model, and conserved mass with an error of a fraction of one percent. In terms of computational speed, the FFSL scheme was comparable with the semi-Lagrangian method and an order of magnitude faster than the full hydrodynamic model, even when the latter ran in parallel on multiple cores. The FFSL scheme presented here therefore offers a viable mass-conserving and computationally-efficient alternative to traditional semi-Lagrangian schemes for offline scalar transport simulation in coastal models.

  3. The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems

    NASA Astrophysics Data System (ADS)

    Stevens, D.; Power, H.

    2015-10-01

    We propose a node-based local meshless method for advective transport problems that is capable of operating on centrally defined stencils and is suitable for shock-capturing purposes. High spatial convergence rates can be achieved; in excess of eighth-order in some cases. Strongly-varying smooth profiles may be captured at infinite Péclet number without instability, and for discontinuous profiles the solution exhibits neutrally stable oscillations that can be damped by introducing a small artificial diffusion parameter, allowing a good approximation to the shock-front to be maintained for long travel times without introducing spurious oscillations. The proposed method is based on local collocation with radial basis functions (RBFs) in a "finite collocation" configuration. In this approach the PDE governing and boundary equations are enforced directly within the local RBF collocation systems, rather than being reconstructed from fixed interpolating functions as is typical of finite difference, finite volume or finite element methods. In this way the interpolating basis functions naturally incorporate information from the governing PDE, including the strength and direction of the convective velocity field. By using these PDE-enhanced interpolating functions an "implicit upwinding" effect is achieved, whereby the flow of information naturally respects the specifics of the local convective field. This implicit upwinding effect allows high-convergence solutions to be obtained on centred stencils for advection problems. The method is formulated using a high-convergence implicit timestepping algorithm based on Richardson extrapolation. The spatial and temporal convergence of the proposed approach is demonstrated using smooth functions with large gradients. The capture of discontinuities is then investigated, showing how the addition of a dynamic stabilisation parameter can damp the neutrally stable oscillations with limited smearing of the shock front.

  4. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    USGS Publications Warehouse

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  5. Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe

    NASA Technical Reports Server (NTRS)

    Otterman, Jay; Angell, J.; Atlas, Robert; Bungato, D.; Schubert, S.; Starr, D.; Susskind, J.; Wu, M.-L. C.

    2001-01-01

    In winter, large interannual fluctuations in the surface skin temperature are observed over central Europe: we observe a difference of 9.8 K comparing warm February 1990 with cold February 1996 for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average Ina for February 1990 was 10.6 in s(exp -1), but for February 1996 I(sub na) was only 2.4 m s(exp -1). A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions result, which we observe in February 1990 at 700 mb. The near-surface moisture rises to higher (and cooler) levels, producing clouds and precipitation. Total preciptable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios can be translated into a virtual irradiating source of 2.6 W m(exp -2) above the February 1990 atmosphere, which, as an order of magnitude estimate, contributes to the warming of the surface by 2.6 K. If we accept this estimate as numerically pertinent, the direct effect stands as 7.2 K (9.8 K - 2.6 K), and therefore its greenhouse-effect reinforcement is by 36%. This constitutes a substantial positive feedback to the direct effect, which is the inflow of warm air to the low troposphere over Europe.

  6. On enforcing maximum principles and achieving element-wise species balance for advection-diffusion-reaction equations under the finite element method

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Nakshatrala, K. B.

    2016-01-01

    We present a robust computational framework for advective-diffusive-reactive systems that satisfies maximum principles, the non-negative constraint, and element-wise species balance property. The proposed methodology is valid on general computational grids, can handle heterogeneous anisotropic media, and provides accurate numerical solutions even for very high Péclet numbers. The significant contribution of this paper is to incorporate advection (which makes the spatial part of the differential operator non-self-adjoint) into the non-negative computational framework, and overcome numerical challenges associated with advection. We employ low-order mixed finite element formulations based on least-squares formalism, and enforce explicit constraints on the discrete problem to meet the desired properties. The resulting constrained discrete problem belongs to convex quadratic programming for which a unique solution exists. Maximum principles and the non-negative constraint give rise to bound constraints while element-wise species balance gives rise to equality constraints. The resulting convex quadratic programming problems are solved using an interior-point algorithm. Several numerical results pertaining to advection-dominated problems are presented to illustrate the robustness, convergence, and the overall performance of the proposed computational framework.

  7. Examination of the evolution of radiation and advection fogs. Final report

    SciTech Connect

    Orgill, M.M.

    1993-01-01

    A literature study was done on radiation and advection fog evolution. For radiation fog, six stages of fog evolution have been identified -- (1) precursor, (2) sunset, (3) conditioning, (4) mature, (5) sunrise, and (6) dissipation. The evolution of advection fog models has been in parallel with radiation fog models, but no identified stages in the evolution of advection fog have been proposed: (1) precursor, (2) initiation, (3) mature, and (4) dissipation. Radiation and advection fog models will require greater sophistication in order to study fog spatial and temporal variability. Physical aspects that require further study are discussed.

  8. Local Discontinuous Galerkin (LDG) Method for Advection of Active Compositional Fields with Discontinuous Boundaries: Demonstration and Comparison with Other Methods in the Mantle Convection Code ASPECT

    NASA Astrophysics Data System (ADS)

    He, Y.; Billen, M. I.; Puckett, E. G.

    2015-12-01

    Flow in the Earth's mantle is driven by thermo-chemical convection in which the properties and geochemical signatures of rocks vary depending on their origin and composition. For example, tectonic plates are composed of compositionally-distinct layers of crust, residual lithosphere and fertile mantle, while in the lower-most mantle there are large compositionally distinct "piles" with thinner lenses of different material. Therefore, tracking of active or passive fields with distinct compositional, geochemical or rheologic properties is important for incorporating physical realism into mantle convection simulations, and for investigating the long term mixing properties of the mantle. The difficulty in numerically advecting fields arises because they are non-diffusive and have sharp boundaries, and therefore require different methods than usually used for temperature. Previous methods for tracking fields include the marker-chain, tracer particle, and field-correction (e.g., the Lenardic Filter) methods: each of these has different advantages or disadvantages, trading off computational speed with accuracy in tracking feature boundaries. Here we present a method for modeling active fields in mantle dynamics simulations using a new solver implemented in the deal.II package that underlies the ASPECT software. The new solver for the advection-diffusion equation uses a Local Discontinuous Galerkin (LDG) algorithm, which combines features of both finite element and finite volume methods, and is particularly suitable for problems with a dominant first-order term and discontinuities. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a global maximum/minimum. One potential drawback for the LDG method is that the total number of degrees of freedom is larger than the finite element method. To demonstrate the capabilities of this new method we present results for two benchmarks used previously: a falling cube with distinct buoyancy and

  9. Local Discontinuous Galerkin (LDG) Method for Advection of Active Compositional Fields with Discontinuous Boundaries: Demonstration and Comparison with Other Methods in the Mantle Convection Code ASPECT

    NASA Astrophysics Data System (ADS)

    Hsu, S. K.; Armada, L. T.; Yeh, Y. C.; Bacolcol, T. C.; Dimalanta, C. B.; Doo, W. B.; Liang, C. W.

    2014-12-01

    Flow in the Earth's mantle is driven by thermo-chemical convection in which the properties and geochemical signatures of rocks vary depending on their origin and composition. For example, tectonic plates are composed of compositionally-distinct layers of crust, residual lithosphere and fertile mantle, while in the lower-most mantle there are large compositionally distinct "piles" with thinner lenses of different material. Therefore, tracking of active or passive fields with distinct compositional, geochemical or rheologic properties is important for incorporating physical realism into mantle convection simulations, and for investigating the long term mixing properties of the mantle. The difficulty in numerically advecting fields arises because they are non-diffusive and have sharp boundaries, and therefore require different methods than usually used for temperature. Previous methods for tracking fields include the marker-chain, tracer particle, and field-correction (e.g., the Lenardic Filter) methods: each of these has different advantages or disadvantages, trading off computational speed with accuracy in tracking feature boundaries. Here we present a method for modeling active fields in mantle dynamics simulations using a new solver implemented in the deal.II package that underlies the ASPECT software. The new solver for the advection-diffusion equation uses a Local Discontinuous Galerkin (LDG) algorithm, which combines features of both finite element and finite volume methods, and is particularly suitable for problems with a dominant first-order term and discontinuities. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a global maximum/minimum. One potential drawback for the LDG method is that the total number of degrees of freedom is larger than the finite element method. To demonstrate the capabilities of this new method we present results for two benchmarks used previously: a falling cube with distinct buoyancy and

  10. Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin using multi-temporal terrestrial laser scanning data

    NASA Astrophysics Data System (ADS)

    Staley, Dennis M.; Wasklewicz, Thad A.; Kean, Jason W.

    2014-06-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce hazardous debris flows. Relative to shallow landslides, the primary sources of material and dominant erosional processes that contribute to post-fire debris-flow initiation are poorly constrained. Improving our understanding of how and where material is eroded from a watershed during a post-fire debris-flow requires (1) precise measurements of topographic change to calculate volumetric measurements of erosion and deposition, and (2) the identification of relevant morphometrically defined process domains to spatially constrain these measurements of erosion and deposition. In this study, we combine the morphometric analysis of a steep, small (0.01 km2) headwater drainage basin with measurements of topographic change using high-resolution (2.5 cm) multi-temporal terrestrial laser scanning data made before and after a post-fire debris flow. The results of the morphometric analysis are used to define four process domains: hillslope-divergent, hillslope-convergent, transitional, and channelized incision. We determine that hillslope-divergent and hillslope-convergent process domains represent the primary sources of material over the period of analysis in the study basin. From these results we conclude that raindrop-impact induced erosion, ravel, surface wash, and rilling are the primary erosional processes contributing to post-fire debris-flow initiation in the small, steep headwater basin. Further work is needed to determine (1) how these results vary with increasing drainage basin size, (2) how these data might scale upward for use with coarser resolution measurements of topography, and (3) how these results change with evolving sediment supply conditions and vegetation recovery.

  11. Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin using multi-temporal terrestrial laser scanning data

    USGS Publications Warehouse

    Staley, Dennis M.; Waslewicz, Thad A.; Kean, Jason W.

    2014-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce hazardous debris flows. Relative to shallow landslides, the primary sources of material and dominant erosional processes that contribute to post-fire debris-flow initiation are poorly constrained. Improving our understanding of how and where material is eroded from a watershed during a post-fire debris-flow requires (1) precise measurements of topographic change to calculate volumetric measurements of erosion and deposition, and (2) the identification of relevant morphometrically defined process domains to spatially constrain these measurements of erosion and deposition. In this study, we combine the morphometric analysis of a steep, small (0.01 km2) headwater drainage basin with measurements of topographic change using high-resolution (2.5 cm) multi-temporal terrestrial laser scanning data made before and after a post-fire debris flow. The results of the morphometric analysis are used to define four process domains: hillslope-divergent, hillslope-convergent, transitional, and channelized incision. We determine that hillslope-divergent and hillslope-convergent process domains represent the primary sources of material over the period of analysis in the study basin. From these results we conclude that raindrop-impact induced erosion, ravel, surface wash, and rilling are the primary erosional processes contributing to post-fire debris-flow initiation in the small, steep headwater basin. Further work is needed to determine (1) how these results vary with increasing drainage basin size, (2) how these data might scale upward for use with coarser resolution measurements of topography, and (3) how these results change with evolving sediment supply conditions and vegetation recovery.

  12. Chaotic advection at large Péclet number: Electromagnetically driven experiments, numerical simulations, and theoretical predictions

    SciTech Connect

    Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel; Cuevas, Sergio; Ramos, Eduardo

    2014-01-15

    We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.

  13. Correcting transport errors during advection of aerosol and cloud moment sequences in eulerian models

    SciTech Connect

    McGraw R.

    2012-03-01

    Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.

  14. Analytical solution for the advection-dispersion transport equation in layered media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  15. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-di...

  16. Turing-Hopf instabilities through a combination of diffusion, advection, and finite size effects.

    PubMed

    Galhotra, Sainyam; Bhattacharjee, J K; Agarwalla, Bijay Kumar

    2014-01-14

    We show that in a reaction diffusion system on a two-dimensional substrate with advection in the confined direction, the drift (advection) induced instability occurs through a Hopf bifurcation, which can become a double Hopf bifurcation. The box size in the direction of the drift is a vital parameter. Our analysis involves reduction to a low dimensional dynamical system and constructing amplitude equations.

  17. Fractional Advective-Dispersive Equation as a Model of Solute Transport in Porous Media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. The common model is the advective-dispersive equation (ADE) describing the superposition of the advective transport and the Brownian motion in water-filled pore space. Deviations from...

  18. Winter to Spring Transition in Europe 48-45 degrees N: From Temperature Control by Advection to Control by Insolation

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Hu, H.; Jusem, J. C.; Starr, D.

    1999-01-01

    As established in previous studies, and analyzed further herein for the years 1988-1998, warm advection from the North Atlantic is the predominant control of the surface-air temperature in northern-latitude Europe in late winter. This thesis is supported by the substantial correlation Cti between the speed of the southwesterly surface winds over the eastern North Atlantic, as quantified by a specific Index Ina, and the 2-meter level temperature Ts over central Europe (48-54 deg N; 5-25 deg E), for January, February and early March. In mid-March and subsequently, the correlation Cti drops drastically (quite often it is negative). The change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature. As (a) the sun rises higher in the sky, (b) the snows melt (the surface absorptivity can increase by a factor of 3.0), (c) the ocean-surface winds weaken, and (d) the temperature difference between land and ocean (which we analyze) becomes small, absorption of insolation replaces the warm advection as the dominant control of the continental temperature. We define the onset of spring by this transition, which evaluated for the period of our study occurs at pentad 16 (Julian Date 76, that is, March 16). The control by insolation means that the surface is cooler under cloudy conditions than under clear skies. This control produces a much smaller interannual variability of the surface temperature and of the lapse rate than prevailing in winter, when the control is by advection. Regional climatic data would be of greatest value for agriculture and forestry if compiled for well-defined seasons. For continental northern latitudes, analysis presented here of factors controlling the surface temperature appears an appropriate tool for this task.

  19. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    2003-01-01

    Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.

  20. Investigation of density-dependent gas advection of trichloroethylene: Experiment and a model validation exercise

    NASA Astrophysics Data System (ADS)

    Lenhard, R. J.; Oostrom, M.; Simmons, C. S.; White, M. D.

    1995-07-01

    An experiment was conducted to evaluate whether vapor-density effects are significant in transporting volatile organic compounds (VOC's) with high vapor pressure and molecular mass through the subsurface. Trichloroethylene (TCE) was chosen for the investigation because it is a common VOC contaminant with high vapor pressure and molecular mass. For the investigation, a 2-m-long by 1-m-high by 7.5-cm-thick flow cell was constructed with a network of sampling ports. The flow cell was packed with sand, and a water table was established near the lower boundary. Liquid TCE was placed near the upper boundary of the flow cell in a chamber from which vapors could enter and migrate through the sand. TCE concentrations in the gas phase were measured by extracting 25-μl gas samples with an air-tight syringe and analyzing them with a gas chromatograph. The evolution of the TCE gas plume in the sand was investigated by examining plots of TCE concentrations over the domain for specific times and for particular locations as a function of time. To help in this analysis, a numerical model was developed that can predict the simultaneous movements of a gas, a nonaqueous liquid and water in porous media. The model also considers interphase mass transfer by employing the phase equilibrium assumption. The model was tested with one- and two-dimensional analytical solutions of fluid flow before it was used to simulate the experiment. Comparisons between experimental data and simulation results when vapor-density effects are considered were very good. When vapor-density effects were ignored, agreement was poor. These analyses suggest that vapor-density effects should be considered and that density-driven vapor advection may be an important mechanism for moving VOC's with high vapor pressures and molecular mass through the subsurface.

  1. Development of the FMT chemical transport simulator: Advective transport sensitivity to aqueous density and mineral volume fraction coupled to phase compositions

    SciTech Connect

    Novak, C.F.

    1993-12-31

    The Fracture-Matrix Transport (FMT) code couples saturated porous media advection and diffusion with mechanistic chemical models for speciation and interphase reactions. FMT is being developed to support actinide solubility and retardation studies for the Waste Isolation Pilot Plant (WIPP), USDOE facility for demonstrating safe disposal of transuranic waste. Hydrologic studies of water-bearing units above the WIPP indicate double-porosity transport behavior in some locations, with groundwater concentrations ranging which potable to highly concentrated. Previously, FMT simulated such systems in two-dimensions on the continuum from advection- to diffusion-dominated, with a user-specified velocity field that allows double-porosity transport. However, aqueous density was assumed constant, and reactive minerals were assumed to occupy negligible volume. Both of these assumptions can be considered poor for evaporite systems, where large changes in porosity and aqueous density can result from high mineral solubilities. Therefore, further development of FMT has relaxed these restrictions, allowing aqueous density to vary with phase composition, and allowing void volume to change as minerals dissolve and precipitate. This paper describes the additional mathematical complexity required to simulate such systems. The sensitivity of advection-dominated transport to these variables is explored through an extended example.

