An operator splitting algorithm for the three-dimensional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Khan, Liaqat Ali; Liu, Philip L.-F.
1998-09-01
Operator splitting algorithms are frequently used for solving the advection-diffusion equation, especially to deal with advection dominated transport problems. In this paper an operator splitting algorithm for the three-dimensional advection-diffusion equation is presented. The algorithm represents a second-order-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The governing equation is split into an advection equation and a diffusion equation, and they are solved by a backward method of characteristics and a finite element method, respectively. The Hermite interpolation function is used for interpolation of concentration in the advection step. The spatial gradients of concentration in the Hermite interpolation are obtained by solving equations for concentration gradients in the advection step. To make the composite algorithm efficient, only three equations for first-order concentration derivatives are solved in the diffusion step of computation. The higher-order spatial concentration gradients, necessary to advance the solution in a computational cycle, are obtained by numerical differentiations based on the available information. The simulation characteristics and accuracy of the proposed algorithm are demonstrated by several advection dominated transport problems.
Development of a new flux splitting scheme
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Christopher J., Jr.
1991-01-01
The successful use of a novel splitting scheme, the advection upstream splitting method, for model aerodynamic problems where Van Leer and Roe schemes had failed previously is discussed. The present scheme is based on splitting in which the convective and pressure terms are separated and treated differently depending on the underlying physical conditions. The present method is found to be both simple and accurate.
Development of a new flux splitting scheme
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Christopher J., Jr.
1991-01-01
The use of a new splitting scheme, the advection upstream splitting method, for model aerodynamic problems where Van Leer and Roe schemes had failed previously is discussed. The present scheme is based on splitting in which the convective and pressure terms are separated and treated differently depending on the underlying physical conditions. The present method is found to be both simple and accurate.
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Christopher J., Jr.
1991-01-01
A new flux splitting scheme is proposed. The scheme is remarkably simple and yet its accuracy rivals and in some cases surpasses that of Roe's solver in the Euler and Navier-Stokes solutions performed in this study. The scheme is robust and converges as fast as the Roe splitting. An approximately defined cell-face advection Mach number is proposed using values from the two straddling cells via associated characteristic speeds. This interface Mach number is then used to determine the upwind extrapolation for the convective quantities. Accordingly, the name of the scheme is coined as Advection Upstream Splitting Method (AUSM). A new pressure splitting is introduced which is shown to behave successfully, yielding much smoother results than other existing pressure splittings. Of particular interest is the supersonic blunt body problem in which the Roe scheme gives anomalous solutions. The AUSM produces correct solutions without difficulty for a wide range of flow conditions as well as grids.
Pathways for Advective Transport
2001-01-19
the approach is given and an application to the Gulf of Mexico is described where the analysis precisely identifies the boundaries of coherent vortical structures as well as pathways for advective transport.
Kawashima, Rei Komurasaki, Kimiya Schönherr, Tony
2016-04-01
A flux-splitting method is proposed for the hyperbolic-equation system (HES) of magnetized electron fluids in quasi-neutral plasmas. The numerical fluxes are split into four categories, which are computed by using an upwind method which incorporates a flux-vector splitting (FVS) and advection upstream splitting method (AUSM). The method is applied to a test calculation condition of uniformly distributed and angled magnetic lines of force. All of the pseudo-time advancement terms converge monotonically and the conservation laws are strictly satisfied in the steady state. The calculation results are compared with those computed by using the elliptic–parabolic-equation system (EPES) approach using a magnetic-field-aligned mesh (MFAM). Both qualitative and quantitative comparisons yield good agreements of results, indicating that the HES approach with the flux-splitting method attains a high computational accuracy.
Fast multigrid solution of the advection problem with closed characteristics
Yavneh, I.; Venner, C.H.; Brandt, A.
1996-12-31
The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.
Sharp, R.W. Jr.; Barton, R.T.
1981-01-21
A continuous rezoning procedure has been implemented in the computational cycle of a version of the HEMP two-dimensional, Lagrange, fluid dynamics code. The rezoning problem is divided into two steps. The first step requires the solving of ordinary Lagrange equations of motion; the second step consists of adding equipotential grid relaxation along with an advective remapping scheme.
AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION
Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...
LAYER DEPENDENT ADVECTION IN CMAQ
The advection methods used in CMAQ require that the Courant-Friedrichs-Lewy (CFL) condition be satisfied for numerical stability and accuracy. In CMAQ prior to version 4.3, the ADVSTEP algorithm established CFL-safe synchronization and advection timesteps that were uniform throu...
Advection around ventilated U-shaped burrows: A model study
NASA Astrophysics Data System (ADS)
Brand, Andreas; Lewandowski, JöRg; Hamann, Enrico; Nützmann, Gunnar
2013-05-01
Advective transport in the porous matrix of sediments surrounding burrows formed by fauna such as Chironomus plumosus has been generally neglected. A positron emission tomography study recently revealed that the pumping activity of the midge larvae can indeed induce fluid flow in the sediment. We present a numerical model study which explores the conditions at which advective transport in the sediment becomes relevant. A 0.15 m deep U-shaped burrow with a diameter of 0.002 m within the sediment was represented in a 3-D domain. Fluid flow in the burrow was calculated using the Navier-Stokes equation for incompressible laminar flow in the burrow, and flow in the sediment was described by Darcy's law. Nonreactive and reactive transport scenarios were simulated considering diffusion and advection. The pumping activity of the model larva results in considerable advective flow in the sediment at reasonable high permeabilities with flow velocities of up to 7.0 × 10-6 m s-1 close to the larva for a permeability of 3 × 10-12 m2. At permeabilities below 7 × 10-13 m2 advection is negligible compared to diffusion. Reactive transport simulations using first-order kinetics for oxygen revealed that advective flux into the sediment downstream of the pumping larva enhances sedimentary uptake, while the advective flux into the burrow upstream of the larvae inhibits diffusive sedimentary uptake. Despite the fact that both effects cancel each other with respect to total solute uptake, the advection-induced asymmetry in concentration distribution can lead to a heterogeneous solute and redox distribution in the sediment relevant to complex reaction networks.
Investigation of Convection and Pressure Treatment with Splitting Techniques
NASA Technical Reports Server (NTRS)
Thakur, Siddharth; Shyy, Wei; Liou, Meng-Sing
1995-01-01
Treatment of convective and pressure fluxes in the Euler and Navier-Stokes equations using splitting formulas for convective velocity and pressure is investigated. Two schemes - controlled variation scheme (CVS) and advection upstream splitting method (AUSM) - are explored for their accuracy in resolving sharp gradients in flows involving moving or reflecting shock waves as well as a one-dimensional combusting flow with a strong heat release source term. For two-dimensional compressible flow computations, these two schemes are implemented in one of the pressure-based algorithms, whose very basis is the separate treatment of convective and pressure fluxes. For the convective fluxes in the momentum equations as well as the estimation of mass fluxes in the pressure correction equation (which is derived from the momentum and continuity equations) of the present algorithm, both first- and second-order (with minmod limiter) flux estimations are employed. Some issues resulting from the conventional use in pressure-based methods of a staggered grid, for the location of velocity components and pressure, are also addressed. Using the second-order fluxes, both CVS and AUSM type schemes exhibit sharp resolution. Overall, the combination of upwinding and splitting for the convective and pressure fluxes separately exhibits robust performance for a variety of flows and is particularly amenable for adoption in pressure-based methods.
Sage, William M; McIlhattan, Kelley
2014-01-01
For the first time, entrepreneurs are aggressively developing new technologies and business models designed to improve individual and population health, not just to deliver specialized medical care. Consumers of these goods and services are not yet "patients"; they are simply people. As this sector of the health care industry expands, it is likely to require new forms of legal governance, which we term "upstream health law."
Unification of some advection schemes in two dimensions
NASA Technical Reports Server (NTRS)
Sidilkover, D.; Roe, P. L.
1995-01-01
The relationship between two approaches towards construction of genuinely two-dimensional upwind advection schemes is established. One of these approaches is of the control volume type applicable on structured cartesian meshes. It resulted in the compact high resolution schemes capable of maintaining second order accuracy in both homogeneous and inhomogeneous cases. Another one is the fluctuation splitting approach, which is well suited for triangular (and possibly) unstructured meshes. Understanding the relationship between these two approaches allows us to formulate here a new fluctuation splitting high resolution (i.e. possible use of artificial compression, while maintaining positivity property) scheme. This scheme is shown to be linearity preserving in inhomogeneous as well as homogeneous cases.
High-resolution two dimensional advective transport
Smith, P.E.; Larock, B.E.
1989-01-01
The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.
Evolution and advection of solar mesogranulation
NASA Technical Reports Server (NTRS)
Muller, Richard; Auffret, Herve; Roudier, Thierry; Vigneau, Jean; Simon, George W.; Frank, Zoe; Shine, Richard A.; Title, Alan M.
1992-01-01
A three-hour sequence of observations at the Pic du Midi observatory has been obtained which shows the evolution of solar mesogranules from appearance to disappearance with unprecedented clarity. It is seen that the supergranules, which are known to advect the granules with their convective motion, also advect the mesogranules to their boundaries. This process controls the evolution and disappearance of mesogranules.
An evaluation and intercomparison of four new advection schemes for use in global chemistry models
NASA Astrophysics Data System (ADS)
Petersen, Arthur C.; Spee, Edwin J.; van Dop, Han; Hundsdorfer, Willem
1998-08-01
The need to use a higher spatial resolution and to include more chemical species in global atmospheric chemistry models has led to a demand for efficient advection schemes with high accuracy. We test four newly developed three-dimensional advection schemes named Mol-rg, Split-u, Split-us, and Split-rg. We compare the new schemes with the existing schemes Slopes and Second Moments, both implemented on a uniform grid. Mol-rg and Split-rg make use of a reduced grid. Split-us is an unconditionally stable scheme on a uniform grid. Two tests are performed with all schemes: a solid-body rotation test and a radon transport test. The radon transport test is performed with the off-line global tracer model TM2. The solid-body rotation test shows that none of the new schemes generates undershoot and overshoot and that all of them are mass conservative. Slopes and Second Moments both generate small undershoot and overshoot at all resolutions. The accuracy of the new and old schemes for rotation of a smooth profile is similar for the horizontal resolutions studied. Since the new schemes are slightly more diffusive than the old schemes, they perform worse for rotation of a cone. The radon test shows that the errors related to the numerical schemes are much smaller than other model errors. The main advantage of the new schemes is that they use 75% and 90% less memory than Slopes and Second Moments, respectively. At horizontal resolutions higher than 5° × 5° Split-us and Split-rg are the most efficient of the schemes in terms of cpu time. The new advection schemes are available through Internet.
NASA Astrophysics Data System (ADS)
Arridge, C. S.; André, N.; Bertucci, C. L.; Garnier, P.; Jackman, C. M.; Németh, Z.; Rymer, A. M.; Sergis, N.; Szego, K.; Coates, A. J.; Crary, F. J.
The formation of Titan's induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan's plasma interaction to identify important upstream parameters and review the physics of Saturn's magnetosphere near Titan's orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn's magnetosheath. Statistical work on Titan's upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.
NASA Astrophysics Data System (ADS)
Arridge, C. S.; André, N.; Bertucci, C. L.; Garnier, P.; Jackman, C. M.; Németh, Z.; Rymer, A. M.; Sergis, N.; Szego, K.; Coates, A. J.; Crary, F. J.
2011-12-01
The formation of Titan's induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan's plasma interaction to identify important upstream parameters and review the physics of Saturn's magnetosphere near Titan's orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn's magnetosheath. Statistical work on Titan's upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.
Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics
NASA Technical Reports Server (NTRS)
Wood, William A.
1997-01-01
The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.
Petranto, Joseph J.
1989-01-01
A split gland having only three parts is described. The gland has substantially the same stability to the relative motion of the constituent half-gland members during the attachment process to a female fitting as have more complicated designs. Ease of manufacture and use result from the reduction in complexity of the present invention.
Petranto, J.J.
1989-09-05
A split gland having only three parts is described. The gland has substantially the same stability to the relative motion of the constituent half-gland members during the attachment process to a female fitting as have more complicated designs. Ease of manufacture and use result from the reduction in complexity of the present invention. 15 figs.
Evolution and Advection of Solar Mesogranulation
1992-03-01
unprecedented clarity. We see that the supergranules, which are known to carry along (advect) the granules with their convective motion, also advect...I Solar mesogranulation, Solar observations, Solar super- 2 granulation 16. PRICE COCE 1i7. SECJ-3T LSiIATO 8 EUITY CLASSIFICA ION 19. SECURITY CLAS...mo~iesý sho~ed that granules are adl~ectedl b• Richard Muller*, Hers& Auffret*, Thierry Roudiert, the larger-scale consectie flowss. and thu, could
NASA Astrophysics Data System (ADS)
Zuo, Qunjie; Gao, Shouting; Sun, Xiaogong
2016-08-01
By using ERA-Interim data, the temperature anomaly of the freezing rain and snowstorm event that occurred from 11 to 22 January 2008 in southern China was analyzed. During this period, diabatic heating and temperature advection caused the temperature to increase anomalously over the Tibetan Plateau. The anomalously high temperature moving from the Tibetan Plateau to southern China played several roles. First, the upper-level subtropical jet over China was split into two parts in the north-south direction, which affected the development of freezing rain in southern China; second, a ridge formed because of the warmer air moving to China, which hindered the transport of cold air from its upstream blocking high, forced the cold air to gather behind the ridge, and facilitated the severe cold air outbreak in the later period of the event; third, an inversion layer formed because of the lower-level cold air and upper-level warmer air over southern China, which was conducive to the development of the event over southern China; and finally, because of the temperature anomaly, opposite wind directions appeared at the lower levels (below 700 hPa), which helped transport of warm-moist and cold-dry air to the event area.
Surfzone alongshore advective accelerations: observations and modeling
NASA Astrophysics Data System (ADS)
Hansen, J.; Raubenheimer, B.; Elgar, S.
2014-12-01
The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.
Upstream Swimming in Microbiological Flows.
Mathijssen, Arnold J T M; Shendruk, Tyler N; Yeomans, Julia M; Doostmohammadi, Amin
2016-01-15
Interactions between microorganisms and their complex flowing environments are essential in many biological systems. We develop a model for microswimmer dynamics in non-Newtonian Poiseuille flows. We predict that swimmers in shear-thickening (-thinning) fluids migrate upstream more (less) quickly than in Newtonian fluids and demonstrate that viscoelastic normal stress differences reorient swimmers causing them to migrate upstream at the centerline, in contrast to well-known boundary accumulation in quiescent Newtonian fluids. Based on these observations, we suggest a sorting mechanism to select microbes by swimming speed.
Upstream Swimming in Microbiological Flows
NASA Astrophysics Data System (ADS)
Mathijssen, Arnold J. T. M.; Shendruk, Tyler N.; Yeomans, Julia M.; Doostmohammadi, Amin
2016-01-01
Interactions between microorganisms and their complex flowing environments are essential in many biological systems. We develop a model for microswimmer dynamics in non-Newtonian Poiseuille flows. We predict that swimmers in shear-thickening (-thinning) fluids migrate upstream more (less) quickly than in Newtonian fluids and demonstrate that viscoelastic normal stress differences reorient swimmers causing them to migrate upstream at the centerline, in contrast to well-known boundary accumulation in quiescent Newtonian fluids. Based on these observations, we suggest a sorting mechanism to select microbes by swimming speed.
Diffusion and Advection using Cellular Potts Model
NASA Astrophysics Data System (ADS)
Dan, Debasis; Glazier, James
2005-03-01
The Cellular Potts Model (CPM) is a robust cell level methodology for simulation of biological tissues and morphogenesis. Standard diffusion solvers in the CPM use finite difference methods on the underlying CPM lattice. These methods have difficulty in simulating local advection in the ECM due to physiology and morphogenesis. To circumvent the problem of instabilities we simulate advection-diffusion within the framework of CPM using off-lattice finite-difference methods. We define a set of generalised fluid "cells" or particles which separate advection and diffusion from the lattice. Diffusion occurs between neighboring fluid cells by local averaging rules which approximate the Laplacian. CPM movement of the cells by spin flips handles the advection. The extension allows the CPM to model viscosity explicitly by including a relative velocity constraint on the fluid. The extended CPM correctly reproduces flow profiles of viscous fluids in cylindrical tube, during Stokes flow across a sphere and in flow in concentric cylindrical shells. We illustrate various conditions for diffusion including multiple instantaneous sources, continuous sources, moving sources and different boundary geometries and conditions to validate our approximation by comparing with analytical and established numerical solutions.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
NASA Technical Reports Server (NTRS)
Prather, M. J.
1986-01-01
A new, accurate, and nondiffusive method for three-dimensional advection of trace species is presented. The method preserves tracer structures by conserving the second-order moments of the spatial distribution of tracer during advection. Upstream transport and second-order tracer distribution are described, and the moments of the tracer distribution about the center of a grid box are formally defined and related to the polynomial distribution. Formulas are presented which describe how the moments of a grid box are decomposed into a unique set of moments centered about each subbox and how they are reassembled into new grid boxes. A one-dimensional example if tracer transport is given, and limits necessary to maintain positive tracer concentrations are derived. The accuracy and stability of this method are analytically examined, and numerical experiments testing the effective resolution are presented. The method is compared with other methods for numerical advection of tracers.
Upstream regulation of mycotoxin biosynthesis.
Alkhayyat, Fahad; Yu, Jae-Hyuk
2014-01-01
Mycotoxins are natural contaminants of food and feed products, posing a substantial health risk to humans and animals throughout the world. A plethora of filamentous fungi has been identified as mycotoxin producers and most of these fungal species belong to the genera Aspergillus, Fusarium, and Penicillium. A number of studies have been conducted to better understand the molecular mechanisms of biosynthesis of key mycotoxins and the regulatory cascades controlling toxigenesis. In many cases, the mycotoxin biosynthetic genes are clustered and regulated by one or more pathway-specific transcription factor(s). In addition, as biosynthesis of many secondary metabolites is coordinated with fungal growth and development, there are a number of upstream regulators affecting biosynthesis of mycotoxins in fungi. This review presents a concise summary of the regulation of mycotoxin biosynthesis, focusing on the roles of the upstream regulatory elements governing biosynthesis of aflatoxin and sterigmatocystin in Aspergillus.
Capillary deposition of advected floating particles
NASA Astrophysics Data System (ADS)
Dressaire, Emilie; Debaisieux, Aymeric; Gregori, Federico
2016-11-01
The deposition and aggregation of particles flowing through a confined environment can dramatically hinder the transport of suspensions. Yet, the mechanisms responsible for the deposition of particles in shear flow are not fully understood. Here, we use an experimental model system in which floating particles are advected on the surface of a water channel and deposited on fixed obstacles through attractive capillary effects. By varying the flow rate of the liquid, the wetting properties and size of the particles and obstacles, we can tune the magnitude of the capillary and hydrodynamic forces that determine the probability of deposition and the equilibrium position on the substrate. We show that arrays of obstacles can be designed to efficiently capture the floating particles advected by the flow.
Population persistence under advection-diffusion in river networks.
Ramirez, Jorge M
2012-11-01
An integro-differential equation on a tree graph is used to model the time evolution and spatial distribution of a population of organisms in a river network. Individual organisms become mobile at a constant rate, and disperse according to an advection-diffusion process with coefficients that are constant on the edges of the graph. Appropriate boundary conditions are imposed at the outlet and upstream nodes of the river network. The local rates of population growth/decay and that by which the organisms become mobile, are assumed constant in time and space. Imminent extinction of the population is understood as the situation whereby the zero solution to the integro-differential equation is stable. Lower and upper bounds for the eigenvalues of the dispersion operator, and related Sturm-Liouville problems are found. The analysis yields sufficient conditions for imminent extinction and/or persistence in terms of the values of water velocity, channel length, cross-sectional area and diffusivity throughout the river network.
MAST solution of advection problems in irrotational flow fields
NASA Astrophysics Data System (ADS)
Aricò, Costanza; Tucciarelli, Tullio
2007-03-01
A new numerical-analytical Eulerian procedure is proposed for the solution of convection-dominated problems in the case of existing scalar potential of the flow field. The methodology is based on the conservation inside each computational elements of the 0th and 1st order effective spatial moments of the advected variable. This leads to a set of small ODE systems solved sequentially, one element after the other over all the computational domain, according to a MArching in Space and Time technique. The proposed procedure shows the following advantages: (1) it guarantees the local and global mass balance; (2) it is unconditionally stable with respect to the Courant number, (3) the solution in each cell needs information only from the upstream cells and does not require wider and wider stencils as in most of the recently proposed higher-order methods; (4) it provides a monotone solution. Several 1D and 2D numerical test have been performed and results have been compared with analytical solutions, as well as with results provided by other recent numerical methods.
Distributed Parallel Particle Advection using Work Requesting
Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph
2013-09-30
Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.
High Order Semi-Lagrangian Advection Scheme
NASA Astrophysics Data System (ADS)
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
Efficient mass transport by optical advection
Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide
2015-01-01
Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms. PMID:26440069
A computational method for sharp interface advection
Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619
Striated populations in disordered environments with advection
NASA Astrophysics Data System (ADS)
Chotibut, Thiparat; Nelson, David R.; Succi, Sauro
2017-01-01
Growth in static and controlled environments such as a Petri dish can be used to study the spatial population dynamics of microorganisms. However, natural populations such as marine microbes experience fluid advection and often grow up in heterogeneous environments. We investigate a generalized Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation describing single species population subject to a constant flow field and quenched random spatially inhomogeneous growth rates with a fertile overall growth condition. We analytically and numerically demonstrate that the non-equilibrium steady-state population density develops a flow-driven striation pattern. The striations are highly asymmetric with a longitudinal correlation length that diverges linearly with the flow speed and a transverse correlation length that approaches a finite velocity-independent value. Linear response theory is developed to study the statistics of the steady states. Theoretical predictions show excellent agreement with the numerical steady states of the generalized FKPP equation obtained from Lattice Boltzmann simulations. These findings suggest that, although the growth disorder can be spatially uncorrelated, correlated population structures with striations emerge naturally at sufficiently strong advection.
Waves, advection, and cloud patterns on Venus
NASA Technical Reports Server (NTRS)
Schinder, Paul J.; Gierasch, Peter J.; Leroy, Stephen S.; Smith, Michael D.
1990-01-01
The stable layers adjacent to the nearly neutral layer within the Venus clouds are found to be capable of supporting vertically trapped, horizontally propagating waves with horizontal wavelengths of about 10 km and speeds of a few meters per second relative to the mean wind in the neutral layer. These waves may possibly be excited by turbulence within the neutral layer. Here, the properties of the waves, and the patterns which they might produce within the visible clouds if excited near the subsolar point are examined. The patterns can be in agreement with many features in images. The waves are capable of transferring momentum latitudinally to help maintain the general atmospheric spin, but at present we are not able to evaluate wave amplitudes. We also examine an alternative possibility that the cloud patterns are produced by advection and shearing by the mean zonal and meridional flow of blobs formed near the equator. It is concluded that advection and shearing by the mean flow is the most likely explanation for the general pattern of small scale striations.
Parallel algorithms for semi-lagrangian advection
NASA Astrophysics Data System (ADS)
Malevsky, A. V.; Thomas, S. J.
1997-08-01
Numerical time step limitations associated with the explicit treatment of advection-dominated problems in computational fluid dynamics are often relaxed by employing Eulerian-Lagrangian methods. These are also known as semi-Lagrangian methods in the atmospheric sciences. Such methods involve backward time integration of a characteristic equation to find the departure point of a fluid particle arriving at a Eulerian grid point. The value of the advected field at the departure point is obtained by interpolation. Both the trajectory integration and repeated interpolation influence accuracy. We compare the accuracy and performance of interpolation schemes based on piecewise cubic polynomials and cubic B-splines in the context of a distributed memory, parallel computing environment. The computational cost and interprocessor communication requirements for both methods are reported. Spline interpolation has better conservation properties but requires the solution of a global linear system, initially appearing to hinder a distributed memory implementation. The proposed parallel algorithm for multidimensional spline interpolation has almost the same communication overhead as local piecewise polynomial interpolation. We also compare various techniques for tracking trajectories given different values for the Courant number. Large Courant numbers require a high-order ODE solver involving multiple interpolations of the velocity field.
Advection-Dominant MHD Computation for External Kinks and Edge-Localized Modes
NASA Astrophysics Data System (ADS)
Sovinec, C. R.
2016-10-01
Separation of temporal and spatial scales is the primary consideration for computation of macroscopic dynamics in magnetically confined plasma. Dynamic shock capturing is not needed, but nonlinear external kinks and ELMs advect large gradients near the plasma surface. Using an implicit time-advance with Galerkin projection can be problematic in these applications when advection is stronger than dissipation on the spatial scale of the mesh. The applied math community has investigated many approaches to stabilizing numerical advection. One approach is the least-squares finite element method, which has previously been applied to MHD and plasma-fluid models. Here, we adapt this technique for MHD computation with the NIMROD code, starting with the scalar dependent fields that need to have definite sign: density and temperature. Time-splitting physical diffusion maintains the original size of the algebraic systems that are solved at each time-step. Upwinding explicit terms where derivatives are discontinuous avoids overshoot error while minimizing numerical dissipation. Work supported by U.S. DOE Grant DE-FC02-08ER54975.
BUOYANT ADVECTION OF GASES IN UNSATURATED SOIL
Seely, Gregory E.; Falta, Ronald W.; Hunt, James R.
2010-01-01
In unsaturated soil, methane and volatile organic compounds can significantly alter the density of soil gas and induce buoyant gas flow. A series of laboratory experiments was conducted in a two-dimensional, homogeneous sand pack with gas permeabilities ranging from 110 to 3,000 darcy. Pure methane gas was injected horizontally into the sand and steady-state methane profiles were measured. Experimental results are in close agreement with a numerical model that represents the advective and diffusive components of methane transport. Comparison of simulations with and without gravitational acceleration permits identification of conditions where buoyancy dominates methane transport. Significant buoyant flow requires a Rayleigh number greater than 10 and an injected gas velocity sufficient to overcome dilution by molecular diffusion near the source. These criteria allow the extension of laboratory results to idealized field conditions for methane as well as denser-than-air vapors produced by volatilizing nonaqueous phase liquids trapped in unsaturated soil. PMID:20396624
Howell, deceased, Louis J.
1980-01-01
Thermoelectric generator assembly accommodating differential thermal expansion between thermoelectric elements by means of a cylindrical split follower forming a slot and having internal spring loaded wedges that permit the split follower to open and close across the slot.
Exploring various flux vector splittings for the magnetohydrodynamic system
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Montecinos, Gino I.; Toro, Eleuterio F.
2016-04-01
In this paper we explore flux vector splittings for the MHD system of equations. Our approach follows the strategy that was initially put forward in Toro and Vázquez-Cendón (2012) [55]. We split the flux vector into an advected sub-system and a pressure sub-system. The eigenvalues and eigenvectors of the split sub-systems are then studied for physical suitability. Not all flux vector splittings for MHD yield physically meaningful results. We find one that is completely useless, another that is only marginally useful and one that should work well in all regimes where the MHD equations are used. Unfortunately, this successful flux vector splitting turns out to be different from the Zha-Bilgen flux vector splitting. The eigenvalues and eigenvectors of this favorable FVS are explored in great detail in this paper. The pressure sub-system holds the key to finding a successful flux vector splitting. The eigenstructure of the successful flux vector splitting for MHD is thoroughly explored and orthonormalized left and right eigenvectors are explicitly catalogued. We present a novel approach to the solution of the Riemann problem formed by the pressure sub-system for the MHD equations. Once the pressure sub-system is solved, the advection sub-system follows naturally. Our method also works very well for the Euler system. Our FVS successfully captures isolated, stationary contact discontinuities in MHD. However, we explain why any FVS for MHD is not adept at capturing isolated, stationary Alfvenic discontinuities. Several stringent one-dimensional Riemann problems are presented to show that the method works successfully and can effectively capture the full panoply of wave structures that arise in MHD. This includes compound waves and switch-on and switch-off shocks that arise because of the non-convex nature of the MHD system.
19 CFR 351.523 - Upstream subsidies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DUTIES Identification and Measurement of Countervailable Subsidies § 351.523 Upstream subsidies. (a... countervailable subsidy rate on the input product, multiplied by the proportion of the total production costs of...—(1) Presumptions. In evaluating whether an upstream subsidy has a significant effect on the cost...
Upstream Waves and Particles at the Moon
NASA Astrophysics Data System (ADS)
Harada, Y.; Halekas, J. S.
2016-02-01
This chapter presents an up-to-date catalog of Moon-related particle populations and lunar upstream waves obtained from in situ measurements at low (<˜100 km) and high altitudes, aimed at organizing and clarifying the currently available information on this complex region, where multiple categories of waves and particles coexist. It then briefly outlines the observed properties of a variety of classes of lunar upstream waves, as well as their generation mechanisms currently proposed, in association with the lunar upstream particle distributions. The lunar upstream region magnetically connected to the Moon and its wake, the fore-moon, represents a remarkably rich zoo of different classes of waves and different types of particles. Although recent observations have substantially enhanced our knowledge by revealing a number of new categories of upstream particles and waves at the Moon, many fundamental questions remain unanswered, and these are outlined in the chapter.
Advection, diffusion, and delivery over a network.
Heaton, Luke L M; López, Eduardo; Maini, Philip K; Fricker, Mark D; Jones, Nick S
2012-08-01
Many biological, geophysical, and technological systems involve the transport of a resource over a network. In this paper, we present an efficient method for calculating the exact quantity of the resource in each part of an arbitrary network, where the resource is lost or delivered out of the network at a given rate, while being subject to advection and diffusion. The key conceptual step is to partition the resource into material that does or does not reach a node over a given time step. As an example application, we consider resource allocation within fungal networks, and analyze the spatial distribution of the resource that emerges as such networks grow over time. Fungal growth involves the expansion of fluid filled vessels, and such growth necessarily involves the movement of fluid. We develop a model of delivery in growing fungal networks, and find good empirical agreement between our model and experimental data gathered using radio-labeled tracers. Our results lead us to suggest that in foraging fungi, growth-induced mass flow is sufficient to account for long-distance transport, if the system is well insulated. We conclude that active transport mechanisms may only be required at the very end of the transport pathway, near the growing tips.
Solution of the advection-dispersion equation: Continuous load of finite duration
Runkel, R.L.
1996-01-01
Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.
Designing for chaos: applications of chaotic advection at the microscale.
Stremler, Mark A; Haselton, F R; Aref, Hassan
2004-05-15
Chaotic advection can play an important role in efficient microfluidic mixers. We discuss a design paradigm that exploits chaotic advection and illustrate by two recent examples, namely enhancing gene expression profiling and constructing an in-line microfluidic mixing channel, how application of this paradigm has led to successful micromixers. We suggest that 'designing for chaos', that is, basing practical mixer design on chaotic advection analysis, is a promising approach to adopt in this developing field which otherwise has little to guide it and is constrained by issues of scale and manufacturability.
Anomalous scaling of a scalar field advected by turbulence
Kraichnan, R.H.
1995-12-31
Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.
Overcoming diffusion-limited processes using enhanced advective fields
Rasmussen, T.C.
1995-12-31
Many subsurface cleanup activities focus on the remediation of organic contaminants using induced advective fields. Subsurface heterogeneities cause most advective transport to occur in more permeable zones, with transport from the lower permeability units being limited by diffusion to the higher permeable units. While diffusion rates can be enhanced using thermal sources, many of the treatment strategies, including pump and treat, vapor extraction and bioremediation, are limited by mass exchange rates between the higher and lower permeability sand and clay mixtures. Instead of relying on the enhancement of diffusion rates, it is proposed that remediation strategies should focus on the enhancement of induced advective transport rates through the lower permeability units. Injection-extraction strategies using crosshole and huff-and-puff methods are presented for maximizing advective transport through lower permeability units. Optimization of the design can incorporate diffusion-enhancement technologies, bionourishment, capillary confinement in the unsaturated zone, and DNAPL slurping.
Damping and spectral formation of upstream whistlers
Orlowski, D.S.; Russell, C.T.; Krauss-Varban, D.
1995-09-01
Previous studies have indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler shift and the whistler dispersion relation indicate that upstream whistlers propagate obliquely in a finite band of frequencies. In this paper we present results of a kinetic calculation of damping lengths of wideband whistlers using the sum of seven drifting bi-Maxwellian electron distributions as a best fit to the ISEE 1 electron data. For two cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra, is between 5 and 7. The overall spectral, wave, and particle characteristics, proximity to the shock, as well as propagation and damping properties indicated that these waves cannot be generated locally. Instead, the observed upstream whistlers arise in the shock ramp, most likely by a variety of cross-field drift and/or anisotropy driven instabilities. 57 refs., 11 figs.
Multi-dimensional upwind fluctuation splitting scheme with mesh adaption for hypersonic viscous flow
NASA Astrophysics Data System (ADS)
Wood, William Alfred, III
A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. The scalar test cases include advected shear, circular advection, non-linear advection with coalescing shock and expansion fans, and advection-diffusion. For all scalar cases the fluctuation splitting scheme is more accurate, and the primary mechanism for the improved fluctuation splitting performance is shown to be the reduced production of artificial dissipation relative to DMFDSFV. The most significant scalar result is for combined advection-diffusion, where the present fluctuation splitting scheme is able to resolve the physical dissipation from the artificial dissipation on a much coarser mesh than DMFDSFV is able to, allowing order-of-magnitude reductions in solution time. Among the inviscid test cases the converging supersonic streams problem is notable in that the fluctuation splitting scheme exhibits superconvergent third-order spatial accuracy. For the inviscid cases of a supersonic diamond airfoil, supersonic slender cone, and incompressible circular bump the fluctuation splitting drag coefficient errors are typically half the DMFDSFV drag errors. However, for the incompressible inviscid sphere the fluctuation splitting drag error is larger than for DMFDSFV. A Blasius flat plate viscous validation case reveals a more accurate v-velocity profile for fluctuation splitting, and the reduced artificial dissipation
Constraints upon water advection in sediments of the Mariana Trough
Abbott, D.H.; Menke, W.; Morin, R.
1983-02-10
Thermal gradient measurements, consolidation tests, and pore water compositions from the Mariana Trough imply that water is moving through the sediments in areas with less than about 100 m of sediment cover. The maximum advection rates implied by the thermal measurements and consolidation tests may be as high as 10/sup -5/ cm s/sup -1/ but are most commonly in the range of 1 to 5 x 10/sup -6/ cm s/sup -1/. Theoretical calculations of the effect of the highest advection rates upon carbonate dissolution indicate that dissolution may be impeded or enhanced (depending upon the direction of flow) by a factor of 2 to 5 times the rate for diffusion alone. The average percentage of carbonate is consistently higher in two cores from the area with no advection or upward advection than the average percentage of carbonate in three cores from the area with downward advection. This increase in average amount of carbonate in cores with upward moving water or no movement cannot be attributed solely to differences in water depth or in amount of terrigenous dilution. If the sediment column acts as a passive boundary layer, then the water velocities necessary to affect chemical gradients of silica are in the range 10/sup -9/ to 10/sup -10/ cm s/sup -1/. However, if dissolution of silica occurs within the sediment column, then the advection velocities needed to affect chemical gradients are at least 3 x 10/sup -8/ cm s/sup -1/ and may be as high as 3 x 10/sup -6/ cm s/sup -1/. This order of magnitude increase in advection velocities when chemical reactions occur within the sediments is probably applicable to other cations in addition to silica. If so, then the advection velocities needed to affect heat flow (>10/sup -8/ cm s/sup -1/) and pore water chemical gradients are much nearer in magnitude than previously assumed.
Stuerner, Elisabeth; Kuraku, Shigehiro; Hochstrasser, Mark; Kreft, Stefan G
2012-01-01
Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs), but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS). A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH) and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.
On the error propagation of semi-Lagrange and Fourier methods for advection problems.
Einkemmer, Lukas; Ostermann, Alexander
2015-02-01
In this paper we study the error propagation of numerical schemes for the advection equation in the case where high precision is desired. The numerical methods considered are based on the fast Fourier transform, polynomial interpolation (semi-Lagrangian methods using a Lagrange or spline interpolation), and a discontinuous Galerkin semi-Lagrangian approach (which is conservative and has to store more than a single value per cell). We demonstrate, by carrying out numerical experiments, that the worst case error estimates given in the literature provide a good explanation for the error propagation of the interpolation-based semi-Lagrangian methods. For the discontinuous Galerkin semi-Lagrangian method, however, we find that the characteristic property of semi-Lagrangian error estimates (namely the fact that the error increases proportionally to the number of time steps) is not observed. We provide an explanation for this behavior and conduct numerical simulations that corroborate the different qualitative features of the error in the two respective types of semi-Lagrangian methods. The method based on the fast Fourier transform is exact but, due to round-off errors, susceptible to a linear increase of the error in the number of time steps. We show how to modify the Cooley-Tukey algorithm in order to obtain an error growth that is proportional to the square root of the number of time steps. Finally, we show, for a simple model, that our conclusions hold true if the advection solver is used as part of a splitting scheme.
NASA Astrophysics Data System (ADS)
Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David
2016-01-01
A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.
NASA Technical Reports Server (NTRS)
Klein, J. A.; Murray, C. D.; Stein, J. A.
1971-01-01
Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.
NASA Technical Reports Server (NTRS)
Stapleton, Thomas J. (Inventor)
2015-01-01
A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.
NASA Astrophysics Data System (ADS)
Lueptow, Richard M.; Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.
2013-11-01
We investigate chaotic advection and diffusion in competitive autocatalytic reactions. To study this subject, we use a computationally efficient method for solving advection-reaction-diffusion equations for periodic flows using a mapping method with operator splitting. In competitive autocatalytic reactions, there are two species, B and C, which both react autocatalytically with species A (A +B -->2B and A +C -->2C). If there is initially a small amount of spatially localized B and C and a large amount of A, all three species will be advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that the small scale interactions associated with the chaotic velocity field, specifically the local finite-time Lyapunov exponents (FTLEs), can accurately predict the final average concentrations of B and C after the reaction is complete. The species, B or C, that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If species B and C start in regions having similar FTLEs, their average concentrations at the end of the reaction will also be similar. Funded by NSF Grant CMMI-1000469.
Advecting Procedural Textures for 2D Flow Animation
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
Concentration polarization, surface currents, and bulk advection in a microchannel
NASA Astrophysics Data System (ADS)
Nielsen, Christoffer P.; Bruus, Henrik
2014-10-01
We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction.
NASA Astrophysics Data System (ADS)
Ricci, S.; Piacentini, A.; Thual, O.; Le Pape, E.; Jonville, G.
2010-11-01
The present study describes the assimilation of river water level observations and the resulting improvement of the river flood forecast. The BLUE algorithm was built on top of the one-dimensional hydraulics model MASCARET. The assimilation algorithm folds in two steps: the first one is based on the assumption that the upstream flow can be adjusted using a three-parameter correction, the second one consists in directly correcting the hydraulic state. This procedure is applied on a four-day sliding window over the whole flood event. The background error covariances for water level and discharge are represented with asymmetric correlation functions where the upstream correlation length is bigger than the downstream correlation length. This approach is motivated by the implementation of a Kalman Filter algorithm on top of an advection-diffusion toy model. The assimilation study with MASCARET is carried out on the Adour and the Marne Vallage (France) catchments. The correction of the upstream flow as well as the control of the hydraulic state along the flood event leads to a significant improvement of the water level and discharge in analysis and forecast modes.
