An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...
Analytical solution for the advection-dispersion transport equation in layered media
Technology Transfer Automated Retrieval System (TEKTRAN)
The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...
A novel method for analytically solving a radial advection-dispersion equation
NASA Astrophysics Data System (ADS)
Lai, Keng-Hsin; Liu, Chen-Wuing; Liang, Ching-Ping; Chen, Jui-Sheng; Sie, Bing-Ruei
2016-11-01
An analytical solution for solute transport in a radial flow field has a variety of practical applications in the study of the transport in push-pull/divergent/convergent flow tracer tests, aquifer remediation by pumping and aquifer storage and recovery. However, an analytical solution for radial advective-dispersive transport has been proven very difficult to develop and relatively few in subsurface hydrology have made efforts to do so, because variable coefficients in the governing partial differential equations. Most of the solutions for radial advective-dispersive transport presented in the literature have generally been solved semi-analytically with the final concentration values being obtained with the help of a numerical Laplace inversion. This study presents a novel solution strategy for analytically solving the radial advective-dispersive transport problem. A Laplace transform with respect to the time variable and a generalized integral transform technique with respect to the spatial variable are first performed to convert the transient governing partial differential equations into an algebraic equation. Subsequently, the algebraic equation is solved using simple algebraic manipulations, easily yielding the solution in the transformed domain. The solution in the original domain is ultimately obtained by successive applications of the Laplace and corresponding generalized integral transform inversions. A convergent flow tracer test is used to demonstrate the robustness of the proposed method for deriving an exact analytical solution to the radial advective-dispersive transport problem. The developed analytical solution is verified against a semi-analytical solution taken from the literature. The results show perfect agreement between our exact analytical solution and the semi-analytical solution. The solution method presented in this study can be applied to create more comprehensive analytical models for a great variety of radial advective-dispersive
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...
İbiş, Birol
2014-01-01
This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662
Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation
NASA Astrophysics Data System (ADS)
Carella, Alfredo Raúl; Dorao, Carlos Alberto
2013-01-01
Fractional derivatives provide a general approach for modeling transport phenomena occurring in diverse fields. This article describes a Least Squares Spectral Method for solving advection-dispersion equations using Caputo or Riemann-Liouville fractional derivatives. A Gauss-Lobatto-Jacobi quadrature is implemented to approximate the singularities in the integrands arising from the fractional derivative definition. Exponential convergence rate of the operator is verified when increasing the order of the approximation. Solutions are calculated for fractional-time and fractional-space differential equations. Comparisons with finite difference schemes are included. A significant reduction in storage space is achieved by lowering the resolution requirements in the time coordinate.
NASA Astrophysics Data System (ADS)
Pérez Guerrero, J. S.; Skaggs, T. H.
2010-08-01
SummaryMathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport equation that has a self-adjoint differential operator, and a solution is found using the generalized integral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor exists for several transport equation formulations of practical importance in groundwater transport modeling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are developed in detail and results are compared with solutions from the literature. Among other applications, the current analytical solution will be particularly useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.
Space-fractional advection-dispersion equations by the Kansa method
NASA Astrophysics Data System (ADS)
Pang, Guofei; Chen, Wen; Fu, Zhuojia
2015-07-01
The paper makes the first attempt at applying the Kansa method, a radial basis function meshless collocation method, to the space-fractional advection-dispersion equations, which have recently been observed to accurately describe solute transport in a variety of field and lab experiments characterized by occasional large jumps with fewer parameters than the classical models of integer-order derivative. However, because of non-local property of integro-differential operator of space-fractional derivative, numerical solution of these novel models is very challenging and little has been reported in literature. It is stressed that local approximation techniques such as the finite element and finite difference methods lose their sparse discretization matrix due to this non-local property. Thus, the global methods appear to have certain advantages in numerical simulation of these non-local models because of their high accuracy and smaller size resultant matrix equation. Compared with the finite difference method, popular in the solution of fractional equations, the Kansa method is a recent meshless global technique and is promising for high-dimensional irregular domain problems. In this study, the resultant matrix of the Kansa method is accurately calculated by the Gauss-Jacobi quadrature rule. Numerical results show that the Kansa method is highly accurate and computationally efficient for space-fractional advection-dispersion problems.
Solution of the advection-dispersion equation: Continuous load of finite duration
Runkel, R.L.
1996-01-01
Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.
Parker, Jack C; Kim, Ungtae
2015-11-01
The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of
Embry, Irucka; Roland, Victor; Agbaje, Oluropo; ...
2013-01-01
A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less
Knopman, Debra S.; Voss, Clifford I.
1987-01-01
The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases. (3) The frequency of sampling must be 'in phase' with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters.
Kurikami, Hiroshi; Malins, Alex; Takeishi, Minoru; Saito, Kimiaki; Iijima, Kazuki
2017-02-17
Radiocesium is an important environmental contaminant in fallout from nuclear reactor accidents and atomic weapons testing. A modified Diffusion-Sorption-Fixation (mDSF) model, based on the advection-dispersion equation, is proposed to describe the vertical migration of radiocesium in soils following fallout. The model introduces kinetics for the reversible binding of radiocesium. We test the model by comparing its results to depth profiles measured in Fukushima Prefecture, Japan, since 2011. The results from the mDSF model are a better fit to the measurement data (as quantified by R(2)) than results from a simple diffusion model and the original DSF model. The introduction of reversible sorption kinetics means that the exponential-shape depth distribution can be reproduced immediately following fallout. The initial relaxation mass depth of the distribution is determined by the diffusion length, which depends on the distribution coefficient, sorption rate and dispersion coefficient. The mDSF model captures the long tails of the radiocesium distribution at large depths, which are caused by different rates for kinetic sorption and desorption. The mDSF model indicates that depth distributions displaying a peak in activity below the surface are possible for soils with high organic matter content at the surface. The mDSF equations thus offers a physical basis for various types of radiocesium depth profiles observed in contaminated environments.
Healy, R.W.; Russell, T.F.
1993-01-01
Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods for solute transport problems that are dominated by advection. FVELLAM systematically conserves mass globally with all types of boundary conditions. Integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking of characteristic lines intersecting inflow boundaries. FVELLAM extends previous results by obtaining mass conservation locally on Lagrangian space-time elements. -from Authors
NASA Astrophysics Data System (ADS)
Liu, Q.; Liu, F.; Turner, I.; Anh, V.
2007-03-01
In this paper we present a random walk model for approximating a Lévy-Feller advection-dispersion process, governed by the Lévy-Feller advection-dispersion differential equation (LFADE). We show that the random walk model converges to LFADE by use of a properly scaled transition to vanishing space and time steps. We propose an explicit finite difference approximation (EFDA) for LFADE, resulting from the Grünwald-Letnikov discretization of fractional derivatives. As a result of the interpretation of the random walk model, the stability and convergence of EFDA for LFADE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Haendel, Falk; Liedl, Rudolf; Dietrich, Peter
2015-04-01
In the last decades, numerical modeling has been developed as the common method to investigate solute transport in groundwater. Thereby in science, various numerical procedures have been applied for understanding complex processes of transport in highly heterogeneous aquifers. Beside this, numerical modeling of transport is also standard practice in engineering and consulting. The numerical approaches differ due to factors such as scope of modeling, knowledge about site characterization and time and manpower constraints. In general, there is a lack of knowledge about the hydraulic properties of a site like information of lithology and deterministic subunits. Therefore, assumption have to be made and standard Advection-Dispersion-Equation (ADE) is used involving macrodispersion coefficients. In this study we analyze a tracer test in the Lauswiesen aquifer, Baden-Wuerttemberg, Germany, described in the literature by Ptak et al. (2004) and Riva et al. (2008) and use a straightforward numerical model to reproduce the integral and depth-dependent transport behavior. Depth-dependent tracer test data show a clear depth dependency including two different breakthrough behaviors. Previous model approaches for evaluation of the mentioned tracer test by Riva et al. (2008) included a large set of Monte-Carlo simulations by describing the aquifer heterogeneity by a double stochastic process. Information about the geostatistical parameters could be gained mainly by a large number of sieve analyses. Finally, stochastic modeling of Riva et al. (2008) created a large amount of breakthrough curves due to high uncertainty of the distribution of hydraulic conductivity. However, stochastic modeling and a precise reproduction of the variability of hydraulic properties in space help to better understand the transport processes driven by heterogeneity and to provide assessment of uncertainty at a site. In our straightforward modeling we include only two deterministic subunits, more
It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...
NASA Astrophysics Data System (ADS)
Cartwright, Ian
Advection-dispersion fluid flow models implicitly assume that the infiltrating fluid flows through an already fluid-saturated medium. However, whether rocks contain a fluid depends on their reaction history, and whether any initial fluid escapes. The behaviour of different rocks may be illustrated using hypothetical marble compositions. Marbles with diverse chemistries (e.g. calcite + dolomite + quartz) are relatively reactive, and will generally produce a fluid during heating. By contrast, marbles with more restricted chemistries (e.g. calcite + quartz or calcite-only) may not. If the rock is not fluid bearing when fluid infiltration commences, mineralogical reactions may produce a reaction-enhanced permeability in calcite + dolomite + quartz or calcite + quartz, but not in calcite-only marbles. The permeability production controls the pattern of mineralogical, isotopic, and geochemical resetting during fluid flow. Tracers retarded behind the mineralogical fronts will probably be reset as predicted by the advection-dispersion models; however, tracers that are expected to be reset ahead of the mineralogical fronts cannot progress beyond the permeability generating reaction. In the case of very unreactive lithologies (e.g. pure calcite marbles, cherts, and quartzites), the first reaction to affect the rocks may be a metasomatic one ahead of which there is little pervasive resetting of any tracer. Centimetre-scale layering may lead to the formation of self-perpetuating fluid channels in rocks that are not fluid saturated due to the juxtaposition of reactants. Such layered rocks may show patterns of mineralogical resetting that are not predicted by advection-dispersion models. Patterns of mineralogical and isotopic resetting in marbles from a number of terrains, for example: Chillagoe, Marulan South, Reynolds Range (Australia); Adirondack Mountains, Old Woman Mountains, Notch Peak (USA); and Stephen Cross Quarry (Canada) vary as predicted by these models.
Cox, T.J.; Runkel, R.L.
2008-01-01
Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.
Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.
2008-01-01
The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.
2016-02-01
The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.
Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be
Mixing-Driven Equilibrium Reactions in Multidimensional Fractional Advection Dispersion Systems
Bolster, Diogo; Benson, David A; Meerschaert, MM; Baeumer, Boris
2013-01-01
We study instantaneous, mixing-driven, bimolecular equilibrium reactions in a system where transport is governed by a multidimensional space fractional dispersion equation. The superdiffusive, nonlocal nature of the system causes the location and magnitude of reactions that take place to change significantly from a classical Fickian diffusion model. In particular, regions where reaction rates would be zero for the Fickian case become regions where the maximum reaction rate occurs when anomalous dispersion operates. We also study a global metric of mixing in the system, the scalar dissipation rate and compute its asymptotic scaling rates analytically. The scalar dissipation rate scales asymptotically as t−(d+α)/α, where d is the number of spatial dimensions and α is the fractional derivative exponent. PMID:24223468
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii
NASA Astrophysics Data System (ADS)
Liu, Chongxuan; Szecsody, Jim E.; Zachara, John M.; Ball, William P.
The generalized integral transform technique (GITT) is applied to solve the one-dimensional advection-dispersion equation (ADE) in heterogeneous porous media coupled with either linear or nonlinear sorption and decay. When both sorption and decay are linear, analytical solutions are obtained using the GITT for one-dimensional ADEs with spatially and temporally variable flow and dispersion coefficient and arbitrary initial and boundary conditions. When either sorption or decay is nonlinear the solutions to ADEs with the GITT are hybrid analytical-numerical. In both linear and nonlinear cases, the forward and inverse integral transforms for the problems described in the paper are apparent and straightforward. Some illustrative examples with linear sorption and decay are presented to demonstrate the application and check the accuracy of the derived analytical solutions. The derived hybrid analytical-numerical solutions are checked against a numerical approach and demonstratively applied to a nonlinear transport example, which simulates a simplified system of iron oxide bioreduction with nonlinear sorption and nonlinear reaction kinetics.
Classical non-Markovian Boltzmann equation
Alexanian, Moorad
2014-08-01
The modeling of particle transport involves anomalous diffusion, (x²(t) ) ∝ t{sup α} with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.
Classical non-Markovian Boltzmann equation
NASA Astrophysics Data System (ADS)
Alexanian, Moorad
2014-08-01
The modeling of particle transport involves anomalous diffusion, ⟨x2(t) ⟩ ∝ tα with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.
NONUNIFORM AND UNSTEADY SOLUTE TRANSPORT IN FURROW IRRRIGATION: I. MODEL DEVELOPMENT
Technology Transfer Automated Retrieval System (TEKTRAN)
A model for solving a cross-section-averaged Advection-Dispersion Equation (ADE) was developed to simulate the transport of fertilizer in furrow irrigation. The advection and dispersion processes were solved separately at each time step by implementing a method of characteristics with cubic spline i...
Present research results and communicate the modeling results to science community
Background/Objectives. As a result of subsurface heterogeneity, many field and laboratory studies indicate that the advection-dispersion equation (ADE) model fails to describe the frequently observed long tails of contaminant concentration versus time in a breakthrough curve. T...
Yoon, Eun-Jeong; Courvalin, Patrice; Grillot-Courvalin, Catherine
2013-07-01
Increased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) of Acinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. Gene adeB was detected in 13 of 14 isolates, and adeG and the intrinsic adeJ gene were detected in all strains. Significant overexpression of adeB was observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDR A. baumannii as a result of a variety of single mutations in the corresponding two-component regulatory system.
Nowak, Jennifer; Schneiders, Thamarai; Seifert, Harald; Higgins, Paul G
2016-02-01
Overexpression of the resistance-nodulation-cell division-type efflux pump AdeABC is often associated with multidrug resistance in Acinetobacter baumannii and has been linked to mutations in the genes encoding the AdeRS two-component system. In a previous study, we reported that the Asp20→Asn amino acid substitution in the response regulator AdeR is associated with adeB overexpression and reduced susceptibility to the antimicrobials levofloxacin, tigecycline, and trimethoprim-sulfamethoxazole. To further characterize the effect of the Asp20→Asn substitution on antimicrobial susceptibility, the expression of the efflux genes adeB, adeJ, and adeG, and substrate accumulation, four plasmid constructs [containing adeR(Asp20)S, adeR(Asn20)S, adeR(Asp20)SABC, and adeR(Asn20)SABC] were introduced into the adeRSABC-deficient A. baumannii isolate NIPH 60. Neither adeRS construct induced changes in antimicrobial susceptibility or substrate accumulation from that for the vector-only control. The adeR(Asp20)SABC transformant showed reduced susceptibility to 6 antimicrobials and accumulated 12% less ethidium than the control, whereas the Asn20 variant showed reduced susceptibility to 6 of 8 antimicrobial classes tested, and its ethidium accumulation was only 72% of that observed for the vector-only construct. adeB expression was 7-fold higher in the adeR(Asn20)SABC transformant than in its Asp20 variant. No changes in adeG or adeJ expression or in acriflavine or rhodamine 6G accumulation were detected. The antimicrobial susceptibility data suggest that AdeRS does not regulate any resistance determinants other than AdeABC. Furthermore, the characterization of the Asp20→Asn20 substitution proves that the reduced antimicrobial susceptibility previously associated with this substitution was indeed caused by enhanced efflux activity of AdeB.
A hammerhead ribozyme inhibits ADE1 gene expression in yeast.
Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R
1995-03-21
To study factors that affect in vivo ribozyme (Rz) activity, a model system has been devised in Saccharomyces cerevisiae based on the inhibition of ADE1 gene expression. This gene was chosen because Rz action can be evaluated visually by the Red phenotype produced when the activity of the gene product is inhibited. Different plasmid constructs allowed the expression of the Rz either in cis or in trans with respect to ADE1. Rz-related inhibition of ADE1 expression was correlated with a Red phenotype and a diminution of ADE1 mRNA levels only when the Rz gene was linked 5' to ADE1. The presence of the expected 3' cleavage fragment was demonstrated using a technique combining RNA ligation and PCR. This yeast system and detection technique are suited to the investigation of general factors affecting Rz-catalyzed inhibition of gene expression under in vivo conditions.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Automatic Rectification of Building FAÇADES
NASA Astrophysics Data System (ADS)
Tsironis, V.; Tranou, A.; Vythoulkas, A.; Psalta, A.; Petsa, E.; Karras, G.
2017-02-01
Focusing mainly on the case of (near-)planar building façades, a methodology for their automatic projective rectification is described and evaluated. It relies on a suitably configured, calibrated stereo pair of an object expected to contain a minimum of vertical and/or horizontal lines for the purposes of levelling. The SURF operator has been used for extracting and matching interest points. The coplanar points have been separated with two alternative methods. First, the fundamental matrix of the stereo pair, computed using robust estimation, allows estimating the relative orientation of the calibrated pair; initial parameter values, if needed, may be estimated via the essential matrix. Intersection of valid points creates a 3D point set in model space, to which a plane is robustly fitted. Second, all initial point matches are directly used for robustly estimating the inter-image homography of the pair, thus directly selecting all image matches referring to coplanar points; initial values for the relative orientation parameters, if needed, may be estimated from a decomposition of the inter-image homography. Finally, all intersected coplanar model points yield the object-to-image homography to allow image rectification. The in-plane rotation required to finalize the transformation is found by assuming that rectified images contain sufficient straight linear segments to form a dominant pair of orthogonal directions which correspond to horizontality/verticality in 3D space. In our implementation, image edges from Canny detector are used in linear Hough Transform (HT) resulting in a 2D array (ρ, θ) with values equal to the sum of pixels belonging to the particular line. Quantization parameter values aim at absorbing possible slight deviations from collinearity due to thinning or uncorrected lens distortions. By first imposing a threshold expressing the minimum acceptable number of edge-characterized pixels, the resulting HT is accumulated along the ρ-dimension to
Nowak, Jennifer; Schneiders, Thamarai; Seifert, Harald
2015-01-01
Overexpression of the resistance-nodulation-cell division-type efflux pump AdeABC is often associated with multidrug resistance in Acinetobacter baumannii and has been linked to mutations in the genes encoding the AdeRS two-component system. In a previous study, we reported that the Asp20→Asn amino acid substitution in the response regulator AdeR is associated with adeB overexpression and reduced susceptibility to the antimicrobials levofloxacin, tigecycline, and trimethoprim-sulfamethoxazole. To further characterize the effect of the Asp20→Asn substitution on antimicrobial susceptibility, the expression of the efflux genes adeB, adeJ, and adeG, and substrate accumulation, four plasmid constructs [containing adeR(Asp20)S, adeR(Asn20)S, adeR(Asp20)SABC, and adeR(Asn20)SABC] were introduced into the adeRSABC-deficient A. baumannii isolate NIPH 60. Neither adeRS construct induced changes in antimicrobial susceptibility or substrate accumulation from that for the vector-only control. The adeR(Asp20)SABC transformant showed reduced susceptibility to 6 antimicrobials and accumulated 12% less ethidium than the control, whereas the Asn20 variant showed reduced susceptibility to 6 of 8 antimicrobial classes tested, and its ethidium accumulation was only 72% of that observed for the vector-only construct. adeB expression was 7-fold higher in the adeR(Asn20)SABC transformant than in its Asp20 variant. No changes in adeG or adeJ expression or in acriflavine or rhodamine 6G accumulation were detected. The antimicrobial susceptibility data suggest that AdeRS does not regulate any resistance determinants other than AdeABC. Furthermore, the characterization of the Asp20→Asn20 substitution proves that the reduced antimicrobial susceptibility previously associated with this substitution was indeed caused by enhanced efflux activity of AdeB. PMID:26643347
North façade, entrance. The square tower has the remains of ...
North façade, entrance. The square tower has the remains of a sign, Kaiser Foundation Hospital. Horizontal ribbon windows continue on this façade. - Richmond Field Hospital, 1330 Cutting Boulevard, Richmond, Contra Costa County, CA
Planning ADE: Implications from the Literature on Student Perspectives
ERIC Educational Resources Information Center
McNeill, Elisa Elizabeth; Eddy, James M.
2005-01-01
As the use of instructional technology continues to escalate, it is not surprising that universities are attempting to reach new student markets by using technology. Many of the benefits and barriers to asynchronous distance education (ADE) have been examined over the years; however, few have explored these constructs from the student's…
Disruption of an ADE6 Homolog of Ustilago maydis
Technology Transfer Automated Retrieval System (TEKTRAN)
Ustilago maydis secretes iron-binding compounds during times of iron depletion. A putative homolog of the Sacharromyces cereviseae ADE6 and Escherichia coli purL genes was identified near a multigenic complex, which contains two genes sid1 and sid2 involved in a siderophore biosynthetic pathway. The...
Pagdepanichkit, Sirawit; Tribuddharat, Chanwit; Chuanchuen, Rungtip
2016-09-01
One hundred Acinetobacter baumannii clinical isolates were examined for inhibitory effect of reserpine and carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the antimicrobial susceptibility and expression of 4 resistant-nodulation-cell division (RND)-type multidrug efflux systems, including AdeABC, AdeDE, AdeIJK, and AdeFGH, using RT-PCR. Ten A. baumannii isolates expressing AdeABC, AdeIJK, or AdeFGH were randomly selected for determination of transcription level and regulatory mutations. While all the isolates were resistant to multiple drugs, the reserpine and CCCP experiment showed that the multidrug resistance phenotype in most A. baumannii isolates was associated with efflux pumps. Most isolates expressed at least one of the RND-type efflux pumps tested (97%). AdeIJK expression was most common (97%), but none of the isolates produced AdeDE. Fifty-two percent of the A. baumannii isolates simultaneously produced up to 3 RND-type efflux systems (i.e., AdeABC, AdeFGH, and AdeIJK). No good correlation between the expression of RND-type efflux pumps and the type of antimicrobial resistance was observed. Overexpression of AdeABC, AdeIJK, and AdeFGH was not always related to the presence of mutations in their corresponding regulatory genes. This study highlights (i) the universal presence of the RND-type efflux pumps with variable levels of expression level among the A. baumannii in this collection and (ii) the complexity of their regulation of expression.
Barton, J W; Hart, I M; Patterson, D
1991-02-01
The human phosphoribosylaminoimidazole (AIR) carboxylase locus has been until this report one of the genes encoding purine biosynthetic enzymes that had not been assigned to an individual human chromosome. Characterization of Chinese hamster ovary (CHO) cell mutant Ade-D showed that the cell line was unable to produce IMP and accumulated AIR. CHO Ade-D cells were fused with normal human lymphocytes utilizing inactivated Sendai virus and the resulting hybrid cell lines were selected for purine prototrophy. Cytogenetic analysis showed a 100% concordance value for chromosome 4. Two of the isolated subclones contained only the long arm of chromosome 4 translocated onto a CHO chromosome, providing evidence for a regional assignment of the Ade-D gene to the long arm of chromosome 4. Two of the subclones containing chromosome 4 were subjected to the BrdU visible light segregation. All of the isolated purine auxotrophic cell lines showed a loss of the q arm of chromosome 4. The localization of the Ade-D locus to the long arm of chromosome 4 may reveal further clustering of the mammalian purine genes since the Ade-A locus has previously been regionally assigned to 4pter-q21.
Damier-Piolle, Laurence; Magnet, Sophie; Brémont, Sylvie; Lambert, Thierry; Courvalin, Patrice
2008-01-01
We have identified a second resistance-nodulation-cell division (RND)-type efflux pump, AdeIJK, in clinical isolate Acinetobacter baumannii BM4454. The adeI, adeJ, and adeK genes encode, respectively, the membrane fusion, RND, and outer membrane components of the pump. AdeJ belongs to the AcrB protein family (57% identity with AcrB from Escherichia coli). mRNA analysis by Northern blotting and reverse transcription-PCR indicated that the genes were cotranscribed. Overexpression of the cloned adeIJK operon was toxic in both E. coli and Acinetobacter. The adeIJK genes were detected in all of the 60 strains of A. baumannii tested. The two latter observations suggest that the AdeIJK complex might contribute to intrinsic but not to acquired antibiotic resistance in Acinetobacter. To characterize the substrate specificity of the pump, we have constructed derivatives of BM4454 in which adeIJK (strain BM4579), adeABC (strain BM4561), or both groups of genes (strain BM4652) were inactivated by deletion-insertion. Determination of the antibiotic susceptibility of these strains and of BM4652 and BM4579, in which the adeIJK operon was provided in trans, indicated that the AdeIJK pump contributes to resistance to β-lactams, chloramphenicol, tetracycline, erythromycin, lincosamides, fluoroquinolones, fusidic acid, novobiocin, rifampin, trimethoprim, acridine, safranin, pyronine, and sodium dodecyl sulfate. The chemical structure of these molecules suggests that amphiphilic compounds are the preferred substrates. The AdeABC and AdeIJK efflux systems contributed in a more than additive fashion to tigecycline resistance. PMID:18086852
Anwar, S.; Cortis, A.; Sukop, M.
2008-10-20
Lattice Boltzmann models simulate solute transport in porous media traversed by conduits. Resulting solute breakthrough curves are fitted with Continuous Time Random Walk models. Porous media are simulated by damping flow inertia and, when the damping is large enough, a Darcy's Law solution instead of the Navier-Stokes solution normally provided by the lattice Boltzmann model is obtained. Anisotropic dispersion is incorporated using a direction-dependent relaxation time. Our particular interest is to simulate transport processes outside the applicability of the standard Advection-Dispersion Equation (ADE) including eddy mixing in conduits. The ADE fails to adequately fit any of these breakthrough curves.
Exterior building details of Building D, east façade: painted concrete ...
Exterior building details of Building D, east façade: painted concrete east face façade, main entry has flat cement plaster surround, double door six light over panels, two light transom over double door; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Wang, Tieshan; Su, Jianrong
2016-12-28
Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii. Nineteen multidrug-resistant A. baumannii strains were clinifcally isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii. The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis. Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.
ADE spectral networks and decoupling limits of surface defects
NASA Astrophysics Data System (ADS)
Longhi, Pietro; Park, Chan Y.
2017-02-01
We study vacua and BPS spectra of canonical surface defects of class S theories in different decoupling limits using ADE spectral networks. In some regions of the IR moduli spaces of these 2d-4d systems, the mixing between 2d and 4d BPS states is suppressed, and the spectrum of 2d-4d BPS states becomes that of a 2d N = (2, 2) theory. For some decoupling limits, we identify the 2d theories describing the surface defects with nonlinear sigma models and coset models that have been previously studied. We also study certain cases where the decoupling limit of a surface defect exhibits a set of vacua and a BPS spectrum that appear to be entirely new. A detailed analysis of these spectra and their wall-crossing behavior is performed.
Sugawara, Etsuko
2014-01-01
Acinetobacter baumannii contains RND-family efflux systems AdeABC and AdeIJK, which pump out a wide range of antimicrobial compounds, as judged from the MIC changes occurring upon deletion of the responsible genes. However, these studies may miss changes because of the high backgrounds generated by the remaining pumps and by β-lactamases, and it is unclear how the activities of these pumps compare quantitatively with those of the well-studied AcrAB-TolC system of Escherichia coli. We expressed adeABC and adeIJK of A. baumannii, as well as E. coli acrAB, in an E. coli host from which acrAB was deleted. The A. baumannii pumps were functional in E. coli, and the MIC changes that were observed largely confirmed the substrate range already reported, with important differences. Thus, the AdeABC system pumped out all β-lactams, an activity that was often missed in deletion studies. When the expression level of the pump genes was adjusted to a similar level for a comparison with AcrAB-TolC, we found that both A. baumannii efflux systems pumped out a wide range of compounds, but AdeABC was less effective than AcrAB-TolC in the extrusion of lipophilic β-lactams, novobiocin, and ethidium bromide, although it was more effective at tetracycline efflux. AdeIJK was remarkably more effective than a similar level of AcrAB-TolC in the efflux of β-lactams, novobiocin, and ethidium bromide, although it was less so in the efflux of erythromycin. These results thus allow us to compare these efflux systems on a quantitative basis, if we can assume that the heterologous systems are fully functional in the E. coli host. PMID:25246403
Amundsen, Astrid H; Klæboe, Ronny; Aasvang, Gunn Marit
2011-03-01
The efficacy of façade insulation in providing an improved indoor noise environment and in reducing indoor noise annoyance was examined in a socio-acoustic before-and-after study with a control group. An average equivalent noise reduction inside the dwellings of 7 dB was obtained from the façade insulation. Whereas 42% of the respondents were highly annoyed in the before-situation, this dropped to 16% in the after study. The conclusion is therefore that the façade insulation provided a substantial improvement in the indoor noise environment. The advantage with respect to indoor noise annoyance, of having the bedroom facing the least noise-exposed side of the dwelling corresponded to a 6 dB noise reduction. The changes in annoyance from noise reduction due to the façade insulation were in accordance with what would be expected from the exposure-response curves obtained in the before-situation. A total of 637 respondents participated in the before-study. Of these, 415 also participated in the after study. Indoor and outdoor noise exposure calculations for each of the dwellings were undertaken before and after the façade insulation was implemented.
Exterior building details of Building B, east façade: ca. 1914 ...
Exterior building details of Building B, east façade: ca. 1914 covered porch with an asphalt singled low-hipped roof; southwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Perspective view of main entrance, north façade with two story ...
Perspective view of main entrance, north façade with two story square tower, Note medical cross made of wood on tower, originally there were four. - Richmond Field Hospital, 1330 Cutting Boulevard, Richmond, Contra Costa County, CA
Exterior building details of Building A; north façade: iron latticed ...
Exterior building details of Building A; north façade: iron latticed gate dungeon entrance, granite base; southerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
East façade, Burton Park Club House, with Amphitheater in foreground, ...
East façade, Burton Park Club House, with Amphitheater in foreground, view to north from Amphitheater stage (90 mm lens). - Burton Park, Club House & Amphitheater, Adjacent ot south end of Chestnut Avenue, San Carlos, San Mateo County, CA
Wieczorek, Piotr; Sacha, Paweł; Czaban, Sławomir; Hauschild, Tomasz; Ojdana, Dominika; Kowalczuk, Oksana; Milewski, Robert; Poniatowski, Bogusław; Nikliński, Jacek; Tryniszewska, Elżbieta
2013-10-01
Acinetobacter baumannii has emerged as a highly problematic hospital-associated pathogen. Different mechanisms contribute to the formation of multidrug resistance in A. baumannii, including the AdeABC efflux system. Distribution of the structural and regulatory genes encoding the AdeABC efflux system among genetically diverse clinical A. baumannii strains was achieved by using PCR and pulsed-field gel electrophoresis techniques. The distribution of adeABRS genes is extremely high among our A. baumannii strains, except the adeC gene. We have observed a large proportion of strains presenting multidrug-resistance phenotype for several years. The efflux pump could be an important mechanism in these strains in resistance to antibiotics.
VIEW WEST OF SOUTH FAÇADE AND EAST END OF BUILDING ...
VIEW WEST OF SOUTH FAÇADE AND EAST END OF BUILDING WITH GREEN HOUSE IN FOREGROUND - New York State Soldiers & Sailors Home, Building No. 78, Department of Veterans Affairs Medical Center, 76 Veterans Avenue, Bath, Steuben County, NY
North façade of crucible steel building; looking southwest Bethlehem ...
North façade of crucible steel building; looking southwest - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA
East and north elevations (rear façade) of quarters no. 2, ...
East and north elevations (rear façade) of quarters no. 2, looking southwest. - Sacramento National Wildlife Refuge, Headquarters Complex, Quarters No. 2, 752 County Road 99W, Willows, Glenn County, CA
Exterior building details of Building B, east façade: second floor ...
Exterior building details of Building B, east façade: second floor entrance with cement plaster profiled surround and embedded wood beam end; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Generation and application of rules for quality dependent façade reconstruction
NASA Astrophysics Data System (ADS)
Becker, Susanne
Frequently, terrestrial LiDAR and image data are used to extract high resolution building geometry like windows, doors and protrusions for three-dimensional (3D) façade reconstruction. However, such a purely data driven bottom-up modelling of façade structures is only feasible if the available observations meet considerable requirements on data quality. Errors in measurement, varying point densities, reduced accuracies, as well as incomplete coverage affect the achievable correctness and reliability of the reconstruction result. While dependence on data quality is a general disadvantage with data driven bottom-up approaches, model based top-down reconstructions are much more robust. Algorithms introduce knowledge about the appearance and arrangement of objects. Thus, they cope with data uncertainty and allow for a procedural modelling of building structures in a predefined architectural style, which is inherent in grammar or model descriptions. We aim at a quality sensitive façade reconstruction which is on the one hand robust against erroneous and incomplete data, but on the other hand not subject to prespecified rules or models. For this purpose, we combine bottom-up and top-down strategies by integrating automatically inferred rules into a data driven reconstruction process. Façade models reconstructed during a bottom-up method serve as a knowledge base for further processing. Dominant or repetitive features and regularities as well as their hierarchical relationship are detected from the modelled façade elements and automatically translated into rules. These rules together with the 3D representations of the modelled façade elements constitute a formal grammar. It holds all the information which is necessary to reconstruct façades in the style of the given building. The paper demonstrates that the proposed algorithm is very flexible towards different data quality and incomplete sensor data. The inferred grammar is used for the verification of the façade
Mutations in ADE3 reduce the efficiency of the omnipotent suppressor sup45-2.
Song, J M; Liebman, S W
1989-12-01
Mutations in a known yeast gene, ADE3, were shown to act as an antisuppressor, reducing the efficiency of the omnipotent suppressor, sup45-2. The ADE3 locus encodes the trifunctional enzyme C1-tetrahydrofolate synthase, which is required for the biosynthesis of purines, thymidylate, methionine, histidine, pantothenic acid and formylmethionyl-tRNA(fMet. The role of this enzyme in translational fidelity had not previously been suspected.
Exterior building details of Building B, east façade: ellshaped south ...
Exterior building details of Building B, east façade: ell-shaped south facing concrete staircase with decorative pipe railing, second floor entrance with cement plaster profiled surround, dentil course cornice, truncated embedded wood beams, cream colored plaster-finished exterior façade, closed off window well with protruding vent; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Architectural Kansei of ‘Wall’ in The Façade Design by Le Corbusier
NASA Astrophysics Data System (ADS)
Sendai, Shoichiro
The purpose of this paper is to discuss the modern architect Le Corbusier's architectural Kansei (sensibility) on wall in site environment through the analysis of his façade design, using Œuvres complètes (1910-1965, 8 vols., Les éditions d'architecture, Artemis, Zurich) and Le Corbusier Archives (1982-1984, 32 vols., Garland Publishing, Inc. and Fondation Le Corbusier, New York, London, Paris). At first, I arrange five façade types, according to the explanation by Le Corbusier ; ‘fenêtre en longueur (strip window)’, ‘pan de verre (glass wall)’, ‘brise-soleil (sun-breaker)’, ‘loggia’ and ‘claustra’. Through the analysis of the relationship between these types and the design process of each building, we find that Le Corbusier's façade design includes the affirmation and the negation of the ‘wall’ at the same time. In fact, the nature of façade modification during design process is divers: increase in transparency, decrease in transparency and spatialization of façade. That means, Le Corbusier studied the environmental condition by these façade types, and tried to realize the phenomenal openness. This trial bases on the function of architectural Kansei as correspondence between body and environment beyond the physical design.