  2. Time Acceleration Methods for Advection on the Cubed Sphere

    SciTech Connect

    Archibald, Richard K; Evans, Katherine J; White III, James B; Drake, John B

    2009-01-01

    Climate simulation will not grow to the ultrascale without new algorithms to overcome the scalability barriers blocking existing implementations. Until recently, climate simulations concentrated on the question of whether the climate is changing. The emphasis is now shifting to impact assessments, mitigation and adaptation strategies, and regional details. Such studies will require significant increases in spatial resolution and model complexity while maintaining adequate throughput. The barrier to progress is the resulting decrease in time step without increasing single-thread performance. In this paper we demonstrate how to overcome this time barrier for the first standard test defined for the shallow-water equations on a sphere. This paper explains how combining a multiwavelet discontinuous Galerkin method with exact linear part time-evolution schemes can overcome the time barrier for advection equations on a sphere. The discontinuous Galerkin method is a high-order method that is conservative, flexible, and scalable. The addition of multiwavelets to discontinuous Galerkin provides a hierarchical scale structure that can be exploited to improve computational efficiency in both the spatial and temporal dimensions. Exact linear part time-evolution schemes are explicit schemes that remain stable for implicit-size time steps.

  3. Population persistence under advection-diffusion in river networks.

    PubMed

    Ramirez, Jorge M

    2012-11-01

    An integro-differential equation on a tree graph is used to model the time evolution and spatial distribution of a population of organisms in a river network. Individual organisms become mobile at a constant rate, and disperse according to an advection-diffusion process with coefficients that are constant on the edges of the graph. Appropriate boundary conditions are imposed at the outlet and upstream nodes of the river network. The local rates of population growth/decay and that by which the organisms become mobile, are assumed constant in time and space. Imminent extinction of the population is understood as the situation whereby the zero solution to the integro-differential equation is stable. Lower and upper bounds for the eigenvalues of the dispersion operator, and related Sturm-Liouville problems are found. The analysis yields sufficient conditions for imminent extinction and/or persistence in terms of the values of water velocity, channel length, cross-sectional area and diffusivity throughout the river network.

  4. Revisiting the Rossby Haurwitz wave test case with contour advection

    NASA Astrophysics Data System (ADS)

    Smith, Robert K.; Dritschel, David G.

    2006-09-01

    This paper re-examines a basic test case used for spherical shallow-water numerical models, and underscores the need for accurate, high resolution models of atmospheric and ocean dynamics. The Rossby-Haurwitz test case, first proposed by Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical approximations to the shallow-water equations on the sphere, J. Comput. Phys. (1992) 221-224], has been examined using a wide variety of shallow-water models in previous papers. Here, two contour-advective semi-Lagrangian (CASL) models are considered, and results are compared with previous test results. We go further by modifying this test case in a simple way to initiate a rapid breakdown of the basic wave state. This breakdown is accompanied by the formation of sharp potential vorticity gradients (fronts), placing far greater demands on the numerics than the original test case does. We also go further by examining other dynamical fields besides the height and potential vorticity, to assess how well the models deal with gravity waves. Such waves are sensitive to the presence or not of sharp potential vorticity gradients, as well as to numerical parameter settings. In particular, large time steps (convenient for semi-Lagrangian schemes) can seriously affect gravity waves but can also have an adverse impact on the primary fields of height and velocity. These problems are exacerbated by a poor resolution of potential vorticity gradients.

  5. The Granite Aqueduct and Advection of Water and Heat Through Plutonic Terranes

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.; Bartley, J. M.; Law, B.; Coleman, D. S.

    2011-12-01

    Although water plays a critical role in the genesis and movement of magma, it is largely lost from rocks upon crystallization. Observation of active volcanoes, analysis of magmatic inclusions, and experimental petrology indicate that intermediate magmas in subduction zones are water-rich, containing 5 wt% or more H2O. Carmichael (2002) wrote of the "andesite aqueduct" that conveys copious amounts of water from magma source regions in subduction zones to the surface and atmosphere. We suggest that this water plays a significant role in the thermal and textural history of the plutonic rocks through which it passes. A dacite magma with 5 wt% H2O crystallizes to granodiorite with ~0.5 wt% H2O, releasing >100 kg of H2O per m3. Field and geochronological data indicate that many sheet-like plutons are constructed from the top down, typically over 1 m.y. or more, likely bathing earlier pulses in ascending water released from later pulses. For a 5 km thick pluton, this release amounts to a condensed-water equivalent depth of ~500 m per unit of horizontal area, a truly vast amount. Plutons preserve abundant evidence for late-stage fluid transfer via a "granite aqueduct." For example, the Tuolumne Intrusive Suite of California is cut by myriad hydrothermally altered pipes that are typically found within or near aplite-pegmatite dikes (Mustart & Horrigan, 2000). The pipes attest to focused fluid flow, and the dikes themselves are the crystallized remnants of late-stage magmatic liquids. Upward advection of heat through dikes and pipes transfers thermal energy from newly crystallizing magma increments to older ones above much more efficiently and rapidly than thermal conduction, and could account for the widespread and profound recrystallization that produces the large grain size and low-temperature mineral assemblages of many granitic rocks. Although the concept that plutons represent the frozen record of huge, highly liquid magma chambers is losing favor, some recent studies

  6. Solution of the advection-dispersion equation by a finite-volume eulerian-lagrangian local adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1992-01-01

    A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.

  7. The social dominance paradox.

    PubMed

    Cook, Jennifer Louise; den Ouden, Hanneke E M; Heyes, Cecilia M; Cools, Roshan

    2014-12-01

    Dominant individuals report high levels of self-sufficiency, self-esteem, and authoritarianism. The lay stereotype suggests that such individuals ignore information from others, preferring to make their own choices. However, the nonhuman animal literature presents a conflicting view, suggesting that dominant individuals are avid social learners, whereas subordinates focus on learning from private experience. Whether dominant humans are best characterized by the lay stereotype or the animal view is currently unknown. Here, we present a "social dominance paradox": using self-report scales and computerized tasks, we demonstrate that socially dominant people explicitly value independence, but, paradoxically, in a complex decision-making task, they show an enhanced reliance (relative to subordinate individuals) on social learning. More specifically, socially dominant people employed a strategy of copying other agents when the agents' responses had a history of being correct. However, in humans, two subtypes of dominance have been identified: aggressive and social. Aggressively dominant individuals, who are as likely to "get their own way" as socially dominant individuals but who do so through the use of aggressive or Machiavellian tactics, did not use social information, even when it was beneficial to do so. This paper presents the first study of dominance and social learning in humans and challenges the lay stereotype in which all dominant individuals ignore others' views. The more subtle perspective we offer could have important implications for decision making in both the boardroom and the classroom. PMID:25454588

  8. Advective-diffusive/dispersive transport of chemically reacting species in hydrothermal systems. Final report, FY83-85

    SciTech Connect

    Lichtner, P.C.; Helgeson, H.C.

    1986-06-20

    A general formulation of multi-phase fluid flow coupled to chemical reactions was developed based on a continuum description of porous media. A preliminary version of the computer code MCCTM was constructed which implemented the general equations for a single phase fluid. The computer code MCCTM incorporates mass transport by advection-diffusion/dispersion in a one-dimensional porous medium coupled to reversible and irreversible, homogeneous and heterogeneous chemical reactions. These reactions include aqueous complexing, oxidation/reduction reactions, ion exchange, and hydrolysis reactions of stoichiometric minerals. The code MCCTM uses a fully implicit finite difference algorithm. The code was tested against analytical calculations. Applications of the code included investigation of the propagation of sharp chemical reaction fronts, metasomatic alteration of microcline at elevated temperatures and pressures, and ion-exchange in a porous column. Finally numerical calculations describing fluid flow in crystalline rock in the presence of a temperature gradient were compared with experimental results for quartzite.

  9. MODFLOW-2000 : the U.S. Geological Survey modular ground-water model--documentation of the Advective-Transport Observation (ADV2) Package

    USGS Publications Warehouse

    Anderman, Evan R.; Hill, Mary Catherine

    2001-01-01

    Observations of the advective component of contaminant transport in steady-state flow fields can provide important information for the calibration of ground-water flow models. This report documents the Advective-Transport Observation (ADV2) Package, version 2, which allows advective-transport observations to be used in the three-dimensional ground-water flow parameter-estimation model MODFLOW-2000. The ADV2 Package is compatible with some of the features in the Layer-Property Flow and Hydrogeologic-Unit Flow Packages, but is not compatible with the Block-Centered Flow or Generalized Finite-Difference Packages. The particle-tracking routine used in the ADV2 Package duplicates the semi-analytical method of MODPATH, as shown in a sample problem. Particles can be tracked in a forward or backward direction, and effects such as retardation can be simulated through manipulation of the effective-porosity value used to calculate velocity. Particles can be discharged at cells that are considered to be weak sinks, in which the sink applied does not capture all the water flowing into the cell, using one of two criteria: (1) if there is any outflow to a boundary condition such as a well or surface-water feature, or (2) if the outflow exceeds a user specified fraction of the cell budget. Although effective porosity could be included as a parameter in the regression, this capability is not included in this package. The weighted sum-of-squares objective function, which is minimized in the Parameter-Estimation Process, was augmented to include the square of the weighted x-, y-, and z-components of the differences between the simulated and observed advective-front locations at defined times, thereby including the direction of travel as well as the overall travel distance in the calibration process. The sensitivities of the particle movement to the parameters needed to minimize the objective function are calculated for any particle location using the exact sensitivity

  10. Wind-driven gas networks and star formation in galaxies: reaction-advection hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Chappell, David; Scalo, John

    2001-07-01

    The effects of wind-driven star formation feedback on the spatio-temporal organization of stars and gas in galaxies is studied using two-dimensional intermediate-representational quasi-hydrodynamical simulations. The model retains only a reduced subset of the physics, including mass and momentum conservation, fully non-linear fluid advection, inelastic macroscopic interactions, threshold star formation, and momentum forcing by winds from young star clusters on the surrounding gas. Expanding shells of swept-up gas evolve through the action of fluid advection to form a `turbulent' network of interacting shell fragments which have the overall appearance of a web of filaments (in two dimensions). A new star cluster is formed whenever the column density through a filament exceeds a critical threshold based on the gravitational instability criterion for an expanding shell, which then generates a new expanding shell after some time delay. A filament-finding algorithm is developed to locate the potential sites of new star formation. The major result is the dominance of multiple interactions between advectively distorted shells in controlling the gas and star morphology, gas velocity distribution and mass spectrum of high mass density peaks, and the global star formation history. The gas morphology strongly resembles the model envisioned by Norman & Silk, and observations of gas in the Large Magellanic Cloud (LMC)Q1 and local molecular clouds. The dependence of the frequency distribution of present-to-past average global star formation rate on a number of parameters is investigated. Bursts of star formation only occur when the time-averaged star formation rate per unit area is low, or the system is small. Percolation does not play a role. The broad distribution observed in late-type galaxies can be understood as a result of either small size or small metallicity, resulting in larger shell column densities required for gravitational instability. The star formation rate

  11. Evaluation of reaction rates in streambed sediments with seepage flow: a novel code

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2015-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species which perform many heterotrophic and autotrophic reactions. The evaluation of these reaction rates is crucial to assess the fate of nutrients in riverine environments, and it is often performed through the analysis of concentrations from water samples collected along vertical profiles. The most commonly employed evaluation tool is the Profile code developed by Berg et al. (1998), which determines reaction rates by fitting observed concentrations to a diffusion-reaction equation that neglects the presence of water flow within sediments. However, hyporheic flow is extremely common in streambeds, where solute transport is often controlled by advection rather than diffusion. There is hence a pressing need to develop new methods that can be applied even to advection-dominated sediments. This contribution fills this gap by presenting a novel approach that extends the method proposed by Berg et al. (1998). This new approach includes the influence of vertical solute transport by upwelling or downwelling water, and it is this suited to the typical flow conditions of stream sediments. The code is applied to vertical profiles of dissolved oxygen from a laboratory flume designed to mimic the complex flow conditions of real streams. The results show that it is fundamental to consider water flow to obtain reliable estimates of reaction rates in streambeds. Berg, P., N. Risgaard-Petersen, and S. Rysgaard, 1998, Interpretation of measured concentration profiles in the sediment porewater, Limnology and Oceanography, 43:1500-1510.

  12. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  13. The contiguous domains of Arctic Ocean advection: Trails of life and death

    NASA Astrophysics Data System (ADS)

    Wassmann, P.; Kosobokova, K. N.; Slagstad, D.; Drinkwater, K. F.; Hopcroft, R. R.; Moore, S. E.; Ellingsen, I.; Nelson, R. J.; Carmack, E.; Popova, E.; Berge, J.

    2015-12-01

    The central Arctic Ocean is not isolated, but tightly connected to the northern Pacific and Atlantic Oceans. Advection of nutrient-, detritus- and plankton-rich waters into the Arctic Ocean forms lengthy contiguous domains that connect subarctic with the arctic biota, supporting both primary production and higher trophic level consumers. In turn, the Arctic influences the physical, chemical and biological oceanography of adjacent subarctic waters through southward fluxes. However, exports of biomass out of the Arctic Ocean into both the Pacific and Atlantic Oceans are thought to be far smaller than the northward influx. Thus, Arctic Ocean ecosystems are net biomass beneficiaries through advection. The biotic impact of Atlantic- and Pacific-origin taxa in arctic waters depends on the total supply of allochthonously-produced biomass, their ability to survive as adults and their (unsuccessful) reproduction in the new environment. Thus, advective transport can be thought of as trails of life and death in the Arctic Ocean. Through direct and indirect (mammal stomachs, models) observations this overview presents information about the advection and fate of zooplankton in the Arctic Ocean, now and in the future. The main zooplankton organisms subjected to advection into and inside the Arctic Ocean are (a) oceanic expatriates of boreal Atlantic and Pacific origin, (b) oceanic Arctic residents and (c) neritic Arctic expatriates. As compared to the Pacific gateway the advective supply of zooplankton biomass through the Atlantic gateways is 2-3 times higher. Advection characterises how the main planktonic organisms interact along the contiguous domains and shows how the subarctic production regimes fuel life in the Arctic Ocean. The main differences in the advective regimes through the Pacific and Atlantic gateways are presented. The Arctic Ocean is, at least in some regions, a net heterotrophic ocean that - during the foreseeable global warming trend - will more and more rely

  14. Self-organization and advective transport in the cell polarity formation for asymmetric cell division.

    PubMed

    Seirin Lee, Sungrim; Shibata, Tatsuo

    2015-10-01

    Anterior-Posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which depends not only on the several genetic process but also biochemical and biophysical interactions. The mechanism of AP formation of Caenorhabditis elegans embryo is characterized into the three processes: (i) membrane association and dissociation of posterior and anterior proteins, (ii) diffusion into the membrane and cytosol, and (iii) active cortical and cytoplasmic flows induced by the contraction of the acto-myosin cortex. We explored the mechanism of symmetry breaking and AP polarity formation using self-recruitment model of posterior proteins. We found that the AP polarity pattern is established over wide range in the total mass of polarity proteins and the diffusion ratio in the cytosol to the membrane. We also showed that the advective transport in both membrane and cytosol during the establishment phase affects optimal time interval of establishment and positioning of the posterior domain, and plays a role to increase the robustness in the AP polarity formation by reducing the number of posterior domains for the sensitivity of initial conditions. We also demonstrated that a proper ratio of the total mass to cell size robustly regulate the length scale of the posterior domain.

  15. Advective Desorption of Uranium (VI) from Contaminated Hanford Vadose Zone Sediments under Saturated and Unsaturated Conditions

    SciTech Connect

    Wellman, Dawn M.; Zachara, John M.; Liu, Chongxuan; Qafoku, Nikolla; Smith, Steven C.; Forrester, Steven W.

    2008-11-03

    Sedimentary, hydrologic, and geochemical variations in the Hanford subsurface environment, as well as compositional differences in contaminating waste streams, have created vast differences in the migration and mobility of uranium within the subsurface environment. A series of hydraulically-saturated and -unsaturated column experiments were performed to i.) assess the effect of water content on the advective desorption and migration of uranium from contaminated sediments, and ii.) evaluate the uranium concentration that can develop in porewater and/or groundwater as a result of desorption/dissolution reactions. Flow rate and moisture content were varied to evaluate the influence of contact time, pore water velocity, and macropore desaturation on aqueous uranium concentrations. Sediments were collected from the T-TX-TY tank farm complex and the 300 Area Process Ponds located on the Hanford Site, southeastern Washington State. The sediments vary in depth, mineralogy, and in contamination events. Experiments were conducted under mildly alkaline/calcareous conditions representative of conditions commonly encountered at repository sites across the arid western United States and, in particular, the Hanford site. Results illustrate the release of uranium from these sediments is kinetically controlled and low water contents encountered within the Hanford vadose zone result in the formation of mobile-immobile water regimes, which isolate a fraction of the reactive sites within the sediments, effectively reducing the concentration of uranium released into migrating porewaters.

  16. Bound-preserving discontinuous Galerkin methods for conservative phase space advection in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Endeve, Eirik; Hauck, Cory D.; Xing, Yulong; Mezzacappa, Anthony

    2015-04-01

    We extend the positivity-preserving method of Zhang and Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stability-preserving, Runge-Kutta (SSP-RK) time integration. Special care is taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ∈ [ 0 , 1 ]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is sufficient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergence-free property of the phase space flow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.

