Fractional Advective-Dispersive Equation as a Model of Solute Transport in Porous Media
Technology Transfer Automated Retrieval System (TEKTRAN)
Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. The common model is the advective-dispersive equation (ADE) describing the superposition of the advective transport and the Brownian motion in water-filled pore space. Deviations from...
An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...
NASA Astrophysics Data System (ADS)
Benson, D. A.; Zhang, Y.
2006-12-01
Conservative solute transport through natural media is typically "anomalous" or non-Fickian. The anomalous transport may be characterized by faster than linear growth of the centered second moment, or non-Gaussian leading or trailing edges of a plume emanating from a point source. These characteristics develop because of non-local dependence on either past (time) or far upstream (space) concentrations. Non-local equations developed to describe anomalous dispersion usually focus on constant transport parameters and/or independence of the transport on space dimension. These simplifications have been useful for fitting simple transport processes, such as laboratory column tests or 1-D projections of field data. However, they may be insufficient for real field settings, where direction-dependent depositional processes and nonstationary heterogeneity can occur. We develop a generalized, multi-dimensional, spatiotemporal fractional advection- dispersion equation (fADE) with variable parameters to characterize regional-scale anomalous dispersion processes including trapping in immobile zones and/or super-Fickian rapid transport. A Lagrangian numerical model of the space-time fractional transport equation is developed in which solute particles can disperse in both space and time, depending on the medium heterogeneity properties, such as the connectivity and statistical distributions of high versus low-permeability deposits. In the generalized fADE, the range of the order of fractional time derivative is (0 2], representing a wide range of possible trapping behavior. The extension of the order to the range (1 2] is novel to transport theory. We apply the numerical model in 1-D and 2-D to the MADE site tritium plumes, and results indicate that this method can capture the main behaviors of realistic plumes, including local variations of spreading, direction-dependent scaling rates, and arbitrary rapid transport along preferential flow paths. Since the governing equation
NASA Astrophysics Data System (ADS)
Dean, A. M.; Benson, D. A.; Major, E.
2010-12-01
By adding a fractional-in-time term to the traditional advection dispersion equation, a model is able to simulate a late-time heavy-tailed contaminant breakthrough curve. This heavy-tailed breakthrough curve is observed in data collected during a conservative tracer “push-pull” test at the Macrodispersion Experiment (MADE) site. A time fractional advection dispersion equation (fADE) is able to predict power law tailing of conservative solutes by accounting for solutes transferring between the mobile and relatively immobile phases. Solutes can become trapped in a low permeability zone where the transport is controlled by diffusion instead of advection. It has been observed that the late-time heavy-tailed breakthrough curve may follow a power law due to the movement into these low flow zones. By solving the time fADE in a particle tracking program (SLIM-FAST) the model accounts for mass transfer between various phases and produces the same power law tail as observed in field data. For the implementation of the time fADE, in SLIM-FAST, the particles move based on a random-walk motion but have the ability to transition into a relatively immobile phase after (exponentially) random mobile times. Following a period in the immobile phase, the particle re-enters the mobile phase to be moved by advection and Fickian dispersion. To test the fADE approach, a recent single-well push-pull tracer test at the MADE site is reproduced using a groundwater flow code (ParFlow) and a particle tracking code (SLIM-FAST) using various immobile residence-time distributions.
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...
Analytical solution for the advection-dispersion transport equation in layered media
Technology Transfer Automated Retrieval System (TEKTRAN)
The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...
İbiş, Birol
2014-01-01
This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662
Ibiş, Birol; Bayram, Mustafa
2014-01-01
This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662
Solution of the advection-dispersion equation: Continuous load of finite duration
Runkel, R.L.
1996-01-01
Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.
Technology Transfer Automated Retrieval System (TEKTRAN)
The classical model to describe solute transport in soil is based on the advective-dispersive equation where Fick’s law is used to explain dispersion. From the microscopic point of view this is equivalent to consider that the motion of the particles of solute may be simulated by the Brownian motion....
Bad behavior of Godunov mixed methods for strongly anisotropic advection-dispersion equations
NASA Astrophysics Data System (ADS)
Mazzia, Annamaria; Manzini, Gianmarco; Putti, Mario
2011-09-01
We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection-dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.
NASA Astrophysics Data System (ADS)
Parker, Jack C.; Kim, Ungtae
2015-11-01
The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of
Parker, Jack C; Kim, Ungtae
2015-11-01
The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of
Embry, Irucka; Roland, Victor; Agbaje, Oluropo; Watson, Valetta; Martin, Marquan; Painter, Roger; Byl, Tom; Sharpe, Lonnie
2013-01-01
A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less
Technology Transfer Automated Retrieval System (TEKTRAN)
It has been reported that this model cannot take into account several important features of solute movement through soil. Recently, a new model has been suggested that results in a solute transport equation with fractional spatial derivatives, or FADE. We have assembled a database on published solu...
Healy, R.W.; Russell, T.F.
1992-01-01
A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.
Knopman, Debra S.; Voss, Clifford I.
1987-01-01
The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases. (3) The frequency of sampling must be 'in phase' with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters.
Technology Transfer Automated Retrieval System (TEKTRAN)
Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. Contaminants from various industrial and agricultural sources can travel in soil and ground water and eventually affect human and animal health. The parabolic advective-dispersive equ...
Backward fractional advection dispersion model for contaminant source prediction
NASA Astrophysics Data System (ADS)
Zhang, Yong; Meerschaert, Mark M.; Neupauer, Roseanna M.
2016-04-01
The forward Fractional Advection Dispersion Equation (FADE) provides a useful model for non-Fickian transport in heterogeneous porous media. The space FADE captures the long leading tail, skewness, and fast spreading typically seen in concentration profiles from field data. This paper develops the corresponding backward FADE model, to identify source location and release time. The backward method is developed from the theory of inverse problems, and then explained from a stochastic point of view. The resultant backward FADE differs significantly from the traditional backward Advection Dispersion Equation (ADE) because the fractional derivative is not self-adjoint and the probability density function for backward locations is highly skewed. Finally, the method is validated using tracer data from a well-known field experiment, where the peak of the backward FADE curve predicts source release time, while the median or a range of percentiles can be used to determine the most likely source location for the observed plume. The backward ADE cannot reliably identify the source in this application, since the forward ADE does not provide an adequate fit to the concentration data.
Parashar, R.; Cushman, J.H.
2008-06-20
Microbial motility is often characterized by 'run and tumble' behavior which consists of bacteria making sequences of runs followed by tumbles (random changes in direction). As a superset of Brownian motion, Levy motion seems to describe such a motility pattern. The Eulerian (Fokker-Planck) equation describing these motions is similar to the classical advection-diffusion equation except that the order of highest derivative is fractional, {alpha} element of (0, 2]. The Lagrangian equation, driven by a Levy measure with drift, is stochastic and employed to numerically explore the dynamics of microbes in a flow cell with sticky boundaries. The Eulerian equation is used to non-dimensionalize parameters. The amount of sorbed time on the boundaries is modeled as a random variable that can vary over a wide range of values. Salient features of first passage time are studied with respect to scaled parameters.
Healy, R.W.; Russell, T.F.
1998-01-01
We extend the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) for solution of the advection-dispersion equation to two dimensions. The method can conserve mass globally and is not limited by restrictions on the size of the grid Peclet or Courant number. Therefore, it is well suited for solution of advection-dominated ground-water solute transport problems. In test problem comparisons with standard finite differences, FVELLAM is able to attain accurate solutions on much coarser space and time grids. On fine grids, the accuracy of the two methods is comparable. A critical aspect of FVELLAM (and all other ELLAMs) is evaluation of the mass storage integral from the preceding time level. In FVELLAM this may be accomplished with either a forward or backtracking approach. The forward tracking approach conserves mass globally and is the preferred approach. The backtracking approach is less computationally intensive, but not globally mass conservative. Boundary terms are systematically represented as integrals in space and time which are evaluated by a common integration scheme in conjunction with forward tracking through time. Unlike the one-dimensional case, local mass conservation cannot be guaranteed, so slight oscillations in concentration can develop, particularly in the vicinity of inflow or outflow boundaries. Published by Elsevier Science Ltd.
Healy, R.W.; Russell, T.F.
1993-01-01
Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods for solute transport problems that are dominated by advection. FVELLAM systematically conserves mass globally with all types of boundary conditions. Integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking of characteristic lines intersecting inflow boundaries. FVELLAM extends previous results by obtaining mass conservation locally on Lagrangian space-time elements. -from Authors
A Lagrangian-Eulerian finite element method with adaptive gridding for advection-dispersion problems
Ijiri, Y.; Karasaki, K.
1994-02-01
In the present paper, a Lagrangian-Eulerian finite element method with adaptive gridding for solving advection-dispersion equations is described. The code creates new grid points in the vicinity of sharp fronts at every time step in order to reduce numerical dispersion. The code yields quite accurate solutions for a wide range of mesh Peclet numbers and for mesh Courant numbers well in excess of 1.
Technology Transfer Automated Retrieval System (TEKTRAN)
Solute transport in soils and sediments is commonly simulated with the parabolic advective-dispersive equation, or ADE. In the last decades, it has been reported that this model cannot take in account several important features of solute movement through soil. Recently, a new model base on the assu...
Purely Lagrangian Simulation of Advection, Dispersion, Precipitation, and Dissolution
NASA Astrophysics Data System (ADS)
Benson, D.; Zhang, Y.; Reeves, D. M.
2008-05-01
We extend the advantages of Lagrangian random walk particle tracking (RWPT) methods that have long been used to simulate advection and dispersion in highly heterogeneous media. By formulating dissolution as a random, independent decay process, the classical continuum rate law is recovered. Formulating the random precipitation process requires a consideration of the probability that two nearby particles will coincide in a given time period. This depends on local mixing (as by diffusion) and the total domain particle number density, which are fixed and therefore easy to calculate. The result is that the classical law of mass action for equilibrium reactions can be reproduced in an ensemble sense. The same number of parameters for A+B ⇌ C are needed in a probabilistic versus continuum reaction simulation-- —one each for forward and backward probabilities that correspond to rates. The random nature of the simulations allows for significant disequilibrium in any given region at any time that is independent of the numerical details such as time stepping or particle density. This is exemplified by nearby or intermingled groups of reactants and little or no product--—a result that is often noted in the field that is difficult to reconcile with continuum methods or coarse-grained Eulerian models. Our results support recent results of perturbed advection-dispersion-reaction continuum models (Luo et al., WRR 44, 2008), and suggest that many different kinds of reactions can be easily added to existing RWPT codes.
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
Probabilistic exposure risk assessment with advective-dispersive well vulnerability criteria
NASA Astrophysics Data System (ADS)
Enzenhoefer, Rainer; Nowak, Wolfgang; Helmig, Rainer
2012-02-01
Time-related advection-based well-head protection zones are commonly used to manage the contamination risk of drinking water wells. According to current water safety plans advanced risk management schemes are needed to better control and monitor all possible hazards within catchments. The goal of this work is to cast the four advective-dispersive intrinsic well vulnerability criteria by Frind et al. [1] into a framework of probabilistic risk assessment framework. These criteria are: (i) arrival time, (ii) level of peak concentration, (iii) time until first arrival of critical concentrations and (iv) exposure time. Our probabilistic framework yields catchment-wide maps of probabilities to not comply with these criteria. This provides indispensable information for catchment managers to perform probabilistic exposure risk assessment and thus improves the basis for risk-informed well-head management. We resolve heterogeneity with high-resolution Monte Carlo simulations and use a new reverse formulation of temporal moment transport equations to keep computational costs low. Our method is independent of dimensionality and boundary conditions, and can account for arbitrary sources of uncertainty. It can be coupled with any method for conditioning on available data. For simplicity, we demonstrate the concept on a 2D example that includes conditioning on synthetic data.
NASA Astrophysics Data System (ADS)
Cornaton, F.; Perrochet, P.
2006-09-01
Groundwater age and life expectancy probability density functions (pdf) have been defined, and solved in a general three-dimensional context by means of forward and backward advection-dispersion equations [Cornaton F, Perrochet P. Groundwater age, life expectancy and transit time distributions in advective-dispersive systems; 1. Generalized reservoir theory. Adv Water Res (xxxx)]. The discharge and recharge zones transit time pdfs were then derived by applying the reservoir theory (RT) to the global system, thus considering as ensemble the union of all inlet boundaries on one hand, and the union of all outlet boundaries on the other hand. The main advantages in using the RT to calculate the transit time pdf is that the outlet boundary geometry does not represent a computational limiting factor (e.g. outlets of small sizes), since the methodology is based on the integration over the entire domain of each age, or life expectancy, occurrence. In the present paper, we extend the applicability of the RT to sub-drainage basins of groundwater reservoirs by treating the reservoir flow systems as compartments which transfer the water fluxes to a particular discharge zone, and inside which mixing and dispersion processes can take place. Drainage basins are defined by the field of probability of exit at outlet. In this way, we make the RT applicable to each sub-drainage system of an aquifer of arbitrary complexity and configuration. The case of the well-head protection problem is taken as illustrative example, and sensitivity analysis of the effect of pore velocity variations on the simulated ages is carried out.
It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...
NASA Astrophysics Data System (ADS)
Cartwright, Ian
Advection-dispersion fluid flow models implicitly assume that the infiltrating fluid flows through an already fluid-saturated medium. However, whether rocks contain a fluid depends on their reaction history, and whether any initial fluid escapes. The behaviour of different rocks may be illustrated using hypothetical marble compositions. Marbles with diverse chemistries (e.g. calcite + dolomite + quartz) are relatively reactive, and will generally produce a fluid during heating. By contrast, marbles with more restricted chemistries (e.g. calcite + quartz or calcite-only) may not. If the rock is not fluid bearing when fluid infiltration commences, mineralogical reactions may produce a reaction-enhanced permeability in calcite + dolomite + quartz or calcite + quartz, but not in calcite-only marbles. The permeability production controls the pattern of mineralogical, isotopic, and geochemical resetting during fluid flow. Tracers retarded behind the mineralogical fronts will probably be reset as predicted by the advection-dispersion models; however, tracers that are expected to be reset ahead of the mineralogical fronts cannot progress beyond the permeability generating reaction. In the case of very unreactive lithologies (e.g. pure calcite marbles, cherts, and quartzites), the first reaction to affect the rocks may be a metasomatic one ahead of which there is little pervasive resetting of any tracer. Centimetre-scale layering may lead to the formation of self-perpetuating fluid channels in rocks that are not fluid saturated due to the juxtaposition of reactants. Such layered rocks may show patterns of mineralogical resetting that are not predicted by advection-dispersion models. Patterns of mineralogical and isotopic resetting in marbles from a number of terrains, for example: Chillagoe, Marulan South, Reynolds Range (Australia); Adirondack Mountains, Old Woman Mountains, Notch Peak (USA); and Stephen Cross Quarry (Canada) vary as predicted by these models.
Cox, T.J.; Runkel, R.L.
2008-01-01
Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.
Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.
2008-01-01
The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.
2016-02-01
The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.
Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be
NASA Astrophysics Data System (ADS)
Bouchelaghem, F.; Vulliet, L.
2001-10-01
The development of a predictive model of behaviour of porous media during injection of miscible grout, taking into account convection, dilution and filtration of grout solution with interstitial water, as well as consolidation aspects, is presented. Model assumptions are reviewed and discussed first. During the establishment of the model, we insist on surface terms and their physical relevance in expressing adsorption effects. Constitutive laws such as Fick's law for diffusive mass transport, hydrodynamic dispersion tensor dealing with miscibility, are modified by taking into account filtration effects. A new surface term appears in mass balance equations as a consequence of filtration. According to the filtration laws used, an initial filtration rate is estimated on the basis of a one-dimensional experimental campaign. The field equations are discretized by using Galerkin finite element and -scheme standard method. For transport equation, Streamline Upwind Petrov Galerkin method is employed to prevent numerical oscillations. Lastly, confrontation of numerical results with laboratory experiments constitutes a first step to validate the model on a realistic basis.
Lancaster, Jill; Downes, Barbara J
2014-12-01
Many communities comprise species that select resources that are patchily distributed in an environment that is otherwise unsuitable or suboptimal. Effects of this patchiness can depend on the characteristics of patch arrays and animal movements, and produce non-intuitive outcomes in which population densities are unrelated to resource abundance. Resource mosaics are predicted to have only weak effects, however, where patches are ephemeral or organisms are transported advectively. The running waters of streams and benthic invertebrates epitomize such systems, but empirical tests of resource mosaics are scarce. We sampled 15 common macroinvertebrates inhabiting distinct detritus patches at four sites within a sand-bed stream, where detritus formed a major resource of food and living space. At each site, environmental variables were measured for 100 leaf packs; invertebrates were counted in 50 leaf packs. Sites differed in total abundance of detritus, leaf pack sizes and invertebrate densities. Multivariate analysis indicated that patch size was the dominant environmental variable, but invertebrate densities differed significantly between sites even after accounting for patch size. Leaf specialists showed positive and strong density-area relationships, except where the patch size range was small and patches were aggregated. In contrast, generalist species had weaker and variable responses to patch sizes. Population densities were not associated with total resource abundance, with the highest densities of leaf specialists in sites with the least detritus. Our results demonstrate that patchy resources can affect species even in communities where species are mobile, have advective dispersal, and patches are relatively ephemeral. PMID:25190216
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii
A two-sided fractional conservation of mass equation
NASA Astrophysics Data System (ADS)
Olsen, Jeffrey S.; Mortensen, Jeff; Telyakovskiy, Aleksey S.
2016-05-01
A two-sided fractional conservation of mass equation is derived by using left and right fractional Mean Value Theorems. This equation extends the one-sided fractional conservation of mass equation of Wheatcraft and Meerschaert. Also, a two-sided fractional advection-dispersion equation is derived. The derivations are based on Caputo fractional derivatives.
NASA Astrophysics Data System (ADS)
Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.
2013-05-01
Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.
NASA Astrophysics Data System (ADS)
Furbish, David Jon; Childs, Elise M.; Haff, Peter K.; Schmeeckle, Mark W.
2009-09-01
We formulate soil grain transport by rain splash as a stochastic advection-dispersion process. By taking into account the intermittency of grain motions activated by raindrop impacts, the formulation indicates that gradients in raindrop intensity, and thus grain activity (the volume of grains in motion per unit area) can be as important as gradients in grain concentration and surface slope in effecting transport. This idea is confirmed by rain splash experiments and manifest in topographic roughening via mound growth beneath desert shrubs. The formulation provides a framework for describing transport and dispersal of any soil material moveable by rain splash, including soil grains, soil-borne pathogens and nutrients, seeds, or debitage. As such it shows how classic models of topographic "diffusion" reflect effects of slope-dependent grain drift, not diffusion, and it highlights the role of rain splash in the ecological behavior of desert shrubs as "resource islands." Specifically, the growth of mounds beneath shrub canopies, where differential rain splash initially causes more grains to be splashed inward beneath the protective canopy than outward, involves the "harvesting" of nearby soil material, including nutrients. Mounds thus represent temporary storage of soil derived from areas surrounding the shrubs. As the inward grain flux associated with differential rain splash is sustained over the shrub lifetime, mound material is effectively sequestered from erosional processes that might otherwise move this material downslope. With shrub death and loss of the protective canopy, differential rain splash vanishes and the mound material is dispersed to the surrounding area, again subject to downslope movement.
Webb, S.W.
1996-05-01
Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the Dusty- Gas Model (DGM). This model applies the kinetic theory of gases to the gaseous components and the porous media (or ``dust``) to develop an approach for combined transport due to ordinary and Knudsen diffusion and advection including porous medium effects. While these two models both consider advection and diffusion, the formulations are considerably different, especially for ordinary diffusion. The various components of flow (advection and diffusion) are compared for both models. Results from these two models are compared to isothermal experimental data for He-Ar gas diffusion in a low-permeability graphite. Air-water vapor comparisons have also been performed, although data are not available, for the low-permeability graphite system used for the helium-argon data. Radial and linear air-water heat pipes involving heat, advection, capillary transport, and diffusion under nonisothermal conditions have also been considered.
Classical non-Markovian Boltzmann equation
Alexanian, Moorad
2014-08-01
The modeling of particle transport involves anomalous diffusion, (x²(t) ) ∝ t{sup α} with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.
FRACTIONAL SOLUTE TRANSPORT EQUATION EVALUATED WITH THE MISCIBLE DISPLACEMENT EXPERIMENTAL DATA
Technology Transfer Automated Retrieval System (TEKTRAN)
A new solute transport model has been recently developed assuming that the movements of solute particles in hierarchically-structured porous media belongs to the family of Lévy motions rather than to the Brownian motion. The one-dimensional fractional advective-dispersive transport equation, or FADE...