Runkel, Robert L.; Chapra, Steven C.
1993-01-01
Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.
Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water
NASA Technical Reports Server (NTRS)
Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.
1994-01-01
Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.
Advancing toxicology in RiskMAPP: setting ADEs based on the subsequent drug substance.
Bercu, Joel P; Sharnez, Rizwan; Dolan, David G
2013-02-01
Cleaning validation programs are developed to demonstrate acceptable carryover of drug substances/products when multiple drug substances are manufactured in shared process equipment. The International Society of Pharmaceutical Engineers (ISPE) developed a guidance document in 2010 describing the Risk-Based Manufacture of Pharmaceutical Products (referred to as RiskMAPP) (ISPE, 2010). This guidance document developed the concept of an acceptable daily exposure (ADE), which is the toxicologically acceptable daily dose for the first drug substance used in processing drug equipment (DS(A)) without prior knowledge of the subsequent drug substance (DS(B)). This paper discusses an extension of the ADE methodology called the product-specific ADE (PSADE) which is derived when DS(B) is known. Four case studies demonstrate examples in which the PSADE can be scientifically supported in lieu of the ADE and highlight some limitations in its application. The PSADE approach can be used to justify higher acceptance limits for cleaning validation when the ADE based acceptance limits are below the process capability limit of the cleaning process or limit of quantitation of the analytical method.
Desalination of Walls and Façades
NASA Astrophysics Data System (ADS)
Wedekind, W.; Jáuregui Arreola, K.; Siegesmund, S.
2012-04-01
For large monumental objects like walls and façades, the common technique of applying poultices for desalination often are not effective. This practice is neither cost effective nor does it lead to the desired result of desalination. To manage the conservation and desalination of these kinds of objects, several sprinkling techniques are known and have been applied on historical objects. For example, in the wooden warship Vasa, which was excavated from the sea bottom in Stockholm/Sweden, a sprinkling method was applied in 1961 for conservation and desalination. A sprinkling method to desalinate porous mineral materials will be presented using three different case studies: the rock cut monument no. 825 in Petra/Jordan, the medieval monastary church of the former Franziscan convent in Zeitz/Germany and the baroque monastary church Santa Monica in Guadalajara/Mexico. Before to start with practical conservation, the material- and petropysical properties, focoussed on water transport properties, like porosity, pore size distribution, water uptake and drying rate were investigadet. Diagnostic investigations on the objects included the mapping of deterioration, moister content measurements and salt accumulation determined by borehole cuts samples at depth. In the sprinkling method water is sprayed onto the wall surface through nozzels arranged in a modular grid. Depending on the sprinkling duration, a small or a large amount of water seeps into the porous materials, whereby the depth penetration can be adjusted accordingly. The water not absorbed by the stone runs off the facade and can be collected in liter amounts and tested by electrical conductivity with respect to the dissolved substances. After the drying of the wall's surface and the accumulation of salt at the material's surface, the procedure is repeated. For each subsequent washing a lower content of salt should be brought to the surface. Step by step the salt concentration will eventually decrease to almost
The Potential of Specular Reflections for FAÇADE Image Analysis
NASA Astrophysics Data System (ADS)
Drauschke, M.; Mayer, H.
2015-03-01
Several approaches for window detection have been proposed in recent years, which all use the window size, shape or position within the façade as characteristics for the detection. In this paper another property of windows is proposed for their detection: Windows are made of glass, so they tend to specularly reflect sun light, while the surrounding wall diffusely reflects it. To this end, colour values in multiple views are analysed to detect specular reflections. In the experiments, walls often show a high homogeneity of small colour differences, and many windows are clearly visible in the form of colour differences. Nevertheless, it is difficult to segment windows from the façade if there is no prior knowledge about the intensity of the scene's illumination. Promising results are obtained if the façade lies in the shadow, e.g., of another building or a tree.
Detecting blind building façades from highly overlapping wide angle aerial imagery
NASA Astrophysics Data System (ADS)
Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas
2014-10-01
This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.
Structural effects of nucleobase variations at key active site residue Ade38 in the hairpin ribozyme
MacElrevey, Celeste; Salter, Jason D.; Krucinska, Jolanta; Wedekind, Joseph E.
2008-01-01
The hairpin ribozyme requires functional groups from Ade38 to achieve efficient bond cleavage or ligation. To identify molecular features that contribute to catalysis, structures of position 38 base variants 2,6-diaminopurine (DAP), 2-aminopurine (AP), cytosine (Cyt), and guanine (Gua) were determined between 2.2 and 2.8 Å resolution. For each variant, two substrate modifications were compared: (1) a 2′-O-methyl-substituent at Ade-1 was used in lieu of the nucleophile to mimic the precatalytic state, and (2) a 3′-deoxy-2′,5′-phosphodiester linkage between Ade-1 and Gua+1 was used to mimic a reaction-intermediate conformation. While the global fold of each variant remained intact, the results revealed the importance of Ade38 N1 and N6 groups. Absence of N6 resulting from AP38 coincided with failure to localize the precatalytic scissile phosphate. Cyt38 severely impaired catalysis in a prior study, and its structures here indicated an anti base conformation that sequesters the imino moiety from the scissile bond. Gua38 was shown to be even more deleterious to activity. Although the precatalytic structure was nominally affected, the reaction-intermediate conformation indicated a severe electrostatic clash between the Gua38 keto oxygen and the pro-Rp oxygen of the scissile bond. Overall, position 38 modifications solved in the presence of 2′-OMe Ade-1 deviated from in-line geometry, whereas variants with a 2′,5′ linkage exhibited S-turn destabilization, as well as base conformational changes from syn to anti. These findings demonstrate the importance of the Ade38 Watson–Crick face in attaining a reaction-intermediate state and the sensitivity of the RNA fold to restructuring when electrostatic and shape features fail to complement. PMID:18596253
EXTERIOR PERSPECTIVE FROM BARN YARD SHOWING EAST AND SOUTH FAÇADES ...
EXTERIOR PERSPECTIVE FROM BARN YARD SHOWING EAST AND SOUTH FAÇADES OF THE BARN, LOOKING NORTHWEST. The sliding door on the barns east façade leads into the animal pens and milking stalls. The barns hip-on-gable roof is covered in corrugated metal. The gable end is clad in board and battens, matching the rest of the barns exterior. The pump house can be seen to the north; the garage to the west. - Kineth Farm, Barn, 19162 STATE ROUTE 20, Coupeville, Island County, WA
D Building FAÇADE Reconstruction Using Handheld Laser Scanning Data
NASA Astrophysics Data System (ADS)
Sadeghi, F.; Arefi, H.; Fallah, A.; Hahn, M.
2015-12-01
3D The three dimensional building modelling has been an interesting topic of research for decades and it seems that photogrammetry methods provide the only economic means to acquire truly 3D city data. According to the enormous developments of 3D building reconstruction with several applications such as navigation system, location based services and urban planning, the need to consider the semantic features (such as windows and doors) becomes more essential than ever, and therefore, a 3D model of buildings as block is not any more sufficient. To reconstruct the façade elements completely, we employed the high density point cloud data that obtained from the handheld laser scanner. The advantage of the handheld laser scanner with capability of direct acquisition of very dense 3D point clouds is that there is no need to derive three dimensional data from multi images using structure from motion techniques. This paper presents a grammar-based algorithm for façade reconstruction using handheld laser scanner data. The proposed method is a combination of bottom-up (data driven) and top-down (model driven) methods in which, at first the façade basic elements are extracted in a bottom-up way and then they are served as pre-knowledge for further processing to complete models especially in occluded and incomplete areas. The first step of data driven modelling is using the conditional RANSAC (RANdom SAmple Consensus) algorithm to detect façade plane in point cloud data and remove noisy objects like trees, pedestrians, traffic signs and poles. Then, the façade planes are divided into three depth layers to detect protrusion, indentation and wall points using density histogram. Due to an inappropriate reflection of laser beams from glasses, the windows appear like holes in point cloud data and therefore, can be distinguished and extracted easily from point cloud comparing to the other façade elements. Next step, is rasterizing the indentation layer that holds the windows
Richmond, Grace E.; Evans, Laura P.; Anderson, Michele J.; Wand, Matthew E.; Bonney, Laura C.; Ivens, Alasdair; Chua, Kim Lee; Webber, Mark A.; Sutton, J. Mark; Peterson, Marnie L.
2016-01-01
ABSTRACT The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. PMID:27094331
ELEVATION VIEW OF MILK HOUSE SOUTH FAÇADE, WITH GRANARY TO ...
ELEVATION VIEW OF MILK HOUSE SOUTH FAÇADE, WITH GRANARY TO THE NORTHEAST. (Ralph Engle expanded the dairy industry on the farm, and constructed this milk house in 1936. Its stone construction, unique to the area, is practical for keeping fresh milk cooled.) - Engle Farm, Milk House, 89 South Ebey Road, Coupeville, Island County, WA
Exterior building details of Building A; east façade: concrete staircase, ...
Exterior building details of Building A; east façade: concrete staircase, profiled cement, plaster door surround, recessed panel inscribed "1859", historic window opening with concrete sill above door, cement plaster dentil course and cornice truncated wood beam ends, plaster finished brick wall, granite base; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building C, east façade: brick quoins, ...
Exterior building details of Building C, east façade: brick quoins, brick lintels, brick window sills, decorative metal grilles, scored cement finished brick wall; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building A; east façade: profiled cement ...
Exterior building details of Building A; east façade: profiled cement plaster door surround, black mesh gate protects a two-light transom atop non-original metal door; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building A; east façade: recessed panel ...
Exterior building details of Building A; east façade: recessed panel inscribed "1859", historic window opening with concrete sill above door, cement plaster dentil course and cornice, truncated wood beam ends, plaster finished brick wall, granite base; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building C, east façade: historic six ...
Exterior building details of Building C, east façade: historic six light entry double door with three light transom, historic six light door with a one light transom, arch brick lintels and quoins, scored cement plaster finished brick walls; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building A; east façade: fixed fiveoverfive ...
Exterior building details of Building A; east façade: fixed five-over-five wood windows with five-light hoppers with concrete sills; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Assessing FAÇADE Visibility in 3d City Models for City Marketing
NASA Astrophysics Data System (ADS)
Albrecht, F.; Moser, J.; Hijazi, I.
2013-08-01
In city marketing, different applications require the evaluation of the visual impression of displays in the urban environment on people that visit the city. Therefore, this research focuses on the way how visual displays on façades for movie performances are perceived during a cultural event triggered by city marketing. We describe the different visibility analysis methods that are applicable to the analysis of façades. The methods advanced from the domains of Geographic Information Science, architecture and computer graphics. A detailed scenario is described in order to perform a requirements analysis for identifying the requirements to visibility information. This visibility information needs to describe the visual perception of displays on façades adequately. The requirements are compared to the visibility information that can be provided by the visibility methods. A discussion of the comparison summarizes the advantages and disadvantages of existing visibility analysis methods for describing the visibility of façades. The results show that part of the researched approaches is able to support the requirements to visibility information. But they also show that for a complete support of the entire analysis workflow, there remain unsolved workflow integration issues.
PRIMARY ENTRANCE INTO THE JENNE FARM, WEST FAÇADE. (The Jenne ...
PRIMARY ENTRANCE INTO THE JENNE FARM, WEST FAÇADE. (The Jenne Barn has board and batten exterior cladding and sits above-grade on a poured concrete foundation. The barn is painted red with white trim. This door is painted green.) - Jenne Farm, Barn, 538 Engle Road, Coupeville, Island County, WA
VIEW OF PART OF THE MILL FAÇADE STRAIGHTON FROM KEKAHA ...
VIEW OF PART OF THE MILL FAÇADE STRAIGHT-ON FROM KEKAHA ROAD WITH METAL AND ELECTRICAL SHOPS IN FOREGROUND AND STACK BEHIND. VIEW FROM THE NORTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI
VIEW OF PART OF THE MILL FAÇADE STRAIGHTON FROM KEKAHA ...
VIEW OF PART OF THE MILL FAÇADE STRAIGHT-ON FROM KEKAHA ROAD WITH FRONT FACING GABLE OF CRUSHING MILL AND A PORTION OF THE LATERAL RUNNING MACHINE SHOP. VIEW FROM THE NORTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI
Detail, typical window fenestrations, east façade, view to westnorthwest (135mm ...
Detail, typical window fenestrations, east façade, view to west-northwest (135mm lens). Note "timber" header, adobe bench in front of window. - Burton Park, Club House & Amphitheater, Adjacent ot south end of Chestnut Avenue, San Carlos, San Mateo County, CA
Automatic modelling of building façade objects via primitive shapes
NASA Astrophysics Data System (ADS)
Hetti Arachchige, N.; Perera, S.
2014-08-01
This paper presents a new approach to recognize individual façade objects and to reconstruct such objects in 3D using MLS point clouds. Core of the approach is a primitive shape based algorithm, which introduces building primitives, to identify the façade objects separately from other irrelevant objects and then to model the correct topology. The primitive shape is identified against defined different primitive shapes by using the Douglas-Peucker algorithm. The advantage of this process is that it offers an ability not only to model correct geometric shapes but also to remove occlusion effects from the final model. To evaluate the validity of the proposed approach, experiments have been conducted using two types of street scene point clouds captured by Optech Lynx Mobile Mapper System and Z+F laser scanner. Results of the experiments show that the completeness, correctness, and quality of the reconstructed building façade objects are well over 90 %, proving the proposed method is a promising solution for modelling 3D façade objects with different geometric shapes.
South façade, view to north from center of Elk Grove ...
South façade, view to north from center of Elk Grove Boulevard. Drew-Sherwood Tank House. (HABS No. CA-2610-B) visible at left of house. - Drew-Sherwood Farm, House, 7927 Elk Grove Boulevard, Elk Grove, Sacramento County, CA
Exterior building details of Building C, east façade: historic fouroverfour ...
Exterior building details of Building C, east façade: historic four-over-four window, brick lintel, brick quoins, corbelled brick cornice, spiral metal staircase to inclined stairs rising to second floor cantilever wooden walkway; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building C, east façade: inscribed date ...
Exterior building details of Building C, east façade: inscribed date panel "hospital 1885", corbelled brick belt course, parapet, second floor historic four-over-four window with brick lintels, quoins and decorative metal grilled, cantilever wooden walkway; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
General view looking west, showing the eastern façade with square ...
General view looking west, showing the eastern façade with square towers and pyramidal roofs. This style is duplicated on the general office building (Haer No. PA-271-C), the machine shop, and the Electrical Department & Boiler House (Haer No. Pa-271-B). - Johnson Steel Street Rail Company, Drawing Room & Laying-Out Floor Building, 525 Central Avenue, Johnstown, Cambria County, PA
Exterior building details of Building A; north façade: two threelight ...
Exterior building details of Building A; north façade: two three-light wood casement windows flank a three-light fixed wood window with concrete sill; southerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Leaching of biocides from façades under natural weather conditions.
Burkhardt, M; Zuleeg, S; Vonbank, R; Bester, K; Carmeliet, J; Boller, M; Wangler, T
2012-05-15
Biocides are included in organic building façade coatings as protection against biological attack by algae and fungi but have the potential to enter the environment via leaching into runoff from wind driven rain. The following field study correlates wind driven rain to runoff and measured the release of several commonly used organic biocides (terbutryn, Irgarol 1051, diuron, isoproturon, OIT, DCOIT) in organic façade coatings from four coating systems. During one year of exposure of a west oriented model house façade in the Zurich, Switzerland area, an average of 62.7 L/m(2), or 6.3% of annual precipitation came off the four façade panels installed as runoff. The ISO method for calculating wind driven rain loads is adapted to predict runoff and can be used in the calculation of emissions in the field. Biocide concentrations tend to be higher in the early lifetime of the coatings and then reach fairly consistent levels later, generally ranging on the order of mg/L or hundreds of μg/L. On the basis of the amount remaining in the film after exposure, the occurrence of transformation products, and the calculated amounts in the leachate, degradation plays a significant role in the overall mass balance.
ADE-FDTD Scattered-Field Formulation for Dispersive Materials.
Kong, Soon-Cheol; Simpson, Jamesina J; Backman, Vadim
2008-01-01
This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems.
Slicing Method for curved façade and window extraction from point clouds
NASA Astrophysics Data System (ADS)
Iman Zolanvari, S. M.; Laefer, Debra F.
2016-09-01
Laser scanning technology is a fast and reliable method to survey structures. However, the automatic conversion of such data into solid models for computation remains a major challenge, especially where non-rectilinear features are present. Since, openings and the overall dimensions of the buildings are the most critical elements in computational models for structural analysis, this article introduces the Slicing Method as a new, computationally-efficient method for extracting overall façade and window boundary points for reconstructing a façade into a geometry compatible for computational modelling. After finding a principal plane, the technique slices a façade into limited portions, with each slice representing a unique, imaginary section passing through a building. This is done along a façade's principal axes to segregate window and door openings from structural portions of the load-bearing masonry walls. The method detects each opening area's boundaries, as well as the overall boundary of the façade, in part, by using a one-dimensional projection to accelerate processing. Slices were optimised as 14.3 slices per vertical metre of building and 25 slices per horizontal metre of building, irrespective of building configuration or complexity. The proposed procedure was validated by its application to three highly decorative, historic brick buildings. Accuracy in excess of 93% was achieved with no manual intervention on highly complex buildings and nearly 100% on simple ones. Furthermore, computational times were less than 3 sec for data sets up to 2.6 million points, while similar existing approaches required more than 16 hr for such datasets.
Dynamic typology of hydrothermal systems: competing effects of advection, dispersion and reactivity
NASA Astrophysics Data System (ADS)
Dolejs, David
2016-04-01
Genetic interpretation hydrothermal systems relies on recognition of (i) hydrothermal fluid source, (ii) fluid migration pathways, and (iii) deposition site identified by hydrothermal alteration and/or mineralization. Frequently, only the last object is of interest or accessible to direct observation, but constraints on the fluid source (volume) and pathways can be obtained from evaluation of the time-integrated fluid flux during hydrothermal event. Successful interpretation of the petrological record, that is, progress of alteration reactions, relies on identification of individual contributions arising from solute advection (to the deposition site), its lateral dispersion, and reaction efficiency. Although these terms are all applicable in a mass-conservation relationship within the framework of the transport theory, they are rarely considered simultaneously and their relative magnitudes evaluated. These phenomena operate on variable length and time scales, and may in turn provide insight into the system dynamics such as flow, diffusion and reaction rates, or continuous vs. episodic behavior of hydrothermal events. In addition, here we demonstrate that they also affect estimate of the net fluid flux, frequently by several orders of magnitude. The extent of alteration and mineralization reactions between the hydrothermal fluid and the host environment is determined by: (i) temperature, pressure or any other gradients across the mineralization site, (ii) magnitude of disequilibrium at inflow to the mineralization site, which is related to physico-chemical gradient between the fluid source and the mineralization site, and (iii) chemical redistribution (dispersion) within the mineralization site. We introduce quantitative mass-transport descriptors - Péclet and Damköhler II numbers - to introduce division into dispersion-dominated, advection-dominated and reaction-constrained systems. Dispersive systems are characterized by lateral solute redistribution, driven by internal gradients and reactions in these systems are largely insensitive to the dynamics of the fluid flow. The time-intergrated fluid flux cannot be estimated from the petrological record and, in the limiting case, the net fluid flux can be zero (stagnant system in a porosity trap). This mechanism may be characteristic for Alpine-style vein assemblages and segregations in metamorphic terrains, where dissolution-reprecipitation is most likely assisted by transient gradients in stress field. Advection-dominated systems are characterized by a limited extent of chemical transport by dispersion with respect to interconnected size of the system. Progress of the alteration reactions in these systems is controlled independently by internal gradient(s) as the fluid moves through the mineralization site and magnitude of disequilibrium between the fluid and the host rock at the inflow. When the fluid flow rates remain low (e.g., dispersed metamorphic devolatilization), steady gradients along the fluid flow path exert the principal control, as commonly incorporated in the transport theory (Dolejš and Manning 2010, Ague 2014). When the fluid flow is rapid, the disequilibrium between the fluid and the host rock dictates the reaction efficiency, and the transport theory based on local equilibrium tends to significantly overestimate the net fluid flux. Advection-dominated systems with variable flow rates comprise a wide range of porosity- and fracture-controlled hydrothermal systems in intrusive and volcanic settings. With furter increase in the fluid flow rate, the advection-dominated systems evolved into reaction-constrained behavior. The mineral reaction progress is generally smaller, and the time-integrated fluid fluxes were likely much larger than petrologically estimated. These model examples illustrate that a functional description and classification of hydrothermal systems can address the causal relationships between length scales of solute (metal) sources and accumulations, and link them to time and reactivity scales necessary for the fluid transport and focusing. Dolejš D., Manning C. E., 2010. Geofluids 10, 20-40. Ague J. J., 2014. Treatise on Geochemistry 4, 203-247.
An ELLAM Approximation for Advective-Dispersive Transport with Nonlinear Sorption
2005-02-28
1, Cass T. Miller a aCenter for the Integrated Study of the Environment, Department of Environmental Sciences and Engineering , University of North...Carolina, Chapel Hill, North Carolina 27599-7431, USA bU.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 3909 Halls...Center for Integrated Study of the Environment,Department of Environmental Sciences and Engineering ,Chapel Hill,NC,27599-7431 8. PERFORMING
Chemical decontamination of façade cracks
NASA Astrophysics Data System (ADS)
Etzold, Merlin A.; Landel, Julien R.; Dalziel, Stuart B.
2016-11-01
The problem of cleaning and decontamination of buildings arises in the context of chemical spillages, terrorist attacks, industrial applications and in day-to-day situations such as the removal of graffiti. A common feature of all buildings is the existence of cracks and fissures, which act as contaminant traps. This contribution reports experiments and modelling of the removal of a water-soluble contaminant from the bottom of an idealised V-shaped crack. The contaminant is dissolved in a polymer thickened droplet. The surface washing techniques commonly used in industrial decontamination induce a flow in the crack which is mostly controlled by the crack geometry. Rinsing with pure water is compared against the situation in which a neutralising chemical is present. The cleaning process is modelled by solving the time-dependent diffusion equation within the droplet coupled to the steady state advection-diffusion equation outside the droplet. This approach is similar to the work of Landel et al. on decontaminating plane surfaces beneath falling films. Our results indicate that the proposed model describes successfully the earlier stages of decontamination. In later stages the dissolution of the thickened matrix may contribute to the process.
A Comparison of SVD, SVR, ADE and IRR for Latent Semantic Indexing
NASA Astrophysics Data System (ADS)
Zhang, Wen; Tang, Xijin; Yoshida, Taketoshi
Recently, singular value decomposition (SVD) and its variants, which are singular value rescaling (SVR), approximation dimension equalization (ADE) and iterative residual rescaling (IRR), were proposed to conduct the job of latent semantic indexing (LSI). Although they are all based on linear algebraic method for tem-document matrix computation, which is SVD, the basic motivations behind them concerning LSI are different from each other. In this paper, a series of experiments are conducted to examine their effectiveness of LSI for the practical application of text mining, including information retrieval, text categorization and similarity measure. The experimental results demonstrate that SVD and SVR have better performances than other proposed LSI methods in the above mentioned applications. Meanwhile, ADE and IRR, because of the too much difference between their approximation matrix and original term-document matrix in Frobenius norm, can not derive good performances for text mining applications using LSI.
Integration of Images and LIDAR Point Clouds for Building FAÇADE Texturing
NASA Astrophysics Data System (ADS)
Chen, L. C.; Chan, L. L.; Chang, W. C.
2016-06-01
This paper proposes a model-based method for texture mapping using close-range images and Lidar point clouds. Lidar point clouds are used to aid occlusion detection. For occluded areas, we compensate the occlusion by different view-angle images. Considering the authenticity of façade with repeated patterns under different illumination conditions, a selection of optimum pattern is suggested. In the selection, both geometric shape and texture are analyzed. The grey level co-occurrence matrix analysis is applied for the selection of the optimal façades texture to generate of photorealistic building models. Experimental results show that the proposed method provides high fidelity textures in the generation of photorealistic building models. It is demonstrated that the proposed method is also practical in the selection of the optimal texture.
Exterior building details of Building A; west façade: white painted ...
Exterior building details of Building A; west façade: white painted brick wall of road and second level, road level: paired four-light casement window and a small single-light wood casement window; second level: four-over-four wood double-hung window and a six-light horizontal pivot over a three-light fixed window; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
CROCKETT BARN SOUTH AND EAST FAÇADES, LOOKING NORTH. The Crockett ...
CROCKETT BARN SOUTH AND EAST FAÇADES, LOOKING NORTH. The Crockett barn was constructed into the sloping landscape. The Pennsylvania Bank Barn construction style allows for access at ground level on both the upper and lower floors. The Crockett granary is visible on the right hand side of the photograph. Currently a property line runs between the two buildings. - Crockett Farm, Barn, 1056 Fort Casey Road, Coupeville, Island County, WA
Exterior building details of Building B, east façade: embedded wood ...
Exterior building details of Building B, east façade: embedded wood beams and interrupted dentil course cornice resulting from the removal of the third floor tuberculosis ward, yard level paneled Dutch door, second level two a typical six-light wood casement windows over a single-panel wood door with four light exits to fire escape; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Semi-Automatic Building Models and FAÇADE Texture Mapping from Mobile Phone Images
NASA Astrophysics Data System (ADS)
Jeong, J.; Kim, T.
2016-06-01
Research on 3D urban modelling has been actively carried out for a long time. Recently the need of 3D urban modelling research is increased rapidly due to improved geo-web services and popularized smart devices. Nowadays 3D urban models provided by, for example, Google Earth use aerial photos for 3D urban modelling but there are some limitations: immediate update for the change of building models is difficult, many buildings are without 3D model and texture, and large resources for maintaining and updating are inevitable. To resolve the limitations mentioned above, we propose a method for semi-automatic building modelling and façade texture mapping from mobile phone images and analyze the result of modelling with actual measurements. Our method consists of camera geometry estimation step, image matching step, and façade mapping step. Models generated from this method were compared with actual measurement value of real buildings. Ratios of edge length of models and measurements were compared. Result showed 5.8% average error of length ratio. Through this method, we could generate a simple building model with fine façade textures without expensive dedicated tools and dataset.
Conservation of Stone Cladding on the FAÇADE of Royal Palace in Caserta
NASA Astrophysics Data System (ADS)
Titomanlio, I.
2013-07-01
The beauty of cultural heritage and monumental architecture, is often linked to their non-structural elements and decorative stones façades cladding. The collapse of these elements causes significant consequences that interest the social, the economic, the historical and the technical fields. Several regulatory documents and literature studies contain methods to address the question of relief and of the risk analysis and due to the non - structural stones security. Among the references are widespread international regulatory documents prepared by the Federal Emergency Management Agency of the United States by Applied Technology Council and California. In Italy there are some indications contained in the Norme Tecniche per le Costruzioni and the Direttiva del Presidente del Consiglio dei Ministri in 2007, finalize to the reduction of seismic risk assessment of cultural heritage. The paper, using normative references and scientific researches, allows to analyze on Royal Palace of Caserta the safety and the preservation of cultural heritage and the vulnerability of non-structural stones façade cladding. Using sophisticated equipments of Laboratory ARS of the Second University of Naples, it was possible to analyze the collapse of stone elements due to degradation caused by natural phenomena of deterioration (age of the building, type of materials, geometries , mode of fixing of the elements themselves). The paper explains the collapse mechanisms of stones façade cladding of Luigi Vanvitelli Palace.
Dufour, Christian; Cardin, Julien; Debieu, Olivier; Fafin, Alexandre; Gourbilleau, Fabrice
2011-04-04
By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng) concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible.
2011-01-01
By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng) concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible. PMID:21711829
An Interview with Professor Melquíades de Dios Leyva, December 2008
NASA Astrophysics Data System (ADS)
Arias de Fuentes, Olimpia
When writing about the history of physics in Cuba, this remarkable professor of quantum mechanics must be mentioned, for he embodies a most genuine example of the turn taken by national educational policy after 1959: Education for all, at all levels, with no discrimination or elitism. The following is an interview granted by Dr. Melquíades de Dios Leyva, Outstanding Full Professor of the Physics Faculty of the University of Havana, to Dr. Olimpia Arias de Fuentes, Associate Professor at the same, and Senior Researcher of the Institute of Materials Science and Technology (IMRE) of the University of Havana.
David A. Benson
2012-09-24
This project combines outcrop-scale heterogeneity characterization, laboratory experiments, and numerical simulations. The study is designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work is based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project will explore the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. Our work at the Colorado School of Mines was focused on the following questions: 1) What are the effects of multi-scale geologic variability on transport of conservative and reactive solutes? 2) Can those transport effects be accounted for by classical methods, and if not, can the nonlocal fractional-order equations provide better predictions? 3) Can the fractional-order equations be parameterized through a link to some simple observable geologic features? 4) Are the classical equations of transport and reaction sufficient? 5) What is the effect of anomalous transport on chemical reaction in groundwater systems? The work is predicated on the observation that upscaled transport is defined by loss of information, or spatio-temporal averaging. This averaging tends to make the transport laws such as Fick's 2nd-order diffusion equation similar to central limit theory. The fractional-order advection-dispersion equations rely on limit theory for heavy-tailed random motion that has some diverging moments. The equations predict larger tails of a plume in space and/or time than those predicted by the classical 2nd-order advection-dispersion equation. The heavy tails are often seen in plumes at field sites.
Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows.
Heiz, Benjamin P V; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias; Wondraczek, Lothar
2017-03-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass-glass fluidic devices are presented for large-area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat-panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state-of-the-art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid.
Ultrathin Fluidic Laminates for Large‐Area Façade Integration and Smart Windows
Heiz, Benjamin P. V.; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias
2016-01-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass–glass fluidic devices are presented for large‐area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat‐panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state‐of‐the‐art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid. PMID:28331790
He, Xinlong; Lu, Feng; Yuan, Fenglai; Jiang, Donglin; Zhao, Peng; Zhu, Jie; Cheng, Huali; Cao, Jun; Lu, Guozhong
2015-08-01
Chronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency of Acinetobacter baumannii and the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolated A. baumannii strains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designated A. baumannii ABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI, adeB, adeG, adeJ, carO, and ompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation of adeG correlated with biofilm induction. The consistent upregulation of adeG and abaI was detected in A-III-type A. baumannii in response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused by A. baumannii. This study provides useful information for the development of antibiofilm strategies.
Characterisation of the Dynamic Behaviour of Laminated Sheet Glass in Steel-Glass Façades
NASA Astrophysics Data System (ADS)
Segura, C. Colomer; Feldmann, M.
The use of steel-glass façades has become a very standard feature in modern design of buildings, very often including laminated sheet glass panes as a load bearing element. While these elements are essentially subjected to dynamic loading due to wind, its design is still based on static load assumptions. A more exact approach is not possible due to the uncertainties regarding the transfer function of the glass panes to the structure. In this paper, basic modal identification techniques are used to characterise the dynamic behaviour of laminated sheet glass and to give a first approach to account for dynamic effects on steel-glass façades.
Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology?
Abe, Yumiko; Hunkeler, Daniel
2006-03-01
Stable isotope data have been increasingly used to assess in situ biodegradation of organic contaminants in groundwater. The data are usually evaluated using the Rayleigh equation to evaluate whether isotope data follow a Rayleigh trend, to calculate the extent of contaminant biodegradation, or to estimate first-order rate constants. However, the Rayleigh equation was developed for homogeneous systems while in the subsurface, contaminants can migrate at different velocities due to physical heterogeneity. This paper presents a method to quantify the systematic effect that is introduced by applying the Rayleigh equation to field isotope data. For this purpose, the travel time distribution between source and sampling point is characterized by an analytical solution to the advection-dispersion equation. The systematic effect was evaluated as a function of the magnitude of physical heterogeneity, geometry of the contaminant plume, and degree of biodegradation. Results revealed that the systematic effect always leads to an underestimation of the actual values of isotope enrichment factors, the extent of biodegradation, or first-order rate constants, especially in the dispersion-dominant region representing a higher degree of physical heterogeneity. A substantial systematic effect occurs especially for the quantification of first-order rate constants (up to 50% underestimation of actual rate) while it is relatively small for quantification of the extent of biodegradation (< 5% underestimation of actual degree of biodegradation). The magnitude of the systematic effect is in the same range as the uncertainty due to uncertainty of the analytical data, of the isotope enrichment factor, and the average travel time.
Antony, Florian; Grießhammer, Rainer; Speck, Thomas; Speck, Olga
2016-01-01
Background: The debate on the question whether biomimetics has a specific potential to contribute to sustainability is discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint Lotusan(®). Results: As a first step it has been examined and verified that the façade paint Lotusan(®) is correctly defined as a biomimetic product. Secondly, Lotusan(®) has been assessed and compared to a conventional façade paint within the course of a detailed product sustainability assessment (PROSA). For purposes of comparison, the façade paint Jumbosil(®) was chosen as reference for a conventional paint available on the market. The benefit analysis showed that both paints fulfil equally well the requirements of functional utility. With respect to the symbolic utility, Lotusan(®) has a particular added aesthetic value by the preservation of the optical quality over the life cycle. Within the social analysis no substantial differences between the two paints could be found regarding the handling and disposal of the final products. Regarding the life-cycle cost, Lotusan(®) is the more expensive product. However, the higher investment cost for a Lotusan(®)-based façade painting are more than compensated by the longer life time, resulting in both reduced overall material demand and lower labour cost. In terms of the life-cycle impact assessment, it can be ascertained that substantial differences between the paints arise from the respective service life, which are presented in terms of four scenario analyses. Conclusion: In summary, the biomimetic façade paint Lotusan(®) has been identified as a cost-effective and at the same time resource-saving product. Based on the underlying data and assumptions it could be demonstrated that
Antony, Florian; Grießhammer, Rainer; Speck, Thomas
2016-01-01
Background: The debate on the question whether biomimetics has a specific potential to contribute to sustainability is discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint Lotusan®. Results: As a first step it has been examined and verified that the façade paint Lotusan® is correctly defined as a biomimetic product. Secondly, Lotusan® has been assessed and compared to a conventional façade paint within the course of a detailed product sustainability assessment (PROSA). For purposes of comparison, the façade paint Jumbosil® was chosen as reference for a conventional paint available on the market. The benefit analysis showed that both paints fulfil equally well the requirements of functional utility. With respect to the symbolic utility, Lotusan® has a particular added aesthetic value by the preservation of the optical quality over the life cycle. Within the social analysis no substantial differences between the two paints could be found regarding the handling and disposal of the final products. Regarding the life-cycle cost, Lotusan® is the more expensive product. However, the higher investment cost for a Lotusan®-based façade painting are more than compensated by the longer life time, resulting in both reduced overall material demand and lower labour cost. In terms of the life-cycle impact assessment, it can be ascertained that substantial differences between the paints arise from the respective service life, which are presented in terms of four scenario analyses. Conclusion: In summary, the biomimetic façade paint Lotusan® has been identified as a cost-effective and at the same time resource-saving product. Based on the underlying data and assumptions it could be demonstrated that Lotusan®-based façade
Vliet, Lydia K; Wilkinson, Terry G; Duval, Nathan; Vacano, Guido; Graham, Christine; Zikánová, Marie; Skopova, Vaclava; Baresova, Veronika; Hnízda, Aleš; Kmoch, Stanislav; Patterson, David
2011-01-01
Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (AdeI) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and AdeI cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in AdeI ADSL. This substitution lies in the "signature sequence" of ADSL, inactivates the enzyme, and validates AdeI as a cellular model of ADSL deficiency.