Optimal Stretching in Advection-Reaction-Diffusion Systems
NASA Astrophysics Data System (ADS)
Nevins, Thomas D.; Kelley, Douglas H.
2016-10-01
We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted by the same optimal range of the local advective stretching, but stronger stretching causes reaction blowout and can hinder reaction from spreading. We hypothesize that optimal stretching and blowout occur in many advection-diffusion-reaction systems, perhaps creating ecological niches for phytoplankton in the ocean.
Optimal Stretching in Advection-Reaction-Diffusion Systems.
Nevins, Thomas D; Kelley, Douglas H
2016-10-14
We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted by the same optimal range of the local advective stretching, but stronger stretching causes reaction blowout and can hinder reaction from spreading. We hypothesize that optimal stretching and blowout occur in many advection-diffusion-reaction systems, perhaps creating ecological niches for phytoplankton in the ocean.
Jet Magnetically Accelerated from Advection Dominated Accretion Flow
NASA Astrophysics Data System (ADS)
Gong, Xiao-Long; Jiang, Zhi-Xiong
2014-08-01
A jet model for the jet power arising from a steady, optically thin, advection dominated accretion flow (ADAF) around a Kerr black hole (BH) is proposed. We investigate the typical numerical solutions of ADAF, and calculate the jet power from an ADAF using a general relativistic version of electronic circuit theory. It is shown that the jet power concentrates in the inner region of the accretion flow, and the higher the degree to which the flow advection-dominated is, the lower the jet power from the ADAF is.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A split spline screw type payload fastener assembly, including three identical male and female type split spline sections, is discussed. The male spline sections are formed on the head of a male type spline driver. Each of the split male type spline sections has an outwardly projecting load baring segment including a convex upper surface which is adapted to engage a complementary concave surface of a female spline receptor in the form of a hollow bolt head. Additionally, the male spline section also includes a horizontal spline releasing segment and a spline tightening segment below each load bearing segment. The spline tightening segment consists of a vertical web of constant thickness. The web has at least one flat vertical wall surface which is designed to contact a generally flat vertically extending wall surface tab of the bolt head. Mutual interlocking and unlocking of the male and female splines results upon clockwise and counter clockwise turning of the driver element.
Invasions in heterogeneous habitats in the presence of advection.
Vergni, Davide; Iannaccone, Sandro; Berti, Stefano; Cencini, Massimo
2012-05-21
We investigate invasions from a biological reservoir to an initially empty, heterogeneous habitat in the presence of advection. The habitat consists of a periodic alternation of favorable and unfavorable patches. In the latter the population dies at fixed rate. In the former it grows either with the logistic or with an Allee effect type dynamics, where the population has to overcome a threshold to grow. We study the conditions for successful invasions and the speed of the invasion process, which is numerically and analytically investigated in several limits. Generically advection enhances the downstream invasion speed but decreases the population size of the invading species, and can even inhibit the invasion process. Remarkably, however, the rate of population increase, which quantifies the invasion efficiency, is maximized by an optimal advection velocity. In models with Allee effect, differently from the logistic case, above a critical unfavorable patch size the population localizes in a favorable patch, being unable to invade the habitat. However, we show that advection, when intense enough, may activate the invasion process.
Theory of advection-driven long range biotic transport
Technology Transfer Automated Retrieval System (TEKTRAN)
We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...
Black Hole Advective Accretion Disks with Optical Depth Transition
Artemove, Y.V.; Bisnovatyi-Kogan, G.S.; Igumenshchev, I.V.; Novikov, I.D.
2006-02-01
We have constructed numerically global solutions of advective accretion disks around black holes that describe a continuous transition between the effectively optically thick outer and optically thin inner disk regions. We have concentrated on models of accretion flows with large mass accretion rates, and we have employed a bridging formula for radiative losses at high and low effective optical depths.
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a stablized Zeeman split laser for use in a polarization profilometer is discussed. A Hewlett-Packard laser was modified to stabilize the Zeeman split beat frequency thereby increasing the phase measurement accuracy from the Hewlett-Packard 3 degrees to an accuracy of .01 degrees. The addition of a two layered inductive winding converts the laser to a current controlled oscillator whose frequency is linearly related to coil current. This linear relationship between coil current and laser frequency permits phase locking the laser frequency to a stable crystal controlled reference frequency. The stability of the system is examined and the equipment operation procedures are outlined.
NASA Astrophysics Data System (ADS)
Sawada, Hiroyuki
Recently, engineering design environment of Japan is changing variously. Manufacturing companies are being challenged to design and bring out products that meet the diverse demands of customers and are competitive against those produced by rising countries(1). In order to keep and strengthen the competitiveness of Japanese companies, it is necessary to create new added values as well as conventional ones. It is well known that design at the early stages has a great influence on the final design solution. Therefore, design support tools for the upstream design is necessary for creating new added values. We have established a research society for 1D-CAE (1 Dimensional Computer Aided Engineering)(2), which is a general term for idea, methodology and tools applicable for the upstream design support, and discuss the concept and definition of 1D-CAE. This paper reports our discussion about 1D-CAE.
Admissible upstream conditions for slender compressible vortices
NASA Technical Reports Server (NTRS)
Liu, C. H.; Krause, E.; Menne, S.
1986-01-01
The influence of the compressibility on the flow in slender vortices is being studied. The dependence of the breakdown of the slender-vortex approximation on the upstream conditions is demonstrated for various Reynolds numbers and Mach numbers. Compatibility conditions, which have to be satisfied if the vortex is to remain slender, are discussed in detail. The general discussions are supplemented by several sample calculations.
Advective velocity and energy dissipation rate in an oscillatory flow.
Haider, Ziaul; Hondzo, Miki; Porte-Agel, Fernando
2005-07-01
Characterizing the transport processes at the sediment-water interface along sloping boundaries in lakes and reservoirs is of fundamental interest in lake and reservoir water quality management. The turbulent bottom boundary layer (TBBL) along a slope, induced by the breaking of internal waves in a linearly stratified fluid, was investigated through laboratory measurements. Fast response micro-scale conductivity and temperature probes in conjunction with laser-Doppler velocimetry were used to measure the time series of salinity, temperature, and velocity along a sloping boundary. Turbulent energy spectra were computed from the velocity data using a time-dependent advective velocity and Taylor's hypothesis. The energy spectra were used to estimate the energy dissipation rate at different positions in the TBBL. The advective velocity in this near-zero mean shear flow is based on an integral time scale (T(int)). The integral time scale is related to the average frequency of the spectral energy density of the flow velocity. The energy dissipation rate estimated from the variable advective velocity with an averaging time window equal to the integral time scale (T=T(int)) was 43% higher than the energy dissipation rate estimated from a constant advective velocity. The estimated dissipation rates with T=T(int) were comparable to values obtained by curve-fitting a theoretical Batchelor spectrum for the temperature gradient spectra. This study proposes the integral time scale to be used for the oscillatory flows as (a) a time-averaging window to estimate the advective velocity and associated energy dissipation level, and (b) a normalizing parameter in the energy spectrum.
Persistence of cluster synchronization under the influence of advection.
Guirey, Emma; Bees, Martin; Martin, Adrian; Srokosz, Meric
2010-05-01
We present a study on the emergence of spatial structure in plankton dynamics under the influence of stirring and mixing. A distribution of plankton is represented as a lattice of nonidentical, interacting, oscillatory plankton populations. Each population evolves according to (i) the internal biological dynamics represented by an NPZ model with population-specific phytoplankton growth rate, (ii) sub-grid-cell stirring and mixing parameterized by a nearest-neighbor coupling, and (iii) explicit advection resulting from a constant horizontal shear. Using the methods of synchronization theory, the emergent spatial structure of the simulation is investigated as a function of the coupling strength and rate of advection. Previous work using similar methods has neglected the effects of explicit stirring (i.e., at scales larger than the grid cell), leaving as an open question the relevance of the work to real marine systems. Here, we show that persistent spatial structure emerges for a range of coupling strengths for all realistic levels of surface ocean shear. Spatially, this corresponds to the formation of temporally evolving clusters of local synchronization. Increasing shear alters the spatial characteristics of this clustering by stretching and narrowing patches of synchronized dynamics. These patches are not stretched into stripes of synchronized abundance aligned with the flow, as may be expected, but instead lie at an angle to the flow. This study shows that advection does not diminish the relevance of conclusions from previous studies of spatial structure in plankton simulations. In fact, the inclusion of advection adds characteristic filamental structure, as observed in real-world plankton distributions. The results also show that the ability of coupled oscillators to synchronize depends strongly on the spatial arrangement of oscillator natural frequencies; under the influence of advection, therefore, the impact of the coupling strength on the emergent spatial
Splitting of asphaltene species
Galimov, R.A.; Yusupova, T.N.; Abushaeva, V.V.
1994-05-10
The extent of splitting of asphaltene species under the action of solvents correlates with their nature, and primarily with their electron- and proton-donor properties. According to the data of thermal analysis asphaltene species being retained after the action of solvents differ in the weight ratio of peripheral substituents to condensed part and in the fraction of labile bonds. 12 refs., 4 tabs.
Veligdan, James T.
2005-05-31
A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.
Veligdan, James T.
2007-05-29
A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.
ERIC Educational Resources Information Center
Wilkins, Jesse L. M.; Norton, Anderson
2011-01-01
Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…
ERIC Educational Resources Information Center
Roberson, Kelly
1997-01-01
Presents photographs and the floor plan of a middle school whose split-level design separates "noisy" areas, such as the band room and gymnasium, from the academic wing. The design encourages teaming and flexibility through its classroom clustering and mobile partitions between classrooms. Additionally, all classrooms possess windows and…
ERIC Educational Resources Information Center
Norton, Anderson; Wilkins, Jesse L. M.
2012-01-01
Piagetian theory describes mathematical development as the construction and organization of mental operations within psychological structures. Research on student learning has identified the vital roles of two particular operations--splitting and units coordination--play in students' development of advanced fractions knowledge. Whereas Steffe and…
On the error propagation of semi-Lagrange and Fourier methods for advection problems☆
Einkemmer, Lukas; Ostermann, Alexander
2015-01-01
In this paper we study the error propagation of numerical schemes for the advection equation in the case where high precision is desired. The numerical methods considered are based on the fast Fourier transform, polynomial interpolation (semi-Lagrangian methods using a Lagrange or spline interpolation), and a discontinuous Galerkin semi-Lagrangian approach (which is conservative and has to store more than a single value per cell). We demonstrate, by carrying out numerical experiments, that the worst case error estimates given in the literature provide a good explanation for the error propagation of the interpolation-based semi-Lagrangian methods. For the discontinuous Galerkin semi-Lagrangian method, however, we find that the characteristic property of semi-Lagrangian error estimates (namely the fact that the error increases proportionally to the number of time steps) is not observed. We provide an explanation for this behavior and conduct numerical simulations that corroborate the different qualitative features of the error in the two respective types of semi-Lagrangian methods. The method based on the fast Fourier transform is exact but, due to round-off errors, susceptible to a linear increase of the error in the number of time steps. We show how to modify the Cooley–Tukey algorithm in order to obtain an error growth that is proportional to the square root of the number of time steps. Finally, we show, for a simple model, that our conclusions hold true if the advection solver is used as part of a splitting scheme. PMID:25844018
Upstream waves at Mars: Phobos observations
Russell, C.T.; Luhmann, J.G. ); Schwingenschuh, K.; Riedler, W. ); Yeroshenko, Ye. )
1990-05-01
The region upstream from the Mars subsolar bow shock is surveyed for the presence of MHD wave phenomena using the high temporal resolution data from the MAGMA magnetometer. Strong turbulence is observed when the magnetic field is connected to the Mars bow shock in such a way as to allow diffuse ions to reach the spacecraft. On 2 occasions this turbulence occurred upon crossing the Phobos orbit. Also weak, {minus}0.15 nT, waves are observed at the proton gyro frequency. These waves are left-hand elliptically polarized and may be associated with the pick-up of protons from the Mars hydrogen exosphere.
Phase Segregation of Passive Advective Particles in an Active Medium
NASA Astrophysics Data System (ADS)
Das, Amit; Polley, Anirban; Rao, Madan
2016-02-01
Localized contractile configurations or asters spontaneously appear and disappear as emergent structures in the collective stochastic dynamics of active polar actomyosin filaments. Passive particles which (un)bind to the active filaments get advected into the asters, forming transient clusters. We study the phase segregation of such passive advective scalars in a medium of dynamic asters, as a function of the aster density and the ratio of the rates of aster remodeling to particle diffusion. The dynamics of coarsening shows a violation of Porod behavior; the growing domains have diffuse interfaces and low interfacial tension. The phase-segregated steady state shows strong macroscopic fluctuations characterized by multiscaling and intermittency, signifying rapid reorganization of macroscopic structures. We expect these unique nonequilibrium features to manifest in the actin-dependent molecular clustering at the cell surface.
Chaotic Advection in a Bounded 3-Dimensional Potential Flow
NASA Astrophysics Data System (ADS)
Metcalfe, Guy; Smith, Lachlan; Lester, Daniel
2012-11-01
3-dimensional potential, or Darcy flows, are central to understanding and designing laminar transport in porous media; however, chaotic advection in 3-dimensional, volume-preserving flows is still not well understood. We show results of advecting passive scalars in a transient 3-dimensional potential flow that consists of a steady dipole flow and periodic reorientation. Even for the most symmetric reorientation protocol, neither of the two invarients of the motion are conserved; however, one invarient is closely shadowed by a surface of revolution constructed from particle paths of the steady flow, creating in practice an adiabatic surface. A consequence is that chaotic regions cover 3-dimensional space, though tubular regular regions are still transport barriers. This appears to be a new mechanism generating 3-dimensional chaotic orbits. These results contast with the experimental and theoretical results for chaotic scalar transport in 2-dimensional Darcy flows. Wiggins, J. Fluid Mech. 654 (2010).
Aerosol particles and the formation of advection fog
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.
1979-01-01
A study of numerical simulation of the effects of concentration, particle size, mass of nuclei, and chemical composition on the dynamics of warm fog formation, particularly the formation of advection fog, is presented. This formation is associated with the aerosol particle characteristics, and both macrophysical and microphysical processes are considered. In the macrophysical model, the evolution of wind components, water vapor content, liquid water content, and potential temperature under the influences of vertical turbulent diffusion, turbulent momentum, and turbulent energy transfers are taken into account. In the microphysical model, the supersaturation effect is incorporated with the surface tension and hygroscopic material solution. It is shown that the aerosol particles with the higher number density, larger size nuclei, the heavier nuclei mass, and the higher ratio of the Van't Hoff factor to the molecular weight favor the formation of the lower visibility advection fogs with stronger vertical energy transfer during the nucleation and condensation time period.
Advective-diffusive contaminant migration in unsaturated sand and gravel
Rowe, R.K.; Badv, K.
1996-12-01
A method is presented for estimating the diffusion coefficients for chloride and sodium in unsaturated coarse sand and fine gravel based on parameters obtained from saturated diffusion tests conducted for similar material. The method is tested by comparing the observed and predicted diffusion profiles through unsaturated soil. The method is shown to work well for predicting the advective-diffusive migration of chloride and sodium through a two-layer soil system consisting of a compacted clayey silt underlain by an unsaturated fine gravel. Over the range of conditions examined, it is concluded that existing solute transport theory along with the proposed procedure for estimating the unsaturated diffusion coefficients can adequately predict chloride and sodium diffusion through both unsaturated coarse sand and fine gravel as well as predict advective-diffusive transport through a compacted clayey layer and underlying unsaturated fine gravel.
Fee splitting in ophthalmology.
Levin, Alex V; Ganesh, Anuradha; Al-Busaidi, Ahmed
2011-02-01
Fee splitting and co-management are common practices in ophthalmology. These arrangements may conflict with the ethical principles governing the doctor-patient relationship, may constitute professional misconduct, and at times, may be illegal. Implications and perceptions of these practices may vary between different cultures. Full disclosure to the patient may minimize the adverse effects of conflicts of interest that arise from these practices, and may thereby allow these practices to be deemed acceptable by some cultural morays, professional guidelines, or by law. Disclosure does not necessarily relieve the physician from a potential ethical compromise. This review examines the practice of fee splitting in ophthalmology, its legal implications, the policies or guidelines governing such arrangements, and the possible ethical ramifications. A comparative view between 3 countries, Canada, the United States, and Oman, was conducted; illustrating that even in disparate cultures, there may be some universality to the application of ethical principles.
Artero, Vincent; Chavarot-Kerlidou, Murielle; Fontecave, Marc
2011-08-01
The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable, and efficient systems for the conversion and storage of renewable energy sources, such as solar energy. The production of hydrogen, a fuel with remarkable properties, through sunlight-driven water splitting appears to be a promising and appealing solution. While the active sites of enzymes involved in the overall water-splitting process in natural systems, namely hydrogenases and photosystem II, use iron, nickel, and manganese ions, cobalt has emerged in the past five years as the most versatile non-noble metal for the development of synthetic H(2)- and O(2)-evolving catalysts. Such catalysts can be further coupled with photosensitizers to generate photocatalytic systems for light-induced hydrogen evolution from water.
Spectral Theory of Advective Diffusion in the Ocean
2013-09-19
to study this enhancement of sea ice thermal conductivity and better understand temperature data collected during a 2007 Antarctic expedition. 15...conductivity and better understand temperature data collected during a 2007 Antarctic expedition. Activities and Findings: 1. Advection-enhanced...critically on the properties of this Hilbert space. More specifically, it is only on a special subset of this space that the random operator is Hermitian
Lattice Boltzmann method for the fractional advection-diffusion equation.
Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
The LEM exponential integrator for advection-diffusion-reaction equations
NASA Astrophysics Data System (ADS)
Caliari, Marco; Vianello, Marco; Bergamaschi, Luca
2007-12-01
We implement a second-order exponential integrator for semidiscretized advection-diffusion-reaction equations, obtained by coupling exponential-like Euler and Midpoint integrators, and computing the relevant matrix exponentials by polynomial interpolation at Leja points. Numerical tests on 2D models discretized in space by finite differences or finite elements, show that the Leja-Euler-Midpoint (LEM) exponential integrator can be up to 5 times faster than a classical second-order implicit solver.
Lattice Boltzmann method for the fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
Stability of explicit advection schemes. The balance point location rule
NASA Astrophysics Data System (ADS)
Leonard, B. P.
2002-02-01
This paper introduces the balance point location rule, providing specific necessary and sufficient conditions for constructing unconditionally stable explicit advection schemes, in both semi-Lagrangian and flux-form Eulerian formulations. The rule determines how the spatial stencil is placed on the computational grid. It requires the balance point (the center of the stencil in index space) to be located in the same patch as the departure point for semi-Lagrangian schemes or the same cell as the sweep point for Eulerian schemes. Centering the stencil in this way guarantees stability, regardless of the size of the time step. In contrast, the original Courant-Friedrichs-Lewy (CFL) condition requiring the stencil merely to include the departure (sweep) point, although necessary, is not sufficient for guaranteeing stability. The CFL condition is of limited practical value, whereas the balance point location rule always gives precise and easily implemented prescriptions for constructing stable algorithms. The rule is also helpful in correcting a number of misconceptions that have arisen concerning explicit advection schemes. In particular, explicit Eulerian schemes are widely believed to be inefficient because of stability constraints on the time step, dictated by a narrow interpretation of the CFL condition requiring the Courant number to be less than or equal to one. However, such constraints apply only to a particular class of advection schemes resulting for centering the stencil on the arrival point, when in fact the sole function of the stencil is to estimate the departure (sweep) point value - the arrival point has no relevance in determining the placement of the stencil. Unconditionally stable explicit Eulerian advection schemes are efficient and accurate, comparable in operation count to semi-Lagrangian schemes of the same order, but because of their flux-based formulation, they have the added advantage of being inherently conservative. Copyright
Frantz, C.E.; Cawley, W.E.
1961-05-01
A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.
Upstream and Downstream Influence in STBLI Instability
NASA Astrophysics Data System (ADS)
Martin, Pino; Priebe, Stephan; Helm, Clara
2016-11-01
Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.
Internal hydraulic jumps with large upstream shear
NASA Astrophysics Data System (ADS)
Ogden, Kelly; Helfrich, Karl
2015-11-01
Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.
Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment
NASA Astrophysics Data System (ADS)
Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.
2013-12-01
Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons
Suprathermal ions upstream from interplanetary shocks
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.; Russell, C. T.
1984-01-01
Low energy (10 eV-30 keV) observations of suprathermal ions ahead of outward propagating interplanetary shock waves (ISQ) are reported. The data were taken with the fast plasma experiment on ISEE 1 and 2 during 17 events. Structure was more evident in the suprathermal ion distribution in the earth bow shock region than in the upstream region. Isotropic distributions were only observed ahead of ISW, although field alignment, kidney-bean distributions, ion shells in velocity space and bunches of gyrating ions were not. The data suggest that the solar wind ions are accelerated to suprathermal energies in the vicinity of the shocks, which feature low and subcritical Mach numbers at 1 AU.
Moving stormwater P management upstream (Invited)
NASA Astrophysics Data System (ADS)
Baker, L. A.; Hobbie, S. E.; Finlay, J. C.; Kalinosky, P.; Janke, B.
2013-12-01
Reducing stormwater phosphorus loading using current approaches, which focus on treatment at the end of the pipe, is unlikely to reduce P loads enough to restore nutrient-impaired urban lakes. An indication of this is that of the nearly 150 nutrient impaired lakes in the Twin Cities region, only one has been restored. We hypothesize that substantial reduction of eutrophication will require reductions of P inputs upstream from storm drains. Developing source reduction strategies will required a shift in thinking about system boundaries, moving upstream from the storm drain to the curb, and from the curb to the watershed. Our Prior Lake Street Sweeping Project, a 2-year study of enhanced street sweeping, will be used to illustrate the idea of moving the system boundary to the curb. This study showed that P load recovery from sweeping increases with both sweeping frequency and overhead tree canopy cover. For high canopy streets, coarse organic material (tree leaves; seed pods, etc.) comprised 42% of swept material. We estimate that P inputs from trees may be half of measured storm P yields in 8 urban catchments in St. Paul, MN. Moreover, the cost of removing P during autumn was often < 100/pound P, compared with > 1000/lb P for stormwater ponds. We can also move further upstream, to the watershed boundary. P inputs to urban watersheds that enter lawns include lawn fertilizer, polyphosphates added to water supplies (and hence to lawns via irrigation), and pet food (transformed to pet waste). Minnesota enacted a lawn P fertilizer restriction in 2003, but early reductions in stormwater P loads were modest, probably reflecting reduction in direct wash-off of applied fertilizer. Because urban soils are enriched in P, growing turf has continued to extract available soil P. When turf is mowed, cut grass decomposes, generating P in runoff. As soil P becomes depleted, P concentrations in lawn runoff will gradually decline. Preliminary modeling suggests that substantial
NASA Astrophysics Data System (ADS)
Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.
2017-02-01
We investigate the presence of non-topological solutions of the Q-ball type in (1 , 1) spacetime dimensions. The model engenders the global U (1) symmetry and is of the k-field type, since it contains a new term, of the fourth-order power in the derivative of the complex scalar field. It supports analytical solution of the Q-ball type which is stable quantum mechanically. The new solution engenders an interesting behavior, with the charge and energy densities unveiling a splitting profile.
Analyzing critical propagation in a reaction-diffusion-advection model using unstable slow waves.
Kneer, Frederike; Obermayer, Klaus; Dahlem, Markus A
2015-02-01
The effect of advection on the propagation and in particular on the critical minimal speed of traveling waves in a reaction-diffusion model is studied. Previous theoretical studies estimated this effect on the velocity of stable fast waves and predicted the existence of a critical advection strength below which propagating waves are not supported anymore. In this paper, an analytical expression for the advection-velocity relation of the unstable slow wave is derived. In addition, the critical advection strength is calculated taking into account the unstable slow wave solution. We also analyze a two-variable reaction-diffusion-advection model numerically in a wide parameter range. Due to the new control parameter (advection) we can find stable wave propagation in the otherwise non-excitable parameter regime, if the advection strength exceeds a critical value. Comparing theoretical predictions to numerical results, we find that they are in good agreement. Theory provides an explanation for the observed behaviour.
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
Update on Advection-Diffusion Purge Flow Model
NASA Technical Reports Server (NTRS)
Brieda, Lubos
2015-01-01
Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.
Subsurface barrier design alternatives for confinement and controlled advection flow
Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.
1994-02-01
Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described.
Is Chaotic Advection Inherent to Porous Media Flow?
NASA Astrophysics Data System (ADS)
Lester, Daniel; Metcalfe, Guy; Trefry, Mike
2013-11-01
All porous media, including granular and packed media, fractured and open networks, are typified by the inherent topological complexity of the pore-space. This topological complexity admits a large number density of stagnation points under steady Stokes flow, which in turn generates a 3D fluid mechanical analouge of the Bakers map, termed the Baker's flow. We demonstrate that via this mechanism, chaotic advection at the pore-scale is inherent to almost all porous media under reasonable conditions, and such dynamics have significant implications for a range of fluid-borne processes including transport and mixing, chemical reactions and biological activity.
Vortex emission accompanies the advection of optical localized structures.
Haudin, F; Rojas, R G; Bortolozzo, U; Clerc, M G; Residori, S
2011-02-11
We show that the advection of optical localized structures is accompanied by the emission of vortices, with phase singularities appearing in the wake of the drifting structure. Localized structures are obtained in a light-valve experiment and made to drift by a mirror tilt in the feedback loop. Pairs of oppositely charged vortices are detected for small drifts, whereas for large drifts a vortex array develops. Observations are supported by numerical simulations and linear stability analysis of the system equations and are expected to be generic for a large class of translated optical patterns.
A convexity preserving scheme for conservative advection transport
NASA Astrophysics Data System (ADS)
Xiao, Feng; Peng, Xindong
2004-08-01
A simple and practical scheme for advection transport equation is presented. The scheme, namely piecewise rational method (PRM), is a variant of the existing piecewise parabolic method (PPM) of Colella and Woodward (1984). Instead of the parabolic function, a rational function is used for the reconstruction. Making use of the convexity preserving nature of the rational function enables us to obtain oscillation-less numerical solutions, but avoids the adjustments of the cell-interface values to enforce the monotonicity in PPM. The PRM is very simple and computationally efficient. Our numerical results show that PRM is competitive to the PPM in many aspects, such as numerical accuracy and shape-preserving property.
NASA Astrophysics Data System (ADS)
2001-05-01
Third Nucleus Observed with the VLT Summary New images from the VLT show that one of the two nuclei of Comet LINEAR (C/2001 A2), now about 100 million km from the Earth, has just split into at least two pieces . The three fragments are now moving through space in nearly parallel orbits while they slowly drift apart. This comet will pass through its perihelion (nearest point to the Sun) on May 25, 2001, at a distance of about 116 million kilometres. It has brightened considerably due to the splitting of its "dirty snowball" nucleus and can now be seen with the unaided eye by observers in the southern hemisphere as a faint object in the southern constellation of Lepus (The Hare). PR Photo 18a/01 : Three nuclei of Comet LINEAR . PR Photo 18b/01 : The break-up of Comet LINEAR (false-colour). Comet LINEAR splits and brightens ESO PR Photo 18a/01 ESO PR Photo 18a/01 [Preview - JPEG: 400 x 438 pix - 55k] [Normal - JPEG: 800 x 875 pix - 136k] ESO PR Photo 18b/01 ESO PR Photo 18b/01 [Preview - JPEG: 367 x 400 pix - 112k] [Normal - JPEG: 734 x 800 pix - 272k] Caption : ESO PR Photo 18a/01 shows the three nuclei of Comet LINEAR (C/2001 A2). It is a reproduction of a 1-min exposure in red light, obtained in the early evening of May 16, 2001, with the 8.2-m VLT YEPUN (UT4) telescope at Paranal. ESO PR Photo 18b/01 shows the same image, but in a false-colour rendering for more clarity. The cometary fragment "B" (right) has split into "B1" and "B2" (separation about 1 arcsec, or 500 km) while fragment "A" (upper left) is considerably fainter. Technical information about these photos is available below. Comet LINEAR was discovered on January 3, 2001, and designated by the International Astronomical Union (IAU) as C/2001 A2 (see IAU Circular 7564 [1]). Six weeks ago, it was suddenly observed to brighten (IAUC 7605 [1]). Amateurs all over the world saw the comparatively faint comet reaching naked-eye magnitude and soon thereafter, observations with professional telescopes indicated
Horizontal advection, diffusion and plankton spectra at the sea surface.
NASA Astrophysics Data System (ADS)
Bracco, A.; Clayton, S.; Pasquero, C.
2009-04-01
Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.
Advection-Based Sparse Data Management for Visualizing Unsteady Flow.
Guo, Hanqi; Zhang, Jiang; Liu, Richen; Liu, Lu; Yuan, Xiaoru; Huang, Jian; Meng, Xiangfei; Pan, Jingshan
2014-12-01
When computing integral curves and integral surfaces for large-scale unsteady flow fields, a major bottleneck is the widening gap between data access demands and the available bandwidth (both I/O and in-memory). In this work, we explore a novel advection-based scheme to manage flow field data for both efficiency and scalability. The key is to first partition flow field into blocklets (e.g. cells or very fine-grained blocks of cells), and then (pre)fetch and manage blocklets on-demand using a parallel key-value store. The benefits are (1) greatly increasing the scale of local-range analysis (e.g. source-destination queries, streak surface generation) that can fit within any given limit of hardware resources; (2) improving memory and I/O bandwidth-efficiencies as well as the scalability of naive task-parallel particle advection. We demonstrate our method using a prototype system that works on workstation and also in supercomputing environments. Results show significantly reduced I/O overhead compared to accessing raw flow data, and also high scalability on a supercomputer for a variety of applications.
Local and nonlocal advection of a passive scalar
NASA Astrophysics Data System (ADS)
Scott, R. K.
2006-11-01
Passive and active scalar mixing is examined in a simple one-parameter family of two-dimensional flows based on quasi-geostrophic dynamics, in which the active scalar, the quasi-geostrophic potential vorticity, is confined to a single horizontal surface (so-called surface quasi-geostrophic dynamics) and in which a passive scalar field is also advected by the (horizontal, two-dimensional) velocity field at a finite distance from the surface. At large distances from the surface the flow is determined by the largest horizontal scales, the flow is spectrally nonlocal, and a chaotic advection-type regime dominates. At small distances, z, scaling arguments suggest a transition wavenumber kc˜1/2z, where the slope of the passive scalar spectrum changes from k-5/3, determined by local dynamics, to k-1, determined by nonlocal dynamics, analogous to the transition to a k-1 slope in the Batchelor regime in three-dimensional turbulence. Direct numerical simulations reproduce the qualitative aspects of this transition. Other characteristics of the simulated scalar fields, such as the relative dominance of coherent or filamentary structures, are also shown to depend strongly on the degree of locality.
THE ADVECTION OF SUPERGRANULES BY THE SUN'S AXISYMMETRIC FLOWS
Hathaway, David H.; Williams, Peter E.; Rosa, Kevin Dela; Cuntz, Manfred E-mail: peter.williams@nasa.go
2010-12-10
We show that the motions of supergranules are consistent with a model in which they are simply advected by the axisymmetric flows in the Sun's surface shear layer. We produce a 10 day series of simulated Doppler images at a 15 minute cadence that reproduces most spatial and temporal characteristics seen in the SOHO/MDI Doppler data. Our simulated data have a spectrum of cellular flows with just two components-a granule component that peaks at spherical wavenumbers of about 4000 and a supergranule component that peaks at wavenumbers of about 110. We include the advection of these cellular components by the axisymmetric flows-differential rotation and meridional flow-whose variations with latitude and depth (wavenumber) are consistent with observations. We mimic the evolution of the cellular pattern by introducing random variations to the phases of the spectral components at rates that reproduce the levels of cross-correlation as functions of time and latitude. Our simulated data do not include any wave-like characteristics for the supergranules yet can reproduce the rotation characteristics previously attributed to wave-like behavior. We find rotation rates which appear faster than the actual rotation rates and attribute this to projection effects. We find that the measured meridional flow does accurately represent the actual flow and that the observations indicate poleward flow to 65{sup 0}-70{sup 0} latitude with equatorward countercells in the polar regions.
Space-fractional advection-diffusion and reflective boundary condition.
Krepysheva, Natalia; Di Pietro, Liliana; Néel, Marie-Christine
2006-02-01
Anomalous diffusive transport arises in a large diversity of disordered media. Stochastic formulations in terms of continuous time random walks (CTRWs) with transition probability densities showing space- and/or time-diverging moments were developed to account for anomalous behaviors. A broad class of CTRWs was shown to correspond, on the macroscopic scale, to advection-diffusion equations involving derivatives of noninteger order. In particular, CTRWs with Lévy distribution of jumps and finite mean waiting time lead to a space-fractional equation that accounts for superdiffusion and involves a nonlocal integral-differential operator. Within this framework, we analyze the evolution of particles performing symmetric Lévy flights with respect to a fluid moving at uniform speed . The particles are restricted to a semi-infinite domain limited by a reflective barrier. We show that the introduction of the boundary condition induces a modification in the kernel of the nonlocal operator. Thus, the macroscopic space-fractional advection-diffusion equation obtained is different from that in an infinite medium.
Effects of demographic stochasticity on population persistence in advective media.
Kolpas, Allison; Nisbet, Roger M
2010-07-01
Many populations live and disperse in advective media. A fundamental question, known as the "drift paradox" in stream ecology, is how a closed population can survive when it is constantly being transported downstream by the flow. Recent population-level models have focused on the role of diffusive movement in balancing the effects of advection, predicting critical conditions for persistence. Here, we formulate an individual-based stochastic analog of the model described in (Lutscher et al., SIAM Rev. 47(4):749-772, 2005) to quantify the effects of demographic stochasticity on persistence. Population dynamics are modeled as a logistic growth process and dispersal as a position-jump process on a finite domain divided into patches. When there is no correlation in the interpatch movement of residents, stochasticity simply smooths the persistence-extinction boundary. However, when individuals disperse in "packets" from one patch to another and the flow field is memoryless on the timescale of packet transport, the probability of persistence is greatly enhanced. The latter transport mechanism may be characteristic of larval dispersal in the coastal ocean or wind-dispersed seed pods.
Transient responses to spatial perturbations in advective systems.
Anderson, Kurt E; Nisbet, Roger M; McCauley, Edward
2008-07-01
We study the transient dynamics, following a spatially-extended perturbation of models describing populations residing in advective media such as streams and rivers. Our analyses emphasize metrics that are independent of initial perturbations-resilience, reactivity, and the amplification envelope-and relate them to component spatial wavelengths of the perturbation using spatial Fourier transforms of the state variables. This approach offers a powerful way of understanding the influence of spatial scale on the initial dynamics of a population following a spatially variable environmental perturbation, an important property in determining the ecological implications of transient dynamics in advective systems. We find that asymptotically stable systems may exhibit transient amplification of perturbations (i.e., have positive reactivity) for some spatial wavelengths and not others. Furthermore, the degree and duration of amplification varies strongly with spatial wavelength. For two single-population models, there is a relationship between transient dynamics and the response length that characterizes the steady state response to spatial perturbations: a long response length implies that peak amplification of perturbations is small and occurs fast. This relationship holds less generally in a specialist consumer-resource model, likely due to the model's tendency for flow-induced instabilities at an alternative characteristic spatial scale.
A cryogenic circulating advective multi-pass absorption cell
NASA Astrophysics Data System (ADS)
Stockett, M. H.; Lawler, J. E.
2012-03-01
A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 107 cm-3. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.
A cryogenic circulating advective multi-pass absorption cell.
Stockett, M H; Lawler, J E
2012-03-01
A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10(7) cm(-3). A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.
Observation of Magnetic Reconnection Driven by Granular Scale Advection
NASA Astrophysics Data System (ADS)
Zeng, Zhichen; Cao, W.; Ji, H.
2013-07-01
We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule, using high spatial resolution observations of a small surge event (base size 4‧‧ by 4‧‧) with the 1.6 meter aperture New Solar Telescope (NST) at Big Bear Solar Observatory. The observations were carried out in narrow-band (0.5 Å) Helium I 10830 Å and broad-band (10 Å) TiO 7057 Å. Since He I 10830 Å triplet has very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ( 2 km/ s) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was cancelled. During the cancellation, the surge was produced as absorption in He I 10830 Å filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of finest-scale reconnection process driven by the granule’s motion.
Observation of Magnetic Reconnection Driven by Granular Scale Advection
NASA Astrophysics Data System (ADS)
Zeng, Zhicheng; Cao, Wenda; Ji, Haisheng
2013-06-01
We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size ~ 4'' × 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 Å) He I 10830 Å and broadband (10 Å) TiO 7057 Å. Since He I 10830 Å triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow (~2 km s-1) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 Å filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.
Positivity-preserving numerical schemes for multidimensional advection
NASA Technical Reports Server (NTRS)
Leonard, B. P.; Macvean, M. K.; Lock, A. P.
1993-01-01
This report describes the construction of an explicit, single time-step, conservative, finite-volume method for multidimensional advective flow, based on a uniformly third-order polynomial interpolation algorithm (UTOPIA). Particular attention is paid to the problem of flow-to-grid angle-dependent, anisotropic distortion typical of one-dimensional schemes used component-wise. The third-order multidimensional scheme automatically includes certain cross-difference terms that guarantee good isotropy (and stability). However, above first-order, polynomial-based advection schemes do not preserve positivity (the multidimensional analogue of monotonicity). For this reason, a multidimensional generalization of the first author's universal flux-limiter is sought. This is a very challenging problem. A simple flux-limiter can be found; but this introduces strong anisotropic distortion. A more sophisticated technique, limiting part of the flux and then restoring the isotropy-maintaining cross-terms afterwards, gives more satisfactory results. Test cases are confined to two dimensions; three-dimensional extensions are briefly discussed.
A cryogenic circulating advective multi-pass absorption cell
Stockett, M. H.; Lawler, J. E.
2012-03-15
A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10{sup 7} cm{sup -3}. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.
Chaotic advection in 2D anisotropic porous media
NASA Astrophysics Data System (ADS)
Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico
2015-11-01
Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.
Developmental Origins, Epigenetics, and Equity: Moving Upstream.
Wallack, Lawrence; Thornburg, Kent
2016-05-01
The Developmental Origins of Health and Disease and the related science of epigenetics redefines the meaning of what constitutes upstream approaches to significant social and public health problems. An increasingly frequent concept being expressed is "When it comes to your health, your zip code may be more important than your genetic code". Epigenetics explains how the environment-our zip code-literally gets under our skin, creates biological changes that increase our vulnerability for disease, and even children's prospects for social success, over their life course and into future generations. This science requires us to rethink where disease comes from and the best way to promote health. It identifies the most fundamental social equity issue in our society: that initial social and biological disadvantage, established even prior to birth, and linked to the social experience of prior generations, is made worse by adverse environments throughout the life course. But at the same time, it provides hope because it tells us that a concerted focus on using public policy to improve our social, physical, and economic environments can ultimately change our biology and the trajectory of health and social success into future generations.