Technology Transfer Automated Retrieval System (TEKTRAN)
The convective-dispersive, or advective-dispersive, or CDE, equation has long been the model of choice for solute transport in soils. Using the total mass of soluble salts in soil profile to evaluate changes in salinity due to irrigation can be beneficial when the spatial variability of soil salini...
Looney, B.B.; Scott, M.T.
1988-12-31
Recent field and laboratory data have confirmed that apparent dispersivity is a function of the flow distance of the measurement. This scale effect is not consistent with classical advection dispersion modeling often used to describe the transport of solutes in saturated porous media. Many investigators attribute this anomalous behavior to the fact that the spreading of solute is actually the result of the heterogeneity of subsurface materials and the wide distribution of flow paths and velocities available in such systems. An analysis using straightforward analytical equations confirms this hypothesis. An analytical equation based on a flow variance approach matches available field data when a variance description of approximately 0.4 is employed. Also, current field data provide a basis for statistical selection of the variance parameter based on the level of concern related to the resulting calculated concentration. While the advection dispersion approach often yielded reasonable predictions, continued development of statistical and stochastic techniques will provide more defendable and mechanistically descriptive models.
Yoon, Eun-Jeong; Courvalin, Patrice
2013-01-01
Increased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) of Acinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. Gene adeB was detected in 13 of 14 isolates, and adeG and the intrinsic adeJ gene were detected in all strains. Significant overexpression of adeB was observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDR A. baumannii as a result of a variety of single mutations in the corresponding two-component regulatory system. PMID:23587960
Yoon, Eun-Jeong; Courvalin, Patrice; Grillot-Courvalin, Catherine
2013-07-01
Increased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) of Acinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. Gene adeB was detected in 13 of 14 isolates, and adeG and the intrinsic adeJ gene were detected in all strains. Significant overexpression of adeB was observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDR A. baumannii as a result of a variety of single mutations in the corresponding two-component regulatory system. PMID:23587960
Marchand, Isabelle; Damier-Piolle, Laurence; Courvalin, Patrice; Lambert, Thierry
2004-09-01
The AdeABC pump of Acinetobacter baumannii BM4454, which confers resistance to various antibiotic classes including aminoglycosides, is composed of the AdeA, AdeB, and AdeC proteins; AdeB is a member of the RND superfamily. The adeA, adeB, and adeC genes are contiguous and adjacent to adeS and adeR, which are transcribed in the opposite direction and which specify proteins homologous to sensors and regulators of two-component systems, respectively (S. Magnet, P. Courvalin, and T. Lambert, Antimicrob. Agents Chemother. 45:3375-3380, 2001). Analysis by Northern hybridization indicated that the three genes were cotranscribed, although mRNAs corresponding to adeAB and adeC were also present. Cotranscription of the two regulatory genes was demonstrated by reverse transcription-PCR. Inactivation of adeS led to aminoglycoside susceptibility. Transcripts corresponding to adeAB were not detected in susceptible A. baumannii CIP 70-10 but were present in spontaneous gentamicin-resistant mutants obtained in vitro. Analysis of these mutants revealed the substitutions Thr153-->Met in AdeS downstream from the putative His-149 site of autophosphorylation, which is presumably responsible for the loss of phosphorylase activity by the sensor, and Pro116-->Leu in AdeR at the first residue of the alpha(5) helix of the receiver domain, which is involved in interactions that control the output domain of response regulators. These mutations led to constitutive expression of the pump and, thus, to antibiotic resistance. These data indicate that the AdeABC pump is cryptic in wild A. baumannii due to stringent control by the AdeRS two-component system. PMID:15328088
Marchand, Isabelle; Damier-Piolle, Laurence; Courvalin, Patrice; Lambert, Thierry
2004-01-01
The AdeABC pump of Acinetobacter baumannii BM4454, which confers resistance to various antibiotic classes including aminoglycosides, is composed of the AdeA, AdeB, and AdeC proteins; AdeB is a member of the RND superfamily. The adeA, adeB, and adeC genes are contiguous and adjacent to adeS and adeR, which are transcribed in the opposite direction and which specify proteins homologous to sensors and regulators of two-component systems, respectively (S. Magnet, P. Courvalin, and T. Lambert, Antimicrob. Agents Chemother. 45:3375-3380, 2001). Analysis by Northern hybridization indicated that the three genes were cotranscribed, although mRNAs corresponding to adeAB and adeC were also present. Cotranscription of the two regulatory genes was demonstrated by reverse transcription-PCR. Inactivation of adeS led to aminoglycoside susceptibility. Transcripts corresponding to adeAB were not detected in susceptible A. baumannii CIP 70-10 but were present in spontaneous gentamicin-resistant mutants obtained in vitro. Analysis of these mutants revealed the substitutions Thr153→Met in AdeS downstream from the putative His-149 site of autophosphorylation, which is presumably responsible for the loss of phosphorylase activity by the sensor, and Pro116→Leu in AdeR at the first residue of the α5 helix of the receiver domain, which is involved in interactions that control the output domain of response regulators. These mutations led to constitutive expression of the pump and, thus, to antibiotic resistance. These data indicate that the AdeABC pump is cryptic in wild A. baumannii due to stringent control by the AdeRS two-component system. PMID:15328088
NONUNIFORM AND UNSTEADY SOLUTE TRANSPORT IN FURROW IRRRIGATION: I. MODEL DEVELOPMENT
Technology Transfer Automated Retrieval System (TEKTRAN)
A model for solving a cross-section-averaged Advection-Dispersion Equation (ADE) was developed to simulate the transport of fertilizer in furrow irrigation. The advection and dispersion processes were solved separately at each time step by implementing a method of characteristics with cubic spline i...
Present research results and communicate the modeling results to science community
Background/Objectives. As a result of subsurface heterogeneity, many field and laboratory studies indicate that the advection-dispersion equation (ADE) model fails to describe the frequently observed long tails of contaminant concentration versus time in a breakthrough curve. T...
Recent progress in solving A-D-E lattice models
NASA Astrophysics Data System (ADS)
Pearce, Paul A.
1994-04-01
There are many families of solvable A-D-E lattice models exhibiting order-disorder transitions. These represent many different universality classes of critical behaviour. Some A-D-E models can be solved off-criticality but most can only be solved at criticality. Here we review the methods being developed to solve these models to gain a detailed understanding of their critical behaviour.
Duval, Nathan; Luhrs, Kyleen; Wilkinson, Terry G; Baresova, Veronika; Skopova, Vaclava; Kmoch, Stanislav; Vacano, Guido N; Zikanova, Marie; Patterson, David
2013-03-01
Purines are molecules essential for many cell processes, including RNA and DNA synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism and transfer, essential coenzyme function, and cell signaling. Purines are produced via the de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans have been associated with various types of cancer. Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical symptoms, including developmental delay, severe neurological symptoms, and autistic features. The pathogenetic mechanism is unknown for these conditions, and no effective treatments exist. The study of cells carrying mutations in the various de novo purine biosynthesis pathway genes provides one approach to analysis of purine disorders. Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method for detection of purine de novo biosynthesis intermediates based on high performance liquid chromatography with electrochemical detection. Using this technique we detected accumulation of AIR in AdeD cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential for metabolite profiling of de novo purine biosynthesis pathway mutants, identification of novel genetic
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
North façade, entrance. The square tower has the remains of ...
North façade, entrance. The square tower has the remains of a sign, Kaiser Foundation Hospital. Horizontal ribbon windows continue on this façade. - Richmond Field Hospital, 1330 Cutting Boulevard, Richmond, Contra Costa County, CA
Disruption of an ADE6 Homolog of Ustilago maydis
Technology Transfer Automated Retrieval System (TEKTRAN)
Ustilago maydis secretes iron-binding compounds during times of iron depletion. A putative homolog of the Sacharromyces cereviseae ADE6 and Escherichia coli purL genes was identified near a multigenic complex, which contains two genes sid1 and sid2 involved in a siderophore biosynthetic pathway. The...
Pagdepanichkit, Sirawit; Tribuddharat, Chanwit; Chuanchuen, Rungtip
2016-09-01
One hundred Acinetobacter baumannii clinical isolates were examined for inhibitory effect of reserpine and carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the antimicrobial susceptibility and expression of 4 resistant-nodulation-cell division (RND)-type multidrug efflux systems, including AdeABC, AdeDE, AdeIJK, and AdeFGH, using RT-PCR. Ten A. baumannii isolates expressing AdeABC, AdeIJK, or AdeFGH were randomly selected for determination of transcription level and regulatory mutations. While all the isolates were resistant to multiple drugs, the reserpine and CCCP experiment showed that the multidrug resistance phenotype in most A. baumannii isolates was associated with efflux pumps. Most isolates expressed at least one of the RND-type efflux pumps tested (97%). AdeIJK expression was most common (97%), but none of the isolates produced AdeDE. Fifty-two percent of the A. baumannii isolates simultaneously produced up to 3 RND-type efflux systems (i.e., AdeABC, AdeFGH, and AdeIJK). No good correlation between the expression of RND-type efflux pumps and the type of antimicrobial resistance was observed. Overexpression of AdeABC, AdeIJK, and AdeFGH was not always related to the presence of mutations in their corresponding regulatory genes. This study highlights (i) the universal presence of the RND-type efflux pumps with variable levels of expression level among the A. baumannii in this collection and (ii) the complexity of their regulation of expression. PMID:27332787
Wilkinson, Terry G.; Baresova, Veronika; Skopova, Vaclava; Kmoch, Stanislav; Vacano, Guido N.; Zikanova, Marie; Patterson, David
2014-01-01
Purines are molecules essential for many cell processes, including RNA and DNA synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism and transfer, essential coenzyme function, and cell signaling. Purines are produced via the de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans have been associated with various types of cancer. Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical symptoms, including developmental delay, severe neurological symptoms, renal stones, combined immunodeficiency, and autistic features. The pathogenetic mechanism is unknown for any of these conditions, and no effective treatments exist. The study of cells carrying mutations in the various de novo purine biosynthesis pathway genes provides one approach to analysis of purine disorders. Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method for detection of purine de novo biosynthesis intermediates based on high performance liquid chromatography with electrochemical detection. Using this technique we detected accumulation of AIR in AdeD cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential for metabolite profiling of de novo purine biosynthesis
Damier-Piolle, Laurence; Magnet, Sophie; Brémont, Sylvie; Lambert, Thierry; Courvalin, Patrice
2008-01-01
We have identified a second resistance-nodulation-cell division (RND)-type efflux pump, AdeIJK, in clinical isolate Acinetobacter baumannii BM4454. The adeI, adeJ, and adeK genes encode, respectively, the membrane fusion, RND, and outer membrane components of the pump. AdeJ belongs to the AcrB protein family (57% identity with AcrB from Escherichia coli). mRNA analysis by Northern blotting and reverse transcription-PCR indicated that the genes were cotranscribed. Overexpression of the cloned adeIJK operon was toxic in both E. coli and Acinetobacter. The adeIJK genes were detected in all of the 60 strains of A. baumannii tested. The two latter observations suggest that the AdeIJK complex might contribute to intrinsic but not to acquired antibiotic resistance in Acinetobacter. To characterize the substrate specificity of the pump, we have constructed derivatives of BM4454 in which adeIJK (strain BM4579), adeABC (strain BM4561), or both groups of genes (strain BM4652) were inactivated by deletion-insertion. Determination of the antibiotic susceptibility of these strains and of BM4652 and BM4579, in which the adeIJK operon was provided in trans, indicated that the AdeIJK pump contributes to resistance to β-lactams, chloramphenicol, tetracycline, erythromycin, lincosamides, fluoroquinolones, fusidic acid, novobiocin, rifampin, trimethoprim, acridine, safranin, pyronine, and sodium dodecyl sulfate. The chemical structure of these molecules suggests that amphiphilic compounds are the preferred substrates. The AdeABC and AdeIJK efflux systems contributed in a more than additive fashion to tigecycline resistance. PMID:18086852
On diagonalization of coupled hydrologic transport and geochemical reaction equations
Yeh, Gour-Tsyh; Cheng, Hwai-Ping
1996-12-31
Two basic ingredients present in modeling the transport of reactive multi-components: the transport is described by a set of advection-dispersion-reactive partial differential equations (PDEs) based on the principle of mass balance; the chemical reactions, under the assumptions of local equilibrium, are described by a set of highly nonlinear algebraic equations (AEs) base on the principles of mole balance and mass action. For a typical application, the complete set of nonlinear PDEs and AEs consist of more than one hundred simultaneous equations. Thus, it is impractical to solve this set of equations simultaneously. General practice is to divide this set of equations into two subsets: one is the primary governing equations (PGEs) consisting of mainly the transport equations and the other one is the secondary governing equations consisting of mainly the geochemical reaction equations. The PGEs are solved for the chosen primary dependent variables (PDVs) and the SGEs are used to compute for the secondary dependent variables (SDVs). The major difficulties in simulating the reactive transport is the numerical solution of PGEs. From the computational point of view, the solution of the set of highly nonlinear PDEs are solved either with the direct substitution approach (DSA) or with the sequential iteration approach (SIA). For DSA, geochemical equilibrium reaction equations are substituted into the hydrologic transport equations to results in a set of nonlinear partial differential equations.
Bipartite Structure of the ade3 Locus of SACCHAROMYCES CEREVISIAE
Jones, Elizabeth W.
1977-01-01
Forty ade3 mutants were examined with respect to their growth requirements, levels of the tetrahydrofolate interconversion enzymes, and/or map positions. Four deletions were detected. Mutations that result in a requirement for adenine and histidine map in one region of the locus; those which result in a requirement for adenine only map in a quite separate region of the locus, a region not disclosed in previous studies. No correlation was observed between growth properties of the strains and enzyme levels. PMID:324867
Exterior building details of Building D, east façade: painted concrete ...
Exterior building details of Building D, east façade: painted concrete east face façade, main entry has flat cement plaster surround, double door six light over panels, two light transom over double door; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Novel Resistance-Nodulation-Cell Division Efflux System AdeDE in Acinetobacter Genomic DNA Group 3
Chau, Sze-Lok; Chu, Yiu-Wai; Houang, Elizabeth T. S.
2004-01-01
Resistance-nodulation-cell division type efflux pump AdeDE was identified in acinetobacters belonging to genomic DNA group 3. Inactivation of adeE showed that it may be responsible for reduced susceptibility to amikacin, ceftazidime, chloramphenicol, ciprofloxacin, erythromycin, ethidium bromide, meropenem, rifampin, and tetracycline. However, unlike what was found for other similar efflux systems, the open reading frame for the outer membrane component was not found downstream of the adeDE gene cluster. PMID:15388479
Anwar, S.; Cortis, A.; Sukop, M.
2008-10-20
Lattice Boltzmann models simulate solute transport in porous media traversed by conduits. Resulting solute breakthrough curves are fitted with Continuous Time Random Walk models. Porous media are simulated by damping flow inertia and, when the damping is large enough, a Darcy's Law solution instead of the Navier-Stokes solution normally provided by the lattice Boltzmann model is obtained. Anisotropic dispersion is incorporated using a direction-dependent relaxation time. Our particular interest is to simulate transport processes outside the applicability of the standard Advection-Dispersion Equation (ADE) including eddy mixing in conduits. The ADE fails to adequately fit any of these breakthrough curves.
Generalized ADE classification of topological boundaries and anyon condensation
NASA Astrophysics Data System (ADS)
Hung, Ling-Yan; Wan, Yidun
2015-07-01
In this paper we would like to demonstrate how the known, physically-motivat-ed rules of anyon condensation proposed by Bais et al. can be recovered by the mathematics of twist-free commutative separable Frobenius algebra (CSFA). In some simple cases, those physical rules are also sufficient conditions defining a twist-free CSFA. This allows us to make use of the generalized ADE classification of CSFA's and modular invariants to classify anyon condensation, characterize the topological boundaries between topological field theories and thus describe all gapped domain walls and gapped boundaries of a large class of topological orders. In fact, this classification is equivalent to the classification we proposed in ref. [1].
Sugawara, Etsuko
2014-01-01
Acinetobacter baumannii contains RND-family efflux systems AdeABC and AdeIJK, which pump out a wide range of antimicrobial compounds, as judged from the MIC changes occurring upon deletion of the responsible genes. However, these studies may miss changes because of the high backgrounds generated by the remaining pumps and by β-lactamases, and it is unclear how the activities of these pumps compare quantitatively with those of the well-studied AcrAB-TolC system of Escherichia coli. We expressed adeABC and adeIJK of A. baumannii, as well as E. coli acrAB, in an E. coli host from which acrAB was deleted. The A. baumannii pumps were functional in E. coli, and the MIC changes that were observed largely confirmed the substrate range already reported, with important differences. Thus, the AdeABC system pumped out all β-lactams, an activity that was often missed in deletion studies. When the expression level of the pump genes was adjusted to a similar level for a comparison with AcrAB-TolC, we found that both A. baumannii efflux systems pumped out a wide range of compounds, but AdeABC was less effective than AcrAB-TolC in the extrusion of lipophilic β-lactams, novobiocin, and ethidium bromide, although it was more effective at tetracycline efflux. AdeIJK was remarkably more effective than a similar level of AcrAB-TolC in the efflux of β-lactams, novobiocin, and ethidium bromide, although it was less so in the efflux of erythromycin. These results thus allow us to compare these efflux systems on a quantitative basis, if we can assume that the heterologous systems are fully functional in the E. coli host. PMID:25246403
Ardebili, Abdollah; Talebi, Malihe
2014-01-01
Background Acinetobacter baumannii is one of the most important pathogens capable of colonization in burn patients, leading to drug-resistant wound infections. This study evaluated the distribution of the AdeABC efflux system genes and their relationship to ciprofloxacin resistance in A. baumannii isolates collected from burn patients. Methods A total of 68 A. baumannii clinical strains were isolated from patients hospitalized in Motahari Burns Center in Tehran, Iran. Ciprofloxacin susceptibility was tested by the disk diffusion and agar dilution methods. PCR amplification of the adeRS-adeB drug efflux genes was performed for all resistant and susceptible isolates. To assess the role of the drug efflux pump in ciprofloxacin susceptibility, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as an efflux pump inhibitor (EPI). Results Approximately 95.6% of the Acinetobacter isolates were resistant to ciprofloxacin, with minimum inhibitory concentration (MIC) values ranging from 4 to ≥128 µg/mL. The susceptibility of 86.1% of the resistant isolates increased by factors of 2 to 64 in the presence of CCCP. All resistant isolates were positive for the adeRS-adeB genes, and 73.2% of them had mutations in the AdeRS regulatory system. Conclusions The results showed that AdeABC genes are common in A. baumannii, which might be associated with ciprofloxacin non-susceptibility, as indicated by the observed linkage to the presence of the genes essential for the activity of the AdeABC, several single mutations occurring in the adeRS regulatory system, and an increase of ciprofloxacin susceptibility in the presence of a CCCP EPI. PMID:25368818
Amundsen, Astrid H; Klæboe, Ronny; Aasvang, Gunn Marit
2011-03-01
The efficacy of façade insulation in providing an improved indoor noise environment and in reducing indoor noise annoyance was examined in a socio-acoustic before-and-after study with a control group. An average equivalent noise reduction inside the dwellings of 7 dB was obtained from the façade insulation. Whereas 42% of the respondents were highly annoyed in the before-situation, this dropped to 16% in the after study. The conclusion is therefore that the façade insulation provided a substantial improvement in the indoor noise environment. The advantage with respect to indoor noise annoyance, of having the bedroom facing the least noise-exposed side of the dwelling corresponded to a 6 dB noise reduction. The changes in annoyance from noise reduction due to the façade insulation were in accordance with what would be expected from the exposure-response curves obtained in the before-situation. A total of 637 respondents participated in the before-study. Of these, 415 also participated in the after study. Indoor and outdoor noise exposure calculations for each of the dwellings were undertaken before and after the façade insulation was implemented. PMID:21428502
Exterior building details of Building D, west façade: brick arch ...
Exterior building details of Building D, west façade: brick arch lintel over historic entry that was brick infilled; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building D, west façade: doublehung wood ...
Exterior building details of Building D, west façade: double-hung wood window with brick arch lintel and brick sill; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building E, oblique west façade: brick ...
Exterior building details of Building E, oblique west façade: brick arch lintel and brick infilled window with brick sill; southeasterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
North façade of crucible steel building; looking southwest Bethlehem ...