  17. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  18. A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1993-01-01

    Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods for solute transport problems that are dominated by advection. FVELLAM systematically conserves mass globally with all types of boundary conditions. Integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking of characteristic lines intersecting inflow boundaries. FVELLAM extends previous results by obtaining mass conservation locally on Lagrangian space-time elements. -from Authors

  19. SEBAL-A: A remote sensing ET algorithm that accounts for advection with limited data. Part II: Test for transferability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because the Surface Energy Balance Algorithm for Land (SEBAL) tends to underestimate ET under conditions of advection, the model was modified by incorporating an advection component as part of the energy usable for crop evapotranspiration (ET). The modification involved the estimation of advected en...

  20. Characterization of the flowing afterglows of an N2 O2 reduced-pressure discharge: setting the operating conditions to achieve a dominant late afterglow and correlating the NOβ UV intensity variation with the N and O atom densities

    NASA Astrophysics Data System (ADS)

    Boudam, M. K.; Saoudi, B.; Moisan, M.; Ricard, A.

    2007-03-01

    The flowing afterglow of an N2-O2 discharge in the 0.6-10 Torr range is examined in the perspective of achieving sterilization of medical devices (MDs) under conditions ensuring maximum UV intensity with minimum damage to polymer-based MDs. The early afterglow is shown to be responsible for creating strong erosion damage, requiring that the sterilizer be operated in a dominant late-afterglow mode. These two types of afterglow can be characterized by optical emission spectroscopy: the early afterglow is distinguished by an intense emission from the N_{2}^{+} 1st negative system (band head at 391.4 nm) while the late afterglow yields an overpopulation of the v' = 11 ro-vibrational level of the N2(B) state, indicating a reduced contribution from the early afterglow N2 metastable species. We have studied the influence of operating conditions (pressure, O2 content in the N2-O2 mixture, distance of the discharge from the entrance to the afterglow (sterilizer) chamber) in order to achieve a dominant late afterglow that also ensures maximum and almost uniform UV intensity in the sterilization chamber. As far as operating conditions are concerned, moving the plasma source sufficiently far from the chamber entrance is shown to be a practical means for significantly reducing the density of the characteristic species of the early afterglow. Using the NO titration method, we obtain the (absolute) densities of N and O atoms in the afterglow at the NO injection inlet, a few cm before the chamber entrance: the N atom density goes through a maximum at approximately 0.3-0.5% O2 and then decreases, while the O atom density increases regularly with the O2 percentage. The spatial variation of the N atom (relative) density in the chamber is obtained by recording the emission intensity from the 1st positive system at 580 nm: in the 2-5 Torr range, this density is quite uniform everywhere in the chamber. The (relative) densities of N and O atoms in the discharge are determined by using

  1. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling.

    PubMed

    Antonov, N V; Gulitskiy, N M

    2015-10-01

    In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015)] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n, all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E∝k(⊥)(1-ξ) and the dispersion law ω∝k(⊥)(2-η). In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L. PMID:26565343

  2. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling.

    PubMed

    Antonov, N V; Gulitskiy, N M

    2015-10-01

    In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015)] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n, all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E∝k(⊥)(1-ξ) and the dispersion law ω∝k(⊥)(2-η). In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L.

  3. Creation and tidal advection of a cold salinity front in Storfjorden: 2. Supercooling induced by turbulent mixing of cold water

    NASA Astrophysics Data System (ADS)

    McPhee, Miles G.; Skogseth, Ragnheid; Nilsen, Frank; Smedsrud, Lars H.

    2013-08-01

    Measurements near the edge of fast ice in Freemansundet, Svalbard, reveal mixing processes associated with tidal advection of a sharp front in salinity, including possible supercooling induced by double diffusion in a fully turbulent water column. The front translated back and forth with the semidiurnal tide between an area of mobile (drifting) ice in Storfjorden proper, and the narrow sound covered by fast ice. Water on each side of the front was near its salinity-determined freezing temperature. Instruments deployed about 400 m into the sound from the fast ice edge measured current, temperature, conductivity, and turbulence quantities through several tidal cycles. Turbulence data illustrate that as the steep horizontal salinity (density) gradient advected past the measurement site, vertical shear near the fast-ice base induced marked flood/ebb asymmetry in turbulent mixing. As fresher water entered the sound on the flood phase, inward transport of denser water near the upper boundary was retarded, leading to statically unstable conditions and enhanced turbulence. The opposite occurred during ebb tide, as denser water underran lighter. Transient episodes of supercooling accompanied frontal passage on both flood and ebb phases. The most likely explanation for a zone of supercooled water within the strongly mixed frontal region is that during mixing of fresher, slightly warmer (but still at freezing) water from outside with saltier, colder water in the sound, the former constituent lost heat faster than gaining salt. This interpretation (differing turbulent diffusivities for heat and salt) challenges strict application of Reynolds analogy for highly turbulent shear flow.

  4. Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.

    2013-12-01

    Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons

  5. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  6. Self-similar Hot Accretion Flow onto a Neutron Star

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r<~102.5, where r is the radius in Schwarzschild units; and a one-temperature solution that is valid in an outer zone, r>~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  7. Manifolds and front propagation barriers in advection-reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Solomon, Tom

    2015-03-01

    We present experiments on the propagation of reaction fronts in laminar, vortex-dominated flows. The fronts are produced by the excitable Belousov-Zhabotinsky chemical reaction. The flows studied are driven by magnetohydrodynamic forcing techniques and are composed of a single vortex, chains or arrays of vortices, or spatially-disordered flows. In all of these cases, one-way barriers appear that either inhibit front propagation or, in some cases, pin the reactions fronts. We analyze this behavior with a recent theory of burning invariant manifolds (BIMs) that are a generalization of the theory of invariant manifolds developed in the past to characterize chaotic mixing and transport of passive impurities. We demonstrate that the BIMs are responsible for the reaction barriers observed experimentally, and we discuss the applicability of this BIM formalism to a range of flows: time-independent, time-periodic and time-aperiodic. Supported by NSF Grants DMR-1004744, DMR-1361881 and PHY-1156964.

  8. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    EPA Science Inventory

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  9. AN EXACT PEAK CAPTURING AND OSCILLATION-FREE SCHEME TO SOLVE ADVECTION-DISPERSION TRANSPORT EQUATIONS

    EPA Science Inventory

    An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...

  10. The impact of advection on stratification and chlorophyll variability in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Dave, Apurva C.; Lozier, M. Susan

    2015-06-01

    Previously reported global-scale correlations between interannual variability in upper ocean stratification and chlorophyll a (a proxy for phytoplankton biomass) have been shown to be driven by strong associations between the two properties in the central and western equatorial Pacific. Herein, we present evidence that these correlations are not causal but instead result from the advection of heat, salt, and nutrients in the region. Specifically, we demonstrate that stratification and chlorophyll are simultaneously influenced by shifts in the horizontal advective inputs of cold/saline/nutrient-rich waters from upwelling regions to the east and warm/fresh/nutrient-poor waters to the west. We find that horizontal advection contributes substantially to the annual surface layer nutrient budget and, together with vertical advection, significantly impacts interannual variability in chlorophyll. These results highlight the importance of a three-dimensional framework for examining nutrient supply in the upper ocean—a crucial requirement for assessing future marine ecosystem responses to a changing climate.

  11. Comparison of thermal advection measurements by clear-air radar and radiosonde techniques

    SciTech Connect

    Crochet, M.; Rougier, G.; Bazile, G. Meteorologie Nationale, Trappes )

    1990-10-01

    Vertical profiles of the horizontal wind have been measured every 4 min by a clear-air radar (stratospheric-troposphere radar), and vertical profiles of temperature have been obtained every 2 hours by three radiosonde soundings in the same zone in Brittany during the Mesoscale Frontal Dynamics Project FRONTS 87 campaign. Radar thermal advection is deduced from the thermal wind equation using the measured real horizontal wind instead of the geostrophic wind. Radiosonde thermal advection is determined directly from the sounding station data sets of temperature gradients and also approximately from the thermodynamic equation by the temperature tendency. These approximations, applied during a frontal passage, show the same general features and magnitude of the thermal advection, giving a preliminary but encouraging conclusion for a possible real-time utilization of clear-air radars to monitor thermal advection and to identify its characteristic features. 6 refs.

  12. Flow Charts: Visualization of Vector Fields on Arbitrary Surfaces

    PubMed Central

    Li, Guo-Shi; Tricoche, Xavier; Weiskopf, Daniel; Hansen, Charles

    2009-01-01

    We introduce a novel flow visualization method called Flow Charts, which uses a texture atlas approach for the visualization of flows defined over curved surfaces. In this scheme, the surface and its associated flow are segmented into overlapping patches, which are then parameterized and packed in the texture domain. This scheme allows accurate particle advection across multiple charts in the texture domain, providing a flexible framework that supports various flow visualization techniques. The use of surface parameterization enables flow visualization techniques requiring the global view of the surface over long time spans, such as Unsteady Flow LIC (UFLIC), particle-based Unsteady Flow Advection Convolution (UFAC), or dye advection. It also prevents visual artifacts normally associated with view-dependent methods. Represented as textures, Flow Charts can be naturally integrated into hardware accelerated flow visualization techniques for interactive performance. PMID:18599918

  13. Core Heat Flow and Suppression of Mantle Plumes by Plate-Scale Mantle Flow: Results From Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Gonnermann, H. M.; Jellinek, A. M.; Richards, M. A.; Manga, M.

    2002-12-01

    Heat flow from the Earth's core to the mantle remains an unresolved quantity. Its value has implications for the core's thermal evolution and growth of the inner core, the geodynamo, and the relative abundance of radioactive elements in the core and mantle. Core heat flow is affected by dynamics of the lowermost mantle in three ways: (1) advection of heat by plume instabilities; (2) conductive heating of subducted material; and (3) suppression of plume instabilities, as well as advection of heat by plate-scale mantle flow. We present results from a boundary-layer analysis and laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high-Rayleigh number (106<=Ra<=109) in a fluid with a strongly temperature-dependent viscosity. The ultimate goal of this work is to better understand the effect of plate-scale mantle flow on heat flux across the CMB and on the dynamics of plume formation at the CMB. Our theoretical analysis is complemented by lab experiments, in which a layer of corn syrup is heated from below and a large-scale flow is induced in the fluid above the hot boundary. We identify 4 convective regions associated with high-Rayleigh number convection in the presence of a large-scale flow: (1) a subcritical TBL region (Domain I), where plume instabilities are suppressed by the advective thinning of the TBL and heat flux is increased relative to convection without large-scale flow; (2) a supercritical TBL region (Domain II), where plume instabilities are no longer suppressed and heat flux is equal to convection without large-scale flow; (3) a flow-dominated region (Domain III), which is free of plumes; and (4) a plume-dominated domain (Domain IV), where the interaction of hot buoyant plumes and imposed large-scale flow results in lateral advection and distortion of rising plumes. In addition, we present a boundary-layer analysis that predicts heat flux, Q, from a hot surface as a function of imposed

  14. A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.

    SciTech Connect

    Siefert, Christopher; Robinson, Allen Conrad

    2009-09-01

    We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.

  15. Burning invariant manifolds in spatially disordered advection-reaction-diffusion

    NASA Astrophysics Data System (ADS)

    Bargteil, Dylan; Solomon, Tom; Mahoney, John; Mitchell, Kevin

    2012-02-01

    We introduce burning invariant manifolds (BIMs) which act as barriers to front propagation, similar to the role played by invariant manifolds as barriers to passive transport in two-dimensional flows. We present experimental studies of BIMs in a spatially disordered, time-independent flow. We generate the flow with a magnetohydrodynamic technique that uses a DC current and a disordered pattern of permanent magnets. The velocity field is determined from this flow using particle tracking velocimetry, and reaction fronts are produced using the Ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical reaction. We use the experimental velocity field and a three-dimensional set of ODEs to predict from theory the location and orientation of BIMs. These predicted BIMs are found to match up well with the propagation barriers observed experimentally in the same flow using the BZ reaction. We explore the nature of BIMs as one-sided barriers, in contrast to invariant manifolds that act as barriers for passive transport in all directions. We also explore the role of projection singularities in the theory and how these singularities affect front behavior.

  16. Modifying SEBAL ET Algorithm to account for advection by using daily averages of weather data

    NASA Astrophysics Data System (ADS)

    Mkhwanazi, M. M.; Chavez, J. L.

    2013-12-01

    The use of Remote Sensing (RS) in crop evapotranspiration (ET) estimation is aimed at improving agricultural water management. The Surface Energy Balance Algorithm for Land (SEBAL) is one of several methods that have been developed for this purpose. This has been a preferred model as it requires minimal climate data. However, it has a noted downside of underestimating ET under advective conditions. This is primarily due to the use of evaporative fraction (EF) to extrapolate instantaneous ET to daily values, with the assumption that EF is constant throughout the day. A modified SEBAL model was used in this study, which requires daily averages of weather data to estimate advection which is then introduced into the 24-hour ET sub-model of SEBAL. The study was carried out in southeastern Colorado, a semi-arid area where afternoon advection is a common feature. ET estimated using the original and modified SEBAL was compared to the lysimeter-measured ET. Results showed that the modified SEBAL algorithm performed better in estimating daily ET in overall, but especially on days when there was advection. On non-advective days, the original SEBAL was more accurate. It is therefore recommended that the modified SEBAL be used only on advective days, and guidelines to help identify such days were proposed.

  17. Characterization of the role of heterogeneous advection and diffusion on transport in weathered and fractured granite

    NASA Astrophysics Data System (ADS)

    Guihéneuf, N.; Boisson, A.; Bour, O.; Le Borgne, T.; Marechal, J.; Nigon, B.; Wajiddudin, M.; Ahmed, S.

    2013-12-01

    The prediction of transport in weathered and fractured rocks is critical as it represents the primary control of contaminant transfer from the subsurface in many parts of the world. This is the case in Southern India, where the subsurface is composed mainly of weathered and fractured granite and where the overexploitation of the groundwater resource since the 70's has led to high water table depletion and strong groundwater quality deterioration. One key issue for modelling transport in such systems is to quantify the respective role of advective heterogeneities and matrix diffusion, which can both lead to strongly non Fickian transport properties. We investigate this question by analysing tracer test experiments performed under different flow configurations at a fractured granite experimental site located in Andhra Pradesh (India). We performed both convergent and push-pull tracer tests within the same fracture and at different scales. Three convergent tracer tests were performed with a solution of fluorescein for different pumping rate and for different distances between injection and pumping boreholes: 6, 30 and 41 meters. To evaluate diffusive process, we performed two long-duration push-pull tests (push time of 3 hours) with a solution of two conservative tracers of different diffusion coefficient (fluorescein and sodium chloride). We performed also six others push-pull tests with only fluorescein but for a variable push times of 14 min and 55 min with or without resting time of about 60 min. The late-time behaviour on the breakthrough curves (BTCs) obtained for all convergent tracer tests showed a power-law slope of -2. Two of them showed an inflexion in the BTCs suggesting the existence of two independent flow paths and thus a highly channelized flow. The long-duration push-pull tests showed similar late-time behaviour with a power-law slope of -2.2 for both tracers. The six others push-pull tests showed a variation of power-law exponent from -3 to -2

  18. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    SciTech Connect

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  19. Scaling the fractional advective-dispersive equation for numerical evaluation of microbial dynamics in confined geometries with sticky boundaries

    SciTech Connect

    Parashar, R.; Cushman, J.H.

    2008-06-20

    Microbial motility is often characterized by 'run and tumble' behavior which consists of bacteria making sequences of runs followed by tumbles (random changes in direction). As a superset of Brownian motion, Levy motion seems to describe such a motility pattern. The Eulerian (Fokker-Planck) equation describing these motions is similar to the classical advection-diffusion equation except that the order of highest derivative is fractional, {alpha} element of (0, 2]. The Lagrangian equation, driven by a Levy measure with drift, is stochastic and employed to numerically explore the dynamics of microbes in a flow cell with sticky boundaries. The Eulerian equation is used to non-dimensionalize parameters. The amount of sorbed time on the boundaries is modeled as a random variable that can vary over a wide range of values. Salient features of first passage time are studied with respect to scaled parameters.

  20. The Special Sensor Microwave Imager Wind Dataset: A Source of Quantitative Information for the Ocean-to-Land Advection

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Demaree, G.; Huth, R.; Jaagus, J.; Koslowsky, D.; Przybylak, R.; Wos, A.; Atlas, Robert (Technical Monitor)

    1999-01-01

    It is well recognized that advection from the North Atlantic has a profound effect on the climatic conditions in central Europe. A new dataset of the ocean-surface winds, derived from the Special Sensor Microwave Imager, SSM/1, is now available. This satellite instrument measures the wind speed, but not the direction. However, variational analysis developed at the Data Assimilation Office, NASA Goddard Space Flight Center, by combining the SSM/I measurements with wind vectors measured from ships, etc., produced global maps of the ocean surface winds suitable for climate analysis. From this SSM/I dataset, a specific index I(sub na) of the North Atlantic surface winds has been developed, which pertinently quantifies the low-level advection into central Europe. For a selected time-period, the index I(sub na) reports the average of the amplitude of the wind, averaging only the speed when the direction is from the southwest (when the wind is from another direction, the contribution counts to the average as zero speed). Strong correlations were found between February I(sub na) and the surface air temperatures in Europe 50-60 deg N. In the present study, we present the correlations between I(sub na) and temperature I(sub s), and also the sensitivity of T(sub s), to an increase in I(sub na), in various seasons and various regions. We specifically analyze the flow of maritime-air from the North Atlantic that produced two extraordinary warm periods: February 1990, and early-winter 2000/2001. The very cold December 2001 was clearly due to a northerly flow. Our conclusion is that the SSM/I dataset is very useful for providing insight to the forcing of climatic fluctuations in Europe.