NASA Astrophysics Data System (ADS)
Gassner, Gregor J.; Winters, Andrew R.; Kopriva, David A.
2016-12-01
Fisher and Carpenter (2013) [12] found a remarkable equivalence of general diagonal norm high-order summation-by-parts operators to a subcell based high-order finite volume formulation. This equivalence enables the construction of provably entropy stable schemes by a specific choice of the subcell finite volume flux. We show that besides the construction of entropy stable high-order schemes, a careful choice of subcell finite volume fluxes generates split formulations of quadratic or cubic terms. Thus, by changing the subcell finite volume flux to a specific choice, we are able to generate, in a systematic way, all common split forms of the compressible Euler advection terms, such as the Ducros splitting and the Kennedy and Gruber splitting. Although these split forms are not entropy stable, we present a systematic way to prove which of those split forms are at least kinetic energy preserving. With this, we construct a unified high-order split form DG framework. We investigate with three dimensional numerical simulations of the inviscid Taylor-Green vortex and show that the new split forms enhance the robustness of high-order simulations in comparison to the standard scheme when solving turbulent vortex dominated flows. In fact, we show that for certain test cases, the novel split form discontinuous Galerkin schemes are more robust than the discontinuous Galerkin scheme with over-integration.
3. Credit JTL Long distance view looking upstream towards New ...
3. Credit JTL Long distance view looking upstream towards New Hampshire; commercial structures in foreground. - Bellows Falls Arch Bridge, Spanning Connecticut River, North Walpole, Cheshire County, NH
A flux splitting scheme with high-resolution and robustness for discontinuities
NASA Technical Reports Server (NTRS)
Wada, Yasuhiro; Liou, Meng-Sing
1994-01-01
A flux splitting scheme is proposed for the general nonequilibrium flow equations with an aim at removing numerical dissipation of Van-Leer-type flux-vector splittings on a contact discontinuity. The scheme obtained is also recognized as an improved Advection Upwind Splitting Method (AUSM) where a slight numerical overshoot immediately behind the shock is eliminated. The proposed scheme has favorable properties: high-resolution for contact discontinuities; conservation of enthalpy for steady flows; numerical efficiency; applicability to chemically reacting flows. In fact, for a single contact discontinuity, even if it is moving, this scheme gives the numerical flux of the exact solution of the Riemann problem. Various numerical experiments including that of a thermo-chemical nonequilibrium flow were performed, which indicate no oscillation and robustness of the scheme for shock/expansion waves. A cure for carbuncle phenomenon is discussed as well.
An Examination of the Evolution of Radiation and Advection Fogs
1993-01-01
Series 349. The Chemistry of Acid Rain-Sources andAtmospheric Processes , American Chemical Society, Washington, DC, 250-257. Wattle, B.J,, E.J. Mack...are not to be construe as an official Department of the Army position, unless so designated by other authorized documents. The citation of trade...5.1.2 Chemical Nature of CCN. .. .. ..... ................ . 29 5.1.3 Up-Stream Conditioning ........ ................. ... 30 5.2 Initiation Stage
NASA Astrophysics Data System (ADS)
Atis, S.; Saha, S.; Auradou, H.; Martin, J.; Rakotomalala, N.; Talon, L.; Salin, D.
2012-09-01
Autocatalytic reaction fronts between two reacting species in the absence of fluid flow, propagate as solitary waves. The coupling between autocatalytic reaction front and forced simple hydrodynamic flows leads to stationary fronts whose velocity and shape depend on the underlying flow field. We address the issue of the chemico-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. Towards that purpose, we perform experiments over a wide range of flow velocities with the well characterized iodate arsenious acid and chlorite-tetrathionate autocatalytic reactions in transparent packed beads porous media. The characteristics of these porous media such as their porosity, tortuosity, and hydrodynamics dispersion are determined. In a pack of beads, the characteristic pore size and the velocity field correlation length are of the order of the bead size. In order to address these two length scales separately, we perform lattice Boltzmann numerical simulations in a stochastic porous medium, which takes into account the log-normal permeability distribution and the spatial correlation of the permeability field. In both experiments and numerical simulations, we observe stationary fronts propagating at a constant velocity with an almost constant front width. Experiments without flow in packed bead porous media with different bead sizes show that the front propagation depends on the tortuous nature of diffusion in the pore space. We observe microscopic effects when the pores are of the size of the chemical front width. We address both supportive co-current and adverse flows with respect to the direction of propagation of the chemical reaction. For supportive flows, experiments and simulations allow observation of two flow regimes. For adverse flow, we observe upstream and downstream front motion as well as static front behaviors over a wide range of flow rates. In order to understand better these observed static state fronts, flow
Thermally driven advection for radioxenon transport from an underground nuclear explosion
NASA Astrophysics Data System (ADS)
Sun, Yunwei; Carrigan, Charles R.
2016-05-01
Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.
Mobile scintillometry to study heat advection over heterogeneous surfaces
NASA Astrophysics Data System (ADS)
Kleissl, J.
2007-12-01
Large Aperture Scintillometer (LAS) receivers measure the structure parameter of the refractive index from intensity fluctuations of the transmitter beam. Due to the spatial averaging over 1-4 km employed by this emerging technique the constraints for long temporal averaging (15-30 min) and associated uncertainties that have to be met by other flux measurement techniques do not apply for LASs. In this paper the constraints for temporal averaging of LASs will be examined as a function of environmental conditions and transect geometry. Moreover, analysis of data from a mobile LAS measurement across a surface gradient from rough and dry to smoother and wet will be presented. In this experiment the LAS was mounted on a pickup truck, allowing for quick redeployment of the transect after meaurement. The potential for the use of LAS to study local advection of heat in riparian or irrigated areas in the semi-arid southwest will be evaluated.
Microscale chaotic advection enables robust convective DNA replication.
Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M
2013-11-05
The ability of chaotic advection under microscale confinement to direct chemical processes along accelerated kinetic pathways has been recognized for some time. However, practical applications have been slow to emerge because optimal results are often counterintuitively achieved in flows that appear to possess undesirably high disorder. Here we present a 3D time-resolved analysis of polymerase chain reaction (PCR)-mediated DNA replication across a broad ensemble of geometric states. The resulting parametric map reveals an unexpectedly wide operating regime where reaction rates remain constant over 2 orders of magnitude of the Rayleigh number, encompassing virtually any realistic PCR condition (temperature, volume, gravitational alignment), a level of robustness previously thought unattainable in the convective format.
Dependence of advection-diffusion-reaction on flow coherent structures
NASA Astrophysics Data System (ADS)
Tang, Wenbo; Luna, Christopher
2013-10-01
A study on an advection-diffusion-reaction system is presented. Variability of the reaction process in such a system triggered by a highly localized source is quantified. It is found, for geophysically motivated parameter regimes, that the difference in bulk concentration subject to realizations of different source locations is highly correlated with the local flow topology of the source. Such flow topologies can be highlighted by Lagrangian coherent structures. Reaction is relatively enhanced in regions of strong stretching, and relatively suppressed in regions where vortices are present. In any case, the presence of a divergence-free background flow helps speed up the reaction process, especially when the flow is time-dependent. Probability density of various quantities characterizing the reaction processes is also obtained. This reveals the inherent complexity of the reaction-diffusion process subject to nonlinear background stirring.
Examination of the evolution of radiation and advection fogs. Final report
Orgill, M.M.
1993-01-01
A literature study was done on radiation and advection fog evolution. For radiation fog, six stages of fog evolution have been identified -- (1) precursor, (2) sunset, (3) conditioning, (4) mature, (5) sunrise, and (6) dissipation. The evolution of advection fog models has been in parallel with radiation fog models, but no identified stages in the evolution of advection fog have been proposed: (1) precursor, (2) initiation, (3) mature, and (4) dissipation. Radiation and advection fog models will require greater sophistication in order to study fog spatial and temporal variability. Physical aspects that require further study are discussed.
How Hydrate Saturation Anomalies are Diffusively Constructed and Advectively Smoothed
NASA Astrophysics Data System (ADS)
Rempel, A. W.; Irizarry, J. T.; VanderBeek, B. P.; Handwerger, A. L.
2015-12-01
The physical processes that control the bulk characteristics of hydrate reservoirs are captured reasonably well by long-established model formulations that are rooted in laboratory-verified phase equilibrium parameterizations and field-based estimates of in situ conditions. More detailed assessments of hydrate distribution, especially involving the occurrence of high-saturation hydrate anomalies have been more difficult to obtain. Spatial variations in sediment properties are of central importance for modifying the phase behavior and promoting focussed fluid flow. However, quantitative predictions of hydrate anomaly development cannot be made rigorously without also addressing the changes in phase behavior and mechanical balances that accompany changes in hydrate saturation level. We demonstrate how pore-scale geometrical controls on hydrate phase stability can be parameterized for incorporation in simulations of hydrate anomaly development along dipping coarse-grained layers embedded in a more fine-grained background that is less amenable to fluid transport. Model simulations demonstrate how hydrate anomaly growth along coarse-layer boundaries is promoted by diffusive gas transport from the adjacent fine-grained matrix, while advective transport favors more distributed growth within the coarse-grained material and so effectively limits the difference between saturation peaks and background levels. Further analysis demonstrates how sediment contacts are unloaded once hydrate saturation reaches sufficient levels to form a load-bearing skeleton that can evolve to produce segregated nodules and lenses. Decomposition of such growth forms poses a significant geohazard that is expected to be particularly sensitive to perturbations induced by gas extraction. The figure illustrates the predicted evolution of hydrate saturation Sh in a coarse-grained dipping layer showing how prominent bounding hydrate anomalies (spikes) supplied by diffusive gas transport at early times
Split supersymmetry radiates flavor
NASA Astrophysics Data System (ADS)
Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas
2014-09-01
Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.
Iteration SSII cancellation in DD-OFDM PON upstream scheme
NASA Astrophysics Data System (ADS)
Ju, Cheng; Liu, Na; Chen, Xue
2016-04-01
Iteration interference cancellation algorithm is proposed in direct detection OFDM PON upstream scheme to mitigate subcarrier to subcarrier intermixing interference (SSII) caused by dispersion and square-law photo-detection. The receiver sensitivity is improved by 1 dB in 20-Gbps, 16-QAM OFDM PON upstream experiment after 100-km standard single mode fiber (SSMF) transmission.
Apparatus Splits Glass Tubes Longitudinally
NASA Technical Reports Server (NTRS)
Shaw, Ernest; Manahan, Robert O'neil
1993-01-01
Tubes split into half cylinders by hot-wire/thermal-shock method. Tube to be cut placed on notched jig in apparatus. Nichrome wire stretched between arms of pivoted carriage and oriented parallel to notch. Wire heated by electrical current while resting on tube. After heating for about 1 minute for each millimeter of thickness of glass, tube quenched in water and split by resulting thermal shock. Apparatus used to split tubes in sizes ranging from 3/8 in. in diameter by 1 in. long to 1 1/2 in. in diameter by 4 in. long.
Split-illumination electron holography
Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira
2012-07-23
We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.
A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow
NASA Astrophysics Data System (ADS)
Tokareva, S. A.; Toro, E. F.
2016-10-01
Here we extend the Toro-Vázquez flux vector splitting approach (TV), originally proposed for the ideal 1D Euler equations in [1], to the Baer-Nunziato equations of compressible two-phase flow. Following the TV approach we identify corresponding advection and pressure operators. We perform a rigorous analysis of the associated non-conservative pressure system and derive its complete characteristic structure. The choice of the advection numerical flux is obvious. For the pressure system, several schemes are presented. The complete schemes are then implemented in the setting of finite volume and path-conservative methods and are systematically assessed in terms of accuracy and efficiency, through a carefully selected suite of test problems. The presented schemes constitute a building block for the construction of high-order numerical methods for solving the Baer-Nunziato equations. Here, as an illustrative example of such possibility, we present the construction of a second-order scheme.
NASA Technical Reports Server (NTRS)
Allen, Dale J.; Douglass, Anne R.; Rood, Richard B.; Guthrie, Paul D.
1991-01-01
The application of van Leer's scheme, a monotonic, upstream-biased differencing scheme, to three-dimensional constituent transport calculations is shown. The major disadvantage of the scheme is shown to be a self-limiting diffusion. A major advantage of the scheme is shown to be its ability to maintain constituent correlations. The scheme is adapted for a spherical coordinate system with a hybrid sigma-pressure coordinate in the vertical. Special consideration is given to cross-polar flow. The vertical wind calculation is shown to be extremely sensitive to the method of calculating the divergence. This sensitivity implies that a vertical wind formulation consistent with the transport scheme is essential for accurate transport calculations. The computational savings of the time-splitting method used to solve this equation are shown. Finally, the capabilities of this scheme are illustrated by an ozone transport and chemistry model simulation.
Analytical solution for the advection-dispersion transport equation in layered media
Technology Transfer Automated Retrieval System (TEKTRAN)
The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...
Photocatalytic water splitting
NASA Astrophysics Data System (ADS)
Kuo, Yenting
New photocatalystic materials Ti-In oxy(nitride) and nanosized Ru-loaded strontium titanate doped with Rh (Ru/SrTiO3:Rh) have been synthesized. The textural and surface characteristic properties were studied by nitrogen BET analysis, diffuse reflectance UV-vis spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and powder XRD. The photocatalytic properties were enhanced by the binary metal oxides of titanium dioxide and indium oxide. The XRD patterns confirmed the oxygen exchange between two metal oxides during the synthesis. Moreover, the presence of titanium dioxide can help the stabilization of InN during hot NH3(g) treatment. On the other hand, the particle sizes of aerogel prepared Ru/SrTiO3:Rh varied from 12 to 25 nm depended on different Rh doping. A mixture of ethanol and toluene was found to be the best binary solvent for supercritical drying, which yielded a SrTiO3 sample with a surface area of 130 m2/g and an average crystallite size of 6 nm. Enhanced photocatalytic hydrogen production under UV-vis light irradiation was achieved by ammonolysis of intimately mixed titanium dioxide and indium oxide at high temperatures. Gas chromatography monitored steadily the formation of hydrogen when sacrificial (methanol or ethanol) were present. XRD patterns confirmed that the photocatalysts maintain crystalline integrity before and after water splitting experiments. Moreover, the presence of InN may be crucial for the increase of hydrogen production activities. These Ru/SrTiO3:Rh photocatalysts have been studied for photocatalytic hydrogen production under visible light. The band gap of the bulk SrTiO 3 (3.2 eV) does not allow response to visible light. However, after doping with rhodium and loaded with ruthenium, the modified strontium titanates can utilize light above 400 nm due to the formation of valence band or electron donor levels inside of the band gap. Moreover, the surface areas of these
Modeling velocity in gradient flows with coupled-map lattices with advection.
Lind, Pedro G; Corte-Real, João; Gallas, Jason A C
2002-07-01
We introduce a simple model to investigate large scale behavior of gradient flows based on a lattice of coupled maps which, in addition to the usual diffusive term, incorporates advection, as an asymmetry in the coupling between nearest neighbors. This diffusive-advective model predicts traveling patterns to have velocities obeying the same scaling as wind velocities in the atmosphere, regarding the advective parameter as a sort of geostrophic wind. In addition, the velocity and wavelength of traveling wave solutions are studied. In general, due to the presence of advection, two regimes are identified: for strong diffusion the velocity varies linearly with advection, while for weak diffusion a power law is found with a characteristic exponent proportional to the diffusion.
Porto, Stefano; Antony, Cleitus; Ossieur, Peter; Townsend, Paul D
2012-01-02
We present a reach-extender for the upstream transmission path of 10Gb/s passive optical networks based on an optimised cascade of two semiconductor optical amplifiers (SOAs). Through careful optimisation of the bias current of the second stage SOA, over 19dB input dynamic range and up to 12dB compression of the output dynamic range were achieved without any dynamic control. A reach of 70km and split up to 32 were demonstrated experimentally using an ac-coupled, continuous-mode receiver with a reduced 56ns ac-coupling constant.
Entropy Splitting and Numerical Dissipation
NASA Technical Reports Server (NTRS)
Yee, H. C.; Vinokur, M.; Djomehri, M. J.
1999-01-01
A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock
Advective hydrogel membrane chromatography for monoclonal antibody purification in bioprocessing.
Hou, Ying; Brower, Mark; Pollard, David; Kanani, Dharmesh; Jacquemart, Renaud; Kachuik, Bradley; Stout, James
2015-01-01
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput.
Jet-dominated advective systems of all mass scales
NASA Astrophysics Data System (ADS)
Körding, Elmar; Fender, R.
We show that the radio emission of black hole (BH) and neutron star (NS) X-ray binaries (XRBs) follows the analytical prediction of a jet model where the jet carries a constant fraction of the accretion power. The radio emission can therefore be used as a tracer of the accretion rate. This measure is normalised with efficiently radiating objects. As it is independent of the X-ray fluxes, the measure allows us to compare the accretion rate dependency of the bolometric X-ray lumi- nosity of BHs and NSs. For NSs, it scales linearly with accretion rate while the scaling for BHs is quadratic - as expected for inefficient accretion flows. We find the same behaviour in AGN. This new approach uses the jet power to obtain the accretion rate. Thus, we know both the jet power and the radiated power of an accreting BH. This allows us to show that some accretion power is likely to be advected into the black hole, while the jet power dominates over the bolometric luminosity of a hard state BH.
Sea breezes and advective effects in southwest James Bay
NASA Technical Reports Server (NTRS)
Mckendry, Ian; Roulet, Nigel
1994-01-01
Observations from a transect extending 100 km inland during the Northern Wetlands Study (NOWES) in 1990 show that the sea breeze develops on approximately 25% of days during summer and may penetrate up to 100 km inland on occasions. The sea breeze exhibits a marked diurnal clockwise rotation as a result of the Coriolis effect along the unobstructed coastline. The marine advective effect is shown to depend on gradient wind direction. With northwesterly upper level flow the sea breeze tends to be northeasterly in direction and is associated with decreased temperatures and vapor pressure deficits (VPD). With southwesterly upper level flow the sea breeze tends to have a southeasterly direction and less effect on temperatures and VPD. This is attributed to shorter residence times of air parcels over water. For two cases, Colorado State University mesoscale model simulations show good agreement with surface wind observations and suggest that under northwesterly gradient flow, Bowen ratios are increased in the onshore flow along western James Bay, while during southwesterly gradient flow these effects are negligible. These results have implications for the interpretation of local climate, ecology, and hydrology as well as land-based and airborne turbulent flux measurements made during NOWES.
Time Acceleration Methods for Advection on the Cubed Sphere
Archibald, Richard K; Evans, Katherine J; White III, James B; Drake, John B
2009-01-01
Climate simulation will not grow to the ultrascale without new algorithms to overcome the scalability barriers blocking existing implementations. Until recently, climate simulations concentrated on the question of whether the climate is changing. The emphasis is now shifting to impact assessments, mitigation and adaptation strategies, and regional details. Such studies will require significant increases in spatial resolution and model complexity while maintaining adequate throughput. The barrier to progress is the resulting decrease in time step without increasing single-thread performance. In this paper we demonstrate how to overcome this time barrier for the first standard test defined for the shallow-water equations on a sphere. This paper explains how combining a multiwavelet discontinuous Galerkin method with exact linear part time-evolution schemes can overcome the time barrier for advection equations on a sphere. The discontinuous Galerkin method is a high-order method that is conservative, flexible, and scalable. The addition of multiwavelets to discontinuous Galerkin provides a hierarchical scale structure that can be exploited to improve computational efficiency in both the spatial and temporal dimensions. Exact linear part time-evolution schemes are explicit schemes that remain stable for implicit-size time steps.
Authalic parameterization of general surfaces using Lie advection.
Zou, Guangyu; Hu, Jiaxi; Gu, Xianfeng; Hua, Jing
2011-12-01
Parameterization of complex surfaces constitutes a major means of visualizing highly convoluted geometric structures as well as other properties associated with the surface. It also enables users with the ability to navigate, orient, and focus on regions of interest within a global view and overcome the occlusions to inner concavities. In this paper, we propose a novel area-preserving surface parameterization method which is rigorous in theory, moderate in computation, yet easily extendable to surfaces of non-disc and closed-boundary topologies. Starting from the distortion induced by an initial parameterization, an area restoring diffeomorphic flow is constructed as a Lie advection of differential 2-forms along the manifold, which yields equality of the area elements between the domain and the original surface at its final state. Existence and uniqueness of result are assured through an analytical derivation. Based upon a triangulated surface representation, we also present an efficient algorithm in line with discrete differential modeling. As an exemplar application, the utilization of this method for the effective visualization of brain cortical imaging modalities is presented. Compared with conformal methods, our method can reveal more subtle surface patterns in a quantitative manner. It, therefore, provides a competitive alternative to the existing parameterization techniques for better surface-based analysis in various scenarios.
OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM ...
OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM FROM DIRECTION OF KACHESS DAM. VIEW TO NORTH - Kachess Dam, 1904 Cascade Canal Company Crib Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA
10. UPSTREAM SIDE OF UPPER MITER GATES SHOWING STOWED LEFT ...
10. UPSTREAM SIDE OF UPPER MITER GATES SHOWING STOWED LEFT WING OF UPPER GUARD GATE (FAR LEFT). VIEW TO NORTHWEST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL
1. OVERALL VIEW OF UPSTREAM FACE OF DAM; SPILLWAY IN ...
1. OVERALL VIEW OF UPSTREAM FACE OF DAM; SPILLWAY IN FOREGROUND, LOCK IN BACKGROUND ON NORTH RIVER BANK. VIEW TO NORTH. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL
15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION ...
15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION WITH TAINTER GATE SECTION OF SPILLWAY TO THE LEFT. VIEW TO SOUTHWEST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL
3. VIEW OF UPSTREAM FACE OF DAM, SHOWING OUTLET GATE, ...
3. VIEW OF UPSTREAM FACE OF DAM, SHOWING OUTLET GATE, LOOKING NORTHEAST - High Mountain Dams in Upalco Unit, Island Lake Dam, Ashley National Forest, 4.8 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT
5. DETAIL OF PENSTOCK OPENINGS AND HEADGATE DECK FROM UPSTREAM ...
5. DETAIL OF PENSTOCK OPENINGS AND HEADGATE DECK FROM UPSTREAM (WEST) SIDE, WITH SOUTH EMBANKMENT (MI-98-E) COREWALL AT RIGHT. VIEW TO NORTH. - Cooke Hydroelectric Plant, Powerhouse, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI
5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND ...
5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND IN FOREGROUND AND NORTH EMBANKMENT (MI-98-A) AT LEFT. VIEW TO NORTHEAST. - Cooke Hydroelectric Plant, Spillway, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI
6. DETAIL OF UPSTREAM (WEST) SIDE OF SPILLWAY SHOWING WALKWAY ...
6. DETAIL OF UPSTREAM (WEST) SIDE OF SPILLWAY SHOWING WALKWAY AND CONCRETE SPILLWAY PIERS. VIEW TO NORTH. - Cooke Hydroelectric Plant, Spillway, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI
2. UPSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, ...
2. UPSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, LOOKING SOUTH-SOUTHWEST. NOTE BANK REINFORCEMENT ON LEFT AND SPILLWAY ON RIGHT. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO
5. DETAIL OF UPSTREAM FACE OF UPPER EMBANKMENT, SHOWING HANDPLACED ...
5. DETAIL OF UPSTREAM FACE OF UPPER EMBANKMENT, SHOWING HAND-PLACED ROCK RIPRAP AND MASONRY PARAPET WALL. VIEW TO NORTHEAST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID
25. DETAIL OF UPSTREAM FACE OF LOWER EMBANKMENT, SHOWING HANDPLACED ...
25. DETAIL OF UPSTREAM FACE OF LOWER EMBANKMENT, SHOWING HANDPLACED ROCK RIPRAP AND MASONRY PARAPET WALL. VIEW TO NORTHEAST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID
7. Chandler Falls, looking upstream (from north). Golf tee of ...
7. Chandler Falls, looking upstream (from north). Golf tee of the Mesa Country Club on right. Photographer: Mark Durben, February 1989. Source: SRPA - Tempe Canal, South Side Salt River in Tempe, Mesa & Phoenix, Tempe, Maricopa County, AZ
14. Detail, upper chord connection point on upstream side of ...
14. Detail, upper chord connection point on upstream side of truss, showing connection of upper chord, laced vertical compression member, strut, counters, and laterals. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA
3. General view of upstream face, looking northwest. Spillway is ...
3. General view of upstream face, looking northwest. Spillway is at the far end of the dam. The Antelope Valley is visible in center background. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA
4. VIEW SHOWING UPSTREAM FACE OF DAM, LOOKING NORTHEAST ...
4. VIEW SHOWING UPSTREAM FACE OF DAM, LOOKING NORTHEAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT
3. OVERALL VIEW OF DAM, SHOWING UPSTREAM FACE, LOOKING EAST ...
3. OVERALL VIEW OF DAM, SHOWING UPSTREAM FACE, LOOKING EAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT
23. UPSTREAM DETAIL OF PIER NO. 2 AND THROUGH AND ...
23. UPSTREAM DETAIL OF PIER NO. 2 AND THROUGH AND DECK TRUSS END PANELS. VIEW TO SOUTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA
65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT ...
65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT COMPANY'S NEISSON CREEK SAWMILL. Print No. 177, November 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
18. VIEW OF SETTLING BASIN FROM UPSTREAM TRESTLE, SHOWING BULKHEAD ...
18. VIEW OF SETTLING BASIN FROM UPSTREAM TRESTLE, SHOWING BULKHEAD ON RIGHT AND SAND BANK ON LEFT, LOOKING NORTHWEST - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
DOG HOUSE AT UPSTREAM LOCK GATE. ALSO SEEN AT LEFT ...
DOG HOUSE AT UPSTREAM LOCK GATE. ALSO SEEN AT LEFT IN PHOTO NO. IL-164-A-23. - Illinois Waterway, La Grange Lock and Dam, 3/4 mile south of Country 795N at Illinois River, Versailles, Brown County, IL
UPSTREAM LOCK GATE DETAIL AND DOG HOUSE. NOTE ARM AND ...
UPSTREAM LOCK GATE DETAIL AND DOG HOUSE. NOTE ARM AND GEARING FOR CONTROLLING LOCK GATE. LOOKING WEST SOUTHWEST. - Illinois Waterway, Brandon Road Lock and Dam , 1100 Brandon Road, Joliet, Will County, IL
2. OVERALL VIEW OF LOWWATER DAM, LOOKING UPSTREAM. CHAIN OF ...
2. OVERALL VIEW OF LOW-WATER DAM, LOOKING UPSTREAM. CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL
8. VIEW LOOKING UPSTREAM FROM THE RIVER ARM OF THE ...
8. VIEW LOOKING UPSTREAM FROM THE RIVER ARM OF THE COFFERDAM NEAR STATION (September 1936) - Mississippi River 9-Foot Channel Project, Lock & Dam No. 13, Upper Mississippi River, Fulton, Whiteside County, IL
7. Detail view of reinforced concrete archrings comprising dam's upstream ...
7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA
14. VIEW NORTHEASTWARD OF THE UPSTREAM (WEST) SIDE OF THE ...
14. VIEW NORTHEASTWARD OF THE UPSTREAM (WEST) SIDE OF THE PENSTOCK (HEADRACE) BRIDGE - Wagamon Pond Dam & Bridge, Spanning Broadkill River at State Road No. 197 (Mulberry Street), Milton, Sussex County, DE
5. VIEW FROM THE SOUTHEAST, LOOKING UPSTREAM (NORTHWEST), ACROSS THE ...
5. VIEW FROM THE SOUTHEAST, LOOKING UPSTREAM (NORTHWEST), ACROSS THE ROADWAY OF BRIDGE 808 - Wagamon Pond Dam & Bridge, Spanning Broadkill River at State Road No. 197 (Mulberry Street), Milton, Sussex County, DE
41. Upstream end of emergency spillway excavation. Photographer unknown, 1929. ...
41. Upstream end of emergency spillway excavation. Photographer unknown, 1929. Source: Arizona Department of Water Resources (ADWR). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
DETAIL ELEVATION OF UPSTREAM PARAPET. NOTE THE CLOSED SPANDRELS WHERE ...
DETAIL ELEVATION OF UPSTREAM PARAPET. NOTE THE CLOSED SPANDRELS WHERE THE BEAM BEARINGS CONTACT THE SLENDER CONCRETE PIERS. VIEW FACING SOUTH. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI
23. Upstream view of buttress and arch form work and ...
23. Upstream view of buttress and arch form work and construction. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
30. Upstream face of construction effort. Photographer unknown, January 29, ...
30. Upstream face of construction effort. Photographer unknown, January 29, 1927. Source: Fritz Seifritz. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
50. Upstream face of Humbug Creek Diversion Dam showing sluice ...
50. Upstream face of Humbug Creek Diversion Dam showing sluice opening. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
56. Upstream face of diversion dam looking east. Headgates are ...
56. Upstream face of diversion dam looking east. Headgates are partially visible at far left. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
19. Upstream face of arches and buttresses at west end. ...
19. Upstream face of arches and buttresses at west end. Photographer unknown, January 29, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
View of upstream face of Grand Coulee Dam, looking northeast. ...
View of upstream face of Grand Coulee Dam, looking northeast. This image features a cloudless sky.) - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA
7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. ...
7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. NOTE FRACTURES ALONG BARREL ARCH EXTRADOS. - Roaring Creek Bridge, State Road 2005 spanning Roaring Creek in Locust Township, Slabtown, Columbia County, PA
View of upstream face of Lake Sabrina Dam showing the ...
View of upstream face of Lake Sabrina Dam showing the redwood planks and base of dam from Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA
View of upstream face of Lake Sabrina Dam showing redwood ...
View of upstream face of Lake Sabrina Dam showing redwood planks and boulders in Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA
View of Lake Sabrina Dam upstream face from ridge showing ...
View of Lake Sabrina Dam upstream face from ridge showing spillway at lower right of photo, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA
75. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: UPSTREAM ...
75. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: UPSTREAM ELEVATION, SHEET 2; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA
5. Contextual oblique view to northwest showing upstream (east) side ...
5. Contextual oblique view to northwest showing upstream (east) side of bridge in setting, with Jacob Meyer Park at right. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA
1. Site of Mormon Flat Dam looking upstream. Photographer unknown, ...
1. Site of Mormon Flat Dam looking upstream. Photographer unknown, 1923. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ
2. General view of Mormon Flat looking upstream. Construction activity ...
2. General view of Mormon Flat looking upstream. Construction activity is visible at center right. Photographer unknown, September 30, 1923. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ
6. VIEW OF UPSTREAM FACE OF HORSE MESA, SHOWING CONCRETE ...
6. VIEW OF UPSTREAM FACE OF HORSE MESA, SHOWING CONCRETE BEING PLACED. PENSTOCK OPENINGS ARE VISIBLE AT CENTER LEFT. August 24, 1926 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ
10. DETAIL OF UPSTREAM FACE OF NEW YORK CANAL HEADWORKS, ...
10. DETAIL OF UPSTREAM FACE OF NEW YORK CANAL HEADWORKS, SHOWING GATE LIFTING GEARS (TOP), WORM GEAR SHAFTS (CENTER) AND SLIDE GATES (BOTTOM). VIEW TO NORTHWEST. - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID
11. DETAIL OF UPSTREAM FACE OF SLUICE GATE CONTROLS FROM ...
11. DETAIL OF UPSTREAM FACE OF SLUICE GATE CONTROLS FROM CATWALK, SHOWING GATE LIFTING GEARS (TOP) AND GEAR SHAFTS (BOTTOM). VIEW TO SOUTHWEST. - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID
6. CREST ROAD ON UPPER EMBANKMENT, SHOWING MASONRY UPSTREAM PARAPET ...
6. CREST ROAD ON UPPER EMBANKMENT, SHOWING MASONRY UPSTREAM PARAPET WALL (LEFT) AND ENTRANCE TO DEER FLAT NAMPA CANAL HEADWORKS (ALSO LEFT). VIEW TO WEST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID
6. View south. North elevation upstream face of east ...
6. View south. North elevation - upstream face of east pier; details of pier bearing and cantilevered link space hinge (center right). - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH
1. Credit JTL General view looking upstream and towards New ...
1. Credit JTL General view looking upstream and towards New Hampshire, unidentified 'crazy man' perched on top of arch. - Bellows Falls Arch Bridge, Spanning Connecticut River, North Walpole, Cheshire County, NH
22. DETAIL, WEST ABUTMENT AND SHOE, WEST ARCH, UPSTREAM SIDE ...
22. DETAIL, WEST ABUTMENT AND SHOE, WEST ARCH, UPSTREAM SIDE File photo, Caltrans Office of Structures Maintenance, August, 1953. Photographer unknown. Photocopy of photograph. - San Roque Canyon Bridge, State Highway 192, Santa Barbara, Santa Barbara County, CA
2. VIEW OF MAIN STORAGE RESERVOIR, SHOWING UPSTREAM SIDE OF ...
2. VIEW OF MAIN STORAGE RESERVOIR, SHOWING UPSTREAM SIDE OF DAM AND DISCHARGE GATE (LEFT), LOOKING SOUTHWEST (October 1991) - Bonanza Hydraulic Mining Site, Main Storage Reservoir, Swamp Gulch, Salmon, Lemhi County, ID
5. A VIEW LOOKING WEST, TOWARD THE UPSTREAM SIDE OF ...
5. A VIEW LOOKING WEST, TOWARD THE UPSTREAM SIDE OF THE PIER, SHOWING THE DETERIORATED SHEARWATER EDGE, THE NORTHEAST ABUTMENT AND WING WALL. - Cement Plant Road Bridge, Spanning Leatherwood Creek on County Road 50 South, Bedford, Lawrence County, IN
Emergence of Upstream Swimming via a Hydrodynamic Transition
NASA Astrophysics Data System (ADS)
Tung, Chih-kuan; Ardon, Florencia; Roy, Anubhab; Koch, Donald L.; Suarez, Susan S.; Wu, Mingming
2015-03-01
We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition. The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law with the deviation from the critical flow shear rate (γ -γc ). This transition is successfully explained by a hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near surface microswimmers that possess front-back asymmetry and circular motion.
Micro-PIV of Bubble Splitting in a Bifurcation
NASA Astrophysics Data System (ADS)
Stephenson, Samantha; Li, David; Hellmeier, Forian; Pitre, John; Fowlkes, J. Brian; Bull, Joseph
2014-11-01
Gas embolotherapy is a proposed treatment for cancerous tumors. For this treatment, a liquid droplet solution is injected into the bloodstream and focused ultrasound is used to vaporize droplets upstream of the tumor site, resulting in bubbles that are approximately 125x larger in volume. These bubbles will then occlude the blood vessels, thereby depriving the tumor of nutrients leading to eventual tumor necrosis. However, once the bubbles are formed, they will continue to travel through the bloodstream, through bifurcations that split in to smaller daughter vessels before lodging to occlude flow. Micro-particle imaging velocimetry (PIV) was used to study the flow field surrounding the leading edge of the bubble at the bifurcation point. Consistent symmetric bubble splitting at several different flow rates was achieved. Roll angle of the bifurcation was varied to encourage uneven bubble splitting and reversal. In the absence of the bubble, Poiseuille flow was verified in the parent channel. Results were compared to a boundary elements model developed by Calderon et al. 2010. This research was funded by the NIH Grant R01EB006476.
Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.
Mills, Brantley
2016-01-01
A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.
Knopman, Debra S.; Voss, Clifford I.
1987-01-01
The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases. (3) The frequency of sampling must be 'in phase' with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters.
STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS
Le, Truong; Wood, Kent S.; Wolff, Michael T.; Becker, Peter A.; Putney, Joy
2016-03-10
Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode with zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.
The distortion of the level set gradient under advection
NASA Astrophysics Data System (ADS)
Trujillo, Mario F.; Anumolu, Lakshman; Ryddner, Doug
2017-04-01
The practice of periodically reinitializing the level set function is well established in two-phase flow applications as a way of controlling the growth of anomalies and/or numerical errors. In the present work, the underlying roots of this anomalous growth are studied, where it is established that the augmentation of the magnitude of the level set gradient (| ∇ϕ |) is directly connected to the nature of the flow field; hence, it is not necessarily the result of some type of numerical error. More specifically, for a general flow field advecting the level set function, it is shown that the eigenpairs of the strain rate tensor are responsible for the rate of change of | ∇ϕ | along a fluid particle trajectory. This straining action not only affects the magnitude of | ∇ϕ |, but the general character of ϕ, and consequently contributes to the growth in numerical error. These numerical consequences are examined by adopting the Gradient Augmented Level Set method. Specifically, it is shown that the local error for ϕ is directly connected to the size of | ∇ϕ | and to the magnitude of the second and fourth order derivatives of ϕ. These analytical findings are subsequently supported by various examples. The role of reinitialization is discussed, where it is shown that in cases where the zero level set contour has a local radius of curvature that is below the local grid resolution, reinitialization exacerbates rather than diminishes the degree of error. For other cases, where the interface is well resolved, reinitialization helps stabilize the error as intended.
Critical time scales for advection-diffusion-reaction processes
NASA Astrophysics Data System (ADS)
Ellery, Adam J.; Simpson, Matthew J.; McCue, Scott W.; Baker, Ruth E.
2012-04-01
The concept of local accumulation time (LAT) was introduced by Berezhkovskii and co-workers to give a finite measure of the time required for the transient solution of a reaction-diffusion equation to approach the steady-state solution [A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Biophys. J.BIOJAU0006-349510.1016/j.bpj.2010.07.045 99, L59 (2010); A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.051906 83, 051906 (2011)]. Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb [A. McNabb and G. C. Wake, IMA J. Appl. Math.IJAMDM0272-496010.1093/imamat/47.2.193 47, 193 (1991)]. Although McNabb's initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one-dimensional linear advection-diffusion-reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform-to-uniform transitions; these results provide a practical interpretation for MAT by directly linking the stochastic microscopic processes to a meaningful macroscopic time scale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.
The contiguous domains of Arctic Ocean advection: Trails of life and death
NASA Astrophysics Data System (ADS)
Wassmann, P.; Kosobokova, K. N.; Slagstad, D.; Drinkwater, K. F.; Hopcroft, R. R.; Moore, S. E.; Ellingsen, I.; Nelson, R. J.; Carmack, E.; Popova, E.; Berge, J.
2015-12-01
The central Arctic Ocean is not isolated, but tightly connected to the northern Pacific and Atlantic Oceans. Advection of nutrient-, detritus- and plankton-rich waters into the Arctic Ocean forms lengthy contiguous domains that connect subarctic with the arctic biota, supporting both primary production and higher trophic level consumers. In turn, the Arctic influences the physical, chemical and biological oceanography of adjacent subarctic waters through southward fluxes. However, exports of biomass out of the Arctic Ocean into both the Pacific and Atlantic Oceans are thought to be far smaller than the northward influx. Thus, Arctic Ocean ecosystems are net biomass beneficiaries through advection. The biotic impact of Atlantic- and Pacific-origin taxa in arctic waters depends on the total supply of allochthonously-produced biomass, their ability to survive as adults and their (unsuccessful) reproduction in the new environment. Thus, advective transport can be thought of as trails of life and death in the Arctic Ocean. Through direct and indirect (mammal stomachs, models) observations this overview presents information about the advection and fate of zooplankton in the Arctic Ocean, now and in the future. The main zooplankton organisms subjected to advection into and inside the Arctic Ocean are (a) oceanic expatriates of boreal Atlantic and Pacific origin, (b) oceanic Arctic residents and (c) neritic Arctic expatriates. As compared to the Pacific gateway the advective supply of zooplankton biomass through the Atlantic gateways is 2-3 times higher. Advection characterises how the main planktonic organisms interact along the contiguous domains and shows how the subarctic production regimes fuel life in the Arctic Ocean. The main differences in the advective regimes through the Pacific and Atlantic gateways are presented. The Arctic Ocean is, at least in some regions, a net heterotrophic ocean that - during the foreseeable global warming trend - will more and more rely
Photoelectrochemical water-splitting systems
Turner, J.A.; Kocha, S.S.