North façade of crucible steel building; looking southwest - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA
Wieczorek, Piotr; Sacha, Paweł; Czaban, Sławomir; Hauschild, Tomasz; Ojdana, Dominika; Kowalczuk, Oksana; Milewski, Robert; Poniatowski, Bogusław; Nikliński, Jacek; Tryniszewska, Elżbieta
2013-10-01
Acinetobacter baumannii has emerged as a highly problematic hospital-associated pathogen. Different mechanisms contribute to the formation of multidrug resistance in A. baumannii, including the AdeABC efflux system. Distribution of the structural and regulatory genes encoding the AdeABC efflux system among genetically diverse clinical A. baumannii strains was achieved by using PCR and pulsed-field gel electrophoresis techniques. The distribution of adeABRS genes is extremely high among our A. baumannii strains, except the adeC gene. We have observed a large proportion of strains presenting multidrug-resistance phenotype for several years. The efflux pump could be an important mechanism in these strains in resistance to antibiotics. PMID:23886790
West façade of shop building, looking east Bethlehem Steel ...
West façade of shop building, looking east - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA
Exterior building details of Building B, east façade: second floor ...
Exterior building details of Building B, east façade: second floor entrance with cement plaster profiled surround and embedded wood beam end; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
View north detail of south façade showing damage to wall ...
View north detail of south façade showing damage to wall - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA
View northeast; detail of southwest corner showing damage to façade ...
View northeast; detail of southwest corner showing damage to façade - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA
Exterior building details of Building A; north façade: iron latticed ...
Exterior building details of Building A; north façade: iron latticed gate dungeon entrance, granite base; southerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
East façade, Burton Park Club House, with Amphitheater in foreground, ...
East façade, Burton Park Club House, with Amphitheater in foreground, view to north from Amphitheater stage (90 mm lens). - Burton Park, Club House & Amphitheater, Adjacent ot south end of Chestnut Avenue, San Carlos, San Mateo County, CA
East and north elevations (rear façade) of quarters no. 2, ...
East and north elevations (rear façade) of quarters no. 2, looking southwest. - Sacramento National Wildlife Refuge, Headquarters Complex, Quarters No. 2, 752 County Road 99W, Willows, Glenn County, CA
VIEW WEST OF SOUTH FAÇADE AND EAST END OF BUILDING ...
VIEW WEST OF SOUTH FAÇADE AND EAST END OF BUILDING WITH GREEN HOUSE IN FOREGROUND - New York State Soldiers & Sailors Home, Building No. 78, Department of Veterans Affairs Medical Center, 76 Veterans Avenue, Bath, Steuben County, NY
Exterior building details of Building A; north façade: fouroverfour doublehung ...
Exterior building details of Building A; north façade: four-over-four double-hung wood sash window with concrete sill; southerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building D, west façade: second floor ...
Exterior building details of Building D, west façade: second floor metal multi-pane industrial-type sash windows; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
View of W.I. Elliott Building, 16th Street façade, detail of ...
View of W.I. Elliott Building, 16th Street façade, detail of typical bay with storefront, view from 16th Street, facing west. - W.I. Elliott Building, 1530 J Street, Sacramento, Sacramento County, CA
Exterior building details of Building B, east façade: ellshaped south ...
Exterior building details of Building B, east façade: ell-shaped south facing concrete staircase with decorative pipe railing, second floor entrance with cement plaster profiled surround, dentil course cornice, truncated embedded wood beams, cream colored plaster-finished exterior façade, closed off window well with protruding vent; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Architectural Kansei of ‘Wall’ in The Façade Design by Le Corbusier
NASA Astrophysics Data System (ADS)
Sendai, Shoichiro
The purpose of this paper is to discuss the modern architect Le Corbusier's architectural Kansei (sensibility) on wall in site environment through the analysis of his façade design, using Œuvres complètes (1910-1965, 8 vols., Les éditions d'architecture, Artemis, Zurich) and Le Corbusier Archives (1982-1984, 32 vols., Garland Publishing, Inc. and Fondation Le Corbusier, New York, London, Paris). At first, I arrange five façade types, according to the explanation by Le Corbusier ; ‘fenêtre en longueur (strip window)’, ‘pan de verre (glass wall)’, ‘brise-soleil (sun-breaker)’, ‘loggia’ and ‘claustra’. Through the analysis of the relationship between these types and the design process of each building, we find that Le Corbusier's façade design includes the affirmation and the negation of the ‘wall’ at the same time. In fact, the nature of façade modification during design process is divers: increase in transparency, decrease in transparency and spatialization of façade. That means, Le Corbusier studied the environmental condition by these façade types, and tried to realize the phenomenal openness. This trial bases on the function of architectural Kansei as correspondence between body and environment beyond the physical design.
Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water
NASA Technical Reports Server (NTRS)
Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.
1994-01-01
Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.
Solute transport in dual-permeability porous media
NASA Astrophysics Data System (ADS)
Leij, Feike J.; Toride, Nobuo; Field, Malcolm S.; Sciortino, Antonella
2012-04-01
A dual-advection dispersion equation (DADE) is presented and solved to describe solute transport in structured or layered porous media with different nonzero flow rates in two distinct pore domains with linear solute transfer between them. This dual-permeability model constitutes a generalized version of the advection-dispersion equation (ADE) for transport in uniform porous media and the mobile-immobile model (MIM) for transport in media with a mobile and an immobile pore domain. Analytical tools for the DADE have mostly been lacking. An analytical solution has therefore been derived using Laplace transformation with time and modal decomposition based on matrix diagonalization, assuming the same dispersivity for both domains. Temporal moments are derived for the DADE and contrasted with those for the ADE and the MIM. The effective dispersion coefficient for the DADE approaches that of the ADE for a similar velocity in both pore domains and large values for the first-order transfer parameter, and approaches that of the MIM for the opposite conditions. The solution of the DADE is used to illustrate how differences in pore water velocity between the domains and low transfer rates will lead to double peaks in the volume- or flux-averaged concentration profiles versus time or position. The DADE is applied to optimize experimental breakthrough curves for an Andisol with a distinct intra- and interaggregate porosity. The DADE improved the description of the breakthrough data compared to the ADE and the MIM.
Detecting blind building façades from highly overlapping wide angle aerial imagery
NASA Astrophysics Data System (ADS)
Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas
2014-10-01
This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.
A Security-façade Library for Virtual-observatory Software
NASA Astrophysics Data System (ADS)
Rixon, G.
2009-09-01
The security-façade library implements, for Java, IVOA's security standards. It supports the authentication mechanisms for SOAP and REST web-services, the sign-on mechanisms (with MyProxy, AstroGrid Accounts protocol or local credential-caches), the delegation protocol, and RFC3820-enabled HTTPS for Apache Tomcat. Using the façade, a developer who is not a security specialist can easily add access control to a virtual-observatory service and call secured services from an application. The library has been an internal part of AstroGrid software for some time and it is now offered for use by other developers.
EXTERIOR PERSPECTIVE FROM BARN YARD SHOWING EAST AND SOUTH FAÇADES ...
EXTERIOR PERSPECTIVE FROM BARN YARD SHOWING EAST AND SOUTH FAÇADES OF THE BARN, LOOKING NORTHWEST. The sliding door on the barns east façade leads into the animal pens and milking stalls. The barns hip-on-gable roof is covered in corrugated metal. The gable end is clad in board and battens, matching the rest of the barns exterior. The pump house can be seen to the north; the garage to the west. - Kineth Farm, Barn, 19162 STATE ROUTE 20, Coupeville, Island County, WA
D Building FAÇADE Reconstruction Using Handheld Laser Scanning Data
NASA Astrophysics Data System (ADS)
Sadeghi, F.; Arefi, H.; Fallah, A.; Hahn, M.
2015-12-01
3D The three dimensional building modelling has been an interesting topic of research for decades and it seems that photogrammetry methods provide the only economic means to acquire truly 3D city data. According to the enormous developments of 3D building reconstruction with several applications such as navigation system, location based services and urban planning, the need to consider the semantic features (such as windows and doors) becomes more essential than ever, and therefore, a 3D model of buildings as block is not any more sufficient. To reconstruct the façade elements completely, we employed the high density point cloud data that obtained from the handheld laser scanner. The advantage of the handheld laser scanner with capability of direct acquisition of very dense 3D point clouds is that there is no need to derive three dimensional data from multi images using structure from motion techniques. This paper presents a grammar-based algorithm for façade reconstruction using handheld laser scanner data. The proposed method is a combination of bottom-up (data driven) and top-down (model driven) methods in which, at first the façade basic elements are extracted in a bottom-up way and then they are served as pre-knowledge for further processing to complete models especially in occluded and incomplete areas. The first step of data driven modelling is using the conditional RANSAC (RANdom SAmple Consensus) algorithm to detect façade plane in point cloud data and remove noisy objects like trees, pedestrians, traffic signs and poles. Then, the façade planes are divided into three depth layers to detect protrusion, indentation and wall points using density histogram. Due to an inappropriate reflection of laser beams from glasses, the windows appear like holes in point cloud data and therefore, can be distinguished and extracted easily from point cloud comparing to the other façade elements. Next step, is rasterizing the indentation layer that holds the windows
Richmond, Grace E.; Evans, Laura P.; Anderson, Michele J.; Wand, Matthew E.; Bonney, Laura C.; Ivens, Alasdair; Chua, Kim Lee; Webber, Mark A.; Sutton, J. Mark; Peterson, Marnie L.
2016-01-01
ABSTRACT The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. PMID:27094331
Exterior building details of Building C, east façade: historic fouroverfour ...
Exterior building details of Building C, east façade: historic four-over-four window, brick lintel, brick quoins, corbelled brick cornice, spiral metal staircase to inclined stairs rising to second floor cantilever wooden walkway; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building B, west façade: road level ...
Exterior building details of Building B, west façade: road level four-over-four double-hung painted-wood windows with brick sill and arch brick lintels; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building C, east façade: inscribed date ...
Exterior building details of Building C, east façade: inscribed date panel "hospital 1885", corbelled brick belt course, parapet, second floor historic four-over-four window with brick lintels, quoins and decorative metal grilled, cantilever wooden walkway; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building A; west façade: exposed common ...
Exterior building details of Building A; west façade: exposed common bond brick wall, arched brick lintels over a two single-light casement window with brick sills, arched brick lintel over door cornice; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building C, south façade: second floor" ...
Exterior building details of Building C, south façade: second floor" four-over-four windows, arch brick lintels, brick sills, decorative metal grilles and tiebacks; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building C, west façade: second floor: ...
Exterior building details of Building C, west façade: second floor: four-over-four windows, arch brick lintels, brick sills, decorative metal grilles; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Assessing FAÇADE Visibility in 3d City Models for City Marketing
NASA Astrophysics Data System (ADS)
Albrecht, F.; Moser, J.; Hijazi, I.
2013-08-01
In city marketing, different applications require the evaluation of the visual impression of displays in the urban environment on people that visit the city. Therefore, this research focuses on the way how visual displays on façades for movie performances are perceived during a cultural event triggered by city marketing. We describe the different visibility analysis methods that are applicable to the analysis of façades. The methods advanced from the domains of Geographic Information Science, architecture and computer graphics. A detailed scenario is described in order to perform a requirements analysis for identifying the requirements to visibility information. This visibility information needs to describe the visual perception of displays on façades adequately. The requirements are compared to the visibility information that can be provided by the visibility methods. A discussion of the comparison summarizes the advantages and disadvantages of existing visibility analysis methods for describing the visibility of façades. The results show that part of the researched approaches is able to support the requirements to visibility information. But they also show that for a complete support of the entire analysis workflow, there remain unsolved workflow integration issues.
ELEVATION VIEW OF MILK HOUSE SOUTH FAÇADE, WITH GRANARY TO ...
ELEVATION VIEW OF MILK HOUSE SOUTH FAÇADE, WITH GRANARY TO THE NORTHEAST. (Ralph Engle expanded the dairy industry on the farm, and constructed this milk house in 1936. Its stone construction, unique to the area, is practical for keeping fresh milk cooled.) - Engle Farm, Milk House, 89 South Ebey Road, Coupeville, Island County, WA
Exterior building details of Building B, west façade: two paintedwood ...
Exterior building details of Building B, west façade: two painted-wood single-light casements over two-light casements with concrete sill and arch brick lintel, over infilled brick patch with arch brick lintel, brick lintel above windows and brick infilled oval; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building A; east façade: recessed panel ...
Exterior building details of Building A; east façade: recessed panel inscribed "1859", historic window opening with concrete sill above door, cement plaster dentil course and cornice, truncated wood beam ends, plaster finished brick wall, granite base; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building C, east façade: brick quoins, ...
Exterior building details of Building C, east façade: brick quoins, brick lintels, brick window sills, decorative metal grilles, scored cement finished brick wall; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building A; east façade: profiled cement ...
Exterior building details of Building A; east façade: profiled cement plaster door surround, black mesh gate protects a two-light transom atop non-original metal door; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building A; east façade: concrete staircase, ...
Exterior building details of Building A; east façade: concrete staircase, profiled cement, plaster door surround, recessed panel inscribed "1859", historic window opening with concrete sill above door, cement plaster dentil course and cornice truncated wood beam ends, plaster finished brick wall, granite base; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building C, east façade: historic six ...
Exterior building details of Building C, east façade: historic six light entry double door with three light transom, historic six light door with a one light transom, arch brick lintels and quoins, scored cement plaster finished brick walls; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building A; north façade: two threelight ...
Exterior building details of Building A; north façade: two three-light wood casement windows flank a three-light fixed wood window with concrete sill; southerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
SOUTH FAÇADE OF THE GRANARY FROM PARKING LOT. (Vinyl windows ...
SOUTH FAÇADE OF THE GRANARY FROM PARKING LOT. (Vinyl windows and a door were added to the granary in 2000-01 along with the patio and landscaping. The workshop and cattle pasture can be seen behind the granary.) - Jenne Farm, Granary, 538 Engle Road, Coupeville, Island County, WA
Exterior building details of Building A; east façade: fixed fiveoverfive ...
Exterior building details of Building A; east façade: fixed five-over-five wood windows with five-light hoppers with concrete sills; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Automatic modelling of building façade objects via primitive shapes
NASA Astrophysics Data System (ADS)
Hetti Arachchige, N.; Perera, S.
2014-08-01
This paper presents a new approach to recognize individual façade objects and to reconstruct such objects in 3D using MLS point clouds. Core of the approach is a primitive shape based algorithm, which introduces building primitives, to identify the façade objects separately from other irrelevant objects and then to model the correct topology. The primitive shape is identified against defined different primitive shapes by using the Douglas-Peucker algorithm. The advantage of this process is that it offers an ability not only to model correct geometric shapes but also to remove occlusion effects from the final model. To evaluate the validity of the proposed approach, experiments have been conducted using two types of street scene point clouds captured by Optech Lynx Mobile Mapper System and Z+F laser scanner. Results of the experiments show that the completeness, correctness, and quality of the reconstructed building façade objects are well over 90 %, proving the proposed method is a promising solution for modelling 3D façade objects with different geometric shapes.
Detail, typical window fenestrations, east façade, view to westnorthwest (135mm ...
Detail, typical window fenestrations, east façade, view to west-northwest (135mm lens). Note "timber" header, adobe bench in front of window. - Burton Park, Club House & Amphitheater, Adjacent ot south end of Chestnut Avenue, San Carlos, San Mateo County, CA
VIEW OF PART OF THE MILL FAÇADE STRAIGHTON FROM KEKAHA ...
VIEW OF PART OF THE MILL FAÇADE STRAIGHT-ON FROM KEKAHA ROAD WITH FRONT FACING GABLE OF CRUSHING MILL AND A PORTION OF THE LATERAL RUNNING MACHINE SHOP. VIEW FROM THE NORTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI
VIEW OF PART OF THE MILL FAÇADE STRAIGHTON FROM KEKAHA ...
VIEW OF PART OF THE MILL FAÇADE STRAIGHT-ON FROM KEKAHA ROAD WITH METAL AND ELECTRICAL SHOPS IN FOREGROUND AND STACK BEHIND. VIEW FROM THE NORTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI
View of rear façade of office building; note projecting bay, ...
View of rear façade of office building; note projecting bay, above the basement level, which commanded a view of the iron works - Everett Iron Company, Office Building, 0.25 mile Southwest of Everett, Earlston, Bedford County, PA
Leaching of biocides from façades under natural weather conditions.
Burkhardt, M; Zuleeg, S; Vonbank, R; Bester, K; Carmeliet, J; Boller, M; Wangler, T
2012-05-15
Biocides are included in organic building façade coatings as protection against biological attack by algae and fungi but have the potential to enter the environment via leaching into runoff from wind driven rain. The following field study correlates wind driven rain to runoff and measured the release of several commonly used organic biocides (terbutryn, Irgarol 1051, diuron, isoproturon, OIT, DCOIT) in organic façade coatings from four coating systems. During one year of exposure of a west oriented model house façade in the Zurich, Switzerland area, an average of 62.7 L/m(2), or 6.3% of annual precipitation came off the four façade panels installed as runoff. The ISO method for calculating wind driven rain loads is adapted to predict runoff and can be used in the calculation of emissions in the field. Biocide concentrations tend to be higher in the early lifetime of the coatings and then reach fairly consistent levels later, generally ranging on the order of mg/L or hundreds of μg/L. On the basis of the amount remaining in the film after exposure, the occurrence of transformation products, and the calculated amounts in the leachate, degradation plays a significant role in the overall mass balance. PMID:22524149
PRIMARY ENTRANCE INTO THE JENNE FARM, WEST FAÇADE. (The Jenne ...
PRIMARY ENTRANCE INTO THE JENNE FARM, WEST FAÇADE. (The Jenne Barn has board and batten exterior cladding and sits above-grade on a poured concrete foundation. The barn is painted red with white trim. This door is painted green.) - Jenne Farm, Barn, 538 Engle Road, Coupeville, Island County, WA
Slicing Method for curved façade and window extraction from point clouds
NASA Astrophysics Data System (ADS)
Iman Zolanvari, S. M.; Laefer, Debra F.
2016-09-01
Laser scanning technology is a fast and reliable method to survey structures. However, the automatic conversion of such data into solid models for computation remains a major challenge, especially where non-rectilinear features are present. Since, openings and the overall dimensions of the buildings are the most critical elements in computational models for structural analysis, this article introduces the Slicing Method as a new, computationally-efficient method for extracting overall façade and window boundary points for reconstructing a façade into a geometry compatible for computational modelling. After finding a principal plane, the technique slices a façade into limited portions, with each slice representing a unique, imaginary section passing through a building. This is done along a façade's principal axes to segregate window and door openings from structural portions of the load-bearing masonry walls. The method detects each opening area's boundaries, as well as the overall boundary of the façade, in part, by using a one-dimensional projection to accelerate processing. Slices were optimised as 14.3 slices per vertical metre of building and 25 slices per horizontal metre of building, irrespective of building configuration or complexity. The proposed procedure was validated by its application to three highly decorative, historic brick buildings. Accuracy in excess of 93% was achieved with no manual intervention on highly complex buildings and nearly 100% on simple ones. Furthermore, computational times were less than 3 sec for data sets up to 2.6 million points, while similar existing approaches required more than 16 hr for such datasets.
Antifungal efficiency assessment of the TiO2 coating on façade paints.