  1. Relative effects of advection, sorption and diffusion on transport and tailing of chlorinated solvents

    NASA Astrophysics Data System (ADS)

    Maghrebi, M.; Jankovic, I.; Rabideau, A. J.; Allen-King, R. M.; Weissmann, G. S.

    2011-12-01

    Effects of three key transport mechanisms (advection, diffusion and sorption) on transport and contaminant tailing of chlorinated solvents have been investigated using a numerical model. Thousands of model simulations have been conducted for various combinations of transport parameters that govern three key mechanisms in order to quantify tailing and relative importance of each mechanism. Hydraulic conductivity model contains a single inclusion of constant conductivity K embedded in a homogeneous anisotropic background of conductivity Kh,Kv. The inclusion is shaped as an oblate ellipsoid and subject to uniform flow. The background represents "average" conductivity of a heterogeneous formation while inclusion is used to represent geologic units that are more or less conductive than the background. The ratio of long to short semi-axis of the inclusion (a/b) models the ratio of horizontal to vertical integral scales (Ih/Iv) of different geologic units, where integral scales can be obtained, for example, using indicator variograms. The flow solution for present problem is obtained analytically as a closed form solution with exact expressions for Darcy velocity valid both inside and outside the inclusion. Sorption is modeled as an equilibrium process governed by a linear isotherm. The effects on transport and tailing are accounted for using retardation factors. Sorption heterogeneity is created by allowing different values of retardation factor for the interior (Ri) and the exterior of the inclusion (Rb). Diffusive displacements have been added to retarded advective displacements using random walk method. Peclet number, defined as Pe=U Ih/D (U is the groundwater velocity, D is the molecular diffusion coefficient for chlorinated solvents), is used to quantify the diffusion process. Very large numbers of particles (hundreds of thousands) have been tracked using very small time steps (as small as a/10,000) to provide sufficient resolution to breakthrough curves and to

  2. Construction of an Eulerian atmospheric dispersion model based on the advection algorithm of M. Galperin: dynamic cores v.4 and 5 of SILAM v.5.5

    NASA Astrophysics Data System (ADS)

    Sofiev, M.; Vira, J.; Kouznetsov, R.; Prank, M.; Soares, J.; Genikhovich, E.

    2015-03-01

    The paper presents dynamic cores v.4 and v.5 of the System for Integrated modeLling of Atmospheric coMposition SILAM v.5.5 based on the advection algorithm of Michael Galperin. This advection routine, so far weakly presented in international literature, is non-diffusive, positively defined, stable with regard to Courant number significantly above one, and very efficient computationally. For the first time, we present a rigorous description of its original version, along with several updates that improve its monotonicity and allow applications to long-living species in conditions of complex atmospheric flows. The other extension allows the scheme application to dynamics of aerosol spectra. The scheme is accompanied with the previously developed vertical diffusion algorithm, which encapsulates the dry deposition process as a boundary condition. Connection to chemical transformation modules is outlined, accounting for the specifics of transport scheme. Quality of the advection routine is evaluated using a large set of tests. The original approach has been previously compared with several classic algorithms widely used in operational models. The basic tests were repeated for the updated scheme, along with demanding global 2-D tests recently suggested in literature, which allowed positioning the scheme with regard to sophisticated state-of-the-art approaches. The model performance appeared close to the top of the list with very modest computational costs.

  3. In Situ Magnetite Formation and Long-Term Arsenic Immobilization under Advective Flow Conditions.

    PubMed

    Sun, Jing; Chillrud, Steven N; Mailloux, Brian J; Bostick, Benjamin C

    2016-09-20

    In situ precipitation of magnetite and other minerals potentially sequesters dissolved arsenic (As) in contaminated aquifers. This study examines As retention and transport in aquifer sediments using a multistage column experiment in which magnetite and other minerals formed from added nitrate and ferrous iron (Fe). Sediments were collected from the Dover Municipal Landfill Superfund site. Prior to nitrate-Fe(II) addition, As was not effectively retained within the sediments in the column. The combination of nitrate (10 mM) and Fe(II) (4 mM), resulted in mineral precipitation and rapidly decreased effluent As concentrations to <10 μg L(-1). Mineralogical analyses of sectioned replicate columns using sequential extractions, magnetic susceptibility and X-ray absorption spectroscopy indicate that magnetite and ferrihydrite formed in the column following nitrate-Fe(II) addition. This magnetite persisted in the column even as conditions became reducing, whereas ferrihydrite was transformed to more stable Fe oxides. This magnetite incorporated As into its structure during precipitation and subsequently adsorbed As. Adsorption to the minerals kept effluent As concentrations <10 μg L(-1) for more than 100 pore volumes despite considerable Fe reduction. The results indicate that it should be feasible to produce an in situ reactive filter by nitrate-Fe(II) injection. PMID:27533278

  4. Horizontal advection and dispersion in a stratified shelf sea: The role of inertial oscillations

    NASA Astrophysics Data System (ADS)

    Inall, Mark E.; Aleynik, Dmitry; Neil, Clare

    2013-10-01

    The role played by inertial motions in horizontal dispersion within the thermocline of a broad, mid-latitude shelf sea is examined through the analysis of a deliberately released dye tracer. Our analysis is of the horizontal and vertical evolution over 40 h of a dye tracer injected into the seasonally stratified thermocline of the Celtic Sea on the NW European Shelf. The inferred diapycnal diffusivity was 1.3-1.5 × 10-5 m2 s-1, and the radial horizontal diffusivities of the depth integrated dye patch ranged from 1.9 to 4.0 m2 s-1. The inferred vertical diffusivity is in agreement with microstructure based estimates, and the depth integrated horizontal diffusivity is broadly in agreement with previous dye release derived estimates made over similar scales and time periods. Asymmetry in the horizontal evolution of the dye patch was evident. We argue that mean shear dispersion was responsible for lateral elongation of the dye patch, particularly between hours 23 and 35 after release, during which time horizontal diffusivity along the major axis, Ka, exceeded that along the minor axis, Kb, by more than a factor of 10. We further show that along-patch shear was predominantly a result of differential advection between a deep residual flow to the south-east and an oscillating wind-driven surface Ekman layer. In this region of strong low frequency (inertial) shear a time dependent model of shear dispersion (Young et al., 1982) was able to account for the observed rate of horizontal dispersion calculated on the target isopycnal surface.

  5. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties

  6. Temperature and energy deficit in the ground during operation and recovery phases of closed-loop ground source heat pump system: Effect of the groundwater flow

    NASA Astrophysics Data System (ADS)

    Erol, Selcuk; Francois, Bertrand

    2016-04-01

    The advection/dispersion mechanism of the groundwater flow in the ground has a significant effect on a borehole heat exchanger (BHE) to enhance its thermal performance. However, the amount of energy extracted from the ground never disappears and only shifts with the magnitude of the effective thermal velocity in the infinite domain. In this work, we focus on the temperature and the energy balance of the ground in an advection/dispersion dominated heat transfer system during the operation period of a BHE and the subsequent recovery phase when the system is idle. The problem is treated with single BHE and multi-BHEs systems, for different representative geology and different groundwater flow velocity. In order to assess the thermal energy deficit due to heat extraction from the ground, we used the finite line source analytical model, developed recently (Erol et al., 2015) that provides the temperature distributions around the boreholes for discontinuous heat extraction. The model is developed based on the Green's function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain. The results demonstrate the significant positive impact of the groundwater flow for the recovery in terms of temperature deficit at the location of the borehole. However, the total thermal energy deficit is not affected by the groundwater movement. The energy balance of the ground is the same no matter the prevailing heat transfer system, which can be only conduction or advection/dispersion. In addition, the energy balance of the ground is not based on either the duration of the production period operation or of the recovery phase, but depends on the total amount of heat that is extracted and on the bulk volumetric heat capacity of the ground.

  7. Non-Darcian flow in low-permeability media: key issues related to geological disposal of high-level nuclear waste in shale formations

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Hai

    2014-05-01

    In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.

  8. Autosomal dominant vitreoretinochoroidopathy (ADVIRC).

    PubMed Central

    Blair, N P; Goldberg, M F; Fishman, G A; Salzano, T

    1984-01-01

    We report the second family recognised to have autosomal dominant vitreoretinochoroidopathy. The clinical features were (1) autosomal dominant inheritance; (2) peripheral, coarse pigmentary degeneration of the fundus for 360 degrees, with a relatively discrete posterior border in the equatorial region (this finding may be pathognomonic); (3) superficial punctate yellowish-white opacities in the retina; (4) various vascular abnormalities; (5) breakdown of the blood-retinal barrier; (6) retinal neovascularisation; (7) vitreous abnormalities; and (8) choroidal atrophy. Visual reduction was mainly due to macular oedema or vitreous haemorrhage. Images PMID:6689931

  9. Testing metrics of mixing using a chaotic advection model

    NASA Astrophysics Data System (ADS)

    Grahn, J.; McDonald, A. J.

    2012-04-01

    This study describes an evaluation of different dynamical measures and their ability to diagnose horizontal transport and mixing in atmospheric flows. This quantification can then be used to select optimal measures which can be applied to satellite and re-analyses data to identify likely regions where the indirect effect of Energetic Particle Precipitation (EPP) is important. As a "test bench" for mixing measures a two dimensional idealized atmospheric model has been developed (Pierrehumbert et al, 1992 , Shuckburgh et al 2003). It is completely defined by a set of only five parameters. Although it is an oversimplification of real atmospheric flows, it exhibits the main dynamical characteristics of the stratosphere near the polar vortex. At the same time, it's simplicity gives us the opportunity to make detailed investigations on the quality of the mixing measures. By using this analytical model with a Lagrangian trajectory model we can examine the impact of the flow on the distribution of any trace gas. We have chosen to examine two mixing measures, namely finite time Lyaponov exponents (FTLE) and the Renyi entropy (RE). The former is a numerical realization of the Lyapunov exponent (Wolf et al, 1984), a measure of the amount of separation of nearby trajectories of a dynamical system. The FTLE has been used in studies before as a measure of mixing (i.e. Pierrehumbert et al, 1992; Shuckburgh et al 2003; Garny et al, 2007). The Renyi entropy is a measure originating from information theory and has also been studied before in the context of atmospheric mixing (Krützmann et al, 2008). Initial analysis seems to show a relatively strong anti-correlation between these mixing measures. In particular, high FTLE (which relate to strongly divergent regions) identify mixing barriers and are generally linked to low values of RE. Results from an analysis of a range of model realizations with varying amounts of prescribed mixing will be performed to robustly quantify the

  10. Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods and Numerical Advection Schemes

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.

  11. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget

    NASA Astrophysics Data System (ADS)

    Cuxart, Joan; Wrenger, Burkhard; Martínez-Villagrasa, Daniel; Reuder, Joachim; Jonassen, Marius O.; Jiménez, Maria A.; Lothon, Marie; Lohou, Fabienne; Hartogensis, Oscar; Dünnermann, Jens; Conangla, Laura; Garai, Anirban

    2016-07-01

    The effect of terrain heterogeneities in one-point measurements is a continuous subject of discussion. Here we focus on the order of magnitude of the advection term in the equation of the evolution of temperature as generated by documented terrain heterogeneities and we estimate its importance as a term in the surface energy budget (SEB), for which the turbulent fluxes are computed using the eddy-correlation method. The heterogeneities are estimated from satellite and model fields for scales near 1 km or broader, while the smaller scales are estimated through direct measurements with remotely piloted aircraft and thermal cameras and also by high-resolution modelling. The variability of the surface temperature fields is not found to decrease clearly with increasing resolution, and consequently the advection term becomes more important as the scales become finer. The advection term provides non-significant values to the SEB at scales larger than a few kilometres. In contrast, surface heterogeneities at the metre scale yield large values of the advection, which are probably only significant in the first centimetres above the ground. The motions that seem to contribute significantly to the advection term in the SEB equation in our case are roughly those around the hectometre scales.

  12. Learning dominance relations in combinatorial search problems

    NASA Technical Reports Server (NTRS)

    Yu, Chee-Fen; Wah, Benjamin W.

    1988-01-01

    Dominance relations commonly are used to prune unnecessary nodes in search graphs, but they are problem-dependent and cannot be derived by a general procedure. The authors identify machine learning of dominance relations and the applicable learning mechanisms. A study of learning dominance relations using learning by experimentation is described. This system has been able to learn dominance relations for the 0/1-knapsack problem, an inventory problem, the reliability-by-replication problem, the two-machine flow shop problem, a number of single-machine scheduling problems, and a two-machine scheduling problem. It is considered that the same methodology can be extended to learn dominance relations in general.

  13. Boson dominance in nuclei

    SciTech Connect

    Palumbo, Fabrizio

    2005-07-01

    We present a new method of bosonization of fermion systems applicable when the partition function is dominated by composite bosons. By restricting the partition function to such states, we obtain a Euclidean bosonic action from which we derive the Hamiltonian. Such a procedure respects all the fermion symmetries, particularly the fermion number conservation, and provides a boson mapping of all fermion operators.

  14. Iron dominated magnets

    SciTech Connect

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  15. Apical Dominance in Plants

    ERIC Educational Resources Information Center

    Tucker, D. J.

    1974-01-01

    Describes a tentative hypothesis for the control of plant branching (apical dominance). Explores the mechanism by which apical buds inhibit the growth of axillary buds on the same shoot. Presents an up-to-date picture of the problem and gives economic implications of the study. (BR)

  16. Flow visualization using moving textures

    SciTech Connect

    Max, N.; Becker, B.

    1995-04-01

    An intuitive way to visualize a flow is to watch particles or textures move in the flow. In this paper, the authors show how texture mapping hardware can produce near-real-time texture motion, using a polygon grid, and one fixed texture. However, the authors make no attempt to indicate the flow direction in a still frame. As discussed here, any anisotropic stretching comes from the velocity gradient, not the velocity itself. The basic idea is to advect the texture by the flow field. In a cited paper, they gave an indication of the wind velocity by advecting the 3D texture coordinates on the polygon vertices of a cloudiness contour surface in a climate simulation. This was slow, because the 3D texture was rendered in software, and because advecting the texture was difficult for time-varying flows. In this paper, they replace the 3D textures by 2D texture maps compatible with hardware rendering, and give techniques for handling time-varying flows more efficiently. The next section gives their technique for the case of 2D steady flows, and the following one discusses the problems of texture distortion. Then they discuss the problems with extending method to time-varying flows, and two solutions. Next they develop compositing methods for visualizing 3D flows. The final section gives their results and conclusions.

  17. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-07-01

    Time-lapse X-ray microtomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. The effect of diffusion and advection across the snow pores on the snow microstructure were analysed in controlled laboratory experiments and possible effects on natural snowpacks discussed. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective permeability. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Isothermal snow metamorphism is driven by sublimation deposition caused by the Kelvin effect and is the limiting factor independently of the transport regime in the pores.

  18. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  19. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  20. Advective transport observations with MODPATH-OBS--documentation of the MODPATH observation process

    USGS Publications Warehouse

    Hanson, R.T.; Kauffman, L.K.; Hill, M.C.; Dickinson, J.E.; Mehl, S.W.

    2013-01-01

    The MODPATH-OBS computer program described in this report is designed to calculate simulated equivalents for observations related to advective groundwater transport that can be represented in a quantitative way by using simulated particle-tracking data. The simulated equivalents supported by MODPATH-OBS are (1) distance from a source location at a defined time, or proximity to an observed location; (2) time of travel from an initial location to defined locations, areas, or volumes of the simulated system; (3) concentrations used to simulate groundwater age; and (4) percentages of water derived from contributing source areas. Although particle tracking only simulates the advective component of conservative transport, effects of non-conservative processes such as retardation can be approximated through manipulation of the effective-porosity value used to calculate velocity based on the properties of selected conservative tracers. This program can also account for simple decay or production, but it cannot account for diffusion. Dispersion can be represented through direct simulation of subsurface heterogeneity and the use of many particles. MODPATH-OBS acts as a postprocessor to MODPATH, so that the sequence of model runs generally required is MODFLOW, MODPATH, and MODPATH-OBS. The version of MODFLOW and MODPATH that support the version of MODPATH-OBS presented in this report are MODFLOW-2005 or MODFLOW-LGR, and MODPATH-LGR. MODFLOW-LGR is derived from MODFLOW-2005, MODPATH 5, and MODPATH 6 and supports local grid refinement. MODPATH-LGR is derived from MODPATH 5. It supports the forward and backward tracking of particles through locally refined grids and provides the output needed for MODPATH_OBS. For a single grid and no observations, MODPATH-LGR results are equivalent to MODPATH 5. MODPATH-LGR and MODPATH-OBS simulations can use nearly all of the capabilities of MODFLOW-2005 and MODFLOW-LGR; for example, simulations may be steady-state, transient, or a combination

  1. Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area

    NASA Astrophysics Data System (ADS)

    Agam, Nurit; Evett, Steven R.; Tolk, Judy A.; Kustas, William P.; Colaizzi, Paul D.; Alfieri, Joseph G.; McKee, Lynn G.; Copeland, Karen S.; Howell, Terry A.; Chávez, Jose L.