Bercu, Joel P; Morinello, Eric J; Sehner, Claudia; Shipp, Bryan K; Weideman, Patricia A
2016-08-01
The Acceptable Daily Exposure (ADE) derived for pharmaceutical manufacturing is a health-based limit used to ensure that medicines produced in multi-product facilities are safe and are used to validate quality processes. Core to ADE derivation is selecting appropriate point(s) of departure (PoD), i.e., the starting dose of a given dataset that is used in the calculation of the ADE. Selecting the PoD involves (1) data collection and hazard characterization, (2) identification of "critical effects", and (3) a dose-response assessment including the determination of the no-observed-adverse-effect-level (NOAEL) or lowest-observed-adverse-effect-level (LOAEL), or calculating a benchmark dose (BMD) level. Compared to other classes of chemicals, active pharmaceutical ingredients (APIs) are well-characterized and have unique, rich datasets that must be considered when selecting the PoD. Dataset considerations for an API include therapeutic/pharmacological effects, particularities of APIs for different indications and routes of administration, data gaps during drug development, and sensitive subpopulations. Thus, the PoD analysis must be performed by a qualified toxicologist or other expert who also understands the complexities of pharmaceutical datasets. In addition, as the pharmaceutical industry continues to evolve new therapeutic principles, the science behind PoD selection must also evolve to ensure state-of-the-science practices and resulting ADEs.
Sargent, Edward V; Faria, Ellen; Pfister, Thomas; Sussman, Robert G
2013-03-01
Health-based limits for active pharmaceutical ingredients (API) referred to as acceptable daily exposures (ADEs) are necessary to the pharmaceutical industry and used to derive acceptance limits for cleaning validation purposes and evaluating cross-carryover. ADEs represent a dose of an API unlikely to cause adverse effects if an individual is exposed, by any route, at or below this dose every day over a lifetime. Derivations of ADEs need to be consistent with ICH Q9 as well as other scientific approaches for the derivation of health-based limits that help to manage risks to both product quality and operator safety during the manufacture of pharmaceutical products. Previous methods for the establishment of acceptance limits in cleaning validation programs are considered arbitrary and have largely ignored the available clinical and toxicological data available for a drug substance. Since the ADE utilizes all available pharmaceutical data and applies scientifically acceptable risk assessment methodology it is more holistic and consistent with other quantitative risk assessments purposes such derivation of occupational exposure limits. Processes for hazard identification, dose response assessment, uncertainty factor analysis and documentation are reviewed.
Behind the Façade of Fee-Free education: Shadow Education and Its Implications for Social Justice
ERIC Educational Resources Information Center
Bray, Mark; Kwo, Ora
2013-01-01
Most governments, at an official level, espouse the principles of the 1948 Universal Declaration of Human Rights. Among its statements is that education shall be free, at least in the elementary and fundamental stages. Yet while the façade of government education systems presents an image that instruction is free of charge, families across the…
NASA Astrophysics Data System (ADS)
Dore, C.; Murphy, M.
2013-02-01
This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.
Theoretical and Empirical Equations of State for Nitrogen Gas at High Pressure and Temperature
1981-09-01
probably In the gas phase. Otherwise, there would not be evidence of an exponen- tial dependence of pressure on the burning rate. In view of the...the energy of the products formed. The products formed depend on the pressure , the temperature, and the composition of the propellant gas. Thus, the...Afc-Avc&S?^ AD AD-E400 697 TECHNICAL REPORT ARLCD-TR-81029 THEORETICAL AND EMPIRICAL EQUATIONS OF STATE FOR NITROGEN GAS AT HIGH PRESSURE AND
Environmental and health effects of nanomaterials in nanotextiles and façade coatings.
Som, Claudia; Wick, Peter; Krug, Harald; Nowack, Bernd
2011-08-01
Engineered nanomaterials (ENM) are expected to hold considerable potential for products that offer improved or novel functionalities. For example, nanotechnologies could open the way for the use of textile products outside their traditional fields of applications, for example, in the construction, medical, automobile, environmental and safety technology sectors. Consequently, nanotextiles could become ubiquitous in industrial and consumer products in future. Another ubiquitous field of application for ENM is façade coatings. The environment and human health could be affected by unintended release of ENM from these products. The product life cycle and the product design determine the various environmental and health exposure situations. For example, ENM unintentionally released from geotextiles will probably end up in soils, whereas ENM unintentionally released from T-shirts may come into direct contact with humans and end up in wastewater. In this paper we have assessed the state of the art of ENM effects on the environment and human health on the basis of selected environmental and nanotoxicological studies and on our own environmental exposure modeling studies. Here, we focused on ENM that are already applied or may be applied in future to textile products and façade coatings. These ENM's are mainly nanosilver (nano-Ag), nano titanium dioxide (nano-TiO(2)), nano silica (nano-SiO(2)), nano zinc oxide (nano-ZnO), nano alumina (nano-Al(2)O(3)), layered silica (e.g. montmorillonite, Al(2)[(OH)(2)/Si(4)O(10)]nH(2)O), carbon black, and carbon nanotubes (CNT). Knowing full well that innovators have to take decisions today, we have presented some criteria that should be useful in systematically analyzing and interpreting the state of the art on the effects of ENM. For the environment we established the following criteria: (1) the indication for hazardous effects, (2) dissolution in water increases/decreases toxic effects, (3) tendency for agglomeration or sedimentation
Marbles in the façade of the "Certosa di Pavia": a physico-chemical study.
Ferloni, Paolo; Chierichetti, Andrea; Tomasi, Corrado; Ricci, Oronzo
2005-01-01
In the framework of an interdisciplinary research project on the well known monastery "Certosa di Pavia", the thermal and structural properties of marbles employed in the construction of the façade of the basilica were investigated in order to detect the main decomposition phenomena occurring on the monument surface. The results obtained by means of thermogravimetric and differential thermal analyses, as well as by means of X-ray diffraction and IR spectroscopy, allowed one to characterize samples taken from various sculptures of the façade and to bring out the degradation phenomena occurring in some of them, in particular the formation of "black crusts" with a high content in gypsum. The present findings are in fair agreement with those reported by other research groups which also studied with different techniques the construction materials of this monument.
Yoon, Eun-Jeong; Balloy, Viviane; Fiette, Laurence; Chignard, Michel; Courvalin, Patrice
2016-01-01
ABSTRACT Overexpression of chromosomal resistance-nodulation-cell division (RND)-type efflux systems with broad substrate specificity contributes to multidrug resistance (MDR) in Acinetobacter baumannii. We have shown that modulation of expression of the structural genes for the efflux systems AdeABC and AdeIJK confers MDR and results in numerous alterations of membrane-associated cellular functions, in particular biofilm formation. However, the contribution of these RND pumps to cell fitness and virulence has not yet been studied. The biological cost of an antibiotic resistance mechanism is a key parameter in determining its stability and dissemination. From an entirely sequenced susceptible clinical isolate, we have generated a set of isogenic derivatives having single point mutations resulting in overexpression of each efflux system or with every pump deleted by allelic replacement. We found that overproduction of the pumps results in a significant decrease in fitness of the bacterial host when measured by competition experiments in vitro. Fitness and virulence were also evaluated in vivo both in systemic and pulmonary infection models in immunocompetent mice. A diminished competitiveness of the AdeABC-overexpressing mutant was observed only after intraperitoneal inoculation, but not after intranasal inoculation, the latter mimicking the most frequent type of human A. baumannii infection. However, in mice infected intranasally, this mutant was more virulent and stimulated an enhanced neutrophil activation in the lungs. Altogether, these data account for the observation that adeABC overexpression is common in MDR A. baumannii frequently found in ventilator-associated pneumonia. PMID:27247231
Fernando, Dinesh M.; Xu, Wayne; Loewen, Peter C.; Zhanel, George G.
2014-01-01
In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a 116G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump. PMID:25136007
Fernando, Dinesh M; Xu, Wayne; Loewen, Peter C; Zhanel, George G; Kumar, Ayush
2014-11-01
In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a (116)G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump.
NASA Astrophysics Data System (ADS)
Wang, S.
2012-07-01
An automated model-image fitting algorithm is proposed in this paper for generating façade texture image from pictures taken by smartphones or tablet PCs. The façade texture generation requires tremendous labour work and thus, has been the bottleneck of 3D photo-realistic city modelling. With advanced developments of the micro electro mechanical system (MEMS), camera, global positioning system (GPS), and gyroscope (G-sensors) can all be integrated into a smartphone or a table PC. These sensors bring the possibility of direct-georeferencing for the pictures taken by smartphones or tablet PCs. Since the accuracy of these sensors cannot compared to the surveying instruments, the image position and orientation derived from these sensors are not capable of photogrammetric measurements. This paper adopted the least-squares model-image fitting (LSMIF) algorithm to iteratively improve the image's exterior orientation. The image position from GPS and the image orientation from gyroscope are treated as the initial values. By fitting the projection of the wireframe model to the extracted edge pixels on image, the image exterior orientation elements are solved when the optimal fitting achieved. With the exact exterior orientation elements, the wireframe model of the building can be correctly projected on the image and, therefore, the façade texture image can be extracted from the picture.
Characterization of an adhesive molecule from Bacillus megaterium ADE-0-1.
Kumar, Santosh; Shah, Avinash K
2015-03-06
An adhesive exopolysaccharide (EPS), from a biofilm forming marine strain ADE-0-1, identified as Bacillus megaterium using conventional microbiological test and 16S rDNA analysis, contained 75% carbohydrate, 17% uronic acid and 0.00125% pyruvate on dry weight basis as per colorimetric determinations and found anionic in nature by ion exchange chromatography. Paper chromatographic and HPLC analysis of EPS hydrolysate indicated presence of arabinose, glucose, mannose, galacturonic acid and glucuronic acid. Its molecular weight was 0.5×10(6) Da, by gel permeation chromatography. FT-IR spectroscopic analysis of EPS revealed presence of hydroxyl and carboxyl groups particularly. EPS exhibited an adhesive nature and could glue wood, metals and acrylic plastic. Using this EPS adhesive (10% w/v), maximum lap shear strength observed was 6.12 MPa at pH 7 and 50 °C (curing temperature) for wood to wood specimen as compared to 6.54 MPa obtained with fevicol (48 to 50% w/v).
Array data extractor (ADE): a LabVIEW program to extract and merge gene array data
2013-01-01
Background Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Findings Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Conclusions Although existing software allows for complex data analyses, the LabVIEW based program presented here, “Array Data Extractor (ADE)”, provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge. PMID:24289243
Incremental Refinement of FAÇADE Models with Attribute Grammar from 3d Point Clouds
NASA Astrophysics Data System (ADS)
Dehbi, Y.; Staat, C.; Mandtler, L.; Pl¨umer, L.
2016-06-01
Data acquisition using unmanned aerial vehicles (UAVs) has gotten more and more attention over the last years. Especially in the field of building reconstruction the incremental interpretation of such data is a demanding task. In this context formal grammars play an important role for the top-down identification and reconstruction of building objects. Up to now, the available approaches expect offline data in order to parse an a-priori known grammar. For mapping on demand an on the fly reconstruction based on UAV data is required. An incremental interpretation of the data stream is inevitable. This paper presents an incremental parser of grammar rules for an automatic 3D building reconstruction. The parser enables a model refinement based on new observations with respect to a weighted attribute context-free grammar (WACFG). The falsification or rejection of hypotheses is supported as well. The parser can deal with and adapt available parse trees acquired from previous interpretations or predictions. Parse trees derived so far are updated in an iterative way using transformation rules. A diagnostic step searches for mismatches between current and new nodes. Prior knowledge on façades is incorporated. It is given by probability densities as well as architectural patterns. Since we cannot always assume normal distributions, the derivation of location and shape parameters of building objects is based on a kernel density estimation (KDE). While the level of detail is continuously improved, the geometrical, semantic and topological consistency is ensured.
NASA Astrophysics Data System (ADS)
Prentis, Jeffrey J.
1996-05-01
One of the most challenging goals of a physics teacher is to help students see that the equations of physics are connected to each other, and that they logically unfold from a small number of basic ideas. Derivations contain the vital information on this connective structure. In a traditional physics course, there are many problem-solving exercises, but few, if any, derivation exercises. Creating an equation poem is an exercise to help students see the unity of the equations of physics, rather than their diversity. An equation poem is a highly refined and eloquent set of symbolic statements that captures the essence of the derivation of an equation. Such a poetic derivation is uncluttered by the extraneous details that tend to distract a student from understanding the essential physics of the long, formal derivation.
Young, C.W.
1997-10-01
In 1967, Sandia National Laboratories published empirical equations to predict penetration into natural earth materials and concrete. Since that time there have been several small changes to the basic equations, and several more additions to the overall technique for predicting penetration into soil, rock, concrete, ice, and frozen soil. The most recent update to the equations was published in 1988, and since that time there have been changes in the equations to better match the expanding data base, especially in concrete penetration. This is a standalone report documenting the latest version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. 11 refs., 6 tabs.
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference containment transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2-3 times more reliable than estimates based on temporal data for all parameters except velocity. (Estimated author abstract) Refs.
Spatial Moment Equations for a Groundwater Plume with Degradation and Rate-Limited Sorption
In this note, we analytically derive the solution for the spatial moments of groundwater solute concentration distributions simulated by a one-dimensional model that assumes advective-dispersive transport with first-order degradation and rate-limited sorption. Sorption kinetics...
Bar-Haim, Simona; Harries, Netta; Belokopytov, Mark; Frank, Alexander; Copeliovitch, Leonel; Kaplanski, Jacob; Lahat, Eli
2006-05-01
This study compared the efficacy of Adeli suit treatment (AST) with neurodevelopmental treatment (NDT) in children with cerebral palsy (CP). Twenty-four children with CP, Levels II to IV according to the Gross Motor Function Classification System (GMFCS), were matched by age and functional status and randomly assigned to the AST or NDT treatment groups. In the AST group (n=12; eight males, four females; mean age 8.3 y [SD 2.0]), six children had spastic/ataxic diplegia, one triplegia and five spastic/mixed quadriplegia. In the NDT group (n=12; nine males, three females; mean age 8.1 y [SD 2.2]), five children had spastic diplegia and seven had spastic/mixed quadriplegia. Both groups were treated for 4 weeks (2 hours daily, 5 days per week, 20 sessions). To compare treatments, the Gross Motor Function Measure (GMFM-66) and the mechanical efficiency index (EIHB) during stair-climbing were measured at baseline, immediately after 1 month of treatment, and 10 months after baseline. The small but significant time effects for GMFM-66 and EIHB that were noted after 1 month of both intensive physiotherapy courses were greater than expected from natural maturation of children with CP at this age. Improvements in motor skills and their retention 9 months after treatment were not significantly different between the two treatment modes. Post hoc analysis indicated a greater increase in EIHB after 1 month (p=0.16) and 10 months (p=0.004) in AST than that in NDT, predominantly in the children with higher motor function (GMFCS Levels II and III). The results suggest that AST might improve mechanical efficiency without a corresponding gain in gross motor skills, especially in children with higher levels of motor function.
Exploring Regularities for Improving FAÇADE Reconstruction from Point Clouds
NASA Astrophysics Data System (ADS)
Zhou, K.; Gorte, B.; Zlatanova, S.
2016-06-01
(Semi)-automatic facade reconstruction from terrestrial LiDAR point clouds is often affected by both quality of point cloud itself and imperfectness of object recognition algorithms. In this paper, we employ regularities, which exist on façades, to mitigate these problems. For example, doors, windows and balconies often have orthogonal and parallel boundaries. Many windows are constructed with the same shape. They may be arranged at the same lines and distance intervals, so do different windows. By identifying regularities among objects with relatively poor quality, these can be applied to calibrate the objects and improve their quality. The paper focuses on the regularities among the windows, which is the majority of objects on the wall. Regularities are classified into three categories: within an individual window, among similar windows and among different windows. Nine cases are specified as a reference for exploration. A hierarchical clustering method is employed to identify and apply regularities in a feature space, where regularities can be identified from clusters. To find the corresponding features in the nine cases of regularities, two phases are distinguished for similar and different windows. In the first phase, ICP (iterative closest points) is used to identify groups of similar windows. The registered points and a number of transformation matrices are used to identify and apply regularities among similar windows. In the second phase, features are extracted from the boundaries of the different windows. When applying regularities by relocating windows, the connections, called chains, established among the similar windows in the first phase are preserved. To test the performance of the algorithms, two datasets from terrestrial LiDAR point clouds are used. Both show good effects on the reconstructed model, while still matching with original point cloud, preventing over or under-regularization.
Barajas-Solano, David A.; Tartakovsky, A. M.
2016-10-13
We present a hybrid scheme for the coupling of macro and microscale continuum models for reactive contaminant transport in fractured and porous media. The transport model considered is the advection-dispersion equation, subject to linear heterogeneous reactive boundary conditions. The Multiscale Finite Volume method (MsFV) is employed to define an approximation to the microscale concentration field defined in terms of macroscopic or \\emph{global} degrees of freedom, together with local interpolator and corrector functions capturing microscopic spatial variability. The macroscopic mass balance relations for the MsFV global degrees of freedom are coupled with the macroscopic model, resulting in a global problem for the simultaneous time-stepping of all macroscopic degrees of freedom throughout the domain. In order to perform the hybrid coupling, the micro and macroscale models are applied over overlapping subdomains of the simulation domain, with the overlap denoted as the handshake subdomain $\\Omega^{hs}$, over which continuity of concentration and transport fluxes between models is enforced. Continuity of concentration is enforced by posing a restriction relation between models over $\\Omega^{hs}$. Continuity of fluxes is enforced by prolongating the macroscopic model fluxes across the boundary of $\\Omega^{hs}$ to microscopic resolution. The microscopic interpolator and corrector functions are solutions to local microscopic advection-diffusion problems decoupled from the global degrees of freedom and from each other by virtue of the MsFV decoupling ansatz. The error introduced by the decoupling ansatz is reduced iteratively by the preconditioned GMRES algorithm, with the hybrid MsFV operator serving as the preconditioner.
Klinsupa, Worawan; Phansiri, Salak; Thongpradis, Panida; Yongsmith, Busaba; Pothiratana, Chetsada
2016-01-10
To breed industrially useful strains of a slow-growing, yellow pigment producing strain of Monascus sp., protoplasts of Monascus purpureus yellow mutant (ade(-)) and rapid-growing M. purpureus white mutant (prototroph) were fused and fusants were selected on minimal medium (MM). Preliminary conventional protoplast fusion of the two strains was performed and the result showed that only white colonies were detected on MM. It was not able to differentiate the fusants from the white parental prototroph. To solve this problem, the white parental prototroph was thus pretreated with 20mM iodoacetamide (IOA) for cytoplasm inactivation and subsequently taken into protoplast fusion with slow-growing Monascus yellow mutant. Under this development technique, only the fusants, with viable cytoplasm from Monascus yellow mutant (ade(-)), could thus grow on MM, whereas neither IOA pretreated white parental prototroph nor yellow auxotroph (ade(-)) could survive. Fifty-three fusants isolated from yellow colonies obtained through this developed technique were subsequently inoculated on complete medium (MY agar). Fifteen distinguished yellow colonies from their parental yellow mutant were then selected for biochemical, morphological and fermentative properties in cassava starch and soybean flour (SS) broth. Finally, three most stable fusants (F7, F10 and F43) were then selected and compared in rice solid culture. Enhancement of yellow pigment production over the parental yellow auxotroph was found in F7 and F10, while enhanced glucoamylase activity was found in F43. The formation of fusants was further confirmed by monacolin K content, which was intermediate between the two parents (monacolin K-producing yellow auxotroph and non-monacolin K producing white prototroph).
NASA Astrophysics Data System (ADS)
Viljamaa, Panu; Jacobs, J. Richard; Chris; JamesHyman; Halma, Matthew; EricNolan; Coxon, Paul
2014-07-01
In reply to a Physics World infographic (part of which is given above) about a study showing that Euler's equation was deemed most beautiful by a group of mathematicians who had been hooked up to a functional magnetic-resonance image (fMRI) machine while viewing mathematical expressions (14 May, http://ow.ly/xHUFi).
NASA Astrophysics Data System (ADS)
La Russa, M. F.; Barone, G.; Mazzoleni, P.; Pezzino, A.; Crupi, V.; Majolino, D.
2008-07-01
Most of the “Noto’s Valley” monuments façades, located in different towns of Sicily such as Ragusa Ibla, Modica and Noto, present different colours and in many cases the towns themselves are characterized by evident chromatic variations. The knowledge of colour and in particular the characterization of pigments is of utmost importance in the baroque Sicilian buildings, because the peculiarity of the colour is one of the features that makes the “Noto Valley” monuments a World Cultural Heritage site. The present works aim is to characterise and differentiate the pigments used on the façade of monuments and inside the plasters. In particular, we perform a micro-textural and analytical analysis through scanning electron microscopy (SEM) and a mineralogical investigation through the conjunction of optical microscopy and fourier transform infrared spectroscopy (FT-IR). All the experimental results have allowed us to clearly classify the pigments into earths rich in clay minerals and earth containing gypsum. Furthermore, we also show that the earths rich in clay minerals from Ragusa and Modica areas have local provenance.
Olson, Michael J; Faria, Ellen C; Hayes, Eileen P; Jolly, Robert A; Barle, Ester Lovsin; Molnar, Lance R; Naumann, Bruce D; Pecquet, Alison M; Shipp, Bryan K; Sussman, Robert G; Weideman, Patricia A
2016-08-01
This manuscript centers on communication with key stakeholders of the concepts and program goals involved in the application of health-based pharmaceutical cleaning limits. Implementation of health-based cleaning limits, as distinct from other standards such as 1/1000th of the lowest clinical dose, is a concept recently introduced into regulatory domains. While there is a great deal of technical detail in the written framework underpinning the use of Acceptable Daily Exposures (ADEs) in cleaning (for example ISPE, 2010; Sargent et al., 2013), little is available to explain how to practically create a program which meets regulatory needs while also fulfilling good manufacturing practice (GMP) and other expectations. The lack of a harmonized approach for program implementation and communication across stakeholders can ultimately foster inappropriate application of these concepts. Thus, this period in time (2014-2017) could be considered transitional with respect to influencing best practice related to establishing health-based cleaning limits. Suggestions offered in this manuscript are intended to encourage full and accurate communication regarding both scientific and administrative elements of health-based ADE values used in pharmaceutical cleaning practice. This is a large and complex effort that requires: 1) clearly explaining key terms and definitions, 2) identification of stakeholders, 3) assessment of stakeholders' subject matter knowledge, 4) formulation of key messages fit to stakeholder needs, 5) identification of effective and timely means for communication, and 6) allocation of time, energy, and motivation for initiating and carrying through with communications.
Giacomucci, Lucia; Bertoncello, Renzo; Salvadori, Ornella; Martini, Ilaria; Favaro, Monica; Villa, Federica; Sorlini, Claudia; Cappitelli, Francesca
2011-08-01
The Grande Albergo Ausonia & Hungaria (Venice Lido, Italy) has an Art Nouveau polychrome ceramic coating on its façade, which was restored in 2007. Soon after the conservation treatment, many tiles of the façade decoration showed coloured alterations putatively attributed to the presence of microbial communities. To confirm the presence of the biological deposit and the stratigraphy of the Hungaria tiles, stereomicroscope, optical and environmental scanning electron microscope observations were made. The characterisation of the microbial community was performed using a PCR-DGGE approach. This study reported the first use of a culture-independent approach to identify the total community present in biodeteriorated artistic tiles. The case study examined here reveals that the coloured alterations on the tiles were mainly due to the presence of cryptoendolithic cyanobacteria. In addition, we proved that the microflora present on the tiles was generally greatly influenced by the environment of the Hungaria hotel. We found several microorganisms related to the alkaline environment, which is in the range of the tile pH, and related to the aquatic environment, the presence of the acrylic resin Paraloid B72® used during the 2007 treatment and the pollutants of the Venice lagoon.
Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Valibeigi, Behnaz; Mansouri, Shahla
2015-11-01
Resistance-nodulation-division efflux system (RND) adeABC contributes to intrinsic resistance to various drug classes in Acinetobacter baumannii. Similarly, quorum sensing (QS) plays an important role in the biofilm formation and pathogenicity of this bacterium. The aims of this study were to evaluate the influence of iron limitation on the expression of efflux pump (adeABC) genes and QS (luxI, luxR) system by relative quantitative real-time polymerase chain reaction (qRT-PCR). In addition, DNA sequence and phylogenetic relatedness of biofilm-associated protein (Bap) gene was also investigated. Sixty-five multidrug-resistant isolates of A. baumannii were recovered from ICU patients of three hospitals in Kerman, Iran. The isolates were highly resistant to at least 11 antibiotics (MIC ≥64 μg/mL); however, 87% and 89% were susceptible to colistin and tigecycline, respectively (MIC 0.05 μg/mL) (p ≤ 0.05). We detected the presence of RND efflux pump, QS, and bap genes with the frequencies of 92% (adeA), 61.5% (adeB), 84.6% (adeC), 80% (luxI), 61% (luxR), and 66% (bap), respectively. qRT-PCR analysis showed that in some isolates, expression of both adeABC and luxI/R was increased more than fourfold in the presence of low iron (20 μm), suggesting the additional regulatory role of iron on both efflux pump and QS system. Alignment and phylogenetic analysis on the strong biofilm forming isolates confirmed that the fragments amplified were indeed part of bap gene and deduced sequence was similar to A. baumannii K9B410.
DOE R&D Accomplishments Database
1998-09-21
In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.
Liu, Gaisheng; Lu, Zhiming; Zhang, Dongxiao
2007-01-01
A new approach has been developed for solving solute transport problems in randomly heterogeneous media using the Karhunen-Loève-based moment equation (KLME) technique proposed by Zhang and Lu (2004). The KLME approach combines the Karhunen-Loève decomposition of the underlying random conductivity field and the perturbative and polynomial expansions of dependent variables including the hydraulic head, flow velocity, dispersion coefficient, and solute concentration. The equations obtained in this approach are sequential, and their structure is formulated in the same form as the original governing equations such that any existing simulator, such as Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems (MT3DMS), can be directly applied as the solver. Through a series of two-dimensional examples, the validity of the KLME approach is evaluated against the classical Monte Carlo simulations. Results indicate that under the flow and transport conditions examined in this work, the KLME approach provides an accurate representation of the mean concentration. For the concentration variance, the accuracy of the KLME approach is good when the conductivity variance is 0.5. As the conductivity variance increases up to 1.0, the mismatch on the concentration variance becomes large, although the mean concentration can still be accurately reproduced by the KLME approach. Our results also indicate that when the conductivity variance is relatively large, neglecting the effects of the cross terms between velocity fluctuations and local dispersivities, as done in some previous studies, can produce noticeable errors, and a rigorous treatment of the dispersion terms becomes more appropriate.
Computational Modeling of Pollution Transmission in Rivers
NASA Astrophysics Data System (ADS)
Parsaie, Abbas; Haghiabi, Amir Hamzeh
2015-08-01
Modeling of river pollution contributes to better management of water quality and this will lead to the improvement of human health. The advection dispersion equation (ADE) is the government equation on pollutant transmission in the river. Modeling the pollution transmission includes numerical solution of the ADE and estimating the longitudinal dispersion coefficient (LDC). In this paper, a novel approach is proposed for numerical modeling of the pollution transmission in rivers. It is related to use both finite volume method as numerical method and artificial neural network (ANN) as soft computing technique together in simulation. In this approach, the result of the ANN for predicting the LDC was considered as input parameter for the numerical solution of the ADE. To validate the model performance in real engineering problems, the pollutant transmission in Severn River has been simulated. Comparison of the final model results with measured data of the Severn River showed that the model has good performance. Predicting the LDC by ANN model significantly improved the accuracy of computer simulation of the pollution transmission in river.
Wong, Y M; Juan, J C; Ting, Adeline; Wu, T Y; Gan, H M; Austin, C M
2014-03-06
Clostridium sp. strain Ade.TY is potentially a new biohydrogen-producing species isolated from landfill leachate sludge. Here we present the assembly and annotation of its genome, which may provide further insights into its gene interactions for efficient biohydrogen production.
Façade Greening: High-rise apartment building in Milan using pre-stressed concrete slab
NASA Astrophysics Data System (ADS)
Sun, Wenning; Li, Mingxin; Han, Yinong; Wang, Moqi; Ansourian, Peter
2016-08-01
In this project, one single level of the Façade Greening was designed and modelled using finite element method in Strand7. A static analysis was performed in order to understand the deflection and the stress due to the extra loads imposed by the soil and plants. The results produced by the linear static solver are compared with the strength of the materials and the European limitations. The maximum tension stress which exceeds the tensile strength in concrete is found in the root of the cantilever balcony. An alternative design of the cantilevered balcony with pre-stressed concrete slab is modelled separately for the balcony. Decrease is found in the tension stress and the significant improvement of deflection of the balcony with pre-stressed concrete slab. The dynamic loads such as wind and earthquake did not suggest significant effect on the pre-stressed concrete slab.
Lee, Byoung-Hee
2016-01-01
[Purpose] The purpose of this study was to determine the effects of Adeli suit therapy (AST) on gross motor function and gait function in children with cerebral palsy. [Subjects and Methods] Two participants with spastic cerebral palsy were recruited to undergo AST. AST was applied in 60-minute sessions, five times per week, with 20 sessions total over 4 weeks. Assessments of gross motor function, spatiotemporal parameters, and functional ambulation performance for gait were conducted. [Results] Gross motor function, cadence, and functional ambulation performance improved after the intervention in both cases. [Conclusion] Although additional follow-up studies are required, the results demonstrated improved gross motor function and functional ambulation performance in the children with cerebral palsy. These findings suggest a variety of applications for conservative therapeutic methods that require future clinical trials in children with cerebral palsy. PMID:27390453
NASA Astrophysics Data System (ADS)
Vlachokostas, A.; Volkmann, C.; Madamopoulos, N.
2013-06-01
High-rise and commercial buildings in urban centers present a great challenge in terms of their energy consumption. Due to maximization of rentable square footage, the preferred urban façade system over the past 50 years has been the "curtain wall", only a few inches thick and comprised of modular steel or aluminum framing and predominant glass infills. The perceived Achilles heel of these modern glass façade systems is their thermal inefficiency: They are inadequate thermal barriers and exhibit excessive solar gain. The excessive solar gain has a negative impact on lighting and cooling loads of the entire building. This negative impact will be further exacerbated with rising energy costs. However, rather than view the glass façade's uncontrolled solar gain merely as a weakness contributing to higher energy consumption, the condition could indeed be considered as related to an energy solution. These glass façades can be retrofitted to operate as a provider of daylight and energy for the rest of the building, taking advantage of the overexposure to the sun. With today's technology, the sun's abundant renewable energy can be the driving force for the energy transition of these building envelopes. Illumination, thermal energy, and electricity production can be directly supplied from the sun, and when correctly and efficiently managed, they can lead to a significantly less energy-intensive building stock. We propose a multi-purpose, prismatic, louver-based façade to perform both daylight and thermal energy harvesting with a goal of offering a better daylight environment for the occupants, and reduce the energy consumption and carbon footprint of the building. While decentralized air-conditioning units are commonly accepted as façade "plug-ins", such decentralization could be utilized with more benefits by passively managing the interior space conditions, without using any extra power. Just as living organisms respond and adapt to the environmental changes in
Semenova, K A; Antonova, L V
1998-01-01
Treatment-loading costume (LK-92 "Adely") was investigated in terms of its influence on functional state of neuromotor apparatus in 25 children with infantile cerebral paralysis in the form of spastic diplegia. Improvement of motor functions observed may be conditioned by a decrease of an amplitude of bioelectric activity in spastic muscles at physiologic rest and by an increase of an amplitude of agonists' biopotentials at arbitrary movements. Improvement of motor functions may be also caused by normalization of both the coefficients characterizing coordinated muscules' interactions and functional state of spinal motoneurons as well as of the mechanisms of their suprasegmental regulation. It is suggested that such effect may be, realized because of the afferentation normalization as well as by means of the influence of LK-92 "Adely" on both central and segmentary structures of motor analyzer including neuromediator systems.
Ito, Yu; Masaki, Yoshiaki; Kanamori, Takashi; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo
2016-01-01
5-[3-(2-Aminopyrimidin-4-yl)aminopropyn-1-yl]uracil (Ura(Pyr)) was designed as a new nucleobase to recognize Ade-Thy base pair in double-stranded DNA. We successfully synthesized the dexoynucleoside phosphoramidite having Ura(Pyr) and incorporated it into triplex forming oligonucleotides (TFOs). Melting temperature analysis revealed that introduction of Ura(Pyr) into TFOs could effectively stabilize their triplex structures without loss of base recognition capabilities.
Correlates of avian building strikes at a glass façade museum surrounded by avian habitat
NASA Astrophysics Data System (ADS)
Kahle, L.; Flannery, M.; Dumbacher, J. P.