Vučetić, Snežana B; Rudić, Ognjen Lj; Markov, Siniša L; Bera, Oskar J; Vidaković, Ana M; Skapin, Andrijana S Sever; Ranogajec, Jonjaua G
2014-10-01
The work studies the photocatalytic activity and the antifungal efficiency of the TiO2/Zn-Al coatings placed on the target commercial façade paints. The photocatalytic active nanocomposite based on TiO2 and Zn-Al-layered double hydroxides (ZnAl-LDHs) was synthesized by a wet impregnation technique with 3 % w/w TiO2. The freshly prepared suspension was applied by spray technique on the surfaces of the white façade paints. The goal of the work was to develop a method that quickly quantifies the antifungal activity of the commercial façade paints with and without biocidal components covered with a photocatalytic coating. The essence of the proposed method is the monitoring of the fungal growth (artificial ageing conditions) and the quantification of its development (UV-A 0.13 mWcm(-2)) on the façade paint surfaces. A special fungus nutrient (potato dextrose agar (PDA)) was inoculated with the spores of the Aspergillus niger ATCC 6275, and the test samples (façade paints with and without photocatalytic coating) were placed on the inoculated nutrient in the petri dishes. The images of the fungal growth on the samples of the facade paints, during a period of 5 days, were imported into Matlab R2012a where they were converted to binary images (BW), based on the adequate threshold. The percentage of the surface coverage was calculated by applying the specifically written program code which determines the ratio of the black and white pixels. The black pixels correspond to the surface covered with hyphae and mycelia of the fungus. PMID:24875311
O'Donnell, A F; Tiong, S; Nash, D; Clark, D V
2000-01-01
Steps 6 and 7 of de novo purine synthesis are performed by 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-[(N-succinylamino)carbonyl]-5-aminoimidazole ribonucleotide synthetase (SAICARs), respectively. In vertebrates, a single gene encodes AIRc-SAICARs with domains homologous to Escherichia coli PurE and PurC. We have isolated an AIRc-SAICARs cDNA from Drosophila melanogaster via functional complementation with an E. coli purC purine auxotroph. This cDNA encodes AIRc yet is unable to complement an E. coli purE mutant, suggesting functional differences between Drosophila and E. coli AIRc. In vertebrates, the AIRc-SAICARs gene shares a promoter region with the gene encoding phosphoribosylamidotransferase, which performs the first step in de novo purine synthesis. In Drosophila, the AIRc-SAICARs gene maps to section 11B4-14 of the X chromosome, while the phosphoribosylamidotransferase gene (Prat) maps to chromosome 3; thus, the close linkage of these two genes is not conserved in flies. Three EMS-induced X-linked adenine auxotrophic mutations, ade4(1), ade5(1), and ade5(2), were isolated. Two gamma-radiation-induced (ade5(3) and ade5(4)) and three hybrid dysgenesis-induced (ade5(5), ade5(6), and ade5(8)) alleles were also isolated. Characterization of the auxotrophy and the finding that the hybrid dysgenesis-induced mutations all harbor P transposon sequences within the AIRc-SAICARs gene show that ade5 encodes AIRc-SAICARs. PMID:10757766
A Comparison of SVD, SVR, ADE and IRR for Latent Semantic Indexing
NASA Astrophysics Data System (ADS)
Zhang, Wen; Tang, Xijin; Yoshida, Taketoshi
Recently, singular value decomposition (SVD) and its variants, which are singular value rescaling (SVR), approximation dimension equalization (ADE) and iterative residual rescaling (IRR), were proposed to conduct the job of latent semantic indexing (LSI). Although they are all based on linear algebraic method for tem-document matrix computation, which is SVD, the basic motivations behind them concerning LSI are different from each other. In this paper, a series of experiments are conducted to examine their effectiveness of LSI for the practical application of text mining, including information retrieval, text categorization and similarity measure. The experimental results demonstrate that SVD and SVR have better performances than other proposed LSI methods in the above mentioned applications. Meanwhile, ADE and IRR, because of the too much difference between their approximation matrix and original term-document matrix in Frobenius norm, can not derive good performances for text mining applications using LSI.
Integration of Images and LIDAR Point Clouds for Building FAÇADE Texturing
NASA Astrophysics Data System (ADS)
Chen, L. C.; Chan, L. L.; Chang, W. C.
2016-06-01
This paper proposes a model-based method for texture mapping using close-range images and Lidar point clouds. Lidar point clouds are used to aid occlusion detection. For occluded areas, we compensate the occlusion by different view-angle images. Considering the authenticity of façade with repeated patterns under different illumination conditions, a selection of optimum pattern is suggested. In the selection, both geometric shape and texture are analyzed. The grey level co-occurrence matrix analysis is applied for the selection of the optimal façades texture to generate of photorealistic building models. Experimental results show that the proposed method provides high fidelity textures in the generation of photorealistic building models. It is demonstrated that the proposed method is also practical in the selection of the optimal texture.
Exterior building details of Building A; west façade: white painted ...
Exterior building details of Building A; west façade: white painted brick wall of road and second level, road level: paired four-light casement window and a small single-light wood casement window; second level: four-over-four wood double-hung window and a six-light horizontal pivot over a three-light fixed window; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
Exterior building details of Building B, east façade: embedded wood ...
Exterior building details of Building B, east façade: embedded wood beams and interrupted dentil course cornice resulting from the removal of the third floor tuberculosis ward, yard level paneled Dutch door, second level two a typical six-light wood casement windows over a single-panel wood door with four light exits to fire escape; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
CROCKETT BARN SOUTH AND EAST FAÇADES, LOOKING NORTH. The Crockett ...
CROCKETT BARN SOUTH AND EAST FAÇADES, LOOKING NORTH. The Crockett barn was constructed into the sloping landscape. The Pennsylvania Bank Barn construction style allows for access at ground level on both the upper and lower floors. The Crockett granary is visible on the right hand side of the photograph. Currently a property line runs between the two buildings. - Crockett Farm, Barn, 1056 Fort Casey Road, Coupeville, Island County, WA
Semi-Automatic Building Models and FAÇADE Texture Mapping from Mobile Phone Images
NASA Astrophysics Data System (ADS)
Jeong, J.; Kim, T.
2016-06-01
Research on 3D urban modelling has been actively carried out for a long time. Recently the need of 3D urban modelling research is increased rapidly due to improved geo-web services and popularized smart devices. Nowadays 3D urban models provided by, for example, Google Earth use aerial photos for 3D urban modelling but there are some limitations: immediate update for the change of building models is difficult, many buildings are without 3D model and texture, and large resources for maintaining and updating are inevitable. To resolve the limitations mentioned above, we propose a method for semi-automatic building modelling and façade texture mapping from mobile phone images and analyze the result of modelling with actual measurements. Our method consists of camera geometry estimation step, image matching step, and façade mapping step. Models generated from this method were compared with actual measurement value of real buildings. Ratios of edge length of models and measurements were compared. Result showed 5.8% average error of length ratio. Through this method, we could generate a simple building model with fine façade textures without expensive dedicated tools and dataset.
Conservation of Stone Cladding on the FAÇADE of Royal Palace in Caserta
NASA Astrophysics Data System (ADS)
Titomanlio, I.
2013-07-01
The beauty of cultural heritage and monumental architecture, is often linked to their non-structural elements and decorative stones façades cladding. The collapse of these elements causes significant consequences that interest the social, the economic, the historical and the technical fields. Several regulatory documents and literature studies contain methods to address the question of relief and of the risk analysis and due to the non - structural stones security. Among the references are widespread international regulatory documents prepared by the Federal Emergency Management Agency of the United States by Applied Technology Council and California. In Italy there are some indications contained in the Norme Tecniche per le Costruzioni and the Direttiva del Presidente del Consiglio dei Ministri in 2007, finalize to the reduction of seismic risk assessment of cultural heritage. The paper, using normative references and scientific researches, allows to analyze on Royal Palace of Caserta the safety and the preservation of cultural heritage and the vulnerability of non-structural stones façade cladding. Using sophisticated equipments of Laboratory ARS of the Second University of Naples, it was possible to analyze the collapse of stone elements due to degradation caused by natural phenomena of deterioration (age of the building, type of materials, geometries , mode of fixing of the elements themselves). The paper explains the collapse mechanisms of stones façade cladding of Luigi Vanvitelli Palace.
Dynamic typology of hydrothermal systems: competing effects of advection, dispersion and reactivity
NASA Astrophysics Data System (ADS)
Dolejs, David
2016-04-01
Genetic interpretation hydrothermal systems relies on recognition of (i) hydrothermal fluid source, (ii) fluid migration pathways, and (iii) deposition site identified by hydrothermal alteration and/or mineralization. Frequently, only the last object is of interest or accessible to direct observation, but constraints on the fluid source (volume) and pathways can be obtained from evaluation of the time-integrated fluid flux during hydrothermal event. Successful interpretation of the petrological record, that is, progress of alteration reactions, relies on identification of individual contributions arising from solute advection (to the deposition site), its lateral dispersion, and reaction efficiency. Although these terms are all applicable in a mass-conservation relationship within the framework of the transport theory, they are rarely considered simultaneously and their relative magnitudes evaluated. These phenomena operate on variable length and time scales, and may in turn provide insight into the system dynamics such as flow, diffusion and reaction rates, or continuous vs. episodic behavior of hydrothermal events. In addition, here we demonstrate that they also affect estimate of the net fluid flux, frequently by several orders of magnitude. The extent of alteration and mineralization reactions between the hydrothermal fluid and the host environment is determined by: (i) temperature, pressure or any other gradients across the mineralization site, (ii) magnitude of disequilibrium at inflow to the mineralization site, which is related to physico-chemical gradient between the fluid source and the mineralization site, and (iii) chemical redistribution (dispersion) within the mineralization site. We introduce quantitative mass-transport descriptors - Péclet and Damköhler II numbers - to introduce division into dispersion-dominated, advection-dominated and reaction-constrained systems. Dispersive systems are characterized by lateral solute redistribution, driven by internal gradients and reactions in these systems are largely insensitive to the dynamics of the fluid flow. The time-intergrated fluid flux cannot be estimated from the petrological record and, in the limiting case, the net fluid flux can be zero (stagnant system in a porosity trap). This mechanism may be characteristic for Alpine-style vein assemblages and segregations in metamorphic terrains, where dissolution-reprecipitation is most likely assisted by transient gradients in stress field. Advection-dominated systems are characterized by a limited extent of chemical transport by dispersion with respect to interconnected size of the system. Progress of the alteration reactions in these systems is controlled independently by internal gradient(s) as the fluid moves through the mineralization site and magnitude of disequilibrium between the fluid and the host rock at the inflow. When the fluid flow rates remain low (e.g., dispersed metamorphic devolatilization), steady gradients along the fluid flow path exert the principal control, as commonly incorporated in the transport theory (Dolejš and Manning 2010, Ague 2014). When the fluid flow is rapid, the disequilibrium between the fluid and the host rock dictates the reaction efficiency, and the transport theory based on local equilibrium tends to significantly overestimate the net fluid flux. Advection-dominated systems with variable flow rates comprise a wide range of porosity- and fracture-controlled hydrothermal systems in intrusive and volcanic settings. With furter increase in the fluid flow rate, the advection-dominated systems evolved into reaction-constrained behavior. The mineral reaction progress is generally smaller, and the time-integrated fluid fluxes were likely much larger than petrologically estimated. These model examples illustrate that a functional description and classification of hydrothermal systems can address the causal relationships between length scales of solute (metal) sources and accumulations, and link them to time and reactivity scales necessary for the fluid transport and focusing. Dolejš D., Manning C. E., 2010. Geofluids 10, 20-40. Ague J. J., 2014. Treatise on Geochemistry 4, 203-247.
NASA Astrophysics Data System (ADS)
Bouchelaghem, F.; Vulliet, L.; Leroy, D.; Laloui, L.; Descoeudres, F.
2001-10-01
A model was developed, to describe miscible grout propagation in a saturated deformable porous medium, based on Bear's statistical model with spatial volume averaging. In a previous paper, the model was first successfully confronted to one-dimensional laboratory experiments.In the present paper, the numerical model is used to simulate practical grouting operation in a cylindrical injection model. The cylindrical injection model lends itself to study main flow and propagation character istics for a dispersed suspension-type grout, under axisymmetric conditions close to real scale conditions.Comparison between numerical solutions and experimental results is essential to confirm the validity and accuracy of the proposed model from a phenomenological standpoint. The numerical model performances show that the underlying mathematical model constitutes a realistic predictive model reproducing most prominent features during injection of a suspension-type grout into a deformable porous medium. The basic mechanism by which injected miscible grout permeates a soil mass is discussed in detail. Such a tool leads to quality control criteria for grouting on a theoretical basis, which complements existing criteria acquired through engineering practice.
NASA Astrophysics Data System (ADS)
Zaramella, M.; Marion, A.; Lewandowski, J.; Nützmann, G.
2016-07-01
Solute transport in rivers is controlled by surface flow hydrodynamics and by transient storage in dead zones, pockets of vegetation and hyporheic sediments where mass exchange and retention are governed by complex mechanisms. The physics of these processes are generally investigated by optimization of transient storage models (TSMs) to experimental data often yielding inconsistent and equifinal parameter sets. Uncertainty on parameters estimation is found to depend not only on the rates of exchange between the stream and storage zones, the stream-water velocity and the stream reach length according to the experimental Damkohler number (DaI), but also on the relative significance between transient storage and longitudinal dispersion on breakthrough curves (BTCs). An optimization strategy was developed and applied to an experimental dataset obtained from tracer tests in a small lowland river, analyzing BTCs generated through tracer injections under different conditions. The method supplies a tool to estimate model parameters from observed data through the analysis of the relative parameter significance. To analyze model performance a double compartment TSM was optimized by a regular fit procedure based on simple root mean square error minimization and by a fit based on a relative significance analysis of mechanism signatures. As a result consistent longitudinal dispersion and transient storage parameters were obtained when the signature targeted optimization was used.
Façade mapping and data storage of historical structure ashlars
NASA Astrophysics Data System (ADS)
Holzer, R.; Bednarik, M.; Kovarova, K.; Laho, M.; Duncko, M.
2012-04-01
The aim of the introduced research is to generate the methodology for the research and maintenance of facing ashlars of historical structures. As a rule, the natural building stone of historic monuments is subject to various types of deterioration and damages mostly due to weathering processes. Preferably, the damaged stone ashlars should be replaced by the natural material of the same lithological composition, of an appropriate durability and the same or similar appearance. If the quarrying of the original stone is not prospective, the quality of alternative rock is moreover not only a crucial condition, but also the fact that its use will not change the façade appearance. The methodology comprehensively summarizes technical, technological and monumental demands. It is oriented on the definition and verification of selection criteria of the most appropriate alternative stone recommended for building or restoration purposes. Before the restoration it is methodologically necessary to generate the ashlars façade plan based on digital photographic procedure (real scale) and data processing in GIS, to assess the lithology of the façade stones and to perform complex laboratory tests (when samples taking is possible) to determine physical-mechanical properties, as UCS, absorption capacity, coefficients of weakening and freezing, etc. aiming at the stone durability. The detailed survey of the replacement building stone has to be methodically identical with the research of facades stone properties. The comparative analysis of the appearance, properties and durability of stone is necessary, as well. Using such methodology it will be possible to design the adequate engineering-historical research and propose the optimal procedure for the restoration of concrete historical structure. Such a comprehensive assessment of original and alternative natural building stone contributes to the protection against undesirable interventions in the restoration of historical monuments.
An Interview with Professor Melquíades de Dios Leyva, December 2008
NASA Astrophysics Data System (ADS)
Arias de Fuentes, Olimpia
When writing about the history of physics in Cuba, this remarkable professor of quantum mechanics must be mentioned, for he embodies a most genuine example of the turn taken by national educational policy after 1959: Education for all, at all levels, with no discrimination or elitism. The following is an interview granted by Dr. Melquíades de Dios Leyva, Outstanding Full Professor of the Physics Faculty of the University of Havana, to Dr. Olimpia Arias de Fuentes, Associate Professor at the same, and Senior Researcher of the Institute of Materials Science and Technology (IMRE) of the University of Havana.
A general data-driven algorithm for façade structure modeling using ground based laser data
NASA Astrophysics Data System (ADS)
Yousefzadeh, M.; Leurink, F. H. M.; Beheshti jou, M.
2014-08-01
Façade reconstruction from laser point cloud has been an interesting subject in Photogrammetric community for the last two decades. However, due to the variety of architecture types and the nature of laser data, proposing a fully automatic modelling algorithm is still a challenge. Irregular architecture, density variation, occlusion and noise level are the main hindering factors of proposing a general model for façade reconstruction. This paper describes the sequences of an automatic data- driven method which starts from raw laser data and ends with object extraction. Statistical analysis was frequently utilized in segmentation, splitting line detection and object characterization. A rule-based modification method was employed to model the complexity of façade layout. Developed interface enables non-expert user to interact with modelling process by setting few parameters. The method was tested over a couple of datasets.
He, Xinlong; Lu, Feng; Yuan, Fenglai; Jiang, Donglin; Zhao, Peng; Zhu, Jie; Cheng, Huali
2015-01-01
Chronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency of Acinetobacter baumannii and the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolated A. baumannii strains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designated A. baumannii ABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI, adeB, adeG, adeJ, carO, and ompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation of adeG correlated with biofilm induction. The consistent upregulation of adeG and abaI was detected in A-III-type A. baumannii in response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused by A. baumannii. This study provides useful information for the development of antibiofilm strategies. PMID:26033730
Line-Based Multi-Image Matching for FAÇADE Reconstruction
NASA Astrophysics Data System (ADS)
Teo, T. A.; Kao, C. H.
2012-07-01
This research integrates existing LOD 2 building models and multiple close-range images for façade structural lines extraction. The major works are orientation determination and multiple image matching. In the orientation determination, Speeded Up Robust Features (SURF) is applied to extract tie points automatically. Then, tie points and control points are combined for block adjustment. An object-based multi-images matching is proposed to extract the façade structural lines. The 2D lines in image space are extracted by Canny operator followed by Hough transform. The role of LOD 2 building models is to correct the tilt displacement of image from different views. The wall of LOD 2 model is also used to generate hypothesis planes for similarity measurement. Finally, average normalized cross correlation is calculated to obtain the best location in object space. The test images are acquired by a nonmetric camera Nikon D2X. The total number of image is 33. The experimental results indicate that the accuracy of orientation determination is about 1 pixel from 2515 tie points and 4 control points. It also indicates that line-based matching is more flexible than point-based matching.
Lopes, B S; Amyes, S G B
2013-02-01
Acinetobacter baumannii is a pathogenic bacterium responsible for a wide range of infections in immunocompromised patients. This study examined the role of insertional inactivation of the adeR gene and its effect on adeABC gene expression along with characterisation of the gyrA and parC mutations involved in ciprofloxacin resistance in three A. baumannii clinical isolates and their derivatives. Primers designed for the detection of adeSRABC detected the presence of ISAba16, which disrupted the adeR gene in strain Ab12M, and ISAba1, which disrupted the same gene in strains Ab18 and Ab209. A second copy of ISAba1 was detected upstream of the adeA gene in Ab209 leading to AdeABC pump expression. AdeIJK pump expression was seen in all of the isolates but was not as significant as AdeABC expression. Minimum inhibitory concentrations of ciprofloxacin were ≥256 mg/L for all of the isolates and a decrease of ≥8-fold was seen following addition of the efflux pump inhibitor 1-(1-naphthylmethyl)-piperazine. Fluorometric analysis also demonstrated active efflux, with upregulation of adeIJK and some genes of the adeABC operon in some strains. Sequencing of the quinolone resistance-determining region of the gyrA and parC genes revealed a Ser83→Leu change in the gyrA gene and a novel change of Ser80→Trp in the parC gene of Ab12, Ab12M and Ab209; in Ab18 there was a Ser80→Leu change in parC. This study shows the multifactorial contribution of different mechanisms in A. baumannii leading to ciprofloxacin resistance. PMID:23217848
Lagrangian simulation of multidimensional anomalous transport at the MADE site
NASA Astrophysics Data System (ADS)
Zhang, Yong; Benson, David A.
2008-04-01
Contaminant transport through regional-scale natural geological formations typically exhibits several ``anomalous'' features, including direction-dependent spreading rates, channeling along preferential flow paths, trapping of solute in relatively immobile domains, and/or the local variation of transport speed. Simulating these plume characteristics can be computationally intensive using a traditional advection-dispersion equation (ADE) because anomalous features of transport generally depend on local-scale subsurface properties. Here we develop an alternative simulation approach that solves the full nonlocal, multidimensional, spatiotemporal fractional-order ADE with variable coefficients in a Lagrangian framework using a novel non-Markovian random walk method. This model allows us to simulate anomalous plumes without the need to explicitly define local-scale heterogeneity. The simple model accurately simulates the tritium plume measured at the extensively characterized MADE test site.
Vliet, Lydia K.; Wilkinson, Terry G.; Duval, Nathan; Vacano, Guido; Graham, Christine; Zikánová, Marie; Skopova, Vaclava; Baresova, Veronika; Hnízda, Aleš; Kmoch, Stanislav; Patterson, David
2010-01-01
Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (Ade I) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and Ade I cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in Ade I ADSL. This substitution lies in the “signature sequence” of ADSL, inactivates the enzyme, and validates Ade I as a cellular model of ADSL deficiency. PMID:20884265
Behind the Façade of Fee-Free education: Shadow Education and Its Implications for Social Justice
ERIC Educational Resources Information Center
Bray, Mark; Kwo, Ora
2013-01-01
Most governments, at an official level, espouse the principles of the 1948 Universal Declaration of Human Rights. Among its statements is that education shall be free, at least in the elementary and fundamental stages. Yet while the façade of government education systems presents an image that instruction is free of charge, families across the…
Vliet, Lydia K; Wilkinson, Terry G; Duval, Nathan; Vacano, Guido; Graham, Christine; Zikánová, Marie; Skopova, Vaclava; Baresova, Veronika; Hnízda, Aleš; Kmoch, Stanislav; Patterson, David
2011-01-01
Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (AdeI) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and AdeI cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in AdeI ADSL. This substitution lies in the "signature sequence" of ADSL, inactivates the enzyme, and validates AdeI as a cellular model of ADSL deficiency. PMID:20884265
NASA Astrophysics Data System (ADS)
Dore, C.; Murphy, M.
2013-02-01
This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.