1995-10-01
Photochemical water-splitting is the process where an illuminated semiconductor is used to decompose water into its components, hydrogen and oxygen. Light, incident on a semiconductor electrode, splits water directly. A one-step monolithic system such as this eliminates the need to generate electricity externally and subsequently feed it to an electrolyser. Combining the electrolyser with the PV system eliminates one of the high cost components of a PV-electrolysis hydrogen generation system. Since external wiring is not used, only the piping necessary for the transport of hydrogen to an external storage system or gas pipeline is required. This paper will discuss the current technical status of direct conversion photoelectrochemical (PEC) water-splitting systems.
A New Methodology For Estimating CO2 Advective Fluxes In Complex Terrain
NASA Astrophysics Data System (ADS)
Montagnani, L.; Manca, G.; Canepa, E.; Georgieva, E.; Kerschbaumer, G.; Minerbi, S.; Seufert, G.
2007-12-01
A key problem in using the eddy correlation (EC) technique for estimating the carbon dioxide Net Ecosystem Exchange (NEE) of terrestrial ecosystems is the potential bias caused by advective fluxes of CO2. Advective fluxes are often not considered since they are difficult to identify and to quantify, especially in complex mountainous terrain with highly variable wind patterns and drainage flows. We propose a methodology to estimate these fluxes based on a full 3-Dimensional (3D) approach applied to the topographically complex alpine forest site of Renon (1736 m a.s.l.). This is an aerodynamic method based on the computation of advective fluxes across the aerial faces of a control volume including the plant ecosystem. Data used for the computation of CO2 advective fluxes were collected during an extensive field campaign performed in 2005 in the framework of CarboEurope-IP research project. Vertical profiles of wind, air temperature and CO2 concentration have been measured at five towers and a spatial interpolation was performed in order to get 3D fields of such variables. The frame of reference used was orthogonal and the vertical direction was parallel to the gravity. Each anemometer was aligned in this frame of reference and no rotations were applied to the wind velocity components. The analysis of the 3D fields of wind velocity, CO2 mixing ratio and air density highlighted the spatial heterogeneity of CO2 source/sink strength and the strong de-coupling between air flow below and above the canopy during stable nights. The total CO2 advection calculated using the proposed methodology exhibited prevailing positive values during the night-time period. Advective fluxes estimated during windy nights were of the same magnitude and sign of vertical turbulent flux measured above canopy by the EC technique. This observation suggests that the friction velocity correction routinely applied to night-time periods may not be efficient at the Renon site. During light windy nights
Technology Transfer Automated Retrieval System (TEKTRAN)
Because the Surface Energy Balance Algorithm for Land (SEBAL) tends to underestimate ET under conditions of advection, the model was modified by incorporating an advection component as part of the energy usable for crop evapotranspiration (ET). The modification involved the estimation of advected en...
Split ring containment attachment device
Sammel, Alfred G.
1996-01-01
A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.
Biphasic water splitting by osmocene
Ge, Peiyu; Todorova, Tanya K.; Patir, Imren Hatay; Olaya, Astrid J.; Vrubel, Heron; Mendez, Manuel; Hu, Xile; Corminboeuf, Clémence; Girault, Hubert H.
2012-01-01
The photochemical reactivity of osmocene in a biphasic water-organic solvent system has been investigated to probe its water splitting properties. The photoreduction of aqueous protons to hydrogen under anaerobic conditions induced by osmocene dissolved in 1,2-dichloroethane and the subsequent water splitting by the osmocenium metal-metal dimer formed during H2 production were studied by electrochemical methods, UV-visible spectrometry, gas chromatography, and nuclear magnetic resonance spectroscopy. Density functional theory computations were used to validate the reaction pathways. PMID:22665787
Barriers impede upstream spawning migration of flathead chub
Walters, David M.; Zuellig, Robert E.; Crockett, Harry J.; Bruce, James F.; Lukacs, Paul M.; Fitzpatrick, Ryan M.
2014-01-01
Many native cyprinids are declining throughout the North American Great Plains. Some of these species require long reaches of contiguous, flowing riverine habitat for drifting eggs or larvae to develop, and their declining populations have been attributed to habitat fragmentation or barriers (e.g., dams, dewatered channels, and reservoirs) that restrict fish movement. Upstream dispersal is also needed to maintain populations of species with passively drifting eggs or larvae, and prior researchers have suggested that these fishes migrate upstream to spawn. To test this hypothesis, we conducted a mark–recapture study of Flathead Chub Platygobio gracilis within a 91-km reach of continuous riverine habitat in Fountain Creek, Colorado. We measured CPUE, spawning readiness (percent of Flathead Chub expressing milt), and fish movement relative to a channel-spanning dam. Multiple lines of evidence indicate that Flathead Chub migrate upstream to spawn during summer. The CPUE was much higher at the base of the dam than at downstream sites; the seasonal increases in CPUE at the dam closely tracked seasonal increases in spawning readiness, and marked fish moved upstream as far as 33 km during the spawning run. The upstream migration was effectively blocked by the dam. The CPUE of Flathead Chub was much lower upstream of the OHDD than at downstream sites, and <0.2% of fish marked at the dam were recaptured upstream. This study provides the first direct evidence of spawning migration for Flathead Chub and supports the general hypothesis that barriers limit adult dispersal of these and other plains fishes.
Possible signature of solar oblateness in the Sun's oscillation frequency splittings
NASA Astrophysics Data System (ADS)
Woodard, M. F.
2016-10-01
Departures from spherical symmetry split the frequencies of the Sun's normal oscillation modes. In addition to the well-studied, dominant splitting of the mode frequencies, due to the first-order advection of internal wave motion, a number of second-order effects of rotation on the frequency splittings, predominantly the solar oblateness, are expected. Whereas the largest rotational frequency splittings have an odd dependence on the azimuthal order, m, of the modes, the second-order effects should have an even dependence. The biggest, and thus far the only well-studied, even-m effect on splittings, is due to the solar-cycle variations in magnetic activity near the Sun's surface, which need to be modeled with some care to bring out the signature of solar oblateness. A crude analysis of the even mode-frequency splittings, obtained from approximately 15 years of SOHO/MDI spherical-harmonic time series, was undertaken. To extract the small even-m splittings of interest from the dominant, solar-cycle effects, which have a strong mode-frequency dependence, the former were assumed to depend only weakly on mode frequency and to have no time dependence. Perhaps the most important finding of the study is that the MDI data are capable of yielding statistically significant estimates of solar oblateness. Indeed the oblateness estimates obtained from the analysis presented here appear to be roughly consistent with both theoretical expectations and with direct measurements of the oblateness. There is also a hint of a pole-equator temperature difference in the seismic measurements, at the level recently suggested by Miesch and Hindman.
Advection of Microphysical Scalars in Terminal Area Simulation System (TASS)
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.
2011-01-01
The Terminal Area Simulation System (TASS) is a large eddy scale atmospheric flow model with extensive turbulence and microphysics packages. It has been applied successfully in the past to a diverse set of problems ranging from prediction of severe convective events (Proctor et al. 2002), tracking storms and for simulating weapons effects such as the dispersion and fallout of fission debris (Bacon and Sarma 1991), etc. More recently, TASS has been used for predicting the transport and decay of wake vortices behind aircraft (Proctor 2009). An essential part of the TASS model is its comprehensive microphysics package, which relies on the accurate computation of microphysical scalar transport. This paper describes an evaluation of the Leonard scheme implemented in the TASS model for transporting microphysical scalars. The scheme is validated against benchmark cases with exact solutions and compared with two other schemes - a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)-type scheme after van Leer and LeVeque's high-resolution wave propagation method. Finally, a comparison between the schemes is made against an incident of severe tornadic super-cell convection near Del City, Oklahoma.
Black Hole Event Horizons and Advection-Dominated Accretion
NASA Technical Reports Server (NTRS)
McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)
2001-01-01
The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the
Fractures as Advective Conduits at the Earth Atmosphere Interface
NASA Astrophysics Data System (ADS)
Dragila, M. I.; Weisbrod, N.; Nachshon, U.; Kamai, T.
2012-12-01
Understanding gas exchange between the Earth's upper crust and the atmosphere is vital and necessary because this phenomenon controls to a large extent many important processes including, the water cycle, agricultural activities, greenhouse gas emissions and more. From a hydrological aspect, water vapor transport is an extremely important process related to Earth-atmosphere gas exchange because it affects above ground water vapor concentration, soil water content and soil salinity. Traditionally, diffusion was considered the main mechanism of gas exchange between the atmosphere and vadose zone, driven by gas concentration gradients. While this assumption may be correct for many porous media, our laboratory and field-scale studies have shown that advective gas transport mechanisms are governing these fluxes in fractured rocks and cracked soils. Convection driven by thermal gradients (free convection) and wind induced (forced convection) were explored and both were found to play a major role in Earth-atmosphere gas exchange. Long-term laboratory experiments using fracture simulators in a customized climate controlled laboratory have shown that thermal convection occurs when nighttime thermal conditions prevail. This convective venting significantly enhances evaporation and subsequently salt precipitation on the fracture walls. Experiment results were used to develop an empirical relationship between temperature gradients, fracture aperture and convective gas flux through the fracture. Theoretical calculations show that thermal convection is indeed likely to play a major role in evaporation from fractures and can explain enhanced salt accumulation observed in surface-exposed fractures. Long-term field measurements, carried out continuously for 5+ years in a single fracture in the Israeli Negev Desert, verified the development of air convection cycles of 10-18 hours duration on a daily basis, with a peak in both convective flux and duration during the winter. During
Clay with Desiccation Cracks is an Advection Dominated Environment
NASA Astrophysics Data System (ADS)
Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.
2012-04-01
, indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.
ERIC Educational Resources Information Center
Carter, Roy A.
1972-01-01
Describes a procedure useful for investigating the effects of substances on plant growth and development. A bean seedling's stem is partially split, and each half is placed in a different nutrient solution. Suggestions for the instructional use of the technique are made. (AL)
NASA Technical Reports Server (NTRS)
Kish, J.
1991-01-01
Geared drive train transmits torque from input shaft in equal parts along two paths in parallel, then combines torques in single output shaft. Scheme reduces load on teeth of meshing gears while furnishing redundancy to protect against failures. Such splitting and recombination of torques common in design of turbine engines.
Rigorous upper bounds for fluid and plasma transport due to passive advection
Krommes, J.A.; Smith, R.A.; Kim, C.B.
1987-07-01
The formulation of variational principles for transport due to passive advection is described. A detailed account of the work has been published elsewhere. In the present paper, the motivations, philosophy, and implications of the method are briefly discussed. 15 refs.
NASA Astrophysics Data System (ADS)
Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.
2013-12-01
Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.
A Quasi-Conservative Adaptive Semi-Lagrangian Advection-Diffusion Scheme
NASA Astrophysics Data System (ADS)
Behrens, Joern
2014-05-01
Many processes in atmospheric or oceanic tracer transport are conveniently represented by advection-diffusion type equations. Depending on the magnitudes of both components, the mathematical representation and consequently the discretization is a non-trivial problem. We will focus on advection-dominated situations and will introduce a semi-Lagrangian scheme with adaptive mesh refinement for high local resolution. This scheme is well suited for pollutant transport from point sources, or transport processes featuring fine filamentation with corresponding local concentration maxima. In order to achieve stability, accuracy and conservation, we combine an adaptive mesh refinement quasi-conservative semi-Lagrangian scheme, based on an integral formulation of the underlying advective conservation law (Behrens, 2006), with an advection diffusion scheme as described by Spiegelman and Katz (2006). The resulting scheme proves to be conservative and stable, while maintaining high computational efficiency and accuracy.
An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...
The impact of advection on stratification and chlorophyll variability in the equatorial Pacific
NASA Astrophysics Data System (ADS)
Dave, Apurva C.; Lozier, M. Susan
2015-06-01
Previously reported global-scale correlations between interannual variability in upper ocean stratification and chlorophyll a (a proxy for phytoplankton biomass) have been shown to be driven by strong associations between the two properties in the central and western equatorial Pacific. Herein, we present evidence that these correlations are not causal but instead result from the advection of heat, salt, and nutrients in the region. Specifically, we demonstrate that stratification and chlorophyll are simultaneously influenced by shifts in the horizontal advective inputs of cold/saline/nutrient-rich waters from upwelling regions to the east and warm/fresh/nutrient-poor waters to the west. We find that horizontal advection contributes substantially to the annual surface layer nutrient budget and, together with vertical advection, significantly impacts interannual variability in chlorophyll. These results highlight the importance of a three-dimensional framework for examining nutrient supply in the upper ocean—a crucial requirement for assessing future marine ecosystem responses to a changing climate.
Advection-Induced Spectrotemporal Defects in a Free-Electron Laser
Bielawski, S.; Szwaj, C.; Bruni, C.; Garzella, D.; Orlandi, G.L.; Couprie, M.E.
2005-07-15
We evidence numerically and experimentally that advection can induce spectrotemporal defects in a system presenting a localized structure. Those defects in the spectrum are associated with the breakings induced by the drift of the localized solution. The results are based on simulations and experiments performed on the super-ACO free-electron laser. However, we show that this instability can be generalized using a real Ginzburg-Landau equation with (i) advection and (ii) a finite-size supercritical region.
2014-04-01
downstream boundary (when needed) is obtained by extrapolation, taking into account the hyperbolic character of the equation . By separating the...for Developing Reduced Order Models of Reaction-Advection Equations 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...advection scalar equation is used as a representative equation to investigate the overall approach. Both linear and nonlinear model equations are
Sensitivity of solute advective travel time to porosities of hydrogeologic units.
Zhu, Jianting; Pohlmann, Karl F; Chapman, Jenny B; Russell, Charles E; Carroll, Rosemary W H; Shafer, David S
2010-01-01
An integral approach is proposed to quantify uncertainty and sensitivity of advective travel time to the effective porosities of hydrogeologic units (HGUs) along groundwater flow paths. The approach is applicable in situations where a groundwater flow model exists, but a full solute transport model is not available. The approach can be used to: (1) determine HGUs whose porosities are influential to the solute advective travel time; and (2) apportion uncertainties of solute advective travel times to the uncertainty contributions from individual HGU porosities. A simple one-dimensional steady-state flow example is used to illustrate the approach. Advective travel times of solutes are obtained based on the one-dimensional steady-state flow results in conjunction with the HGU porosities. The approach can be easily applicable to more complex multi-dimensional cases where advective solute travel time can be calculated based on simulated flow results from groundwater flow models. This approach is particularly valuable for optimizing limited resources when designing field characterization programs for uncertainty reduction by identifying HGUs that contribute most to the estimation uncertainty of advective travel times of solutes.
Emergence of upstream swimming through a hydrodynamic transition
Tung, Chih-kuan; Ardon, Florencia; Roy, Anubhab; Koch, Donald L.; Suarez, Susan S.; Wu, Mingming
2015-01-01
We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition. The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law with the deviation from the critical flow shear rate (γ − γc). This transition is successfully explained by a hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near surface micro-swimmers that possess front-back asymmetry and circular motion. PMID:25815969
Transition duct with divided upstream and downstream portions
McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Maldonado, Jaime Javier; Dillard, Daniel Jackson; Flanagan, James Scott
2015-07-14
Turbine systems are provided. In one embodiment, a turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion extending from the inlet and a downstream portion extending from the outlet. The turbine system further includes a rib extending from an outer surface of the duct passage, the rib dividing the upstream portion and the downstream portion.
Cool covered sky-splitting spectrum-splitting FK
Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone; Miñano, Juan C.; Benitez, Pablo; Buljan, Marina
2014-09-26
Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.
Cool covered sky-splitting spectrum-splitting FK
NASA Astrophysics Data System (ADS)
Mohedano, Rubén; Miñano, Juan C.; Benitez, Pablo; Buljan, Marina; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone
2014-09-01
Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.
Advection and evolution of river basins in mountain ranges.
NASA Astrophysics Data System (ADS)
Castelltort, S.; Simpson, G.; Willett, S.
2009-04-01
Simpson (2006) have proposed a mechanism which involves (1) the idea that river networks in the lowland plains are incorporated in the orogen as it widens, and (2) that they do not change after their incorporation, thus "importing" a geometry acquired outside of the range independently of the tectonic and climatic influences acting inside the uplifting zone. This mechanisms implies rather a "static" view of river networks which serves as an alternative to models in which river networks continuously reorganize inside uplifting topography in such a way as to maintain a statistical geometry dictated solely by geomorphic processes. In the present work our approach to this problem is to measure and compare the form of river basins in the lowlands and in the uplands of the Himalayas, New-Zealand, Taiwan, the European Alps, the Pyrenees and the Apennines. We first present the method we employ to measure the shape of river basins and the data used. Second, we analyse and discuss our results which show a correlation between the shape of networks developed in the pro-lowlands of active orogens and their upland counterparts whereas such a correlation does not exist on the retro-side of the considered orogens. Our results thus support (1) the horizontal advection of river basins from the pro-lowlands to the pro-uplands, (2) a certain amount of reorganization by widening of basin boundaries, and (3) the existence of a different mechanism of drainage network evolution in the retro-side of the orogens. Castelltort, S., and Simpson, G., 2006, Basin Research, 18: 267-276. Hallet, B. and Molnar, P., 2001. J. Geophys. Res, 106: 13697-13709. Hovius, N., 1996, Basin Research, 8: 29-44.
View of upstream face of the forebay dam of Grand ...
View of upstream face of the forebay dam of Grand Coulee Dam, looking west. Construction of the forebay dam, which replaced the eastern end of the original Grand Coulee Dam, was completed in 1974. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA
2. CONTEXTUAL VIEW FROM UPSTREAM OF BRIDGE IN ITS SETTING, ...
2. CONTEXTUAL VIEW FROM UPSTREAM OF BRIDGE IN ITS SETTING, LOOKING SOUTH-SOUTHWEST FROM LOWER (RAILROAD) DECK OF SOUTHERN PACIFIC TRANSPORTATION COMPANY'S I STREET BRIDGE - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA
25. UPSTREAM VIEW OF LOWER END OF OUTLET STRUCTURE SHOWING ...
25. UPSTREAM VIEW OF LOWER END OF OUTLET STRUCTURE SHOWING FORMS IN PLACE FOR GRAVITY WALL SECTIONS.... Volume XVI, No. 16, August 16, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. ...
23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. NOTE FORMS FOR LEFT GRAVITY ABUTMENT AT UPPER RIGHT CORNER OF PICTURE. ARCHES 3, 4, 5, AND 7 COMPLETED TO ELEVATION 1795. 5 OR 7.5 FEET BELOW TOP OF PARAPET WALL. November 29, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ
1. View looking upstream (southwest) at diversion dam. Water enters ...
1. View looking upstream (southwest) at diversion dam. Water enters half-round flume on right. Break in diversion structure provides a view of water flow in flume during the high water runoff in June. - Rock Creek Hydroelectric Project, Rock Creek, Baker County, OR
10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME ...
10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME CEMENT PIPE AND CAST-IRON (460'). NOTE CYLINDRICAL COLLAR OF CEMENT SECTIONS AND BELL JUNCTIONS OF IRON PIPE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN ...
2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN TAN FLOOD-WATER HEADGATE IN FOREGROUND. TAKEN FROM NORTH END OF DAM - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ
15. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING THE UPSTREAM FACADE ...
15. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING THE UPSTREAM FACADE OF POWERHOUSE #1; TRANSFORMERS ARE VISIBLE ON THE RIGHT, THE GANTRY CRANE IS LEFT/CENTER, AND SWITCHING EQUIPMENT IS ON TOP OF BUILDING. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR
7. GENERAL VIEW LOOKING NORTH, SHOWING UPSTREAM SIDE OF POWERHOUSE ...
7. GENERAL VIEW LOOKING NORTH, SHOWING UPSTREAM SIDE OF POWERHOUSE #1; ADMINISTRATIVE OFFICES ARE VISIBLE AT CENTER/LEFT WITH ELEVATOR TOWER IN LEFT BACKGROUND; GANTRY CRANE IS VISIBLE IN FAR RIGHT BACKGROUND. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR
13. Detail, upper chord connection point on upstream side of ...
13. Detail, upper chord connection point on upstream side of truss, showing connection of upper chord, laced vertical compression member, knee-braced strut, counters, and laterals. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA
VIEW OF UPSTREAM (EAST) SIDES OF UPPER (EAST) END OF ...
VIEW OF UPSTREAM (EAST) SIDES OF UPPER (EAST) END OF LOCK, SOUTHEAST AND NORTHEAST CONTROL HOUSES, LOCK UNDER REPAIR, BUILDING NOS. 51, 52 AND SOUTHWEST CONTROL HOUSE IN BACKGROUND, VIEW TOWARDS WEST-NORTHWEST - Ortona Lock, Lock No. 2, Machinery and Control Houses, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL
UPSTREAM (WEST) VIEW SHOWING SOUTH EMBANKMENT BERM AND CONCRETE COREWALL ...
UPSTREAM (WEST) VIEW SHOWING SOUTH EMBANKMENT BERM AND CONCRETE COREWALL AT CENTER, WITH COOKE DAM POND AT LEFT AND POWERHOUSE (MI-98-C) AND SPILLWAY (MI-98-B) IN BACKGROUND. VIEW TO NORTHEAST - Cooke Hydroelectric Plant, South Embankment, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI
COOKE DAM POND AND UPSTREAM (WEST) SIDE OF (LR) NORTH ...
COOKE DAM POND AND UPSTREAM (WEST) SIDE OF (L-R) NORTH EMBANKMENT (MI-98-A), SPILLWAY (MI-98-B), PENSTOCK ENTRANCES, POWERHOUSE (MI-98-C), AND SOUTH EMBANKMENT (MI-98-E). VIEW TO NORTHEAST - Cooke Hydroelectric Plant, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI
3. FORMER INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM AT ...
3. FORMER INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM AT LEFT IS RUBBLE MASONRY COVERING INTERSECTION OF THE TWO IRON PIPES FROM NEW DAM ENTERING OLD INTAKE OPENING AT RIGHT IS BOX FLUME LEADING TO AERATOR. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
DESCHUTES PROJECT WICKIUP DAM VIEW OF UPSTREAM FACE ...
DESCHUTES PROJECT WICKIUP DAM VIEW OF UPSTREAM FACE FROM RIGHT ABUTMENT. CPS CREW PLACING RIPRAP. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, July 26, 1944 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR
Canoe slalom boat trajectory while negotiating an upstream gate.
Hunter, Adam
2009-06-01
The aim of this study was to determine how the path chosen by elite slalom paddlers influences the time taken to negotiate an upstream gate. Six trials for international men's single kayak (MK1) (n = 11) and single canoe (C1) (n = 6) paddlers were digitized for a left-hand upstream gate. Results revealed that the absolute variability of paddlers increased as their total time increased (r = 0.594), but the coefficient of variation remained constant. There was a strong correlation (r = 0.89, each individual trial; r = 0.93, mean total time for each participant) between boat trajectory and the total time. The MK1 and C1 paddlers used similar strategies to negotiate an upstream gate. There were significant differences (P < 0.05) between the boat trajectory of the fastest and slowest paddlers (average distance between paddler's head and the inside pole). These results suggest that to achieve a faster upstream gate performance, paddlers should concentrate on the distance between their head and the inside pole. However, there would be an optimal distance beyond which any further reduction in the distance would impede technique and performance.
72. VIEW OF UPSTREAM SIDE OF THE MAIN LOCK MITER ...
72. VIEW OF UPSTREAM SIDE OF THE MAIN LOCK MITER GATE IN A CLOSED POSITION, SHOWING THE FIT OF CONTACT BLOCKS Photograph No. 50-398. November 28, 1950 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL
63. Upstream face of Waddell Dam as viewed from the ...
63. Upstream face of Waddell Dam as viewed from the west abutment. Crane at center is used to service the penstock intake. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
18. Upstream face of arches, concrete placing tower is at ...
18. Upstream face of arches, concrete placing tower is at far right. Tower at center was used to convey material. Photographer unknown, January 29, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
42. VIEW OF STAGE RECORDER AT END OF UPSTREAM GUIDE ...
42. VIEW OF STAGE RECORDER AT END OF UPSTREAM GUIDE WALL, LOOKING NORTHEAST. (Several hours after this view was taken, the stage recorder was hit a~d heavily damaged by a grain barge.) - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 9, Lynxville, Crawford County, WI
View of upstream face of Grand Coulee Dam, looking northeast. ...
View of upstream face of Grand Coulee Dam, looking northeast. This image features a partially cloudy sky.) - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA
45. View of upstream face of fish screens at Dingle ...
45. View of upstream face of fish screens at Dingle Basin, looking northwest from south side of basin. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
43. View of log boom (upstream) protecting fish screens at ...
43. View of log boom (upstream) protecting fish screens at Dingle Basin, looking southwest from north side of basin. Photo by Brian C. Morris, PUget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
15. UPSTREAM VIEW (PHOTOGRAPHER UNKNOWN) SHOWING BIG DALTON DAM NEAR ...
15. UPSTREAM VIEW (PHOTOGRAPHER UNKNOWN) SHOWING BIG DALTON DAM NEAR FULL CAPACITY AFTER CONSTRUCTION. PICTURE WAS DEVELOPED FROM COPY NEGATIVES WHICH WERE TAKEN ON 2-15-1973 BY PHOTOGRAPHER D. MEIER OF L.A. COUNTY PUBLIC WORKS. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA
10. View to west from Jacob Meyer Park, showing upstream ...
10. View to west from Jacob Meyer Park, showing upstream (east) side of truss span. Bend is visible in lower portion of damaged vertical compression member third from right. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA
9. Oblique view to southsouthwest of upstream (east) side of ...
9. Oblique view to south-southwest of upstream (east) side of bridge from near north abutment in Jacob Meyer Park. Note cutwaters on piers, distinctive appearance of boxed, repaired vertical compression members as compared to original, laced compression members. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA
8. Upstream face of Mormon Flat, both concrete placement tower ...
8. Upstream face of Mormon Flat, both concrete placement tower and 105 foot derrick are visible. Photographer unknown, June 8, 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ
8. GENERAL EXTERIOR VIEW LOOKING NORTHWEST TOWARD UPSTREAM END OF ...
8. GENERAL EXTERIOR VIEW LOOKING NORTHWEST TOWARD UPSTREAM END OF NAVIGATION LOCK #1; SOUTH END OF POWERHOUSE #1 IS VISIBLE ON RIGHT; BRADFORD SLOUGH IS VISIBLE IN FOREGROUND. - Bonneville Project, Navigation Lock No. 1, Oregon shore of Columbia River near first Powerhouse, Bonneville, Multnomah County, OR
14. VIEW SHOWING UPSTREAM FACE OF HORSE MESA. TRACK FROM ...
14. VIEW SHOWING UPSTREAM FACE OF HORSE MESA. TRACK FROM AGGREGATE BARGES TO MIXING PLANT IS AT LOWER LEFT, RIGHT SPILLWAY CHUTE IS TAKING FORM AT UPPER RIGHT April 29, 1927 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ
32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...
32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA
View of Stehr Lake from FS 502 looking upstream (northeast). ...
View of Stehr Lake from FS 502 looking upstream (northeast). Vehicle at right center is parked on earthen Upper Stehr Lake Dam. - Childs-Irving Hydroelectric Project, Childs System, Stehr Lake & Dams, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ
18. View to southwest. Detail, bearing shoe, upstream side of ...
18. View to southwest. Detail, bearing shoe, upstream side of east pier. Copy negative made from 35mm color transparency made with with 135mm lens by John Snyder, due to lack of sufficiently long lens for 4x5 camera. - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
12. Upstream view showing thelower log pond log chute in ...
12. Upstream view showing thelower log pond log chute in the main channel of the Hudson River. The log chute in the dam can be seen in the background. Facing southwest. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY
4. AERATOR AT 525, CONSTRUCTED 19371938, VIEW FROM UPSTREAM (TRASH ...
4. AERATOR AT 525, CONSTRUCTED 1937-1938, VIEW FROM UPSTREAM (TRASH SCREEN REMOVED FOR CLARITY), WATER FROM INTAKE FLOWS THROUGH FLUME, THEN DAMS, AND SPILLS OVER STEPS TO MIX WITH OXYGEN, THUS REDUCING ACIDITY LEVELS. ACID INDUCES FASTER CORROSION OF PIPES AND SPOILS TASTE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
Torsional Split Hopkinson Bar Optimization
2012-04-10
is the torsional wave speed . Also, one can relate the torque with the yield stress of the material, as seen in equation 2; where r is the radius of...be equal to the mechanical impedance of the bars. In other words, the product of density, speed of wave and polar moment of inertia must remain...pillow blocks used to mount the incident and transmitter bars are cast iron based- mounted Babbitt-lined bearing split, for 1 in. shaft diameter
Low frequency split cycle cryocooler
NASA Technical Reports Server (NTRS)
Bian, S. X.; Zhang, Y. D.; Wan, W. W.; Wang, L.; Hu, Q. C.
1985-01-01
A split cycle Stirling cryocooler with two different drive motors and operating at a low drive frequency can have high thermodynamic efficiency. The temperature of the cold end of the cryocooler varies with drive frequency, voltage of the input electrical power and initial charge pressure values. The cryocooler operating at 8 Hz can provide 7 watts of refrigeration at 77 K for 230 watts of electrical input power.
10 CFR 26.135 - Split specimens.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee...
10 CFR 26.135 - Split specimens.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee...
10 CFR 26.135 - Split specimens.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee...
10 CFR 26.135 - Split specimens.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee...
10 CFR 26.135 - Split specimens.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee...
Split torque transmission load sharing
NASA Technical Reports Server (NTRS)
Krantz, T. L.; Rashidi, M.; Kish, J. G.
1992-01-01
Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.
Testing split supersymmetry with inflation
NASA Astrophysics Data System (ADS)
Craig, Nathaniel; Green, Daniel
2014-07-01
Split supersymmetry (SUSY) — in which SUSY is relevant to our universe but largely inaccessible at current accelerators — has become increasingly plausible given the absence of new physics at the LHC, the success of gauge coupling unification, and the observed Higgs mass. Indirect probes of split SUSY such as electric dipole moments (EDMs) and flavor violation offer hope for further evidence but are ultimately limited in their reach. Inflation offers an alternate window into SUSY through the direct production of superpartners during inflation. These particles are capable of leaving imprints in future cosmological probes of primordial non-gaussianity. Given the recent observations of BICEP2, the scale of inflation is likely high enough to probe the full range of split SUSY scenarios and therefore offers a unique advantage over low energy probes. The key observable for future experiments is equilateral non-gaussianity, which will be probed by both cosmic microwave background (CMB) and large scale structure (LSS) surveys. In the event of a detection, we forecast our ability to find evidence for superpartners through the scaling behavior in the squeezed limit of the bispectrum.
NASA Technical Reports Server (NTRS)
Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)
2001-01-01
Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.
Estimation of the advection effects induced by surface heterogeneities in the surface energy budget
NASA Astrophysics Data System (ADS)
Cuxart, Joan; Wrenger, Burkhard; Martínez-Villagrasa, Daniel; Reuder, Joachim; Jonassen, Marius O.; Jiménez, Maria A.; Lothon, Marie; Lohou, Fabienne; Hartogensis, Oscar; Dünnermann, Jens; Conangla, Laura; Garai, Anirban
2016-07-01
The effect of terrain heterogeneities in one-point measurements is a continuous subject of discussion. Here we focus on the order of magnitude of the advection term in the equation of the evolution of temperature as generated by documented terrain heterogeneities and we estimate its importance as a term in the surface energy budget (SEB), for which the turbulent fluxes are computed using the eddy-correlation method. The heterogeneities are estimated from satellite and model fields for scales near 1 km or broader, while the smaller scales are estimated through direct measurements with remotely piloted aircraft and thermal cameras and also by high-resolution modelling. The variability of the surface temperature fields is not found to decrease clearly with increasing resolution, and consequently the advection term becomes more important as the scales become finer. The advection term provides non-significant values to the SEB at scales larger than a few kilometres. In contrast, surface heterogeneities at the metre scale yield large values of the advection, which are probably only significant in the first centimetres above the ground. The motions that seem to contribute significantly to the advection term in the SEB equation in our case are roughly those around the hectometre scales.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.
2014-03-01
In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon-Vey invariant for special flows for which the magnetic helicity is zero are also discussed.
Solving the advection-diffusion equations in biological contexts using the cellular Potts model
NASA Astrophysics Data System (ADS)
Dan, Debasis; Mueller, Chris; Chen, Kun; Glazier, James A.
2005-10-01
The cellular Potts model (CPM) is a robust, cell-level methodology for simulation of biological tissues and morphogenesis. Both tissue physiology and morphogenesis depend on diffusion of chemical morphogens in the extra-cellular fluid or matrix (ECM). Standard diffusion solvers applied to the cellular potts model use finite difference methods on the underlying CPM lattice. However, these methods produce a diffusing field tied to the underlying lattice, which is inaccurate in many biological situations in which cell or ECM movement causes advection rapid compared to diffusion. Finite difference schemes suffer numerical instabilities solving the resulting advection-diffusion equations. To circumvent these problems we simulate advection diffusion within the framework of the CPM using off-lattice finite-difference methods. We define a set of generalized fluid particles which detach advection and diffusion from the lattice. Diffusion occurs between neighboring fluid particles by local averaging rules which approximate the Laplacian. Directed spin flips in the CPM handle the advective movement of the fluid particles. A constraint on relative velocities in the fluid explicitly accounts for fluid viscosity. We use the CPM to solve various diffusion examples including multiple instantaneous sources, continuous sources, moving sources, and different boundary geometries and conditions to validate our approximation against analytical and established numerical solutions. We also verify the CPM results for Poiseuille flow and Taylor-Aris dispersion.
Upstream Pathways Controlling Mitochondrial Function in Major Psychosis
Machado, Alencar Kolinski; Pan, Alexander Yongshuai; da Silva, Tatiane Morgana; Duong, Angela
2016-01-01
Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca2+ homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca2+ homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics. PMID:27310240
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2014-01-01
A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.
Tomography-based monitoring of isothermal snow metamorphism under advective conditions
NASA Astrophysics Data System (ADS)
Ebner, P. P.; Schneebeli, M.; Steinfeld, A.
2015-07-01
Time-lapse X-ray microtomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. The effect of diffusion and advection across the snow pores on the snow microstructure were analysed in controlled laboratory experiments and possible effects on natural snowpacks discussed. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective permeability. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Isothermal snow metamorphism is driven by sublimation deposition caused by the Kelvin effect and is the limiting factor independently of the transport regime in the pores.
NASA Technical Reports Server (NTRS)
Mcfarland, M. J.
1975-01-01
Horizontal wind components, potential temperature, and mixing ratio fields associated with a severe storm environment in the south central U.S. were analyzed from synoptic upper air observations with a nonhomogeneous, anisotropic weighting function. Each data field was filtered with variational optimization analysis techniques. Variational optimization analysis was also performed on the vertical motion field and was used to produce advective forecasts of the potential temperature and mixing ratio fields. Results show that the dry intrusion is characterized by warm air, the advection of which produces a well-defined upward motion pattern. A corresponding downward motion pattern comprising a deep vertical circulation in the warm air sector of the low pressure system was detected. The axes alignment of maximum dry and warm advection with the axis of the tornado-producing squall line also resulted.
Small-scale particle advection, manipulation and mixing: beyond the hydrodynamic scale.
Straube, Arthur V
2011-05-11
In this paper we discuss the problems of particle advection, manipulation and mixing at small scales. We start by considering reaction-advection-diffusion systems with the focus on mixing. We show how mixing advection affects the processes of reaction-diffusion and discuss mixing-induced instabilities. Further, we consider the problem of particle manipulation and discuss collective effects in systems comprising solid and compressible particles. We particularly discuss mechanisms of particle entrapment, the role of compressibility in the dynamics of bubbly liquids and nonequilibrium colloidal explosion. Finally, we address two issues related to the problem of wetting. First, we study the role of contact line motion for a sessile droplet (or a bubble) on an oscillating substrate. Second, we discuss an instability of a thin film leading to the formation of a fractal structure of droplets.
VIEW SOUTH SOUTHWEST LOOKING UPSTREAM FROM ENTRANCE TO LOCKS 35 ...
VIEW SOUTH SOUTHWEST LOOKING UPSTREAM FROM ENTRANCE TO LOCKS 35 AND 71. THE BRIDGE IN THE VIEW IS NOTED FOR ITS EXTRAORDINARY WIDTH (475 FT.) RELATIVE TO ITS MODEST SPAN (116 FT. 10 IN.). WHEN CONSTRUCTED IN 1914 IT WAS CLAIMED TO BE THE WIDEST BRIDGE IN THE WORLD. MAIN STREET CROSSES IT DIAGONALLY, ALONG WITH TWO CROSS STREETS. - New York State Barge Canal, Lockport Locks, Richmond Avenue, Lockport, Niagara County, NY
Effect of Toston Dam on Upstream Ice Conditions
1989-05-01
1983). The Beltaos formulation for ice jam thickness is 2,u(-si) I Si ~ f ISWSJJ where t = ice cover thickness W = width of flow S = slope of energy...unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(* 5. MONITORING ORGANIZATION REPORT NUMBER( S ) Special Report 89-16 6a. NAME OF PERFORMING...NO. 11. TITLE (Include Secudty Clasfcoffon) Effect of Toston Dam on Upstream Ice Conditions 12. PERSONAL AUTHOR( S ) Ashton, George D. 130. TYPE OF
Steepened channels upstream of knickpoints: Controls on relict landscape response
NASA Astrophysics Data System (ADS)
Berlin, Maureen M.; Anderson, Robert S.
2009-09-01
The morphology of a relict landscape provides important insight into erosion rates and processes prior to base level fall. Fluvial knickpoints are commonly thought to form a leak-proof moving boundary between a rejuvenated landscape below and a relict landscape above. We argue that fluvial rejuvenation may leak farther upstream, depending on the rate and style of knickpoint migration. The outer margin of a relict landscape should therefore be used with caution in tectonic geomorphology studies, as channel steepening upstream of knickpoints could reduce the relict area. We explore the response of the Roan Plateau to knickpoint retreat triggered by late Cenozoic upper Colorado River incision. Multiple knickpoints (100-m waterfalls) separate a low-relief, upper landscape from incised canyons below. Two digital elevation model data sets (10-m U.S. Geological Survey and 1-m Airborne Laser Swath Mapping) indicate steeper channels above waterfalls relative to concave channels farther upstream. The steepened reaches are several kilometers long, correspond to doubling of slope, and exhibit channel narrowing and an increase in hillslope angle. We compare two mechanisms for generating steepened reaches. The first uses a recent model for erosion amplification due to flow acceleration at the waterfall lip. The second acknowledges that waterfall lips may be limited to the outcrop of a resistant formation. Subtle structural warping of the stratigraphy can lead to lowering of the waterfall lip as it retreats, thus lowering base level for upstream channels. Results of numerical modeling experiments suggest the latter mechanism is more consistent with our observations of long, mildly steepened reaches.