2013-12-01
Bird window collisions are the second largest anthropogenic cause of bird deaths in the world. Effective mitigation requires an understanding of which birds are most likely to strike, when, and why. Here, we examine five years of avian window strike data from the California Academy of Sciences - a relatively new museum with significant glass façade situated in Golden Gate Park, San Francisco. We examine correlates of window-killed birds, including age, sex, season, and migratory or sedentary tendencies of the birds. We also examine correlates of window kills such as presence of habitat surrounding the building and overall window area. We found that males are almost three times more likely than females to mortally strike windows, and immature birds are three times more abundant than adults in our window kill dataset. Among seasons, strikes were not notably different in spring, summer, and fall; however they were notably reduced in winter. There was no statistical effect of building orientation (north, south, east, or west), and the presence of avian habitat directly adjacent to windows had a minor effect. We also report ongoing studies examining various efforts to reduce window kill (primarily external decals and large electronic window blinds.) We hope that improving our understanding of the causes of the window strikes will help us strategically reduce window strikes.
Liquid filled prismatic louver façade for enhanced daylighting in high-rise commercial buildings.
Vlachokostas, A; Madamopoulos, N
2015-07-27
A liquid filled prismatic louver (LFPL) façade that can perform daylight and thermal energy harvesting with the potential to offer enhanced natural illumination levels to office spaces and thermally assist secondary thermal driven applications is proposed and analyzed. We focus the present simulation study on the evaluation of daylight enhancement in indoor space by redirecting light from a window opening to the ceiling of the room, and then-after a diffusive reflection from the ceiling-onward to the work plane of the room. Illumination simulations using LightTools, a forward ray tracing illumination simulation software, are performed for an office building space located in New York City. We show that the LFPL system achieves deeper natural light penetration, better uniformity and higher illuminance levels compared to an office space without the LFPL system. We further extend our study to a number of other representative cities in the continental US, covering different climatic zones. The LFPL system achieves good daylight harvesting performance. Finally, we discuss the potential of the LFPL system to capture solar infrared radiation heat within the liquid (e.g., water) volume and use it to assist in secondary thermal energy applications.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.
NASA Astrophysics Data System (ADS)
Vukadinovic, J.; Dedits, E.; Poje, A. C.; Schäfer, T.
2015-08-01
We consider the two-dimensional advection-diffusion equation (ADE) on a bounded domain subject to Dirichlet or von Neumann boundary conditions involving a Liouville integrable Hamiltonian. Transformation to action-angle coordinates permits averaging in time and angle, resulting in an equation that allows for separation of variables. The Fourier transform in the angle coordinate transforms the equation into an effective diffusive equation and a countable family of non-self-adjoint Schrödinger equations. For the corresponding Liouville-Sturm problem, we apply complex-plane WKB methods to study the spectrum in the semi-classical limit for vanishing diffusivity. The spectral limit graph is found to consist of analytic curves (branches) related to Stokes graphs forming a tree-structure. Eigenvalues in the neighborhood of branches emanating from the imaginary axis are subject to various sublinear power laws with respect to diffusivity, leading to convection-enhanced rates of dissipation of the corresponding modes. The solution of the ADE converges in the limit of vanishing diffusivity to the solution of the effective diffusion equation on convective time scales that are sublinear with respect to the diffusive time scales.
A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan
2014-08-01
When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach.
Variational Derivation of Dissipative Equations
NASA Astrophysics Data System (ADS)
Sogo, Kiyoshi
2017-03-01
A new variational principle is formulated to derive various dissipative equations. Model equations considered are the damping equation, Bloch equation, diffusion equation, Fokker-Planck equation, Kramers equation and Smoluchowski equation. Each equation and its time reversal equation are simultaneously obtained in our variational principle.
ERIC Educational Resources Information Center
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
NASA Astrophysics Data System (ADS)
Major, Elizabeth; Benson, David A.; Revielle, Jordan; Ibrahim, Hamed; Dean, Arianne; Maxwell, Reed M.; Poeter, Eileen; Dogan, Mine
2011-10-01
It is not a compelling argument, solely on the basis of a better fit to solute breakthrough curve (BTC) data, that a temporally nonlocal model is necessary to simulate transport in an advection-dominated system. One may counter that the classical advection-dispersion equation (ADE) is a valid model at some small scale and that the detailed hydraulic conductivity (K) data must be well-represented: then the nonlocality is only a result of upscaling and loss of information. But is the nonlocal model demonstrably necessary at all scales? We examine the experiment conducted by Klise et al. (2008) in which a 30.5 × 30.5 cm slab of relatively homogeneous, cross-bedded sandstone was exhaustively sampled for K. The slab was sealed, saturated with potassium iodide, and X-rayed 10 times while being flushed with fresh water. The 8,649 air-permeameter measurements were down- and upscaled to make finer and coarser grids on which the velocity field was solved and the ADE applied. The optimized parameters in the ADE were found to scale predictably, most notably the longitudinal dispersivity (?), which grew linearly with upscaling. But at all levels of up- and downscaling, including the original K measurement scale of 0.33 cm, the ADE did not adequately represent the late-time tails. The temporally nonlocal, time-fractional ADE (t-FADE) was applied and the optimized parameters (? and the immobile capacity ?) did not depend on scale. The better fit provided by the t-FADE in the late BTC tails did not bring about a sacrificed fit elsewhere in the BTC. Furthermore, the optimized ADE and t-FADE solutions do not converge at the smallest scale, directly implying that the temporal nonlocality is a necessary model component. We conclude that the logical inference "if the ADE is valid in heterogeneous material, then there is tailing in the BTC" is not a proof that the reverse is true. We provide a clear counterexample. A corollary is that a mismatch between data and a discretized solution
NASA Astrophysics Data System (ADS)
Benson, D. A.; Major, E.; Ibrahim, H.; Dean, A. M.; Maxwell, R. M.; Poeter, E. P.; Dogan, M.
2011-12-01
It is not a compelling argument, based solely on a better fit to solute breakthrough curve (BTC) data, that a temporally non-local model is necessary to simulate transport in an advection-dominated system. One may counter that the classical advection-dispersion equation (ADE) is a valid model at some small scale and that the detailed hydraulic conductivity (K) data must be well represented: Then the nonlocality is only a result of upscaling and loss of information. But is the non-local model demonstrably necessary at all scales? We examine the experiment conducted by Klise et al. [2008] in which a 30.5 ± 30.5 cm slab of relatively homogeneous, cross-bedded sandstone was exhaustively sampled for K. The slab was sealed, saturated with potassium iodide, and x-rayed ten times while being flushed with fresh water. The 8,649 air-permeameter measurements were down- and up-scaled to make finer and coarser grids on which the velocity field was solved and the ADE applied. The optimized parameters in the ADE were found to scale predictably---most notably the longitudinal dispersivity (α L), which grew linearly with up-scaling. But at all levels of up- and down-scaling, including the original K measurement scale of 0.33 cm, the ADE did not adequately represent the late-time tails. The temporally non-local, time-fractional, ADE (t-FADE) was applied and the optimized parameters (α L and the immobile capacity &beta) did not depend on scale. The better fit provided by the t-FADE in the late BTC tails did not bring about a sacrificed fit elsewhere in the BTC. Furthermore, the optimized ADE and t-FADE solutions do not converge at the smallest scale, directly implying that the temporal non-locality is a necessary model component. We conclude that the logical inference ``if the ADE is valid in heterogeneous material, then there is tailing in the BTC'' is not a proof that the reverse is true. We provide a clear counterexample. A corollary is that a mismatch between data and a
NASA Astrophysics Data System (ADS)
Lowry, Thomas; Li, Shu-Guang
2005-02-01
Difficulty in solving the transient advection-diffusion equation (ADE) stems from the relationship between the advection derivatives and the time derivative. For a solution method to be viable, it must account for this relationship by being accurate in both space and time. This research presents a unique method for solving the time-dependent ADE that does not discretize the derivative terms but rather solves the equation analytically in the space-time domain. The method is computationally efficient and numerically accurate and addresses the common limitations of numerical dispersion and spurious oscillations that can be prevalent in other solution methods. The method is based on the improved finite analytic (IFA) solution method [Lowry TS, Li S-G. A characteristic based finite analytic method for solving the two-dimensional steady-state advection-diffusion equation. Water Resour Res 38 (7), 10.1029/2001WR000518] in space coupled with a Laplace transformation in time. In this way, the method has no Courant condition and maintains accuracy in space and time, performing well even at high Peclet numbers. The method is compared to a hybrid method of characteristics, a random walk particle tracking method, and an Eulerian-Lagrangian Localized Adjoint Method using various degrees of flow-field heterogeneity across multiple Peclet numbers. Results show the IFALT method to be computationally more efficient while producing similar or better accuracy than the other methods.
Lattice Boltzmann method for the fractional advection-diffusion equation.
Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
Lattice Boltzmann method for the fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
Higgins, Paul G.; Schneiders, Thamarai; Hamprecht, Axel; Seifert, Harald
2010-01-01
The mechanism of stepwise acquired multidrug resistance in Acinetobacter baumannii isolates from a hospitalized patient was investigated. Thirteen consecutive multidrug-resistant isolates were recovered from the same patient over a 2-month period. The Vitek 2 system identified the isolates as meropenem-sensitive Acinetobacter lwoffii; however, molecular identification showed that the isolates were A. baumannii. Etest revealed that the isolates were meropenem resistant. The presence of oxacillinase (OXA)-type enzymes were investigated by sequencing. The clonal relatedness of isolates was assessed by pulsed-field gel electrophoresis (PFGE). Expression of the genes encoding the efflux pumps AdeB and AdeJ was performed by semiquantitative real-time reverse transcription-PCR (qRT-PCR). The adeRS two-component system was sequenced. All isolates had identical PFGE fingerprints, suggesting clonal identity. The first six isolates were positive for the novel blaOXA-164 gene. The following seven isolates, recovered after treatment with a combination of meropenem, amikacin, ciprofloxacin, and co-trimoxazole showed an increase of >7-fold in adeB mRNA transcripts and a missense mutation in blaOXA-164, converting it to blaOXA-58. Sequencing revealed a novel mutation in adeR. These data illustrate how A. baumannii can adapt during antimicrobial therapy, leading to increased antimicrobial resistance. PMID:20921306
Single wall penetration equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
1991-01-01
Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.
Reflections on Chemical Equations.
ERIC Educational Resources Information Center
Gorman, Mel
1981-01-01
The issue of how much emphasis balancing chemical equations should have in an introductory chemistry course is discussed. The current heavy emphasis on finishing such equations is viewed as misplaced. (MP)
Parametrically defined differential equations
NASA Astrophysics Data System (ADS)
Polyanin, A. D.; Zhurov, A. I.
2017-01-01
The paper deals with nonlinear ordinary differential equations defined parametrically by two relations. It proposes techniques to reduce such equations, of the first or second order, to standard systems of ordinary differential equations. It obtains the general solution to some classes of nonlinear parametrically defined ODEs dependent on arbitrary functions. It outlines procedures for the numerical solution of the Cauchy problem for parametrically defined differential equations.
ERIC Educational Resources Information Center
Fay, Temple H.
2002-01-01
We investigate the pendulum equation [theta] + [lambda][squared] sin [theta] = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin [theta] do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are…
NASA Astrophysics Data System (ADS)
Sanskrityayn, Abhishek; Kumar, Naveen
2016-12-01
Some analytical solutions of one-dimensional advection-diffusion equation (ADE) with variable dispersion coefficient and velocity are obtained using Green's function method (GFM). The variability attributes to the heterogeneity of hydro-geological media like river bed or aquifer in more general ways than that in the previous works. Dispersion coefficient is considered temporally dependent, while velocity is considered spatially and temporally dependent. The spatial dependence is considered to be linear and temporal dependence is considered to be of linear, exponential and asymptotic. The spatio-temporal dependence of velocity is considered in three ways. Results of previous works are also derived validating the results of the present work. To use GFM, a moving coordinate transformation is developed through which this ADE is reduced into a form, whose analytical solution is already known. Analytical solutions are obtained for the pollutant's mass dispersion from an instantaneous point source as well as from a continuous point source in a heterogeneous medium. The effect of such dependence on the mass transport is explained through the illustrations of the analytical solutions.
Long-Term Transport of Cryptosporidium Parvum
NASA Astrophysics Data System (ADS)
Andrea, C.; Harter, T.; Hou, L.; Atwill, E. R.; Packman, A.; Woodrow-Mumford, K.; Maldonado, S.
2005-12-01
The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Subsurface transport and filtration in natural and artificial porous media are important components of the environmental pathway of this pathogen. It has been shown that the oocysts of C. parvum show distinct colloidal properties. We conducted a series of laboratory studies on sand columns (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). Breakthrough curves were measured over relatively long time-periods (hundreds to thousands of pore volumes). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough, but it is inadequate to explain the significant tailing observed in the breakthrough of C. parvum oocyst through sand columns. We discuss the application of the Continuous Time Random Walk approach to account for the strong tailing that was observed in our experiments. The CTRW is generalized transport modeling framework, which includes the classic advection-dispersion equation (ADE), the fractional ADE, and the multi-rate mass transfer model as special cases. Within this conceptual framework, it is possible to distinguish between the contributions of pore-scale geometrical (physical) disorder and of pore-scale physico-chemical heterogeneities (e.g., of the filtration, sorption, desorption processes) to the transport of C. parvum oocysts.
Tracer-Test Planning Using the Efficient Hydrologic Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be
Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri
EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to
Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.
2015-01-01
A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532
Monger, Gregg R; Duncan, Candice Morrison; Brusseau, Mark L
2014-12-01
A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation.
Krishnamoorthy, Suvarna; Shah, Bhavikkumar P.; Lee, Hiu Ham
2015-01-01
Acinetobacter baumannii is a Gram-negative bacterium that causes nosocomial infections worldwide. This microbe's propensity to form biofilms allows it to persist and to survive on clinical abiotic surfaces for long periods. In fact, A. baumannii biofilm formation and its multidrug-resistant nature severely compromise our capacity to care for patients in hospital environments. In contrast, microbicides such as cetrimide (CT) and chlorhexidine (CHX) play important roles in the prevention and treatment of infections. We assessed the efficacy of CT and CHX, either alone or in combination, in eradicating A. baumannii biofilms formed by clinical isolates, by using stainless steel washers to mimic hard abiotic surfaces found in hospital settings. We demonstrated that increasing amounts of each microbicide, alone or in combination, were able to damage and to reduce the viability of A. baumannii biofilms efficaciously. Interestingly, the adeB gene of the resistance-nodulation-cell division (RND) family is predominantly associated with acquired resistance to antimicrobials in A. baumannii. We showed that CT and CHX adversely modified the expression and function of the RND-type efflux pump AdeABC in biofilm-associated A. baumannii cells. Furthermore, we established that these microbicides decreased the negative charges on A. baumannii cell membranes, causing dysregulation of the efflux pump and leading to cell death. Our findings suggest that CT and CHX, alone or in combination, can be used efficaciously for eradication of A. baumannii from hospital surfaces, in order to reduce infections caused by this nosocomial agent. PMID:26459900
Krishnamoorthy, Suvarna; Shah, Bhavikkumar P; Lee, Hiu Ham; Martinez, Luis R
2015-10-12
Acinetobacter baumannii is a Gram-negative bacterium that causes nosocomial infections worldwide. This microbe's propensity to form biofilms allows it to persist and to survive on clinical abiotic surfaces for long periods. In fact, A. baumannii biofilm formation and its multidrug-resistant nature severely compromise our capacity to care for patients in hospital environments. In contrast, microbicides such as cetrimide (CT) and chlorhexidine (CHX) play important roles in the prevention and treatment of infections. We assessed the efficacy of CT and CHX, either alone or in combination, in eradicating A. baumannii biofilms formed by clinical isolates, by using stainless steel washers to mimic hard abiotic surfaces found in hospital settings. We demonstrated that increasing amounts of each microbicide, alone or in combination, were able to damage and to reduce the viability of A. baumannii biofilms efficaciously. Interestingly, the adeB gene of the resistance-nodulation-cell division (RND) family is predominantly associated with acquired resistance to antimicrobials in A. baumannii. We showed that CT and CHX adversely modified the expression and function of the RND-type efflux pump AdeABC in biofilm-associated A. baumannii cells. Furthermore, we established that these microbicides decreased the negative charges on A. baumannii cell membranes, causing dysregulation of the efflux pump and leading to cell death. Our findings suggest that CT and CHX, alone or in combination, can be used efficaciously for eradication of A. baumannii from hospital surfaces, in order to reduce infections caused by this nosocomial agent.
Yamaguchi, Takashi; Hinata, Takashi
2007-09-03
The time-average energy density of the optical near-field generated around a metallic sphere is computed using the finite-difference time-domain method. To check the accuracy, the numerical results are compared with the rigorous solutions by Mie theory. The Lorentz-Drude model, which is coupled with Maxwell's equation via motion equations of an electron, is applied to simulate the dispersion relation of metallic materials. The distributions of the optical near-filed generated around a metallic hemisphere and a metallic spheroid are also computed, and strong optical near-fields are obtained at the rim of them.
NASA Astrophysics Data System (ADS)
Kostov, Ivan; Serban, Didina; Volin, Dmytro
2008-08-01
We give a realization of the Beisert, Eden and Staudacher equation for the planar Script N = 4 supersymetric gauge theory which seems to be particularly useful to study the strong coupling limit. We are using a linearized version of the BES equation as two coupled equations involving an auxiliary density function. We write these equations in terms of the resolvents and we transform them into a system of functional, instead of integral, equations. We solve the functional equations perturbatively in the strong coupling limit and reproduce the recursive solution obtained by Basso, Korchemsky and Kotański. The coefficients of the strong coupling expansion are fixed by the analyticity properties obeyed by the resolvents.
Fractional chemotaxis diffusion equations.
Langlands, T A M; Henry, B I
2010-05-01
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macromolecular crowding or other obstacles.
Solving Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Uniqueness of Maxwell's Equations.
ERIC Educational Resources Information Center
Cohn, Jack
1978-01-01
Shows that, as a consequence of two feasible assumptions and when due attention is given to the definition of charge and the fields E and B, the lowest-order equations that these two fields must satisfy are Maxwell's equations. (Author/GA)
Linear Equations: Equivalence = Success
ERIC Educational Resources Information Center
Baratta, Wendy
2011-01-01
The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…
Yagi, M.; Horton, W. )
1994-07-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite [beta] that the perpendicular component of Ohm's law be solved to ensure [del][center dot][bold j]=0 for energy conservation.
NASA Astrophysics Data System (ADS)
Shabat, A. B.
2016-12-01
We consider the class of entire functions of exponential type in relation to the scattering theory for the Schrödinger equation with a finite potential that is a finite Borel measure. These functions have a special self-similarity and satisfy q-difference functional equations. We study their asymptotic behavior and the distribution of zeros.
Nonlinear gyrokinetic equations
Dubin, D.H.E.; Krommes, J.A.; Oberman, C.; Lee, W.W.
1983-03-01
Nonlinear gyrokinetic equations are derived from a systematic Hamiltonian theory. The derivation employs Lie transforms and a noncanonical perturbation theory first used by Littlejohn for the simpler problem of asymptotically small gyroradius. For definiteness, we emphasize the limit of electrostatic fluctuations in slab geometry; however, there is a straight-forward generalization to arbitrary field geometry and electromagnetic perturbations. An energy invariant for the nonlinear system is derived, and various of its limits are considered. The weak turbulence theory of the equations is examined. In particular, the wave kinetic equation of Galeev and Sagdeev is derived from an asystematic truncation of the equations, implying that this equation fails to consider all gyrokinetic effects. The equations are simplified for the case of small but finite gyroradius and put in a form suitable for efficient computer simulation. Although it is possible to derive the Terry-Horton and Hasegawa-Mima equations as limiting cases of our theory, several new nonlinear terms absent from conventional theories appear and are discussed.
NASA Astrophysics Data System (ADS)
Kuksin, Sergei; Maiocchi, Alberto
In this chapter we present a general method of constructing the effective equation which describes the behavior of small-amplitude solutions for a nonlinear PDE in finite volume, provided that the linear part of the equation is a hamiltonian system with a pure imaginary discrete spectrum. The effective equation is obtained by retaining only the resonant terms of the nonlinearity (which may be hamiltonian, or may be not); the assertion that it describes the limiting behavior of small-amplitude solutions is a rigorous mathematical theorem. In particular, the method applies to the three- and four-wave systems. We demonstrate that different possible types of energy transport are covered by this method, depending on whether the set of resonances splits into finite clusters (this happens, e.g. in case of the Charney-Hasegawa-Mima equation), or is connected (this happens, e.g. in the case of the NLS equation if the space-dimension is at least two). For equations of the first type the energy transition to high frequencies does not hold, while for equations of the second type it may take place. Our method applies to various weakly nonlinear wave systems, appearing in plasma, meteorology and oceanography.
The Quadrature Master Equations
NASA Astrophysics Data System (ADS)
Hassan, N. J.; Pourdarvish, A.; Sadeghi, J.; Olaomi, J. O.
2017-04-01
In this paper, we derive the non-Markovian stochastic equation of motion (SEM) and master equations (MEs) for the open quantum system by using the non-Markovian stochastic Schrödinger equations (SSEs) for the quadrature unraveling in linear and nonlinear cases. The SSEs for quadrature unraveling arise as a special case of a quantum system. Also we derive the Markovian SEM and ME by using linear and nonlinear Itô SSEs for the measurement probabilities. In linear non-Markovian case, we calculate the convolutionless linear quadrature non-Markovian SEM and ME. We take advantage from example and show that corresponding theory.
Nonlinear ordinary difference equations
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1979-01-01
Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.
Regularized Structural Equation Modeling.
Jacobucci, Ross; Grimm, Kevin J; McArdle, John J
A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM's utility.
Equations For Rotary Transformers
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.
1988-01-01
Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.
ERIC Educational Resources Information Center
Shumway, Richard J.
1989-01-01
Illustrated is the problem of solving equations and some different strategies students might employ when using available technology. Gives illustrations for: exact solutions, approximate solutions, and approximate solutions which are graphically generated. (RT)
Nonlinear differential equations
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.
Discrete wave equation upscaling
NASA Astrophysics Data System (ADS)
Fichtner, Andreas; Hanasoge, Shravan M.
2017-01-01
We present homogenisation technique for the uniformly discretised wave equation, based on the derivation of an effective equation for the low-wavenumber component of the solution. The method produces a down-sampled, effective medium, thus making the solution of the effective equation less computationally expensive. Advantages of the method include its conceptual simplicity and ease of implementation, the applicability to any uniformly discretised wave equation in one, two or three dimensions, and the absence of any constraints on the medium properties. We illustrate our method with a numerical example of wave propagation through a one-dimensional multiscale medium, and demonstrate the accurate reproduction of the original wavefield for sufficiently low frequencies.
Relativistic Guiding Center Equations
White, R. B.; Gobbin, M.
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER
Collier, D.M.; Meeks, L.A.; Palmer, J.P.
1960-05-10
A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.
The Bernoulli-Poiseuille Equation.
ERIC Educational Resources Information Center
Badeer, Henry S.; Synolakis, Costas E.
1989-01-01
Describes Bernoulli's equation and Poiseuille's equation for fluid dynamics. Discusses the application of the combined Bernoulli-Poiseuille equation in real flows, such as viscous flows under gravity and acceleration. (YP)
Spatial equation for water waves
NASA Astrophysics Data System (ADS)
Dyachenko, A. I.; Zakharov, V. E.
2016-02-01
A compact spatial Hamiltonian equation for gravity waves on deep water has been derived. The equation is dynamical and can describe extreme waves. The equation for the envelope of a wave train has also been obtained.
Introducing Chemical Formulae and Equations.
ERIC Educational Resources Information Center
Dawson, Chris; Rowell, Jack
1979-01-01
Discusses when the writing of chemical formula and equations can be introduced in the school science curriculum. Also presents ways in which formulae and equations learning can be aided and some examples for balancing and interpreting equations. (HM)
Budini, Adrian A.
2006-11-15
In this paper we derive an extra class of non-Markovian master equations where the system state is written as a sum of auxiliary matrixes whose evolution involve Lindblad contributions with local coupling between all of them, resembling the structure of a classical rate equation. The system dynamics may develop strong nonlocal effects such as the dependence of the stationary properties with the system initialization. These equations are derived from alternative microscopic interactions, such as complex environments described in a generalized Born-Markov approximation and tripartite system-environment interactions, where extra unobserved degrees of freedom mediates the entanglement between the system and a Markovian reservoir. Conditions that guarantee the completely positive condition of the solution map are found. Quantum stochastic processes that recover the system dynamics in average are formulated. We exemplify our results by analyzing the dynamical action of nontrivial structured dephasing and depolarizing reservoirs over a single qubit.
Nonlocal electrical diffusion equation
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.
2016-07-01
In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.
Stochastic differential equations
Sobczyk, K. )
1990-01-01
This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshore structures.
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1995-01-01
Kepler's Equation is solved over the entire range of elliptic motion by a fifth-order refinement of the solution of a cubic equation. This method is not iterative, and requires only four transcendental function evaluations: a square root, a cube root, and two trigonometric functions. The maximum relative error of the algorithm is less than one part in 10(exp 18), exceeding the capability of double-precision computer arithmetic. Roundoff errors in double-precision implementation of the algorithm are addressed, and procedures to avoid them are developed.
Obtaining Maxwell's equations heuristically
NASA Astrophysics Data System (ADS)
Diener, Gerhard; Weissbarth, Jürgen; Grossmann, Frank; Schmidt, Rüdiger
2013-02-01
Starting from the experimental fact that a moving charge experiences the Lorentz force and applying the fundamental principles of simplicity (first order derivatives only) and linearity (superposition principle), we show that the structure of the microscopic Maxwell equations for the electromagnetic fields can be deduced heuristically by using the transformation properties of the fields under space inversion and time reversal. Using the experimental facts of charge conservation and that electromagnetic waves propagate with the speed of light, together with Galilean invariance of the Lorentz force, allows us to finalize Maxwell's equations and to introduce arbitrary electrodynamics units naturally.
Comparison of Kernel Equating and Item Response Theory Equating Methods
ERIC Educational Resources Information Center
Meng, Yu
2012-01-01
The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…
Accumulative Equating Error after a Chain of Linear Equatings
ERIC Educational Resources Information Center
Guo, Hongwen
2010-01-01
After many equatings have been conducted in a testing program, equating errors can accumulate to a degree that is not negligible compared to the standard error of measurement. In this paper, the author investigates the asymptotic accumulative standard error of equating (ASEE) for linear equating methods, including chained linear, Tucker, and…
The Statistical Drake Equation
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2010-12-01
We provide the statistical generalization of the Drake equation. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov Form of the CLT, or the Lindeberg Form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the LOGNORMAL distribution. Then, as a consequence, the mean value of this lognormal distribution is the ordinary N in the Drake equation. The standard deviation, mode, and all the moments of this lognormal N are also found. The seven factors in the ordinary Drake equation now become seven positive random variables. The probability distribution of each random variable may be ARBITRARY. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) DISTANCE between any two neighboring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, in our approach, this distance becomes a new random variable. We derive the relevant probability density
López, M.; Álvarez-Fraga, L.; Gato, E.; Blasco, L.; Poza, M.; Fernández-García, L.; Bou, G.
2016-01-01
Increased expression of chromosomal genes for resistance-nodulation-cell division-type efflux systems plays a major role in the multidrug resistance of Acinetobacter baumannii. Little is known about the genetic characteristics of clinical strains of Acinetobacter baumannii lacking the AdeABC pump. In this study, we sequenced the genome of clinical strain Ab421 GEIH-2010 (belonging to clone ST79/PFGE-HUI-1 from the GEIH-REIPI Ab. 2010 project) which lacks this efflux pump. PMID:27609928
Croker, Daniel E; Halai, Reena; Fairlie, David P; Cooper, Matthew A
2013-01-01
Receptors for C5a have an important role in innate immunity and inflammation where their expression and activation is tightly regulated. There are two known receptors for C5a: the C5a receptor (C5aR) and the C5a receptor like-2 (C5L2) receptor. Here we hypothesized that activation of C5aR might lead to heteromer formation with C5L2, as a downregulatory mechanism for C5aR signaling. To investigate this experimentally, bioluminescent resonance energy transfer (BRET) was implemented and supported by wide-field microscopy to analyze receptor localization in transfected HEK293 cells and human monocyte-derived macrophages (HMDM). BRET experiments indicated the presence of constitutive C5aR-C5L2 heteromers, where C5a, but not C5a-des Arg, was able to induce further heteromer formation, which was inhibited by a C5aR-specific antagonist. The data obtained suggest that C5aR-C5L2 can form heteromers in a process enhanced by C5a, but not by C5a-des Arg. There was also a significant difference in the levels of the anti-inflammatory cytokine IL-10 detected in HMDM following exposure to C5a compared with that seen for C5a-des Arg but no differences in the pro-inflammatory cytokines TNFα and IL-6. These subtle differences in C5a and C5a-des Arg induced receptor function may be of benefit in understanding the regulation of C5a in acute inflammation.
López, M; Álvarez-Fraga, L; Gato, E; Blasco, L; Poza, M; Fernández-García, L; Bou, G; Tomás, M
2016-09-08
Increased expression of chromosomal genes for resistance-nodulation-cell division-type efflux systems plays a major role in the multidrug resistance of Acinetobacter baumannii Little is known about the genetic characteristics of clinical strains of Acinetobacter baumannii lacking the AdeABC pump. In this study, we sequenced the genome of clinical strain Ab421 GEIH-2010 (belonging to clone ST79/PFGE-HUI-1 from the GEIH-REIPI Ab. 2010 project) which lacks this efflux pump.
Do Differential Equations Swing?
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.
2006-01-01
One of the units of in a standard differential equations course is a discussion of the oscillatory motion of a spring and the associated material on forcing functions and resonance. During the presentation on practical resonance, the instructor may tell students that it is similar to when they take their siblings to the playground and help them on…
Modelling by Differential Equations
ERIC Educational Resources Information Center
Chaachoua, Hamid; Saglam, Ayse
2006-01-01
This paper aims to show the close relation between physics and mathematics taking into account especially the theory of differential equations. By analysing the problems posed by scientists in the seventeenth century, we note that physics is very important for the emergence of this theory. Taking into account this analysis, we show the…
NASA Astrophysics Data System (ADS)
Mejjaoli, Hatem
2008-12-01
We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.
Structural Equation Model Trees
ERIC Educational Resources Information Center
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
ERIC Educational Resources Information Center
Fay, Temple H.
2010-01-01
Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…
Parallel Multigrid Equation Solver
Adams, Mark
2001-09-07
Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.
Quenching equation for scintillation
NASA Astrophysics Data System (ADS)
Kato, Takahisa
1980-06-01
A mathematical expression is postulated showing the relationship between counting rate and quenching agent concentration in a liquid scintillation solution. The expression is more suited to a wider range of quenching agent concentrations than the Stern-Volmer equation. An estimation of the quenched correction is demonstrated using the expression.
Milligan, Donald W; Wheatley, Keith; Littlewood, Timothy; Craig, Jenny I O; Burnett, Alan K
2006-06-15
The optimum chemotherapy schedule for reinduction of patients with high-risk acute myeloid leukemia (relapsed, resistant/refractory, or adverse genetic disease) is uncertain. The MRC AML (Medical Research Council Acute Myeloid Leukemia) Working Group designed a trial comparing fludarabine and high-dose cytosine (FLA) with standard chemotherapy comprising cytosine arabinoside, daunorubicin, and etoposide (ADE). Patients were also randomly assigned to receive filgrastim (G-CSF) from day 0 until neutrophil count was greater than 0.5 x 10(9)/L (or for a maximum of 28 days) and all-trans retinoic acid (ATRA) for 90 days. Between 1998 and 2003, 405 patients were entered: 250 were randomly assigned between FLA and ADE; 356 to G-CSF versus no G-CSF; 362 to ATRA versus no ATRA. The complete remission rate was 61% with 4-year disease-free survival of 29%. There were no significant differences in the CR rate, deaths in CR, relapse rate, or DFS between ADE and FLA, although survival at 4 years was worse with FLA (16% versus 27%, P = .05). Neither the addition of ATRA nor G-CSF demonstrated any differences in the CR rate, relapse rate, DFS, or overall survival between the groups. In conclusion these findings indicate that FLA may be inferior to standard chemotherapy in high-risk AML and that the outcome is not improved with the addition of either G-CSF or ATRA.
Nashalian, Ossanna; Yaylayan, Varoujan A
2017-01-15
To explore the interaction of nucleosides and nucleobases in the context of the Maillard reaction and to identify the selectivity of purine nitrogen atoms towards various electrophiles, model systems composed of adenine or adenosine, glycine, ribose and/or 2-furanmethanol (with and without copper) were studied in aqueous solutions heated at 110°C for 2h and subsequently analyzed by ESI/qTOF/MS/MS in addition to isotope labelling techniques. The results indicated that ribose selectively formed mono-ribosylated N(6) adenine, but in the presence of (Ade)2Cu complex the reaction mixture generated mono-, di- and tri-substituted sugar complexes and their hydrolysis products of mono-ribosylated N(6) and N(9) adenine adducts and di-ribosylated N(6,9) adenine. Furthermore, the reaction of 2-furanmethanol with adenine in the presence of ribose generated kinetin and its isomer, while its reaction with adenosine generated kinetin riboside, as confirmed by comparing the MS/MS profiles of these adducts to those of commercial standards.
NASA Astrophysics Data System (ADS)
Peronato, G.; Rey, E.; Andersen, M.
2016-10-01
The presence of vegetation can significantly affect the solar irradiation received on building surfaces. Due to the complex shape and seasonal variability of vegetation geometry, this topic has gained much attention from researchers. However, existing methods are limited to rooftops as they are based on 2.5D geometry and use simplified radiation algorithms based on view-sheds. This work contributes to overcoming some of these limitations, providing support for 3D geometry to include facades. Thanks to the use of ray-tracing-based simulations and detailed characterization of the 3D surfaces, we can also account for inter-reflections, which might have a significant impact on façade irradiation. In order to construct confidence intervals on our results, we modeled vegetation from LiDAR point clouds as 3D convex hulls, which provide the biggest volume and hence the most conservative obstruction scenario. The limits of the confidence intervals were characterized with some extreme scenarios (e.g. opaque trees and absence of trees). Results show that uncertainty can vary significantly depending on the characteristics of the urban area and the granularity of the analysis (sensor, building and group of buildings). We argue that this method can give us a better understanding of the uncertainties due to vegetation in the assessment of solar irradiation in urban environments, and therefore, the potential for the installation of solar energy systems.
Nonlinear equations of 'variable type'
NASA Astrophysics Data System (ADS)
Larkin, N. A.; Novikov, V. A.; Ianenko, N. N.
In this monograph, new scientific results related to the theory of equations of 'variable type' are presented. Equations of 'variable type' are equations for which the original type is not preserved within the entire domain of coefficient definition. This part of the theory of differential equations with partial derivatives has been developed intensively in connection with the requirements of mechanics. The relations between equations of the considered type and the problems of mathematical physics are explored, taking into account quasi-linear equations, and models of mathematical physics which lead to equations of 'variable type'. Such models are related to transonic flows, problems involving a separation of the boundary layer, gasdynamics and the van der Waals equation, shock wave phenomena, and a combustion model with a turbulent diffusion flame. Attention is also given to nonlinear parabolic equations, and nonlinear partial differential equations of the third order.