David A. Benson
2012-09-24
This project combines outcrop-scale heterogeneity characterization, laboratory experiments, and numerical simulations. The study is designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work is based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project will explore the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. Our work at the Colorado School of Mines was focused on the following questions: 1) What are the effects of multi-scale geologic variability on transport of conservative and reactive solutes? 2) Can those transport effects be accounted for by classical methods, and if not, can the nonlocal fractional-order equations provide better predictions? 3) Can the fractional-order equations be parameterized through a link to some simple observable geologic features? 4) Are the classical equations of transport and reaction sufficient? 5) What is the effect of anomalous transport on chemical reaction in groundwater systems? The work is predicated on the observation that upscaled transport is defined by loss of information, or spatio-temporal averaging. This averaging tends to make the transport laws such as Fick's 2nd-order diffusion equation similar to central limit theory. The fractional-order advection-dispersion equations rely on limit theory for heavy-tailed random motion that has some diverging moments. The equations predict larger tails of a plume in space and/or time than those predicted by the classical 2nd-order advection-dispersion equation. The heavy tails are often seen in plumes at field sites.
Development of Indoor Spatial Data Model Using CityGML ADE
NASA Astrophysics Data System (ADS)
Kim, Y.-J.; Kang, H.-Y.; Lee, J.
2013-08-01
With the recent increasing build and application for 3D spatial information, the importance of management and application for spatial information based on indoor space has been increased. Especially, Due to the increasing of the scale and complexity of the building according to the development of construction technologies several studies have been conducted to provide the services based on indoor space such as indoor navigation for disaster. Therefore, to efficient manage and service for information of complicated indoor space, it is necessary to extend and develop 3D spatial model and services that have been developed for outdoor space. In this paper, Indoor Spatial Data Model (ISDM) is developed to support building spatial information for complicated indoor space and location based services through topological information. ISDM contains a feature model which is a CityGML Application Domain Extension (ADE) model and a topology model that refers the IndoorGML.
Environmental and health effects of nanomaterials in nanotextiles and façade coatings.
Som, Claudia; Wick, Peter; Krug, Harald; Nowack, Bernd
2011-08-01
Engineered nanomaterials (ENM) are expected to hold considerable potential for products that offer improved or novel functionalities. For example, nanotechnologies could open the way for the use of textile products outside their traditional fields of applications, for example, in the construction, medical, automobile, environmental and safety technology sectors. Consequently, nanotextiles could become ubiquitous in industrial and consumer products in future. Another ubiquitous field of application for ENM is façade coatings. The environment and human health could be affected by unintended release of ENM from these products. The product life cycle and the product design determine the various environmental and health exposure situations. For example, ENM unintentionally released from geotextiles will probably end up in soils, whereas ENM unintentionally released from T-shirts may come into direct contact with humans and end up in wastewater. In this paper we have assessed the state of the art of ENM effects on the environment and human health on the basis of selected environmental and nanotoxicological studies and on our own environmental exposure modeling studies. Here, we focused on ENM that are already applied or may be applied in future to textile products and façade coatings. These ENM's are mainly nanosilver (nano-Ag), nano titanium dioxide (nano-TiO(2)), nano silica (nano-SiO(2)), nano zinc oxide (nano-ZnO), nano alumina (nano-Al(2)O(3)), layered silica (e.g. montmorillonite, Al(2)[(OH)(2)/Si(4)O(10)]nH(2)O), carbon black, and carbon nanotubes (CNT). Knowing full well that innovators have to take decisions today, we have presented some criteria that should be useful in systematically analyzing and interpreting the state of the art on the effects of ENM. For the environment we established the following criteria: (1) the indication for hazardous effects, (2) dissolution in water increases/decreases toxic effects, (3) tendency for agglomeration or sedimentation
Sparta, Dennis R.; Ferraro, Frank M.; Fee, Jon R.; Knapp, Darin J.; Breese, George R.; Thiele, Todd E.
2008-01-01
Background The alcohol deprivation effect (ADE) is characterized by transient excessive alcohol consumption upon reinstatement of ethanol following a period of ethanol deprivation. While this phenomenon has been observed in rats using both bottle drinking (consummatory behavior) and operant self-administration (consummatory and appetitive “ethanol-seeking” behavior) procedures, ADE studies in mice have primarily relied on bottle drinking measures. Furthermore, the neurochemical pathways that modulate the ADE are not well understood. Therefore, we determined whether the ADE can be observed in C57BL/6J mice using operant self-administration procedures and if expression of the ADE is modulated by the corticotropin releasing factor-1 (CRF-1) receptor. Methods C57BL/6J mice were trained in a 2-hour operant self-administration paradigm to lever press for 10% ethanol or water on separate response keys. Between operant sessions, mice had access to ethanol in their homecage. Once stable responding occurred, mice were deprived of ethanol for 4-days, and were then retested with ethanol in the operant paradigm for 3 consecutive days. Next, to assess the role of the CRF-1 receptor, mice were given intraperitoneal (i.p.) injection (0, 10, or 20 mg/kg) of the CRF-1 receptor antagonist CP-154,526 30-minutes before ADE testing. Additional experiments assessed 1) ADE responding in which the alternate response lever was inactive, 2) the effects of CP-154,526 on self-administration of a 1% sucrose solution following 4-days of deprivation, and 3) ADE responding in which mice did not received i.p. injections throughout the experiment. Results Mice exhibited a significant increase in post-deprivation lever responding for ethanol with either a water reinforced or inactive alternate lever. Interestingly, i.p. injection of a 10 mg/kg dose of CP-154,526 protected against the ADE while not affecting lever responding for a sucrose solution. Finally, baseline and deprivation
Marbles in the façade of the "Certosa di Pavia": a physico-chemical study.
Ferloni, Paolo; Chierichetti, Andrea; Tomasi, Corrado; Ricci, Oronzo
2005-01-01
In the framework of an interdisciplinary research project on the well known monastery "Certosa di Pavia", the thermal and structural properties of marbles employed in the construction of the façade of the basilica were investigated in order to detect the main decomposition phenomena occurring on the monument surface. The results obtained by means of thermogravimetric and differential thermal analyses, as well as by means of X-ray diffraction and IR spectroscopy, allowed one to characterize samples taken from various sculptures of the façade and to bring out the degradation phenomena occurring in some of them, in particular the formation of "black crusts" with a high content in gypsum. The present findings are in fair agreement with those reported by other research groups which also studied with different techniques the construction materials of this monument. PMID:16485656
Fernando, Dinesh M.; Xu, Wayne; Loewen, Peter C.; Zhanel, George G.
2014-01-01
In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a 116G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump. PMID:25136007
Yoon, Eun-Jeong; Balloy, Viviane; Fiette, Laurence; Chignard, Michel; Courvalin, Patrice
2016-01-01
ABSTRACT Overexpression of chromosomal resistance-nodulation-cell division (RND)-type efflux systems with broad substrate specificity contributes to multidrug resistance (MDR) in Acinetobacter baumannii. We have shown that modulation of expression of the structural genes for the efflux systems AdeABC and AdeIJK confers MDR and results in numerous alterations of membrane-associated cellular functions, in particular biofilm formation. However, the contribution of these RND pumps to cell fitness and virulence has not yet been studied. The biological cost of an antibiotic resistance mechanism is a key parameter in determining its stability and dissemination. From an entirely sequenced susceptible clinical isolate, we have generated a set of isogenic derivatives having single point mutations resulting in overexpression of each efflux system or with every pump deleted by allelic replacement. We found that overproduction of the pumps results in a significant decrease in fitness of the bacterial host when measured by competition experiments in vitro. Fitness and virulence were also evaluated in vivo both in systemic and pulmonary infection models in immunocompetent mice. A diminished competitiveness of the AdeABC-overexpressing mutant was observed only after intraperitoneal inoculation, but not after intranasal inoculation, the latter mimicking the most frequent type of human A. baumannii infection. However, in mice infected intranasally, this mutant was more virulent and stimulated an enhanced neutrophil activation in the lungs. Altogether, these data account for the observation that adeABC overexpression is common in MDR A. baumannii frequently found in ventilator-associated pneumonia. PMID:27247231
NASA Astrophysics Data System (ADS)
Wang, S.
2012-07-01
An automated model-image fitting algorithm is proposed in this paper for generating façade texture image from pictures taken by smartphones or tablet PCs. The façade texture generation requires tremendous labour work and thus, has been the bottleneck of 3D photo-realistic city modelling. With advanced developments of the micro electro mechanical system (MEMS), camera, global positioning system (GPS), and gyroscope (G-sensors) can all be integrated into a smartphone or a table PC. These sensors bring the possibility of direct-georeferencing for the pictures taken by smartphones or tablet PCs. Since the accuracy of these sensors cannot compared to the surveying instruments, the image position and orientation derived from these sensors are not capable of photogrammetric measurements. This paper adopted the least-squares model-image fitting (LSMIF) algorithm to iteratively improve the image's exterior orientation. The image position from GPS and the image orientation from gyroscope are treated as the initial values. By fitting the projection of the wireframe model to the extracted edge pixels on image, the image exterior orientation elements are solved when the optimal fitting achieved. With the exact exterior orientation elements, the wireframe model of the building can be correctly projected on the image and, therefore, the façade texture image can be extracted from the picture.
Array data extractor (ADE): a LabVIEW program to extract and merge gene array data
2013-01-01
Background Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Findings Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Conclusions Although existing software allows for complex data analyses, the LabVIEW based program presented here, “Array Data Extractor (ADE)”, provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge. PMID:24289243
Yilmaz, S; Altinkanat-Gelmez, G; Bolelli, K; Guneser-Merdan, D; Over-Hasdemir, M U; Yildiz, I; Aki-Yalcin, E; Yalcin, I
2014-01-01
RND family efflux pumps are important for multidrug resistance in Gram-negative bacteria. To date no efflux pump inhibitors for clinical use have been found, so developing the specific inhibitors of this pump system will be beneficial for the treatment of infections caused by these multidrug-resistant pathogens. A set of BSN-coded 2-substituted benzothiazoles were tested alone and in combination with ciprofloxacin (CIP) against the RND family efflux pump AdeABC overexpressor Acinetobacter baumannii SbMox-2 strain. The results indicated that the BSN compounds did not have antimicrobial activity when tested alone. However, if they were applied in combination with CIP, it was observed that the antibiotic had antimicrobial activity against the tested pathogen, possessing a minimum inhibitory concentration value that could be utilized in clinical treatment. A 3D-common features pharmacophore model was applied by using the HipHop method and the generated pharmacophore hypothesis revealed that the hydrogen bond acceptor property of nitrogen in the thiazole ring and the oxygen of the amide substituted at the second position of the benzothiazole ring system were significant for binding to the target protein. Moreover, three hydrophobic aromatic features were found to be essential for inhibitory activity. PMID:24905472
Characterization of an adhesive molecule from Bacillus megaterium ADE-0-1.
Kumar, Santosh; Shah, Avinash K
2015-03-01
An adhesive exopolysaccharide (EPS), from a biofilm forming marine strain ADE-0-1, identified as Bacillus megaterium using conventional microbiological test and 16S rDNA analysis, contained 75% carbohydrate, 17% uronic acid and 0.00125% pyruvate on dry weight basis as per colorimetric determinations and found anionic in nature by ion exchange chromatography. Paper chromatographic and HPLC analysis of EPS hydrolysate indicated presence of arabinose, glucose, mannose, galacturonic acid and glucuronic acid. Its molecular weight was 0.5×10(6) Da, by gel permeation chromatography. FT-IR spectroscopic analysis of EPS revealed presence of hydroxyl and carboxyl groups particularly. EPS exhibited an adhesive nature and could glue wood, metals and acrylic plastic. Using this EPS adhesive (10% w/v), maximum lap shear strength observed was 6.12 MPa at pH 7 and 50 °C (curing temperature) for wood to wood specimen as compared to 6.54 MPa obtained with fevicol (48 to 50% w/v). PMID:25498669
Incremental Refinement of FAÇADE Models with Attribute Grammar from 3d Point Clouds
NASA Astrophysics Data System (ADS)
Dehbi, Y.; Staat, C.; Mandtler, L.; Pl¨umer, L.
2016-06-01
Data acquisition using unmanned aerial vehicles (UAVs) has gotten more and more attention over the last years. Especially in the field of building reconstruction the incremental interpretation of such data is a demanding task. In this context formal grammars play an important role for the top-down identification and reconstruction of building objects. Up to now, the available approaches expect offline data in order to parse an a-priori known grammar. For mapping on demand an on the fly reconstruction based on UAV data is required. An incremental interpretation of the data stream is inevitable. This paper presents an incremental parser of grammar rules for an automatic 3D building reconstruction. The parser enables a model refinement based on new observations with respect to a weighted attribute context-free grammar (WACFG). The falsification or rejection of hypotheses is supported as well. The parser can deal with and adapt available parse trees acquired from previous interpretations or predictions. Parse trees derived so far are updated in an iterative way using transformation rules. A diagnostic step searches for mismatches between current and new nodes. Prior knowledge on façades is incorporated. It is given by probability densities as well as architectural patterns. Since we cannot always assume normal distributions, the derivation of location and shape parameters of building objects is based on a kernel density estimation (KDE). While the level of detail is continuously improved, the geometrical, semantic and topological consistency is ensured.
2014-01-01
Background Tigecycline resistance in Acinetobacter baumannii is primarily acquired through overexpression of the AdeABC efflux pump. Besides AdeRS, other two-component regulatory systems (TCSs) involving the regulation of this transporter have not been clarified. Results In this study, we found that the TCS genes baeR and baeS are co-transcribed and function as stress responders under high osmotic conditions. The baeSR and adeAB genes showed increased transcription in both the laboratory-induced and clinical tigecycline-resistant strains compared with the wild-type strain. The deletion of baeR in the ATCC 17978 strain led to 67–73% and 68% reduction in adeA and adeB expression, respectively, with a resultant 2-fold decrease in the tigecycline minimal inhibition concentration (MIC). In contrast, the overexpression of baeR resulted in a doubled tigecycline MIC, with a more than 2-fold increase in adeA and adeB expression. The influence of baeR knockout on adeAB gene expression can also be observed in the laboratory-induced tigecycline-resistant strain. A time-kill assay showed that the baeR deletion mutant showed an approximate 1-log10 reduction in colony forming units (CFUs) relative to the wild-type strain when the tigecycline concentration was 0.25 μg/mL throughout the assay period. The wild-type phenotype could be restored by trans-complementation with pWH1266-kan r -baeR. Increasing the tigecycline concentration to 0.5 μg/mL produced an even more marked 4.7-log10 reduction in CFUs of the baeR deletion mutant at 8 h, while only a 2.1-log10 reduction was observed for the wild-type strain. Conclusions Taken together, these data show for the first time that the BaeSR TCS influences the tigecycline susceptibility of A. baumannii through the positive regulation of the resistance-nodulation-division efflux pump genes adeA and adeB. PMID:24885279
Exploring Regularities for Improving FAÇADE Reconstruction from Point Clouds
NASA Astrophysics Data System (ADS)
Zhou, K.; Gorte, B.; Zlatanova, S.
2016-06-01
(Semi)-automatic facade reconstruction from terrestrial LiDAR point clouds is often affected by both quality of point cloud itself and imperfectness of object recognition algorithms. In this paper, we employ regularities, which exist on façades, to mitigate these problems. For example, doors, windows and balconies often have orthogonal and parallel boundaries. Many windows are constructed with the same shape. They may be arranged at the same lines and distance intervals, so do different windows. By identifying regularities among objects with relatively poor quality, these can be applied to calibrate the objects and improve their quality. The paper focuses on the regularities among the windows, which is the majority of objects on the wall. Regularities are classified into three categories: within an individual window, among similar windows and among different windows. Nine cases are specified as a reference for exploration. A hierarchical clustering method is employed to identify and apply regularities in a feature space, where regularities can be identified from clusters. To find the corresponding features in the nine cases of regularities, two phases are distinguished for similar and different windows. In the first phase, ICP (iterative closest points) is used to identify groups of similar windows. The registered points and a number of transformation matrices are used to identify and apply regularities among similar windows. In the second phase, features are extracted from the boundaries of the different windows. When applying regularities by relocating windows, the connections, called chains, established among the similar windows in the first phase are preserved. To test the performance of the algorithms, two datasets from terrestrial LiDAR point clouds are used. Both show good effects on the reconstructed model, while still matching with original point cloud, preventing over or under-regularization.
Klinsupa, Worawan; Phansiri, Salak; Thongpradis, Panida; Yongsmith, Busaba; Pothiratana, Chetsada
2016-01-10
To breed industrially useful strains of a slow-growing, yellow pigment producing strain of Monascus sp., protoplasts of Monascus purpureus yellow mutant (ade(-)) and rapid-growing M. purpureus white mutant (prototroph) were fused and fusants were selected on minimal medium (MM). Preliminary conventional protoplast fusion of the two strains was performed and the result showed that only white colonies were detected on MM. It was not able to differentiate the fusants from the white parental prototroph. To solve this problem, the white parental prototroph was thus pretreated with 20mM iodoacetamide (IOA) for cytoplasm inactivation and subsequently taken into protoplast fusion with slow-growing Monascus yellow mutant. Under this development technique, only the fusants, with viable cytoplasm from Monascus yellow mutant (ade(-)), could thus grow on MM, whereas neither IOA pretreated white parental prototroph nor yellow auxotroph (ade(-)) could survive. Fifty-three fusants isolated from yellow colonies obtained through this developed technique were subsequently inoculated on complete medium (MY agar). Fifteen distinguished yellow colonies from their parental yellow mutant were then selected for biochemical, morphological and fermentative properties in cassava starch and soybean flour (SS) broth. Finally, three most stable fusants (F7, F10 and F43) were then selected and compared in rice solid culture. Enhancement of yellow pigment production over the parental yellow auxotroph was found in F7 and F10, while enhanced glucoamylase activity was found in F43. The formation of fusants was further confirmed by monacolin K content, which was intermediate between the two parents (monacolin K-producing yellow auxotroph and non-monacolin K producing white prototroph). PMID:26562446
NASA Astrophysics Data System (ADS)
Hansen, Scott K.
2015-12-01
Quasi-1D mobile-immobile transport processes which have exponentially distributed random waiting times in both mobile and immobile states are common in hydrologic models (for example, of transport subject to kinetic sorption). The central limit theorem implies that eventually such transport will be expressible with an effective ADE (i.e. a generalization of the common retardation factor approach with an added Fickian dispersion coefficient accounting for the effect of trapping). Previous works have determined formulae for the value of this coefficient based on the transport properties. However, the time until convergence to Gaussian behavior has not previously been quantified. To this end, exact Green's functions characterizing the transport at all times are derived for the case of pure advection. The Green's functions are expressed in terms of three dimensionless parameters, representing location, time, and capacity coefficient. In the pre-Gaussian regime, a parametric study characterizing concentration profile asymmetry as a function of the capacity coefficient is performed. Next, heuristics are presented in terms of the dimensionless parameters for the time until the effective ADE adequately reflects reality. For strongly retarded solute, the time until effective ADE validity is found inversely proportional to release (e.g., desorption) rate. The nature of the effective dispersion coefficient is examined, and the possibility of large trapping-driven dispersion even in cases where batch experiments would detect negligible trapping is demonstrated. Collectively, these results call into question reliance on retardation factors derived from batch experiments for many practical transport modeling efforts; knowledge of both the trapping and release kinetics appears essential.
ERIC Educational Resources Information Center
Nibbelink, William H.
1990-01-01
Proposed is a gradual transition from arithmetic to the idea of an equation with variables in the elementary grades. Vertical and horizontal formats of open sentences, the instructional sequence, vocabulary, and levels of understanding are discussed in this article. (KR)
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference containment transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2-3 times more reliable than estimates based on temporal data for all parameters except velocity. (Estimated author abstract) Refs.