    2012-12-01

    Agricultural productivity has increased in the Texas High Plains at the cost of declining water tables, putting at risk the sustainability of the Ogallala Aquifer as a principal source of water for irrigated agriculture. This has led area producers to seek alternative practices that can increase water use efficiency (WUE) through more careful management of water. One potential way of improving WUE is by reducing soil evaporation (E), thus reducing overall evapotranspiration (ET). Before searching for ways to reduce E, it is first important to quantify E and understand the factors that determine its magnitude. The objectives of this study were (1) to quantify E throughout part of the growing season for irrigated cotton in a strongly advective semi-arid region; (2) to study the effects of LAI, days after irrigation, and measurement location within the row on the E/ET fraction; and (3) to study the ability of microlysimeter (ML) measures of E combined with sap flow gage measures of transpiration (T) to accurately estimate ET when compared with weighing lysimeter ET data and to assess the E/T ratio. The research was conducted in an irrigated cotton field at the Conservation & Production Research Laboratory of the USDA-ARS, Bushland, TX. ET was measured by a large weighing lysimeter, and E was measured by 10 microlysimeters that were deployed in two sets of 5 across the interrow. In addition, 10 heat balance sap flow gages were used to determine T. A moderately good agreement was found between the sum E + T and ET (SE = 1 mm or ˜10% of ET). It was found that E may account for >50% of ET during early stages of the growing season (LAI < 0.2), significantly decreasing with increase in LAI to values near 20% at peak LAI of three. Measurement location within the north-south interrows had a distinct effect on the diurnal pattern of E, with a shift in time of peak E from west to east, a pattern that was governed by the solar radiation reaching the soil surface. However, total

  2. Altimetric lagrangian advection to reconstruct Pacific Ocean fine scale surface tracer fields

    NASA Astrophysics Data System (ADS)

    Rogé, Marine; Morrow, Rosemary; Dencausse, Guillaume

    2015-04-01

    In past studies, lagrangian stirring of surface tracer fields by altimetric surface geostrophic currents has been performed in different mid to high-latitude regions, showing good results in reconstructing finer-scale tracer patterns. Here we apply the technique to three different regions in the eastern and western tropical Pacific, and in the subtropical southwest Pacific. Initial conditions are derived from weekly gridded temperature and salinity fields, based on hydrographic data and Argo. Validation of the improved fine-scale surface tracer fields is performed using satellite AMSRE SST data, and high-resolution ship thermosalinograph data. We test two kinds of lagrangian advection. The standard one-way advection is shown to introduce an increased tracer bias as the advection time increases. Indeed, since we only use passive stirring, a bias is introduced from the missing physics, such as air-sea fluxes or mixing. A second "backward-forward" advection technique is shown to reduce the seasonal bias, but more data is lost around coasts and islands, a strong handicap in the tropical Pacific with many small islands. In the subtropical Pacific Ocean, the mesoscale temperature and salinity fronts are well represented by the one-way advection over a 10-day advection time, including westward propagating features not apparent in the initial fields. In the tropics, the results are less clear. The validation is hampered by the complex vertical stratification, and the technique is limited by the lack of accurate surface currents for the stirring - the gridded altimetric fields poorly represent the meridional currents, and are not detecting the fast tropical instability waves, nor the wind-driven circulation. We suggest that the passive lateral stirring technique is efficient in regions with moderate the high mesoscale energy and correlated mesoscale surface temperature and surface height. In other regions, more complex dynamical processes may need to be included.

  3. The effect of permeable biofilm on micro- and macro-scale flow and transport in bioclogged pores

    NASA Astrophysics Data System (ADS)

    Deng, W.; Cardenas, M.; Kirk, M. F.; Altman, S. J.; Bennett, P.

    2013-12-01

    Simulations of coupled flow around and inside biofilms in pores were conducted to study the effect of porous biofilm on micro- and macro-scale flow and transport. The simulations solved the Navier-Stokes equations coupled with the Brinkman equation representing flow in the pore space and biofilm, respectively, and the advection-diffusion equation. Biofilm structure and distribution were obtained from confocal microscope images. The bulk permeability (k) of bioclogged porous media depends on biofilm permeability (kbr) following a sigmoidal curve on a log-log scale. The upper and lower limits of the curve are the k of biofilm-free media and of bioclogged media with impermeable biofilms, respectively. Based on this, a model is developed that predicts k based solely on kbr and biofilm volume ratio. The simulations show that kbr has a significant impact on the shear stress distribution, and thus potentially affects biofilm erosion and detachment. The sensitivity of flow fields to kbr directly translated to effects on the transport fields by affecting the relative distribution of where advection and diffusion dominated. Both kbr and biofilm volume ratio affect the shape of breakthrough curves.

  4. Large-eddy Advection in Evapotranspiration Estimates from an Array of Eddy Covariance Towers

    NASA Astrophysics Data System (ADS)

    Lin, X.; Evett, S. R.; Gowda, P. H.; Colaizzi, P. D.; Aiken, R.

    2014-12-01

    Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a sorghum in Bushland, Texas in 2014. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms were integrated from the depth of soil heat flux plate to the height of eddy covariance measurement. Therefore, a comparison between the eddy covariance system and large weighing lysimeter was conducted on hourly and daily basis. The results for the discrepancy between eddy covariance towers and the lysimeter will be discussed in terms of advection and storage contributions in time domain and frequency domain.

  5. Matching multistage schemes to viscous flow

    NASA Astrophysics Data System (ADS)

    Kleb, William Leonard

    A method to accelerate convergence to steady state by explicit time-marching schemes for the compressible Navier-Stokes equations is presented. The combination of cell-Reynolds-number-based multistage time stepping and local preconditioning makes solving steady-state viscous flow problems competitive with the convergence rates typically associated with implicit methods, without the associated memory penalty. Initially, various methods are investigated to extend the range of multistage schemes to diffusion-dominated cases. It is determined that the Chebyshev polynomials are well suited to serve as amplification factors for these schemes; however, creating a method that can bridge the continuum from convection-dominated to diffusion-dominated regimes proves troublesome, until the Manteuffel family of polynomials is uncovered. This transformation provides a smooth transition between the two extremes; and armed with this information, sets of multistage coefficients are created for a given spatial discretization as a function of cell Reynolds number according to various design criteria. As part of this process, a precise definition for the numerical time step is hammered out, something which up to this time, has been set via algebraic arguments only. Next are numerical tests of these sets of variable multistage coefficients. To isolate the effects of the variable multistage coefficients, the test case chosen is very simple: circular advection-diffusion. The numerical results support the analytical analysis by demonstrating an order of magnitude improvement in convergence rate for single-grid relaxation and a factor of three for multigrid relaxation. Building upon the success of the scalar case, preconditioning is applied to make the Navier-Stokes system of equations behave more nearly as a single scalar equation. Then, by applying the variable multistage coefficient scheme to a typical boundary-layer flow problem, the results affirm the benefits of local preconditioning

  6. Advection of Microphysical Scalars in Terminal Area Simulation System (TASS)

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.

    2011-01-01

    The Terminal Area Simulation System (TASS) is a large eddy scale atmospheric flow model with extensive turbulence and microphysics packages. It has been applied successfully in the past to a diverse set of problems ranging from prediction of severe convective events (Proctor et al. 2002), tracking storms and for simulating weapons effects such as the dispersion and fallout of fission debris (Bacon and Sarma 1991), etc. More recently, TASS has been used for predicting the transport and decay of wake vortices behind aircraft (Proctor 2009). An essential part of the TASS model is its comprehensive microphysics package, which relies on the accurate computation of microphysical scalar transport. This paper describes an evaluation of the Leonard scheme implemented in the TASS model for transporting microphysical scalars. The scheme is validated against benchmark cases with exact solutions and compared with two other schemes - a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)-type scheme after van Leer and LeVeque's high-resolution wave propagation method. Finally, a comparison between the schemes is made against an incident of severe tornadic super-cell convection near Del City, Oklahoma.

  7. Dominating Biological Networks

    PubMed Central

    Milenković, Tijana; Memišević, Vesna; Bonato, Anthony; Pržulj, Nataša

    2011-01-01

    Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI) networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of “biologically central (BC)” genes (i.e., their protein products), such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network. To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC) role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs) in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its “spine” that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks. PMID:21887225

  8. Long-term Rates of Mafic Magma Emplacement and Implications for Heat Advection

    NASA Astrophysics Data System (ADS)

    White, S. M.; Spera, F. J.; Crisp, J. A.

    2003-12-01

    Rates of magmatism (magma emplacement rate) including both volcanic products and intrusive bodies were obtained for terrestrial petrotectonic systems where reliable volumes can be estimated and geochronological data exist. Approximately 50 estimates of magma emplacement rates have been extracted from the literature published between 1982 and 2003 for persistent basaltic systems with durations from 1 ka to ~5 Ma. Although the volcanic output is highly episodic, the data indicate that the mass output rate at individual hotspot volcanoes is on the order of 10-3 km3/yr when averaged over several thousand years. This differs from the estimated output rates of large igneous provinces, such as continental flood basalts and oceanic plateaus, which have maximal output rates on the order of 1 km3/yr per province. For globally averaged mid-ocean ridges, the total volcanic emplacement rate is only 10-6 km3/yr/100 km of ridge. Ratios of intrusive to extrusive emplacement are subject to much uncertainty, but generally lie in the range 6:1 to 10:1 for most crustal mafic magma systems. Recent seismic, geodetic, and gravity work suggests that there may be large regions of underplating and storage in subcrustal magma chambers in areas of basaltic volcanism previously not widely considered in intrusive volume estimates that may increase most of these ratios to 10:1. Rates of magmatism may be translated into excess heat flows for specific magmatic provinces to obtain estimates of advected heat transport via magmatism at regional scales over magmatic province timescales. For mafic eruption rate V and an intrusive/extrusive ratio of R, the volumetric rate of magma flow into the crust is RV. The excess heat power (J/yr) associated with magma transport from mantle to crust is RVρ δ T [Cp + δ h/(Tliquidus-Tsolidus)] where δ T is the temperature difference between the magma and host crust, δ h is the enthalpy of crystallization (250-400 kJ/kg dependent on magma composition), ρ is

  9. Advection of magnetic flux by accretion disks around neutron stars

    NASA Astrophysics Data System (ADS)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  10. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  11. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...

  12. Analytical Advection-Dispersion Model for Transport and Plant Uptake of Solutes in the Root Zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We develop an advective-dispersive solute transport equation that includes plant uptake of water and solute, and present an analytical solution. Assumptions underlying the transport model include linear solute sorption, first-order plant uptake, and a uniform soil water content. We examine the lat...

  13. Satellite-advection based solar forecasting: lessons learned and progress towards probabalistic solar forecasting

    NASA Astrophysics Data System (ADS)

    Rogers, M. A.

    2015-12-01

    Using satellite observations from GOES-E and GOES-W platforms in concert with GFS-derived cloud-level winds and a standalone radiative transfer model, an advection-derived forecast for surface GHI over the continental United States, with intercomparison between forecasts for four zones over the CONUS and Central Pacific with SURFRAD results. Primary sources for error in advection-based forecasts, primarily driven by false- or mistimed ramp events are discussed, with identification of error sources quantified along with techniques used to improve advection-based forecasts to approximately 10% MAE for designated surface locations. Development of a blended steering wind product utilizing NWP output combined with satellite-derived winds from AMV techniques to improve 0-1 hour advection forecasts will be discussed. Additionally, the use of two years' of solar forecast observations in the development of a prototype probablistic forecast for ramp events will be shown, with the intent of increasing the use of satellite-derived forecasts for grid operators and optimizing integration of renewable resources into the power grid. Elements of the work were developed under the 'Public-Private-Academic Partnership to Advance Solar Power Forecasting' project spearheaded by the National Center for Atmospheric Research.

  14. Generalized Fourier Analyses of Semi-Discretizations of the Advection-Diffusion Equation

    SciTech Connect

    CHRISTON, MARK A.; VOTH, THOMAS E.; MARTINEZ, MARIO J.

    2002-11-01

    This report presents a detailed multi-methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. The errors are reported in terms of non-dimensional phase and group speeds, discrete diffusivity, artificial diffusivity, and grid-induced anisotropy. It is demonstrated that Fourier analysis (aka von Neumann analysis) provides an automatic process for separating the spectral behavior of the discrete advective operator into its symmetric dissipative and skew-symmetric advective components. Further it is demonstrated that streamline upwind Petrov-Galerkin and its control-volume finite element analogue, streamline upwind control-volume, produce both an artificial diffusivity and an artificial phase speed in addition to the usual semi-discrete artifacts observed in the discrete phase speed, group speed and diffusivity. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super-convergent behavior in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second-order behavior. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework.

  15. Subcontinental lithosphere reactivation beneath the Hoggar swell (Algeria): Localized deformation, melt channeling and heat advection

    NASA Astrophysics Data System (ADS)

    Kourim, Fatna; Vauchez, Alain; Bodinier, Jean-Louis; Alard, Olivier; Bendaoud, Abderrahmane

    2015-05-01

    In the Tahalgha district (southwestern Hoggar, Algeria), the Cenozoic volcanism has sampled subcontinental mantle beneath two crustal terranes that collided during the Pan-African orogeny: the "Polycyclic Central Hoggar" to the east and the "Western Hoggar" to the west. Two major lithospheric shear zones separate these terranes: the "4°35" and the "4°50" faults. Mantle xenoliths were collected between the two faults and across the 4°35 fault. In addition to a range in equilibrium temperatures and chemical compositions reported elsewhere, the samples show variations in their microstructures and crystallographic preferred orientations. Equilibrium temperatures and geochemical characteristics allow dividing them into low - (LT; 700-900 °C), intermediate - (IT; 900-1000 °C), and high-temperature (HT; 1000-1100 °C) xenoliths. The LT and IT peridotites occur on both sides of the 4°35 fault; they are usually coarse-grained. HT xenoliths are present only east of the 4°35 fault, in the narrow domain stuck between the two faults; they are fine-grained and extensively affected by annealing and melt-rock reactions. Microstructures and crystallographic textures indicate that deformation in the LT- and IT-xenoliths occurred through dislocation creep under relatively high-temperature, low-pressure conditions, followed by post-kinematic cooling. The fine-grained HT-xenoliths were deformed under relatively high-stress conditions before being annealed. Combining microstructural and CPO data with petrological and geochemical informations suggests that: (1) the LT xenoliths are remnants of the Neoproterozoic lithospheric mantle that preserved microstructural and chemical characteristics inherited from the Pan-African orogeny, and (2) the HT xenoliths record localized Cenozoic deformation associated with melt channeling through feed-back processes that culminated in the formation of high-permeability porous-flow conduits. Limited grain-growth in HT xenoliths suggests that

  16. Simulation of Field-Scale Non-Fickian Plumes With Spatiotemporal Fractional Advection- Dispersion Equations

    NASA Astrophysics Data System (ADS)

    Benson, D. A.; Zhang, Y.

    2006-12-01

    Conservative solute transport through natural media is typically "anomalous" or non-Fickian. The anomalous transport may be characterized by faster than linear growth of the centered second moment, or non-Gaussian leading or trailing edges of a plume emanating from a point source. These characteristics develop because of non-local dependence on either past (time) or far upstream (space) concentrations. Non-local equations developed to describe anomalous dispersion usually focus on constant transport parameters and/or independence of the transport on space dimension. These simplifications have been useful for fitting simple transport processes, such as laboratory column tests or 1-D projections of field data. However, they may be insufficient for real field settings, where direction-dependent depositional processes and nonstationary heterogeneity can occur. We develop a generalized, multi-dimensional, spatiotemporal fractional advection- dispersion equation (fADE) with variable parameters to characterize regional-scale anomalous dispersion processes including trapping in immobile zones and/or super-Fickian rapid transport. A Lagrangian numerical model of the space-time fractional transport equation is developed in which solute particles can disperse in both space and time, depending on the medium heterogeneity properties, such as the connectivity and statistical distributions of high versus low-permeability deposits. In the generalized fADE, the range of the order of fractional time derivative is (0 2], representing a wide range of possible trapping behavior. The extension of the order to the range (1 2] is novel to transport theory. We apply the numerical model in 1-D and 2-D to the MADE site tritium plumes, and results indicate that this method can capture the main behaviors of realistic plumes, including local variations of spreading, direction-dependent scaling rates, and arbitrary rapid transport along preferential flow paths. Since the governing equation

  17. Quantification of numerical diffusivity due to TVD schemes in the advection equation

    NASA Astrophysics Data System (ADS)

    Bidadi, Shreyas; Rani, Sarma L.