Methods for Equating Mental Tests.
1984-11-01
1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth
Flavored quantum Boltzmann equations
Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean
2010-05-15
We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.
NASA Astrophysics Data System (ADS)
Trzetrzelewski, Maciej
2016-11-01
Starting with a Nambu-Goto action, a Dirac-like equation can be constructed by taking the square-root of the momentum constraint. The eigenvalues of the resulting Hamiltonian are real and correspond to masses of the excited string. In particular there are no tachyons. A special case of radial oscillations of a closed string in Minkowski space-time admits exact solutions in terms of wave functions of the harmonic oscillator.
Perturbed nonlinear differential equations
NASA Technical Reports Server (NTRS)
Proctor, T. G.
1974-01-01
For perturbed nonlinear systems, a norm, other than the supremum norm, is introduced on some spaces of continuous functions. This makes possible the study of new types of behavior. A study is presented on a perturbed nonlinear differential equation defined on a half line, and the existence of a family of solutions with special boundedness properties is established. The ideas developed are applied to the study of integral manifolds, and examples are given.
Quantum molecular master equations
NASA Astrophysics Data System (ADS)
Brechet, Sylvain D.; Reuse, Francois A.; Maschke, Klaus; Ansermet, Jean-Philippe
2016-10-01
We present the quantum master equations for midsize molecules in the presence of an external magnetic field. The Hamiltonian describing the dynamics of a molecule accounts for the molecular deformation and orientation properties, as well as for the electronic properties. In order to establish the master equations governing the relaxation of free-standing molecules, we have to split the molecule into two weakly interacting parts, a bath and a bathed system. The adequate choice of these systems depends on the specific physical system under consideration. Here we consider a first system consisting of the molecular deformation and orientation properties and the electronic spin properties and a second system composed of the remaining electronic spatial properties. If the characteristic time scale associated with the second system is small with respect to that of the first, the second may be considered as a bath for the first. Assuming that both systems are weakly coupled and initially weakly correlated, we obtain the corresponding master equations. They describe notably the relaxation of magnetic properties of midsize molecules, where the change of the statistical properties of the electronic orbitals is expected to be slow with respect to the evolution time scale of the bathed system.
Double-Plate Penetration Equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
2000-01-01
This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.
Computing generalized Langevin equations and generalized Fokker-Planck equations.
Darve, Eric; Solomon, Jose; Kia, Amirali
2009-07-07
The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.
Reduction operators of Burgers equation.
Pocheketa, Oleksandr A; Popovych, Roman O
2013-02-01
The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.
Reduction operators of Burgers equation
Pocheketa, Oleksandr A.; Popovych, Roman O.
2013-01-01
The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special “no-go” case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf–Cole transformation to a parameterized family of Lie reductions of the linear heat equation. PMID:23576819
Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating
ERIC Educational Resources Information Center
Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen
2012-01-01
This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…
Differential Equations Compatible with Boundary Rational qKZ Equation
NASA Astrophysics Data System (ADS)
Takeyama, Yoshihiro
2011-10-01
We give diffierential equations compatible with the rational qKZ equation with boundary reflection. The total system contains the trigonometric degeneration of the bispectral qKZ equation of type (Cěen, Cn) which in the case of type GLn was studied by van Meer and Stokman. We construct an integral formula for solutions to our compatible system in a special case.
Sammartino, M P; Genova, C; Ronca, S; Cau, G; Visco, G
2016-12-15
Due to the bad state of conservation, "Palazzo Governi", a seventeenth-century building located in the old town district of "Stampace" in Cagliari (Sardinia, Italy), was subjected to restoration. Thus, according to the Italian Law n. 1089, the main façade colour must be reproduced, and therefore, its identification was required. The available samples looked fairly degraded, in particular as an easy plaster to crumble; so, some other analyses able to identify the degradation cause were performed. Two different approaches were adopted to attain the first goal, the visual colour assessment by a sensory panel (subjective) and the instrumental measurement by colorimetry (objective). Ion chromatography and inductively coupled plasma-optical emission spectroscopy analyses, as well as conductivity and pH measurements, were performed to evaluate the presence of water-soluble salts inside the plaster, as possible cause of degradation; the binder/aggregate ratio was also evaluated. A full mineralogical and petrographic characterisation of the materials constituting the samples, as well as the identification of their stratigraphy and some other morphologic and structural features suitable to highlight eventual forms of degradation, were performed by optical microscopy. Scanning electron microscopy coupled to X-ray microanalysis was been also used in order to confirm and/or to integrate data obtained by optical microscopy. The samples have been compared with two samples coming from two other buildings, also located in Sardinia, that looked in good conservation state. The results evidenced that the causes of degradation come from a high salt (especially sulphate) content and a scarce presence of binder in the plaster that can be imputed to a wrong initial composition and/ or to a leaching by acidic rain.
Problems, Perspectives, and Practical Issues in Equating.
ERIC Educational Resources Information Center
Weiss, David J., Ed.
1987-01-01
Issues concerning equating test scores are discussed in an introduction, four papers, and two commentaries. Equating methods research, sampling errors, linear equating, population differences, sources of equating errors, and a circular equating paradigm are considered. (SLD)
Perturbed nonlinear differential equations
NASA Technical Reports Server (NTRS)
Proctor, T. G.
1972-01-01
The existence of a solution defined for all t and possessing a type of boundedness property is established for the perturbed nonlinear system y = f(t,y) + F(t,y). The unperturbed system x = f(t,x) has a dichotomy in which some solutions exist and are well behaved as t increases to infinity, and some solution exists and are well behaved as t decreases to minus infinity. A similar study is made for a perturbed nonlinear differential equation defined on a half line, R+, and the existence of a family of solutions with special boundedness properties is established. The ideas are applied to integral manifolds.
Noncommutativity and the Friedmann Equations
Sabido, M.; Socorro, J.; Guzman, W.
2010-07-12
In this paper we study noncommutative scalar field cosmology, we find the noncommutative Friedmann equations as well as the noncommutative Klein-Gordon equation, interestingly the noncommutative contributions are only present up to second order in the noncommutitive parameter.
Conservational PDF Equations of Turbulence
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2010-01-01
Recently we have revisited the traditional probability density function (PDF) equations for the velocity and species in turbulent incompressible flows. They are all unclosed due to the appearance of various conditional means which are modeled empirically. However, we have observed that it is possible to establish a closed velocity PDF equation and a closed joint velocity and species PDF equation through conditions derived from the integral form of the Navier-Stokes equations. Although, in theory, the resulted PDF equations are neither general nor unique, they nevertheless lead to the exact transport equations for the first moment as well as all higher order moments. We refer these PDF equations as the conservational PDF equations. This observation is worth further exploration for its validity and CFD application
``Riemann equations'' in bidifferential calculus
NASA Astrophysics Data System (ADS)
Chvartatskyi, O.; Müller-Hoissen, F.; Stoilov, N.
2015-10-01
We consider equations that formally resemble a matrix Riemann (or Hopf) equation in the framework of bidifferential calculus. With different choices of a first-order bidifferential calculus, we obtain a variety of equations, including a semi-discrete and a fully discrete version of the matrix Riemann equation. A corresponding universal solution-generating method then either yields a (continuous or discrete) Cole-Hopf transformation, or leaves us with the problem of solving Riemann equations (hence an application of the hodograph method). If the bidifferential calculus extends to second order, solutions of a system of "Riemann equations" are also solutions of an equation that arises, on the universal level of bidifferential calculus, as an integrability condition. Depending on the choice of bidifferential calculus, the latter can represent a number of prominent integrable equations, like self-dual Yang-Mills, as well as matrix versions of the two-dimensional Toda lattice, Hirota's bilinear difference equation, (2+1)-dimensional Nonlinear Schrödinger (NLS), Kadomtsev-Petviashvili (KP) equation, and Davey-Stewartson equations. For all of them, a recent (non-isospectral) binary Darboux transformation result in bidifferential calculus applies, which can be specialized to generate solutions of the associated "Riemann equations." For the latter, we clarify the relation between these specialized binary Darboux transformations and the aforementioned solution-generating method. From (arbitrary size) matrix versions of the "Riemann equations" associated with an integrable equation, possessing a bidifferential calculus formulation, multi-soliton-type solutions of the latter can be generated. This includes "breaking" multi-soliton-type solutions of the self-dual Yang-Mills and the (2+1)-dimensional NLS equation, which are parametrized by solutions of Riemann equations.
NASA Astrophysics Data System (ADS)
Bučková, Z.; Pólvora, P.; Ehrhardt, M.; Günther, M.
2016-10-01
In this work we propose Alternating Direction Explicit (ADE) schemes for the two and three dimensional linear Black-Scholes pricing model. Our implemented methodology can be easily extended to higher dimensions. The main advantage of ADE schemes is that they are explicit and exhibit good stability properties. Results concerning the experimental order of convergence are included.
The Forced Hard Spring Equation
ERIC Educational Resources Information Center
Fay, Temple H.
2006-01-01
Through numerical investigations, various examples of the Duffing type forced spring equation with epsilon positive, are studied. Since [epsilon] is positive, all solutions to the associated homogeneous equation are periodic and the same is true with the forcing applied. The damped equation exhibits steady state trajectories with the interesting…
Successfully Transitioning to Linear Equations
ERIC Educational Resources Information Center
Colton, Connie; Smith, Wendy M.
2014-01-01
The Common Core State Standards for Mathematics (CCSSI 2010) asks students in as early as fourth grade to solve word problems using equations with variables. Equations studied at this level generate a single solution, such as the equation x + 10 = 25. For students in fifth grade, the Common Core standard for algebraic thinking expects them to…
Solving Nonlinear Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Vesselinov, Velimir V.
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. This greatly enhanced performance, but gains from additional data collection remained limited.
Weissmann, Gary S
2013-12-06
The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.
Hansen, Scott K.; Vesselinov, Velimir Valentinov
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. Furthermore, this greatly enhanced performance, but gains from additional data collection remained limited.
Bieda, Bogusław
2013-01-01
The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball® (CB), simulation program that helps analyze the uncertainties associated with Microsoft® Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection-dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Kraków, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design.
Incorporating Super-Diffusion due to Sub-Grid Heterogeneity to Capture Non-Fickian Transport.
Baeumer, Boris; Zhang, Yong; Schumer, Rina
2015-01-01
Numerical transport models based on the advection-dispersion equation (ADE) are built on the assumption that sub-grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super-diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub-grid super-diffusion in a multidimensional regional-scale transport model by using a recent mathematical model allowing super-diffusion along the flow direction given by the regional model. Here, the time randomizing procedure known as subordination is applied to flow field output from MODFLOW simulations. Numerical tests check the applicability of the novel method in mapping regional-scale super-diffusive transport conditioned on local properties of multidimensional heterogeneous media.
Generalized Klein-Kramers equations.
Fa, Kwok Sau
2012-12-21
A generalized Klein-Kramers equation for a particle interacting with an external field is proposed. The equation generalizes the fractional Klein-Kramers equation introduced by Barkai and Silbey [J. Phys. Chem. B 104, 3866 (2000)]. Besides, the generalized Klein-Kramers equation can also recover the integro-differential Klein-Kramers equation for continuous-time random walk; this means that it can describe the subdiffusive and superdiffusive regimes in the long-time limit. Moreover, analytic solutions for first two moments both in velocity and displacement (for force-free case) are obtained, and their dynamic behaviors are investigated.
ERIC Educational Resources Information Center
Powers, Sonya Jean
2010-01-01
When test forms are administered to examinee groups that differ in proficiency, equating procedures are used to disentangle group differences from form differences. This dissertation investigates the extent to which equating results are population invariant, the impact of group differences on equating results, the impact of group differences on…
On nonautonomous Dirac equation
Hovhannisyan, Gro; Liu Wen
2009-12-15
We construct the fundamental solution of time dependent linear ordinary Dirac system in terms of unknown phase functions. This construction gives approximate representation of solutions which is useful for the study of asymptotic behavior. Introducing analog of Rayleigh quotient for differential equations we generalize Hartman-Wintner asymptotic integration theorems with the error estimates for applications to the Dirac system. We also introduce the adiabatic invariants for the Dirac system, which are similar to the adiabatic invariant of Lorentz's pendulum. Using a small parameter method it is shown that the change in the adiabatic invariants approaches zero with the power speed as a small parameter approaches zero. As another application we calculate the transition probabilities for the Dirac system. We show that for the special choice of electromagnetic field, the only transition of an electron to the positron with the opposite spin orientation is possible.
NASA Astrophysics Data System (ADS)
Gomez, Humberto
2016-06-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.
NASA Astrophysics Data System (ADS)
Frimmer, Martin; Novotny, Lukas
2014-10-01
Coherent control of a quantum mechanical two-level system is at the heart of magnetic resonance imaging, quantum information processing, and quantum optics. Among the most prominent phenomena in quantum coherent control are Rabi oscillations, Ramsey fringes, and Hahn echoes. We demonstrate that these phenomena can be derived classically by use of a simple coupled-harmonic-oscillator model. The classical problem can be cast in a form that is formally equivalent to the quantum mechanical Bloch equations with the exception that the longitudinal and the transverse relaxation times (T1 and T2) are equal. The classical analysis is intuitive and well suited for familiarizing students with the basic concepts of quantum coherent control, while at the same time highlighting the fundamental differences between classical and quantum theories.
Cui, Wei; Lapointe, Marc; Gauvreau, Danny; Kalant, David; Cianflone, Katherine
2009-10-01
C5L2 is a recently identified receptor for C5a/C5adesArg, C3a and C3adesArg (ASP). C5a/C5adesArg bind with high affinity, with no identified activation. By contrast, some studies demonstrate C3a/ASP binding/activation to C5L2; others do not. Our aim is to critically evaluate ASP/C3adesArg-C5L2 binding and bioactivity. Cell-associated fluorescent-ASP (Fl-ASP) binding to C5L2 increased from transiently transfected
Solitary Wave Solutions of KP equation, Cylindrical KP Equation and Spherical KP Equation
NASA Astrophysics Data System (ADS)
Li, Xiang-Zheng; Zhang, Jin-Liang; Wang, Ming-Liang
2017-02-01
Three (2+1)-dimensional equations–KP equation, cylindrical KP equation and spherical KP equation, have been reduced to the same KdV equation by different transformation of variables respectively. Since the single solitary wave solution and 2-solitary wave solution of the KdV equation have been known already, substituting the solutions of the KdV equation into the corresponding transformation of variables respectively, the single and 2-solitary wave solutions of the three (2+1)-dimensional equations can be obtained successfully. Supported by the National Natural Science Foundation of China under Grant No. 11301153 and the Doctoral Foundation of Henan University of Science and Technology under Grant No. 09001562, and the Science and Technology Innovation Platform of Henan University of Science and Technology under Grant No. 2015XPT001
Mode decomposition evolution equations
Wang, Yang; Wei, Guo-Wei; Yang, Siyang
2011-01-01
Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be
Menikoff, Ralph
2015-12-15
The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ≥ 0, T ≥ 0, and the isothermal bulk modulus is positive. Typically, this limits the low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.
NASA Astrophysics Data System (ADS)
Sivron, Ran
2006-12-01
With the introduction of "Ranking Tests" some quantitative ideas were added to a large body of successful techniques for teaching conceptual astronomy. We incorporated those methods into our classes, and added a new ingredient: On a biweekly basis we included a quantitative excercise: Students working in groups of 2-3 draw geometrical figures, say: a circle, and use some trivial geometry equations, such as circumference = 2 x pi x r, in solving astronomy problems on 3'x4' white boards. A few examples included: Finding the distance to the moon with the Aristarchus method, finding the Solar Constant with the inverse square law, etc. Our methodolgy was similar to problem solving techniques in introductory physics. We were therefore worried that the students may be intimidated. To our surprize, not only did most students succeed in solving the problems, but they were not intimidated at all (that is: after the first class...) As a matter of fact, their test results improved, and the students interviewed expressed great enthusiasm for the new method. Warning: Our classes were relatively small <40 studets). For larger classes TA help is needed.
A note on "Kepler's equation".
NASA Astrophysics Data System (ADS)
Dutka, J.
1997-07-01
This note briefly points out the formal similarity between Kepler's equation and equations developed in Hindu and Islamic astronomy for describing the lunar parallax. Specifically, an iterative method for calculating the lunar parallax has been developed by the astronomer Habash al-Hasib al-Marwazi (about 850 A.D., Turkestan), which is surprisingly similar to the iterative method for solving Kepler's equation invented by Leonhard Euler (1707 - 1783).
Electronic representation of wave equation
NASA Astrophysics Data System (ADS)
Veigend, Petr; Kunovský, Jiří; Kocina, Filip; Nečasová, Gabriela; Šátek, Václav; Valenta, Václav
2016-06-01
The Taylor series method for solving differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used algorithms for numerically solving differential equations. This paper deals with solution of Telegraph equation using modelling of a series small pieces of the wire. Corresponding differential equations are solved by the Modern Taylor Series Method.
Delay equations and radiation damping
NASA Astrophysics Data System (ADS)
Chicone, C.; Kopeikin, S. M.; Mashhoon, B.; Retzloff, D. G.
2001-06-01
Starting from delay equations that model field retardation effects, we study the origin of runaway modes that appear in the solutions of the classical equations of motion involving the radiation reaction force. When retardation effects are small, we argue that the physically significant solutions belong to the so-called slow manifold of the system and we identify this invariant manifold with the attractor in the state space of the delay equation. We demonstrate via an example that when retardation effects are no longer small, the motion could exhibit bifurcation phenomena that are not contained in the local equations of motion.
Jia, Wei; Li, Caiyun; Zhang, Haiyun; Li, Gang; Liu, Xiaoming; Wei, Jun
2015-08-21
The objective of this study was to explore the molecular epidemiology and the genetic support of clinical multidrug resistant (MDR) Acinetobacter baumannii (A. baumannii) isolates in an ICU ward of a comprehensive hospital. A total of 102 non-duplicate drug-resistant A. baumannii isolates were identified and 93 (91.1%) of them were MDR strains. Molecular analysis demonstrated that carbapenemase genes blaOXA-23 and blaOXA-51 were presented in all 93 MDR isolates (100%), but other carbapenemase genes, including blaOXA-24, blaOXA-58, blaIMP-1, blaIMP-4, blaSIM, and blaVIM genes were completely absent in all isolates. In addition, genes of AdeABC efflux system were detected in 88.2% (90/102) isolates. Interestingly, an addition to efflux pump inhibitor, reserpine could significantly enhance the susceptibility of MDR isolates to moxifloxacin, cefotaxime, and imipenem (p < 0.01). Clonal relationship analysis further grouped these clinical drug-resistant isolates into nine clusters, and the MDR strains were mainly in clusters A, B, C, and D, which include 16, 13, 25, and 15 isolates, respectively. This study demonstrated that clinical isolates carrying carbapenemase-encoding genes blaOXA-23 and AdeABC efflux pump genes are the main prevalent MDR A. baumannii, and the co-expression of oxacillinase and efflux pump proteins are thus considered to be the important reason for the prevalence of this organism in the ICU of this hospital.
Pardiñas, Antonio F; Roca, Agustín; García-Vazquez, Eva; López, Belén
2014-04-01
Genetic structural patterns of human populations are usually a combination of long-term evolutionary forces and short-term social, cultural, and demographic processes. Recently, using mitochondrial DNA and Y-chromosome loci, various studies in northern Spain have found evidence that the geographical distribution of Iron Age tribal peoples might have influenced current patterns of genetic structuring in several autochthonous populations. Using the wealth of data that are currently available from the whole territory of the Iberian Peninsula, we have evaluated its genetic structuring in the spatial scale of the Atlantic façade. Hierarchical tree modeling procedures, combined with a classic analysis of molecular variance (AMOVA), were used to model known sociocultural divisions from the third century BCE to the eighth century CE, contrasting them with uniparental marker data. Our results show that, while mountainous and abrupt areas of the Iberian North bear the signals of long-term isolation in their maternal and paternal gene pools, the makeup of the Atlantic façade as a whole can be related to tribal population groups that predate the Roman conquest of the Peninsula. The maintenance through time of such a structure can be related to the numerous geographic barriers of the Iberian mainland, which have historically conditioned its settlement patterns and the occurrence of genetic drift processes.
Complete solution of Boolean equations
NASA Technical Reports Server (NTRS)
Tapia, M. A.; Tucker, J. H.
1980-01-01
A method is presented for generating a single formula involving arbitary Boolean parameters, which includes in it each and every possible solution of a system of Boolean equations. An alternate condition equivalent to a known necessary and sufficient condition for solving a system of Boolean equations is given.
Uncertainty of empirical correlation equations
NASA Astrophysics Data System (ADS)
Feistel, R.; Lovell-Smith, J. W.; Saunders, P.; Seitz, S.
2016-08-01
The International Association for the Properties of Water and Steam (IAPWS) has published a set of empirical reference equations of state, forming the basis of the 2010 Thermodynamic Equation of Seawater (TEOS-10), from which all thermodynamic properties of seawater, ice, and humid air can be derived in a thermodynamically consistent manner. For each of the equations of state, the parameters have been found by simultaneously fitting equations for a range of different derived quantities using large sets of measurements of these quantities. In some cases, uncertainties in these fitted equations have been assigned based on the uncertainties of the measurement results. However, because uncertainties in the parameter values have not been determined, it is not possible to estimate the uncertainty in many of the useful quantities that can be calculated using the parameters. In this paper we demonstrate how the method of generalised least squares (GLS), in which the covariance of the input data is propagated into the values calculated by the fitted equation, and in particular into the covariance matrix of the fitted parameters, can be applied to one of the TEOS-10 equations of state, namely IAPWS-95 for fluid pure water. Using the calculated parameter covariance matrix, we provide some preliminary estimates of the uncertainties in derived quantities, namely the second and third virial coefficients for water. We recommend further investigation of the GLS method for use as a standard method for calculating and propagating the uncertainties of values computed from empirical equations.
Graphical Solution of Polynomial Equations
ERIC Educational Resources Information Center
Grishin, Anatole
2009-01-01
Graphing utilities, such as the ubiquitous graphing calculator, are often used in finding the approximate real roots of polynomial equations. In this paper the author offers a simple graphing technique that allows one to find all solutions of a polynomial equation (1) of arbitrary degree; (2) with real or complex coefficients; and (3) possessing…
The report describes a program for computing equation of state parameters for a material which undergoes a phase transition, either rate-dependent or...obtaining explicit temperature dependence if measurements are made at three temperatures. It is applied to data from calcite. Finally a theoretical equation of state is described for solid iron. (Author)
Homotopy Solutions of Kepler's Equations
NASA Technical Reports Server (NTRS)
Fitz-Coy, Norman; Jang, Jiann-Woei
1996-01-01
Kepler's Equation is solved using an integrative algorithm developed using homotropy theory. The solution approach is applicable to both elliptic and hyperbolic forms of Kepler's Equation. The results from the proposed algorithm compare quite favorably with those from existing iterative schemes.
Drug Levels and Difference Equations
ERIC Educational Resources Information Center
Acker, Kathleen A.
2004-01-01
American university offers a course in finite mathematics whose focus is difference equation with emphasis on real world applications. The conclusion states that students learned to look for growth and decay patterns in raw data, to recognize both arithmetic and geometric growth, and to model both scenarios with graphs and difference equations.
Students' Understanding of Quadratic Equations
ERIC Educational Resources Information Center
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-01-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…
How Students Understand Physics Equations.
ERIC Educational Resources Information Center
Sherin, Bruce L.
2001-01-01
Analyzed a corpus of videotapes in which university students solved physics problems to determine how students learn to understand a physics equation. Found that students learn to understand physics equations in terms of a vocabulary of elements called symbolic forms, each associating a simple conceptual schema with a pattern of symbols. Findings…
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
The Bessel Equation and Dissipation
NASA Astrophysics Data System (ADS)
Alfinito, Eleonora; Vitiello, Giuseppe
The Bessel equation can be cast, by means of suitable transformations, into a system of two damped/amplified parametric oscillator equations. The role of group contraction and the breakdown of loop-antiloop symmetry is discussed. The relation between the Virasoro algebra and the Euclidean algebras e(2) and e(3) is also presented.
The Equations of Oceanic Motions
NASA Astrophysics Data System (ADS)
Müller, Peter
2006-10-01
Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.
Upper bounds for parabolic equations and the Landau equation
NASA Astrophysics Data System (ADS)
Silvestre, Luis
2017-02-01
We consider a parabolic equation in nondivergence form, defined in the full space [ 0 , ∞) ×Rd, with a power nonlinearity as the right-hand side. We obtain an upper bound for the solution in terms of a weighted control in Lp. This upper bound is applied to the homogeneous Landau equation with moderately soft potentials. We obtain an estimate in L∞ (Rd) for the solution of the Landau equation, for positive time, which depends only on the mass, energy and entropy of the initial data.
Higher derivative gravity: Field equation as the equation of state
NASA Astrophysics Data System (ADS)
Dey, Ramit; Liberati, Stefano; Mohd, Arif
2016-08-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
Langevin equations from time series.
Racca, E; Porporato, A
2005-02-01
We discuss the link between the approach to obtain the drift and diffusion of one-dimensional Langevin equations from time series, and Pope and Ching's relationship for stationary signals. The two approaches are based on different interpretations of conditional averages of the time derivatives of the time series at given levels. The analysis provides a useful indication for the correct application of Pope and Ching's relationship to obtain stochastic differential equations from time series and shows its validity, in a generalized sense, for nondifferentiable processes originating from Langevin equations.
Accuracy of perturbative master equations.
Fleming, C H; Cummings, N I
2011-03-01
We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations. We show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.
On systems of Boolean equations
NASA Astrophysics Data System (ADS)
Leont'ev, V. K.; Tonoyan, G. P.
2013-05-01
Systems of Boolean equations are considered. The order of maximal consistent subsystems is estimated in the general and "typical" (in a probability sense) cases. Applications for several well-known discrete problems are given.
Comment on "Quantum Raychaudhuri equation"
NASA Astrophysics Data System (ADS)
Lashin, E. I.; Dou, Djamel
2017-03-01
We address the validity of the formalism and results presented in S. Das, Phys. Rev. D 89, 084068 (2014), 10.1103/PhysRevD.89.084068 with regard to the quantum Raychaudhuri equation. The author obtained the so-called quantum Raychaudhuri equation by replacing classical geodesics with quantal trajectories arising from Bhommian mechanics. The resulting modified equation was used to draw some conclusions about the inevitability of focusing and the formation of conjugate points and therefore singularity. We show that the whole procedure is full of problematic points, on both physical relevancy and mathematical correctness. In particular, we illustrate the problems associated with the technical derivation of the so-called quantum Raychaudhuri equation, as well as its invalid physical implications.
Taxis equations for amoeboid cells.
Erban, Radek; Othmer, Hans G
2007-06-01
The classical macroscopic chemotaxis equations have previously been derived from an individual-based description of the tactic response of cells that use a "run-and-tumble" strategy in response to environmental cues [17,18]. Here we derive macroscopic equations for the more complex type of behavioral response characteristic of crawling cells, which detect a signal, extract directional information from a scalar concentration field, and change their motile behavior accordingly. We present several models of increasing complexity for which the derivation of population-level equations is possible, and we show how experimentally measured statistics can be obtained from the transport equation formalism. We also show that amoeboid cells that do not adapt to constant signals can still aggregate in steady gradients, but not in response to periodic waves. This is in contrast to the case of cells that use a "run-and-tumble" strategy, where adaptation is essential.
Parametric Equations, Maple, and Tubeplots.
ERIC Educational Resources Information Center
Feicht, Louis
1997-01-01
Presents an activity that establishes a graphical foundation for parametric equations by using a graphing output form called tubeplots from the computer program Maple. Provides a comprehensive review and exploration of many previously learned topics. (ASK)
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1987-01-01
The Boussinesq approximation is extended so as to explicitly account for the transfer of fluid energy through viscous action into thermal energy. Ideal and dissipative integral invariants are discussed, in addition to the general equations for thermal-fluid motion.
Friedmann equation with quantum potential
Siong, Ch'ng Han; Radiman, Shahidan; Nikouravan, Bijan
2013-11-27
Friedmann equations are used to describe the evolution of the universe. Solving Friedmann equations for the scale factor indicates that the universe starts from an initial singularity where all the physical laws break down. However, the Friedmann equations are well describing the late-time or large scale universe. Hence now, many physicists try to find an alternative theory to avoid this initial singularity. In this paper, we generate a version of first Friedmann equation which is added with an additional term. This additional term contains the quantum potential energy which is believed to play an important role at small scale. However, it will gradually become negligible when the universe evolves to large scale.
Derivation of the Simon equation
NASA Astrophysics Data System (ADS)
Fedorov, P. P.
2016-09-01
The form of the empirical Simon equation describing the dependence of the phase-transition temperature on pressure is shown to be asymptotically strict when the system tends to absolute zero of temperature, and then only for crystalline phases.
Hidden Statistics of Schroedinger Equation
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.
Program solves line flow equation
McCaslin, K.P.
1981-01-19
A program written for the TI-59 programmable calculator solves the Panhandle Eastern A equation - an industry-accepted equation for calculating pressure losses in high-pressure gas-transmission pipelines. The input variables include the specific gravity of the gas, the flowing temperature, the pipeline efficiency, the base temperature and pressure, the inlet pressure, the pipeline's length and inside diameter, and the flow rate (SCF/day); the program solves for the discharge pressure.
Wave equations for pulse propagation
Shore, B.W.
1987-06-24
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.
An Exact Mapping from Navier-Stokes Equation to Schr"odinger Equation via Riccati Equation
NASA Astrophysics Data System (ADS)
Christianto, Vic; Smarandache, Florentin
2010-03-01
In the present article we argue that it is possible to write down Schr"odinger representation of Navier-Stokes equation via Riccati equation. The proposed approach, while differs appreciably from other method such as what is proposed by R. M. Kiehn, has an advantage, i.e. it enables us extend further to quaternionic and biquaternionic version of Navier-Stokes equation, for instance via Kravchenko's and Gibbon's route. Further observation is of course recommended in order to refute or verify this proposition.
Technology Transfer Automated Retrieval System (TEKTRAN)
Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of t...
A KINETIC MODEL FOR CELL DENSITY DEPENDENT BACTERIAL TRANSPORT IN POROUS MEDIA
A kinetic transport model with the ability to account for variations in cell density of the aqueous and solid phases was developed for bacteria in porous media. Sorption kinetics in the advective-dispersive-sorptive equation was described by assuming that adsorption was proportio...
Turbulent fluid motion 3: Basic continuum equations
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1991-01-01
A derivation of the continuum equations used for the analysis of turbulence is given. These equations include the continuity equation, the Navier-Stokes equations, and the heat transfer or energy equation. An experimental justification for using a continuum approach for the study of turbulence is given.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
Linear determining equations for differential constraints
Kaptsov, O V
1998-12-31
A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed.
Solving Parker's transport equation with stochastic differential equations on GPUs
NASA Astrophysics Data System (ADS)
Dunzlaff, P.; Strauss, R. D.; Potgieter, M. S.
2015-07-01
The numerical solution of transport equations for energetic charged particles in space is generally very costly in terms of time. Besides the use of multi-core CPUs and computer clusters in order to decrease the computation times, high performance calculations on graphics processing units (GPUs) have become available during the last years. In this work we introduce and describe a GPU-accelerated implementation of Parker's equation using Stochastic Differential Equations (SDEs) for the simulation of the transport of energetic charged particles with the CUDA toolkit, which is the focus of this work. We briefly discuss the set of SDEs arising from Parker's transport equation and their application to boundary value problems such as that of the Jovian magnetosphere. We compare the runtimes of the GPU code with a CPU version of the same algorithm. Compared to the CPU implementation (using OpenMP and eight threads) we find a performance increase of about a factor of 10-60, depending on the assumed set of parameters. Furthermore, we benchmark our simulation using the results of an existing SDE implementation of Parker's transport equation.
Savari, Mohammad; Ekrami, Alireza; Shoja, Saeed; Bahador, Abbas
2017-03-01
Here we studied the prevalence and mechanisms of simultaneous resistance to carbapenem and tigecycline and accumulation of resistance determinants reservoirs in genome of Acinetobacter baumannii (A. baumannii) clinical isolates. Susceptibility of the isolates were measured to 18 antimicrobial agents. Genetic diversity of the microbial population was determined using the International Clonal lineage typing (IC typing), multiple locus VNTR analysis (MLVA) and plasmid profiling methods. To detect the AbaRs, Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) genes, AdeABC efflux pump genes and resistance determinants, PCR was used. Filter mating experiments were used to prove that if carbapenem resistance genes are located on conjugative plasmids or not. Among the A. baumannii clinical isolates, 40.8% were carbapenem-tigecycline resistant and in this population, 46.9% were belonging to IC I, IC II or IC III and 53.1% were IC variants. These isolates had fallen in 40 MLVA types and were harboring plasmids in multiple numbers and sizes. In this study, blaOXA-23-like was the most prevalent CHDL and conjugation analysis proved that the carbapenem resistance genes are located on conjugative plasmids. All efflux pump genes, except for adeC, were detected in all carbapenem-tigecycline resistant A. baumannii (CTRAb) isolates. Resistance determinants were distributed in both TnAbaRs and R plasmids with a shift toward the R plasmids. Emerging of carbapenem resistant A. baumannii (CRAB) with simultaneous resistance to the last line therapy including tigecycline represent emerging of extensively drug resistance (XDR) and pandrug resistance (PDR) phenotypes that would be a great threat to our public health system.
Cable equation for general geometry.
López-Sánchez, Erick J; Romero, Juan M
2017-02-01
The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.
Cable equation for general geometry
NASA Astrophysics Data System (ADS)
López-Sánchez, Erick J.; Romero, Juan M.
2017-02-01
The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.
Fredholm's equations for subwavelength focusing
NASA Astrophysics Data System (ADS)
Velázquez-Arcos, J. M.