Beheshti, Maryam; Talebi, Malihe; Ardebili, Abdollah; Bahador, Abbas; Lari, Abdolaziz Rastegar
2014-01-01
Purpose: Acinetobacter baumannii is the most prevalent nosocomial pathogen which have been emerged in the past three decades worldwide. The aim of this study was to assess the distribution of the AdeABC efflux pump genes, associated with tetracycline resistance in Acinetobacter baumannii isolates collected from burn infection and Ventilator Associated Pneumonia (VAP). Materials and Methods: Ninety-eight A. baumannii isolates were collected from two different hospitals in Tehran, Iran. Tetracycline susceptibility testing was performed by disk diffusion and agar dilution methods according to the CLSI guidelines. The presence of adeSR, adeB, drug efflux system genes in resistant isolates was assessed by polymerase chain reaction (PCR). Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as a chemical inhibitor agent to assess the contribution of AdeABC efflux pump in tetracycline resistance isolates. Results: Approximately 48% (47 out of 98) of isolates showed resistance to tetracycline which 14 (14.2%) isolates were corresponded to burn infection and the remaining 33 (33.8%) strains were isolated from VAP. All tetracycline resistant isolates have AdeABC in PCR assay. The reduction of tetracycline MICs by using 50 μg/ml CCCP were as follows: in 18 isolates 2-4 fold reduction in MICs, 26 isolates showed 8 fold reduction,1 isolate showed 16 fold, 1 isolate showed 32 fold and the remaining 1 isolate showed 128 fold reduction in MICs. Conclusion: The results showed significant correlation between tetracycline resistance and AdeABC efflux pump genes in resistant A. baumannii isolates. PMID:25400404
Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Valibeigi, Behnaz; Mansouri, Shahla
2015-11-01
Resistance-nodulation-division efflux system (RND) adeABC contributes to intrinsic resistance to various drug classes in Acinetobacter baumannii. Similarly, quorum sensing (QS) plays an important role in the biofilm formation and pathogenicity of this bacterium. The aims of this study were to evaluate the influence of iron limitation on the expression of efflux pump (adeABC) genes and QS (luxI, luxR) system by relative quantitative real-time polymerase chain reaction (qRT-PCR). In addition, DNA sequence and phylogenetic relatedness of biofilm-associated protein (Bap) gene was also investigated. Sixty-five multidrug-resistant isolates of A. baumannii were recovered from ICU patients of three hospitals in Kerman, Iran. The isolates were highly resistant to at least 11 antibiotics (MIC ≥64 μg/mL); however, 87% and 89% were susceptible to colistin and tigecycline, respectively (MIC 0.05 μg/mL) (p ≤ 0.05). We detected the presence of RND efflux pump, QS, and bap genes with the frequencies of 92% (adeA), 61.5% (adeB), 84.6% (adeC), 80% (luxI), 61% (luxR), and 66% (bap), respectively. qRT-PCR analysis showed that in some isolates, expression of both adeABC and luxI/R was increased more than fourfold in the presence of low iron (20 μm), suggesting the additional regulatory role of iron on both efflux pump and QS system. Alignment and phylogenetic analysis on the strong biofilm forming isolates confirmed that the fragments amplified were indeed part of bap gene and deduced sequence was similar to A. baumannii K9B410. PMID:26350174
NASA Astrophysics Data System (ADS)
Previtali, Mattia; Barazzetti, Luigi; Redaelli, Veronica; Scaioni, Marco; Rosina, Elisabetta
2013-01-01
A rigorous methodology for mapping thermal and RGB images on three-dimensional (3-D) models of building façades is presented. The developed method differs from most existing approaches because it relies on the use of thermal images coupled with 3-D models derived from terrestrial laser scanning surveying. The primary issue for an accurate texturing is the coregistration of the geometric model of the façade and the thermal images in the same reference system. This task is done by using a procedure standing out from other approaches adopted in current practice, which are mainly based on the independent registration of each image on the basis of homography or space resection techniques. A rigorous photogrammetric orientation of both thermal and RGB images is computed together in a combined bundle adjustment. This solution allows one to have a better control of the quality of the results, especially to reduce errors and artifacts in areas where more images are mosaicked onto the 3-D model. Several products can be obtained: 3-D triangulated textured models or raster products like orthophotos, having the temperature as radiometric value. The proposed approach is tested on different buildings of Politecnico di Milano University. Applications demonstrated the performance of the procedure and its technical applicability in routine thermal surveys.
Olson, Michael J; Faria, Ellen C; Hayes, Eileen P; Jolly, Robert A; Barle, Ester Lovsin; Molnar, Lance R; Naumann, Bruce D; Pecquet, Alison M; Shipp, Bryan K; Sussman, Robert G; Weideman, Patricia A
2016-08-01
This manuscript centers on communication with key stakeholders of the concepts and program goals involved in the application of health-based pharmaceutical cleaning limits. Implementation of health-based cleaning limits, as distinct from other standards such as 1/1000th of the lowest clinical dose, is a concept recently introduced into regulatory domains. While there is a great deal of technical detail in the written framework underpinning the use of Acceptable Daily Exposures (ADEs) in cleaning (for example ISPE, 2010; Sargent et al., 2013), little is available to explain how to practically create a program which meets regulatory needs while also fulfilling good manufacturing practice (GMP) and other expectations. The lack of a harmonized approach for program implementation and communication across stakeholders can ultimately foster inappropriate application of these concepts. Thus, this period in time (2014-2017) could be considered transitional with respect to influencing best practice related to establishing health-based cleaning limits. Suggestions offered in this manuscript are intended to encourage full and accurate communication regarding both scientific and administrative elements of health-based ADE values used in pharmaceutical cleaning practice. This is a large and complex effort that requires: 1) clearly explaining key terms and definitions, 2) identification of stakeholders, 3) assessment of stakeholders' subject matter knowledge, 4) formulation of key messages fit to stakeholder needs, 5) identification of effective and timely means for communication, and 6) allocation of time, energy, and motivation for initiating and carrying through with communications. PMID:27233923
NASA Astrophysics Data System (ADS)
Khan, Mayukh; Teo, Jeffrey; Hughes, Taylor
2014-03-01
We consider bosonic abelian Fractional Quantum Hall (FQH) and Fractional Quantum Spin Hall (FQSH) states with edge theories drawn from the ADE Kac Moody algebras at level 1 . This set of systems have `anyonic' symmetries that leave braiding and fusion invariant Remarkably, the group of anyonic symmetries for this class of models is isomorphic to the symmetries of the Dynkin diagrams of the particular ADE Lie Algebra under consideration. The triality symmetry of the Dynkin diagram of so(8) leads to the largest anyonic symmetry group S3 (the permutation group on 3 elements). Each element of the anyonic symmetry group corresponds to a distinct way of gapping out the edge (i.e., each element corresponds to a Lagrangian subgroup). Junctions between two distinct gapped edges host non abelian twist defects with quantum dimensions (> 1). In the case of so(8) we have more exotic twist defects with non-abelian fusion. We acknowledge support from the U.S. Department of Energy, Division of Materials Sciences under Award No. DE-FG02- 07ER46453 (MK, TLH) and the Simons Foundation (JT).
Giacomucci, Lucia; Bertoncello, Renzo; Salvadori, Ornella; Martini, Ilaria; Favaro, Monica; Villa, Federica; Sorlini, Claudia; Cappitelli, Francesca
2011-08-01
The Grande Albergo Ausonia & Hungaria (Venice Lido, Italy) has an Art Nouveau polychrome ceramic coating on its façade, which was restored in 2007. Soon after the conservation treatment, many tiles of the façade decoration showed coloured alterations putatively attributed to the presence of microbial communities. To confirm the presence of the biological deposit and the stratigraphy of the Hungaria tiles, stereomicroscope, optical and environmental scanning electron microscope observations were made. The characterisation of the microbial community was performed using a PCR-DGGE approach. This study reported the first use of a culture-independent approach to identify the total community present in biodeteriorated artistic tiles. The case study examined here reveals that the coloured alterations on the tiles were mainly due to the presence of cryptoendolithic cyanobacteria. In addition, we proved that the microflora present on the tiles was generally greatly influenced by the environment of the Hungaria hotel. We found several microorganisms related to the alkaline environment, which is in the range of the tile pH, and related to the aquatic environment, the presence of the acrylic resin Paraloid B72® used during the 2007 treatment and the pollutants of the Venice lagoon. PMID:21286701
Spatial Moment Equations for a Groundwater Plume with Degradation and Rate-Limited Sorption
In this note, we analytically derive the solution for the spatial moments of groundwater solute concentration distributions simulated by a one-dimensional model that assumes advective-dispersive transport with first-order degradation and rate-limited sorption. Sorption kinetics...
Ruzin, Alexey; Immermann, Frederick W; Bradford, Patricia A
2010-06-01
The relationship between expression of adeABC and minimal inhibitory concentration (MIC) of tigecycline was investigated by RT-PCR and statistical analyses in a population of 106 clinical isolates (MIC range, 0.0313-16 microg/ml) of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. There was a statistically significant linear relationship (p < 0.0001) between log-transformed expression values and log-transformed MIC values, indicating that overexpression of AdeABC efflux pump is a prevalent mechanism for decreased susceptibility to tigecycline in A. calcoaceticus-A. baumannii complex. PMID:20438348
NASA Astrophysics Data System (ADS)
Viljamaa, Panu; Jacobs, J. Richard; Chris; JamesHyman; Halma, Matthew; EricNolan; Coxon, Paul
2014-07-01
In reply to a Physics World infographic (part of which is given above) about a study showing that Euler's equation was deemed most beautiful by a group of mathematicians who had been hooked up to a functional magnetic-resonance image (fMRI) machine while viewing mathematical expressions (14 May, http://ow.ly/xHUFi).
Huang, Lei; Sun, Liying; Xu, Guobing; Xia, Tiean
2008-11-01
A nosocomial outbreak of carbapenem-resistant Acinetobacter baumannii occurred from February to November 2004 in the surgical intensive care unit (SICU) and the pediatric intensive care unit (PICU) of our hospital. Two separate clones prevailed, the antimicrobial susceptibility profiles of which were different. The PICU isolates produced OXA-23 oxacillinase, whereas no carbapenemases were detected from SICU isolates. No obvious outer membrane protein change was seen. Efflux pump phenotype was detected from SICU isolates. Efflux pump-encoding gene adeB was positive in these isolates and negative in PICU isolates. Through further study, we found that AdeABC efflux system gene contents were common in the SICU isolates. Then we compared the expression level of adeB in resistant and susceptible isolates using quantitative real-time polymerase chain reaction and found that increased expression of AdeABC efflux pump may play an important role in reduced meropenem susceptibility among A. baumannii in the SICU of our hospital. PMID:18687557
DOE R&D Accomplishments Database
1998-09-21
In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.
1998-11-01
In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.
NASA Astrophysics Data System (ADS)
Vlachokostas, A.; Volkmann, C.; Madamopoulos, N.
2013-06-01
High-rise and commercial buildings in urban centers present a great challenge in terms of their energy consumption. Due to maximization of rentable square footage, the preferred urban façade system over the past 50 years has been the "curtain wall", only a few inches thick and comprised of modular steel or aluminum framing and predominant glass infills. The perceived Achilles heel of these modern glass façade systems is their thermal inefficiency: They are inadequate thermal barriers and exhibit excessive solar gain. The excessive solar gain has a negative impact on lighting and cooling loads of the entire building. This negative impact will be further exacerbated with rising energy costs. However, rather than view the glass façade's uncontrolled solar gain merely as a weakness contributing to higher energy consumption, the condition could indeed be considered as related to an energy solution. These glass façades can be retrofitted to operate as a provider of daylight and energy for the rest of the building, taking advantage of the overexposure to the sun. With today's technology, the sun's abundant renewable energy can be the driving force for the energy transition of these building envelopes. Illumination, thermal energy, and electricity production can be directly supplied from the sun, and when correctly and efficiently managed, they can lead to a significantly less energy-intensive building stock. We propose a multi-purpose, prismatic, louver-based façade to perform both daylight and thermal energy harvesting with a goal of offering a better daylight environment for the occupants, and reduce the energy consumption and carbon footprint of the building. While decentralized air-conditioning units are commonly accepted as façade "plug-ins", such decentralization could be utilized with more benefits by passively managing the interior space conditions, without using any extra power. Just as living organisms respond and adapt to the environmental changes in
Computational Modeling of Pollution Transmission in Rivers
NASA Astrophysics Data System (ADS)
Parsaie, Abbas; Haghiabi, Amir Hamzeh
2015-08-01
Modeling of river pollution contributes to better management of water quality and this will lead to the improvement of human health. The advection dispersion equation (ADE) is the government equation on pollutant transmission in the river. Modeling the pollution transmission includes numerical solution of the ADE and estimating the longitudinal dispersion coefficient (LDC). In this paper, a novel approach is proposed for numerical modeling of the pollution transmission in rivers. It is related to use both finite volume method as numerical method and artificial neural network (ANN) as soft computing technique together in simulation. In this approach, the result of the ANN for predicting the LDC was considered as input parameter for the numerical solution of the ADE. To validate the model performance in real engineering problems, the pollutant transmission in Severn River has been simulated. Comparison of the final model results with measured data of the Severn River showed that the model has good performance. Predicting the LDC by ANN model significantly improved the accuracy of computer simulation of the pollution transmission in river.
Façade Greening: High-rise apartment building in Milan using pre-stressed concrete slab
NASA Astrophysics Data System (ADS)
Sun, Wenning; Li, Mingxin; Han, Yinong; Wang, Moqi; Ansourian, Peter
2016-08-01
In this project, one single level of the Façade Greening was designed and modelled using finite element method in Strand7. A static analysis was performed in order to understand the deflection and the stress due to the extra loads imposed by the soil and plants. The results produced by the linear static solver are compared with the strength of the materials and the European limitations. The maximum tension stress which exceeds the tensile strength in concrete is found in the root of the cantilever balcony. An alternative design of the cantilevered balcony with pre-stressed concrete slab is modelled separately for the balcony. Decrease is found in the tension stress and the significant improvement of deflection of the balcony with pre-stressed concrete slab. The dynamic loads such as wind and earthquake did not suggest significant effect on the pre-stressed concrete slab.
Künniger, Tina; Gerecke, Andreas C; Ulrich, Andrea; Huch, Anja; Vonbank, Roger; Heeb, Markus; Wichser, Adrian; Haag, Regula; Kunz, Petra; Faller, Markus
2014-01-01
This study represents for the first time a comprehensive assessment of functionality and environmental impacts of metallic silver nanoparticles (Ag-NP) compared to conventional organic biocides. Four different transparent, hydrophobic coatings of wooden outdoor façades were tested during one year outdoor weathering. The total silver release from products with Ag-NP was proportional to the overall erosion of the coating. The results indicate that the Ag-NPs are likely transformed to silver complexes, which are considerably less toxic than ionic silver. The protective effect of the silver containing coatings against mold, blue stain and algae was insufficient, even in immaculate and non-weathered conditions. The release of organic biocides from conventional coatings was dependent on the weather conditions, the type of biocide and the use in the base or top coat. The conventional coating showed a good overall performance free from mold, blue stain and algae until the end of the test period. PMID:24121422
Lee, Byoung-Hee
2016-01-01
[Purpose] The purpose of this study was to determine the effects of Adeli suit therapy (AST) on gross motor function and gait function in children with cerebral palsy. [Subjects and Methods] Two participants with spastic cerebral palsy were recruited to undergo AST. AST was applied in 60-minute sessions, five times per week, with 20 sessions total over 4 weeks. Assessments of gross motor function, spatiotemporal parameters, and functional ambulation performance for gait were conducted. [Results] Gross motor function, cadence, and functional ambulation performance improved after the intervention in both cases. [Conclusion] Although additional follow-up studies are required, the results demonstrated improved gross motor function and functional ambulation performance in the children with cerebral palsy. These findings suggest a variety of applications for conservative therapeutic methods that require future clinical trials in children with cerebral palsy. PMID:27390453
Nesher, Nir; Shapira, Eli; Sher, Daniel; Moran, Yehu; Tsveyer, Liora; Turchetti-Maia, Ana Luiza; Horowitz, Michal; Hochner, Binyamin; Zlotkin, Eliahu
2013-04-01
Heart failure is one of the most prevalent causes of death in the western world. Sea anemone contains a myriad of short peptide neurotoxins affecting many pharmacological targets, several of which possess cardiotonic activity. In the present study we describe the isolation and characterization of AdE-1 (ion channel modifier), a novel cardiotonic peptide from the sea anemone Aiptasia diaphana, which differs from other cnidarian toxins. Although AdE-1 has the same cysteine residue arrangement as sea anemone type 1 and 2 Na(+) channel toxins, its sequence contains many substitutions in conserved and essential sites and its overall homology to other toxins identified to date is low (<36%). Physiologically, AdE-1 increases the amplitude of cardiomyocyte contraction and slows the late phase of the twitch relaxation velocity with no induction of spontaneous twitching. It increases action potential duration of cardiomyocytes with no effect on its threshold and on the cell's resting potential. Similar to other sea anemone Na(+) channel toxins such as Av2 (Anemonia viridis toxin II), AdE-1 markedly inhibits Na(+) current inactivation with no significant effect on current activation, suggesting a similar mechanism of action. However, its effects on twitch relaxation velocity, action potential amplitude and on the time to peak suggest that this novel toxin affects cardiomyocyte function via a more complex mechanism. Additionally, Av2's characteristic delayed and early after-depolarizations were not observed. Despite its structural differences, AdE-1 physiologic effectiveness is comparable with Av2 with a similar ED(50) value to blowfly larvae. This finding raises questions regarding the extent of the universality of structure-function in sea anemone Na(+) channel toxins. PMID:23356888
Liu, Gaisheng; Lu, Zhiming; Zhang, Dongxiao
2007-01-01
A new approach has been developed for solving solute transport problems in randomly heterogeneous media using the Karhunen-Loève-based moment equation (KLME) technique proposed by Zhang and Lu (2004). The KLME approach combines the Karhunen-Loève decomposition of the underlying random conductivity field and the perturbative and polynomial expansions of dependent variables including the hydraulic head, flow velocity, dispersion coefficient, and solute concentration. The equations obtained in this approach are sequential, and their structure is formulated in the same form as the original governing equations such that any existing simulator, such as Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems (MT3DMS), can be directly applied as the solver. Through a series of two-dimensional examples, the validity of the KLME approach is evaluated against the classical Monte Carlo simulations. Results indicate that under the flow and transport conditions examined in this work, the KLME approach provides an accurate representation of the mean concentration. For the concentration variance, the accuracy of the KLME approach is good when the conductivity variance is 0.5. As the conductivity variance increases up to 1.0, the mismatch on the concentration variance becomes large, although the mean concentration can still be accurately reproduced by the KLME approach. Our results also indicate that when the conductivity variance is relatively large, neglecting the effects of the cross terms between velocity fluctuations and local dispersivities, as done in some previous studies, can produce noticeable errors, and a rigorous treatment of the dispersion terms becomes more appropriate.
Impact of space-time mesh adaptation on solute transport modeling in porous media
NASA Astrophysics Data System (ADS)
Esfandiar, Bahman; Porta, Giovanni; Perotto, Simona; Guadagnini, Alberto
2015-02-01
We implement a space-time grid adaptation procedure to efficiently improve the accuracy of numerical simulations of solute transport in porous media in the context of model parameter estimation. We focus on the Advection Dispersion Equation (ADE) for the interpretation of nonreactive transport experiments in laboratory-scale heterogeneous porous media. When compared to a numerical approximation based on a fixed space-time discretization, our approach is grounded on a joint automatic selection of the spatial grid and the time step to capture the main (space-time) system dynamics. Spatial mesh adaptation is driven by an anisotropic recovery-based error estimator which enables us to properly select the size, shape, and orientation of the mesh elements. Adaptation of the time step is performed through an ad hoc local reconstruction of the temporal derivative of the solution via a recovery-based approach. The impact of the proposed adaptation strategy on the ability to provide reliable estimates of the key parameters of an ADE model is assessed on the basis of experimental solute breakthrough data measured following tracer injection in a nonuniform porous system. Model calibration is performed in a Maximum Likelihood (ML) framework upon relying on the representation of the ADE solution through a generalized Polynomial Chaos Expansion (gPCE). Our results show that the proposed anisotropic space-time grid adaptation leads to ML parameter estimates and to model results of markedly improved quality when compared to classical inversion approaches based on a uniform space-time discretization.
Ito, Yu; Masaki, Yoshiaki; Kanamori, Takashi; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo
2016-01-01
5-[3-(2-Aminopyrimidin-4-yl)aminopropyn-1-yl]uracil (Ura(Pyr)) was designed as a new nucleobase to recognize Ade-Thy base pair in double-stranded DNA. We successfully synthesized the dexoynucleoside phosphoramidite having Ura(Pyr) and incorporated it into triplex forming oligonucleotides (TFOs). Melting temperature analysis revealed that introduction of Ura(Pyr) into TFOs could effectively stabilize their triplex structures without loss of base recognition capabilities. PMID:26602276
NASA Astrophysics Data System (ADS)
Vos, Joos
2003-01-01
In a previous study on the annoyance caused by a great variety of shooting sounds [J. Acoust. Soc. Am. 109, 244-253 (2001)], it was shown that the annoyance, as rated indoors with the windows closed, could be adequately predicted from the outdoor A-weighted and C-weighted sound-exposure levels [ASEL (LAE) and CSEL (LCE)] of the impulse sounds. The explained variance in the mean ratings by (outdoor) ASEL was significantly increased by adding the product (LCE- LAE)(LAE) as a second variable. In the present study it was investigated to which extent the additional contribution of the second predictor is also relevant for façade attenuation types with lower and higher degrees of sound isolation than applied previously. Twenty subjects rated the indoor annoyance caused by 11 different impulse types produced by firearms ranging in caliber from 7.62 to 155 mm, at various levels and for five façade attenuation conditions. The effect of façade attenuation on the ratings was large and consistent. In all conditions, an optimal prediction of the annoyance was obtained with outdoor ASEL as the first, and (LCE- LAE)(LAE) as the second predictor. The benefit of the second predictor, expressed as the increase in the explained variance, ranged from 2.5 to 55 percent points, and strongly increased with the degree of façade attenuation. It was concluded that for the determination of the rating sound level, the acoustic parameters ASEL and CSEL are very powerful. In addition, the results showed that for the whole set of impulses included, the annoyance could also be predicted very well by the weighted sum of indoor ASEL and the product (LCE- LAE)(LAE).