    2014-03-01

    In this study, the numerical diffusivity νnum inherent to the Roe-MUSCL scheme has been quantified for the scalar advection equation. The Roe-MUSCL scheme employed is a combination of: (1) the standard extension of the original Roe's formulation to the advection equation, and (2) van Leer's Monotone Upwind Scheme for Conservation Laws (MUSCL) technique that applies a linear variable reconstruction in a cell along with a scaled limiter function. An explicit expression is derived for the numerical diffusivity in terms of the limiter function, the distance between the cell centers on either side of a face, and the face-normal velocity. The numerical diffusivity formulation shows that a scaled limiter function is more appropriate for MUSCL in order to consistently recover the central-differenced flux at the maximum value of the limiter. The significance of the scaling factor is revealed when the Roe-MUSCL scheme, originally developed for 1-D scenarios, is applied to 2-D scalar advection problems. It is seen that without the scaling factor, the MUSCL scheme may not necessarily be monotonic in multi-dimensional scenarios. Numerical diffusivities of the minmod, superbee, van Leer and Barth-Jesperson TVD limiters were quantified for four problems: 1-D advection of a step function profile, and 2-D advection of step, sinusoidal, and double-step profiles. For all the cases, it is shown that the superbee scheme provides the lowest numerical diffusivity that is also most confined to the vicinity of the discontinuity. The minmod scheme is the most diffusive, as well as active in regions away from high gradients. As expected, the grid resolution study demonstrates that the magnitude and the spatial extent of the numerical diffusivity decrease with increasing resolution.

  18. Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems

    PubMed Central

    Zhao, Su; Ovadia, Jeremy; Liu, Xinfeng; Zhang, Yong-Tao; Nie, Qing

    2011-01-01

    For reaction-diffusion-advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction-diffusion systems with both stiff reaction and diffusion terms, implicit integration factor (IIF) method and its higher dimensional analog compact IIF (cIIF) serve as an efficient class of time-stepping methods, and their second order version is linearly unconditionally stable. For nonlinear hyperbolic equations, weighted essentially non-oscillatory (WENO) methods are a class of schemes with a uniformly high-order of accuracy in smooth regions of the solution, which can also resolve the sharp gradient in an accurate and essentially non-oscillatory fashion. In this paper, we couple IIF/cIIF with WENO methods using the operator splitting approach to solve reaction-diffusion-advection equations. In particular, we apply the IIF/cIIF method to the stiff reaction and diffusion terms and the WENO method to the advection term in two different splitting sequences. Calculation of local truncation error and direct numerical simulations for both splitting approaches show the second order accuracy of the splitting method, and linear stability analysis and direct comparison with other approaches reveals excellent efficiency and stability properties. Applications of the splitting approach to two biological systems demonstrate that the overall method is accurate and efficient, and the splitting sequence consisting of two reaction-diffusion steps is more desirable than the one consisting of two advection steps, because CWC exhibits better accuracy and stability. PMID:21666863

  19. High-resolution stochastic downscaling of climate models: simulating wind advection, cloud cover and precipitation

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Burlando, Paolo

    2015-04-01

    A new stochastic approach to generate wind advection, cloud cover and precipitation fields is presented with the aim of formulating a space-time weather generator characterized by fields with high spatial and temporal resolution (e.g., 1 km x 1 km and 5 min). Its use is suitable for stochastic downscaling of climate scenarios in the context of hydrological, ecological and geomorphological applications. The approach is based on concepts from the Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.), the Space-Time Realizations of Areal Precipitation model (STREAP) introduced by Paschalis et al. (2013, Water Resour. Res.), and the High-Resolution Synoptically conditioned Weather Generator (HiReS-WG) presented by Peleg and Morin (2014, Water Resour. Res.). Advection fields are generated on the basis of the 500 hPa u and v wind direction variables derived from global or regional climate models. The advection velocity and direction are parameterized using Kappa and von Mises distributions respectively. A random Gaussian fields is generated using a fast Fourier transform to preserve the spatial correlation of advection. The cloud cover area, total precipitation area and mean advection of the field are coupled using a multi-autoregressive model. The approach is relatively parsimonious in terms of computational demand and, in the context of climate change, allows generating many stochastic realizations of current and projected climate in a fast and efficient way. A preliminary test of the approach is presented with reference to a case study in a complex orography terrain in the Swiss Alps.

  20. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  1. Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a formal exact solution of the linear advection-diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection-diffusion equation into an exclusively diffusive equation. ...

  2. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series-Abstract

    EPA Science Inventory

    Continuous time series of dissolved oxygen (DO) have been used to compute estimates of metabolism in aquatic ecosystems. Central to this open water or "Odum" method is the assumption that the DO time is not strongly affected by advection and that effects due to advection or mixin...

  3. Lagrangian statistics and flow topology in forced 2-D turbulence

    SciTech Connect

    Kadoch, B.; Del-Castillo-Negrete, Diego B; Bos, W.J.T.; Schneider, Kai

    2011-01-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order - 2.

  4. Rings dominate western Gulf

    NASA Astrophysics Data System (ADS)

    Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez

    Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.

  5. Debris-flow observations in the Zermatt Valley

    NASA Astrophysics Data System (ADS)

    Graf, Christoph

    2015-04-01

    related slide and fall processes, increasingly large amounts of loose sediment are delivered into debris-flow systems. Extensive till, scree slopes and rock glaciers represent the principal and extensive sediment sources for debris flows which are commonly triggered at elevations between 2000 and 3000 m asl. Here, high annual and daily thermal ranges favour frost weathering and regolith production delivered to scree slopes. Slope angles in the initiation zones range from 27 to 41° and are dominated by permafrost in all of the catchments. Debris flows are triggered either through the wetting of material continuously delivered by the permafrost body to the channel or due to release at the rock glacier fronts during exceptional water input. The wetting typically occurs during rainstorms, but debris flows at these sites also happen when sediment shear resistance is reduced by the melting of ice particles, by snow melting and/or a combination of both. In the Dorfbach torrent near Randa, WSL operates an automated debris-flow observation station, measuring the typical parameters such as flow heights and velocities since several years. As part of an interdisciplinary project on data acquisition and numerical modelling of debris flows for hazard mapping, we monitor several other debris-flow prone torrents in the valley and combine these data with observations of ongoing processes in the headwater of the catchments. Several debris-flow events in some of the torrents could be observed and measured in the last years. Total volume, discharge per surge, frontal speed, run out length and impact on the inhabited fans varied considerably. Typically one first event cluster is dominated by snow melting controlled conditions starting late May until end of June and a second cluster are the rainstorm dominated events in midsummer. The largest events are expected in late summer or in fall, when long-lasting advective precipitation events over several days prevail.

  6. Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport.

    PubMed

    Perko, Janez; Patel, Ravi A

    2014-05-01

    The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance.

  7. Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.

    2012-04-01

    The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during

  8. Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1998-01-01

    We extend the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) for solution of the advection-dispersion equation to two dimensions. The method can conserve mass globally and is not limited by restrictions on the size of the grid Peclet or Courant number. Therefore, it is well suited for solution of advection-dominated ground-water solute transport problems. In test problem comparisons with standard finite differences, FVELLAM is able to attain accurate solutions on much coarser space and time grids. On fine grids, the accuracy of the two methods is comparable. A critical aspect of FVELLAM (and all other ELLAMs) is evaluation of the mass storage integral from the preceding time level. In FVELLAM this may be accomplished with either a forward or backtracking approach. The forward tracking approach conserves mass globally and is the preferred approach. The backtracking approach is less computationally intensive, but not globally mass conservative. Boundary terms are systematically represented as integrals in space and time which are evaluated by a common integration scheme in conjunction with forward tracking through time. Unlike the one-dimensional case, local mass conservation cannot be guaranteed, so slight oscillations in concentration can develop, particularly in the vicinity of inflow or outflow boundaries. Published by Elsevier Science Ltd.

  9. Modeling the adsorption of Cr(III) from aqueous solution onto Agave lechuguilla biomass: study of the advective and dispersive transport.

    PubMed

    Romero-González, J; Walton, J C; Peralta-Videa, J R; Rodríguez, E; Romero, J; Gardea-Torresdey, J L

    2009-01-15

    The biosorption of Cr(III) onto packed columns of Agave lechuguilla was analyzed using an advective-dispersive (AD) model and its analytical solution. Characteristic parameters such as axial dispersion coefficients, retardation factors, and distribution coefficients were predicted as functions of inlet ion metal concentration, time, flow rate, bed density, cross-sectional column area, and bed length. The root-mean-square-error (RMSE) values 0.122, 0.232, and 0.285 corresponding to the flow rates of 1, 2, and 3 (10(-3))dm3min(-1), respectively, indicated that the AD model provides an excellent approximation of the simulation of lumped breakthrough curves for the adsorption of Cr(III) by lechuguilla biomass. Therefore, the model can be used for design purposes to predict the effect of varying operational conditions. PMID:18462882

  10. Flow and transport in single fracture with roughness.

    NASA Astrophysics Data System (ADS)

    Olkiewicz, Piotr; Dabrowski, Marcin

    2016-04-01

    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in geothermal systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. For example, geothermal energy is primarily transported by the flow of the heated water or steam rather than by the thermal diffusion. The geometry of the fracture network and the distribution of the mean apertures of individual fractures are the key parameters with regard to the fracture network transmissivity. Transport in fractures can occur through the combination of advection and diffusion processes like in the case of dissolved chemical components. The local distribution of the fracture aperture may play an important role for both flow and transport processes. In this work, we compare numerical solution for flow and transport processes in a single fracture in 2D and 3D. Fracture aperture distributions are generated by random correlated field method. We examine a single-phase flow of an incompressible viscous Newtonian fluid in the low Reynolds number limit. The velocity field is found using the Stokes equations with periodic boundary condition and a gravity force is imposed in the background. We systematically compare the obtained velocity field to the results obtained by solving the Reynolds equation, where pressure difference is imposed in the background. This allows us to examine the impact of the aperture distribution on the permeability of the medium and the local velocity distribution for two different mathematical descriptions of the fracture flow. Furthermore, we analyse the impact of aperture distribution on the front characteristics.

  11. Two-dimensional atmospheric transport and chemistry model - Numerical experiments with a new advection algorithm

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.

    1990-01-01

    Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  12. Oxygen Advection and Diffusion in a Three Dimensional Vascular Anatomical Network

    PubMed Central

    Fang, Qianqian; Sakadžić, Sava; Ruvinskaya, Lana; Devor, Anna; Dale, Anders M.; Boas, David A.

    2008-01-01

    There is an increasing need for quantitative and computationally affordable models for analyzing tissue metabolism and hemodynamics in microvascular networks. In this work, we develop a hybrid model to solve for the time-varying oxygen advection-diffusion equation in the vessels and tissue. To obtain a three-dimensional temporal evolution of tissue oxygen concentration for realistic complex vessel networks, we used a graph-based advection model combined with a finite-element based diffusion model and an implicit time-advancing scheme. We validated this algorithm for both static and dynamic conditions. We also applied it to a complex vascular network obtained from a rodent somatosensory cortex. Qualitative agreement was found with in-vivo experiments. PMID:18958033

  13. Numerical advection algorithms and their role in atmospheric transport and chemistry models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.

    1987-01-01

    During the last 35 years, well over 100 algorithms for modeling advection processes have been described and tested. This review summarizes the development and improvements that have taken place. The nature of the errors caused by numerical approximation to the advection equation are highlighted. Then the particular devices that have been proposed to remedy these errors are discussed. The extensive literature comparing transport algorithms is reviewed. Although there is no clear cut 'best' algorithm, several conclusions can be made. Spectral and pseudospectral techniques consistently provide the highest degree of accuracy, but expense and difficulties assuring positive mixing ratios are serious drawbacks. Schemes which consider fluid slabs bounded by grid points (volume schemes), rather than the simple specification of constituent values at the grid points, provide accurate positive definite results.

  14. The impact of advective transport by the South Indian Ocean Countercurrent on the Madagascar plankton bloom

    NASA Astrophysics Data System (ADS)

    Huhn, F.; von Kameke, A.; Pérez-Muñuzuri, V.; Olascoaga, M. J.; Beron-Vera, F. J.

    2012-03-01

    Based on ten years (1998-2007) of satellite ocean color data we analyze the spatiotemporal patterns in the seasonal Madagascar plankton bloom with respect to the advection of the recently discovered Southern Indian Ocean Countercurrent (SICC). In maps of Finite-time Lyapunov Exponents (FTLE) and Finite-Time Zonal Drift (FTZD) computed from altimetry derived velocities we observe a narrow zonal jet that starts at ˜25°S at the southern tip of Madagascar, an important upwelling region, and extends to the east further than the largest plankton blooms (˜2500 km). In bloom years, the jet coincides with large parts of the northern boundary of the plankton bloom, acting as a barrier to meridional transport. Our findings suggest that advection is an important and so far underestimated mechanism for the eastward propagation and the extent of the plankton bloom. This supports the hypothesis of a single nutrient source south of Madagascar.

  15. Advective-diffusive motion on large scales from small-scale dynamics with an internal symmetry

    NASA Astrophysics Data System (ADS)

    Marino, Raffaele; Aurell, Erik

    2016-06-01

    We consider coupled diffusions in n -dimensional space and on a compact manifold and the resulting effective advective-diffusive motion on large scales in space. The effective drift (advection) and effective diffusion are determined as a solvability conditions in a multiscale analysis. As an example, we consider coupled diffusions in three-dimensional space and on the group manifold SO(3) of proper rotations, generalizing results obtained by H. Brenner [J. Colloid Interface Sci. 80, 548 (1981), 10.1016/0021-9797(81)90214-9]. We show in detail how the analysis can be conveniently carried out using local charts and invariance arguments. As a further example, we consider coupled diffusions in two-dimensional complex space and on the group manifold SU(2). We show that although the local operators may be the same as for SO(3), due to the global nature of the solvability conditions the resulting diffusion will differ and generally be more isotropic.

  16. Estimation and correction of advection effects with single and multiple, conventional and Doppler radars

    NASA Technical Reports Server (NTRS)

    Gal-Chen, T.

    1981-01-01

    The laws of fluid motion are invariant under a Gallilean transformation. For a perfect observing system, the data analysis should, therefore, also be invariant under a Gallilean transformation. This invariance is often not preserved in practical observing systems. In this connection, it is often advisable to perform mesoscale analysis in a frame moving with respect to the earth's surface. In the present investigation the velocity of such a frame is referred to as an advection velocity. The investigation is concerned with remaining problems regarding the Gallilean transformation. The establishment of a frame of reference for the achievement of maximum coherence is considered, taking into account the case of given nonsimultaneous observations of scalars or Cartesian vectors. It is found that advection speed can be estimated objectively if a scalar or Cartesian vector can be observed directly and if, in addition, the time and position of each observation is approximately known.

  17. Multi-moment advection scheme in three dimension for Vlasov simulations of magnetized plasma

    SciTech Connect

    Minoshima, Takashi; Matsumoto, Yosuke; Amano, Takanobu

    2013-03-01

    We present an extension of the multi-moment advection scheme [T. Minoshima, Y. Matsumoto, T. Amano, Multi-moment advection scheme for Vlasov simulations, Journal of Computational Physics 230 (2011) 6800–6823] to the three-dimensional case, for full electromagnetic Vlasov simulations of magnetized plasma. The scheme treats not only point values of a profile but also its zeroth to second order piecewise moments as dependent variables, and advances them on the basis of their governing equations. Similar to the two-dimensional scheme, the three-dimensional scheme can accurately solve the solid body rotation problem of a gaussian profile with little numerical dispersion or diffusion. This is a very important property for Vlasov simulations of magnetized plasma. We apply the scheme to electromagnetic Vlasov simulations. Propagation of linear waves and nonlinear evolution of the electron temperature anisotropy instability are successfully simulated with a good accuracy of the energy conservation.

  18. Comparison of Nonlinear and Linear Stabilization Schemes for Advection-Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Grove, R. R.; Heister, T.

    2015-12-01

    Accurately solving advection-diffusion equations that appear in the finite element discretization of a mantle convection simulation is an important computational issue to the computational geoscience community. This is because it allows for users studying mantle convection to create reliable simulations for something as small and simple as a 2D simulation on their personal laptop to something as complex as a massively parallel 3D simulation on their university supercomputer. Standard finite element discretizations of advection-diffusion equations introduce unphysical oscillations around steep gradients. Therefore, stabilization must be added to the discrete formulation to obtain correct solutions. Using the open source scientific library ASPECT, the SUPG and Entropy Viscosity schemes are compared using stationary and non-stationary test equations. Differences in maximum overshoot and undershoot, smear, and convergence orders are compared to see if improvements can be made to the existing numerical method existing in ASPECT.

  19. Numerical advection algorithms and their role in atmospheric transport and chemistry models

    NASA Astrophysics Data System (ADS)

    Rood, Richard B.

    1987-02-01

    During the last 35 years, well over 100 algorithms for modeling advection processes have been described and tested. This review summarizes the development and improvements that have taken place. The nature of the errors caused by numerical approximation to the advection equation are highlighted. Then the particular devices that have been proposed to remedy these errors are discussed. The extensive literature comparing transport algorithms is reviewed. Although there is no clear cut 'best' algorithm, several conclusions can be made. Spectral and pseudospectral techniques consistently provide the highest degree of accuracy, but expense and difficulties assuring positive mixing ratios are serious drawbacks. Schemes which consider fluid slabs bounded by grid points (volume schemes), rather than the simple specification of constituent values at the grid points, provide accurate positive definite results.