2012-10-01
Subwavelength focusing (SF) is a very useful tool that can be carried out with the use of left hand materials for optics that involve the range of the microwaves. Many recent works have described a successful alternative procedure using time reversal methods. The advantage is that we do not need devices which require the complicated manufacture of left-hand materials; nevertheless, the theoretical mathematical bases are far from complete because before now we lacked an adequate easy-to-apply frame. In this work we give, for a broad class of discrete systems, a solid support for the theory of electromagnetic SF that can be applied to communications and nanotechnology. The very central procedure is the development of vector-matrix formalism (VMF) based on exploiting both the inhomogeneous and homogeneous Fredholm's integral equations in cases where the last two kinds of integral equations are applied to some selected discrete systems. To this end, we first establish a generalized Newmann series for the Fourier transform of the Green's function in the inhomogeneous Fredholm's equation of the problem. Then we go from an integral operator equation to a vector-matrix algebraic one. In this way we explore the inhomogeneous case and later on also the very interesting one about the homogeneous equation. Thus, on the one hand we can relate in a simple manner the arriving electromagnetic signals with those at their sources and we can use them to perform a SF. On the other hand, we analyze the homogeneous version of the equations, finding resonant solutions that have analogous properties to their counterparts in quantum mechanical scattering, that can be used in a proposed very powerful way in communications. Also we recover quantum mechanical operator relations that are identical for classical electromagnetics. Finally, we prove two theorems that formalize the relation between the theory of Fredholm's integral equations and the VMF we present here.
Equation of State of Simple Metals.
1982-05-10
This is the final report of A. L. Ruoff and N. W. Ashcroft on Equation of State of Simple Metals. It includes experimental equation of state results for potassium and theoretical calculations of its equation of state . (Author)
How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation
ERIC Educational Resources Information Center
Heras, Jose A.
2009-01-01
The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.
An Equation of State for Fluid Ethylene.
an equation of state , vapor pressure equation, and equation for the ideal gas heat capacity. The coefficients were determined by a least squares fit...of selected experimental data. Comparisons of property values calculated using the equation of state with measured values are given. The equation of state is...vapor phases for temperatures from the freezing line of 450 K with pressures to 40 MPa are presented. The equation of state and its derivative and
Spectral Models Based on Boussinesq Equations
2006-10-03
equations assume periodic solutions apriori. This, however, also forces the question of which extended Boussinesq model to use. Various one- equation ... equations of Nwogu (1993), without the traditional reduction to a one- equation model. Optimal numerical techniques to solve this system of equations are...A. and Madsen, P. A. (2004). "Boussinesq evolution equations : numerical efficiency, breaking and amplitude dispersion," Coastal Engineering, 51, 1117
NASA Astrophysics Data System (ADS)
Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.
2013-07-01
The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.
Integration rules for scattering equations
NASA Astrophysics Data System (ADS)
Baadsgaard, Christian; Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.
2015-09-01
As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints fo any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.
Students' understanding of quadratic equations
NASA Astrophysics Data System (ADS)
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-05-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.
Special solutions to Chazy equation
NASA Astrophysics Data System (ADS)
Varin, V. P.
2017-02-01
We consider the classical Chazy equation, which is known to be integrable in hypergeometric functions. But this solution has remained purely existential and was never used numerically. We give explicit formulas for hypergeometric solutions in terms of initial data. A special solution was found in the upper half plane H with the same tessellation of H as that of the modular group. This allowed us to derive some new identities for the Eisenstein series. We constructed a special solution in the unit disk and gave an explicit description of singularities on its natural boundary. A global solution to Chazy equation in elliptic and theta functions was found that allows parametrization of an arbitrary solution to Chazy equation. The results have applications to analytic number theory.
Numerical optimization using flow equations.
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
The room acoustic rendering equation.
Siltanen, Samuel; Lokki, Tapio; Kiminki, Sami; Savioja, Lauri
2007-09-01
An integral equation generalizing a variety of known geometrical room acoustics modeling algorithms is presented. The formulation of the room acoustic rendering equation is adopted from computer graphics. Based on the room acoustic rendering equation, an acoustic radiance transfer method, which can handle both diffuse and nondiffuse reflections, is derived. In a case study, the method is used to predict several acoustic parameters of a room model. The results are compared to measured data of the actual room and to the results given by other acoustics prediction software. It is concluded that the method can predict most acoustic parameters reliably and provides results as accurate as current commercial room acoustic prediction software. Although the presented acoustic radiance transfer method relies on geometrical acoustics, it can be extended to model diffraction and transmission through materials in future.
Numerical optimization using flow equations
NASA Astrophysics Data System (ADS)
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
Explicit integration of Friedmann's equation with nonlinear equations of state
Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong E-mail: gwg1@damtp.cam.ac.uk
2015-05-01
In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.
Transport Equations In Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Callen, J. D.
2009-11-01
Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for: neoclassical effects on the parallel Ohm's law (trapped particle effects on resistivity, bootstrap current); fluctuation-induced transport; heating, current-drive and flow sources and sinks; small B field non-axisymmetries; magnetic field transients etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed recently using a kinetic-based framework. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales (and constraints they impose) are considered sequentially: compressional Alfv'en waves (Grad-Shafranov equilibrium, ion radial force balance); sound waves (pressure constant along field lines, incompressible flows within a flux surface); and ion collisions (damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on the plasma fluid: 7 ambipolar collision-based ones (classical, neoclassical, etc.) and 8 non-ambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients etc.). The plasma toroidal rotation equation [1] results from setting to zero the net radial current induced by the non-ambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the non-ambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The resultant transport equations will be presented and contrasted with the usual ones. [4pt] [1] J.D. Callen, A.J. Cole, C.C. Hegna, ``Toroidal Rotation In
Transport equations in tokamak plasmas
Callen, J. D.; Hegna, C. C.; Cole, A. J.
2010-05-15
Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfven waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The 'mean field' effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The
Young's Equation at the Nanoscale
NASA Astrophysics Data System (ADS)
Seveno, David; Blake, Terence D.; De Coninck, Joël
2013-08-01
In 1805, Thomas Young was the first to propose an equation to predict the value of the equilibrium contact angle of a liquid on a solid. Today, the force exerted by a liquid on a solid, such as a flat plate or fiber, is routinely used to assess this angle. Moreover, it has recently become possible to study wetting at the nanoscale using an atomic force microscope. Here, we report the use of molecular-dynamics simulations to investigate the force distribution along a 15 nm fiber dipped into a liquid meniscus. We find very good agreement between the measured force and that predicted by Young’s equation.
Investigation of the kinetic model equations.
Liu, Sha; Zhong, Chengwen
2014-03-01
Currently the Boltzmann equation and its model equations are widely used in numerical predictions for dilute gas flows. The nonlinear integro-differential Boltzmann equation is the fundamental equation in the kinetic theory of dilute monatomic gases. By replacing the nonlinear fivefold collision integral term by a nonlinear relaxation term, its model equations such as the famous Bhatnagar-Gross-Krook (BGK) equation are mathematically simple. Since the computational cost of solving model equations is much less than that of solving the full Boltzmann equation, the model equations are widely used in predicting rarefied flows, multiphase flows, chemical flows, and turbulent flows although their predictions are only qualitatively right for highly nonequilibrium flows in transitional regime. In this paper the differences between the Boltzmann equation and its model equations are investigated aiming at giving guidelines for the further development of kinetic models. By comparing the Boltzmann equation and its model equations using test cases with different nonequilibrium types, two factors (the information held by nonequilibrium moments and the different relaxation rates of high- and low-speed molecules) are found useful for adjusting the behaviors of modeled collision terms in kinetic regime. The usefulness of these two factors are confirmed by a generalized model collision term derived from a mathematical relation between the Boltzmann equation and BGK equation that is also derived in this paper. After the analysis of the difference between the Boltzmann equation and the BGK equation, an attempt at approximating the collision term is proposed.
The Forced Soft Spring Equation
ERIC Educational Resources Information Center
Fay, T. H.
2006-01-01
Through numerical investigations, this paper studies examples of the forced Duffing type spring equation with [epsilon] negative. By performing trial-and-error numerical experiments, the existence is demonstrated of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions. Subharmonic boundaries are…
Sonar equations for planetary exploration.
Ainslie, Michael A; Leighton, Timothy G
2016-08-01
The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.
The Symbolism Of Chemical Equations
ERIC Educational Resources Information Center
Jensen, William B.
2005-01-01
A question about the historical origin of equal sign and double arrow symbolism in balanced chemical equation is raised. The study shows that Marshall proposed the symbolism in 1902, which includes the use of currently favored double barb for equilibrium reactions.
Renaissance Learning Equating Study. Report
ERIC Educational Resources Information Center
Sewell, Julie; Sainsbury, Marian; Pyle, Katie; Keogh, Nikki; Styles, Ben
2007-01-01
An equating study was carried out in autumn 2006 by the National Foundation for Educational Research (NFER) on behalf of Renaissance Learning, to provide validation evidence for the use of the Renaissance Star Reading and Star Mathematics tests in English schools. The study investigated the correlation between the Star tests and established tests.…
Wave-equation dispersion inversion
NASA Astrophysics Data System (ADS)
Li, Jing; Feng, Zongcai; Schuster, Gerard
2017-03-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Optimized solution of Kepler's equation
NASA Technical Reports Server (NTRS)
Kohout, J. M.; Layton, L.
1972-01-01
A detailed description is presented of KEPLER, an IBM 360 computer program used for the solution of Kepler's equation for eccentric anomaly. The program KEPLER employs a second-order Newton-Raphson differential correction process, and it is faster than previously developed programs by an order of magnitude.
Blink, J.A.
1983-09-01
In 1977, Dave Young published an equation-of-state (EOS) for lithium. This EOS was used by Lew Glenn in his AFTON calculations of the HYLIFE inertial-fusion-reactor hydrodynamics. In this paper, I summarize Young's development of the EOS and demonstrate a computer program (MATHSY) that plots isotherms, isentropes and constant energy lines on a P-V diagram.
The solution of transcendental equations
NASA Technical Reports Server (NTRS)
Agrawal, K. M.; Outlaw, R.
1973-01-01
Some of the existing methods to globally approximate the roots of transcendental equations namely, Graeffe's method, are studied. Summation of the reciprocated roots, Whittaker-Bernoulli method, and the extension of Bernoulli's method via Koenig's theorem are presented. The Aitken's delta squared process is used to accelerate the convergence. Finally, the suitability of these methods is discussed in various cases.
Empirical equation estimates geothermal gradients
Kutasov, I.M. )
1995-01-02
An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.
Pendulum Motion and Differential Equations
ERIC Educational Resources Information Center
Reid, Thomas F.; King, Stephen C.
2009-01-01
A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…
Statistical Equating of Direct Writing Assessment.
ERIC Educational Resources Information Center
Phillips, Gary W.
This paper provides empirical data on two approaches to statistically equate scores derived from the direct assessment of writing. These methods are linear equating and equating based on the general polychotomous form of the Rasch model. Data from the Maryland Functional Writing Test are used to equate scores obtained from two prompts given in…
The Complexity of One-Step Equations
ERIC Educational Resources Information Center
Ngu, Bing
2014-01-01
An analysis of one-step equations from a cognitive load theory perspective uncovers variation within one-step equations. The complexity of one-step equations arises from the element interactivity across the operational and relational lines. The higher the number of operational and relational lines, the greater the complexity of the equations.…
A Bayesian Nonparametric Approach to Test Equating
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2009-01-01
A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…
Relativistic equations with fractional and pseudodifferential operators
Babusci, D.; Dattoli, G.; Quattromini, M.
2011-06-15
In this paper we use different techniques from the fractional and pseudo-operators calculus to solve partial differential equations involving operators with noninteger exponents. We apply the method to equations resembling generalizations of the heat equations and discuss the possibility of extending the procedure to the relativistic Schroedinger and Dirac equations.
Simple Derivation of the Lindblad Equation
ERIC Educational Resources Information Center
Pearle, Philip
2012-01-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…
Interplays between Harper and Mathieu equations.
Papp, E; Micu, C
2001-11-01
This paper deals with the application of relationships between Harper and Mathieu equations to the derivation of energy formulas. Establishing suitable matching conditions, one proceeds by inserting a concrete solution to the Mathieu equation into the Harper equation. For this purpose, one resorts to the nonlinear oscillations characterizing the Mathieu equation. This leads to the derivation of two kinds of energy formulas working in terms of cubic and quadratic algebraic equations, respectively. Combining such results yields quadratic equations to the energy description of the Harper equation, incorporating all parameters needed.
Lattice Boltzmann equation method for the Cahn-Hilliard equation
NASA Astrophysics Data System (ADS)
Zheng, Lin; Zheng, Song; Zhai, Qinglan
2015-01-01
In this paper a lattice Boltzmann equation (LBE) method is designed that is different from the previous LBE for the Cahn-Hilliard equation (CHE). The starting point of the present CHE LBE model is from the kinetic theory and the work of Lee and Liu [T. Lee and L. Liu, J. Comput. Phys. 229, 8045 (2010), 10.1016/j.jcp.2010.07.007]; however, because the CHE does not conserve the mass locally, a modified equilibrium density distribution function is introduced to treat the diffusion term in the CHE. Numerical simulations including layered Poiseuille flow, static droplet, and Rayleigh-Taylor instability have been conducted to validate the model. The results show that the predictions of the present LBE agree well with the analytical solution and other numerical results.
Isothermal Equation Of State For Compressed Solids
NASA Technical Reports Server (NTRS)
Vinet, Pascal; Ferrante, John
1989-01-01
Same equation with three adjustable parameters applies to different materials. Improved equation of state describes pressure on solid as function of relative volume at constant temperature. Even though types of interatomic interactions differ from one substance to another, form of equation determined primarily by overlap of electron wave functions during compression. Consequently, equation universal in sense it applies to variety of substances, including ionic, metallic, covalent, and rare-gas solids. Only three parameters needed to describe equation for given material.
Applications of film thickness equations
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
A number of applications of elastohydrodynamic film thickness expressions were considered. The motion of a steel ball over steel surfaces presenting varying degrees of conformity was examined. The equation for minimum film thickness in elliptical conjunctions under elastohydrodynamic conditions was applied to roller and ball bearings. An involute gear was also introduced, it was again found that the elliptical conjunction expression yielded a conservative estimate of the minimum film thickness. Continuously variable-speed drives like the Perbury gear, which present truly elliptical elastohydrodynamic conjunctions, are favored increasingly in mobile and static machinery. A representative elastohydrodynamic condition for this class of machinery is considered for power transmission equipment. The possibility of elastohydrodynamic films of water or oil forming between locomotive wheels and rails is examined. The important subject of traction on the railways is attracting considerable attention in various countries at the present time. The final example of a synovial joint introduced the equation developed for isoviscous-elastic regimes of lubrication.
Implementing Parquet equations using HPX
NASA Astrophysics Data System (ADS)
Kellar, Samuel; Wagle, Bibek; Yang, Shuxiang; Tam, Ka-Ming; Kaiser, Hartmut; Moreno, Juana; Jarrell, Mark
A new C++ runtime system (HPX) enables simulations of complex systems to run more efficiently on parallel and heterogeneous systems. This increased efficiency allows for solutions to larger simulations of the parquet approximation for a system with impurities. The relevancy of the parquet equations depends upon the ability to solve systems which require long runs and large amounts of memory. These limitations, in addition to numerical complications arising from stability of the solutions, necessitate running on large distributed systems. As the computational resources trend towards the exascale and the limitations arising from computational resources vanish efficiency of large scale simulations becomes a focus. HPX facilitates efficient simulations through intelligent overlapping of computation and communication. Simulations such as the parquet equations which require the transfer of large amounts of data should benefit from HPX implementations. Supported by the the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
Systems of Inhomogeneous Linear Equations
NASA Astrophysics Data System (ADS)
Scherer, Philipp O. J.
Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.
A thermodynamic equation of jamming
NASA Astrophysics Data System (ADS)
Lu, Kevin; Pirouz Kavehpour, H.
2008-03-01
Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.
NASA Astrophysics Data System (ADS)
Yoon, Hongkyu; McKenna, Sean A.
2012-10-01
Assessing the impact of parameter estimation accuracy in models of heterogeneous, three-dimensional (3-D) groundwater systems is critical for predictions of solute transport. A unique experimental data set provides concentration breakthrough curves (BTCs) measured at a 0.253 cm3 scale over the 13 × 8 × 8 cm3 domain (˜53,000 measurement locations). Advective transport is used to match the first temporal moments of BTCs (or mean arrival times, m1) averaged at 0.253 and 1.0 cm3 scales through simultaneous inversion of highly parameterized heterogeneous hydraulic conductivity (K) and porosity (φ) fields. Pilot points parameterize the fields within eight layers of the 3-D medium, and estimations are completed with six different models of the K-φ relationship. Parameter estimation through advective transport shows accurate estimation of the observed m1 values. Results across the six different K-φ relationships have statistically similar fits to the observed m1 values and similar spatial estimates of m1 along the main flow direction. The resulting fields provide the basis for forward transport modeling of the advection-dispersion equation (ADE). Using the estimated K and φ fields demonstrates that advective transport coupled with inversion using dense spatial field parameterization provides an efficient surrogate for the ADE. These results indicate that there is not a single set of model parameters, or a single K-φ relationship, that leads to a best representation of the actual experimental sand packing pattern (i.e., nonuniqueness). Additionally, knowledge of the individual sand K and φ values along with their arrangement in the 3-D experiment does not reproduce the observed transport results at small scales. Small-scale variation in the packing and mixing of the sands causes large deviations from the expected transport results as highlighted in forward ADE simulations. Highly parameterized inverse estimation is able to identify those regions where variations in
Linear equations with random variables.
Tango, Toshiro
2005-10-30
A system of linear equations is presented where the unknowns are unobserved values of random variables. A maximum likelihood estimator assuming a multivariate normal distribution and a non-parametric proportional allotment estimator are proposed for the unobserved values of the random variables and for their means. Both estimators can be computed by simple iterative procedures and are shown to perform similarly. The methods are illustrated with data from a national nutrition survey in Japan.
Langevin Equation on Fractal Curves
NASA Astrophysics Data System (ADS)
Satin, Seema; Gangal, A. D.
2016-07-01
We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus.
Equation of State Project Overview
Crockett, Scott
2015-09-11
A general overview of the Equation of State (EOS) Project will be presented. The goal is to provide the audience with an introduction of what our more advanced methods entail (DFT, QMD, etc.. ) and how these models are being utilized to better constrain the thermodynamic models. These models substantially reduce our regions of interpolation between the various thermodynamic limits. I will also present a variety example of recent EOS work.
Geometric Implications of Maxwell's Equations
NASA Astrophysics Data System (ADS)
Smith, Felix T.
2015-03-01
Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.
NASA Technical Reports Server (NTRS)
Brown, James L.; Naughton, Jonathan W.
1999-01-01
A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.
The complex chemical Langevin equation
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2014-07-14
The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE’s main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE’s predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE’s accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the “complex CLE” predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.
Nonlocal Equations with Measure Data
NASA Astrophysics Data System (ADS)
Kuusi, Tuomo; Mingione, Giuseppe; Sire, Yannick
2015-08-01
We develop an existence, regularity and potential theory for nonlinear integrodifferential equations involving measure data. The nonlocal elliptic operators considered are possibly degenerate and cover the case of the fractional p-Laplacean operator with measurable coefficients. We introduce a natural function class where we solve the Dirichlet problem, and prove basic and optimal nonlinear Wolff potential estimates for solutions. These are the exact analogs of the results valid in the case of local quasilinear degenerate equations established by Boccardo and Gallouët (J Funct Anal 87:149-169, 1989, Partial Differ Equ 17:641-655, 1992) and Kilpeläinen and Malý (Ann Scuola Norm Sup Pisa Cl Sci (IV) 19:591-613, 1992, Acta Math 172:137-161, 1994). As a consequence, we establish a number of results that can be considered as basic building blocks for a nonlocal, nonlinear potential theory: fine properties of solutions, Calderón-Zygmund estimates, continuity and boundedness criteria are established via Wolff potentials. A main tool is the introduction of a global excess functional that allows us to prove a nonlocal analog of the classical theory due to Campanato (Ann Mat Pura Appl (IV) 69:321-381, 1965). Our results cover the case of linear nonlocal equations with measurable coefficients, and the one of the fractional Laplacean, and are new already in such cases.
ON THE GENERALISED FANT EQUATION
Howe, M. S.; McGowan, R. S.
2011-01-01
An analysis is made of the fluid-structure interactions involved in the production of voiced speech. It is usual to avoid time consuming numerical simulations of the aeroacoustics of the vocal tract and glottis by the introduction of Fant’s ‘reduced complexity’ equation for the glottis volume velocity Q (G. Fant, Acoustic Theory of Speech Production, Mouton, The Hague 1960). A systematic derivation is given of Fant’s equation based on the nominally exact equations of aerodynamic sound. This can be done with a degree of approximation that depends only on the accuracy with which the time-varying flow geometry and surface-acoustic boundary conditions can be specified, and replaces Fant’s original ‘lumped element’ heuristic approach. The method determines all of the effective ‘source terms’ governing Q. It is illustrated by consideration of a simplified model of the vocal system involving a self-sustaining single-mass model of the vocal folds, that uses free streamline theory to account for surface friction and flow separation within the glottis. Identification is made of a new source term associated with the unsteady vocal fold drag produced by their oscillatory motion transverse to the mean flow. PMID:21603054
The complex chemical Langevin equation.
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2014-07-14
The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE's main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE's predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE's accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the "complex CLE" predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.
NASA Astrophysics Data System (ADS)
Mollerup, Mikkel; Abrahamsen, Per; Petersen, Carsten T.; Hansen, Søren
2014-02-01
For large-scale hydrological modeling, the accuracy of the models used is a trade-off with the computational requirements. The models that perform well on the daily/meter scale may not perform well when applied at the yearly/kilometer scale. We compare two models of water flow and nitrate and bromide transport in a tile drained soil. The first model is based on a 2-D grid with an explicit drain node, here called the Dynamic Drainage Model (DDM). The second and less computationally expensive model is based on an 1-D vertical discretization where the horizontal flow is included as a sink term based on the Hooghoudt theory, here called the Hooghoudt Drainage Model (HDM). Both are based on Finite Volume Method solutions to Richard's equation and to the advection-dispersion equation (ADE), and embedded within the Daisy agroecological model, which includes the nitrogen cycle. The two models are run with 10 years of weather data and three different lower-boundary conditions. Losses of water, nitrogen, and bromide to both drain pipes and deep percolation/leaching are compared between the models, at daily and yearly time scales. In no case do we find the discrepancy large enough to warrant a rejection of the use of the faster HDM instead of DDM. For the daily time scale, we find in general a higher Nash-Sutcliffe efficiency coefficient for water (0.98-1.00) than for nitrate (0.97-1.00), and the lowest for bromide (0.95-1.00). The results are explained with a low concentration gradient along the water flow pathway toward the drain.
ADVANCED WAVE-EQUATION MIGRATION
L. HUANG; M. C. FEHLER
2000-12-01
Wave-equation migration methods can more accurately account for complex wave phenomena than ray-tracing-based Kirchhoff methods that are based on the high-frequency asymptotic approximation of waves. With steadily increasing speed of massively parallel computers, wave-equation migration methods are becoming more and more feasible and attractive for imaging complex 3D structures. We present an overview of several efficient and accurate wave-equation-based migration methods that we have recently developed. The methods are implemented in the frequency-space and frequency-wavenumber domains and hence they are called dual-domain methods. In the methods, we make use of different approximate solutions of the scalar-wave equation in heterogeneous media to recursively downward continue wavefields. The approximations used within each extrapolation interval include the Born, quasi-Born, and Rytov approximations. In one of our dual-domain methods, we use an optimized expansion of the square-root operator in the one-way wave equation to minimize the phase error for a given model. This leads to a globally optimized Fourier finite-difference method that is a hybrid split-step Fourier and finite-difference scheme. Migration examples demonstrate that our dual-domain migration methods provide more accurate images than those obtained using the split-step Fourier scheme. The Born-based, quasi-Born-based, and Rytov-based methods are suitable for imaging complex structures whose lateral variations are moderate, such as the Marmousi model. For this model, the computational cost of the Born-based method is almost the same as the split-step Fourier scheme, while other methods takes approximately 15-50% more computational time. The globally optimized Fourier finite-difference method significantly improves the accuracy of the split-step Fourier method for imaging structures having strong lateral velocity variations, such as the SEG/EAGE salt model, at an approximately 30% greater
ERIC Educational Resources Information Center
Savoye, Philippe
2009-01-01
In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.
[Dosing adjustment and renal function: Which equation(s)?].
Delanaye, Pierre; Flamant, Martin; Cavalier, Étienne; Guerber, Fabrice; Vallotton, Thomas; Moranne, Olivier; Pottel, Hans; Boffa, Jean-Jacques; Mariat, Christophe
2016-02-01
While the CKD-EPI (for Chronic Kidney Disease Epidemiology) equation is now implemented worldwide, utilization of the Cockcroft formula is still advocated by some physicians for drug dosage adjustment. Justifications for this recommendation are that the Cockcroft formula was preferentially used to determine dose adjustments according to renal function during the development of many drugs, better predicts drugs-related adverse events and decreases the risk of drug overexposure in the elderly. In this opinion paper, we discuss the weaknesses of the rationale supporting the Cockcroft formula and endorse the French HAS (Haute Autorité de santé) recommendation regarding the preferential use of the CKD-EPI equation. When glomerular filtration rate (GFR) is estimated in order to adjust drug dosage, the CKD-EPI value should be re-expressed for the individual body surface area (BSA). Given the difficulty to accurately estimate GFR in the elderly and in individuals with extra-normal BSA, we recommend to prescribe in priority monitorable drugs in those populations or to determine their "true" GFR using a direct measurement method.
ERIC Educational Resources Information Center
Chen, Haiwen; Holland, Paul
2010-01-01
In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…
Germanium multiphase equation of state
Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.
2014-05-07
A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
NASA Astrophysics Data System (ADS)
Makkonen, Lasse
2016-04-01
Young’s construction for a contact angle at a three-phase intersection forms the basis of all fields of science that involve wetting and capillary action. We find compelling evidence from recent experimental results on the deformation of a soft solid at the contact line, and displacement of an elastic wire immersed in a liquid, that Young’s equation can only be interpreted by surface energies, and not as a balance of surface tensions. It follows that the a priori variable in finding equilibrium is not the position of the contact line, but the contact angle. This finding provides the explanation for the pinning of a contact line.
Germanium multiphase equation of state
NASA Astrophysics Data System (ADS)
Crockett, S. D.; De Lorenzi-Venneri, G.; Kress, J. D.; Rudin, S. P.
2014-05-01
A new SESAME multiphase germanium equation of state (EOS) has been developed utilizing the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element.
Germanium Multiphase Equation of State
NASA Astrophysics Data System (ADS)
Crockett, Scott; Kress, Joel; Rudin, Sven; de Lorenzi-Venneri, Giulia
2013-06-01
A new SESAME multiphase Germanium equation of state (EOS) has been developed utilizing the best experimental data and theoretical calculations. The equilibrium EOS includes the GeI (diamond), GeII (beta-Sn) and liquid phases. We will also explore the meta-stable GeIII (tetragonal) phase of germanium. The theoretical calculations used in constraining the EOS are based on quantum molecular dynamics and density functional theory phonon calculations. We propose some physics rich experiments to better understand the dynamics of this element.
Advanced lab on Fresnel equations
NASA Astrophysics Data System (ADS)
Petrova-Mayor, Anna; Gimbal, Scott
2015-11-01
This experimental and theoretical exercise is designed to promote students' understanding of polarization and thin-film coatings for the practical case of a scanning protected-metal coated mirror. We present results obtained with a laboratory scanner and a polarimeter and propose an affordable and student-friendly experimental arrangement for the undergraduate laboratory. This experiment will allow students to apply basic knowledge of the polarization of light and thin-film coatings, develop hands-on skills with the use of phase retarders, apply the Fresnel equations for metallic coating with complex index of refraction, and compute the polarization state of the reflected light.
On third order integrable vector Hamiltonian equations
NASA Astrophysics Data System (ADS)
Meshkov, A. G.; Sokolov, V. V.
2017-03-01
A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.
Regional Screening Levels (RSLs) - Equations (May 2016)
Regional Screening Level RSL equations page provides quick access to the equations used in the Chemical Risk Assessment preliminary remediation goal PRG risk based concentration RBC and risk calculator for the assessment of human Health.
Symmetry algebras of linear differential equations
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Shirokov, I. V.
1992-07-01
The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group.
Wave equation on spherically symmetric Lorentzian metrics
Bokhari, Ashfaque H.; Al-Dweik, Ahmad Y.; Zaman, F. D.; Kara, A. H.; Karim, M.
2011-06-15
Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of {theta} and {phi} are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients.
Bilinear approach to the supersymmetric Gardner equation
NASA Astrophysics Data System (ADS)
Babalic, C. N.; Carstea, A. S.
2016-08-01
We study a supersymmetric version of the Gardner equation (both focusing and defocusing) using the superbilinear formalism. This equation is new and cannot be obtained from the supersymmetric modified Korteweg-de Vries equation with a nonzero boundary condition. We construct supersymmetric solitons and then by passing to the long-wave limit in the focusing case obtain rational nonsingular solutions. We also discuss the supersymmetric version of the defocusing equation and the dynamics of its solutions.
Systems of Nonlinear Hyperbolic Partial Differential Equations
1997-12-01
McKinney) Travelling wave solutions of the modified Korteweg - deVries -Burgers Equation . J. Differential Equations , 116 (1995), 448-467. 4. (with D.G...SUBTITLE Systems of Nonlinear Hyperbolic Partial Differential Equations 6. AUTHOR’S) Michael Shearer PERFORMING ORGANIZATION NAMES(S) AND...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) This project concerns properties of wave propagation in partial differential equations that are nonlinear
Are Maxwell's equations Lorentz-covariant?
NASA Astrophysics Data System (ADS)
Redžić, D. V.
2017-01-01
It is stated in many textbooks that Maxwell's equations are manifestly covariant when written down in tensorial form. We recall that tensorial form of Maxwell's equations does not secure their tensorial contents; they become covariant by postulating certain transformation properties of field functions. That fact should be stressed when teaching about the covariance of Maxwell's equations.
Shaped cassegrain reflector antenna. [design equations
NASA Technical Reports Server (NTRS)
Rao, B. L. J.
1973-01-01
Design equations are developed to compute the reflector surfaces required to produce uniform illumination on the main reflector of a cassegrain system when the feed pattern is specified. The final equations are somewhat simple and straightforward to solve (using a computer) compared to the ones which exist already in the literature. Step by step procedure for solving the design equations is discussed in detail.
Local Observed-Score Kernel Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.
2014-01-01
Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…
More Issues in Observed-Score Equating
ERIC Educational Resources Information Center
van der Linden, Wim J.
2013-01-01
This article is a response to the commentaries on the position paper on observed-score equating by van der Linden (this issue). The response focuses on the more general issues in these commentaries, such as the nature of the observed scores that are equated, the importance of test-theory assumptions in equating, the necessity to use multiple…
Students' Equation Understanding and Solving in Iran
ERIC Educational Resources Information Center
Barahmand, Ali; Shahvarani, Ahmad
2014-01-01
The purpose of the present article is to investigate how 15-year-old Iranian students interpret the concept of equation, its solution, and studying the relation between the students' equation understanding and solving. Data from two equation-solving exercises are reported. Data analysis shows that there is a significant relationship between…
On a Equation in Finite Algebraically Structures
ERIC Educational Resources Information Center
Valcan, Dumitru
2013-01-01
Solving equations in finite algebraically structures (semigroups with identity, groups, rings or fields) many times is not easy. Even the professionals can have trouble in such cases. Therefore, in this paper we proposed to solve in the various finite groups or fields, a binomial equation of the form (1). We specify that this equation has been…
Effectiveness of Analytic Smoothing in Equipercentile Equating.
ERIC Educational Resources Information Center
Kolen, Michael J.
1984-01-01
An analytic procedure for smoothing in equipercentile equating using cubic smoothing splines is described and illustrated. The effectiveness of the procedure is judged by comparing the results from smoothed equipercentile equating with those from other equating methods using multiple cross-validations for a variety of sample sizes. (Author/JKS)
Lattice Boltzmann solver of Rossler equation
NASA Astrophysics Data System (ADS)
Yan, Guangwu; Ruan, Li
2000-06-01
We proposed a lattice Boltzmann model for the Rossler equation. Using a method of multiscales in the lattice Boltzmann model, we get the diffusion reaction as a special case. If the diffusion effect disappeared, we can obtain the lattice Boltzmann solution of the Rossler equation on the mesescopic scale. The numerical results show the method can be used to simulate Rossler equation.
Symmetry Breaking for Black-Scholes Equations
NASA Astrophysics Data System (ADS)
Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng
2007-06-01
Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.
The Effect of Repeaters on Equating
ERIC Educational Resources Information Center
Kim, HeeKyoung; Kolen, Michael J.
2010-01-01
Test equating might be affected by including in the equating analyses examinees who have taken the test previously. This study evaluated the effect of including such repeaters on Medical College Admission Test (MCAT) equating using a population invariance approach. Three-parameter logistic (3-PL) item response theory (IRT) true score and…
Non-markovian boltzmann equation
Kremp, D.; Bonitz, M.; Kraeft, W.D.; Schlanges, M.
1997-08-01
A quantum kinetic equation for strongly interacting particles (generalized binary collision approximation, ladder or T-matrix approximation) is derived in the framework of the density operator technique. In contrast to conventional kinetic theory, which is valid on large time scales as compared to the collision (correlation) time only, our approach retains the full time dependencies, especially also on short time scales. This means retardation and memory effects resulting from the dynamics of binary correlations and initial correlations are included. Furthermore, the resulting kinetic equation conserves total energy (the sum of kinetic and potential energy). The second aspect of generalization is the inclusion of many-body effects, such as self-energy, i.e., renormalization of single-particle energies and damping. To this end we introduce an improved closure relation to the Bogolyubov{endash}Born{endash}Green{endash}Kirkwood{endash}Yvon hierarchy. Furthermore, in order to express the collision integrals in terms of familiar scattering quantities (Mo/ller operator, T-matrix), we generalize the methods of quantum scattering theory by the inclusion of medium effects. To illustrate the effects of memory and damping, the results of numerical simulations are presented. {copyright} 1997 Academic Press, Inc.
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
Spectrum Analysis of Some Kinetic Equations
NASA Astrophysics Data System (ADS)
Yang, Tong; Yu, Hongjun
2016-11-01
We analyze the spectrum structure of some kinetic equations qualitatively by using semigroup theory and linear operator perturbation theory. The models include the classical Boltzmann equation for hard potentials with or without angular cutoff and the Landau equation with {γ≥q-2}. As an application, we show that the solutions to these two fundamental equations are asymptotically equivalent (mod time decay rate {t^{-5/4}}) as {tto∞} to that of the compressible Navier-Stokes equations for initial data around an equilibrium state.
Lax integrable nonlinear partial difference equations
NASA Astrophysics Data System (ADS)
Sahadevan, R.; Nagavigneshwari, G.