Liquid filled prismatic louver façade for enhanced daylighting in high-rise commercial buildings.
Vlachokostas, A; Madamopoulos, N
2015-07-27
A liquid filled prismatic louver (LFPL) façade that can perform daylight and thermal energy harvesting with the potential to offer enhanced natural illumination levels to office spaces and thermally assist secondary thermal driven applications is proposed and analyzed. We focus the present simulation study on the evaluation of daylight enhancement in indoor space by redirecting light from a window opening to the ceiling of the room, and then-after a diffusive reflection from the ceiling-onward to the work plane of the room. Illumination simulations using LightTools, a forward ray tracing illumination simulation software, are performed for an office building space located in New York City. We show that the LFPL system achieves deeper natural light penetration, better uniformity and higher illuminance levels compared to an office space without the LFPL system. We further extend our study to a number of other representative cities in the continental US, covering different climatic zones. The LFPL system achieves good daylight harvesting performance. Finally, we discuss the potential of the LFPL system to capture solar infrared radiation heat within the liquid (e.g., water) volume and use it to assist in secondary thermal energy applications. PMID:26367682
Correlates of avian building strikes at a glass façade museum surrounded by avian habitat
NASA Astrophysics Data System (ADS)
Kahle, L.; Flannery, M.; Dumbacher, J. P.
2013-12-01
Bird window collisions are the second largest anthropogenic cause of bird deaths in the world. Effective mitigation requires an understanding of which birds are most likely to strike, when, and why. Here, we examine five years of avian window strike data from the California Academy of Sciences - a relatively new museum with significant glass façade situated in Golden Gate Park, San Francisco. We examine correlates of window-killed birds, including age, sex, season, and migratory or sedentary tendencies of the birds. We also examine correlates of window kills such as presence of habitat surrounding the building and overall window area. We found that males are almost three times more likely than females to mortally strike windows, and immature birds are three times more abundant than adults in our window kill dataset. Among seasons, strikes were not notably different in spring, summer, and fall; however they were notably reduced in winter. There was no statistical effect of building orientation (north, south, east, or west), and the presence of avian habitat directly adjacent to windows had a minor effect. We also report ongoing studies examining various efforts to reduce window kill (primarily external decals and large electronic window blinds.) We hope that improving our understanding of the causes of the window strikes will help us strategically reduce window strikes.
Shore, B.W.
1981-01-30
The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence.
NASA Astrophysics Data System (ADS)
Mueller-Wodarg, Ingo; Svedhem, Håkan; Bruinsma, Sean; Gurvits, Leonid; Cimo, Giuseppe; Molera Calves, Guifre; Bocanegra Bahamon, Tatiana; Rosenblatt, Pascal; Duev, Dmitry; Marty, Jean-Charles; Progebenko, Sergei
The Venus Express Atmospheric Drag Experiment (VExADE) has enabled first ever in-situ measurements of the density of the near-polar thermosphere of Venus above an altitude of 165 km. The measured values have been compared with existing models such as VTS3, which has been built mainly with the Pioneer Venus Orbiter Mass Spectrometer (PV-ONMS) data taken near 16˚ latitude, but extrapolated globally. The VExADE density values have been derived from the Precise Orbit Determination (POD) of the VEx spacecraft using both navigation and dedicated tracking data around pericenter passes during several VExADE campaigns. The last campaign has also benefited from the Planetary Radio Interferometry and Doppler Experiment (PRIDE) tracking. The combination of POD techniques has provided 46 reliable estimates of the polar thermosphere density. An independent set of density measurements was also taken by inferring the torque of the VEx spacecraft exerted by Venus’ upper atmosphere on the spacecraft during pericenter passes. This method has provided more than 120 density values in remarkably good agreement with the density values provided by the POD method. To date, the VExADE data have probed a range of 160 to 185 km in altitude, 80 to 90 degrees North in latitude and 5 to 20 hours in local time. While sampling in these ranges is insufficient to establish detailed horizontal density structures of the polar thermosphere a set of important properties can be inferred. First, the densities are lower by a factor of around 1.5 than the densities predicted by VTS3. At the same time, we find the density scale heights of VExADE and VTS3 to be consistent. Second, the density values exhibit strong variability, which is not taken into account in the VTS3 model. In order to investigate this dynamical behavior of the polar thermosphere, the ratio between the VExADE and VTS3 density has been analyzed. The latitude, altitude and local time trends are tentatively identified, but the sparse
NASA Astrophysics Data System (ADS)
Vukadinovic, J.; Dedits, E.; Poje, A. C.; Schäfer, T.
2015-08-01
We consider the two-dimensional advection-diffusion equation (ADE) on a bounded domain subject to Dirichlet or von Neumann boundary conditions involving a Liouville integrable Hamiltonian. Transformation to action-angle coordinates permits averaging in time and angle, resulting in an equation that allows for separation of variables. The Fourier transform in the angle coordinate transforms the equation into an effective diffusive equation and a countable family of non-self-adjoint Schrödinger equations. For the corresponding Liouville-Sturm problem, we apply complex-plane WKB methods to study the spectrum in the semi-classical limit for vanishing diffusivity. The spectral limit graph is found to consist of analytic curves (branches) related to Stokes graphs forming a tree-structure. Eigenvalues in the neighborhood of branches emanating from the imaginary axis are subject to various sublinear power laws with respect to diffusivity, leading to convection-enhanced rates of dissipation of the corresponding modes. The solution of the ADE converges in the limit of vanishing diffusivity to the solution of the effective diffusion equation on convective time scales that are sublinear with respect to the diffusive time scales.
A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan
2014-08-01
When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. PMID:24794509
Spin field equations and Heun's equations
NASA Astrophysics Data System (ADS)
Jiang, Min; Wang, Xuejing; Li, Zhongheng
2015-06-01
The Kerr-Newman-(anti) de Sitter metric is the most general stationary black hole solution to the Einstein-Maxwell equation with a cosmological constant. We study the separability of the equations of the massless scalar (spin s=0), neutrino ( s=1/2), electromagnetic ( s=1), Rarita-Schwinger ( s=3/2), and gravitational ( s=2) fields propagating on this background. We obtain the angular and radial master equations, and show that the master equations are transformed to Heun's equation. Meanwhile, we give the condition of existence of event horizons for Kerr-Newman-(anti) de Sitter spacetime by using Sturm theorem.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.
ERIC Educational Resources Information Center
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
NASA Technical Reports Server (NTRS)
1977-01-01
Basic differential equations governing compressible turbulent boundary layer flow are reviewed, including conservation of mass and energy, momentum equations derived from Navier-Stokes equations, and equations of state. Closure procedures were broken down into: (1) simple or zeroth-order methods, (2) first-order or mean field closure methods, and (3) second-order or mean turbulence field methods.
Lattice Boltzmann method for the fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
Lattice Boltzmann method for the fractional advection-diffusion equation.
Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering. PMID:27176431
Lee, Yangsoon; Yum, Jong Hwa; Kim, Chang-Ki; Yong, Dongeun; Jeon, Eun Hee; Jeong, Seok Hoon; Ahn, Jee Young; Lee, Kyungwon
2010-01-01
This study was performed to determine the mechanisms for acquiring carbapenem resistance in six clinical isolates of Acinetobacter baumannii. All isolates showed similar SmaI-macrorestriction patterns with less than 3 band differences by PFGE. The isolates showed a high level resistance (>32 mg/L) to both imipenem and meropenem by Etest. Phe-Arg-beta-naphthylamide lowered the MICs of carbapenems. Real-time PCR experiments showed that expression levels of the adeB gene in the six A. baumannii isolates were 10- to 40-times higher than those of imipenem-susceptible strains. Direct sequencing of PCR products showed that all isolates carried the bla(OXA-23) gene, which was preceded by ISAba1. The bla(OXA-23) probe hybridized with approximately 500-kb I-CeuI chromosomal fragments, but not with a plasmid. These findings suggest that overexpression of the AdeABC efflux pump as well as chromosome-borne OXA-23 may play a role in acquiring carbapenem resistance in our A. baumannii isolates. PMID:20124329
Krishnamoorthy, Suvarna; Shah, Bhavikkumar P; Lee, Hiu Ham; Martinez, Luis R
2016-01-01
Acinetobacter baumannii is a Gram-negative bacterium that causes nosocomial infections worldwide. This microbe's propensity to form biofilms allows it to persist and to survive on clinical abiotic surfaces for long periods. In fact, A. baumannii biofilm formation and its multidrug-resistant nature severely compromise our capacity to care for patients in hospital environments. In contrast, microbicides such as cetrimide (CT) and chlorhexidine (CHX) play important roles in the prevention and treatment of infections. We assessed the efficacy of CT and CHX, either alone or in combination, in eradicating A. baumannii biofilms formed by clinical isolates, by using stainless steel washers to mimic hard abiotic surfaces found in hospital settings. We demonstrated that increasing amounts of each microbicide, alone or in combination, were able to damage and to reduce the viability of A. baumannii biofilms efficaciously. Interestingly, the adeB gene of the resistance-nodulation-cell division (RND) family is predominantly associated with acquired resistance to antimicrobials in A. baumannii. We showed that CT and CHX adversely modified the expression and function of the RND-type efflux pump AdeABC in biofilm-associated A. baumannii cells. Furthermore, we established that these microbicides decreased the negative charges on A. baumannii cell membranes, causing dysregulation of the efflux pump and leading to cell death. Our findings suggest that CT and CHX, alone or in combination, can be used efficaciously for eradication of A. baumannii from hospital surfaces, in order to reduce infections caused by this nosocomial agent. PMID:26459900
Single wall penetration equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
1991-01-01
Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.
Interpretation of Bernoulli's Equation.
ERIC Educational Resources Information Center
Bauman, Robert P.; Schwaneberg, Rolf
1994-01-01
Discusses Bernoulli's equation with regards to: horizontal flow of incompressible fluids, change of height of incompressible fluids, gases, liquids and gases, and viscous fluids. Provides an interpretation, properties, terminology, and applications of Bernoulli's equation. (MVL)
Reflections on Chemical Equations.
ERIC Educational Resources Information Center
Gorman, Mel
1981-01-01
The issue of how much emphasis balancing chemical equations should have in an introductory chemistry course is discussed. The current heavy emphasis on finishing such equations is viewed as misplaced. (MP)
Towards a transport approach that acknowledges mixing and dispersion.
NASA Astrophysics Data System (ADS)
Carrera, J.; soler Sagarra, J.; de Dreuzy, J. R.; Dentz, M.
2014-12-01
It is generally accepted that the Advection-Dispersion Equation (ADE) is a poor representation of transport for problems beyond assessing the extent of a solute plume. Specifically, mixing must be honored for proper assessment of chemical reactions. Therefore, it is necessary to develop a transport approach that acknowledges dispersion (for adequate representation of solute spreading) and mixing (for adequate representation of chemical reactions). Non-local in time solute transport formulations have been considered a hopeful alternative to the ADE because they overcome many of its limitations. We have computed the deviation from gaussian mixing obtained in transport through highly heterogeneous media and compared it with that of non-local in time formulations. We find that these underestimate such deviation. Therefore, they are not sufficient; more sophisticated approaches are needed. An appealing option is to extend non-locality also to space, but this opens a broad range of possibilities. We explore some non-local in space and time formulations, so as to define the constraints that these must meet in order to be valid representations (valid in the sense of reproducing the actual spreading and mixing rates) of solute transport through heterogeneous media.
Long-Term Transport of Cryptosporidium Parvum
NASA Astrophysics Data System (ADS)
Andrea, C.; Harter, T.; Hou, L.; Atwill, E. R.; Packman, A.; Woodrow-Mumford, K.; Maldonado, S.
2005-12-01
The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Subsurface transport and filtration in natural and artificial porous media are important components of the environmental pathway of this pathogen. It has been shown that the oocysts of C. parvum show distinct colloidal properties. We conducted a series of laboratory studies on sand columns (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). Breakthrough curves were measured over relatively long time-periods (hundreds to thousands of pore volumes). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough, but it is inadequate to explain the significant tailing observed in the breakthrough of C. parvum oocyst through sand columns. We discuss the application of the Continuous Time Random Walk approach to account for the strong tailing that was observed in our experiments. The CTRW is generalized transport modeling framework, which includes the classic advection-dispersion equation (ADE), the fractional ADE, and the multi-rate mass transfer model as special cases. Within this conceptual framework, it is possible to distinguish between the contributions of pore-scale geometrical (physical) disorder and of pore-scale physico-chemical heterogeneities (e.g., of the filtration, sorption, desorption processes) to the transport of C. parvum oocysts.
ERIC Educational Resources Information Center
Fay, Temple H.
2002-01-01
We investigate the pendulum equation [theta] + [lambda][squared] sin [theta] = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin [theta] do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are…
Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.
2015-01-01
A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532
This manual describes the next generation of the modular three-dimensional transport model, MT3D, with significantly expanded capabilities, including the addition of (a) a third-order total-variation-diminishing (TVD) scheme for solving the advection term that is mass conservativ...
Solving Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Einstein equation at singularities
NASA Astrophysics Data System (ADS)
Stoica, Ovidiu-Cristinel
2014-02-01
Einstein's equation is rewritten in an equivalent form, which remains valid at the singularities in some major cases. These cases include the Schwarzschild singularity, the Friedmann-Lemaître-Robertson-Walker Big Bang singularity, isotropic singularities, and a class of warped product singularities. This equation is constructed in terms of the Ricci part of the Riemann curvature (as the Kulkarni-Nomizu product between Einstein's equation and the metric tensor).
What Makes a Chemical Equation an Equation?
ERIC Educational Resources Information Center
Fensham, Peter J.; Lui, Julia
2001-01-01
Explores how well chemistry graduates preparing for teaching can recognize the similarities and differences between the uses of the word "equation" in mathematics and in chemistry. Reports that the conservation similarities were much less frequently recognized than those involved in the creation of new entities. (Author/MM)
Octonic Gravitational Field Equations
NASA Astrophysics Data System (ADS)
Demir, Süleyman; Tanişli, Murat; Tolan, Tülay
2013-08-01
Generalized field equations of linear gravity are formulated on the basis of octons. When compared to the other eight-component noncommutative hypercomplex number systems, it is demonstrated that associative octons with scalar, pseudoscalar, pseudovector and vector values present a convenient and capable tool to describe the Maxwell-Proca-like field equations of gravitoelectromagnetism in a compact and simple way. Introducing massive graviton and gravitomagnetic monopole terms, the generalized gravitational wave equation and Klein-Gordon equation for linear gravity are also developed.
Octonic massless field equations
NASA Astrophysics Data System (ADS)
Demir, Süleyman; Tanişli, Murat; Kansu, Mustafa Emre
2015-05-01
In this paper, it is proven that the associative octons including scalar, pseudoscalar, pseudovector and vector values are convenient and capable tools to generalize the Maxwell-Dirac like field equations of electromagnetism and linear gravity in a compact and simple way. Although an attempt to describe the massless field equations of electromagnetism and linear gravity needs the sixteen real component mathematical structures, it is proved that these equations can be formulated in terms of eight components of octons. Furthermore, the generalized wave equation in terms of potentials is derived in the presence of electromagnetic and gravitational charges (masses). Finally, conservation of energy concept has also been investigated for massless fields.
Octonic Massive Field Equations
NASA Astrophysics Data System (ADS)
Demir, Süleyman; Kekeç, Seray
2016-03-01
In the present paper we propose the octonic form of massive field equations based on the analogy with electromagnetism and linear gravity. Using the advantages of octon algebra the Maxwell-Dirac-Proca equations have been reformulated in compact and elegant way. The energy-momentum relations for massive field are discussed.
NASA Astrophysics Data System (ADS)
Zahari, N. M.; Sapar, S. H.; Mohd Atan, K. A.
2013-04-01
This paper discusses an integral solution (a, b, c) of the Diophantine equations x3n+y3n = 2z2n for n ≥ 2 and it is found that the integral solution of these equation are of the form a = b = t2, c = t3 for any integers t.
NASA Astrophysics Data System (ADS)
Molesini, Giuseppe
2005-02-01
Problems in the general validity of the lens equations are reported, requiring an assessment of the conditions for correct use. A discussion is given on critical behaviour of the lens equation, and a sign and meaning scheme is provided so that apparent inconsistencies are avoided.
Octonic Massive Field Equations
NASA Astrophysics Data System (ADS)
Demir, Süleyman; Kekeç, Seray
2016-07-01
In the present paper we propose the octonic form of massive field equations based on the analogy with electromagnetism and linear gravity. Using the advantages of octon algebra the Maxwell-Dirac-Proca equations have been reformulated in compact and elegant way. The energy-momentum relations for massive field are discussed.
Yagi, M.; Horton, W. )
1994-07-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite [beta] that the perpendicular component of Ohm's law be solved to ensure [del][center dot][bold j]=0 for energy conservation.
Linear Equations: Equivalence = Success
ERIC Educational Resources Information Center
Baratta, Wendy
2011-01-01
The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…
NASA Astrophysics Data System (ADS)
Cadiau, A.; Adil, K.; Hemon-Ribaud, A.; Leblanc, M.; Jouanneaux, A.; Slawin, A. M. Z.; Lightfoot, P.; Maisonneuve, V.
2011-01-01
New purinium, adeninium and guaninium fluoroaluminates, [H pur] 2·(AlF 5), [H ade] 3·(AlF 6)·6.5H 2O and [H guan] 3·(Al 3F 12), are synthesized by microwave heating assisted hydrothermal synthesis at 120 °C or 190 °C. The crystallisation is difficult; all crystals of [H pur] 2·(AlF 5) and [H ade] 3·(AlF 6)·6.5H 2O are very small while only a microcrystalline powder of [H guan] 3·(Al 3F 12) is obtained. The structures are determined from crystal ([H pur] 2·(AlF 5) and [H ade] 3·(AlF 6)·6.5H 2O) or powder ([H guan] 3·(Al 3F 12)) X-ray diffraction data. In [H pur] 2·(AlF 5), trans-chains of corner sharing octahedra lie along the c axis of the tetragonal cell ( a = 18.997(2) Å, c = 3.6980(4) Å, P4/ n, Z = 4). In [H ade] 3·(AlF 6)·6.5H 2O, the octahedral AlF 6 units lie in (010) planes with water molecules. In [H guan] 3·(Al 3F 12), trimers of corner sharing octahedra are associated by opposite vertices along the c axis of the trigonal cell ( a = 14.254(1) Å, c = 3.629(1) Å, P3, Z = 1). The purine, adenine and guanine amines are monoprotonated and lie between the preceding chains or layers. Hydrogen bonds between fluoride ions and amine groups of organic cations or, eventually, water molecules ensure the stability of the structures, together with N-H⋯O intermolecular bonds between guaninium cations in [H guan] 3·(Al 3F 12). The N(7)H-amino and N(9)H-amino tautomeric forms of [H ade] + are simultaneously found in [H ade] 3·(AlF 6)·6.5H 2O.
NASA Astrophysics Data System (ADS)
Kuksin, Sergei; Maiocchi, Alberto
In this chapter we present a general method of constructing the effective equation which describes the behavior of small-amplitude solutions for a nonlinear PDE in finite volume, provided that the linear part of the equation is a hamiltonian system with a pure imaginary discrete spectrum. The effective equation is obtained by retaining only the resonant terms of the nonlinearity (which may be hamiltonian, or may be not); the assertion that it describes the limiting behavior of small-amplitude solutions is a rigorous mathematical theorem. In particular, the method applies to the three- and four-wave systems. We demonstrate that different possible types of energy transport are covered by this method, depending on whether the set of resonances splits into finite clusters (this happens, e.g. in case of the Charney-Hasegawa-Mima equation), or is connected (this happens, e.g. in the case of the NLS equation if the space-dimension is at least two). For equations of the first type the energy transition to high frequencies does not hold, while for equations of the second type it may take place. Our method applies to various weakly nonlinear wave systems, appearing in plasma, meteorology and oceanography.
Nonlinear gyrokinetic equations
Dubin, D.H.E.; Krommes, J.A.; Oberman, C.; Lee, W.W.