8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). ...
8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). BOX FLUME DROPS SLIGHTLY INTO CHAMBER ON LEFT SIDE. CHAMBER IS A SERIES OF BAFFLES DESIGNED TO SLOW THE FLOW OF WATER. FLOW IS REDUCED TO ALLOW PARTICULATES TO SETTLE TO THE BOTTOM. TWO SCREENS (NOT SHOWN) FILTER LARGER DEBRIS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
12. Detail, lower chord connection point on upstream side of ...
12. Detail, lower chord connection point on upstream side of truss, showing pinned connection of lower chord eye bars, laced vertical compression member, diagonal eye bar tension members, turnbuckled diagonal counters, and floor beam. Note also timber floor stringers supported by floor beam, and exposed ends of timber deck members visible at left above lower chord eye bar. View to northwest. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA
DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS
Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.
2016-03-01
Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.
Hydraulics of floods upstream of horseshoe canyons and waterfalls
NASA Astrophysics Data System (ADS)
Lapotre, Mathieu G. A.; Lamb, Michael P.
2015-07-01
Horseshoe waterfalls are ubiquitous in natural streams, bedrock canyons, and engineering structures. Nevertheless, water flow patterns upstream of horseshoe waterfalls are poorly known and likely differ from the better studied case of a one-dimensional linear step because of flow focusing into the horseshoe. This is a significant knowledge gap because the hydraulics at waterfalls controls sediment transport and bedrock incision, which can compromise the integrity of engineered structures and influence the evolution of river canyons on Earth and Mars. Here we develop new semiempirical theory for the spatial acceleration of water upstream of, and the cumulative discharge into, horseshoe canyons and waterfalls. To this end, we performed 110 numerical experiments by solving the 2-D depth-averaged shallow-water equations for a wide range of flood depths, widths and discharges, and canyon lengths, widths and bed gradients. We show that the upstream, normal flow Froude number is the dominant control on lateral flow focusing and acceleration into the canyon head and that focusing is limited when the flood width is small compared to a cross-stream backwater length scale. In addition, for sheet floods much wider than the canyon, flow focusing into the canyon head leads to reduced discharge (and drying in cases) across the canyon sidewalls, which is especially pronounced for canyons that are much longer than they are wide. Our results provide new expectations for morphodynamic feedbacks between floods and topography, and thus canyon formation.
Density Fluctuations Upstream and Downstream of Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.
2016-03-01
Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream-stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.
Interaction of upstream flow distortions with high Mach number cascades
NASA Technical Reports Server (NTRS)
Englert, G. W.
1981-01-01
Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.
Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.
Ramos-Méndez, José; Perl, Joseph; Faddegon, Bruce; Schümann, Jan; Paganetti, Harald
2013-01-01
Purpose: To present the implementation and validation of a geometrical based variance reduction technique for the calculation of phase space data for proton therapy dose calculation. Methods: The treatment heads at the Francis H Burr Proton Therapy Center were modeled with a new Monte Carlo tool (TOPAS based on Geant4). For variance reduction purposes, two particle-splitting planes were implemented. First, the particles were split upstream of the second scatterer or at the second ionization chamber. Then, particles reaching another plane immediately upstream of the field specific aperture were split again. In each case, particles were split by a factor of 8. At the second ionization chamber and at the latter plane, the cylindrical symmetry of the proton beam was exploited to position the split particles at randomly spaced locations rotated around the beam axis. Phase space data in IAEA format were recorded at the treatment head exit and the computational efficiency was calculated. Depth–dose curves and beam profiles were analyzed. Dose distributions were compared for a voxelized water phantom for different treatment fields for both the reference and optimized simulations. In addition, dose in two patients was simulated with and without particle splitting to compare the efficiency and accuracy of the technique. Results: A normalized computational efficiency gain of a factor of 10–20.3 was reached for phase space calculations for the different treatment head options simulated. Depth–dose curves and beam profiles were in reasonable agreement with the simulation done without splitting: within 1% for depth–dose with an average difference of (0.2 ± 0.4)%, 1 standard deviation, and a 0.3% statistical uncertainty of the simulations in the high dose region; 1.6% for planar fluence with an average difference of (0.4 ± 0.5)% and a statistical uncertainty of 0.3% in the high fluence region. The percentage differences between dose distributions in water for
Large-eddy Advection in Evapotranspiration Estimates from an Array of Eddy Covariance Towers
NASA Astrophysics Data System (ADS)
Lin, X.; Evett, S. R.; Gowda, P. H.; Colaizzi, P. D.; Aiken, R.
2014-12-01
Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a sorghum in Bushland, Texas in 2014. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms were integrated from the depth of soil heat flux plate to the height of eddy covariance measurement. Therefore, a comparison between the eddy covariance system and large weighing lysimeter was conducted on hourly and daily basis. The results for the discrepancy between eddy covariance towers and the lysimeter will be discussed in terms of advection and storage contributions in time domain and frequency domain.
An extension of Prandtl-Batchelor theory and consequences for chaotic advection
NASA Astrophysics Data System (ADS)
Mezic, Igor
2002-09-01
We extend the Prandtl-Batchelor theory of steady laminar motion at large Reynolds number to derive conditions that steady three-dimensional Navier-Stokes flows have to satisfy. We combine these results with ergodic theory to show that flows with strong Beltrami property (e.g., ABC flows) cannot be a paradigm for chaotic advection in inertia-dominated boundary-driven three-dimensional flows. Our results indicate that viscous forces are responsible for chaotic advection in steady, three-dimensional boundary-driven Navier-Stokes flows at large Reynolds numbers.
The impact of air mass advection on aerosol optical properties over Gotland (Baltic Sea)
NASA Astrophysics Data System (ADS)
Zdun, Agnieszka; Rozwadowska, Anna; Kratzer, Susanne
2016-12-01
In the present paper, measurements of aerosol optical properties from the Gotland station of the AERONET network, combined with a two-stage cluster analysis of back trajectories of air masses moving over Gotland, were used to identify the main paths of air mass advection to the Baltic Sea and to relate them to aerosol optical properties, i.e. the aerosol optical thickness at the wavelength λ = 500 nm, AOT (500) and the Ångström exponent for the spectral range from 440 to 870 nm, α(440,870). One- to six-day long back trajectories ending at 300, 500 and 3000 m above the station were computed using the HYSPLIT model. The study shows that in the Gotland region, variability in aerosol optical thickness AOT(500) is more strongly related to advections in the boundary layer than to those in the free troposphere. The observed variability in AOT(500) was best explained by the advection speeds and directions given by clustering of 4-day backward trajectories of air arriving in the boundary layer at 500 m above the station. 17 clusters of 4-day trajectories arriving at altitude 500 m above the Gotland station (sea level) derived using two-stage cluster analysis differ from each other with respect to trajectory length, the speed of air mass movement and the direction of advection. They also show different cluster means of AOT(500) and α(440,870). The cluster mean AOT(500) ranges from 0.342 ± 0.012 for the continental clusters M2 (east-southeast advection with moderate speed) and 0.294 ± 0.025 for S5 (slow south-southeast advection) to 0.064 ± 0.002 and 0.069 ± 0.002 for the respective marine clusters L3 (fast west-northwest advection) and M3 (north-northwest advection with moderate speed). The cluster mean α(440,870) varies from 1.65-1.70 for the short-trajectory clusters to 0.98 ± 0.03 and 1.06 ± 0.03 for the Arctic marine cluster L4 (fast inflow from the north) and marine cluster L5 (fast inflow from the west) respectively.
Anninos, P
2002-02-11
Several advection algorithms are presented within the remap framework for unstructured mesh ALE codes. The methods discussed include a generic advection scheme based on a finite volume approach, and three groups of algorithms for the treatment of material boundary interfaces. The interface capturing algorithms belong to the Volume of Fluid (VoF) class of methods to approximate material interfaces from the local fractional volume of fluid distribution in arbitrary unstructured polyhedral meshes appropriate for the Kull code. Also presented are several schemes for extending single material radiation diffusion solvers to account for multi-material interfaces.
Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks
NASA Astrophysics Data System (ADS)
Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.
2013-12-01
Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus
Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong
2015-08-15
In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.
High Performance Split-Stirling Cooler Program
1982-09-01
7 SPLIT- STIRLING CYCLE CRYOCOOLER . ...... . . . . . 13 8 TEMPERATURE-SHOCK COMPARISON PERFORMANCE DATA, S/N 002 . . 23 9 TEMPERATURE-SHOCK...PERFORMANCE SPLIT- STIRLING "COOLER PROGRAM FINAL TECHNICAL REPORT "September 1982 Prepared for NIGHT VISION AND ELECTRO-OPTICS LABORATORI ES "Contract DAAK70...REPORT & P.Vt2OO COVERED HIGH PERFORMANCE SPLIT- STIRLING COOLER PROGRAM Final Technical Sept. 1979. - Sept. 1982 S. PERPORMING ORO. REPORT KUMMER
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...
NASA Astrophysics Data System (ADS)
Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman
2013-01-01
Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.
Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk
2012-01-01
The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux.
MECHANISM OF OUTFLOWS IN ACCRETION SYSTEM: ADVECTIVE COOLING CANNOT BALANCE VISCOUS HEATING?
Gu, Wei-Min
2015-01-20
Based on the no-outflow assumption, we investigate steady-state, axisymmetric, optically thin accretion flows in spherical coordinates. By comparing the vertically integrated advective cooling rate with the viscous heating rate, we find that the former is generally less than 30% of the latter, which indicates that the advective cooling itself cannot balance the viscous heating. As a consequence, for radiatively inefficient flows with low accretion rates such as M-dot ≲10{sup −3} M-dot {sub Edd}, where M-dot {sub Edd} is the Eddington accretion rate, the viscous heating rate will be larger than the sum of the advective cooling rate and the radiative cooling one. Thus, no thermal equilibrium can be established under the no-outflow assumption. We therefore argue that in such cases outflows ought to occur and take away more than 70% of the thermal energy generated by viscous dissipation. Similarly, for optically thick flows with extremely large accretion rates such as M-dot ≳10 M-dot {sub Edd}, outflows should also occur owing to the limited advection and the low efficiency of radiative cooling. Our results may help to understand the mechanism of outflows found in observations and numerical simulations.
NASA Astrophysics Data System (ADS)
Rogers, M. A.
2015-12-01
Using satellite observations from GOES-E and GOES-W platforms in concert with GFS-derived cloud-level winds and a standalone radiative transfer model, an advection-derived forecast for surface GHI over the continental United States, with intercomparison between forecasts for four zones over the CONUS and Central Pacific with SURFRAD results. Primary sources for error in advection-based forecasts, primarily driven by false- or mistimed ramp events are discussed, with identification of error sources quantified along with techniques used to improve advection-based forecasts to approximately 10% MAE for designated surface locations. Development of a blended steering wind product utilizing NWP output combined with satellite-derived winds from AMV techniques to improve 0-1 hour advection forecasts will be discussed. Additionally, the use of two years' of solar forecast observations in the development of a prototype probablistic forecast for ramp events will be shown, with the intent of increasing the use of satellite-derived forecasts for grid operators and optimizing integration of renewable resources into the power grid. Elements of the work were developed under the 'Public-Private-Academic Partnership to Advance Solar Power Forecasting' project spearheaded by the National Center for Atmospheric Research.
An enriched finite element method to fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam
2017-03-01
In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.
DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE
A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...
A global spectral element model for poisson equations and advective flow over a sphere
NASA Astrophysics Data System (ADS)
Mei, Huan; Wang, Faming; Zeng, Zhong; Qiu, Zhouhua; Yin, Linmao; Li, Liang
2016-03-01
A global spherical Fourier-Legendre spectral element method is proposed to solve Poisson equations and advective flow over a sphere. In the meridional direction, Legendre polynomials are used and the region is divided into several elements. In order to avoid coordinate singularities at the north and south poles in the meridional direction, Legendre-Gauss-Radau points are chosen at the elements involving the two poles. Fourier polynomials are applied in the zonal direction for its periodicity, with only one element. Then, the partial differential equations are solved on the longitude-latitude meshes without coordinate transformation between spherical and Cartesian coordinates. For verification of the proposed method, a few Poisson equations and advective flows are tested. Firstly, the method is found to be valid for test cases with smooth solution. The results of the Poisson equations demonstrate that the present method exhibits high accuracy and exponential convergence. Highprecision solutions are also obtained with near negligible numerical diffusion during the time evolution for advective flow with smooth shape. Secondly, the results of advective flow with non-smooth shape and deformational flow are also shown to be reasonable and effective. As a result, the present method is proved to be capable of solving flow through different types of elements, and thereby a desirable method with reliability and high accuracy for solving partial differential equations over a sphere.
Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk
2012-01-01
The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux. PMID:22649290
A Study of the Physical Processes of an Advection Fog Boundary Layer
NASA Astrophysics Data System (ADS)
Liu, Duan Yang; Yan, Wen Lian; Yang, Jun; Pu, Mei Juan; Niu, Sheng Jie; Li, Zi Hua
2016-01-01
A large quantity of advection fog appeared in the Yangtze River delta region between 1 and 2 December 2009. Here, we detail the fog formation and dissipation processes and the background weather conditions. The fog boundary layer and its formation and dissipation mechanisms have also been analyzed using field data recorded in a northern suburb of Nanjing. The results showed the following: (1) This advection fog was generated by interaction between advection of a north-east cold ground layer and a south-east warm upper layer. The double-inversion structure generated by this interaction between the cold and warm advections and steady south-east vapour transport was the main cause of this long-lasting fog. The double-inversion structure provided good thermal conditions for the thick fog, and the south-east vapour transport was not only conducive to maintaining the thickness of the fog but also sustained its long duration. (2) The fog-top altitude was over 600 m for most of the time, and the fog reduced visibility to less than 100 m for approximately 12 h. (3) The low-level jet near the lower inversion layer also played a role in maintaining the thick fog system by promoting heat, momentum and south-east vapour transport.
The connection of standard thin disk with advection-dominated accretion flow
NASA Astrophysics Data System (ADS)
Lin, Yi-qing; Lu, Ju-fu; G. U., Wei-min
2005-04-01
Using the standard Runge-Kutta method, a global solution of the basic equations describing black hole accretion flows is derived. It is proved that transition from a standard thin disk to an advection-dominated accretion flow is realizable in case of high viscosity, without introducing any additional mechanism of energy transfer or specifying any ad hoc outer boundary condition.
ISODATA: Thresholds for splitting clusters
NASA Technical Reports Server (NTRS)
Kan, E. P. F. (Principal Investigator)
1972-01-01
The author has identified the following significant results. The parameter AD (average distance) as used in the ISODATA program was critically examined. Thresholds of AD to decide on the splitting of clusters were obtained. For the univariate case, 0.84 was established as a sound choice, after examining several simple, as well as composite, distributions and also after investigating the probability of misclassification when points have to be reassigned to the newly identified clusters. For the multivariate case, the empirical threshold (N-0.16)/square root of N was extrapolated. A final criticism on AD was that AD would lose its effectiveness as a discriminative measure for the present purpose when N was large.
Emittance compensation in split photoinjectors
NASA Astrophysics Data System (ADS)
Floettmann, Klaus
2017-01-01
The compensation of correlated emittance contributions is of primary importance to optimize the performance of high brightness photoinjectors. While only extended numerical simulations can capture the complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope model for the emittance compensation process in a split photoinjector is presented. The emittance term is included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance contribution due to a beam size mismatch into account. The appearance of two emittance minima in the drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation results points out effects which are not treated in the envelope model, such as overfocusing and field nonlinearities.
Dephasing in coherently split quasicondensates
Stimming, H.-P.; Mauser, N. J.; Mazets, I. E.
2011-02-15
We numerically model the evolution of a pair of coherently split quasicondensates. A truly one-dimensional case is assumed, so that the loss of the (initially high) coherence between the two quasicondensates is due to dephasing only, but not due to the violation of integrability and subsequent thermalization (which are excluded from the present model). We confirm the subexponential time evolution of the coherence between two quasicondensates {proportional_to}exp[-(t/t{sub 0}){sup 2/3}], experimentally observed by Hofferberth et al. [Nature 449, 324 (2007)]. The characteristic time t{sub 0} is found to scale as the square of the ratio of the linear density of a quasicondensate to its temperature, and we analyze the full distribution function of the interference contrast and the decay of the phase correlation.
Salt splitting with ceramic membranes
Kurath, D.
1996-10-01
The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.
Split liver transplantation in adults
Hashimoto, Koji; Fujiki, Masato; Quintini, Cristiano; Aucejo, Federico N; Uso, Teresa Diago; Kelly, Dympna M; Eghtesad, Bijan; Fung, John J; Miller, Charles M
2016-01-01
Split liver transplantation (SLT), while widely accepted in pediatrics, remains underutilized in adults. Advancements in surgical techniques and donor-recipient matching, however, have allowed expansion of SLT from utilization of the right trisegment graft to now include use of the hemiliver graft as well. Despite less favorable outcomes in the early experience, better outcomes have been reported by experienced centers and have further validated the feasibility of SLT. Importantly, more than two decades of experience have identified key requirements for successful SLT in adults. When these requirements are met, SLT can achieve outcomes equivalent to those achieved with other types of liver transplantation for adults. However, substantial challenges, such as surgical techniques, logistics, and ethics, persist as ongoing barriers to further expansion of this highly complex procedure. This review outlines the current state of SLT in adults, focusing on donor and recipient selection based on physiology, surgical techniques, surgical outcomes, and ethical issues. PMID:27672272
Method for carbon dioxide splitting
Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.
2017-02-28
A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0
Minimal Doubling and Point Splitting
Creutz, M.
2010-06-14
Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.
Salt splitting using ceramic membranes
Kurath, D.E.
1997-10-01
Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.
Increased risk of oesophageal adenocarcinoma among upstream petroleum workers
Kirkeleit, Jorunn; Riise, Trond; Bjørge, Tone; Moen, Bente E; Bråtveit, Magne; Christiani, David C
2013-01-01
Objectives To investigate cancer risk, particularly oesophageal cancer, among male upstream petroleum workers offshore potentially exposed to various carcinogenic agents. Methods Using the Norwegian Registry of Employers and Employees, 24 765 male offshore workers registered from 1981 to 2003 was compared with 283 002 male referents from the general working population matched by age and community of residence. The historical cohort was linked to the Cancer Registry of Norway and the Norwegian Cause of Death Registry. Results Male offshore workers had excess risk of oesophageal cancer (RR 2.6, 95% CI 1.4 to 4.8) compared with the reference population. Only the adenocarcinoma type had a significantly increased risk (RR 2.7, 95% CI 1.0 to 7.0), mainly because of an increased risk among upstream operators (RR 4.3, 95% CI 1.3 to 14.5). Upstream operators did not have significant excess of respiratory system or colon cancer or mortality from any other lifestyle-related diseases investigated. Conclusion We found a fourfold excess risk of oesophageal adenocarcinoma among male workers assumed to have had the most extensive contact with crude oil. Due to the small number of cases, and a lack of detailed data on occupational exposure and lifestyle factors associated with oesophageal adenocarcinoma, the results must be interpreted with caution. Nevertheless, given the low risk of lifestyle-related cancers and causes of death in this working group, the results add to the observations in other low-powered studies on oesophageal cancer, further suggesting that factors related to the petroleum stream or carcinogenic agents used in the production process might be associated with risk of oesophageal adenocarcinoma. PMID:19858535
Upstream processes in antibody production: evaluation of critical parameters.
Jain, Era; Kumar, Ashok
2008-01-01
The demand for monoclonal antibody for therapeutic and diagnostic applications is rising constantly which puts up a need to bring down the cost of its production. In this context it becomes a prerequisite to improve the efficiency of the existing processes used for monoclonal antibody production. This review describes various upstream processes used for monoclonal antibody production and evaluates critical parameters and efforts which are being made to enhance the efficiency of the process. The upstream technology has tremendously been upgraded from host cells used for manufacturing to bioreactors type and capacity. The host cells used range from microbial, mammalian to plant cells with mammalian cells dominating the scenario. Disposable bioreactors are being promoted for small scale production due to easy adaptation to process validation and flexibility, though they are limited by the scale of production. In this respect Wave bioreactors for suspension culture have been introduced recently. A novel bioreactor for immobilized cells is described which permits an economical and easy alternative to hollow fiber bioreactor at lab scale production. Modification of the cellular machinery to alter their metabolic characteristics has further added to robustness of cells and perks up cell specific productivity. The process parameters including feeding strategies and environmental parameters are being improved and efforts to validate them to get reproducible results are becoming a trend. Online monitoring of the process and product characterization is increasingly gaining importance. In total the advancement of upstream processes have led to the increase in volumetric productivity by 100-fold over last decade and make the monoclonal antibody production more economical and realistic option for therapeutic applications.
Yan, Jhih-Heng; Chen, You-Wei; Shen, Kuan-Heng; Feng, Kai-Ming
2013-11-18
A light source centralized bidirectional passive optical network (PON) system based on multiband direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) downstream and quadrature phase-shift keying (QPSK) upstream is experimentally demonstrated. By introducing a simple optical single-side band (SSB) filter at the optical network unit (ONU), all the desired signal bands will be immune from the deleterious signal-signal beating interference (SSBI) noise with only single-end direct-detection scheme. An adaptive modulation configuration is employed to enhance the entire downstream throughput which results in a 150-Gbps downstream data rate with a single optical carrier. In the upstream direction, by recycling the clean downstream optical carrier, a 12.5 Gb/s QPSK format with coherent receiving mechanism in central office is adopted for better receiving sensitivity and dispersion tolerance. With the power enhancement by the long-reach PON architecture, the downstream splitting ratio can achieve as high as 1:1024.
POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.
ANDERSON,C.W.APPELLA,E.
2003-10-23
The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.
Hybrid simulation codes with application to shocks and upstream waves
NASA Technical Reports Server (NTRS)
Winske, D.
1985-01-01
Hybrid codes in which part of the plasma is represented as particles and the rest as a fluid are discussed. In the past few years such codes with particle ions and massless, fluid electrons have been applied to space plasmas, especially to collisionless shocks. All of these simulation codes are one-dimensional and similar in structure, except for how the field equations are solved. The various approaches that are used (resistive Ohm's law, predictor-corrector, Hamiltonian) are described in detail and results from the various codes are compared with examples taken from collisionless shocks and low frequency wave phenomena upstream of shocks.
2. View of Potomac River at Great Falls looking upstream ...
2. View of Potomac River at Great Falls looking upstream from Observation Tower. The majestic character of this wild and untrammeled spot is vividly shown. Scanty flow is evidenced by light colored normal water line markings on rock formation. Washington Agueduct Dam is shown in upper portion. Maryland on right and Virginia on left. Natives quoted as saying the water was as low or lower than during the drought conditions of 1930. Mr. Horyduzak, Photographer, 1943. - Potowmack Company: Great Falls Canal & Locks, Great Falls, Fairfax County, VA
Energetic Ions and Magnetic Fields Upstream From the Kronian Magnetosphere
NASA Astrophysics Data System (ADS)
Krimigis, S. M.; Sarris, E.; Sergis, N.; Dialynas, K.; Mitchell, D. G.; Hamilton, D. C.; Dougherty, M.
2008-12-01
The existence of energetic particle events to ~200 Rs upstream and ~1300 Rs downstream of Saturn was established during the Voyager 1, 2 flybys in 1980 and 1981, respectively. The origin of the events could not be determined with certainty because of lack of particle charge state and species measurements at lower (<300 keV) energies, which dominate the spectra. High sensitivity observations of energetic ion directional intensities, energy spectra, and ion composition were obtained by the Ion and Neutral Camera (INCA) of the MIMI instrument complement with a geometry factor of ~2.5 cm2 sr and some capability of separating light (H, He) and heavier (C, N, O) ion groups (henceforth referred to as "hydrogen" and "oxygen" respectively). Charge state information was provided where possible by the Charge-Energy-Mass-Spectrometer (CHEMS) over the range ~3 to 220 keV per charge, and magnetic field (IMF) data by the MAG instrument on Cassini. The observations revealed the presence of distinct upstream bursts of energetic hydrogen and oxygen ions whenever the IMF connected the spacecraft to the planetary bow shock, up to distances of 135 RS. The events exhibited the following characteristics: (1) Hydrogen ion bursts are observed in the energy range 3 to 220 keV (and occasionally to E > 220 keV) and oxygen ion bursts in the energy range 32 to -300 keV. (2) Particle onsets are nearly field-aligned, but the distribution tends to isotropize as the event progresses in time. (3) The duration of the ion bursts is several minutes up to 4 hrs. (4) The events are of varying composition, with some exhibiting significant fluxes of oxygen. (5) The bursts have a filamentary structure with some exhibiting distinct signatures of "velocity- filtering effects" at the edges of convecting IMF filaments. (6) Some ion bursts are accompanied by distinct diamagnetic field depressions and exhibit wave structures consistent with ion cyclotron waves for H+, and O+. Given the repeated magnetic field
The Impact of Upstream Flow on the Atmospheric Boundary Layer in a Valley on a Mountainous Island
NASA Astrophysics Data System (ADS)
Adler, Bianca; Kalthoff, Norbert
2016-03-01
Comprehensive measurements on the mountainous island of Corsica were used to investigate how the mountain atmospheric boundary layer (mountain ABL) in a valley downstream of the main mountain ridge was influenced by the upstream flow. The data used were mainly collected with the mobile observation platform KITcube during the first special observation period of the Hydrological cycle in the Mediterranean Experiment (HyMeX) in 2012 and were based on various in situ, remote sensing and aircraft measurements. Two days in autumn 2012 were analyzed in detail. On these days the mountain ABL evolution was a result of convection and thermally-driven circulations as well as terrain-induced dynamically-driven flows. During periods when dynamically-driven flows were dominant, warm and dry air from aloft with a large-scale westerly wind component was transported downwards into the valley. On one day, these flows controlled the mountain ABL characteristics in a large section of the valley for several hours, while on the other day their impact was observed in a smaller section of the valley for about 1 h only. To explain the observations we considered a theoretical concept based on uniform upstream stratification and wind speed, and calculated the non-dimensional mountain height and the horizontal aspect ratio of the barrier to relate the existing conditions to diagnosed regimes of stratified flow past a ridge. On both days, wave breaking, flow splitting and lee vortices were likely to occur. Besides the upstream conditions, a reduction of stability in the valley seemed to be important for the downward transport to reach the ground. The spatio-temporal structure of such a mountain ABL over complex terrain, which was affected by various interacting flows, differed a lot from that of the classical ABL over homogeneous, flat terrain and it is stressed that the traditional ABL definitions need to be revised when applying them to complex terrain.
Modeling the advection of discontinuous quantities in Geophysical flows using Particle Level Sets
NASA Astrophysics Data System (ADS)
Aleksandrov, V.; Samuel, H.; Evonuk, M.
2010-12-01
Advection is one of the major processes that commonly acts on various scales in nature (core formation, mantle convective stirring, multi-phase flows in magma chambers, salt diapirism ...). While this process can be modeled numerically by solving conservation equations, various geodynamic scenarios involve advection of quantities with sharp discontinuities. Unfortunately, in these cases modeling numerically pure advection becomes very challenging, in particular because sharp discontinuities lead to numerical instabilities, which prevent the local use of high order numerical schemes. Several approaches have been used in computational geodynamics in order to overcome this difficulty, with variable amounts of success. Despite the use of correcting filters or non-oscillatory, shock-preserving schemes, Eulerian (fixed grid) techniques generally suffer from artificial numerical diffusion. Lagrangian approaches (dynamic grids or particles) tend to be more popular in computational geodynamics because they are not prone to excessive numerical diffusion. However, these approaches are generally computationally expensive, especially in 3D, and can suffer from spurious statistical noise. As an alternative to these aforementioned approaches, we have applied a relatively recent Particle Level set method [Enright et al., 2002] for modeling advection of quantities with the presence of sharp discontinuities. We have tested this improved method, which combines the best of Eulerian and Lagrangian approaches, against well known benchmarks and classical Geodynamic flows. In each case the Particle Level Set method accuracy equals or is better than other Eulerian and Lagrangian methods, and leads to significantly smaller computational cost, in particular in three-dimensional flows, where the reduction of computational time for modeling advection processes is most needed.
NASA Astrophysics Data System (ADS)
Samuel, Henri
2010-05-01
Advection is one of the major processes that commonly acts on various scales in nature (core formation, mantle convective stirring, multi-phase flows in magma chambers, salt diapirism ...). While this process can be modeled numerically by solving conservation equations, various geodynamic scenarios involve advection of quantities with sharp discontinuities. Unfortunately, in these cases modeling numerically pure advection becomes very challenging, in particular because sharp discontinuities lead to numerical instabilities, which prevent the local use of high order numerical schemes. Several approaches have been used in computational geodynamics in order to overcome this difficulty, with variable amounts of success. Despite the use of correcting filters or non-oscillatory, shock-preserving schemes, Eulerian (fixed grid) techniques generally suffer from artificial numerical diffusion. Lagrangian approaches (dynamic grids or particles) tend to be more popular in computational geodynamics because they are not prone to excessive numerical diffusion. However, these approaches are generally computationally expensive, especially in 3D, and can suffer from spurious statistical noise. As an alternative to these aforementioned approaches, I have applied a relatively recent Particle Level set method [Enright et al., 2002] for modeling advection of quantities with the presence of sharp discontinuities. I have adapted this improved method, which combines the best of Eulerian and Lagrangian approaches, and I have tested it against well known benchmarks and classical Geodynamic flows. In each case the Particle Level Set method accuracy equals or is better than other Eulerian and Lagrangian methods, and leads to significantly smaller computational cost, in particular in three-dimensional flows, where the reduction of computational time for modeling advection processes is most needed.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Fatichi, Simone; Burlando, Paolo
2015-04-01
A new stochastic approach to generate wind advection, cloud cover and precipitation fields is presented with the aim of formulating a space-time weather generator characterized by fields with high spatial and temporal resolution (e.g., 1 km x 1 km and 5 min). Its use is suitable for stochastic downscaling of climate scenarios in the context of hydrological, ecological and geomorphological applications. The approach is based on concepts from the Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.), the Space-Time Realizations of Areal Precipitation model (STREAP) introduced by Paschalis et al. (2013, Water Resour. Res.), and the High-Resolution Synoptically conditioned Weather Generator (HiReS-WG) presented by Peleg and Morin (2014, Water Resour. Res.). Advection fields are generated on the basis of the 500 hPa u and v wind direction variables derived from global or regional climate models. The advection velocity and direction are parameterized using Kappa and von Mises distributions respectively. A random Gaussian fields is generated using a fast Fourier transform to preserve the spatial correlation of advection. The cloud cover area, total precipitation area and mean advection of the field are coupled using a multi-autoregressive model. The approach is relatively parsimonious in terms of computational demand and, in the context of climate change, allows generating many stochastic realizations of current and projected climate in a fast and efficient way. A preliminary test of the approach is presented with reference to a case study in a complex orography terrain in the Swiss Alps.
Advective removal of intraparticle uranium from contaminated vadose zone sediments, Hanford, U.S.
Ilton, Eugene S; Qafoku, Nikolla P; Liu, Chongxuan; Moore, Dean A; Zachara, John M
2008-03-01
A column study on U(VI)-contaminated vadose zone sediments from the Hanford Site, WA, was performed to investigate U(VI) release kinetics with water advection and variable geochemical conditions. The sediments were collected from an area adjacent to and below tank BX-102 that was contaminated as a result of a radioactive tank waste overfill event. The primary reservoir for U(VI) in the sediments are micrometer-size precipitates composed of nanocrystallite aggregates of a Na-U-Silicate phase, most likely Na-boltwoodite, that nucleated and grew within microfractures of the plagioclase component of sand-sized granitic clasts. Two sediment samples, with different U(VI) concentrations and intraparticle mass transfer properties, were leached with advective flows of three different solutions. The influent solutions were all calcite-saturated and in equilibrium with atmospheric CO2. One solution was prepared from DI water, the second was a synthetic groundwater (SGW) with elevated Na that mimicked groundwater at the Hanford site, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments, and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by slower near steady-state release. U(VI)aq concentrations increased during subsequent stop-flow events. The electrolytes with elevated Na and Si depressed U(VL)aq concentrations in effluent solutions. Effluent U(VI)aq concentrations for both sediments and all three electrolytes were simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution, intraparticle U(VI)aq diffusion, and interparticle advection, where diffusion and dissolution properties were parameterized in a previous batch study.
Quantification of numerical diffusivity due to TVD schemes in the advection equation
NASA Astrophysics Data System (ADS)
Bidadi, Shreyas; Rani, Sarma L.
2014-03-01
In this study, the numerical diffusivity νnum inherent to the Roe-MUSCL scheme has been quantified for the scalar advection equation. The Roe-MUSCL scheme employed is a combination of: (1) the standard extension of the original Roe's formulation to the advection equation, and (2) van Leer's Monotone Upwind Scheme for Conservation Laws (MUSCL) technique that applies a linear variable reconstruction in a cell along with a scaled limiter function. An explicit expression is derived for the numerical diffusivity in terms of the limiter function, the distance between the cell centers on either side of a face, and the face-normal velocity. The numerical diffusivity formulation shows that a scaled limiter function is more appropriate for MUSCL in order to consistently recover the central-differenced flux at the maximum value of the limiter. The significance of the scaling factor is revealed when the Roe-MUSCL scheme, originally developed for 1-D scenarios, is applied to 2-D scalar advection problems. It is seen that without the scaling factor, the MUSCL scheme may not necessarily be monotonic in multi-dimensional scenarios. Numerical diffusivities of the minmod, superbee, van Leer and Barth-Jesperson TVD limiters were quantified for four problems: 1-D advection of a step function profile, and 2-D advection of step, sinusoidal, and double-step profiles. For all the cases, it is shown that the superbee scheme provides the lowest numerical diffusivity that is also most confined to the vicinity of the discontinuity. The minmod scheme is the most diffusive, as well as active in regions away from high gradients. As expected, the grid resolution study demonstrates that the magnitude and the spatial extent of the numerical diffusivity decrease with increasing resolution.
A novel method for analytically solving a radial advection-dispersion equation
NASA Astrophysics Data System (ADS)
Lai, Keng-Hsin; Liu, Chen-Wuing; Liang, Ching-Ping; Chen, Jui-Sheng; Sie, Bing-Ruei
2016-11-01
An analytical solution for solute transport in a radial flow field has a variety of practical applications in the study of the transport in push-pull/divergent/convergent flow tracer tests, aquifer remediation by pumping and aquifer storage and recovery. However, an analytical solution for radial advective-dispersive transport has been proven very difficult to develop and relatively few in subsurface hydrology have made efforts to do so, because variable coefficients in the governing partial differential equations. Most of the solutions for radial advective-dispersive transport presented in the literature have generally been solved semi-analytically with the final concentration values being obtained with the help of a numerical Laplace inversion. This study presents a novel solution strategy for analytically solving the radial advective-dispersive transport problem. A Laplace transform with respect to the time variable and a generalized integral transform technique with respect to the spatial variable are first performed to convert the transient governing partial differential equations into an algebraic equation. Subsequently, the algebraic equation is solved using simple algebraic manipulations, easily yielding the solution in the transformed domain. The solution in the original domain is ultimately obtained by successive applications of the Laplace and corresponding generalized integral transform inversions. A convergent flow tracer test is used to demonstrate the robustness of the proposed method for deriving an exact analytical solution to the radial advective-dispersive transport problem. The developed analytical solution is verified against a semi-analytical solution taken from the literature. The results show perfect agreement between our exact analytical solution and the semi-analytical solution. The solution method presented in this study can be applied to create more comprehensive analytical models for a great variety of radial advective
Continuous time series of dissolved oxygen (DO) have been used to compute estimates of metabolism in aquatic ecosystems. Central to this open water or "Odum" method is the assumption that the DO time is not strongly affected by advection and that effects due to advection or mixin...
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...
Cheating More when the Spoils Are Split
ERIC Educational Resources Information Center
Wiltermuth, Scott S.
2011-01-01
Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…
Splitting and Projection at Work in Schools
ERIC Educational Resources Information Center
Dunning, Gerald; James, Chris; Jones, Nicola
2005-01-01
Purpose: The purpose of this paper is to report research into the social defence of splitting and projection in schools. In splitting and projection, organisational members separate their unbearable feelings from the more acceptable ones and project them, typically towards other individuals and groups. Design/methodology/approach: The research was…
Splitting in Schizophrenia and Borderline Personality Disorder
Pec, Ondrej; Bob, Petr; Raboch, Jiri
2014-01-01
Background Splitting describes fragmentation of conscious experience that may occur in various psychiatric disorders. A purpose of this study is to examine relationships between psychological process of splitting and disturbed cognitive and affective functions in schizophrenia and borderline personality disorder (BPD). Methods In the clinical study, we have assessed 30 patients with schizophrenia and 35 patients with BPD. The symptoms of splitting were measured using self-reported Splitting Index (SI). As a measure of semantic memory disorganization we have used verbal fluency test. Other psychopathological symptoms were assessed using Health of the Nation Outcome Scale (HoNOS). Results Main results show that SI is significantly higher in BPD group than in schizophrenia, and on the other hand, verbal fluency is significantly lower in schizophrenia group. Psychopathological symptoms measured by HoNOS are significantly higher in the BPD group than in schizophrenia. Significant relationship was found between verbal fluency and the SI “factor of others” (Spearman r = −0.52, p<0.01) in schizophrenia patients. Conclusions Processes of splitting are different in schizophrenia and BPD. In BPD patients splitting results to mental instability, whereas in schizophrenia the mental fragmentation leads to splitting of associations observed as lower scores of verbal fluency, which in principle is in agreement with Bleuler’s historical concept of splitting in schizophrenia. PMID:24603990
Precision aligned split V-block
George, Irwin S.
1984-01-01
A precision aligned split V-block for holding a workpiece during a milling operation having an expandable frame for allowing various sized workpieces to be accommodated, is easily secured directly to the mill table and having key lugs in one base of the split V-block that assures constant alignment.
Transferring Goods or Splitting a Resource Pool
ERIC Educational Resources Information Center
Dijkstra, Jacob; Van Assen, Marcel A. L. M.
2008-01-01
We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors splitting a fixed pool of resources (split pool…
A Large Eddy Simulation Study for upstream wind energy conditioning
NASA Astrophysics Data System (ADS)
Sharma, V.; Calaf, M.; Parlange, M. B.