2015-03-01
A systematic investigation to derive nonlinear lattice equations governed by partial difference equations admitting specific Lax representation is presented. Further whether or not the identified lattice equations possess other characteristics of integrability namely Consistency Around the Cube (CAC) property and linearizability through a global transformation is analyzed. Also it is presented that how to derive higher order ordinary difference equations or mappings from the obtained lattice equations through periodic reduction and investigated whether they are measure preserving or linearizable and admit sufficient number of integrals leading to their integrability.
Poynting-Robertson effect. II - Perturbation equations
NASA Astrophysics Data System (ADS)
Klacka, J.
1992-12-01
The paper addresses the problem of the complete set of perturbation equations of celestial mechanics as applied to the Poynting-Robertson effect. Differential equations and initial conditions for them are justified. The sudden beginning of the operation of the Poynting-Robertson effect (e.g., sudden release of dust particles from a comet) is taken into account. Two sets of differential equations and initial conditions for them are obtained. Both of them are completely equivalent to Newton's equation of motion. It is stressed that the transformation mu yields mu(1-beta) must be made in perturbation equations of celestial mechanics.
Sparse dynamics for partial differential equations
Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D.; Osher, Stanley
2013-01-01
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms. PMID:23533273
Bending equation for a quasianisotropic plate
NASA Astrophysics Data System (ADS)
Shachnev, V. A.
2010-10-01
In the framework of the linear theory of elasticity, an exact bending equation is obtained for the median plane of a plate whose material is a monoclinic system with the axis of symmetry perpendicular to the plate plane. As an example, the equation of the median plane of an isotropic plate is considered; the operator of this equation coincides with the operator of Sophie Germain's approximate equation. As the plate thickness tends to zero, the right-hand side of the equation is asymptotically equivalent to the right-hand side of the approximate equation. In addition, equations relating the median plane transverse stresses and the total stresses in the plate boundary planes to the median plane deflexions are obtained.
The Specific Analysis of Structural Equation Models.
McDonald, Roderick P
2004-10-01
Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory checks identifiability and lists and tests the implied constraints. This approach is complete for Markov models, but has remained incomplete for models with correlated disturbances. Some new algebraic results overcome the limitations of DAG theory and give a specific form of structural equation analysis that checks identifiability, tests the implied constraints, equation by equation, and gives consistent estimators of the parameters in closed form from the equations. At present the method is limited to recursive models subject to exclusion conditions. With further work, specific structural equation modeling may yield a complete alternative to the present, rather unsatisfactory, global covariance structure analysis.
A Comparison of the Kernel Equating Method with Traditional Equating Methods Using SAT[R] Data
ERIC Educational Resources Information Center
Liu, Jinghua; Low, Albert C.
2008-01-01
This study applied kernel equating (KE) in two scenarios: equating to a very similar population and equating to a very different population, referred to as a distant population, using SAT[R] data. The KE results were compared to the results obtained from analogous traditional equating methods in both scenarios. The results indicate that KE results…
ERIC Educational Resources Information Center
Moses, Tim
2013-01-01
The purpose of this study was to evaluate the use of adjoined and piecewise linear approximations (APLAs) of raw equipercentile equating functions as a postsmoothing equating method. APLAs are less familiar than other postsmoothing equating methods (i.e., cubic splines), but their use has been described in historical equating practices of…
Evolution equation for quantum coherence
Hu, Ming-Liang; Fan, Heng
2016-01-01
The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933
An equation for behavioral contrast.
Williams, B A; Wixted, J T
1986-01-01
Pigeons were trained on a three-component multiple schedule in which the rates of reinforcement in the various components were systematically varied. Response rates were described by an equation that posits that the response-strengthening effects of reinforcement are inversely related to the context of reinforcement in which it occurs, and that the context is calculated as the weighted average of the various sources of reinforcement in the situation. The quality of fits was comparable to that found with previous quantitative analyses of concurrent schedules, especially for relative response rates, with over 90% of the variance accounted for in every case. As with previous research, reinforcements in the component that was to follow received greater weights in determining the context than did reinforcements in the preceding component. PMID:3950534
Entropic corrections to Friedmann equations
Sheykhi, Ahmad
2010-05-15
Recently, Verlinde discussed that gravity can be understood as an entropic force caused by changes in the information associated with the positions of material bodies. In Verlinde's argument, the area law of the black hole entropy plays a crucial role. However, the entropy-area relation can be modified from the inclusion of quantum effects, motivated from the loop quantum gravity. In this note, by employing this modified entropy-area relation, we derive corrections to Newton's law of gravitation as well as modified Friedmann equations by adopting the viewpoint that gravity can be emerged as an entropic force. Our study further supports the universality of the log correction and provides a strong consistency check on Verlinde's model.
Inferring Mathematical Equations Using Crowdsourcing
Wasik, Szymon
2015-01-01
Crowdsourcing, understood as outsourcing work to a large network of people in the form of an open call, has been utilized successfully many times, including a very interesting concept involving the implementation of computer games with the objective of solving a scientific problem by employing users to play a game—so-called crowdsourced serious games. Our main objective was to verify whether such an approach could be successfully applied to the discovery of mathematical equations that explain experimental data gathered during the observation of a given dynamic system. Moreover, we wanted to compare it with an approach based on artificial intelligence that uses symbolic regression to find such formulae automatically. To achieve this, we designed and implemented an Internet game in which players attempt to design a spaceship representing an equation that models the observed system. The game was designed while considering that it should be easy to use for people without strong mathematical backgrounds. Moreover, we tried to make use of the collective intelligence observed in crowdsourced systems by enabling many players to collaborate on a single solution. The idea was tested on several hundred players playing almost 10,000 games and conducting a user opinion survey. The results prove that the proposed solution has very high potential. The function generated during weeklong tests was almost as precise as the analytical solution of the model of the system and, up to a certain complexity level of the formulae, it explained data better than the solution generated automatically by Eureqa, the leading software application for the implementation of symbolic regression. Moreover, we observed benefits of using crowdsourcing; the chain of consecutive solutions that led to the best solution was obtained by the continuous collaboration of several players. PMID:26713846
Inferring Mathematical Equations Using Crowdsourcing.
Wasik, Szymon; Fratczak, Filip; Krzyskow, Jakub; Wulnikowski, Jaroslaw
2015-01-01
Crowdsourcing, understood as outsourcing work to a large network of people in the form of an open call, has been utilized successfully many times, including a very interesting concept involving the implementation of computer games with the objective of solving a scientific problem by employing users to play a game-so-called crowdsourced serious games. Our main objective was to verify whether such an approach could be successfully applied to the discovery of mathematical equations that explain experimental data gathered during the observation of a given dynamic system. Moreover, we wanted to compare it with an approach based on artificial intelligence that uses symbolic regression to find such formulae automatically. To achieve this, we designed and implemented an Internet game in which players attempt to design a spaceship representing an equation that models the observed system. The game was designed while considering that it should be easy to use for people without strong mathematical backgrounds. Moreover, we tried to make use of the collective intelligence observed in crowdsourced systems by enabling many players to collaborate on a single solution. The idea was tested on several hundred players playing almost 10,000 games and conducting a user opinion survey. The results prove that the proposed solution has very high potential. The function generated during weeklong tests was almost as precise as the analytical solution of the model of the system and, up to a certain complexity level of the formulae, it explained data better than the solution generated automatically by Eureqa, the leading software application for the implementation of symbolic regression. Moreover, we observed benefits of using crowdsourcing; the chain of consecutive solutions that led to the best solution was obtained by the continuous collaboration of several players.
Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
Yan, Zhenya
2013-04-28
The complex -symmetric nonlinear wave models have drawn much attention in recent years since the complex -symmetric extensions of the Korteweg-de Vries (KdV) equation were presented in 2007. In this review, we focus on the study of the complex -symmetric nonlinear Schrödinger equation and Burgers equation. First of all, we briefly introduce the basic property of complex symmetry. We then report on exact solutions of one- and two-dimensional nonlinear Schrödinger equations (known as the Gross-Pitaevskii equation in Bose-Einstein condensates) with several complex -symmetric potentials. Finally, some complex -symmetric extension principles are used to generate some complex -symmetric nonlinear wave equations starting from both -symmetric (e.g. the KdV equation) and non- -symmetric (e.g. the Burgers equation) nonlinear wave equations. In particular, we discuss exact solutions of some representative ones of the complex -symmetric Burgers equation in detail.
NASA Astrophysics Data System (ADS)
Swanson, Ryan D.; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini
2015-02-01
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.
Hansen, Scott K.; Vesselinov, Velimir Valentinov
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulatemore » well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. Furthermore, this greatly enhanced performance, but gains from additional data collection remained limited.« less
Pistocchi, A; Sarigiannis, D A; Vizcaino, P
2010-08-15
A review by Hollander et al. (in preparation), discusses the relative potentials, advantages and shortcomings of spatial and non spatial models of chemical fate, highlighting that spatially explicit models may be needed for specific purposes. The present paper reviews the state of the art in spatially explicit chemical fate and transport modeling in Europe. We summarize the three main approaches currently adopted in spatially explicit modeling, namely (1) multiple box models, (2) numerical solutions of simultaneous advection-dispersion equations (ADE) in air, soil and water, and (3) the development of meta-models. As all three approaches experience limitations, we describe in further detail geographic information system (GIS)-based modeling as an alternative approach allowing a simple, yet spatially explicit description of chemical fate. We review the input data needed, and the options available for their retrieval at the European scale. We also discuss the importance of, and limitations in model evaluation. We observe that the high uncertainty in chemical emissions and physico-chemical behavior in the environment make realistic simulations difficult to obtain. Therefore we envisage a shift in model use from process simulation to hypothesis testing, in which explaining the discrepancies between observed and computed chemical concentrations in the environment takes importance over prediction per se. This shift may take advantage of using simple models in GIS with residual uses of complex models for detailed studies. It also calls for tighter joint interpretation of models and spatially distributed monitoring datasets, and more refined spatial representation of environmental drivers such as landscape and climate variables, and better emission estimates. In summary, we conclude that the problem is not "how to compute" (i.e. emphasis on numerical methods, spatial/temporal discretization, quantitative uncertainty and sensitivity analysis...) but "what to compute" (i
Evaluation of dispersivity coefficients by means of a laboratory image analysis
NASA Astrophysics Data System (ADS)
Citarella, Donato; Cupola, Fausto; Tanda, Maria Giovanna; Zanini, Andrea
2015-01-01
This paper describes the application of an innovative procedure that allows the estimation of longitudinal and transverse dispersivities in an experimental plume devised in a laboratory sandbox. The phenomenon of transport in porous media is studied using sodium fluorescein as tracer. The fluorescent excitation was achieved by using blue light and the concentration data were obtained through the processing of side wall images collected with a high resolution color digital camera. After a calibration process, the relationship between the luminosity of the emitted fluorescence and the fluorescein concentration was determined at each point of the sandbox. The relationships were used to describe the evolution of the transport process quantitatively throughout the entire domain. Some check tests were performed in order to verify the reliability of the experimental device. Numerical flow and transport models of the sandbox were developed and calibrated comparing computed and observed flow rates and breakthrough curves. The estimation of the dispersivity coefficients was carried out by analyzing the concentration field deduced from the images collected during the experiments; the dispersivity coefficients were evaluated in the domain zones where the tracer affected the porous medium under the hypothesis that the transport phenomenon is described by advection-dispersion equation (ADE) and by computing the differential components of the concentration by means of a numerical leap-frog scheme. The values determined agree with the ones referred in literature for similar media and with the coefficients obtained by calibrating the numerical model. Very interesting considerations have been made from the analysis of the performance of the methodology at different locations in the flow domain and phases of the plume evolution.
A fractional Dirac equation and its solution
NASA Astrophysics Data System (ADS)
Muslih, Sami I.; Agrawal, Om P.; Baleanu, Dumitru
2010-02-01
This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.
Dust levitation about Itokawa's equator
NASA Astrophysics Data System (ADS)
Hartzell, C.; Zimmerman, M.; Takahashi, Y.
2014-07-01
levitation about Itokawa, we must include accurate plasma and gravity models. We use a 2D PIC code (described in [8]) to model the plasma environment about Itokawa's equator. The plasma model includes photoemission and shadowing. Thus, we model the plasma environment for various solar incidence angles. The plasma model gives us the 2D electric field components and the plasma potential. We model the gravity field around the equatorial cross-section using an Interior Gravity model [9]. The gravity model is based on the shape model acquired by the Hayabusa mission team and, unlike other models, is quick and accurate close to the surface of the body. Due to the nonspherical shape of Itokawa, the electrostatic force and the gravity may not be collinear. Given our accurate plasma and gravity environments, we are able to simulate the trajectories of dust grains about the equator of Itokawa. When modeling the trajectories of the grains, the current to the grains is calculated using Nitter et al.'s formulation [10] with the plasma sheath parameters provided by our PIC model (i.e., the potential minimum, the potential at the surface, and the sheath type). Additionally, we are able to numerically locate the equilibria about which dust grains may levitate. Interestingly, we observe that equilibria exist for grains up to 20 microns in radius about Itokawa's equator when the Sun is illuminating Itokawa's 'otter tail'. This grain size is significantly larger than the stably levitating grains we observed using our 1D plasma and gravity models. Conclusions and Future Work: The possibility of dust levitation above asteroids has implications both for our understanding of their evolution and for the design of future missions to these bodies. Using detailed gravity and plasma models, we are above to propagate the trajectories of dust particles about Itokawa's equator and identify the equilibria about which these grains will levitate. Using these simulations, we see that grains up to 20 microns
Stochastic differential equation model to Prendiville processes
NASA Astrophysics Data System (ADS)
Granita, Bahar, Arifah
2015-10-01
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Darboux transformation for the NLS equation
Aktosun, Tuncay; Mee, Cornelis van der
2010-03-08
We analyze a certain class of integral equations associated with Marchenko equations and Gel'fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unperturbed quantities and the finite-rank perturbation. We show that this result provides a fundamental approach to derive Darboux transformations for various systems of ordinary differential operators. We illustrate our theory by providing the explicit Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a simple discrete eigenvalue is added to the spectrum, and thus we also provide a one-parameter family of Darboux transformations for the nonlinear Schroedinger equation.
Numerical solution of a tunneling equation
Wang, C.Y.; Carter, M.D.; Batchelor, D.B.; Jaeger, E.F.
1994-04-01
A numerical method is presented to solve mode conversion equations resulting from the use of radio frequency (rf) waves to heat plasmas. The solutions of the mode conversion equations contain exponentially growing modes, and ordinary numerical techniques give large errors. To avoid the unphysical growing modes, a set of boundary conditions are found, that eliminate the unphysical modes. The mode conversion equations are then solved with the boundary conditions as a standard two-point boundary value problem. A tunneling equation (one of the mode conversion equations without power absorption) is solved as a specific example of this numerical technique although the technique itself is very general and can be easily applied to solve any mode conversion equation. The results from the numerical calculation agree very well with those found from asymptotic analysis.
Stochastic differential equation model to Prendiville processes
Granita; Bahar, Arifah
2015-10-22
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Remarks on the Kuramoto-Sivashinsky equation
Nicolaenko, B.; Scheurer, B.
1983-01-01
We report here a joint work in progress on the Kuramoto-Sivashinsky equation. The question we address is the analytical study of a fourth order nonlinear evolution equation. This equation has been obtained by Sivashinsky in the context of combustion and independently by Kuramoto in the context of reaction diffusion-systems. Both were motivated by (nonlinear) stability of travelling waves. Numerical calculations have been done on this equation. All the results seem to indicate a chaotic behavior of the solution. Therefore, the analytical study is of interest in analogy with the Burger's and Navier-Stokes equations. Here we give some existence and uniqueness results for the equation in space dimension one, and we also study a fractional step method of numerical resolution. In a forthcoming joint paper with R. Temam, we will study the asymptotic behavior, as t approaches infinity, of the solution of (0.1) and give an estimate on the number of determining modes.
Solving equations through particle dynamics
NASA Astrophysics Data System (ADS)
Edvardsson, S.; Neuman, M.; Edström, P.; Olin, H.
2015-12-01
The present work evaluates a recently developed particle method (DFPM). The basic idea behind this method is to utilize a Newtonian system of interacting particles that through dissipation solves mathematical problems. We find that this second order dynamical system results in an algorithm that is among the best methods known. The present work studies large systems of linear equations. Of special interest is the wide eigenvalue spectrum. This case is common as the discretization of the continuous problem becomes dense. The convergence rate of DFPM is shown to be in parity with that of the conjugate gradient method, both analytically and through numerical examples. However, an advantage with DFPM is that it is cheaper per iteration. Another advantage is that it is not restricted to symmetric matrices only, as is the case for the conjugate gradient method. The convergence properties of DFPM are shown to be superior to the closely related approach utilizing only a first order dynamical system, and also to several other iterative methods in numerical linear algebra. The performance properties are understood and optimized by taking advantage of critically damped oscillators in classical mechanics. Just as in the case of the conjugate gradient method, a limitation is that all eigenvalues (spring constants) are required to be of the same sign. DFPM has no other limitation such as matrix structure or a spectral radius as is common among iterative methods. Examples are provided to test the particle algorithm's merits and also various performance comparisons with existent numerical algorithms are provided.
Stability analysis of ecomorphodynamic equations
NASA Astrophysics Data System (ADS)
Bärenbold, F.; Crouzy, B.; Perona, P.
2016-02-01
In order to shed light on the influence of riverbed vegetation on river morphodynamics, we perform a linear stability analysis on a minimal model of vegetation dynamics coupled with classical one- and two-dimensional Saint-Venant-Exner equations of morphodynamics. Vegetation is modeled as a density field of rigid, nonsubmerged cylinders and affects flow via a roughness change. Furthermore, vegetation is assumed to develop following a logistic dependence and may be uprooted by flow. First, we perform the stability analysis of the reduced one-dimensional framework. As a result of the competitive interaction between vegetation growth and removal through uprooting, we find a domain in the parameter space where originally straight rivers are unstable toward periodic longitudinal patterns. For realistic values of the sediment transport parameter, the dominant longitudinal wavelength is determined by the parameters of the vegetation model. Bed topography is found to adjust to the spatial pattern fixed by vegetation. Subsequently, the stability analysis is repeated for the two-dimensional framework, where the system may evolve toward alternate or multiple bars. On a fixed bed, we find instability toward alternate bars due to flow-vegetation interaction, but no multiple bars. Both alternate and multiple bars are present on a movable, vegetated bed. Finally, we find that the addition of vegetation to a previously unvegetated riverbed favors instability toward alternate bars and thus the development of a single course rather than braiding.
Equation of state of polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Bourne, N. K.; Gray, G. T.
2003-06-01
The present drive to make munitions as safe as is feasible and to develop predictive models describing their constitutive response, has led to the development and production of plastic bonded explosives and propellants. There is a range of elastomers used as binder materials with the energetic components. One of these is known as Kel-F-800™ (poly-chloro-trifluroethylene) whose structure is in some ways analogous to that of poly-tetrafluoroethylene (PTFE or Teflon). Thus, it is of interest to assess the mechanical behavior of Teflon and to compare the response of five different production Teflon materials, two of which were produced in pedigree form, one as-received product, and two from previous in-depth literature studies. The equations of state of these variants were quantified by conducting a series of shock impact experiments in which both pressure-particle velocity and shock velocity-particle velocity dependencies were measured. The compressive behavior of Teflon, based upon the results of this study, appears to be independent of the production route and additives introduced.
Silicon nitride equation of state
NASA Astrophysics Data System (ADS)
Brown, Robert C.; Swaminathan, Pazhayannur K.
2017-01-01
This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.
Silicon Nitride Equation of State
NASA Astrophysics Data System (ADS)
Swaminathan, Pazhayannur; Brown, Robert
2015-06-01
This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.
LINPACK. Simultaneous Linear Algebraic Equations
Miller, M.A.
1990-05-01
LINPACK is a collection of FORTRAN subroutines which analyze and solve various classes of systems of simultaneous linear algebraic equations. The collection deals with general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square matrices, as well as with least squares problems and the QR and singular value decompositions of rectangular matrices. A subroutine-naming convention is employed in which each subroutine name consists of five letters which represent a coded specification (TXXYY) of the computation done by that subroutine. The first letter, T, indicates the matrix data type. Standard FORTRAN allows the use of three such types: S REAL, D DOUBLE PRECISION, and C COMPLEX. In addition, some FORTRAN systems allow a double-precision complex type: Z COMPLEX*16. The second and third letters of the subroutine name, XX, indicate the form of the matrix or its decomposition: GE General, GB General band, PO Positive definite, PP Positive definite packed, PB Positive definite band, SI Symmetric indefinite, SP Symmetric indefinite packed, HI Hermitian indefinite, HP Hermitian indefinite packed, TR Triangular, GT General tridiagonal, PT Positive definite tridiagonal, CH Cholesky decomposition, QR Orthogonal-triangular decomposition, SV Singular value decomposition. The final two letters, YY, indicate the computation done by the particular subroutine: FA Factor, CO Factor and estimate condition, SL Solve, DI Determinant and/or inverse and/or inertia, DC Decompose, UD Update, DD Downdate, EX Exchange. The LINPACK package also includes a set of routines to perform basic vector operations called the Basic Linear Algebra Subprograms (BLAS).
LINPACK. Simultaneous Linear Algebraic Equations
Dongarra, J.J.
1982-05-02
LINPACK is a collection of FORTRAN subroutines which analyze and solve various classes of systems of simultaneous linear algebraic equations. The collection deals with general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square matrices, as well as with least squares problems and the QR and singular value decompositions of rectangular matrices. A subroutine-naming convention is employed in which each subroutine name consists of five letters which represent a coded specification (TXXYY) of the computation done by that subroutine. The first letter, T, indicates the matrix data type. Standard FORTRAN allows the use of three such types: S REAL, D DOUBLE PRECISION, and C COMPLEX. In addition, some FORTRAN systems allow a double-precision complex type: Z COMPLEX*16. The second and third letters of the subroutine name, XX, indicate the form of the matrix or its decomposition: GE General, GB General band, PO Positive definite, PP Positive definite packed, PB Positive definite band, SI Symmetric indefinite, SP Symmetric indefinite packed, HI Hermitian indefinite, HP Hermitian indefinite packed, TR Triangular, GT General tridiagonal, PT Positive definite tridiagonal, CH Cholesky decomposition, QR Orthogonal-triangular decomposition, SV Singular value decomposition. The final two letters, YY, indicate the computation done by the particular subroutine: FA Factor, CO Factor and estimate condition, SL Solve, DI Determinant and/or inverse and/or inertia, DC Decompose, UD Update, DD Downdate, EX Exchange. The LINPACK package also includes a set of routines to perform basic vector operations called the Basic Linear Algebra Subprograms (BLAS).
Wei-Norman equations for classical groups
NASA Astrophysics Data System (ADS)
Charzyński, Szymon; Kuś, Marek
2015-08-01
We show that the nonlinear autonomous Wei-Norman equations, expressing the solution of a linear system of non-autonomous equations on a Lie algebra, can be reduced to the hierarchy of matrix Riccati equations in the case of all classical simple Lie algebras. The result generalizes our previous one concerning the complex Lie algebra of the special linear group. We show that it cannot be extended to all simple Lie algebras, in particular to the exceptional G2 algebra.
Lie symmetry analysis of the Heisenberg equation
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2017-04-01
The Lie symmetry analysis is performed on the Heisenberg equation from the statistical physics. Its Lie point symmetries and optimal system of one-dimensional subalgebras are determined. The similarity reductions and invariant solutions are obtained. Using the multipliers, some conservation laws are obtained. We prove that this equation is nonlinearly self-adjoint. The conservation laws associated with symmetries of this equation are constructed by means of Ibragimov's method.
Material equations for electromagnetism with toroidal polarizations.
Dubovik, V M; Martsenyuk, M A; Saha, B
2000-06-01
With regard to the toroid contributions, a modified system of equations of electrodynamics moving continuous media has been obtained. Alternative formalisms to introduce the toroid moment contributions in the equations of electromagnetism has been worked out. The two four-potential formalism has been developed. Lorentz transformation laws for the toroid polarizations has been given. Covariant form of equations of electrodynamics of continuous media with toroid polarizations has been written.
Exact solutions of population balance equation
NASA Astrophysics Data System (ADS)
Lin, Fubiao; Flood, Adrian E.; Meleshko, Sergey V.
2016-07-01
Population balance equations have been used to model a wide range of processes including polymerization, crystallization, cloud formation, and cell dynamics, but the lack of analytical solutions necessitates the use of numerical techniques. The one-dimensional homogeneous population balance equation with time dependent but size independent growth rate and time dependent nucleation rate is investigated. The corresponding system of equations is solved analytically in this paper.
The Boltzmann equation in the difference formulation
Szoke, Abraham; Brooks III, Eugene D.
2015-05-06
First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.
Partitioning And Packing Equations For Parallel Processing
NASA Technical Reports Server (NTRS)
Arpasi, Dale J.; Milner, Edward J.
1989-01-01
Algorithm developed to identify parallelism in set of coupled ordinary differential equations that describe physical system and to divide set into parallel computational paths, along with parts of solution proceeds independently of others during at least part of time. Path-identifying algorithm creates number of paths consisting of equations that must be computed serially and table that gives dependent and independent arguments and "can start," "can end," and "must end" times of each equation. "Must end" time used subsequently by packing algorithm.
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R. K.
1985-01-01
Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.
The Husimi representation and the Vlasov equation
LEplattenier, P.; Suraud, E.; Reinhard, P.G.
1995-12-01
We investigate the {ital h} expansion of the Time-Dependent Hartree Fock equation in the Wigner and Husimi representations. Both lead formally to the Vlasov equation in lowest order. The Husimi representation delivers a more stable expansion in particular when the self-interaction in the mean field is considered. The test particle solution of the Vlasov equation turns out to be closely related to the Husimi representation. Copyright {copyright} 1995 Academic Press, Inc.
Discrete Surface Modelling Using Partial Differential Equations.
Xu, Guoliang; Pan, Qing; Bajaj, Chandrajit L
2006-02-01
We use various nonlinear partial differential equations to efficiently solve several surface modelling problems, including surface blending, N-sided hole filling and free-form surface fitting. The nonlinear equations used include two second order flows, two fourth order flows and two sixth order flows. These nonlinear equations are discretized based on discrete differential geometry operators. The proposed approach is simple, efficient and gives very desirable results, for a range of surface models, possibly having sharp creases and corners.
Fokker Planck equation with fractional coordinate derivatives
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.; Zaslavsky, George M.
2008-11-01
Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations, with averaging with respect to a fast variable, is used. The main assumption is that the correlation function of probability densities of particles to make a step has a power-law dependence. As a result, we obtain a Fokker-Planck equation with fractional coordinate derivative of order 1<α<2.
Simple derivation of the Lindblad equation
NASA Astrophysics Data System (ADS)
Pearle, Philip
2012-07-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is ‘simple’ in that all it uses is the expression of a Hermitian matrix in terms of its orthonormal eigenvectors and real eigenvalues. Thus, it is appropriate for students who have learned the algebra of quantum theory. Where helpful, arguments are first given in a two-dimensional Hilbert space.
Growth estimates for Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Yeats, Karen Amanda
Dyson-Schwinger equations are integral equations in quantum field theory that describe the Green functions of a theory and mirror the recursive decomposition of Feynman diagrams into subdiagrams. Taken as recursive equations, the Dyson-Schwinger equations describe perturbative quantum field theory. However, they also contain non-perturbative information. Using the Hopf algebra of Feynman graphs we will follow a sequence of reductions to convert the Dyson-Schwinger equations to the following system of differential equations, gr1x =Prx- sign srg r1x2 +j∈R sjg j1x x6xgr 1x where r∈R,R is the set of amplitudes of the theory which need renormalization, gr1 is the anomalous dimension associated to r, Pr( x) is a modified version of the function for the primitive skeletons contributing to r, and x is the coupling constant. Next, we approach the new system of differential equations as a system of recursive equations by expanding gr1x =Sn≥1gr1,nx n . We obtain the radius of convergence of Sgr1,nxn/n! in terms of that of SPrnx n/n! . In particular we show that a Lipatov bound for the growth of the primitives leads to a Lipatov bound for the whole theory. Finally, we make a few observations on the new system considered as differential equations.
Far field expansion for Hartree type equation
NASA Astrophysics Data System (ADS)
Georgiev, V.; Venkov, G.
2013-12-01
We consider the scalar field equation -Δu(x)+(1/|x|*u2(x))u(x)-E2u(x)/|x|+u(x) = 0 where u = u(|x|) is a radial positive solution and * is the convolution operator in R3. This equation can be rewritten as ordinary differential equation -ru"(r)-2u'(r)+r ∫ r∞(1/s-1/r)u2(s)s2dsu(r)+ru(r) = 0 and this note is concerned with asymptotic behavior at infinity of solutions of this equation.
Fractional Schrödinger equation.
Laskin, Nick
2002-11-01
Some properties of the fractional Schrödinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schrödinger equation we find the energy spectra of a hydrogenlike atom (fractional "Bohr atom") and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schrödinger equations.
Spinor representation of Maxwell’s equations
NASA Astrophysics Data System (ADS)
Kulyabov, D. S.; Korolkova, A. V.; Sevastianov, L. A.
2017-01-01
Spinors are more special objects than tensor. Therefore possess more properties than the more generic objects such as tensors. Thus, the group of Lorentz two-spinors is the covering group of the Lorentz group. Since the Lorentz group is a symmetry group of Maxwell’s equations, it is assumed to reasonable to use when writing the Maxwell equations Lorentz two-spinors and not tensors. We describe in detail the representation of the Maxwell’s equations in the form of Lorentz two-spinors. This representation of Maxwell’s equations can be of considerable theoretical interest.
Some remarks on unilateral matrix equations
Cerchiai, Bianca L.; Zumino, Bruno
2001-02-01
We briefly review the results of our paper LBNL-46775: We study certain solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials.
Integral equations for flows in wind tunnels
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1979-01-01
This paper surveys recent work on the use of integral equations for the calculation of wind tunnel interference. Due to the large number of possible physical situations, the discussion is limited to two-dimensional subsonic and transonic flows. In the subsonic case, the governing boundary value problems are shown to reduce to a class of Cauchy singular equations generalizing the classical airfoil equation. The theory and numerical solution are developed in some detail. For transonic flows nonlinear singular equations result, and a brief discussion of the work of Kraft and Kraft and Lo on their numerical solution is given. Some typical numerical results are presented and directions for future research are indicated.
Gibbs adsorption and the compressibility equation
Aranovich, G.L.; Donohue, M.D.
1995-08-08
A new approach for deriving the equation of state is developed. It is shown that the integral in the compressibility equation is identical to the isotherm for Gibbs adsorption in radial coordinates. The Henry, Langmuir, and Frumkin adsorption isotherms are converted into equations of state. It is shown that using Henry`s law gives an expression for the second virial coefficient that is identical to the result from statistical mechanics. Using the Langmuir isotherm leads to a new analytic expression for the hard-sphere equation of state which can be explicit in either pressure or density. The Frumkin isotherm results in a new equation of state for the square-well potential fluid. Conversely, new adsorption isotherms can be derived from equations of state using the compressibility equation. It is shown that the van der Waals equation gives an adsorption isotherm equation that describes both polymolecular adsorption and the unusual adsorption behavior observed for supercritical fluids. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Prolongation structures of nonlinear evolution equations
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.; Estabrook, F. B.
1975-01-01
A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.
ON A NONHOMOGENEOUS RANDOM DIFFUSION EQUATION.
CORRELATION TECHNIQUES, FUNCTIONS(MATHEMATICS)), (*STOCHASTIC PROCESSES, EQUATIONS), STATISTICAL FUNCTIONS, PROBABILITY, HILBERT SPACE, GREEN’S FUNCTION, SERIES(MATHEMATICS), ALLOYS, DIFFUSION , INTEGRALS
Analytic solutions of the relativistic Boltzmann equation
NASA Astrophysics Data System (ADS)
Hatta, Yoshitaka; Martinez, Mauricio; Xiao, Bo-Wen
2015-04-01
We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.
Resonance regions of extended Mathieu equation
NASA Astrophysics Data System (ADS)
Semyonov, V. P.; Timofeev, A. V.
2016-02-01
One of the mechanisms of energy transfer between degrees of freedom of dusty plasma system is based on parametric resonance. Initial stage of this process can de described by equation similar to Mathieu equation. Such equation is studied by analytical and numerical approach. The numerical solution of the extended Mathieu equation is obtained for a wide range of parameter values. Boundaries of resonance regions, growth rates of amplitudes and times of onset are obtained. The energy transfer between the degrees of freedom of dusty plasma system can occur over a wide range of frequencies.
Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet
2015-10-01
The auxiliary equation method presents wide applicability to handling nonlinear wave equations. In this article, we establish new exact travelling wave solutions of the nonlinear Zoomeron equation, coupled Higgs equation, and equal width wave equation. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Throughout the article, all calculations are made with the aid of the Maple packet program.
Generalized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations
NASA Astrophysics Data System (ADS)
Rosu, Haret C.; Mancas, Stefan C.
2017-04-01
A one-parameter family of Emden-Fowler equations defined by Lampariello's parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class.
Constitutive Equation for Anisotropic Rock
NASA Astrophysics Data System (ADS)
Cazacu, O.
2006-12-01
In many rocks, due to the existence of well-defined fabric elements such as bedding, layering, foliation or lamination planes, or due to the existence of linear structures, anisotropy can be important. The symmetries most frequently encountered are: transverse isotropy and orthotropy. By adopting both theoretical and experimental approaches, many authors have investigated the effect of the presence within the rock of pronounced anisotropic feature on the mechanical behavior in the elastic regime and on strength properties. Fewer attempts however have been made to capture the anisotropy of rocks in the plastic range. In this paper an elastic/viscoplastic non-associated constitutive equation for an initially transversely isotropic material is presented. The model captures the observed dependency of the elastic moduli on the stress state. The limit of the elastic domain is given by an yield function whose expression is a priori unknown and is determined from data. The basic assumption adopted is that the type of anisotropy of the rock does not change during the deformation process. The anisotropy is thus described by a fourth order tensor invariant with respect to any transformation belonging to the symmetry group of the material. This tensor is assumed to be constant: it does not depend on time nor on deformation; A is involved in the expression of the flow rule, of the yield function, and of the failure criterion in the form of a transformed stress tensor. The components of the anisotropic tensor A are determined from the compressive strengths in conjunction with an anisotropic short- term failure The irreversibility is supposed to be due to transient creep, the irreversible stress work per unit volume being considered as hardening parameter. The adequacy of the model is demonstrated by applying it to a stratified sedimentary rock, Tournemire shale.
NASA Astrophysics Data System (ADS)
Tatarskii, V. I.