  20. A study of turbulent transport of an advective nature in a fluid plasma

    NASA Astrophysics Data System (ADS)

    Min, Byunghoon; An, Chan-Yong; Kim, Chang-Bae

    2014-08-01

    The advective nature of the electrostatic turbulent flux of plasma energy in Fourier space is studied numerically in a nearly adiabatic state. Such a state is represented by the Hasegawa-Mima equation, which is driven by a noise that may model the destabilization due to the phase mismatch of the plasma density and the electric potential. The noise is assumed to be Gaussian and not to be invariant under reflection along a direction ŝ. The flux density induced by such noise is found to be anisotropic: While it is random along ŝ, it is not along the perpendicular direction ŝ ⊥, and the flux is not diffusive. The renormalized response may be approximated as advective, with the velocity being proportional to ( kρ s )2, in the Fourier space.

  1. Reaction-diffusion-advection approach to spatially localized treadmilling aggregates of molecular motors

    NASA Astrophysics Data System (ADS)

    Yochelis, Arik; Bar-On, Tomer; Gov, Nir S.

    2016-04-01

    Unconventional myosins belong to a class of molecular motors that walk processively inside cellular protrusions towards the tips, on top of actin filament. Surprisingly, in addition, they also form retrograde moving self-organized aggregates. The qualitative properties of these aggregates are recapitulated by a mass conserving reaction-diffusion-advection model and admit two distinct families of modes: traveling waves and pulse trains. Unlike the traveling waves that are generated by a linear instability, pulses are nonlinear structures that propagate on top of linearly stable uniform backgrounds. Asymptotic analysis of isolated pulses via a simplified reaction-diffusion-advection variant on large periodic domains, allows to draw qualitative trends for pulse properties, such as the amplitude, width, and propagation speed. The results agree well with numerical integrations and are related to available empirical observations.

  2. Two-dimensional atmospheric transport and chemistry model: numerical experiments with a new advection algorithm.

    PubMed

    Shia, R L; Ha, Y L; Wen, J S; Yung, Y L

    1990-05-20

    Extensive testing of the advective scheme, proposed by Prather (1986), has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. We generalize the original scheme to include higher-order moments. In addition, we show how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  3. An instrumented sample holder for time-lapse microtomography measurements of snow under advective airflow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S. A.; Schneebeli, M.; Steinfeld, A.

    2014-09-01

    An instrumented sample holder was developed for time-lapse microtomography of snow samples to enable in situ nondestructive spatial and temporal measurements under controlled advective airflows, temperature gradients, and air humidities. The design was aided by computational fluid dynamics simulations to evaluate the airflow uniformity across the snow sample. Morphological and mass transport properties were evaluated during a 4-day test run. This instrument allows the experimental characterization of metamorphism of snow undergoing structural changes with time.

  4. Carbon dioxide seasonality in dynamically ventilated caves: the role of advective fluxes

    NASA Astrophysics Data System (ADS)

    Lang, Marek; Faimon, Jiří; Godissart, Jean; Ek, Camille

    2016-07-01

    The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10-2 mol m-3 (i.e., ˜ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s-1 is capable of providing the cave CO2 level maxima up to 3 × 10-2 mol m-3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

  5. Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method

    PubMed Central

    İbiş, Birol

    2014-01-01

    This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662

  6. Advection of Sea-Ice Meltwater and Halocline Water Along the Siberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Bauch, D.; Torres-Valdes, S.; Polyakov, I.; Chernyavskaya, E.; Novikhin, A.; Dmitrenko, I.; McKay, J. L.; Mix, A. C.

    2014-12-01

    Our study is based on hydrochemical and stable oxygen isotope data at the Laptev Sea continental slope from summers 2005-2009 and reveals a general pattern in water mass distribution and potential shelf-basin exchange. Despite considerable inter-annual variations, a frontal system can be inferred between shelf, continental slope and central Eurasian Basin waters in the upper 100 m of the water column along the continental slope. Net sea-ice melt is consistently found at the continental slope. However, the sea-ice meltwater signal is independent from the local retreat of the sea-ice edge and appears to be advected from upwind locations. In addition to the along-slope frontal system at the continental shelf break, a strong gradient is identified on the Laptev Sea shelf at ~122-126°E with an eastward increase of riverine and sea-ice related brine water contents. These waters cross the shelf break at ~140°E and feed the Low Salinity Halocline Water (LSHW, salinity S<33) in the upper 50 m of the water column. High silicate concentrations in Laptev Sea bottom waters may lead to speculation about a link to the local silicate maximum found within the salinity range of ~33 to 34.5, typical for the Lower Halocline Water (LHW) at the continental slope. However brine signatures and nutrient ratios from the central Laptev Sea differ from those observed at the continental slope. Similar to the advection of the sea-ice melt signal along the Laptev Sea continental slope the nutrient signal at 50-70 m water depth within the LHW might also be fed by advection parallel to the slope. Thus, our analyses suggest that advective processes from upstream locations play a significant role in the meltwater distribution and halocline formation in the northern Laptev Sea. Inter-annual variations within the properties of LHW are further investigated.

  7. Mixing layers and coherent structures in vegetated aquatic flows

    NASA Astrophysics Data System (ADS)

    Ghisalberti, Marco; Nepf, Heidi M.

    2002-02-01

    To date, flow through submerged aquatic vegetation has largely been viewed as perturbed boundary layer flow, with vegetative drag treated as an extension of bed drag. However, recent studies of terrestrial canopies demonstrate that the flow structure within and just above an unconfined canopy more strongly resembles a mixing layer than a boundary layer. This paper presents laboratory measurements, obtained from a scaled seagrass model, that demonstrate the applicability of the mixing layer analogy to aquatic systems. Specifically, all vertical profiles of mean velocity contained an inflection point, which makes the flow susceptible to Kelvin-Helmholtz instability. This instability leads to the generation of large, coherent vortices within the mixing layer (observed in the model at frequencies between 0.01 and 0.11 Hz), which dominate the vertical transport of momentum through the layer. The downstream advection of these vortices is shown to cause the progressive, coherent waving of aquatic vegetation, known as the monami. When the monami is present, the turbulent vertical transport of momentum is enhanced, with turbulent stresses penetrating an additional 30% of the plant height into the canopy.

  8. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations

    PubMed Central

    Sánchez-Garduño, Faustino

    2016-01-01

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1)  h′(u) is constant k, (2)  h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE.

  9. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations

    PubMed Central

    Sánchez-Garduño, Faustino

    2016-01-01

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1)  h′(u) is constant k, (2)  h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE. PMID:27689131

  10. A deterministic Lagrangian particle separation-based method for advective-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Choi, K. W.

    2008-12-01

    A simple and robust Lagrangian particle scheme is proposed to solve the advective-diffusion transport problem. The scheme is based on relative diffusion concepts and simulates diffusion by regulating particle separation. This new approach generates a deterministic result and requires far less number of particles than the random walk method. For the advection process, particles are simply moved according to their velocity. The general scheme is mass conservative and is free from numerical diffusion. It can be applied to a wide variety of advective-diffusion problems, but is particularly suited for ecological and water quality modelling when definition of particle attributes (e.g., cell status for modelling algal blooms or red tides) is a necessity. The basic derivation, numerical stability and practical implementation of the NEighborhood Separation Technique (NEST) are presented. The accuracy of the method is demonstrated through a series of test cases which embrace realistic features of coastal environmental transport problems. Two field application examples on the tidal flushing of a fish farm and the dynamics of vertically migrating marine algae are also presented.

  11. RADIATION PRESSURE-SUPPORTED ACCRETION DISKS: VERTICAL STRUCTURE, ENERGY ADVECTION, AND CONVECTIVE STABILITY

    SciTech Connect

    Gu Weimin

    2012-07-10

    By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the density profile implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help us understand why the standard thin disk model is likely to be inaccurate above {approx}0.3 Eddington luminosity, which was found by some works on black hole spin measurement. Furthermore, the solutions satisfy the Solberg-Hoiland conditions, which indicate the disk to be convectively stable. In addition, we discuss the possible link between our disk model and ultraluminous X-ray sources.

  12. The effects of advection solvers on the performance of air quality models

    SciTech Connect

    Tanrikulu, S.; Odman, M.T.

    1996-12-31

    The available numerical solvers for the advection term in the chemical species conservation equation have different properties, and consequently introduce different types of errors. These errors can affect the performance of air quality models and lead to biases in model results. In this study, a large number of advection solvers have been studied and six of them were identified as having potential for use in photochemical models. The identified solvers were evaluated extensively using various numerical tests that are relevant to air quality simulations. Among the solvers evaluated, three of them showed better performance in terms of accuracy and some other characteristics such as conservation of mass and positivity. They are the solvers by Bott, Yuamartino, and Dabdub and Seinfeld. These three solvers were incorporated into the SARMAP Air Quality Model (SAQM) and the August 3-6, 1990 ozone episode in the San Joaquin Valley of California was simulated with each. A model performance analysis was conducted for each simulation using the rich air quality database of the 1990 San Joaquin Valley Air Quality Study. The results of the simulations were compared with each other and the effects of advection solvers on the performance of the model are discussed.

  13. Clumped isotope constraints on fluid processes and heat advection during late Variscan brittle failure of carbonate rocks

    NASA Astrophysics Data System (ADS)

    Dennis, Paul; Myhill, Daniel; Allanach, Neil; Forman, Alexandra; Marca, Alina

    2015-04-01

    Clumped isotope temperatures (T(Δ47)) for macroscopic hydrothermal calcite veins from the Lower Carboniferous limestone of the Peak District, U.K. and the Clare Basin, Ireland indicate that late Variscan brittle failure is accompanied by high rates of fluid flow and heat advection along fault surfaces. Moreover, the veins are often zoned with regard to both temperature and oxygen isotope composition indicating that fluid movement is episodic and occurs in pulses. A striking feature of the data sets for both the Peak District and Clare Basin is that veins, including multiple samples from single veins, plot on well defined two end-member mixing lines in T-δ18Ofluid space. The data for veins in the Clare Basin indicate that they precipitated at a temperature between 100° and 160° C, and for the Peak District between 30° and 100° C. The veins precipitate from a mixed fluid comprised of: (i) a hot, isotopically evolved end member (T>160° C, δ18Ofluid > +12V SMOW) and; (ii) a cooler, isotopically depleted fluid more characteristic of meteoric groundwaters (T

  14. Dissecting diffusive and advective motion in colloidal sedimentation by multi-speckle Ultra-Small-Angle XPCS

    NASA Astrophysics Data System (ADS)

    Möller, Johannes; Narayanan, Theyencheri

    In colloidal suspensions internal or external fields can induce directed motions of particles in addition to Brownian diffusion. Here, gradients in temperature or chemical potential, shear flow as well as gravity can act as an external field. Examples for internal motions can be found in synthetic self-propelling particles and microorganisms, generally coined as active matter. We present multi-speckle X-ray photon correlation spectroscopy measurements in the Ultra-Small-Angle scattering range which probes an expanded length scale comparable to DLS and optical microscopy. To demonstrate the advanced capabilities, we show measurements probing the motions within a settling suspension of sub-micron sized silica particles. A global fitting procedure has been applied to separate the diffusive and advective contributions to the particle dynamics. With this, macroscopic parameters such as the sedimentation velocity can be probed on a microscopic level in highly opaque and concentrated systems, which are in general difficult to access for optical investigations. This procedure may prove its value for investigating various kinds of non-equilibrium systems.

  15. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only ~500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  16. A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations

    SciTech Connect

    Wang, H.; Man, S.; Ewing, R.E.; Qin, G.; Lyons, S.L.; Al-Lawatia, M.

    1999-06-10

    Many difficult problems arise in the numerical simulation of fluid flow processes within porous media in petroleum reservoir simulation and in subsurface contaminant transport and remediation. The authors develop a family of Eulerian-Lagrangian localized adjoint methods for the solution of the initial-boundary value problems for first-order advection-reaction equations on general multi-dimensional domains. Different tracking algorithms, including the Euler and Runge-Kutta algorithms, are used. The derived schemes, which are full mass conservative, naturally incorporate inflow boundary conditions into their formulations and do not need any artificial outflow boundary conditions. Moreover, they have regularly structured, well-conditioned, symmetric, and positive-definite coefficient matrices, which can be efficiently solved by the conjugate gradient method in an optimal order number of iterations without any preconditioning needed. Numerical results are presented to compare the performance of the ELLAM schemes with many well studied and widely used methods, including the upwind finite difference method, the Galerkin and the Petrov-Galerkin finite element methods with backward-Euler or Crank-Nicolson temporal discretization, the streamline diffusion finite element methods, the monotonic upstream-centered scheme for conservation laws (MUSCL), and the Minmod scheme.

  17. Improving a prediction system for oil spills in the Yellow Sea: effect of tides on subtidal flow.

    PubMed

    Kim, Chang-Sin; Cho, Yang-Ki; Choi, Byoung-Ju; Jung, Kyung Tae; You, Sung Hyup

    2013-03-15

    A multi-nested prediction system for the Yellow Sea using drifter trajectory simulations was developed to predict the movements of an oil spill after the MV Hebei Spirit accident. The speeds of the oil spill trajectories predicted by the model without tidal forcing were substantially faster than the observations; however, predictions taking into account the tides, including both tidal cycle and subtidal periods, were satisfactorily improved. Subtidal flow in the simulation without tides was stronger than in that with tides because of reduced frictional effects. Friction induced by tidal stress decelerated the southward subtidal flows driven by northwesterly winter winds along the Korean coast of the Yellow Sea. These results strongly suggest that in order to produce accurate predictions of oil spill trajectories, simulations must include tidal effects, such as variations within a tidal cycle and advections over longer time scales in tide-dominated areas.

  18. Ferrofluid flow for TOUGH2

    SciTech Connect

    Oldenburg, Curtis; Moridis, George

    1998-03-24

    We have developed EOS7M, a ferrofluid flow and transport module for TOUGH2. EOS7M calculates the magnetic forces on ferrofluid caused by an external magnetic field and allows simulation of flow and advective transport of ferrofluid-water mixtures through porous media. Such flow problems are strongly coupled and well suited to the TOUGH2 framework. Preliminary applications of EOS7M to some simple pressure and flow problems for which experiments were carried out in the lab show good qualitative agreement with the laboratory results.

  19. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport

    NASA Astrophysics Data System (ADS)

    Ancey, C.; Bohorquez, P.; Heyman, J.

    2015-12-01

    The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due

  20. Measurement of advective soil gas flux: Results of field and laboratory experiments with CO2

    SciTech Connect

    Amonette, James E.; Barr, Jonathan L.; Erikson, Rebecca L.; Dobeck, Laura M.; Barr, Jamie L.; Shaw, Joseph A.

    2013-10-01

    We modified our multi-channel, steady-state flow-through (SSFT), soil-CO2 flux monitoring system to include an array of inexpensive pyroelectric non-dispersive infrared detectors for full-range (0-100%) coverage of CO2 concentrations without dilution, and a larger-diameter vent tube. We then conducted field testing of this system from late July through mid-September 2010 at the Zero Emissions Research and Technology (ZERT) project site located in Bozeman, MT, and subsequently, laboratory testing at the Pacific Northwest National Laboratory (PNNL) in Richland, WA using a flux bucket filled with dry sand. In the field, an array of twenty-five SSFT and three non-steady-state (NSS) flux chambers was installed in a 10x4 m area, the long boundary of which was directly above a shallow (2-m depth) horizontal injection well located 0.5 m below the water table. Two additional chambers (one SSFT and one NSS) were installed 10 m from the well for background measurements. Volumetric soil moisture sensors were installed at each SSFT chamber to measure mean levels in the top 0.15 m of soil. A total flux of 52 kg CO2 d-1 was injected into the well for 27 d and the efflux from the soil was monitored by the chambers before, during, and for 27 d after the injection. Overall, the results were consistent with those from previous years, showing a radial efflux pattern centered on a known “hot spot”, rapid responses to changes in injection rate and wind power, evidence for movement of the CO2 plume during the injection, and nominal flux levels from the SSFT chambers that were up to 6-fold higher than those measured by adjacent NSS chambers. Soil moisture levels varied during the experiment from moderate to near saturation with the highest levels occurring consistently at the hot spot. The effects of wind on measured flux were complex and decreased as soil moisture content increased. In the laboratory, flux bucket testing with the SSFT chamber showed large measured-flux enhancement

  1. THE INTERPLAY BETWEEN GEOCHEMICAL REACTIONS AND ADVECTION-DISPERSION IN CONTAMINANT TRANSPORT AT A URANIUM MILL TAILINGS SITE

    EPA Science Inventory

    It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...