2013-12-01
The wind energy industry is increasingly focusing on optimal power extraction strategies based on layout design of wind farms and yaw alignment algorithms. Recent field studies by Mikkelsen et al. (Wind Energy, 2013) have explored the possibility of using wind lidar technology installed at hub height to anticipate incoming wind direction and strength for optimizing yaw alignment. In this work we study the benefits of using remote sensing technology for predicting the incoming flow by using large eddy simulations of a wind farm. The wind turbines are modeled using the classic actuator disk concept with rotation, together with a new algorithm that permits the turbines to adapt to varying flow directions. This allows for simulations of a more realistic atmospheric boundary layer driven by a time-varying geostrophic wind. Various simulations are performed to investigate possible improvement in power generation by utilizing upstream data. Specifically, yaw-correction of the wind-turbine is based on spatio-temporally averaged wind values at selected upstream locations. Velocity and turbulence intensity are also considered at those locations. A base case scenario with the yaw alignment varying according to wind data measured at the wind turbine's hub is also used for comparison. This reproduces the present state of the art where wind vanes and cup anemometers installed behind the rotor blades are used for alignment control.
Computational sciences in the upstream oil and gas industry.
Halsey, Thomas C
2016-10-13
The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry.This article is part of the themed issue 'Energy and the subsurface'.
Face split interpretations in sheet metal design
NASA Astrophysics Data System (ADS)
Vitalii, Vorkov; Dewil, Reginald; Mannaerts, Jef; Vandepitte, Dirk; Duflou, Joost R.
2016-10-01
Most of the modern CAD systems have capabilities to work with sheet metal parts. However, the functionality of these modules is limited to modelling, unfolding and delivering project documentation. In some cases the proposed design cannot be manufactured without splitting one or more faces of the part. In the current work, the graph representation of sheet metal parts and corresponding flat patterns are discussed. A splitting procedure is introduced which keeps all existing connections between faces intact. In addition, three interpretations for splitting are presented and recommendations for possible usage are given. The splitting procedure is found to be a convenient option to create feasible flat patterns. In addition, the different splitting interpretations present more flexibility to the designer.
Hughes, Jacob B.; Hightower, Joseph E.
2015-01-01
Riverine hydroacoustic techniques are an effective method for evaluating abundance of upstream migrating anadromous fishes. To use these methods in the Roanoke River, North Carolina, at a wide site with uneven bottom topography, we used a combination of split-beam sonar and dual-frequency identification sonar (DIDSON) deployments. We aimed a split-beam sonar horizontally to monitor midchannel and near-bottom zones continuously over the 3-month spring monitoring periods in 2010 and 2011. The DIDSON was rotated between seven cross-channel locations (using a vertical aim) and nearshore regions (using horizontal aims). Vertical deployment addressed blind spots in split-beam coverage along the bottom and provided reliable information about the cross-channel and vertical distributions of upstream migrants. Using a Bayesian framework, we modeled sonar counts within four cross-channel strata and apportioned counts by species using species proportions from boat electrofishing and gill netting. Modeled estimates (95% credible intervals [CIs]) of total upstream migrants in 2010 and 2011 were 2.5 million (95% CI, 2.4–2.6 million) and 3.6 million (95% CI, 3.4–3.9 million), respectively. Results indicated that upstream migrants are extremely shore- and bottom-oriented, suggesting nearshore DIDSON monitoring improved the accuracy and precision of our estimates. This monitoring protocol and model may be widely applicable to river systems regardless of their cross-sectional width or profile.
Perko, Janez; Patel, Ravi A
2014-05-01
The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance.
Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)
NASA Astrophysics Data System (ADS)
Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.
2012-04-01
The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during
Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.
Steenen, S A; Becking, A G
2016-07-01
An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches.
Innovative solar thermochemical water splitting.
Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D.; James, Darryl L.
2008-02-01
Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.
Segmented holographic spectrum splitting concentrator
NASA Astrophysics Data System (ADS)
Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.
2016-09-01
This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.
Splitting Methods for Convex Clustering
Chi, Eric C.; Lange, Kenneth
2016-01-01
Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online. PMID:27087770
Lightweight electrical connector split backshell
NASA Technical Reports Server (NTRS)
Goldman, Elliot (Inventor)
2009-01-01
An electrical connector split backshell is provided, comprising two substantially identical backshell halves. Each half includes a first side and a cam projecting therefrom along an axis perpendicular thereto, the cam having an alignment tooth with a constant radius and an engagement section with a radius that increases with angular distance from the alignment tooth. Each half further includes a second side parallel to the first side and a circular sector opening disposed in the second side, the circular sector opening including an inner surface configured as a ramp with a constant radius, the ramp being configured to engage with an engagement section of a cam of the other half, the circular sector opening further including a relieved pocket configured to receive an alignment tooth of the cam of the other half. Each half further includes a back side perpendicular to the first and second sides and a wire bundle notch disposed in the back side, the wire bundle notch configured to align with a wire bundle notch of the other half to form a wire bundle opening. The two substantially identical halves are rotatably coupled by engaging the engagement section of each half to the ramp of the other half.
Thinking Upstream: A 25-Year Retrospective and Conceptual Model Aimed at Reducing Health Inequities.
Butterfield, Patricia G
Thinking upstream was first introduced into the nursing vernacular in 1990 with the goal of advancing broad and context-rich perspectives of health. Initially invoked as conceptual framing language, upstream precepts were subsequently adopted and adapted by a generation of thoughtful nursing scholars. Their work reduced health inequities by redirecting actions further up etiologic pathways and by emphasizing economic, political, and environmental health determinants. US health care reform has fostered a much broader adoption of upstream language in policy documents. This article includes a semantic exploration of thinking upstream and a new model, the Butterfield Upstream Model for Population Health (BUMP Health).
Upstream Swirl Effects on the Flow Inside a Labyrinth Seal
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Johnson, Mark C.
1997-01-01
The flow field inside a seven cavity tooth on rotor labyrinth seal was measured using a 3D laser Doppler anemometer system. The seal was operated at a Reynolds number of 24,000 and a Taylor number of 6,600 using water as the working fluid. Swirl vanes were placed upstream of the seal to produce positive, negative, and no preswirl. It was found that the axial and radial velocities were minimally effected. The tangential velocity, both in the clearance region and the seal cavities on the rotor, were greatly altered by the preswirl. By applying negative preswirl, the tangential velocity was suppressed, even in the seventh cavity. The turbulence levels decreased as the preswirl varied from negative to positive.
Upstream solutions for price-gouging on critical generic medicines.
Houston, Adam R; Beall, Reed F; Attaran, Amir
2016-01-01
Exorbitant price increases for critical off-patent medicines have received considerable media attention in recent months, leading to an investigation by the U.S. Senate. However, much of this attention has focused upon the companies that initiated the price increases, all of whom had recently acquired the drugs in question. Overlooked are upstream interventions with the originators of these drugs to prevent generics trolling in the first place. Using the particular example of Eli Lilly and Company's efforts to divest itself of cycloserine, a flawed process that paved the way for the recent price hike by Rodelis Therapeutics, this article highlights the responsibilities of drug originators, and safeguards to ensure similar rights transfers do not affect ongoing affordable access.
Hot, diamagnetic cavities upstream from the earth's bow shock
NASA Technical Reports Server (NTRS)
Thomsen, M. F.; Gosling, J. T.; Fuselier, S. A.; Bame, S. J.; Russell, C. T.
1986-01-01
On eight occasions the ISEE 1 and 2 spacecraft registered peculiar plasma structures upstream of the earth's bow shock. The events exhibit a temporary, strong reduction in the magnitude of the magnetic field and strong enhancements of the field strength bordering the reduction zone. The low field strength regions featured temperatures from 1-10 million k and pressure an order of magnitude greater than the solar wind. The pressure gradients exceeded the magnetic tension around the structures, although the field of the cavities may be a closed structure. A model is proposed of hot, expanding diamagnetic plasma cavities with scales on the order of a few earth radii. Speculations on the interaction and origin or impetus for the cavities within the bow shock, foreshock, the magnetosphere and the solar wind are discussed. Similarities between the phenomena detected and signatures obtained with the AMPTE releases of chemicals in the solar wind are noted.
Upstream and downstream signals of nitric oxide in pathogen defence.
Gaupels, Frank; Kuruthukulangarakoola, Gitto Thomas; Durner, Jörg
2011-12-01
Nitric oxide (NO) is now recognised as a crucial player in plant defence against pathogens. Considerable progress has been made in defining upstream and downstream signals of NO. Recently, MAP kinases, cyclic nucleotide phosphates, calcium and phosphatidic acid were demonstrated to be involved in pathogen-induced NO-production. However, the search for inducers of NO synthesis is difficult because of the still ambiguous enzymatic source of NO. Accumulation of NO triggers signal transduction by other second messengers. Here we depict NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 and glyceraldehyde-3-phosphate dehydrogenase as central redox switches translating NO redox signalling into cellular responses. Although the exact position of NO in defence signal networks is unresolved at last some NO-related signal cascades are emerging.
The Effect of Upstream Vane Wakes on Annular Diffuser Flows
NASA Astrophysics Data System (ADS)
Cherry, Erica; Padilla, Angelina; Elkins, Christopher; Eaton, John
2008-11-01
Experiments were performed to determine the sensitivity to inlet conditions of the flow in two annular diffusers. One of the diffusers was a conservative design typical of a diffuser directly upstream of the combustor in a jet engine. The other had the same length and inlet shape as the first diffuser but a larger area ratio and was meant to operate on the verge of separation. Each diffuser was connected to two different inlets, one containing a fully-developed channel flow, the other containing wakes from a row of airfoils. Three-component velocity measurements were taken on the flow in each inlet/diffuser combination using Magnetic Resonance Velocimetry. Results will be presented on the 3D velocity fields in the two diffusers and the effect of the airfoil wakes on separation and secondary flows.
Diabetes mellitus and atrial remodeling: mechanisms and potential upstream therapies.
Zhang, Qitong; Liu, Tong; Ng, Chee Y; Li, Guangping
2014-10-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, and its prevalence has increasing substantially over the last decades. Recent data suggest that there is an increased risk of AF among the patients with diabetes mellitus (DM). However, the potential molecular mechanisms regarding DM-related AF and diabetic atrial remodeling are not fully understood. In this comprehensive review, we would like to summarize the potential relationship between diabetes and atrial remodeling, including structural, electrical, and autonomic remodeling. Also, some upstream therapies, such as thiazolidinediones, probucol, ACEI/ARBs, may play an important role in the prevention and treatment of AF. Therefore, large prospective randomized, controlled trials and further experimental studies should be challengingly continued.
Solar wind flow upstream of the coronal slow shock
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1986-01-01
Slow shocks have been predicted to exist embedded in large coronal holes at low altitude. Two or more curved slow shocks may link together to form a composite discontinuity surface around the sun which may be called the coronal slow shock (CSS). Here a solar-wind model is studied under the assumption that a standing CSS exists and cororates with the sun at a constant angular velocity. A steady, axisymmetrical one-fluid model is introduced to study the expansion of solar wind in the open-field region upstream of the CSS. The model requires that the conditions downstream of the CSS near the equatorial plane can produce a solar wind agreeable with the observations made near the earth's orbit. The paper presents an illustrative calculation in which the polar caps within 60 deg of the polar angle are assumed to be the source region of the solar wind.
From worker health to citizen health: moving upstream.
Sepulveda, Martin-Jose
2013-12-01
New rapid growth economies, urbanization, health systems crises, and "big data" are causing fundamental changes in social structures and systems, including health. These forces for change have significant consequences for occupational and environmental medicine and will challenge the specialty to think beyond workers and workplaces as the principal locus of innovation for health and performance. These trends are placing great emphasis on upstream strategies for addressing the complex systems dynamics of the social determinants of health. The need to engage systems in communities for healthier workforces is a shift in orientation from worker and workplace centric to citizen and community centric. This change for occupational and environmental medicine requires extending systems approaches in the workplace to communities that are systems of systems and that require different skills, data, tools, and partnerships.
Shape and shear guide sperm cells spiraling upstream
NASA Astrophysics Data System (ADS)
Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.
2014-11-01
A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.
Upstream Structures and Their Effects on the Magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
2011-01-01
Kinetic processes within the Earth's foreshock generate a profusion of plasma and magnetic field structures with sizes and durations ranging from the microscale (e.g. SLAMs, solitons, and density holes) to the mesoscale (e.g. foreshock cavities or boundaries, hot flow anomalies, and bubbles). Swept into the bow shock by the solar wind flow, the perturbations associated with these features batter the magnetosphere, driving a wide variety of magnetospheric effects, including large amplitude magnetopause motion, bursty reconnection and the generation of flux transfer events, enhanced pulsation activity within the magnetosphere, diffusion and energization of radiation belt particles, enhanced particle precipitation resulting in dayside aurora and riometer absorption, and the generation of field-aligned currents and magnetic impulse events in high-latitude ground magnetometers. This talk reviews the ever growing menagery of structures observed upstream from the bow shock, examines their possible interrelationships, and considers their magnetospheric consequences.
The foreshock region upstream from the Comet Halley bow shock
NASA Technical Reports Server (NTRS)
Fuselier, S. A.; Anderson, K. A.; Balsiger, H.; Glassmeier, K. H.; Goldstein, B. E.; Neugebauer, M.; Rosenbauer, H.; Shelley, E. G.
1987-01-01
A few hours prior to the crossing of the Comet Halley bow shock, the Giotto spacecraft intermittently encountered an electron foreshock region. The electron foreshock is characterized by magnetic connection to the cometary bow shock and increased field aligned electron heat flux directed away from the bow shock. A similar region was intermittently encountered by the ICE spacecraft prior to its crossing of the Giacobini-Zinner bow wave. During periods of magnetic connection with the Halley bow shock, enhanced magnetic field fluctuations were observed. These enhancements are interpreted as indirect evidence of an ion foreshock in the electron foreshock. No clearly identifiable backstreaming protons are observed during these periods of magnetic connection, however, because it may be difficult to separate a backstreaming population from the cometary pick-up proton population already present in the upstream region.
NASA Technical Reports Server (NTRS)
Gal-Chen, T.
1981-01-01
The laws of fluid motion are invariant under a Gallilean transformation. For a perfect observing system, the data analysis should, therefore, also be invariant under a Gallilean transformation. This invariance is often not preserved in practical observing systems. In this connection, it is often advisable to perform mesoscale analysis in a frame moving with respect to the earth's surface. In the present investigation the velocity of such a frame is referred to as an advection velocity. The investigation is concerned with remaining problems regarding the Gallilean transformation. The establishment of a frame of reference for the achievement of maximum coherence is considered, taking into account the case of given nonsimultaneous observations of scalars or Cartesian vectors. It is found that advection speed can be estimated objectively if a scalar or Cartesian vector can be observed directly and if, in addition, the time and position of each observation is approximately known.
The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre.
Palter, Jaime B; Lozier, M Susan; Barber, Richard T
2005-09-29
Though critically important in sustaining the ocean's biological pump, the cycling of nutrients in the subtropical gyres is poorly understood. The supply of nutrients to the sunlit surface layer of the ocean has traditionally been attributed solely to vertical processes. However, horizontal advection may also be important in establishing the availability of nutrients. Here we show that the production and advection of North Atlantic Subtropical Mode Water introduces spatial and temporal variability in the subsurface nutrient reservoir beneath the North Atlantic subtropical gyre. As the mode water is formed, its nutrients are depleted by biological utilization. When the depleted water mass is exported to the gyre, it injects a wedge of low-nutrient water into the upper layers of the ocean. Contrary to intuition, cold winters that promote deep convective mixing and vigorous mode water formation may diminish downstream primary productivity by altering the subsurface delivery of nutrients.
Scalar variance decay in chaotic advection and Batchelor-regime turbulence
NASA Astrophysics Data System (ADS)
Fereday, D. R.; Haynes, P. H.; Wonhas, A.; Vassilicos, J. C.
2002-03-01
The decay of the variance of a diffusive scalar in chaotic advection flow (or equivalently Batchelor-regime turbulence) is analyzed using a model in which the advection is represented by an inhomogeneous baker's map on the unit square. The variance decays exponentially at large times, with a rate that has a finite limit as the diffusivity κ tends to zero and is determined by the action of the inhomogeneous map on the gravest Fourier modes in the scalar field. The decay rate predicted by recent theoretical work that follows scalar evolution in linear flow and then averages over all stretching histories is shown to be incorrect. The exponentially decaying scalar field is shown to have a spatial power spectrum of the form P(k)~k-σ at wave numbers small enough for diffusion to be neglected, with σ<1.
Analytic radiative-advective equilibrium as a model for high-latitude climate
NASA Astrophysics Data System (ADS)
Cronin, Timothy W.; Jansen, Malte F.
2016-01-01
We propose radiative-advective equilibrium as a basic-state model for the high-latitude atmosphere. Temperature profiles are determined by a competition between stabilization by atmospheric shortwave absorption and advective heat flux convergence, and destabilization by surface shortwave absorption. We derive analytic expressions for temperature profiles, assuming power law atmospheric heating profiles as a function of pressure and two-stream windowed-gray longwave radiative transfer. We discuss example profiles with and without an atmospheric window and show that the sensitivity of surface temperature to forcing depends on the nature of the forcing, with greatest sensitivity to radiative forcing by increased optical thickness and least sensitivity to increased atmospheric heat transport. These differences in sensitivity of surface temperature to forcing can be explained in terms of a forcing-dependent lapse-rate feedback.
Advective-diffusive motion on large scales from small-scale dynamics with an internal symmetry
NASA Astrophysics Data System (ADS)
Marino, Raffaele; Aurell, Erik
2016-06-01
We consider coupled diffusions in n -dimensional space and on a compact manifold and the resulting effective advective-diffusive motion on large scales in space. The effective drift (advection) and effective diffusion are determined as a solvability conditions in a multiscale analysis. As an example, we consider coupled diffusions in three-dimensional space and on the group manifold SO(3) of proper rotations, generalizing results obtained by H. Brenner [J. Colloid Interface Sci. 80, 548 (1981), 10.1016/0021-9797(81)90214-9]. We show in detail how the analysis can be conveniently carried out using local charts and invariance arguments. As a further example, we consider coupled diffusions in two-dimensional complex space and on the group manifold SU(2). We show that although the local operators may be the same as for SO(3), due to the global nature of the solvability conditions the resulting diffusion will differ and generally be more isotropic.
Comparison of Nonlinear and Linear Stabilization Schemes for Advection-Diffusion Equations
NASA Astrophysics Data System (ADS)
Grove, R. R.; Heister, T.
2015-12-01
Accurately solving advection-diffusion equations that appear in the finite element discretization of a mantle convection simulation is an important computational issue to the computational geoscience community. This is because it allows for users studying mantle convection to create reliable simulations for something as small and simple as a 2D simulation on their personal laptop to something as complex as a massively parallel 3D simulation on their university supercomputer. Standard finite element discretizations of advection-diffusion equations introduce unphysical oscillations around steep gradients. Therefore, stabilization must be added to the discrete formulation to obtain correct solutions. Using the open source scientific library ASPECT, the SUPG and Entropy Viscosity schemes are compared using stationary and non-stationary test equations. Differences in maximum overshoot and undershoot, smear, and convergence orders are compared to see if improvements can be made to the existing numerical method existing in ASPECT.
NASA Technical Reports Server (NTRS)
Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.
1990-01-01
Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.
Oxygen Advection and Diffusion in a Three Dimensional Vascular Anatomical Network
Fang, Qianqian; Sakadžić, Sava; Ruvinskaya, Lana; Devor, Anna; Dale, Anders M.; Boas, David A.
2008-01-01
There is an increasing need for quantitative and computationally affordable models for analyzing tissue metabolism and hemodynamics in microvascular networks. In this work, we develop a hybrid model to solve for the time-varying oxygen advection-diffusion equation in the vessels and tissue. To obtain a three-dimensional temporal evolution of tissue oxygen concentration for realistic complex vessel networks, we used a graph-based advection model combined with a finite-element based diffusion model and an implicit time-advancing scheme. We validated this algorithm for both static and dynamic conditions. We also applied it to a complex vascular network obtained from a rodent somatosensory cortex. Qualitative agreement was found with in-vivo experiments. PMID:18958033
Advection and the Efficiency of Spectral Energy Transfer in Two-Dimensional Turbulence.
Fang, Lei; Ouellette, Nicholas T
2016-09-02
We report measurements of the geometric alignment of the small-scale turbulent stress and the large-scale rate of strain that together lead to the net flux of energy from small scales to large scales in two-dimensional turbulence. We find that the instantaneous alignment between these two tensors is weak and, thus, that the spectral transport of energy is inefficient. We show, however, that the strain rate is much better aligned with the stress at times in the past, suggesting that the differential advection of the two is responsible for the inefficient spectral transfer. We provide evidence for this conjecture by measuring the alignment statistics conditioned on weakly changing stress history. Our results give new insight into the relationship between scale-to-scale energy transfer, geometric alignment, and advection in turbulent flows.
NASA Astrophysics Data System (ADS)
Yochelis, Arik; Bar-On, Tomer; Gov, Nir S.
2016-04-01
Unconventional myosins belong to a class of molecular motors that walk processively inside cellular protrusions towards the tips, on top of actin filament. Surprisingly, in addition, they also form retrograde moving self-organized aggregates. The qualitative properties of these aggregates are recapitulated by a mass conserving reaction-diffusion-advection model and admit two distinct families of modes: traveling waves and pulse trains. Unlike the traveling waves that are generated by a linear instability, pulses are nonlinear structures that propagate on top of linearly stable uniform backgrounds. Asymptotic analysis of isolated pulses via a simplified reaction-diffusion-advection variant on large periodic domains, allows to draw qualitative trends for pulse properties, such as the amplitude, width, and propagation speed. The results agree well with numerical integrations and are related to available empirical observations.
Corporation-induced Diseases, Upstream Epidemiologic Surveillance, and Urban Health
2008-01-01
Corporation-induced diseases are defined as diseases of consumers, workers, or community residents who have been exposed to disease agents contained in corporate products. To study the epidemiology and to guide expanded surveillance of these diseases, a new analytical framework is proposed. This framework is based on the agent–host–environment model and the upstream multilevel epidemiologic approach and posits an epidemiologic cascade starting with government-sanctioned corporate profit making and ending in a social cost, i.e., harm to population health. Each of the framework’s levels addresses a specific level of analysis, including government, corporations, corporate conduits, the environment of the host, and the host. The explained variable at one level is also the explanatory variable at the next lower level. In this way, a causal chain can be followed along the epidemiologic cascade from the site of societal power down to the host. The framework thus describes the pathways by which corporate decisions filter down to disease production in the host and identifies opportunities for epidemiologic surveillance. Since the environment of city dwellers is strongly shaped by corporations that are far upstream and several levels away, the framework has relevance for the study of urban health. Corporations that influence the health of urban populations include developers and financial corporations that determine growth or decay of urban neighborhoods, as well as companies that use strategies based on neighborhood characteristics to sell products that harm consumer health. Epidemiological inquiry and surveillance are necessary at all levels to provide the knowledge needed for action to protect the health of the population. To achieve optimal inquiry and surveillance at the uppermost levels, epidemiologists will have to work with political scientists and other social scientists and to utilize novel sources of information. PMID:18437580
Assessing upstream fish passage connectivity with network analysis.
McKay, S Kyle; Schramski, John R; Conyngham, Jock N; Fischenich, J Craig
2013-09-01
Hydrologic connectivity is critical to the structure, function, and dynamic process of river ecosystems. Dams, road crossings, and water diversions impact connectivity by altering flow regimes, behavioral cues, local geomorphology, and nutrient cycling. This longitudinal fragmentation of river ecosystems also increases genetic and reproductive isolation of aquatic biota such as migratory fishes. The cumulative effects on fish passage of many structures along a river are often substantial, even when individual barriers have negligible impact. Habitat connectivity can be improved through dam removal or other means of fish passage improvement (e.g., ladders, bypasses, culvert improvement). Environmental managers require techniques for comparing alternative fish passage restoration actions at alternative or multiple locations. Herein, we examined a graph-theoretic algorithm for assessing upstream habitat connectivity to investigate both basic and applied fish passage connectivity problems. First, we used hypothetical watershed configurations to assess general alterations to upstream fish passage connectivity with changes in watershed network topology (e.g., linear vs. highly dendritic) and the quantity, location, and passability of each barrier. Our hypothetical network modeling indicates that locations of dams with limited passage efficiency near the watershed outlet create a strong fragmentation signal but are not individually sufficient to disconnect the system. Furthermore, there exists a threshold in the number of dams beyond which connectivity declines precipitously, regardless of watershed topology and dam configuration. Watersheds with highly branched configurations are shown to be less susceptible to disconnection as measured by this metric. Second, we applied the model to prioritize barrier improvement in the mainstem of the Truckee River, Nevada, USA. The Truckee River application demonstrates the ability of the algorithm to address conditions common in fish
Explosion Clad for Upstream Oil and Gas Equipment
Banker, John G.; Massarello, Jack; Pauly, Stephane
2011-01-17
Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO{sub 2} and/or H{sub 2}S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.
Bachmann, Anne-Lena; Mootz, Henning D.
2015-01-01
Protein splicing mediated by inteins is a self-processive reaction leading to the excision of the internal intein domain from a precursor protein and the concomitant ligation of the flanking sequences, the extein-N and extein-C parts, thereby reconstituting the host protein. Most inteins employ a splicing pathway in which the upstream scissile peptide bond is consecutively rearranged into two thioester or oxoester intermediates before intein excision and rearrangement into the new peptide bond occurs. The catalytically critical amino acids involved at the two splice junctions are cysteine, serine, or threonine. Notably, the only potential combination not observed so far in any of the known or engineered inteins corresponds to the transesterification from an oxoester to a thioester, which suggested that this formal uphill reaction with regard to the thermodynamic stability might be incompatible with intein-mediated catalysis. We show that corresponding mutations also led to inactive gp41-1 and AceL-TerL inteins. We report the novel GOS-TerL split intein identified from metagenomic databases as the first intein harboring the combination of Ser1 and Cys+1 residues. Mutational analysis showed that its efficient splicing reaction indeed follows the shift from oxoester to thioester and thus represents a rare diversion from the canonical pathway. Furthermore, the GOS-TerL intein has an atypical split site close to the N terminus. The IntN fragment could be shortened from 37 to 28 amino acids and exchanged with the 25-amino acid IntN fragment from the AceL-TerL intein, indicating a high degree of promiscuity of the IntC fragment of the GOS-TerL intein. PMID:26453311
Estimating Advective Near-surface Currents from Ocean Color Satellite Images
2015-01-01
RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01/23/2015 Journal Article Estimating advective near-surface currents from ocean color ...currents from the sequential ocean color imagery provided by multiple newer generations of satellite sensors on hourly scales in the Yellow Sea and the...optical properties are discussed regarding the performances of various color products on the retrieval of currents. Similarities of velocity
A family of compact high order coupled time-space unconditionally stable vertical advection schemes
NASA Astrophysics Data System (ADS)
Lemarié, Florian; Debreu, Laurent
2016-04-01
Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost.
Statistical evaluation of thermal advection and stratification effects in scatterometer observations
NASA Technical Reports Server (NTRS)
Levy, Gad; Tiu, F. S.
1991-01-01
The effects of thermal advection and atmospheric stratification are statistically evaluated using Seasat scatterometer observations as a data base. The results indicate that, whenever the surface winds or wind stress are related to the atmospheric pressure field, the appropriate stratification and baroclinic corrections should be applied. Without such corrections, errors of 15-25 percent are likely to arise in the surface fluxes computed from model low-level winds or pressure measurements.
An advection-based model to increase the temporal resolution of PIV time series.
Scarano, Fulvio; Moore, Peter
A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence. In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence, where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time. An additional favorable effect is observed by the analysis in the frequency
İbiş, Birol
2014-01-01
This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662
Noise Prevents Infinite Stretching of the Passive Field in a Stochastic Vector Advection Equation
NASA Astrophysics Data System (ADS)
Flandoli, Franco; Maurelli, Mario; Neklyudov, Mikhail
2014-09-01
A linear stochastic vector advection equation is considered; the equation may model a passive magnetic field in a random fluid. When the driving velocity field is rough but deterministic, in particular just Hölder continuous and bounded, one can construct examples of infinite stretching of the passive field, arising from smooth initial conditions. The purpose of the paper is to prove that infinite stretching is prevented if the driving velocity field contains in addition a white noise component.
New Solution of Diffusion-Advection Equation for Cosmic-Ray Transport Using Ultradistributions
NASA Astrophysics Data System (ADS)
Rocca, M. C.; Plastino, A. R.; Plastino, A.; Ferri, G. L.; de Paoli, A.
2015-11-01
In this paper we exactly solve the diffusion-advection equation (DAE) for cosmic-ray transport. For such a purpose we use the Theory of Ultradistributions of J. Sebastiao e Silva, to give a general solution for the DAE. From the ensuing solution, we obtain several approximations as limiting cases of various situations of physical and astrophysical interest. One of them involves Solar cosmic-rays' diffusion.
Multiphase Advection and Radiation Diffusion with Material Interfaces on Unstructured Meshes
Anninos, P
2002-10-03
A collection of numerical methods are presented for the advection or remapping of material properties on unstructured and staggered polyhedral meshes in arbitrary Lagrange-Eulerian calculations. The methods include several new procedures to track and capture sharp interface boundaries, and to partition radiation energy into multi-material thermal states. The latter is useful for extending and applying consistently single material radiation diffusion solvers to multi-material problems.
Cho, Yeo-Myoung; Werner, David; Moffett, Kevan B; Luthy, Richard G
2010-08-01
Advective porewater movement and molecular diffusion are important factors affecting the mass transfer of hydrophobic organic compounds (HOCs) in marsh and mudflat sediments. This study assessed porewater movement in an intertidal mudflat in South Basin adjacent to Hunters Point Shipyard, San Francisco, CA, where a pilot-scale test of sorbent amendment assessed the in situ stabilization of polychlorinated biphenyls (PCBs). To quantify advective porewater movement within the top 0-60 cm sediment layer, we used temperature as a tracer and conducted heat transport analysis using 14-day data from multidepth sediment temperature logging stations and one-dimensional heat transport simulations. The best-fit conditions gave an average Darcy velocity of 3.8cm/d in the downward vertical direction for sorbent-amended sediment with a plausible range of 0 cm/d to 8 cm/d. In a limiting case with no net advection, the best-fit depth-averaged mechanical dispersion coefficient was 2.2x10(-7) m2/s with a range of 0.9x10(-7) m2/s to 5.6x10(-7) m2/s. The Peclet number for PCB mobilization showed that molecular diffusion would control PCB mass transfer from sediment to sorbent particles for the case of uniform distribution of sorbent. However, the advective flow and mechanical dispersion in the test site would significantly benefit the stabilization effect of heterogeneously distributed sorbent by acting to smooth out the heterogeneities and homogenizing pollutant concentrations across the entire bioactive zone. These measurements and modeling techniques on intertidal sediment porewater transport could be useful for the development of more reliable mass transfer models for the prediction of contaminant release within the sediment bed, the movement of HOCs in the intertidal aquatic environment, and in situ sequestration by sorbent addition.
Field by field hybrid upwind splitting methods
NASA Technical Reports Server (NTRS)
Coquel, Frederic; Liou, Meng-Sing
1993-01-01
A new and general approach to upwind splitting is presented. The design principle combines the robustness of flux vector splitting schemes in the capture of nonlinear waves and the accuracy of some flux difference splitting schemes in the resolution of linear waves. The new schemes are derived following a general hybridization technique performed directly at the basic level of the field by field decomposition involved in FDS methods. The scheme does not use a spatial switch to be tuned up according to the local smoothness of the approximate solution.
Budgeted phylogenetic diversity on circular split systems.
Minh, Bui Quang; Pardi, Fabio; Klaere, Steffen; von Haeseler, Arndt
2009-01-01
In the last 15 years, Phylogenetic Diversity (PD) has gained interest in the community of conservation biologists as a surrogate measure for assessing biodiversity. We have recently proposed two approaches to select taxa for maximizing PD, namely PD with budget constraints and PD on split systems. In this paper, we will unify these two strategies and present a dynamic programming algorithm to solve the unified framework of selecting taxa with maximal PD under budget constraints on circular split systems. An improved algorithm will also be given if the underlying split system is a tree.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site]
Released 23 September 2003
A 22 km-diameter crater has been sliced by the tectonic forces that produced the rift known as Sirenum Fossae. The orientation of this rift is roughly radial to the great Tharsis volcano Arsia Mons, probably indicating a link between the formation of the rift and the volcano. Note how the rift cuts through a jumble of mounds on the floor of the crater. This indicates a sequence of events beginning with the formation of the crater followed by an infilling of material that was then eroded into the mounds and ultimately split open by the shifting martian crust.
Image information: VIS instrument. Latitude -29.7, Longitude 211.7 East (148.3 West). 19 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Interpreting layer thickness advection in terms of eddy-topography interaction
NASA Astrophysics Data System (ADS)
Liu, Chuanyu; Köhl, Armin; Stammer, Detlef
2014-09-01
A parameterization for the spatial pattern of the eddy induced thickness advection parameter estimated from a dynamically consistent data assimilation procedure is presented. Values of the thickness advection parameter are predominantly negative (positive) over seamounts, and positive (negative) over the deep ocean in the southern (northern) hemisphere along strong currents; its magnitude is large at high latitudes but low in the tropical regions. Those characteristics motivate a parameterization based on the Coriolis parameter, the bottom depth and an eddy length scale. As a parameterization for an eddy streamfunction, the associated bolus velocities advect density anti-cyclonically (cyclonically) around seamounts (troughs). Although the parameterization has the same form as Holloway’s streamfunction for the Neptune effect, and is also related to eddy-topography interactions, Holloway’s streamfunction is in contrast applied to the momentum equation. The parameterization is independently confirmed by the flux-mean gradient relation from the output of a high resolution model. The effect of the proposed scheme is investigated using a channel model with idealized bottom topographies and a global ocean circulation model with realistic bottom topography. In agreement with the high resolution model, our scheme generates cold (warm) domes and cyclonic circulations over seamounts (troughs), which is consistent with the eddy movement in presence of the topographic β effect. This provides a different mechanism for eddy-topography interaction than the Neptune effect, which generates circulations of opposing sign.
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1993-01-01
Effective numerical treatment of multicomponent viscous flow problems involving the advection of sharp interfaces between materials of differing physical properties requires correction techniques to prevent spurious diffusion and dispersion. We develop a particular algorithm, based on modern shock-capture techniques, employing a two-step nonlinear method. The first step involves the global application of a high-order upwind scheme to a hyperbolic advection equation used to model the distribution of distinct material components in a flow field. The second step is corrective and involves the application of a global filter designed to remove dispersion errors that result from the advection of discontinuities (e.g., material interfaces) by high-order, minimally dissipative schemes. The filter introduces no additional diffusion error. Nonuniform viscosity across a material interface is allowed for by the implementation of a compositionally weighted-inverse interface viscosity scheme. The combined method approaches the optimal accuracy of modern shock-capture techniques with a minimal increase in computational time and memory. A key advantage of this method is its simplicity to incorporate into preexisting codes be they finite difference, element, or volume of two or three dimensions.
A computational Lagrangian-Eulerian advection remap for free surface flows
NASA Astrophysics Data System (ADS)
Ashgriz, Nasser; Barbat, Tiberiu; Wang, Gang
2004-01-01
A VOF-based algorithm for advecting free surfaces and interfaces across a 2-D unstructured grid is presented. This algorithm is based on a combination of a Computational Lagrangian-Eulerian Advection Remap and the Volume of the Fluid method (CLEAR-VOF). A set of geometric tools are used to remap the advected shape of the volume fraction from one cell onto the Eulerian fixed unstructured grid. The geometric remapping is used to compute the fluxes onto a group of neighbouring cells of the mesh. These fluxes are then redistributed and corrected to satisfy the conservation of mass. Here, we present methods for developing identification algorithms for surface cells and incorporating them with CLEAR-VOF. The CLEAR-VOF algorithm is then tested for translation of several geometries. It is also incorporated in a finite element based flow solver and tested in a laminar flow over a broad-crested weir and a turbulent flow over a semi-circular obstacle.
NASA Astrophysics Data System (ADS)
Chauhan, R. P.; Kumar, Amit
The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20 Pa to 73.3 kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.
Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations.
Sánchez-Garduño, Faustino; Pérez-Velázquez, Judith
This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h'(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1) h'(u) is constant k, (2) h'(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE.
Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations
Sánchez-Garduño, Faustino
2016-01-01
This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1) h′(u) is constant k, (2) h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE. PMID:27689131
NASA Technical Reports Server (NTRS)
Levy, Gad; Tiu, Felice S.
1990-01-01
Statistical tests are performed on the Seasat scatterometer observations to examine if and to what degree thermal advection and stratification effects manifest themselves in these remotely sensed measurements of mean wind and wind stress over the ocean. On the basis of a two layer baroclinic boundary layer model which is presented, it is shown that the thermal advection and stratification of the entire boundary layer as well as the geostrophic forcing influence the modeled near surface wind and wind stress profiles. Evidence of diurnal variation in the stratification under barotropic conditions is found in the data, with the daytime marine boundary layer being more convective than its nighttime counterpart. The temporal and spacial sampling pattern of the satellite makes it impossible to recover the full diurnal cycle, however. The observed effects of the thermal advection are shown to be statistically significant during the day (and presumed more convective) hours, causing a systematic increase in the poleward transport of mass and heat. The statistical results are in a qualitative agreement with the model simulations and cannot be reproduced in randomized control tests.
An improved lattice Boltzmann method for simulating advective-diffusive processes in fluids
NASA Astrophysics Data System (ADS)
Aursjø, Olav; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel
2017-03-01
Lattice Boltzmann methods are widely used to simulate advective-diffusive processes in fluids. Lattice Bhatnagar-Gross-Krook methods presented in the literature mostly just exhibit first order spatial accuracy and introduce errors proportional to the velocity squared. Formulations proposed to alleviate this have only been partly successful and are valid only in certain specific situations. We present and demonstrate here a formulation that produces no such second order errors. This formulation suggests that a subtle, but important, adjustment is all it takes to improve the accuracy of the method. The key to the improved accuracy of this new model is the non-standard definition of the concentration that relates to the distribution function describing the advection-diffusion in lattice Boltzmann. The main advantage of the algorithm comes to view when simulating situations where fluid density variations appear. The present formulation of the advection-diffusion algorithm will, by taking into account these fluid density variations, drastically reduce the errors produced compared to the standard formulations. We also show how a source term is included in this new formulation without it losing its second order spatial accuracy.
Yao, Yijun; Wu, Yun; Wang, Yue; Verginelli, Iason; Zeng, Tian; Suuberg, Eric M; Jiang, Lin; Wen, Yuezhong; Ma, Jie
2015-10-06
At petroleum vapor intrusion (PVI) sites at which there is significant methane generation, upward advective soil gas transport may be observed. To evaluate the health and explosion risks that may exist under such scenarios, a one-dimensional analytical model describing these processes is introduced in this study. This new model accounts for both advective and diffusive transport in soil gas and couples this with a piecewise first-order aerobic biodegradation model, limited by oxygen availability. The predicted results from the new model are shown to be in good agreement with the simulation results obtained from a three-dimensional numerical model. These results suggest that this analytical model is suitable for describing cases involving open ground surface beyond the foundation edge, serving as the primary oxygen source. This new analytical model indicates that the major contribution of upward advection to indoor air concentration could be limited to the increase of soil gas entry rate, since the oxygen in soil might already be depleted owing to the associated high methane source vapor concentration.