1995-06-01
The steps necessary to produce the Rayleigh equation that is based on the Rayleigh hypothesis from the equation that is based on the Green's formula are shown. First a definition is given for the scattering amplitude that is true not only in the far zone of diffraction but also near the scattering surface. With this definition the Rayleigh equation coincides with the rigorous equation for the surface secondary sources that is based on Green's formula. The Rayleigh hypothesis is equivalent to substituting the far-zone expression of the scattering amplitude into this rigorous equation. In this case it turns out to be the equation not for the sources but directly for the scattering amplitude, which is the main advantage of this method. For comparing the Rayleigh equation with the initial rigorous equation, the Rayleigh equation is represented in terms of secondary sources. The kernel of this equation contains an integral that converges for positive and diverges for negative values of some parameter. It is shown that if we regularize this integral, defining it for the negative values of this parameter as an analytical continuation from the domain of positive values, this kernel becomes equal to the kernel of the initial rigorous equation. It follows that the formal perturbation series for the scattering amplitude obtained from the Rayleigh equation and from Green's equation always coincide. This means that convergence of the perturbation series is a sufficient condition
ERIC Educational Resources Information Center
Chen, Haiwen; Holland, Paul
2009-01-01
In this paper, we develop a new chained equipercentile equating procedure for the nonequivalent groups with anchor test (NEAT) design under the assumptions of the classical test theory model. This new equating is named chained true score equipercentile equating. We also apply the kernel equating framework to this equating design, resulting in a…
Improving the Bandwidth Selection in Kernel Equating
ERIC Educational Resources Information Center
Andersson, Björn; von Davier, Alina A.
2014-01-01
We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…
Euler's Amazing Way to Solve Equations.
ERIC Educational Resources Information Center
Flusser, Peter
1992-01-01
Presented is a series of examples that illustrate a method of solving equations developed by Leonhard Euler based on an unsubstantiated assumption. The method integrates aspects of recursion relations and sequences of converging ratios and can be extended to polynomial equation with infinite exponents. (MDH)
Equation solvers for distributed-memory computers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
A large number of scientific and engineering problems require the rapid solution of large systems of simultaneous equations. The performance of parallel computers in this area now dwarfs traditional vector computers by nearly an order of magnitude. This talk describes the major issues involved in parallel equation solvers with particular emphasis on the Intel Paragon, IBM SP-1 and SP-2 processors.
Congeneric Models and Levine's Linear Equating Procedures.
ERIC Educational Resources Information Center
Brennan, Robert L.
In 1955, R. Levine introduced two linear equating procedures for the common-item non-equivalent populations design. His procedures make the same assumptions about true scores; they differ in terms of the nature of the equating function used. In this paper, two parameterizations of a classical congeneric model are introduced to model the variables…
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Operational equations for data in common arrays
Silver, G.L.
2000-10-01
A new method for interpolating experimental data by means of the shifting operator was introduced in 1985. This report illustrates new interpolating equations for data in the five-point rectangle and diamond configurations, new measures of central tendency, and new equations for data at the vertices of a cube.
MACSYMA's symbolic ordinary differential equation solver
NASA Technical Reports Server (NTRS)
Golden, J. P.
1977-01-01
The MACSYMA's symbolic ordinary differential equation solver ODE2 is described. The code for this routine is delineated, which is of interest because it is written in top-level MACSYMA language, and may serve as a good example of programming in that language. Other symbolic ordinary differential equation solvers are mentioned.
Singular perturbation equations for flexible satellites
NASA Technical Reports Server (NTRS)
Huang, T. C.; Das, A.
1980-01-01
Force equations of motion of the individual flexible elements of a satellite were obtained in a previous paper. Moment equations of motion of the composite bodies of a flexible satellite are to be developed using two sets of equations which form the basic system for any dynamic model of flexible satellites. This basic system consists of a set of N-coupled, nonlinear, ordinary, or partial differential equations, for a flexible satellite with n generalized, structural position coordinates. For single composite body satellites, N is equal to (n + 3); for dual-spin systems, N is equal to (n + 9). These equations involve time derivatives up to the second order. The study shows a method of avoiding this linearization by reducing the N equations to 3 or 9 nonlinear, coupled, first order, ordinary, differential equations involving only the angular velocities of the composite bodies. The solutions for these angular velocities lead to linear equations in the n generalized structural position coordinates, which can be solved by known methods.
Structural Equation Modeling with Heavy Tailed Distributions
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Bentler, Peter M.; Chan, Wai
2004-01-01
Data in social and behavioral sciences typically possess heavy tails. Structural equation modeling is commonly used in analyzing interrelations among variables of such data. Classical methods for structural equation modeling fit a proposed model to the sample covariance matrix, which can lead to very inefficient parameter estimates. By fitting a…
A Fundamental Equation of State for Ethanol
NASA Astrophysics Data System (ADS)
Schroeder, J. A.; Penoncello, S. G.; Schroeder, J. S.
2014-12-01
The existing fundamental equation for ethanol demonstrates undesirable behavior in several areas and especially in the critical region. In addition, new experimental data have become available in the open literature since the publication of the current correlation. The development of a new fundamental equation for ethanol, in the form of Helmholtz energy as a function of temperature and density, is presented. New, nonlinear fitting techniques, along with the new experimental data, are shown to improve the behavior of the fundamental equation. Ancillary equations are developed, including equations for vapor pressure, saturated liquid density, saturated vapor density, and ideal gas heat capacity. Both the fundamental and ancillary equations are compared to experimental data. The fundamental equation can compute densities to within ±0.2%, heat capacities to within ±1%-2%, and speed of sound to within ±1%. Values of the vapor pressure and saturated vapor densities are represented to within ±1% at temperatures of 300 K and above, while saturated liquid densities are represented to within ±0.3% at temperatures of 200 K and above. The uncertainty of all properties is higher in the critical region and near the triple point. The equation is valid for pressures up to 280 MPa and temperatures from 160 to 650 K.
Diophantine equations related to quasicrystals: A note
NASA Astrophysics Data System (ADS)
Pelantová, E.; Perelomov, A. M.
1998-06-01
We give the general solution of three Diophantine equations in the ring of integer of the algebraic number field ${\\bf Q}[{\\sqr 5}]$. These equations are related to the problem of determination of the minimum distance in quasicrystals with fivefold symmetry.
Solving Cubic Equations by Polynomial Decomposition
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
Approximate Solution to the Generalized Boussinesq Equation
NASA Astrophysics Data System (ADS)
Telyakovskiy, A. S.; Mortensen, J.
2010-12-01
The traditional Boussinesq equation describes motion of water in groundwater flows. It models unconfined groundwater flow under the Dupuit assumption that the equipotential lines are vertical, making the flowlines horizontal. The Boussinesq equation is a nonlinear diffusion equation with diffusivity depending linearly on water head. Here we analyze a generalization of the Boussinesq equation, when the diffusivity is a power law function of water head. For example polytropic gases moving through porous media obey this equation. Solving this equation usually requires numerical approximations, but for certain classes of initial and boundary conditions an approximate analytical solution can be constructed. This work focuses on the latter approach, using the scaling properties of the equation. We consider one-dimensional semi-infinite initially empty aquifer with boundary conditions at the inlet in case of cylindrical symmetry. Such situation represents the case of an injection well. Solutions would propagate with the finite speed. We construct an approximate scaling function, and we compare the approximate solution with the direct numerical solutions obtained by using the scaling properties of the equations.
The Specific Analysis of Structural Equation Models
ERIC Educational Resources Information Center
McDonald, Roderick P.
2004-01-01
Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…
Equation of State of Ballistic Gelatin
2008-06-23
We determined the equation of state for ballistic gelatin using the Brillouin scattering spectroscopy with a diamond anvil cell by measuring the...0 to 100 deg C between ambient and 12 GPa. We analyzed the Brillouin data using a high temperature Vinet equation of state and obtained the bulk
Equation of State of Ballistic Gelatin (II)
2011-01-03
We determined the equation of state of ballistic gelatin (20%) using Brillouin scattering spectroscopy with diamond anvil cells by measuring the...purposes, we also measured the pressure dependence of sound velocity of lamb tissues up to 10 GPa. We analyzed the Brillouin data using the Vinet equation of state and
Entropy viscosity method applied to Euler equations
Delchini, M. O.; Ragusa, J. C.; Berry, R. A.
2013-07-01
The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)
IRT Equating of the MCAT. MCAT Monograph.
ERIC Educational Resources Information Center
Hendrickson, Amy B.; Kolen, Michael J.
This study compared various equating models and procedures for a sample of data from the Medical College Admission Test(MCAT), considering how item response theory (IRT) equating results compare with classical equipercentile results and how the results based on use of various IRT models, observed score versus true score, direct versus linked…
Solving Differential Equations Using Modified Picard Iteration
ERIC Educational Resources Information Center
Robin, W. A.
2010-01-01
Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…
A Gallium Multiphase Equation of State
NASA Astrophysics Data System (ADS)
Crockett, Scott; Greeff, Carl
2009-06-01
A new SESAME multiphase gallium equation of state (EOS) has been developed. The equation of state includes two of the solid phases (Ga I, Ga III) and a fluid phase. The EOS includes consistent latent heat between the phases. We compare the results to the liquid Hugoniot data. We will also explore refreezing via isentropic release and compression.
The New Economic Equation. Executive Summary.
ERIC Educational Resources Information Center
Joshi, Pamela; Carre, Francoise; Place, Angela; Rayman, Paula
The New Economic Equation Project opened in May 1995 with a 3-day working conference for 50 national leaders. The equation was defined as follows: economic well-being = integration of work, family, and community. Conference participants identified key economic, work, and family concerns facing the United States today. Outreach activities in…
Global existence proof for relativistic Boltzmann equation
Dudynski, M. ); Ekiel-Jezewska, M.L. )
1992-02-01
The existence and causality of solutions to the relativistic Boltzmann equation in L[sup 1] and in L[sub loc][sup 1] are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L[sup 1]. The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions.
Symbolic Solution of Linear Differential Equations
NASA Technical Reports Server (NTRS)
Feinberg, R. B.; Grooms, R. G.
1981-01-01
An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.
A note on Berwald eikonal equation
NASA Astrophysics Data System (ADS)
Ekici, Cumali; Muradiye, Çimdiker
2016-10-01
In this study, firstly, we generalize Berwald map by introducing the concept of a Riemannian map. After that we find Berwald eikonal equation through using the Berwald map. The eikonal equation of geometrical optic that examining light reflects, refracts at smooth, plane interfaces is obtained for Berwald condition.
The Forced van der Pol Equation
ERIC Educational Resources Information Center
Fay, Temple H.
2009-01-01
We report on a study of the forced van der Pol equation x + [epsilon](x[superscript 2] - 1)x + x = F cos[omega]t, by solving numerically the differential equation for a variety of values of the parameters [epsilon], F and [omega]. In doing so, many striking and interesting trajectories can be discovered and phenomena such as frequency entrainment,…
Does the Wave Equation Really Work?
ERIC Educational Resources Information Center
Armstead, Donald C.; Karls, Michael A.
2006-01-01
The wave equation is a classic partial differential equation that one encounters in an introductory course on boundary value problems or mathematical physics, which can be used to describe the vertical displacement of a vibrating string. Using a video camera and Wave-in-Motion software to record displacement data from a vibrating string or spring,…
How Should Equation Balancing Be Taught?
ERIC Educational Resources Information Center
Porter, Spencer K.
1985-01-01
Matrix methods and oxidation-number methods are currently advocated and used for balancing equations. This article shows how balancing equations can be introduced by a third method which is related to a fundamental principle, is easy to learn, and is powerful in its application. (JN)
Trotter products and reaction-diffusion equations
NASA Astrophysics Data System (ADS)
Popescu, Emil
2010-01-01
In this paper, we study a class of generalized diffusion-reaction equations of the form , where A is a pseudodifferential operator which generates a Feller semigroup. Using the Trotter product formula we give a corresponding discrete time integro-difference equation for numerical solutions.
Grove, John W.
2016-08-16
The xRage code supports a variety of hydrodynamic equation of state (EOS) models. In practice these are generally accessed in the executing code via a pressure-temperature based table look up. This document will describe the various models supported by these codes and provide details on the algorithms used to evaluate the equation of state.
Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan; Dougherty, Rachael
2016-08-01
Lump-type solutions, rationally localized in many directions in the space, are analyzed for nonlinear differential equations derived from generalized bilinear differential equations. By symbolic computations with Maple, positive quadratic and quartic polynomial solutions to two classes of generalized bilinear differential equations on f are computed, and thus, lump-type solutions are presented to the corresponding nonlinear differential equations on u, generated from taking a transformation of dependent variables u = 2(ln f)x.
NASA Astrophysics Data System (ADS)
Tang, Bo; He, Yinnian; Wei, Leilei; Zhang, Xindong
2012-08-01
In this Letter, a generalized fractional sub-equation method is proposed for solving fractional differential equations with variable coefficients. Being concise and straightforward, this method is applied to the space-time fractional Gardner equation with variable coefficients. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the considered method provides a very effective, convenient and powerful mathematical tool for solving many other fractional differential equations in mathematical physics.
Third-order integrable difference equations generated by a pair of second-order equations
NASA Astrophysics Data System (ADS)
Matsukidaira, Junta; Takahashi, Daisuke
2006-02-01
We show that the third-order difference equations proposed by Hirota, Kimura and Yahagi are generated by a pair of second-order difference equations. In some cases, the pair of the second-order equations are equivalent to the Quispel-Robert-Thomson (QRT) system, but in the other cases, they are irrelevant to the QRT system. We also discuss an ultradiscretization of the equations.
Partial implicitization. [numerical stability of Burger equation model for Navier-Stokes equation
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.
1973-01-01
The steady-state solution to the full Navier-Stokes equations for complicated flows is generally difficult to obtain. The Burgers (1948) equation is used as a model of the Navier-Stokes equations. The steady-state solution is obtained by a one-step explicit technique resulting from a partial implicitization of the difference equation. Stability analysis shows that the technique is unconditionally stable, and numerical tests show the technique to be accurate.
Theory of electrophoresis: fate of one equation.
Gas, Bohuslav
2009-06-01
Electrophoresis utilizes a difference in movement of charged species in a separation channel or space for their spatial separation. A basic partial differential equation that results from the balance laws of continuous processes in separation sciences is the nonlinear conservation law or the continuity equation. Attempts at its analytical solution in electrophoresis go back to Kohlrausch's days. The present paper (i) reviews derivation of conservation functions from the conservation law as appeared chronologically, (ii) deals with theory of moving boundary equations and, mainly, (iii) presents the linear theory of eigenmobilities. It shows that a basic solution of the linearized continuity equations is a set of traveling waves. In particular cases the continuity equation can have a resonance solution that leads in practice to schizophrenic dispersion of peaks or a chaotic solution, which causes oscillation of electrolyte solutions.
Ordinary differential equation for local accumulation time.
Berezhkovskii, Alexander M
2011-08-21
Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation.
Singular perturbation equations for flexible satellites
NASA Technical Reports Server (NTRS)
Huang, T. C.; Das, A.
1973-01-01
The dynamic model of a flexible satellite with n generalized structural position coordinates requires the solution of a set of N coupled nonlinear ordinary or partial differential equations. For single composite body satellites, N is equal to (n + 3). For dual-spin systems, N is equal to (n + 9). These equations usually involve time derivatives up to the second order. For large values of n, linearization of the system has so far been the only practicable way of solution. The present study shows a method of avoiding this linearization by reducing the N equations to three or nine nonlinear, coupled, first-order ordinary differential equations involving only the angular velocities of the composite bodies. The solutions for these angular velocities lead to linear equations in the n generalized structural position coordinates, which can then be solved by known methods.
On Coupled Rate Equations with Quadratic Nonlinearities
Montroll, Elliott W.
1972-01-01
Rate equations with quadratic nonlinearities appear in many fields, such as chemical kinetics, population dynamics, transport theory, hydrodynamics, etc. Such equations, which may arise from basic principles or which may be phenomenological, are generally solved by linearization and application of perturbation theory. Here, a somewhat different strategy is emphasized. Alternative nonlinear models that can be solved exactly and whose solutions have the qualitative character expected from the original equations are first searched for. Then, the original equations are treated as perturbations of those of the solvable model. Hence, the function of the perturbation theory is to improve numerical accuracy of solutions, rather than to furnish the basic qualitative behavior of the solutions of the equations. PMID:16592013
Turbulence kinetic energy equation for dilute suspensions
NASA Technical Reports Server (NTRS)
Abou-Arab, T. W.; Roco, M. C.
1989-01-01
A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.
Almost periodic solutions to difference equations
NASA Technical Reports Server (NTRS)
Bayliss, A.
1975-01-01
The theory of Massera and Schaeffer relating the existence of unique almost periodic solutions of an inhomogeneous linear equation to an exponential dichotomy for the homogeneous equation was completely extended to discretizations by a strongly stable difference scheme. In addition it is shown that the almost periodic sequence solution will converge to the differential equation solution. The preceding theory was applied to a class of exponentially stable partial differential equations to which one can apply the Hille-Yoshida theorem. It is possible to prove the existence of unique almost periodic solutions of the inhomogeneous equation (which can be approximated by almost periodic sequences) which are the solutions to appropriate discretizations. Two methods of discretizations are discussed: the strongly stable scheme and the Lax-Wendroff scheme.
ERIC Educational Resources Information Center
González, B. Jorge; von Davier, Matthias
2013-01-01
Based on Lord's criterion of equity of equating, van der Linden (this issue) revisits the so-called local equating method and offers alternative as well as new thoughts on several topics including the types of transformations, symmetry, reliability, and population invariance appropriate for equating. A remarkable aspect is to define equating…
Turning Equations Into Stories: Using "Equation Dictionaries" in an Introductory Geophysics Class
NASA Astrophysics Data System (ADS)
Caplan-Auerbach, J.
2008-12-01
To students with math fear, equations can be intimidating and overwhelming. This discomfort is reflected in some of the frequent questions heard in introductory geophysics: "which equation should I use?" and "does T stand for travel time or period?" Questions such as these indicate that many students view equations as a series of variables and operators rather than as a representation of a physical process. To solve a problem they may simply look for an equation with the correct variables and assume that it meets their needs, rather than selecting an equation that represents the appropriate physical process. These issues can be addressed by encouraging students to think of equations as stories, and to describe them in prose. This is the goal of the Equation Dictionary project, used in Western Washington University's introductory geophysics course. Throughout the course, students create personal equation dictionaries, adding an entry each time an equation is introduced. Entries consist of (a) the equation itself, (b) a brief description of equation variables, (c) a prose description of the physical process described by the equation, and (d) any additional notes that help them understand the equation. Thus, rather than simply writing down the equations for the velocity of body waves, a student might write "The speed of a seismic body wave is controlled by the material properties of the medium through which it passes." In a study of gravity a student might note that the International Gravity Formula describes "the expected value of g at a given latitude, correcting for Earth's shape and rotation." In writing these definitions students learn that equations are simplified descriptions of physical processes, and that understanding the process is more useful than memorizing a sequence of variables. Dictionaries also serve as formula sheets for exams, which encourages students to write definitions that are meaningful to them, and to organize their thoughts clearly. Finally
General solution of the scattering equations
NASA Astrophysics Data System (ADS)
Dolan, Louise; Goddard, Peter
2016-10-01
The scattering equations, originally introduced by Fairlie and Roberts in 1972 and more recently shown by Cachazo, He and Yuan to provide a kinematic basis for describing tree amplitudes for massless particles in arbitrary space-time dimension, have been reformulated in polynomial form. The scattering equations for N particles are equivalent to N - 3 polynomial equations h m = 0, 1 ≤ m ≤ N - 3, in N - 3 variables, where h m has degree m and is linear in the individual variables. Facilitated by this linearity, elimination theory is used to construct a single variable polynomial equation, Δ N = 0, of degree ( N - 3)! determining the solutions. Δ N is the sparse resultant of the system of polynomial scattering equations and it can be identified as the hyperdeterminant of a multidimensional matrix of border format within the terminology of Gel'fand, Kapranov and Zelevinsky. Macaulay's Unmixedness Theorem is used to show that the polynomials of the scattering equations constitute a regular sequence, enabling the Hilbert series of the variety determined by the scattering equations to be calculated, independently showing that they have ( N - 3)! solutions.
Next-order structure-function equations
NASA Astrophysics Data System (ADS)
Hill, Reginald J.; Boratav, Olus N.
2001-01-01
Kolmogorov's equation [Dokl. Akad. Nauk SSSR 32, 16 (1941)] relates the two-point second- and third-order velocity structure functions and the energy dissipation rate. The analogous next higher-order two-point equation relates the third- and fourth-order velocity structure functions and the structure function of the product of pressure-gradient difference and two factors of velocity difference, denoted Tijk. The equation is simplified on the basis of local isotropy. Laboratory and numerical simulation data are used to evaluate and compare terms in the equation, examine the balance of the equation, and evaluate components of Tijk. Atmospheric surface-layer data are used to evaluate Tijk in the inertial range. Combined with the random sweeping hypothesis, the equation relates components of the fourth-order velocity structure function. Data show the resultant error of this application of random sweeping. The next-order equation constrains the relationships that have been suggested among components of the fourth-order velocity structure function. The pressure structure function, pressure-gradient correlation, and mean-squared pressure gradient are related to Tijk. Inertial range formulas are discussed.
Stochastic nonhomogeneous incompressible Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Cutland, Nigel J.; Enright, Brendan
We construct solutions for 2- and 3-D stochastic nonhomogeneous incompressible Navier-Stokes equations with general multiplicative noise. These equations model the velocity of a mixture of incompressible fluids of varying density, influenced by random external forces that involve feedback; that is, multiplicative noise. Weak solutions for the corresponding deterministic equations were first found by Kazhikhov [A.V. Kazhikhov, Solvability of the initial and boundary-value problem for the equations of motion of an inhomogeneous viscous incompressible fluid, Soviet Phys. Dokl. 19 (6) (1974) 331-332; English translation of the paper in: Dokl. Akad. Nauk SSSR 216 (6) (1974) 1240-1243]. A stochastic version with additive noise was solved by Yashima [H.F. Yashima, Equations de Navier-Stokes stochastiques non homogènes et applications, Thesis, Scuola Normale Superiore, Pisa, 1992]. The methods here extend the Loeb space techniques used to obtain the first general solutions of the stochastic Navier-Stokes equations with multiplicative noise in the homogeneous case [M. Capiński, N.J. Cutland, Stochastic Navier-Stokes equations, Applicandae Math. 25 (1991) 59-85]. The solutions display more regularity in the 2D case. The methods also give a simpler proof of the basic existence result of Kazhikhov.
Exact Pressure Evolution Equation for Incompressible Fluids
NASA Astrophysics Data System (ADS)
Tessarotto, M.; Ellero, M.; Aslan, N.; Mond, M.; Nicolini, P.
2008-12-01
An important aspect of computational fluid dynamics is related to the determination of the fluid pressure in isothermal incompressible fluids. In particular this concerns the construction of an exact evolution equation for the fluid pressure which replaces the Poisson equation and yields an algorithm which is a Poisson solver, i.e., it permits to time-advance exactly the same fluid pressure without solving the Poisson equation. In fact, the incompressible Navier-Stokes equations represent a mixture of hyperbolic and elliptic pde's, which are extremely hard to study both analytically and numerically. This amounts to transform an elliptic type fluid equation into a suitable hyperbolic equation, a result which usually is reached only by means of an asymptotic formulation. Besides being a still unsolved mathematical problem, the issue is relevant for at least two reasons: a) the proliferation of numerical algorithms in computational fluid dynamics which reproduce the behavior of incompressible fluids only in an asymptotic sense (see below); b) the possible verification of conjectures involving the validity of appropriate equations of state for the fluid pressure. Another possible motivation is, of course, the ongoing quest for efficient numerical solution methods to be applied for the construction of the fluid fields {ρ,V,p}, solutions of the initial and boundary-value problem associated to the incompressible N-S equations (INSE). In this paper we intend to show that an exact solution to this problem can be achieved adopting the approach based on inverse kinetic theory (IKT) recently developed for incompressible fluids by Tessarotto et al. [7, 6, 7, 8, 9]. In particular we intend to prove that the evolution of the fluid fields can be achieved by means of a suitable dynamical system, to be identified with the so-called Navier-Stokes (N-S) dynamical system. As a consequence it is found that the fluid pressure obeys a well-defined evolution equation. The result appears
On the Solution of the Rational Matrix Equation[InlineEquation not available: see fulltext.
NASA Astrophysics Data System (ADS)
Benner, Peter; Faßbender, Heike
2007-12-01
We study numerical methods for finding the maximal symmetric positive definite solution of the nonlinear matrix equation[InlineEquation not available: see fulltext.], where[InlineEquation not available: see fulltext.] is symmetric positive definite and[InlineEquation not available: see fulltext.] is nonsingular. Such equations arise for instance in the analysis of stationary Gaussian reciprocal processes over a finite interval. Its unique largest positive definite solution coincides with the unique positive definite solution of a related discrete-time algebraic Riccati equation (DARE). We discuss how to use the butterfly[InlineEquation not available: see fulltext.] algorithm to solve the DARE. This approach is compared to several fixed-point and doubling-type iterative methods suggested in the literature.
A generalized simplest equation method and its application to the Boussinesq-Burgers equation.
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.
Fuhrman, Marco Tessitore, Gianmario
2005-05-15
We study a forward-backward system of stochastic differential equations in an infinite-dimensional framework and its relationships with a semilinear parabolic differential equation on a Hilbert space, in the spirit of the approach of Pardoux-Peng. We prove that the stochastic system allows us to construct a unique solution of the parabolic equation in a suitable class of locally Lipschitz real functions. The parabolic equation is understood in a mild sense which requires the notion of a generalized directional gradient, that we introduce by a probabilistic approach and prove to exist for locally Lipschitz functions.The use of the generalized directional gradient allows us to cover various applications to option pricing problems and to optimal stochastic control problems (including control of delay equations and reaction-diffusion equations),where the lack of differentiability of the coefficients precludes differentiability of solutions to the associated parabolic equations of Black-Scholes or Hamilton-Jacobi-Bellman type.
Mynick, H.E.
1989-05-01
The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/GAMMAT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs.
Fokker-Planck equation in mirror research
Post, R.F.
1983-08-11
Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.
Entanglement Equilibrium and the Einstein Equation.
Jacobson, Ted
2016-05-20
A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.
Supersymmetric Ito equation: Bosonization and exact solutions
Ren Bo; Yu Jun; Lin Ji
2013-04-15
Based on the bosonization approach, the N=1 supersymmetric Ito (sIto) system is changed to a system of coupled bosonic equations. The approach can effectively avoid difficulties caused by intractable fermionic fields which are anticommuting. By solving the coupled bosonic equations, the traveling wave solutions of the sIto system are obtained with the mapping and deformation method. Some novel types of exact solutions for the supersymmetric system are constructed with the solutions and symmetries of the usual Ito equation. In the meanwhile, the similarity reduction solutions of the model are also studied with the Lie point symmetry theory.
Nonlinear gyrokinetic equations for tokamak microturbulence
Hahm, T.S.
1988-05-01
A nonlinear electrostatic gyrokinetic Vlasov equation, as well as Poisson equation, has been derived in a form suitable for particle simulation studies of tokamak microturbulence and associated anomalous transport. This work differs from the existing nonlinear gyrokinetic theories in toroidal geometry, since the present equations conserve energy while retaining the crucial linear and nonlinear polarization physics. In the derivation, the action-variational Lie perturbation method is utilized in order to preserve the Hamiltonian structure of the original Vlasov-Poisson system. Emphasis is placed on the dominant physics of the collective fluctuations in toroidal geometry, rather than on details of particle orbits. 13 refs.
Transonic flutter calculations using the Euler equations
NASA Technical Reports Server (NTRS)
Bendiksen, Oddvar O.; Kousen, Kenneth A.
1989-01-01
In transonic flutter problems where shock motion plays an important part, it is believed that accurate predictions of the flutter boundaries will require the use of codes based on the Euler equations. Only Euler codes can obtain the correct shock location and shock strength, and the crucially important shock excursion amplitude and phase lag. The present study is based on the finite volume scheme developed by Jameson and Venkatakrishnan for the 2-D unsteady Euler equations. The equations are solved in integral form on a moving grid. The variable are pressure, density, Cartesian velocity components, and total energy.
Klein-Gordon Equation in Hydrodynamical Form
Wong, Cheuk-Yin
2010-01-01
We follow and modify the Feshbach-Villars formalism by separating the Klein-Gordon equation into two coupled time-dependent Schroedinger equations for the particle and antiparticle wave functions with positive probability densities. We find that the equation of motion for the probability densities is in the form of relativistic hydrodynamics where various forces have their physical and classical counterparts. An additional element is the presence of the quantum stress tensor that depends on the derivatives of the amplitude of the wave function.
Reducibility of Matrix Equations Containing Several Parameters.
1981-12-01
AD-AI15 568 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO;-ETC EF G 12 1ADA1551 REDUCIBILITY OF MATRIX EQUATIONS CONTAINING SEVERAL...PARAMETERS.E U)CA E UNCLASSIFIED AFIT/GE/RA/81D-1 N P11111111II soonhh Eu;o I. ’Trm * a, ~t- NMI 4 i’- 00Nt. met r~ REDUCIBILITY OF MATRIX EQUATIONS CONTAINING...1 REDUCIBILITY OF MATRIX EQUATIONS CONTAINING SEVERAL PARAMETERS THESIS Presented to the Faculty of the School of Engineering of the Air Force
Shock wave equation of state of muscovite
NASA Technical Reports Server (NTRS)
Sekine, Toshimori; Rubin, Allan M.; Ahrens, Thomas J.
1991-01-01
Shock wave data were obtained between 20 and 140 GPa for natural muscovite obtained from Methuen Township (Ontario), in order to provide a shock-wave equation of state for this crustal hydrous mineral. The shock equation of state data could be fit by a linear shock velocity (Us) versus particle velocity (Up) relation Us = 4.62 + 1.27 Up (km/s). Third-order Birch-Murnaghan equation of state parameters were found to be K(OS) = 52 +/-4 GPa and K-prime(OS) = 3.2 +/-0.3 GPa. These parameters are comparable to those of other hydrous minerals such as brucite, serpentine, and tremolite.
Schrödinger equation revisited.
Schleich, Wolfgang P; Greenberger, Daniel M; Kobe, Donald H; Scully, Marlan O
2013-04-02
The time-dependent Schrödinger equation is a cornerstone of quantum physics and governs all phenomena of the microscopic world. However, despite its importance, its origin is still not widely appreciated and properly understood. We obtain the Schrödinger equation from a mathematical identity by a slight generalization of the formulation of classical statistical mechanics based on the Hamilton-Jacobi equation. This approach brings out most clearly the fact that the linearity of quantum mechanics is intimately connected to the strong coupling between the amplitude and phase of a quantum wave.
Cusp Formation for a Nonlocal Evolution Equation
NASA Astrophysics Data System (ADS)
Hoang, Vu; Radosz, Maria
2017-02-01
Córdoba et al. (Ann Math 162(3):1377-1389, 2005) introduced a nonlocal active scalar equation as a one-dimensional analogue of the surface-quasigeostrophic equation. It has been conjectured, based on numerical evidence, that the solution forms a cusp-like singularity in finite time. Up until now, no active scalar with nonlocal flux is known for which cusp formation has been rigorously shown. In this paper, we introduce and study a nonlocal active scalar, inspired by the Córdoba-Córdoba-Fontelos equation, and prove that either a cusp- or needle-like singularity forms in finite time.
Schrödinger equation revisited
Schleich, Wolfgang P.; Greenberger, Daniel M.; Kobe, Donald H.; Scully, Marlan O.
2013-01-01
The time-dependent Schrödinger equation is a cornerstone of quantum physics and governs all phenomena of the microscopic world. However, despite its importance, its origin is still not widely appreciated and properly understood. We obtain the Schrödinger equation from a mathematical identity by a slight generalization of the formulation of classical statistical mechanics based on the Hamilton–Jacobi equation. This approach brings out most clearly the fact that the linearity of quantum mechanics is intimately connected to the strong coupling between the amplitude and phase of a quantum wave. PMID:23509260
Difference Schemes for Equations of Schrodinger Type.
1984-06-01
the numerical solution of the equation aa = Aus , (1.1) with A w a + il and a_ 0, and its extension to higher dimensions: Alualu, (1.2) where A, at...definition allows the numerical solution to grow with the number of time steps taken. For equations the solutions of which are known to be nonincreasing in...Application, of the Spl’t.step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation , SIAM Review, 15 (1973), pp. 423
A SYMPLECTIC INTEGRATOR FOR HILL'S EQUATIONS
Quinn, Thomas; Barnes, Rory; Perrine, Randall P.; Richardson, Derek C.
2010-02-15
Hill's equations are an approximation that is useful in a number of areas of astrophysics including planetary rings and planetesimal disks. We derive a symplectic method for integrating Hill's equations based on a generalized leapfrog. This method is implemented in the parallel N-body code, PKDGRAV, and tested on some simple orbits. The method demonstrates a lack of secular changes in orbital elements, making it a very useful technique for integrating Hill's equations over many dynamical times. Furthermore, the method allows for efficient collision searching using linear extrapolation of particle positions.
Physical Fields Described By Maxwell's Equations
Ahmetaj, Skender; Veseli, Ahmet; Jashari, Gani
2007-04-23
Fields that satisfy Maxwell's equations of motion are analyzed. Investigation carried out in this work, shows that the free electromagnetic field, spinor Dirac's field without mass, spinor Dirac's field with mass, and some other fields are described by the same variational formulation. The conditions that a field be described by Maxwell's equations of motion are given in this work, and some solutions of these conditions are also given. The question arises, which physical objects are formulated by the same or analogous equations of physics.
Formulas for precession. [motion of mean equator
NASA Technical Reports Server (NTRS)
Kinoshita, H.
1975-01-01
Literal expressions for the precessional motion of the mean equator referred to an arbitrary epoch are constructed. Their numerical representations, based on numerical values recommended at the working meeting of the International Astronomical Union Commission held in Washington in September 1974, are obtained. In constructing the equations of motion, the second-order secular perturbation and the secular perturbation due to the long-periodic terms in the motions of the moon and the sun are taken into account. These perturbations contribute more to the motion of the mean equator than does the term due to the secular perturbation of the orbital eccentricity of the sun.
Minimal relativistic three-particle equations
Lindesay, J.
1981-07-01
A minimal self-consistent set of covariant and unitary three-particle equations is presented. Numerical results are obtained for three-particle bound states, elastic scattering and rearrangement of bound pairs with a third particle, and amplitudes for breakup into states of three free particles. The mathematical form of the three-particle bound state equations is explored; constraints are set upon the range of eigenvalues and number of eigenstates of these one parameter equations. The behavior of the number of eigenstates as the two-body binding energy decreases to zero in a covariant context generalizes results previously obtained non-relativistically by V. Efimov.
NASA Astrophysics Data System (ADS)
Swanson, Ryan David
The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to