  2. Finger Enslaving in the Dominant and Non-Dominant Hand

    PubMed Central

    Wilhelm, Luke A.; Martin, Joel R.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2014-01-01

    During single-finger force production, the non-instructed fingers unintentionally produce force (finger enslaving). In this study, enslaving effects were compared between the dominant and non-dominant hands. The test consisted of a series of maximum voluntary contractions with different finger combinations. Enslaving matrices were calculated by means of training an artificial neural network. The dominant hand was found to be stronger, but there was found to be no difference between the overall enslaving effects in the dominant and non-dominant hands. There was no correlation between the magnitude of finger enslaving and the performance in such tests as the Edinburgh Handedness Inventory, the Grooved Pegboard test, and the Jebsen-Taylor Hand Function test. Each one of those three tests showed a significant difference between the dominant and non-dominant hand performances. Eleven subjects were retested after two months, and it was found that enslaving effects did not fluctuate significantly between the two testing sessions. While the dominant and non-dominant hands are involved differently in everyday tasks, e.g. in writing or eating, this practice does not cause significant differences in enslaving between the hands. PMID:24360253

  3. Finger enslaving in the dominant and non-dominant hand.

    PubMed

    Wilhelm, Luke A; Martin, Joel R; Latash, Mark L; Zatsiorsky, Vladimir M

    2014-02-01

    During single-finger force production, the non-instructed fingers unintentionally produce force (finger enslaving). In this study, enslaving effects were compared between the dominant and non-dominant hands. The test consisted of a series of maximum voluntary contractions with different finger combinations. Enslaving matrices were calculated by means of training an artificial neural network. The dominant hand was found to be stronger, but there was found to be no difference between the overall enslaving effects in the dominant and non-dominant hands. There was no correlation between the magnitude of finger enslaving and the performance in such tests as the Edinburgh Handedness Inventory, the Grooved Pegboard test, and the Jebsen-Taylor Hand Function test. Each one of those three tests showed a significant difference between the dominant and non-dominant hand performances. Eleven subjects were retested after two months, and it was found that enslaving effects did not fluctuate significantly between the two testing sessions. While the dominant and non-dominant hands are involved differently in everyday tasks, e.g. in writing or eating, this practice does not cause significant differences in enslaving between the hands. PMID:24360253

  4. Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region

    NASA Astrophysics Data System (ADS)

    Mádl-Szőnyi, Judit; Tóth, Ádám

    2015-11-01

    Application of the gravity-driven regional groundwater flow (GDRGF) concept to the hydrogeologically complex thick carbonate system of the Transdanubian Range (TR), Hungary, is justified based on the principle of hydraulic continuity. The GDRGF concept informs about basin hydraulics and groundwater as a geologic agent. It became obvious that the effect of heterogeneity and anisotropy on the flow pattern could be derived from hydraulic reactions of the aquifer system. The topography and heat as driving forces were examined by numerical simulations of flow and heat transport. Evaluation of groups of springs, in terms of related discharge phenomena and regional chloride distribution, reveals the dominance of topography-driven flow when considering flow and related chemical and temperature patterns. Moreover, heat accumulation beneath the confined part of the system also influences these patterns. The presence of cold, lukewarm and thermal springs and related wetlands, creeks, mineral precipitates, and epigenic and hypogenic caves validates the existence of GDRGF in the system. Vice versa, groups of springs reflect rock-water interaction and advective heat transport and inform about basin hydraulics. Based on these findings, a generalized conceptual GDRGF model is proposed for an unconfined and confined carbonate region. An interface was revealed close to the margin of the unconfined and confined carbonates, determined by the GDRGF and freshwater and basinal fluids involved. The application of this model provides a background to interpret manifestations of flowing groundwater in thick carbonates generally, including porosity enlargement and hydrocarbon and heat accumulation.

  5. Glacial disparities in Intermediate Mode Water advection in the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Tapia, R.; Nuernberg, D.; Ronge, T.; Tiedemann, R.

    2014-12-01

    The Intermediate Mode Waters formed in the Southern Ocean are critical for the lower thermocline ventilation process in the Southern Hemisphere Gyres. They also might have served as the most relevant pathways transporting climatic signals from high to low latitudes via the "oceanic tunneling" on glacial/interglacial time scales. Despite the importance of the Southern Ocean Intermediate Waters (SOIWs), our understanding on the long-term evolution, exact advection paths, and impact on the South Pacific Gyre's thermocline is still fragmentary. Here, we present a 200 kyr record of paired Mg/Ca ratios and stable oxygen isotope from surface dweller and deep dwelling planktonic foraminifera, from the South Pacific Gyre (SPG). On average, the Mg/Ca-derived sea Surface Temperatures (Globigerina bulloides) show similar conditions during the LGM and Marine Isotope Stage (MIS) 6 (9.4 °C versus 9.9 °C). In contrast, our Mg/Ca-derived subsurface temperatures (Globorotalia inflata and Globorotalia truncatulinoides) suggest LGM from ~3 to ~2 °C colder than MIS 6. The reconstructed subsurface ice volume corrected stable oxygen isotope ratio of seawater (δ18Osw-ivc, proxy for local salinity changes) suggests opposing glacial subsurface conditions, i.e., slightly saltier-than-Holocene during MIS 6 to fresher-than-Holocene during MIS 2. Considering that subsurface hydrography at the core site is plausibly driven by the formation and/or advection of SOIWs from the South East Pacific, our results provide further support on the relevance of subsurface processes in the Southern Ocean transferring climatic signals (temperature and salinity) to the SPG. Furthermore, the contrasting subsurface glacial scenarios at the SPG's thermocline imply that the advection of SOIWs during glacial stages could be highly variable during different glacial stages.

  6. Self-similar hot accretion flow onto a neutron star

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.

    2001-10-01

    We present analytical and numerical solutions which describe a hot, viscous, two-temperature accretion flow onto a neutron star or any other compact star with a surface. We assume Coulomb coupling between the protons and electrons, and free-free cooling from the electrons. Outside a thin boundary layer, where the accretion flow meets the star, we show that there is an extended settling region which is well-described by two self-similar solutions: (1) a two-temperature solution which is valid in an inner zone r<=102.5 (r is in Schwarzchild units), and (2) a one-temperature solution at larger radii. In both zones, ρ~r-2, Ω~r-3/2, v~r0, Tp~r-1 in the two-temperature zone, Te~r-1/2. The luminosity of the settling zone arises from the rotational energy of the star as the star is braked by viscosity; hence the luminosity is independent of Ṁ. The settling solution is convectively and viscously stable and is unlikely to have strong winds or outflows. The flow is thermally unstable, but the instability may be stabilized by thermal conduction. The settling solution described here is not advection-dominated, and is thus different from the self-similar ADAF found around black holes. When the spin of the star is small enough, however, the present solution transforms smoothly to a (settling) ADAF. .

  7. Azimuthal Stress and Heat Flux In Radiatively Inefficient Accretion Flows

    NASA Astrophysics Data System (ADS)

    Devlen, Ebru

    2016-07-01

    Radiatively Inefficient Accretion Flows (RIAFs) have low radiative efficiencies and/or low accretion rates. The accreting gas may retain most of its binding energy in the form of heat. This lost energy for hot RIAFs is one of the problems heavily worked on in the literature. RIAF observations on the accretion to super massive black holes (e.g., Sagittarius A* in the center of our Galaxy) have shown that the observational data are not consistent with either advection-dominated accretion flow (ADAF) or Bondi models. For this reason, it is very important to theoretically comprehend the physical properties of RIAFs derived from observations with a new disk/flow model. One of the most probable candidates for definition of mass accretion and the source of excess heat energy in RIAFs is the gyroviscous modified magnetorotational instability (GvMRI). Dispersion relation is derived by using MHD equations containing heat flux term based on viscosity in the energy equation. Numerical solutions of the disk equations are done and the growth rates of the instability are calculated. This additional heat flux plays an important role in dissipation of energy. The rates of the angular momentum and heat flux which are obtained from numerical calculations of the turbulence brought about by the GVMRI are also discussed.

  8. Really TVD advection schemes for the depth-integrated transport equation

    NASA Astrophysics Data System (ADS)

    Mercier, Ch.; Delhez, E. J. M.

    This paper explores the use of TVD advection schemes to solve the depth-integrated transport equation for tracers in finite volume marine models. Numerical experiments show that the blind application of the usual TVD schemes and associated flux limiters can lead to non-TVD solutions when applied in complex geometries. Spatial and/or temporal variations of the local bathymetry can indeed break the TVD property of the usual schemes. Really TVD schemes can be recovered by taking into account the local depth and its variations in the formulation of the flux limiters. Using this approach, a generalized superbee limiter is introduced and validated.

  9. Variational Integration for Ideal MHD with Built-in Advection Equations

    SciTech Connect

    Zhou, Yao; Qin, Hong; Burby, J. W.; Bhattacharjee, A.

    2014-08-05

    Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.

  10. Performance Analysis of high-order remap-type advection scheme on icosahedral-hexagonal grid

    NASA Astrophysics Data System (ADS)

    Mittal, Rashmi; Dubey, Sarvesh; Saxena, Vaibhav; Meurdesoif, Yann

    2014-05-01

    A comparative performance analysis on computational cost of second order advection schemes FF-CSLAM (Flux form conservative semi-Lagrangian multi-tracer transport scheme) and it's two simplifications on Icosahedral grid has been presented. Tracer transport is one of the main building blocks in atmospheric models and hence their performance greatly determines the overall performance of the model. FF-CSLAM falls in the category of arbitrary Lagrangian Eulerian (ALE) scheme. It exploits the finite volume formulation and therefore it is inherently conservative. Flux-area through edges are approximated with great circle arcs in an upwind fashion. Bi-quadratic sub-grid scale reconstructions using weighted least-squares method is employed to approximate trace field. Area integrals on the overlapped region of flux-area and static Eulerian meshes are evaluated via line-integrals. A brief description of implementation of FF-CSLAM on icosahedral -hexagonal meshes along with and its numerical accuracy in terms of standard test cases will be presented. A comparative analysis of the computational overhead is necessary to assess the suitability of FF-CSLAM for massively parallel and multi-threading computer architectures in comparison to other advection schemes implemented on icosahedral grids. The main focus of this work is to present the implementation of the shared memory parallelization and to describe the memory access pattern of the numerical scheme. FF-CSLAM is a remap-type advection scheme, thus extra calculation are done in comparison to the other advection schemes. The additional computations are associated with the search required to find the overlap area between the area swept through the edge and the underlining grid. But the experiments shows that the associated computational overhead is minimal for multi-tracer transport. It will be shown that for the Courant Number less than one, FF-CSLAM, the computations are not expensive. Since the grid cells are arranged in

  11. Covariance Propagation and Partial Eigendecomposition Filtering on the Continuum: The Cases of Advective Dynamics

    NASA Technical Reports Server (NTRS)

    Cohn, S.

    2002-01-01

    As a motivation for this lecture, we begin by stating a paradox that challenges our fundamental understanding of covariance evolution (at least it challenged my own). Attempting to resolve this 'divergence paradox' leads us to introduce the continuum fundamental solution operator for the dynamics under consideration, which will be advection dynamics in this lecture. This operator is the object that is approximated by the discrete 'tangent linear model. We then show how the fundamental solution operator can be used to describe the solution of the continuum covariance evolution equation. This description is complete enough to resolve fully the divergence paradox.

  12. Preconditioned iterative methods for space-time fractional advection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.

    2016-08-01

    In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.

  13. Transient eddy current flow metering

    NASA Astrophysics Data System (ADS)

    Forbriger, J.; Stefani, F.

    2015-10-01

    Measuring local velocities or entire flow rates in liquid metals or semiconductor melts is a notorious problem in many industrial applications, including metal casting and silicon crystal growth. We present a new variant of an old technique which relies on the continuous tracking of a flow-advected transient eddy current that is induced by a pulsed external magnetic field. This calibration-free method is validated by applying it to the velocity of a spinning disk made of aluminum. First tests at a rig with a flow of liquid GaInSn are also presented.

  14. Brain Dominance & Self-Actualization.

    ERIC Educational Resources Information Center

    Bernhoft, Franklin O.

    Numerous areas associated with brain dominance have been researched since Bogen and Sperry's work with split-brain patients in the 1960s, but only slight attention has been given to the connection between brain dominance and personality. No study appears in the literature seeking to understand optimal mental health as defined by Maslow's…

  15. Dominant Leadership Style in Schools

    ERIC Educational Resources Information Center

    Rajbhandari, Mani Man Singh

    2006-01-01

    The dominant leadership style is defined by the situation and the kind of organizational environment and climate. This, however, does not sufficiently define the leadership qualities in school organizations. There are other factors which also determine the dominant leadership style, which are the traits and style, teachers commitments, pass out…

  16. Dominance Hierarchies in Leptothorax Ants

    NASA Astrophysics Data System (ADS)

    Cole, Blaine J.

    1981-04-01

    The social organization of Leptothorax allardycei is unique among ant species thus far studied. The workers form linear dominance hierarchies characterized by routine displays of dominance, avoidance behavior, and even fighting. The high-ranking ants are favored in liquid food exchange, have greater ovarian development, and produce 20 percent of the eggs.

  17. Dominance Hierarchies in Young Children

    ERIC Educational Resources Information Center

    Edelman, Murray S.; Omark, Donald R.

    1973-01-01

    This study uses the ethological approach of seeking species characteristics and phylogenetic continuities in an investigation of human behavior. Among primates a striking consistency is the presence of some form of dominance hierarchy in many species. The present study examines peer group dominance hierarchies as they are perceived by children in…

  18. Chytrids dominate arctic marine fungal communities.

    PubMed

    Hassett, B T; Gradinger, R

    2016-06-01

    Climate change is altering Arctic ecosystem structure by changing weather patterns and reducing sea ice coverage. These changes are increasing light penetration into the Arctic Ocean that are forecasted to increase primary production; however, increased light can also induce photoinhibition and cause physiological stress in algae and phytoplankton that can favour disease development. Fungi are voracious parasites in many ecosystems that can modulate the flow of carbon through food webs, yet are poorly characterized in the marine environment. We provide the first data from any marine ecosystem in which fungi in the Chytridiomycota dominate fungal communities and are linked in their occurrence to light intensities and algal stress. Increased light penetration stresses ice algae and elevates disease incidence under reduced snow cover. Our results show that chytrids dominate Arctic marine fungal communities and have the potential to rapidly change primary production patterns with increased light penetration.

  19. Chytrids dominate arctic marine fungal communities.

    PubMed

    Hassett, B T; Gradinger, R

    2016-06-01

    Climate change is altering Arctic ecosystem structure by changing weather patterns and reducing sea ice coverage. These changes are increasing light penetration into the Arctic Ocean that are forecasted to increase primary production; however, increased light can also induce photoinhibition and cause physiological stress in algae and phytoplankton that can favour disease development. Fungi are voracious parasites in many ecosystems that can modulate the flow of carbon through food webs, yet are poorly characterized in the marine environment. We provide the first data from any marine ecosystem in which fungi in the Chytridiomycota dominate fungal communities and are linked in their occurrence to light intensities and algal stress. Increased light penetration stresses ice algae and elevates disease incidence under reduced snow cover. Our results show that chytrids dominate Arctic marine fungal communities and have the potential to rapidly change primary production patterns with increased light penetration. PMID:26754171

  20. Modeling of advection-diffusion-reaction processes using transport dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-11-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. In particular, the transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of Lagrangian particles. To validate the proposed tDPD model and the boundary conditions, three benchmark simulations of one-dimensional diffusion with different boundary conditions are performed, and the results show excellent agreement with the theoretical solutions. Also, two-dimensional simulations of ADR systems are performed and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, an application of tDPD to the spatio-temporal dynamics of blood coagulation involving twenty-five reacting species is performed to demonstrate the promising biological applications of the tDPD model. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.

  1. Pollutant advective spreading in beach sand exposed to high-energy tides

    NASA Astrophysics Data System (ADS)

    Itugha, Okuroghoboye D.; Chen, Daoyi; Guo, Yakun

    2016-11-01

    This paper presents field measurements in which dye solute was injected into coastal sand to investigate contaminant advection in intertidal beach sand. The measurements show the pathways of a contaminated plume in the unsaturated zone during both the flood and ebb tides. A prescribed amount of dye tracer solution was directly injected through the topsoil, with average porosity 0.3521 ± 0.01, at predetermined locations of the River Mersey's outer estuarial beach during ebb-tide. The injected dye was monitored, sampled and photographed over several tidal cycles. The distinctive features of the plume (full two dimensional cross-sections), sediments and water-table depth were sampled in-situ, close to the injection point (differing from previous contaminant monitoring tests in aquifers). The advective movement is attributed to tidal impact which is different from contaminant transport in aquifers. The experimental results show that plumes have significantly large spatial variability, diverging upwards and converging downwards, with a conical geometric shape which is different from the usual spherical/elliptical shape reported in literature. The mean vertical motion of the plume reaches three times the top-width within ten tidal cycles, exceeding the narrow bottom-width by a factor of order 2. The observed transport features of the plume within the beach sand have significant relevance to saltwater intrusion, surface water and groundwater quality. The field observations are unique and can serve as a valuable benchmark database for relevant numerical studies.

  2. Simulation of the advective methane transport and AOM in Shenhu area, the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wu, N.

    2012-04-01

    Anaerobic Oxidation of Methane (AOM) occurs in the transition zone between the presence of sulfate and methane. This reaction is an important process for methane and the global carbon cycle. Methane gas hydrates bearing sediments were recovered in Shenhu Area, the Northern South China Sea, and methane advective transport was detected in this area as well. A one dimension numerical simulation tool was implemented to study the AOM process combined with the advective methane transport in Shenhu Area according to the local drilling data and geochemical information. The modeled results suggest that local methane flux will be consumed in the sediment column via dissolution, sorption and AOM reaction. A portion of methane will enter water column and possibly atmosphere if the methane flux was one order of magnitude higher than current level. Furthermore, the calculated rates of AOM in Shenhu area range similar to that of gas hydrate mounds in Mexico Golf. However, AOM is ability to consume more methane than that in Golf of Mexico due to the lower permeable sediment associated with a deeper sulfate methane transition layer.

  3. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the lar