Gu Weimin
2012-07-10
By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the density profile implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help us understand why the standard thin disk model is likely to be inaccurate above {approx}0.3 Eddington luminosity, which was found by some works on black hole spin measurement. Furthermore, the solutions satisfy the Solberg-Hoiland conditions, which indicate the disk to be convectively stable. In addition, we discuss the possible link between our disk model and ultraluminous X-ray sources.
Pointwise interactions of finite element modeling of advection-diffusion equations
Yeh, G.T.
1984-07-01
Pointwise iteration techniques including successive under-relaxation (SUR), Gauss-Seidel (G-S), and successive over-relaxation (SOR) schemes, are applied to advection-diffusion equations to derive the matrix equation with finite element methods. These schemes are tested using two simple examples for which analytical solutions are available so that numerical results can be checked to ensure code consistency. Numerical experiments indicate that the iteration schemes, if convergent, produce almost identical solutions as those obtained by the direct elimination scheme. For diffusion dominant transport, all three iteration schemes generate convergent computations. However, for advection-diffusion equally dominant or advection dominant transport, only SUR and G-S schemes yield convergent calculations, the SOR scheme leads to divergent computations. Pointwise iteration schemes offer substantial savings in central process unit (CPU) memory over the direct elimination scheme, even for the small, two-dimensional verification example, without complicating the programming efforts and, in the meantime, keeps the CPU time comparable. A realistic, hypothetical problem is used to demonstrate the applicability and versatility of pointwise iterations and direct elimination schemes. The saving in CPU memory using the pointwise iterations is more than tenfold that using the direct elimination solution for this hypothetical problem. The saving in CPU time is even better, more than 40 fold.
NASA Astrophysics Data System (ADS)
Paparella, F.; Oliveri, F.
2009-04-01
The interplay of advection, reaction and diffusion terms in ADR equations is a rather difficult one to be modeled numerically. The kind of spurious oscillations that is usually harmless for non-reacting scalars is often amplified without bounds by reaction terms. Furthermore, in most biogeochimical applications, such as mesoscale or global-scale plankton modeling, the diffusive fluxes may be smaller than the numerical ones. Inspired by the particle-mesh methods used by cosmologists, we propose to discretize on a grid only the diffusive term of the equation, and solve the advection-reaction terms as ordinary differential equations along the characteristic lines. Diffusion happens by letting the concentration field carried by each particle to relax towards the diffusive field known on the grid, without redistributing the particles. This method, in the limit of vanishing diffusivity and for a fixed mesh size, recovers the advection-reaction solution with no numerical diffusion. We show some example numerical solutions of the ADR equations stemming from a simple predator-prey model.
An advection scheme based on the combination of particle mesh method and pure Lagrangian approach
NASA Astrophysics Data System (ADS)
Arsenic, Ilija; Mihailovic, Dragutin T.; Kapor, Darko
2011-11-01
Possibility of using pure Lagrangian approach in modeling transport phenomena is described in this paper. The application of pure Lagrangian approach in real atmospheric field induces highly irregular spatial distribution of grid points, after only a few time steps. In order to avoid problems caused by that irregularity, a quasi interpolation procedure is proposed. Proposed interpolation procedure is similar to the radial basis functions interpolation and does not impose any demands about spatial distribution of the grid points or about continuity and differentiability of the field that needs to be interpolated. Besides that, proposed procedure is explicitly mass conserving. Combination of particle mesh method and pure Lagrangian approach creates efficient transport scheme that does not produce any new local maxima and minima in advected field. In proposed advection scheme motion of points are performed in Lagrangian manner while spatial derivatives are evaluated on the basis of values interpolated onto regular grid. Applicability of proposed advection scheme in an unambiguous way is proved by performing "standard" numerical tests with (i) the slotted cylinder under solid body rotation, (ii) the test with Doswell's idealized cyclogenesis as well as (iii) integration of shallow water equations.
Anisotropic Turbulent Advection of a Passive Vector Field: Effects of the Finite Correlation Time
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2016-02-01
The turbulent passive advection under the environment (velocity) field with finite correlation time is studied. Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is investigated by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and prescribed pair correlation function. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to nontrivial fixed points of the RG equations and depend on the relation between the exponents in the energy energy spectrum ɛ ∝ k⊥1-ξ and the dispersion law ω ∝ k⊥2-η . The corresponding anomalous exponents are associated with the critical dimensions of tensor composite operators built solely of the passive vector field itself. In contrast to the well-known isotropic Kraichnan model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. Due to the presence of the anisotropy in the model, all multiloop diagrams are equal to zero, thus this result is exact.
Wang, Dongchen; Dudda, Som; Jackson, P. Ryan; Garcia, Marcelo H.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan
2016-01-01
The Chicago Area Waterway System (CAWS) includes the Chicago Sanitary and Ship Canal (CSSC) and the Calumet-Sag Channel (Cal-Sag), the two primary, man-made connections between the Mississippi River Basin and the Great Lakes. The U.S. Geological Survey (USGS) monitors diversion of Great Lakes water at a streamgage just downstream of the confluence of the CSSC and Cal-Sag (known as Sag Junction). Previous studies have explored the complex hydrodynamics in the CAWS near Sag Junction and at the USGS streamgage near Lemont, Illinois. The current study explores the mixing at Sag Junction which can be purely advection-driven or driven by density differences between the two branches. The current study simulates and analyzes two cases: 1) the density of water in CSSC is greater than in the Cal-Sag, 2) the density of the CSSC water is less than in the Cal-Sag. The density difference between the branches was found to play a major role in influencing the mixing process compared with purely advection-driven mixing. Density differences created near-bed gravity currents, some of which intruded upstream into the CSSC or Cal-Sag creating bi-directional flows. The phenomenon of double plunging was observed, along with formation of a recirculation zone between the two plunging fronts. Local mixing at the confluence was enhanced by density differences between the two channels, but mixing downstream from the confluence was impeded due to formation of a stabilizing stratification.
Statistical assessment of fish behavior from split-beam hydro-acoustic sampling
McKinstry, Craig A.; Simmons, Mary Ann; Simmons, Carver S.; Johnson, Robert L.
2005-04-01
Statistical methods are presented for using echo-traces from split-beam hydro-acoustic sampling to assess fish behavior in response to a stimulus. The data presented are from a study designed to assess the response of free-ranging, lake-resident fish, primarily kokanee (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) to high intensity strobe lights, and was conducted at Grand Coulee Dam on the Columbia River in Northern Washington State. The lights were deployed immediately upstream from the turbine intakes, in a region exposed to daily alternating periods of high and low flows. The study design included five down-looking split-beam transducers positioned in a line at incremental distances upstream from the strobe lights, and treatments applied in randomized pseudo-replicate blocks. Statistical methods included the use of odds-ratios from fitted loglinear models. Fish-track velocity vectors were modeled using circular probability distributions. Both analyses are depicted graphically. Study results suggest large increases of fish activity in the presence of the strobe lights, most notably at night and during periods of low flow. The lights also induced notable bimodality in the angular distributions of the fish track velocity vectors. Statistical summaries are presented along with interpretations on fish behavior.
Finney, S.T.; Isely, J.J.; Cooke, D.W.
2006-01-01
Two shortnose sturgeon were artificially passed above the Pinopolis Lock and Dam into the Santee-Cooper Lakes in order to simulate the use of a fish-passage mechanism. Movement patterns and spawning behavior were studied to determine the potential success of future shortnose sturgeon migrations if and when a fish-migration bypass structure is installed. In addition to movement patterns, water temperature was monitored in areas that shortnose sturgeons utilized. Shortnose sturgeon migrated through a large static system to a known shortnose sturgeon spawning area more than 160 km upstream where water temperatures were consistent with known shortnose sturgeon spawning temperatures. No specific movement patterns in the reservoir system were recorded during downstream migrations.
A new Remesh-Lagrange technique for advecting temperature that minimizes numerical diffusion
NASA Astrophysics Data System (ADS)
Hasenclever, J.; Phipps Morgan, J.; Shi, C.
2007-12-01
The proper treatment of heat-advection is a generally underappreciated problem within CFD, yet particularly critical for calculating physically sound erosion in plume-lithosphere interactions and temperature sensitive melting processes. Typically, Eulerian (fixed-mesh) codes have been preferred to solve for fluid flow and they are almost essential for finite-difference-based algorithms. Unfortunately, the Eulerian approach introduces numerical artifacts into the solution of the advection-diffusion heat transport problem that can only be suppressed by adding 'too-diffusive' artificial diffusion to the equations, as for example in the Smolarkiewicz formulation for heat advection. We have developed a 'Remesh-Lagrange' method using a partly deforming finite element mesh and find it to be significantly more accurate than our previous methods. In several test scenarios we show the large improvement in accuracy that can be obtained by using a Lagrangian approach for 10-30 time steps (depending upon the distortion of the finite elements in the deformed Lagrangian mesh) and then regridding to the initial mesh. When an element becomes too distorted the nodes connected to it become fixed and we switch from Lagrange to a Semi-Lagrange formulation for these nodes. Instead of the standard 'linear backward' Semi-Lagrange we are also experimenting with a more accurate interpolation scheme for an unstructured mesh that additionally includes the nodal derivatives of the temperature field when calculating the value at the Semi-Lagrange traceback point. The same bicubic interpolation method for an unstructured grid is used to remesh the 'too-distorted' Lagrange grid back to the initial undistorted mesh. We compare the Remesh-Lagrange technique against the following Eulerian methods in a series of 2-D numerical experiments advecting stripes and Gaussian peaks in steady circulating flow: linear back-interpolation Semi-Lagrange method; bicubic back-interpolation Semi-Lagrange method
Split Brain Theory: Implications for Nurse Educators.
ERIC Educational Resources Information Center
de Meneses, Mary
1980-01-01
Discusses incorporating nontraditional concepts of learning in nursing education. Elements explored include the split brain theory, school design, teaching styles, teacher's role, teaching strategies, adding variety to the curriculum, and modular learning. (CT)
Solar activity and oscillation frequency splittings
NASA Technical Reports Server (NTRS)
Woodard, M. F.; Libbrecht, K. G.
1993-01-01
Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.
The problem of split comets in review
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1982-01-01
Cometary splitting is investigated from the dynamical and physical standpoints. A simple two-parameter model is proposed in which the rate of recession of the fragments is determined by the momentum from outgassing, so that the net differential force is of the same nature as the nongravitational perturbations detected in the motions of unsplit comets; the two parameters of the model are the differential radial acceleration and the time of splitting. It is shown that the model successfully represents the positional observations of nearly all the 21 known split comets. The following candidate triggering mechanisms for cometary splitting are considered: tidal forces, rotation, dust-mantle dumping, and radioactive heating. A model that fits the dynamical data and physical characteristics is presented which suggests that most fragments must be appreciably nonspherical and rapidly precessing.
Split Fingernails: Can They Be Prevented?
... your fingernails dry. Repeated or prolonged contact with water can contribute to split fingernails. Wear cotton-lined rubber gloves when washing dishes, cleaning or using harsh chemicals. Practice good nail hygiene. ...
Irrational beliefs, attitudes about competition, and splitting.
Watson, P J; Morris, R J; Miller, L
2001-03-01
Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization.
Conduction band valley splitting in Si
NASA Astrophysics Data System (ADS)
Klimeck, Gerhard; Boykin, T. B.; Eriksson, M.; Friesen, M.; Coppersmith, S. N.; von Allmen, P.; Oyafuso, F.; Lee, S.
2004-03-01
A theory based on localized-orbital approaches is developed to describe the valley splitting observed in silicon nano-structures. The theory is appropriate in the limit of low electron density and relevant for proposed quantum computing architectures. The valley splitting is computed for realistic devices using the quantitative nanoelectronic modeling tool NEMO using the empirical tight binding model sp^3d^5s. The tight binding parameters have been fitted to bulk bandstructure behavior of Si using a genetic algorithm. A 1-D quantum well simulation in NEMO shows the basic features of conduction band valley splitting as a coherent, confinement-induced phenomenon. No additional intervalley scattering parameters are needed. The splitting is in general nonzero even in the absence of electric field. The splitting oscillates as a function of N, the number of layers in the quantum well, with a period that is determined by the location of the valley minimum in the Brillouin zone. The envelope of the splitting decays as N^3. The qualitative physics remain the same irrespective of the details of the quantum well boundaries or the details of the strain treatment in the quantum well.
Reattachment heating upstream of short compression ramps in hypersonic flow
NASA Astrophysics Data System (ADS)
Estruch-Samper, David
2016-05-01
Hypersonic shock-wave/boundary-layer interactions with separation induce unsteady thermal loads of particularly high intensity in flow reattachment regions. Building on earlier semi-empirical correlations, the maximum heat transfer rates upstream of short compression ramp obstacles of angles 15° ⩽ θ ⩽ 135° are here discretised based on time-dependent experimental measurements to develop insight into their transient nature (Me = 8.2-12.3, Re_h= 0.17× 105-0.47× 105). Interactions with an incoming laminar boundary layer experience transition at separation, with heat transfer oscillating between laminar and turbulent levels exceeding slightly those in fully turbulent interactions. Peak heat transfer rates are strongly influenced by the stagnation of the flow upon reattachment close ahead of obstacles and increase with ramp angle all the way up to θ =135°, whereby rates well over two orders of magnitude above the undisturbed laminar levels are intermittently measured (q'_max>10^2q_{u,L}). Bearing in mind the varying degrees of strength in the competing effect between the inviscid and viscous terms—namely the square of the hypersonic similarity parameter (Mθ )^2 for strong interactions and the viscous interaction parameter bar{χ } (primarily a function of Re and M)—the two physical factors that appear to most globally encompass the effects of peak heating for blunt ramps (θ ⩾ 45°) are deflection angle and stagnation heat transfer, so that this may be fundamentally expressed as q'_max∝ {q_{o,2D}} θ ^2 with further parameters in turn influencing the interaction to a lesser extent. The dominant effect of deflection angle is restricted to short obstacle heights, where the rapid expansion at the top edge of the obstacle influences the relaxation region just downstream of reattachment and leads to an upstream displacement of the separation front. The extreme heating rates result from the strengthening of the reattaching shear layer with the increase in
Scalable, massively parallel approaches to upstream drainage area computation
NASA Astrophysics Data System (ADS)
Richardson, A.; Hill, C. N.; Perron, T.
2011-12-01
Accumulated drainage area maps of large regions are required for several applications. Among these are assessments of regional patterns of flow and sediment routing, high-resolution landscape evolution models in which drainage basin geometry evolves with time, and surveys of the characteristics of river basins that drain to continental margins. The computation of accumulated drainage areas is accomplished by inferring the vector field of drainage flow directions from a two-dimensional digital elevation map, and then computing the area that drains to each tile. From this map of elevations we can compute the integrated, upstream area that drains to each tile of the map. Generally this last step is done with a recursive algorithm, that accumulates upstream areas sequentially. The inherently serial nature of this restricts the number of tiles that can be included, thereby limiting the resolution of continental-size domains. This is because of the requirements of both memory, which will rise proportionally to the number of tiles, N, and computing time, which is O(N2). The fundamental sequential property of this approach prohibits effective use of large scale parallelism. An alternate method of calculating accumulated drainage area from drainage direction data can be arrived at by reformulating the problem as the solution of a system of simultaneous linear equations. The equations define the relation that the total upslope area of a particular tile is the sum of all the upslope areas for tiles immediately adjacent to that tile that drain to it, and the tile's own area. Solving these equations amounts to finding the solution of a sparse, nine-diagonal matrix operating on a vector for a right-hand-side that is simply the individual tile areas and where the diagonals of the matrix are determined by the landscape geometry. We show how an iterative method, Bi-CGSTAB, can be used to solve this problem in a scalable, massively parallel manner. However, this introduces
It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...
Iida, Y.; Yokoyama, T.; Hagenaar, H. J.
2012-06-20
Frequencies of magnetic patch processes on the supergranule boundary, namely, flux emergence, splitting, merging, and cancellation, are investigated through automatic detection. We use a set of line-of-sight magnetograms taken by the Solar Optical Telescope (SOT) on board the Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hr and field of view is 112'' Multiplication-Sign 112''. The total numbers of magnetic processes are as follows: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. The total numbers of emergence and cancellation are significantly smaller than those of splitting and merging. Further, the frequency dependence of the merging and splitting processes on the flux content are investigated. Merging has a weak dependence on the flux content with a power-law index of only 0.28. The timescale for splitting is found to be independent of the parent flux content before splitting, which corresponds to {approx}33 minutes. It is also found that patches split into any flux contents with the same probability. This splitting has a power-law distribution of the flux content with an index of -2 as a time-independent solution. These results support that the frequency distribution of the flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely, surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.
David A. King, CHP, PMP
2012-10-10
Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 22, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses. The comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty. The NFS split sample report does not specify the confidence level of reported uncertainties. Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. A comparison of split sample results, using the DER equation, indicates one set with a DER greater than 3. A DER of 3.1 is calculated for gross alpha results from ORAU sample 5198W0003 and NFS sample MCU-310212003. The ORAU result is 0.98 ± 0.30 pCi/L (value ± 2 sigma) compared to the NFS result of -0.08 ± 0.60 pCi/L. Relatively high DER values are not unexpected for low (e.g., background) analyte concentrations analyzed by separate laboratories, as is the case here. It is noted, however, NFS uncertainties are at least twice the ORAU uncertainties, which contributes to the elevated DER value. Differences in ORAU and NFS minimum detectable activities are even more pronounced. comparison of ORAU and NFS split samples produces reasonably consistent results for low (e.g., background
Upstream oversight assessment for agrifood nanotechnology: a case studies approach.
Kuzma, Jennifer; Romanchek, James; Kokotovich, Adam
2008-08-01
Although nanotechnology is broadly receiving attention in public and academic circles, oversight issues associated with applications for agriculture and food remain largely unexplored. Agrifood nanotechnology is at a critical stage in which informed analysis can help shape funding priorities, risk assessment, and oversight activities. This analysis is designed to help society and policymakers anticipate and prepare for challenges posed by complicated, convergent applications of agrifood nanotechnology. The goal is to identify data, risk assessment, regulatory policy, and engagement needs for overseeing these products so they can be addressed prior to market entry. Our approach, termed upstream oversight assessment (UOA), has potential as a key element of anticipatory governance. It relies on distinct case studies of proposed applications of agrifood nanotechnology to highlight areas that need study and attention. As a tool for preparation, UOA anticipates the types and features of emerging applications; their endpoints of use in society; the extent to which users, workers, ecosystems, or consumers will be exposed; the nature of the material and its safety; whether and where the technologies might fit into current regulatory system(s); the strengths and weaknesses of the system(s) in light of these novel applications; and the possible social concerns related to oversight for them.
Electron plasma waves upstream of the earth's bow shock
NASA Technical Reports Server (NTRS)
Lacombe, C.; Mangeney, A.; Harvey, C. C.; Scudder, J. D.
1985-01-01
Electrostatic waves are observed around the plasma frequency fpe in the electron foreshock, together with electrons backstreaming from the bow shock. Using data from the sounder aboard ISEE 1, it is shown that this noise, previously understood as narrow band Langmuir waves more or less widened by Doppler shift or nonlinear effects, is in fact composed of two distinct parts: one is a narrow band noise, emitted just above fpe, and observed at the upstream boundary of the electron foreshock. This component has been interpreted as Langmuir waves emitted by a beam-plasma instability. It is suggested that it is of sufficiently large amplitude and monochromatic enough to trap resonant electrons. The other is a broad band noise, more impulsive than the narrow band noise, observed well above and/or well below fpe, deeper in the electron foreshock. The broad band noise has an average spectrum with a typical bi-exponential shape; its peak frequency is not exactly equal to fpe and depends on the Deybe length. This peak frequency also depends on the velocity for which the electron distribution has maximum skew. An experimental determination of the dispersion relation of the broad band noise shows that this noise, as well as the narrow band noise, may be due to the instability of a hot beam in a plasma.
Rating Curve Estimation from Local Levels and Upstream Discharges
NASA Astrophysics Data System (ADS)
Franchini, M.; Mascellani, G.
2003-04-01
Current technology allows for low cost and easy level measurements while the discharge measurements are still difficult and expensive. Thus, these are rarely performed and usually not in flood conditions because of lack of safety and difficulty in activating the measurement team in due time. As a consequence, long series of levels are frequently available without the corresponding discharge values. However, for the purpose of planning, management of water resources and real time flood forecasting, discharge is needed and it is therefore essential to convert local levels into discharge values by using the appropriate rating curve. Over this last decade, several methods have been proposed to relate local levels at a site of interest to data recorded at a river section located upstream where a rating curve is available. Some of these methods are based on a routing approach which uses the Muskingum model structure in different ways; others are based on the entropy concepts. Lately, fuzzy logic has been applied more and more frequently in the framework of hydraulic and hydrologic problems and this has prompted to the authors to use it for synthesising the rating curves. A comparison between all these strategies is performed, highlighting the difficulties and advantages of each of them, with reference to a long reach of the Po river in Italy, where several hydrometers and the relevant rating curves are available, thus allowing for both a parameterization and validation of the different strategies.
Housekeeping genes tend to show reduced upstream sequence conservation
Farré, Domènec; Bellora, Nicolás; Mularoni, Loris; Messeguer, Xavier; Albà, M Mar
2007-01-01
Background Understanding the constraints that operate in mammalian gene promoter sequences is of key importance to understand the evolution of gene regulatory networks. The level of promoter conservation varies greatly across orthologous genes, denoting differences in the strength of the evolutionary constraints. Here we test the hypothesis that the number of tissues in which a gene is expressed is related in a significant manner to the extent of promoter sequence conservation. Results We show that mammalian housekeeping genes, expressed in all or nearly all tissues, show significantly lower promoter sequence conservation, especially upstream of position -500 with respect to the transcription start site, than genes expressed in a subset of tissues. In addition, we evaluate the effect of gene function, CpG island content and protein evolutionary rate on promoter sequence conservation. Finally, we identify a subset of transcription factors that bind to motifs that are specifically over-represented in housekeeping gene promoters. Conclusion This is the first report that shows that the promoters of housekeeping genes show reduced sequence conservation with respect to genes expressed in a more tissue-restricted manner. This is likely to be related to simpler gene expression, requiring a smaller number of functional cis-regulatory motifs. PMID:17626644
Large amplitude MHD waves upstream of the Jovian bow shock
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.
1983-01-01
Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.
Upstream and Downstream: Anthropological Contributions to River Basin Development
NASA Astrophysics Data System (ADS)
Horowitz, M.
2003-04-01
It is now almost 30 years since Thayer Scudder and Elizabeth Colson first focused anthropological analysis on the consequences of forced relocation of peoples from the reservoir areas upstream from large dams. The rate of large dam construction has been enormous, more than 50,000 having been built since the mid-1930s, and the total number of persons forcibly relocated has reached the many millions. Inspired by their work, my colleagues and I at the Institute for Development Anthropology began focusing on the downstream consequences of dam construction, particularly on the Senegal River, invited by the Organisation pour la Mise en Valeur du Fleuve Senegal (OMVS). The work resulted not only in an analysis, but in a proposed alternative dam-management approach that would permit hydropower generation yet substantially reduce the costs of changed flow regimes borne by the riparian peoples. In this discussion, I would like to bring the situation up-to-date. What has happened to those recommendations, initially embraced by at least some of the players involved in the river's management?
Upstream gyrating ion events: Cluster observations and simulations
Sauer, K.; Fraenz, M.; Dubinin, E.; Korth, A.; Mazelle, C.; Reme, H.; Dandouras, I.
2005-08-01
Localized events of low-frequency quasi-monochromatic waves in the 30s range observed by Cluster in the upstream region of Earth are analyzed. They are associated with a gyro-motion of the two ion populations consisting of the incoming solar wind protons and the back-streaming ions from the shock. A coordinate system is chosen in which one axis is parallel to the ambient magnetic field B0 and the other one is in the vswxB0 direction. The variation of the plasma parameters is compared with the result of two-fluid Hall-MHD simulations using different beam densities and velocities. Keeping a fixed (relative) beam density (e.g. {alpha}=0.005), non-stationary 'shock-like' structures are generated if the beam velocity exceeds a certain threshold of about ten times the Alfven velocity. Below the threshold, the localized events represent stationary, nonlinear waves (oscillitons) in a beam-plasma system in which the Reynold's stresses of the plasma and beam ions are balanced by the magnetic field stress.
Rheotaxis facilitates upstream navigation of mammalian sperm cells
Kantsler, Vasily; Dunkel, Jörn; Blayney, Martyn; Goldstein, Raymond E
2014-01-01
A major puzzle in biology is how mammalian sperm maintain the correct swimming direction during various phases of the sexual reproduction process. Whilst chemotaxis may dominate near the ovum, it is unclear which cues guide spermatozoa on their long journey towards the egg. Hypothesized mechanisms range from peristaltic pumping to temperature sensing and response to fluid flow variations (rheotaxis), but little is known quantitatively about them. We report the first quantitative study of mammalian sperm rheotaxis, using microfluidic devices to investigate systematically swimming of human and bull sperm over a range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions, and chirality of the flagellar beat leads to stable upstream spiralling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilisation. A minimal mathematical model is presented that accounts quantitatively for the experimental observations. DOI: http://dx.doi.org/10.7554/eLife.02403.001 PMID:24867640
Upstream ORFs are prevalent translational repressors in vertebrates.
Johnstone, Timothy G; Bazzini, Ariel A; Giraldez, Antonio J
2016-04-01
Regulation of gene expression is fundamental in establishing cellular diversity and a target of natural selection. Untranslated mRNA regions (UTRs) are key mediators of post-transcriptional regulation. Previous studies have predicted thousands of ORFs in 5'UTRs, the vast majority of which have unknown function. Here, we present a systematic analysis of the translation and function of upstream open reading frames (uORFs) across vertebrates. Using high-resolution ribosome footprinting, we find that (i)uORFs are prevalent within vertebrate transcriptomes, (ii) the majority show signatures of active translation, and (iii)uORFs act as potent regulators of translation and RNA levels, with a similar magnitude to miRNAs. Reporter experiments reveal clear repression of downstream translation by uORFs/oORFs. uORF number, intercistronic distance, overlap with the CDS, and initiation context most strongly influence translation. Evolution has targeted these features to favor uORFs amenable to regulation over constitutively repressive uORFs/oORFs. Finally, we observe that the regulatory potential of uORFs on individual genes is conserved across species. These results provide insight into the regulatory code within mRNA leader sequences and their capacity to modulate translation across vertebrates.
Rapid acceleration of protons upstream of earthward propagating dipolarization fronts
Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV
2013-01-01
[1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430
The effects of the Snowflake Divertor on upstream SOL profiles
NASA Astrophysics Data System (ADS)
Tsui, C. K.; Boedo, J. A.; Coda, S.; Labit, B.; Maurizio, R.; Nespoli, F.; Reimerdes, H.; Theiler, C.; Spolaore, M.; Vianello, N.; Lunt, T.; Vijvers, W. A. J.; Walkden, N.; the EUROfusion MST1 Team Team; the TCV Team Team
2016-10-01
The Snowflake Divertor creates separated volumes within the SOL and divertor that feature strikingly different ne, Te profiles, and decay lengths, as measured with a scanning probe. Profiles were taken at the outer midplane of TCV plasmas with snowflake divertors as well as just above the X-points within the region of enhanced βpol. Density shoulders in the far SOL in single null plasmas are relaxed by secondary X-points, while effects are more complex in the near SOL. These changes were observed whether the secondary X-point was placed in the low field side SOL, or in the high field side SOL. Additionally, target profiles measured with IR camera and Langmiur probes that were taken in the divertor leg opposite the secondary X-point also show features on the flux surface corresponding to the secondary X-point. Fluctuation statistics from the reciprocating probe as well as comparisons made between upstream and downstream measurements are considered for their implications on SOL transport. Support from EUROfusion Grant 633053 and US DOE Grant DE-SC0010529 are gratefully acknowledged.
What's Upstream? GIS's critical role in developing nutrient ...
Eutrophication due to excess levels of nitrogen and phosphorus can seriously impair ecological function in estuaries. Protective criteria for nutrients are difficult to establish because the source can vary spatially and seasonally, originate either from the watershed or the ocean, and be natural or anthropogenic. GIS tools and processes can help in developing nutrient criteria by establishing reference conditions representative of natural background nutrient levels. Along the Oregon Coast in the Pacific Northwest, the primary source of nutrients in the wet season (November-April) is generally riverine. We delineated and extracted explicit spatial data from watersheds upstream of riverine water quality monitoring stations for parametric comparison to recorded nutrient levels. The SPARROW model (Wise and Johnson, 2011) was used to estimate relative contributions of nutrient sources at each station. Both raster and vector spatial data were used and include land use / land cover, demography, geology, terrain, precipitation and forest type. The relationships of nutrients to spatial data were then explored as an approach to establishing the reference expectation. The abstract introduces Geographic Information Systems (GIS) tools and processes employed for research conducted under the Safe and Sustainable Water Resources (SSWR) Task 2.3A, entitled “Nutrient Management for Sustainability of Aquatic Ecosystems.” One of the goals of the EPA Office of Water is to
Upstream pressure variations associated with the bow shock and their effects on the magnetosphere
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Baumjohann, W.; Paschmann, G.; Luehr, H.; Sibeck, D. G.
1990-01-01
The AMPTE IRM solar wind data are analyzed to determine the relationship between upstream pressure fluctuations and magnetospheric perturbations. It is argued that the upstream pressure variations are not inherent in the solar wind but rather are associated with the bow shock. This conclusion follows from the fact that the upstream field strength and density associated with perturbations are highly correlated with each other, while they tend to be anticorrelated in the undisturbed solar wind, and that the upstream perturbations occur within the foreshock or at its boundary. The results imply a mode of interaction between the solar wind upstream and the magnetosphere whereby density changes produced in the foreshock subsequently convect through the bow shock and impinge on the magnetosphere. Upstream pressure perturbations should create significant effects on the magnetopause and at the foot of nearby field lines that lead to the polar cusp ionosphere.
2013-01-21
Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on November 15, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the results are compared using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2012). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, all DER values were less than 3 and results are consistent with low (e.g., background) concentrations.
Application of a Particle Method to the Advection-Diffusion-Reaction Equation
NASA Astrophysics Data System (ADS)
Paster, A.; Bolster, D.; Benson, D. A.
2012-12-01
A reaction between two chemical species can only happen if molecules collide and react. Thus, the mixing of a system can become a limiting factor in the onset of reaction. Solving for reaction rate in a well-mixed system is typically a straightforward task. However, when incomplete mixing kicks in, obtaining a solution becomes more challenging. Since reaction can only happen in regions where both reactants co-exist, the incomplete mixing may slow down the reaction rate, when compared to a well-mixed system. The effect of incomplete mixing upon reaction is a highly important aspect of various processes in natural and engineered systems, ranging from mineral precipitation in geological formations to groundwater remediation in aquifers. We study a relatively simple system with a bi-molecular irreversible kinetic reaction A+B → Ø where the underlying transport of reactants is governed by an advection-diffusion equation, and the initial concentrations are given in terms of an average and a perturbation. Such a system does not have an analytical solution to date, even for the zero advection case. We model the system by a Monte Carlo particle tracking method, where particles represent some reactant mass. In this method, diffusion is modeled by a random walk of the particles, and reaction is modeled by annihilation of particles. The probability of the annihilation is proportional to the reaction rate constant and the probability density associated with particle co-location. We study the numerical method in depth, characterizing typical numerical errors and time step restrictions. In particular, we show that the numerical method converges to the advection-diffusion-reaction equation at the limit Δt →0. We also rigorously derive the relationship between the initial number of particles in the system and the initial concentrations perturbations represented by that number. We then use the particle simulations of zero-advection system to demonstrate the well
12 CFR 7.2023 - Reverse stock splits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Reverse stock splits. 7.2023 Section 7.2023... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate...
12 CFR 7.2023 - Reverse stock splits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Reverse stock splits. 7.2023 Section 7.2023... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate...
12 CFR 7.2023 - Reverse stock splits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Reverse stock splits. 7.2023 Section 7.2023... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate...
Influence of turbulent advection on a phytoplankton ecosystem with nonuniform carrying capacity.
McKiver, William J; Neufeld, Zoltán
2009-06-01
In this work we study a plankton ecosystem model in a turbulent flow. The plankton model we consider contains logistic growth with a spatially varying background carrying capacity and the flow dynamics are generated using the two-dimensional (2D) Navier-Stokes equations. We characterize the system in terms of a dimensionless parameter, gamma identical with TB/TF, which is the ratio of the ecosystem biological time scales TB and the flow time scales TF. We integrate this system numerically for different values of gamma until the mean plankton reaches a statistically stationary state and examine how the steady-state mean and variance of plankton depends on gamma. Overall we find that advection in the presence of a nonuniform background carrying capacity can lead to very different plankton distributions depending on the time scale ratio gamma. For small gamma the plankton distribution is very similar to the background carrying capacity field and has a mean concentration close to the mean carrying capacity. As gamma increases the plankton concentration is more influenced by the advection processes. In the largest gamma cases there is a homogenization of the plankton concentration and the mean plankton concentration approaches the harmonic mean, <1/K>(-1). We derive asymptotic approximations for the cases of small and large gamma. We also look at the dependence of the power spectra exponent, beta, on gamma where the power spectrum of plankton is proportional to k(-beta). We find that the power spectra exponent closely obeys beta=1+2/gamma as predicted by earlier studies using simple models of chaotic advection.
A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection
NASA Astrophysics Data System (ADS)
Bachman, S. D.; Fox-Kemper, B.; Bryan, F. O.
2015-02-01
A diagnosis method is presented which inverts a set of tracer flux statistics into an eddy-induced transport intended to apply for all tracers. The underlying assumption is that a linear flux-gradient relationship describes eddy-induced tracer transport, but a full tensor coefficient is assumed rather than a scalar coefficient which allows for down-gradient and skew transports. Thus, Lagrangian advection and anisotropic diffusion not necessarily aligned with the tracer gradient can be diagnosed. In this method, multiple passive tracers are initialized in an eddy-resolving flow simulation. Their spatially-averaged gradients form a matrix, where the gradient of each tracer is assumed to satisfy an identical flux-gradient relationship. The resulting linear system, which is overdetermined when using more than three tracers, is then solved to obtain an eddy transport tensor R which describes the eddy advection (antisymmetric part of R) and potentially anisotropic diffusion (symmetric part of R) in terms of coarse-grained variables. The mathematical basis for this inversion method is presented here, along with practical guidelines for its implementation. We present recommendations for initialization of the passive tracers, maintaining the required misalignment of the tracer gradients, correcting for nonconservative effects, and quantifying the error in the diagnosed transport tensor. A method is proposed to find unique, tracer-independent, distinct rotational and divergent Lagrangian transport operators, but the results indicate that these operators are not meaningfully relatable to tracer-independent eddy advection or diffusion. With the optimal method of diagnosis, the diagnosed transport tensor is capable of predicting the fluxes of other tracers that are withheld from the diagnosis, including even active tracers such as buoyancy, such that relative errors of 14% or less are found.
NASA Astrophysics Data System (ADS)
Cartwright, Ian
Advection-dispersion fluid flow models implicitly assume that the infiltrating fluid flows through an already fluid-saturated medium. However, whether rocks contain a fluid depends on their reaction history, and whether any initial fluid escapes. The behaviour of different rocks may be illustrated using hypothetical marble compositions. Marbles with diverse chemistries (e.g. calcite + dolomite + quartz) are relatively reactive, and will generally produce a fluid during heating. By contrast, marbles with more restricted chemistries (e.g. calcite + quartz or calcite-only) may not. If the rock is not fluid bearing when fluid infiltration commences, mineralogical reactions may produce a reaction-enhanced permeability in calcite + dolomite + quartz or calcite + quartz, but not in calcite-only marbles. The permeability production controls the pattern of mineralogical, isotopic, and geochemical resetting during fluid flow. Tracers retarded behind the mineralogical fronts will probably be reset as predicted by the advection-dispersion models; however, tracers that are expected to be reset ahead of the mineralogical fronts cannot progress beyond the permeability generating reaction. In the case of very unreactive lithologies (e.g. pure calcite marbles, cherts, and quartzites), the first reaction to affect the rocks may be a metasomatic one ahead of which there is little pervasive resetting of any tracer. Centimetre-scale layering may lead to the formation of self-perpetuating fluid channels in rocks that are not fluid saturated due to the juxtaposition of reactants. Such layered rocks may show patterns of mineralogical resetting that are not predicted by advection-dispersion models. Patterns of mineralogical and isotopic resetting in marbles from a number of terrains, for example: Chillagoe, Marulan South, Reynolds Range (Australia); Adirondack Mountains, Old Woman Mountains, Notch Peak (USA); and Stephen Cross Quarry (Canada) vary as predicted by these models.
Marazzi, L; Parolari, P; Brunero, M; Brenot, R; Barbet, S; Martinelli, M
2013-02-25
We present a colorless network-embedded self-tuning transmitter assisted by a remotely pumped erbium-doped double-pass amplifier located at the remote node for a conventional hybrid stacked-WDM/TDM-PON. The scheme provides up to 256-split PON with 80-Gb/s aggregate upstream capacity obtained with RSOA direct modulation at 2.5 Gb/s.
Variational Integration for Ideal MHD with Built-in Advection Equations
Zhou, Yao; Qin, Hong; Burby, J. W.; Bhattacharjee, A.
2014-08-05
Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Observations of the microclimate of a lake under cold air advective conditions
NASA Technical Reports Server (NTRS)
Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.
1977-01-01
The moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold air advective conditions. Point temperature measurements north and south of the lake and data obtained from the NOAA satellite and a thermal scanner flown at 1.6 km, indicate that, under conditions of moderate winds (approximately 4m/sec), surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C. With surface wind speed less than 1m/sec, no substantial temperature effects were observed. Results of this study are being used in land use planning, lake level control and in agriculture for selecting planting sites.
Multigrid techniques for the solution of the passive scalar advection-diffusion equation
NASA Technical Reports Server (NTRS)
Phillips, R. E.; Schmidt, F. W.
1985-01-01
The solution of elliptic passive scalar advection-diffusion equations is required in the analysis of many turbulent flow and convective heat transfer problems. The accuracy of the solution may be affected by the presence of regions containing large gradients of the dependent variables. The multigrid concept of local grid refinement is a method for improving the accuracy of the calculations in these problems. In combination with the multilevel acceleration techniques, an accurate and efficient computational procedure is developed. In addition, a robust implementation of the QUICK finite-difference scheme is described. Calculations of a test problem are presented to quantitatively demonstrate the advantages of the multilevel-multigrid method.
Preconditioned iterative methods for space-time fractional advection-diffusion equations
NASA Astrophysics Data System (ADS)
Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.
2016-08-01
In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.
Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes
NASA Astrophysics Data System (ADS)
Montecinos, Gino I.; Toro, Eleuterio F.
2014-10-01
Following Cattaneo's original idea, in this article we first present two relaxation formulations for time-dependent, non-linear systems of advection-diffusion-reaction equations. Such formulations yield time-dependent non-linear hyperbolic balance laws with stiff source terms. Then we present a locally implicit version of the ADER method to solve these stiff systems to high accuracy. The new ingredient of the numerical methodology is a locally implicit solution of the generalised Riemann problem. We illustrate the formulations and the resulting numerical approach by solving the compressible Navier-Stokes equations.
Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations
NASA Astrophysics Data System (ADS)
Busto, S.; Toro, E. F.; Vázquez-Cendón, M. E.
2016-12-01
We construct, analyze and assess various schemes of second order of accuracy in space and time for model advection-diffusion-reaction differential equations. The constructed schemes are meant to be of practical use in solving industrial problems and are derived following two related approaches, namely ADER and MUSCL-Hancock. Detailed analysis of linear stability and local truncation error are carried out. In addition, the schemes are implemented and assessed for various test problems. Empirical convergence rate studies confirm the theoretically expected accuracy in both space and time.
Hygroscopic chemicals and the formation of advection warm fog: A numerical simulation
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liaw, G. S.
1978-01-01
The formation of advection fog is closely associated with the characteristics of the aerosol particles, including the chemical composition, mass of the nuclei, particle size, and concentration. Both macrophysical and microphysical processes are considered. In the macrophysical model, the evolution of wind components, water vapor content, liquid water content and potential temperature under the influences of vertical turbulent diffusion, turbulent momentum, and turbulent energy transfers are taken into account. In the microphysical model, the supersaturation effect is incorporated with the surface tension and hygroscopic material solution.
The role of advection and diffusion in waste disposal by sea urchin embryos
NASA Astrophysics Data System (ADS)
Clark, Aaron; Licata, Nicholas
2014-03-01
We determine the first passage probability for the absorption of waste molecules released from the microvilli of sea urchin embryos. We calculate a perturbative solution of the advection-diffusion equation for a linear shear profile similar to the fluid environment which the embryos inhabit. Rapid rotation of the embryo results in a concentration boundary layer of comparable thickness to the length of the microvilli. A comparison of the results to the regime of diffusion limited transport indicates that fluid flow is advantageous for efficient waste disposal.
Jenet, F. A.; Melatos, A.; Robinson, P. A.
2007-10-15
Zakharov simulations of nonlinear wave collapse in continuously driven two-dimensional, electromagnetic strong plasma turbulence with electron thermal speeds v{>=}0.01c show that for v < or approx. 0.1c, dipole radiation occurs near the plasma frequency, mainly near arrest, but for v > or approx. 0.1c, a new mechanism applies in which energy oscillates between trapped Langmuir and transverse modes until collapse is arrested, after which trapped transverse waves are advected into incoherent interpacket turbulence by an expanding annular density well, where they detrap. The multipole structure, Poynting flux, source current, and radiation angular momentum are computed.
A Streamline-Upwind Model for Filling Front Advection in Powder Injection Moulding
NASA Astrophysics Data System (ADS)
Larsen, Guillaume; Cheng, Zhi Qiang; Barriere, Thierry; Liu, Bao Sheng; Gelin, Jean-Claude
2010-06-01
The filling process of powder injection molding is modeled by the flows of two variably adjacent domains in the mold cavity. The feedstock is filled into the cavity while the air is expelled out by the injected feedstock [1]. Eulerian description is adopted. The filling patterns are determined by the solution of an advection equation, governed by the velocity field in both the feedstock flow and air flow [2]. In the real physics, the advance of filling front depends mainly on the flow of feedstock that locates behind the front. The flow of air in front of the injected material plays in fact no meaningful effect. However, the actual algorithm for solution of the advection equation takes equally the importance for both the flow of viscous feedstock and that of the slight air. Under such a condition, the injection flow of feedstock in simulation may be misdirected unrealistically by the velocity field in the air portion of the mold cavity. To correct this defect, an upwind scheme is proposed to reinforce the effect of upwind flow and reduce the effect of downstream flow. The present paper involves the investigation of an upwind algorithm for simulation of the filling state during powder injection molding. A Petrov-Galerkin upwind based method (SUPG) is adopted for numerical simulation of the transport equation instead of the Taylor-Galerkin method in previous work. In the proposed implementation of the Streamline-Upwind/Petrov-Galerkin (SUPG) approach. A stabilization method is used to prevent oscillations in the convection-dominated problems. It consists in the introduction of an artificial diffusion in streamline direction. Suitable modification of the test function is the important issue. It ensures the stable simulation of filling process and results in the more realistic prediction of filling patterns. The implementation of upwind scheme in mould filling state simulation, based on an advection equation and the whole velocity field of feedstock and air flow, makes
Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation
NASA Astrophysics Data System (ADS)
Carella, Alfredo Raúl; Dorao, Carlos Alberto
2013-01-01
Fractional derivatives provide a general approach for modeling transport phenomena occurring in diverse fields. This article describes a Least Squares Spectral Method for solving advection-dispersion equations using Caputo or Riemann-Liouville fractional derivatives. A Gauss-Lobatto-Jacobi quadrature is implemented to approximate the singularities in the integrands arising from the fractional derivative definition. Exponential convergence rate of the operator is verified when increasing the order of the approximation. Solutions are calculated for fractional-time and fractional-space differential equations. Comparisons with finite difference schemes are included. A significant reduction in storage space is achieved by lowering the resolution requirements in the time coordinate.
A field study of air flow and turbulent features of advection fog
NASA Technical Reports Server (NTRS)
Connell, J. D.
1979-01-01
The setup and initial operation of a set of specialized meteorological data collection hardware are described. To study the life cycle of advection fogs at a lake test site, turbulence levels in the fog are identified, and correlated with the temperature gradients and mean wind profiles. A meteorological tower was instrumented to allow multiple-level measurements of wind and temperature on a continuous basis. Additional instrumentation was: (1)hydrothermograph, (2)microbarograph, (3)transmissometers, and (4)a boundary layer profiler. Two types of fogs were identified, and important differences in the turbulence scales were noted.
Variational integration for ideal magnetohydrodynamics with built-in advection equations
Zhou, Yao; Burby, J. W.; Bhattacharjee, A.; Qin, Hong
2014-10-15
Newcomb's Lagrangian for ideal magnetohydrodynamics (MHD) in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum-preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Computation of traveling wave fronts for a nonlinear diffusion-advection model.
Mansour, M B A
2009-01-01
This paper utilizes a nonlinear reaction-diffusion-advection model for describing the spatiotemporal evolution of bacterial growth. The traveling wave solutions of the corresponding system of partial differential equations are analyzed. Using two methods, we then find such solutions numerically. One of the methods involves the traveling wave equations and solving an initial-value problem, which leads to accurate computations of the wave profiles and speeds. The second method is to construct time-dependent solutions by solving an initial-moving boundary-value problem for the PDE system, showing another approximation for such wave solutions.
Advection of sulfur dioxide over the western Atlantic Ocean during CITE 3
NASA Technical Reports Server (NTRS)
Thornton, D. C.; Bandy, A. R.; Beltz, N.; Driedger, A. R., III; Ferek, R.
1993-01-01
During the NASA Chemical Instrumentation Test and Evaluation 3 sulfur intercomparison over the western Atlantic Ocean, five techniques for the determination of sulfur dioxide were evaluated. The response times of the techniques varied from 3 to 30 min. Based on the ensemble of measurements reported, it was clear that advection of SO2 from the North American continent occurred in the boundary layer (altitude less than 1 km) with only one exception. The vertical distribution of SO2 above the boundary layer for the northern and southern Atlantic Ocean was remarkably similar duing this experiment.
NASA Astrophysics Data System (ADS)
Monobe, Harunori; Wu, Chang-Hong
2016-12-01
In this paper, we investigate a reaction-diffusion-advection equation with a free boundary which models the spreading of an invasive species in one-dimensional heterogeneous environments. We assume that the species has a tendency to move upward along the resource gradient in addition to random dispersal, and the spreading mechanism of species is determined by a Stefan-type condition. Investigating the sign of the principal eigenvalue of the associated linearized eigenvalue problem, under certain conditions we obtain the sharp criteria for spreading and vanishing via system parameters. Also, we establish the long-time behavior of the solution and the asymptotic spreading speed. Finally, some biological implications are discussed.
Richon, Patrick; Perrier, Frédéric; Koirala, Bharat Prasad; Girault, Frédéric; Bhattarai, Mukunda; Sapkota, Soma Nath
2011-02-01
Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m(-2) d(-1). Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO(2) concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m(-3), but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO(2) advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m(-3), remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S(1) and semi-diurnal S(2) periodic components. At the advection-dominated points, radon concentration did not exhibit S(1) or S(2) components. At the reference points, however, the S(2) component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S(1) component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the
Shifted Feedback Suppression of Turbulent Behavior in Advection-Diffusion Systems
Evain, C.; Szwaj, C.; Bielawski, S.; Couprie, M.-E.; Hosaka, M.; Mochihashi, A.; Katoh, M.
2009-04-03
In spatiotemporal systems with advection, suppression of noise-sustained structures involves questions that are outside of the framework of deterministic dynamical systems control (such as Ott-Grebogi-Yorke-type methods). Here we propose and test an alternate strategy where a nonlocal additive feedback is applied, with the objective to create a new deterministic solution that becomes robust to noise. As a remarkable fact - though the needed parameter perturbations required have essentially a finite size - they turn out to be extraordinarily small in principle: 10{sup -8} in the free-electron laser experiment presented here.
NASA Astrophysics Data System (ADS)
Nefedov, Nikolay
2017-02-01
This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.
Spin splitting in 2D monochalcogenide semiconductors.
Do, Dat T; Mahanti, Subhendra D; Lai, Chih Wei
2015-11-24
We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D'yakonov-Perel' spin relaxation mechanism is also suppressed.
Spin splitting in 2D monochalcogenide semiconductors
Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei
2015-01-01
We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed. PMID:26596907
Technical Skills Required in Split Liver Transplantation.
Liu, Huanqiu; Li, Ruijun; Fu, Jinling; He, Qianyan; Li, Ji
2016-07-01
The number of liver grafts obtained from a cadaver can be greatly increased with the application of split liver transplantation. In the last 10 years, pediatric waiting list mortality has been reduced significantly with the use of this form of liver transplantation, which has 2 major forms. In its most commonly used form, the liver can be transplanted into 1 adult and 1 child by splitting it into a right extended and a left lateral graft. For adult and pediatric recipients, the results of this procedure are comparable to those of whole-organ techniques. In another form, 2 hemi-grafts are obtained by splitting the liver, which can be transplanted into a medium-sized adult (the right side) and a large child/small adult (the left side). The adult liver graft pool is expanded through the process of full right/full left splitting; but it is also a critical technique when one considers the knowledge required of the potential anatomic variations and the high technical skill level needed. In this review, we provide some basic insights into the technical and anatomical aspects of these 2 forms of split liver transplantation and present an updated summary of both forms.
Spin splitting in 2D monochalcogenide semiconductors
NASA Astrophysics Data System (ADS)
Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei
2015-11-01
We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed.
Conditions for a split diffusion flame
Hertzberg, J.R.
1997-05-01
An unusual phenomenon has been observed in a methane jet diffusion flame subjected to axial acoustic forcing. At specific excitation frequencies and amplitudes, the driven flame splits into a central jet and one or two side jets. The splitting is accompanied by a partial detachment of the flame from the nozzle exit, a shortening of the flame by a factor of 2, and a change from the common yellow color of soot radiation to a clear blue flame. Such a phenomenon may be useful for the control of soot production or product species. The splitting is intermittent in time, bifurcating between the split flame and an ordinary single jet diffusion flame. The experiment consists of an unconfined axisymmetric methane jet formed by a short length of 0.4 cm diameter pipe. The pipe is connected to a large plenum surrounding a bass reflex loudspeaker enclosure that provides the excitation. Conditions producing split and bifurcated flames are presented. The drive frequencies required to cause bifurcation correspond to the first two peaks in the system`s frequency response curve. Bifurcating behavior was observed at a wide range of flow rates, ranging from very small flames of Reynolds number 240 up to turbulent lift-off, at Re = 1,000, based on the inner pipe diameter. It was not sensitive to nozzle length, but the details of the nozzle tip, such as orifice or pipe geometry, can affect the frequency range.
"Upstream Thinking": the catchment management approach of a water provider
NASA Astrophysics Data System (ADS)
Grand-Clement, E.; Ross, M.; Smith, D.; Anderson, K.; Luscombe, D.; Le Feuvre, N.; Brazier, R. E.
2012-04-01
Human activities have large impacts on water quality and provision. Water companies throughout the UK are faced with the consequences of poor land management and need to find appropriate solutions to decreasing water quality. This is particularly true in the South West of England, where 93% of the drinking water is sourced from rivers and reservoirs: large areas of drained peatlands (i.e. Exmoor and Dartmoor National Parks) are responsible for a significant input of dissolved organic carbon (DOC) discolouring the water, whilst poorly managed farming activities can lead to diffuse pollution. Alongside the direct environmental implications, poor water quality is partly increasing water treatment costs and will drive significant future investment in additional water treatment, with further repercussions on customers. This highlights the need for water companies throughout the UK, and further afield, to be more involved in catchment management. "Upstream Thinking" is South West Water's (SWW) approach to catchment management, where working with stakeholders to improve water quality upstream aims to avoid increasingly costly solutions downstream. This approach has led the company to invest in two major areas of work: (1) The Farmland programme where problematic farm management practices and potential solutions are identified, typically 40% of the required investment is then offered in exchange for a legal undertaking to maintain the new farm assets in good condition for 25 years; (2) The Mires programme which involves heavy investment in peatland restoration through the blocking of open ditches in order to improve water storage and quality in the long term. From these two projects, it has been clear that stakeholder involvement of groups such as local farmers, the Westcountry Rivers Trust, the Exmoor National Park Authority, the Environment Agency, Natural England and the Exmoor Society is essential, first because it draws in catchment improvement expertise which is not
Choi, Jee-Won; Tillman, Fred D; Smith, James A
2002-07-15
It was hypothesized that atmospheric pressure changes can induce gas flow in the unsaturated zone to such an extent that the advective flux of organic vapors in unsaturated-zone soil gas can be significant relative to the gas-phase diffusion flux of these organic vapors. To test this hypothesis, a series of field measurements and computer simulations were conducted to simulate and compare diffusion and advection fluxes at a trichloroethene-contaminated field site at Picatinny Arsenal in north-central New Jersey. Moisture content temperature, and soil-gas pressure were measured at multiple depths (including at land surface) and times for three distinct sampling events in August 1996, October 1996, and August 1998. Gas pressures in the unsaturated zone changed significantly over time and followed changes measured in the atmosphere. Gas permeability of the unsaturated zone was estimated using data from a variety of sources, including laboratory gas permeability measurements made on intact soil cores from the site, a field air pump test, and calibration of a gas-flow model to the transient, one-dimensional gas pressure data. The final gas-flow model reproduced small pressure gradients as observed in the field during the three distinct sampling events. The velocities calculated from the gas-flow model were used in transient, one-dimensional transport simulations to quantify advective and diffusive fluxes of TCE vapor from the subsurface to the atmosphere as a function of time for each sampling event. Effective diffusion coefficients used for these simulations were determined from independent laboratory measurements made on intact soil cores collected from the field site. For two of the three sampling events (August 1996 and August 1998), the TCE gas-phase diffusion flux at land surface was significantly greater than the advection flux over the entire sampling period. For the second sampling event (October 1996), the advection flux was frequently larger than the
Catalytic Ignition and Upstream Reaction Propagation in a Platinum Tube
NASA Technical Reports Server (NTRS)
Struk, P. M.; Dietrich, D. L.; Mellish, B. P.; Miller, F. J.; T'ien, J. S.
2007-01-01
A challenge for catalytic combustion in monolithic reactors at elevated temperatures is the start-up or "light-off" from a cold initial condition. In this work, we demonstrate a concept called "back-end catalytic ignition that potentially can be utilized in the light-off of catalytic monoliths. An external downstream flame or Joule heating raises the temperature of a small portion of the catalyst near the outlet initiating a localized catalytic reaction that propagates upstream heating the entire channel. This work uses a transient numerical model to demonstrate "back-end" ignition within a single channel which can characterize the overall performance of a monolith. The paper presents comparisons to an experiment using a single non-adiabatic channel but the concept can be extended to the adiabatic monolith case. In the model, the time scales associated with solid heat-up are typically several orders of magnitude larger than the gas-phase and chemical kinetic time-scales. Therefore, the model assumes a quasi-steady gas-phase with respect to a transient solid. The gas phase is one-dimensional. Appropriate correlations, however, account for heat and mass transfer in a direction perpendicular to the flow. The thermally-thin solid includes axial conduction. The gas phase, however, does not include axial conduction due to the high Peclet number flows. The model includes both detailed gas-phase and catalytic surface reactions. The experiment utilizes a pure platinum circular channel oriented horizontally though which a CO/O2 mixture (equivalence ratios ranging from 0.6 to 0.9) flows at 2 m/s.
Relict landscape resistance to dissection by upstream migrating knickpoints
NASA Astrophysics Data System (ADS)
Brocard, Gilles Y.; Willenbring, Jane K.; Miller, Thomas E.; Scatena, Frederik N.
2016-06-01
Expanses of subdued topographies are common at high elevation in mountain ranges. They are often interpreted as relict landscapes and are expected to be replaced by steeper topography as erosion proceeds. Preservation of such relict fragments can merely reflect the fact that it takes time to remove any preexisting topography. However, relict fragments could also possess intrinsic characteristics that make them resilient to dissection. We document here the propagation of a wave of dissection across an uplifted relict landscape in Puerto Rico. Using 10Be-26Al burial dating on cave sediments, we show that uplift started 4 Ma and that river knickpoints have since migrated very slowly across the landscape. Modern detrital 10Be erosion rates are consistent with these long-term rates of knickpoint retreat. Analysis of knickpoint distribution, combined with visual observations along the streambeds, indicates that incision by abrasion and plucking is so slow that bedrock weathering becomes a competing process of knickpoint retreat. The studied rivers flow over a massive stock of quartz diorite surrounded by an aureole of metavolcanic rocks. Earlier studies have shown that vegetation over the relict topography efficiently limits erosion, allowing for the formation of a thick saprolite underneath. Such slow erosion reduces streambed load fluxes delivered to the knickpoints, as well as bed load grain size. Both processes limit abrasion. Compounding the effect of slow abrasion, wide joint spacing in the bedrock makes plucking infrequent. Thus, the characteristics of the relict upstream landscape have a direct effect on stream incision farther downstream, reducing the celerity at which the relict, subdued landscape is dissected. We conclude that similar top-down controls on river incision rate may help many relict landscapes to persist amidst highly dissected topographies.
Crossflow transition control by upstream flow deformation using plasma actuators
NASA Astrophysics Data System (ADS)
Dörr, Philipp C.; Kloker, Markus J.
2017-02-01
Control of laminar-turbulent transition in a swept-wing-type boundary-layer flow, subject to primary crossflow instability, is investigated using direct numerical simulations. In our previous works, we explored a direct base-flow stabilization aimed at a spanwise homogenous flow manipulation or a direct crossflow-vortex manipulation by plasma actuators. In this paper, the technique of upstream flow deformation (UFD) is applied, needing by far the least energy input. The actuators, modeled by local volume forcing, are set to excite amplified steady crossflow vortex (CFV) control modes with a higher spanwise wavenumber than the most amplified modes. The resulting nonlinear control CFVs are spaced narrower than the naturally occurring vortices and are less unstable with respect to secondary instability. They generate a beneficial mean-flow distortion attenuating the primary crossflow instability, and thus a delay of the transition to turbulence. Unlike roughness elements for UFD, the employed dielectric barrier discharge plasma actuators allow to set the force direction: Forcing against the crossflow has a direct, fundamental stabilizing effect due to a reduction of the mean crossflow, whereas forcing in the crossflow direction locally invokes the opposite due to a local increase of the mean crossflow. The differences between these settings, also with respect to forcing in streamwise direction, are discussed in detail, and it is shown that a significant transition delay can be achieved indeed with both, however with a differing efficiency and robustness. Additionally, a comparison to a set-up with an excitation of the control modes by synthetic blowing and suction is performed to clarify the role of the direct effect on the base flow.
Innovation and performance: The case of the upstream petroleum sector
NASA Astrophysics Data System (ADS)
Persaud, A. C. Jai
This thesis investigates innovation in the upstream crude oil and natural gas sector, a strategic part of the Canadian economy and a vital industry for North American energy trade and security. Significant interest exists in understanding innovation in this sector from a private and public policy perspective. Interest in the sector has intensified recently due to concerns about world oil supply, Canada's oil sands development, and the potential that Canada may become an "energy superpower." The study examines the factors that drive companies involved in exploration, development, and production in the upstream petroleum sector to innovate and the impact of their innovation activities through major technologies on their performance. The thesis focuses on process innovation, which involves the adoption of new or significantly improved production processes, and is distinct from product innovation, which is based on the development and commercialization of a product with improved product characteristics to deliver new services to the consumer. The thesis provides a comprehensive review of the literature and develops an investigative model framework to examine the drivers of innovation and the impact of innovation on performance in the upstream petroleum sector. The research employs a survey questionnaire that was developed to obtain data and information, which was missing in the literature or not publicly available to test key relationships of innovation and performance indicators. In addition to the survey questionnaire, a number of knowledgeable experts in the industry were also interviewed. A total of 68 respondents completed the survey questionnaire, accounting for 40 percent of the firms in the industry. This percentage goes up to over 50 percent when account is taken of extremely small firms who could not fill out the survey. Further, the 68 respondents account for most of the industry revenues, production, and employment. The respondents include most of the key
Resonance splitting in gyrotropic ring resonators.
Jalas, Dirk; Petrov, Alexander; Krause, Michael; Hampe, Jan; Eich, Manfred
2010-10-15
We present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.01 amplitude of the off-diagonal element of the dielectric tensor is assumed. It is shown that the derived resonance splitting of the clockwise and counterclockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm, a 29GHz splitting is demonstrated. An integrated optical isolator with a 10μm geometrical footprint is proposed based on a critically coupled ring resonator.
Notes on the genesis of pathological splitting.
Ross, J M; Dunn, P B
1980-01-01
In this preliminary paper, we have concentrated on the reverberating system that may develop as parents respond to the rapprochement toddler's ambitendent communications of split objects and to some of the ways in which these interactions may become reactivated later in borderline transference phenomena. We have hypothesized that such splits in mental content underlie communication of a fixed, binary and dualistic nature, such as communication that characterizes the so-called double bind. We have further suggested that the double bind, when understood in the context of object relations, usefully highlights the process whereby parent and then therapist become unwitting participants in the toddler's or borderline's world of split-off part objects. Finally, we have touched on certain therapeutic implications, emphasizing the developmental impact of interpreting borderline transference phenomena.
Multiple Spectral Splits of Supernova Neutrinos
Dasgupta, Basudeb; Raffelt, Georg G.; Dighe, Amol; Smirnov, Alexei Yu.
2009-07-31
Collective oscillations of supernova neutrinos swap the spectra f{sub n}u{sub e}(E) and f{sub n}u{sub e}(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f{sub n}u{sub e}=f{sub n}u{sub x}, f{sub n}u{sub e}=f{sub n}u{sub x} as well as E->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.
Multiple spectral splits of supernova neutrinos.
Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu
2009-07-31
Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.
2013-09-23
Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 21, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, and the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference, are tabulated. All DER values were less than 3 and results are consistent with low (e.g., background) concentrations.
NASA Astrophysics Data System (ADS)
You, Kehua; Zhan, Hongbin
2013-02-01
Diffusive flux is traditionally treated as the dominant mechanism of gas transport in unsaturated zones under natural conditions, and advective flux is usually neglected. However, some researchers have found that pressure-driven and density-driven advective flux may also be significant under certain conditions. This article compares the diffusive, pressure-driven and density-driven advective fluxes of gas phase volatile organic compound (VOCs) in unsaturated zones under various natural conditions. The presence of a less or more permeable layer at ground surface in a layered unsaturated zone is investigated for its impact on the net contribution of advective and diffusive fluxes. Results show although the transient advective flux can be greater than the diffusive flux, under most of the field conditions the net contribution of the advective flux is one to three orders of magnitude less than the diffusive flux, and the influence of the density-driven flux is undetectable. The advective flux contributes comparably with the diffusive flux only when the gas-filled porosity is less than 0.05. The presence of a less permeable layer at ground surface slightly increases the total flux in the underlying layer, while the presence of a more permeable layer at ground surface significantly increases the total flux in it. When the magnitude of water table fluctuation is less than 1 cm, and the period is greater than 0.5 day, the fluctuation of the water table can be simulated by fixing the water table position and setting a fluctuating moving velocity at the water table.
Rabi splitting enhancement in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Dickerson, James Henry, II
The physics of the two-level atom has been the basis of research in atomic physics for much of the past several decades. One of the great successes of semiconductor physics has been its capability to mimic the phenomena of other physical systems. Many of the discoveries in atomic physics have prompted studies of the coupling between two-level atom-like structures and photonic system in semiconductor physics. Much of that work has investigated the optics of the energy exchange between atom-like systems and the electromagnetic field mode of the enclosing cavity. Since many applications of microcavities are governed by the control of the spontaneous emission from the structure, command of the emission relies on control of the coupling between the photonic and the excitonic modes of the system. When the energies of the interacting microcavity states are in resonance, the resulting degeneracy yields an energy split between the coincident modes. This energy split produces two branches of the resonant mixed states, which are called polaritons. The energy separation between the mixed state branches is called the vacuum Rabi splitting, Delta. The magnitude of the Rabi splitting is indicative of the coupling strength of the polariton modes. One of the major pursuits of this field has been to augment the control of the coupling strength between the cavity polariton modes. Comprehensive control over the polariton states, be it the modulation of the polariton energies or the suppression of one of the modes, is a key component in the development of microcavity devices. The goal of my thesis research was to discover a simple means to achieve control over the coupling between the photonic and excitonic modes of a microcavity. This entailed the parametric tuning of the Rabi splitting between the coupled modes of the microcavity. Furthermore, we hoped to attain the maximum possible Rabi splitting observed in GaAs/AlxGa1- xAs microcavities with quantum oscillators located only within
The splitting of Comet Halley 1986
NASA Astrophysics Data System (ADS)
Chen, Dao-Han; Zheng, Jia-Quing; Liu, Zong-Li; Yan, Lin-Shan; Lui, Lin-Zhong; Zhou, Xing-Hai; Wu, Zhi-Xian; Gilmore, A. C.
1987-09-01
Nine photographs taken on 25 Mar., 1986 show that the nucleus of Comet Halley split into 2 widely separated nuclei. The separated projected distance on the plane of the sky is 5000 km. The principal nucleus and the secondary nucleus exhibit their own comas. The prominant jet ejected from the companion curves up to a height of several thousand kilometers and the secondary nucleus must fade out of sight within only a few days. In combination with the results of photoelectric observations it seems that this event of splitting coincides with an outburst. Photographs were digitized, and the image enhancement is described.
Fermion localization on a split brane
Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.
2011-05-15
In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.
Parallel programming in Split-C
Culler, D.E.; Dusseau, A.; Goldstein, S.C.; Krishnamurthy, A.; Lumetta, S.; Eicken, T. von; Yelick, K.
1993-12-31
The authors introduce the Split-C language, a parallel extension of C intended for high performance programming on distributed memory multiprocessors, and demonstrate the use of the language in optimizing parallel programs. Split-C provides a global address space with a clear concept of locality and unusual assignment operators. These are used as tools to reduce the frequency and cost of remote access. The language allows a mixture of shared memory, message passing, and data parallel programming styles while providing efficient access to the underlying machine. They demonstrate the basic language concepts using regular and irregular parallel programs and give performance results for various stages of program optimization.
Accuracy of tablet splitting: Comparison study between hand splitting and tablet cutter
Habib, Walid A.; Alanizi, Abdulaziz S.; Abdelhamid, Magdi M.; Alanizi, Fars K.
2013-01-01
Background Tablet splitting is often used in pharmacy practice to adjust the administered doses. It is also used as a method of reducing medication costs. Objective To investigate the accuracy of tablet splitting by comparing hand splitting vs. a tablet cutter for a low dose drug tablet. Methods Salbutamol tablets (4 mg) were chosen as low dose tablets. A randomly selected equal number of tablets were split by hand and a tablet cutter, and the remaining tablets were kept whole. Weight variation and drug content were analysed for salbutamol in 0.1 N HCl using a validated spectrophotometric method. The percentages by which each whole tablet’s or half-tablet’s drug content and weight difference from sample mean values were compared with USP specification ranges for drug content. The %RSD was also calculated in order to determine whether the drugs met USP specification for %RSD. The tablets and half tablets were scanned using electron microscopy to show any visual differences arising from splitting. Results 27.5% of samples differed from sample mean values by a percentage that fell outside of USP specification for weight, of which 15% from the tablet cutter and 25% from those split by hand fell outside the specifications. All whole tablets and half tablets met the USP specifications for drug content but the variation of content between the two halves reached 21.3% of total content in case of hand splitting, and 7.13% only for the tablet cutter. The %RSDs for drug content and weight met the USP specification for whole salbutamol tablets and the half tablets which were split by tablet cutter. The halves which were split by hand fell outside the specification for %RSD (drug content = 6.43%, weight = 8.33%). The differences were visually clear in the electron microscope scans. Conclusion Drug content variation in half-tablets appeared to be attributable to weight variation occurring during the splitting process. This could have serious clinical consequences for
The effect of forcing on the spatial structure and spectra of chaotically advected passive scalars
NASA Astrophysics Data System (ADS)
Neufeld, Zoltán; Haynes, Peter H.; Picard, Guillemette
2000-10-01
The stationary distribution of passive tracers chaotically advected by a two-dimensional large-scale flow is investigated. The value of the tracer is conserved following each fluid element except when the element enters certain localized regions. The tracer value is then instantenously reset to a value associated with the region entered. This resetting acts as a forcing for the tracer field. This problem is mathematically equivalent to advection in open flows and results in a fractal tracer structure. The spectral exponent of the tracer field is different from that for a passive tracer with the usual additive forcing (the so-called Batchelor spectrum) and is related to the fractal dimension of the set of points that have never visited the forcing regions. We illustrate this behavior by considering a time-periodic flow whose effect is equivalent to a simple two-dimensional area-preserving map. We also show that similar structure in the tracer field is found when the flow is aperiodic in time.
Effects of local advection on the spatial sensible heat flux variation on a mountain glacier
NASA Astrophysics Data System (ADS)
Sauter, Tobias; Galos, Stephan Peter
2016-11-01
Distributed mass balance models, which translate micrometeorological conditions into local melt rates, have proven deficient to reflect the energy flux variability on mountain glaciers. This deficiency is predominantly related to shortcomings in the representation of local processes in the forcing data. We found by means of idealized large-eddy simulations that heat advection, associated with local wind systems, causes small-scale sensible heat flux variations by up to 100 W
NASA Astrophysics Data System (ADS)
Lester, D. R.; Trefry, M. G.; Metcalfe, G.
2016-11-01
The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.
Evaluation of advection-aridity complementary relations at the lab scale
NASA Astrophysics Data System (ADS)
Schymanski, Stanislaus J.; Aminzadeh, Milad; Roderick, Michael L.; Or, Dani
2015-04-01
A common view of evaporation from terrestrial surfaces considers limitations due to water supply in arid regions, and atmospheric demand (or energy) limitations to evaporation from wet surfaces in temperate regions. Evidence suggests that at large scales, energy and water limitations are not independent. While a surface dries and a larger fraction of the radiative energy is converted into sensible heat, that heat is injected into the air and altering its properties. This land-atmosphere feedback gives rise to the so-called complementary relationship (Bouchet 1963), referring to the simultaneous decrease in actual evaporation while potential evaporation increases as the surface dries. The effect of surface drying on atmospheric water demand is two-fold: an increase in air temperature and a decrease in water vapour content for fixed advective exchange rate across the system boundaries. To isolate the various mechanisms and improve understanding of the feedbacks, we designed an insulated wind tunnel, where wind speed, radiation, surface moisture and exchange rates of air and heat across the boundaries are controlled. Preliminary results show the magnitude of the feedbacks in terms of air and surface temperatures, and evaporation rates from drying and wet surfaces simultaneously. Experimental and associated simulation results provide a direct demonstration of the roles of advective exchange and the interplay between atmospheric boundary layer thickness and temporal variations in radiative energy input in determining the strength of surface-atmosphere feedbacks and the resulting phenomenon known as the complementary relationship.
Enhancement of microbial motility due to advection-dependent nutrient absorption
NASA Astrophysics Data System (ADS)
Condat, Carlos A.; di Salvo, Mario E.
2014-03-01
In their classical work, Berg and Purcell [Biophys. J. 20, 193 (1977)] concluded that the motion of a small microorganism would not significantly increase its nutrient uptake rate, if the nutrient consisted of high diffusivity particles. As a result, it has been generally assumed that nutrient transport to small microorganisms such as bacteria is dominated by molecular diffusion and that swimming and feeding currents play a negligible role. On the other hand, recent studies have found that flagellar motion may increase advection-mediated uptake. We formulate a model to investigate the hypothesis that fast-moving microbes may enhance their swimming speed by taking advantage of advection to increase nutrient absorption. Surprisingly, using realistic parameter values for bacteria and algae, we find that even modest increases in nutrient absorption may lead to a significant increase of the microbial speed. We also show that, optimally, the rate of effective energy transfer to the microbial propulsion system should be proportional to the speed for slow motion, while it should be proportional to a power of the speed close to two for fast motion. We are grateful to SECyT-UNC and CONICET, Argentina, for financial support.
A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes
NASA Astrophysics Data System (ADS)
Lee, D.; Lowrie, R.; Petersen, M.; Ringler, T.; Hecht, M.
2016-11-01
A new characteristic discontinuous Galerkin (CDG) advection scheme is presented. In contrast to standard discontinuous Galerkin schemes, the test functions themselves follow characteristics in order to ensure conservation and the edges of each element are also traced backwards along characteristics in order to create a swept region, which is integrated in order to determine the mass flux across the edge. Both the accuracy and performance of the scheme are greatly improved by the use of large Courant-Friedrichs-Lewy numbers for a shear flow test case and the scheme is shown to scale sublinearly with the number of tracers being advected, outperforming a standard flux corrected transport scheme for 10 or more tracers with a linear basis. Moreover the CDG scheme may be run to arbitrarily high order spatial accuracy and on unstructured grids, and is shown to give the correct order of error convergence for piecewise linear and quadratic bases on regular quadrilateral and hexahedral planar grids. Using a modal Taylor series basis, the scheme may be made monotone while preserving conservation with the use of a standard slope limiter, although this reduces the formal accuracy of the scheme to first order. The second order scheme is roughly as accurate as the incremental remap scheme with nonlocal gradient reconstruction at half the horizontal resolution. The scheme is being developed for implementation within the Model for Prediction Across Scales (MPAS) Ocean model, an unstructured grid finite volume ocean model.
Solis, Kyle Jameson; Martin, James E.
2012-11-01
Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less
On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions
NASA Astrophysics Data System (ADS)
Dörenkämper, Martin; Optis, Michael; Monahan, Adam; Steinfeld, Gerald
2015-06-01
The coastal discontinuity imposes strong signals to the atmospheric conditions over the sea that are important for wind-energy potential. Here, we provide a comprehensive investigation of the influence of the land-sea transition on wind conditions in the Baltic Sea using data from an offshore meteorological tower, data from a wind farm, and mesoscale model simulations. Results show a strong induced stable stratification when warm inland air flows over a colder sea. This stratification demonstrates a strong diurnal pattern and is most pronounced in spring when the land-sea temperature difference is greatest. The strength of the induced stratification is proportional to this parameter and inversely proportional to fetch. Extended periods of stable stratification lead to increased influence of inertial oscillations and increased frequency of low-level jets. Furthermore, heterogeneity in land-surface roughness along the coastline is found to produce pronounced horizontal streaks of reduced wind speeds that under stable stratification are advected several tens of kilometres over the sea. The intensity and length of the streaks dampen as atmospheric stability decreases. Increasing sea surface roughness leads to a deformation of these streaks with increasing fetch. Slight changes in wind direction shift the path of these advective streaks, which when passing through an offshore wind farm are found to produce large fluctuations in wind power. Implications of these coastline effects on the accurate modelling and forecasting of offshore wind conditions, as well as damage risk to the turbine, are discussed.
NASA Astrophysics Data System (ADS)
Pérez Guerrero, J. S.; Skaggs, T. H.
2010-08-01
SummaryMathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport equation that has a self-adjoint differential operator, and a solution is found using the generalized integral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor exists for several transport equation formulations of practical importance in groundwater transport modeling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are developed in detail and results are compared with solutions from the literature. Among other applications, the current analytical solution will be particularly useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.
An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling
NASA Astrophysics Data System (ADS)
Shchepetkin, Alexander F.
2015-07-01
An oceanic model with an Eulerian vertical coordinate and an explicit vertical advection scheme is subject to the Courant-Friedrichs-Lewy (CFL) limitation. Depending on the horizontal grid spacing, the horizontal-to-vertical grid resolution ratio and the flow pattern this limitation may easily become the most restrictive factor in choosing model time step, with the general tendency to become more severe as horizontal resolution becomes finer. Using terrain-following coordinate makes local vertical grid spacing depend on topography, ultimately resulting in very fine resolution in shallow areas in comparison with other models, z-coordinate, and isopycnic, which adds another factor in restricting time step. At the same time, terrain-following models are models of choice for the fine-resolution coastal modeling, often including tides interacting with topography resulting in large amplitude baroclinic vertical motions. In this article we examine the possibility of mitigating vertical CFL restriction, while at the same time avoiding numerical inaccuracies associated with standard implicit advection schemes. In doing so we design a combined algorithm which acts like a high-order explicit scheme when Courant numbers are small enough to allow explicit method (which is usually the case throughout the entire modeling domain except just few "hot spots"), while at the same time has the ability to adjust itself toward implicit scheme should it became necessary to avoid stability limitations. This is done in a seamless manner by continuously adjusting weighting between explicit and implicit components.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.
2015-05-01
The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.
Impact of Ridge Induced Latent Heat Advection on Sea Ice Global Heat Budget.
NASA Astrophysics Data System (ADS)
Hudier, E.; Gosselin, J.
2008-12-01
The effects of permeability on ice keel induced latent heat fluxes are examined using pressure ridge density statistics computed from SAR images and a prognostic simulation of forced brine advection through the bottom ice layer. Under pressure gradients generated in the wake of an ice keel sea water is pushed into and brine pumped out of the bottom ice layer. This in turn causes a new thermodynamic equilibrium to be reached. At spring when the ice permeability increases, brine export combined with sea water import translates into an advective heat flow that is balanced by the latent heat absorbed by volume melting of brine channel walls. Sea ice within the sheltered areas behind keels is modelled as an anisotropic heteregeneous mushy layer. The non-linear equation system within each cell is implemented on a finite volume grid and include volume melt of the brine channels from which porosity, water density, temperature and salinity are computed. Outputs from these simulations are then combined with ridge distribution statistics to evaluate the global impact of latent heat absorbed due to volume melting in the wake of ridges. As anticipated, results are highly dependent on permeability, nevertheless, they show that pressure ridge induced melting within the ice is a significant component of the heat budget when compared with melting at the ice water interface. This work underlines needs for further researches to improve our understanding of ice permeability changes during the melt season, it also calls for better tools to extract pressure ridge characteristics from satellite images.