1983-03-01
Nonlinear gyrokinetic equations are derived from a systematic Hamiltonian theory. The derivation employs Lie transforms and a noncanonical perturbation theory first used by Littlejohn for the simpler problem of asymptotically small gyroradius. For definiteness, we emphasize the limit of electrostatic fluctuations in slab geometry; however, there is a straight-forward generalization to arbitrary field geometry and electromagnetic perturbations. An energy invariant for the nonlinear system is derived, and various of its limits are considered. The weak turbulence theory of the equations is examined. In particular, the wave kinetic equation of Galeev and Sagdeev is derived from an asystematic truncation of the equations, implying that this equation fails to consider all gyrokinetic effects. The equations are simplified for the case of small but finite gyroradius and put in a form suitable for efficient computer simulation. Although it is possible to derive the Terry-Horton and Hasegawa-Mima equations as limiting cases of our theory, several new nonlinear terms absent from conventional theories appear and are discussed.
NASA Astrophysics Data System (ADS)
Sultana, Nasrin
This dissertation consists of five papers in which discrete Volterra equations of different types and orders are studied and results regarding the behavior of their solutions are established. The first paper presents some fundamental results about subexponential sequences. It also illustrates the subexponential solutions of scalar linear Volterra sum-difference equations are asymptotically stable. The exact value of the rate of convergence of asymptotically stable solutions is found by determining the asymptotic behavior of the transient renewal equations. The study of subexponential solutions is also continued in the second and third articles. The second paper investigates the same equation using the same process as considered in the first paper. The discussion focuses on a positive lower bound of the rate of convergence of the asymptotically stable solutions. The third paper addresses the rate of convergence of the solutions of scalar linear Volterra sum-difference equations with delay. The result is proved by developing the rate of convergence of transient renewal delay difference equations. The fourth paper discusses the existence of bounded solutions on an unbounded domain of more general nonlinear Volterra sum-difference equations using the Schaefer fixed point theorem and the Lyapunov direct method. The fifth paper examines the asymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations and establishes some new criteria based on so-called time scales, which unifies and extends both discrete and continuous mathematical analysis. Beside these five research papers that focus on discrete Volterra equations, this dissertation also contains an introduction, a section on difference calculus, a section on time scales calculus, and a conclusion.
NASA Astrophysics Data System (ADS)
Pierret, Frédéric
2016-02-01
We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.
Nonlinear ordinary difference equations
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1979-01-01
Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.
A Comparison of IRT Equating and Beta 4 Equating.
ERIC Educational Resources Information Center
Kim, Dong-In; Brennan, Robert; Kolen, Michael
Four equating methods were compared using four equating criteria: first-order equity (FOE), second-order equity (SOE), conditional mean squared error (CMSE) difference, and the equipercentile equating property. The four methods were: (1) three parameter logistic (3PL) model true score equating; (2) 3PL observed score equating; (3) beta 4 true…
Diophantine Equations and Computation
NASA Astrophysics Data System (ADS)
Davis, Martin
Unless otherwise stated, we’ll work with the natural numbers: N = \\{0,1,2,3, dots\\}. Consider a Diophantine equation F(a1,a2,...,an,x1,x2,...,xm) = 0 with parameters a1,a2,...,an and unknowns x1,x2,...,xm For such a given equation, it is usual to ask: For which values of the parameters does the equation have a solution in the unknowns? In other words, find the set: \\{
Regularized Structural Equation Modeling
Jacobucci, Ross; Grimm, Kevin J.; McArdle, John J.
2016-01-01
A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM’s utility. PMID:27398019
Nonlinear differential equations
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.
Equations For Rotary Transformers
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.
1988-01-01
Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.
Equating Training to Education.
ERIC Educational Resources Information Center
Davis, Lansing J.
1993-01-01
Distinguishes between education and employer-sponsored training in terms of process, purpose, and providers. Concludes that work-related training and postsecondary education are cognates within the classification education, and equating their learning outcomes is appropriate. (SK)
Relativistic Guiding Center Equations
White, R. B.; Gobbin, M.
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER
Collier, D.M.; Meeks, L.A.; Palmer, J.P.
1960-05-10
A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.
Stochastic analysis of a field-scale unsaturated transport experiment
NASA Astrophysics Data System (ADS)
Severino, G.; Comegna, A.; Coppola, A.; Sommella, A.; Santini, A.
2010-10-01
Modelling of field-scale transport of chemicals is of deep interest to public as well as private sectors, and it represents an area of active theoretical research in many environmentally-based disciplines. However, the experimental data needed to validate field-scale transport models are very limited due to the numerous logistic difficulties that one faces out. In the present paper, the migration of a tracer (Cl -) was monitored during its movement in the unsaturated zone beneath the surface of 8 m × 50 m sandy soil. Under flux-controlled, steady-state water flow ( Jw = 10 mm/day) was achieved by bidaily sprinkler irrigation. A pulse of 105 g/m 2 KCl was applied uniformly to the surface, and subsequently leached downward by the same (chloride-free) flux Jw over the successive two months. Chloride concentration monitoring was carried out in seven measurement campaigns (each one corresponding to a given time) along seven (parallel) transects. The mass recovery was near 100%, therefore underlining the very good-quality of the concentration data-set. The chloride concentrations are used to test two field-scale models of unsaturated transport: (i) the Advection-Dispersion Equation (ADE), which models transport far from the zone of solute entry, and (ii) the Stochastic- Convective Log- normal (CLT) transfer function model, which instead accounts for transport near the release zone. Both the models provided an excellent representation of the solute spreading at z > 0.45 m (being z = 0.45 m the calibration depth). As a consequence, by the depth z ≈ 50 cm one can regard transport as Fickian. The ADE model dramatically underestimates solute spreading at shallow depths. This is due to the boundary effects which are not captured by the ADE. The CLT model appears to be a more robust tool to mimic transport at every depth.
The Mechanism of Field-Scale Solute Transport: An insight from Numerical Simulations
NASA Astrophysics Data System (ADS)
Russo, David
2014-05-01
Field-scale transport of conservative (chloride) and reactive (nitrate) solutes was analyzed by means of two different model processes for the local description of the transport. The first is the classical, one-region advection dispersion equation (ADE) model, while the second is the two-region, mobile-immobile (MIM) model. The analyses were performed by means of detailed three-dimensional (3-D), numerical simulations of the flow and the transport considering realistic features of the soil-water-plant-atmosphere system, pertinent to a turf field located in the Glil Yam site, Israel, irrigated with treated waste water (TWW). Simulated water content and concentration profiles were compared with available measurements of their counterparts. Results of the analyses suggest that the behavior of both the conservative and the reactive solutes in the Glil Yam site is quantified better when the transport on the local scale is modeled as a two-region, MIM model, than when a single-region, ADE model is used. Reconstruction of the shape of the measured solute concentration profiles using the MIM transport model, required relatively large immobile water content fraction and relatively small mass transfer coefficient. These results suggest that in the case of initially non-zero solute concentration profile (e.g., chloride and nitrate), the 3-D ADE transport model may significantly overestimate the groundwater contamination hazard posed by the solutes moving through the vadose zone, as compared with the 3-D MIM transport model, while the opposite is true in the case of initially zero solute concentration profile (e.g., carbamazepine). These findings stem from the combination of relatively large immobile water content fraction and relatively small mass transfer coefficient taken into account in the MIM transport model. In the first case, this combination forces a considerable portion of the solute mass to remain in the immobile region of the water-filled pores, while the opposite
López, M; Álvarez-Fraga, L; Gato, E; Blasco, L; Poza, M; Fernández-García, L; Bou, G; Tomás, M
2016-01-01
Increased expression of chromosomal genes for resistance-nodulation-cell division-type efflux systems plays a major role in the multidrug resistance of Acinetobacter baumannii Little is known about the genetic characteristics of clinical strains of Acinetobacter baumannii lacking the AdeABC pump. In this study, we sequenced the genome of clinical strain Ab421 GEIH-2010 (belonging to clone ST79/PFGE-HUI-1 from the GEIH-REIPI Ab. 2010 project) which lacks this efflux pump. PMID:27609928
Set Equation Transformation System.
2002-03-22
Version 00 SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protectionmore » requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. Two auxiliary programs, SEP and FTD, are included. SEP performs the quantitative analysis of reduced Boolean equations (minimal cut sets) produced by SETS. The user can manipulate and evaluate the equations to find the probability of occurrence of any desired event and to produce an importance ranking of the terms and events in an equation. FTD is a fault tree drawing program which uses the proprietary ISSCO DISSPLA graphics software to produce an annotated drawing of a fault tree processed by SETS. The DISSPLA routines are not included.« less
Nashalian, Ossanna; Yaylayan, Varoujan A
2017-01-15
To explore the interaction of nucleosides and nucleobases in the context of the Maillard reaction and to identify the selectivity of purine nitrogen atoms towards various electrophiles, model systems composed of adenine or adenosine, glycine, ribose and/or 2-furanmethanol (with and without copper) were studied in aqueous solutions heated at 110°C for 2h and subsequently analyzed by ESI/qTOF/MS/MS in addition to isotope labelling techniques. The results indicated that ribose selectively formed mono-ribosylated N(6) adenine, but in the presence of (Ade)2Cu complex the reaction mixture generated mono-, di- and tri-substituted sugar complexes and their hydrolysis products of mono-ribosylated N(6) and N(9) adenine adducts and di-ribosylated N(6,9) adenine. Furthermore, the reaction of 2-furanmethanol with adenine in the presence of ribose generated kinetin and its isomer, while its reaction with adenosine generated kinetin riboside, as confirmed by comparing the MS/MS profiles of these adducts to those of commercial standards. PMID:27542499
The Bernoulli-Poiseuille Equation.
ERIC Educational Resources Information Center
Badeer, Henry S.; Synolakis, Costas E.
1989-01-01
Describes Bernoulli's equation and Poiseuille's equation for fluid dynamics. Discusses the application of the combined Bernoulli-Poiseuille equation in real flows, such as viscous flows under gravity and acceleration. (YP)
Introducing Chemical Formulae and Equations.
ERIC Educational Resources Information Center
Dawson, Chris; Rowell, Jack
1979-01-01
Discusses when the writing of chemical formula and equations can be introduced in the school science curriculum. Also presents ways in which formulae and equations learning can be aided and some examples for balancing and interpreting equations. (HM)
Nonlocal electrical diffusion equation
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.
2016-07-01
In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.
Parallel tridiagonal equation solvers
NASA Technical Reports Server (NTRS)
Stone, H. S.
1974-01-01
Three parallel algorithms were compared for the direct solution of tridiagonal linear systems of equations. The algorithms are suitable for computers such as ILLIAC 4 and CDC STAR. For array computers similar to ILLIAC 4, cyclic odd-even reduction has the least operation count for highly structured sets of equations, and recursive doubling has the least count for relatively unstructured sets of equations. Since the difference in operation counts for these two algorithms is not substantial, their relative running times may be more related to overhead operations, which are not measured in this paper. The third algorithm, based on Buneman's Poisson solver, has more arithmetic operations than the others, and appears to be the least favorable. For pipeline computers similar to CDC STAR, cyclic odd-even reduction appears to be the most preferable algorithm for all cases.
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1995-01-01
Kepler's Equation is solved over the entire range of elliptic motion by a fifth-order refinement of the solution of a cubic equation. This method is not iterative, and requires only four transcendental function evaluations: a square root, a cube root, and two trigonometric functions. The maximum relative error of the algorithm is less than one part in 10(exp 18), exceeding the capability of double-precision computer arithmetic. Roundoff errors in double-precision implementation of the algorithm are addressed, and procedures to avoid them are developed.
Difference equation for superradiance
NASA Technical Reports Server (NTRS)
Lee, C. T.
1974-01-01
The evolution of a completely excited system of N two-level atoms, distributed over a large region and interacting with all modes of radiation field, is studied. The distinction between r-conserving (RC) and r-nonconserving (RNC) processes is emphasized. Considering the number of photons emitted as the discrete independent variable, the evolution is described by a partial difference equation. Numerical solution of this equation shows the transition from RNC dominance at the beginning to RC dominance later. This is also a transition from incoherent to coherent emission of radiation.
Obtaining Maxwell's equations heuristically
NASA Astrophysics Data System (ADS)
Diener, Gerhard; Weissbarth, Jürgen; Grossmann, Frank; Schmidt, Rüdiger
2013-02-01
Starting from the experimental fact that a moving charge experiences the Lorentz force and applying the fundamental principles of simplicity (first order derivatives only) and linearity (superposition principle), we show that the structure of the microscopic Maxwell equations for the electromagnetic fields can be deduced heuristically by using the transformation properties of the fields under space inversion and time reversal. Using the experimental facts of charge conservation and that electromagnetic waves propagate with the speed of light, together with Galilean invariance of the Lorentz force, allows us to finalize Maxwell's equations and to introduce arbitrary electrodynamics units naturally.
NASA Astrophysics Data System (ADS)
Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Racco, Davide; Riotto, Antonio
2016-04-01
Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.
The Statistical Drake Equation
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2010-12-01
We provide the statistical generalization of the Drake equation. From a simple product of seven positive numbers, the Drake equation is now turned into the product of seven positive random variables. We call this "the Statistical Drake Equation". The mathematical consequences of this transformation are then derived. The proof of our results is based on the Central Limit Theorem (CLT) of Statistics. In loose terms, the CLT states that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable. This is called the Lyapunov Form of the CLT, or the Lindeberg Form of the CLT, depending on the mathematical constraints assumed on the third moments of the various probability distributions. In conclusion, we show that: The new random variable N, yielding the number of communicating civilizations in the Galaxy, follows the LOGNORMAL distribution. Then, as a consequence, the mean value of this lognormal distribution is the ordinary N in the Drake equation. The standard deviation, mode, and all the moments of this lognormal N are also found. The seven factors in the ordinary Drake equation now become seven positive random variables. The probability distribution of each random variable may be ARBITRARY. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into our statistical Drake equation by allowing an arbitrary probability distribution for each factor. This is both physically realistic and practically very useful, of course. An application of our statistical Drake equation then follows. The (average) DISTANCE between any two neighboring and communicating civilizations in the Galaxy may be shown to be inversely proportional to the cubic root of N. Then, in our approach, this distance becomes a new random variable. We derive the relevant probability density
Comparison of Kernel Equating and Item Response Theory Equating Methods
ERIC Educational Resources Information Center
Meng, Yu
2012-01-01
The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…
ERIC Educational Resources Information Center
Savoy, L. G.
1988-01-01
Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)
Structural Equation Model Trees
ERIC Educational Resources Information Center
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Parallel Multigrid Equation Solver
2001-09-07
Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.
ERIC Educational Resources Information Center
Fay, Temple H.
2010-01-01
Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…
Generalized reduced magnetohydrodynamic equations
Kruger, S.E.
1999-02-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics.
Modelling by Differential Equations
ERIC Educational Resources Information Center
Chaachoua, Hamid; Saglam, Ayse
2006-01-01
This paper aims to show the close relation between physics and mathematics taking into account especially the theory of differential equations. By analysing the problems posed by scientists in the seventeenth century, we note that physics is very important for the emergence of this theory. Taking into account this analysis, we show the…
Do Differential Equations Swing?
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.
2006-01-01
One of the units of in a standard differential equations course is a discussion of the oscillatory motion of a spring and the associated material on forcing functions and resonance. During the presentation on practical resonance, the instructor may tell students that it is similar to when they take their siblings to the playground and help them on…
Supersymmetric fifth order evolution equations
Tian, K.; Liu, Q. P.
2010-03-08
This paper considers supersymmetric fifth order evolution equations. Within the framework of symmetry approach, we give a list containing six equations, which are (potentially) integrable systems. Among these equations, the most interesting ones include a supersymmetric Sawada-Kotera equation and a novel supersymmetric fifth order KdV equation. For the latter, we supply some properties such as a Hamiltonian structures and a possible recursion operator.
Brownian motion from Boltzmann's equation.
NASA Technical Reports Server (NTRS)
Montgomery, D.
1971-01-01
Two apparently disparate lines of inquiry in kinetic theory are shown to be equivalent: (1) Brownian motion as treated by the (stochastic) Langevin equation and Fokker-Planck equation; and (2) Boltzmann's equation. The method is to derive the kinetic equation for Brownian motion from the Boltzmann equation for a two-component neutral gas by a simultaneous expansion in the density and mass ratios.
Causal electromagnetic interaction equations
Zinoviev, Yury M.
2011-02-15
For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.
Biaxial constitutive equation development
NASA Technical Reports Server (NTRS)
Jordan, E. H.; Walker, K. P.
1984-01-01
In developing the constitutive equations an interdisciplinary approach is being pursued. Specifically, both metallurgical and continuum mechanics considerations are recognized in the formulation. Experiments will be utilized to both explore general qualitative features of the material behavior that needs to be modeled and to provide a means of assessing the validity of the equations being developed. The model under development explicitly recognizes crystallographic slip on the individual slip systems. This makes possible direct representation of specific slip system phenomena. The present constitutive formulation takes the anisotropic creep theory and incorporates two state variables into the model to account for the effect of prior inelastic deformation history on the current rate-dependent response of the material.
Nikolaevskiy equation with dispersion.
Simbawa, Eman; Matthews, Paul C; Cox, Stephen M
2010-03-01
The Nikolaevskiy equation was originally proposed as a model for seismic waves and is also a model for a wide variety of systems incorporating a neutral "Goldstone" mode, including electroconvection and reaction-diffusion systems. It is known to exhibit chaotic dynamics at the onset of pattern formation, at least when the dispersive terms in the equation are suppressed, as is commonly the practice in previous analyses. In this paper, the effects of reinstating the dispersive terms are examined. It is shown that such terms can stabilize some of the spatially periodic traveling waves; this allows us to study the loss of stability and transition to chaos of the waves. The secondary stability diagram ("Busse balloon") for the traveling waves can be remarkably complicated. PMID:20365845
Singularities for PRANDTL'S Equations
NASA Astrophysics Data System (ADS)
Lo Bosco, G.; Sammartino, M.; Sciacca, V.
2006-03-01
We use a mixed spectral/finite-difference numerical method to investigate the possibility of a finite time blow-up of the solutions of Prandtl's equations for the case of the impulsively started cylinder. Our tool is the complex singularity tracking method. We show that a cubic root singularity seems to develop, in a time that can be made arbitrarily short, from a class of data uniformly bounded in H1.
Multinomial diffusion equation
NASA Astrophysics Data System (ADS)
Balter, Ariel; Tartakovsky, Alexandre M.
2011-06-01
We describe a new, microscopic model for diffusion that captures diffusion induced fluctuations at scales where the concept of concentration gives way to discrete particles. We show that in the limit as the number of particles N→∞, our model is equivalent to the classical stochastic diffusion equation (SDE). We test our new model and the SDE against Langevin dynamics in numerical simulations, and show that our model successfully reproduces the correct ensemble statistics, while the classical model fails.
Multinomial diffusion equation
Balter, Ariel I.; Tartakovsky, Alexandre M.
2011-06-24
We describe a new, microscopic model for diffusion that captures diffusion induced uctuations at scales where the concept of concentration gives way to discrete par- ticles. We show that in the limit as the number of particles N ! 1, our model is equivalent to the classical stochastic diffusion equation (SDE). We test our new model and the SDE against Langevin dynamics in numerical simulations, and show that our model successfully reproduces the correct ensemble statistics, while the classical model fails.
ERIC Educational Resources Information Center
Vasile, Daniela
2012-01-01
We are frequently told that Hong Kong has a model system for learning mathematics. In this article Daniela Vasile notes one short-coming in that the pupils are not taught to problem-solve. She begins with a new class by asking them to write down the craziest equation they can come up with and bases her whole lesson, and the following homework,…
Generalized reduced MHD equations
Kruger, S.E.; Hegna, C.C.; Callen, J.D.
1998-07-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson.
NASA Astrophysics Data System (ADS)
Konesky, Gregory
2009-08-01
In the almost half century since the Drake Equation was first conceived, a number of profound discoveries have been made that require each of the seven variables of this equation to be reconsidered. The discovery of hydrothermal vents on the ocean floor, for example, as well as the ever-increasing extreme conditions in which life is found on Earth, suggest a much wider range of possible extraterrestrial habitats. The growing consensus that life originated very early in Earth's history also supports this suggestion. The discovery of exoplanets with a wide range of host star types, and attendant habitable zones, suggests that life may be possible in planetary systems with stars quite unlike our Sun. Stellar evolution also plays an important part in that habitable zones are mobile. The increasing brightness of our Sun over the next few billion years, will place the Earth well outside the present habitable zone, but will then encompass Mars, giving rise to the notion that some Drake Equation variables, such as the fraction of planets on which life emerges, may have multiple values.
Differential Equations Compatible with Boundary Rational qKZ Equation
NASA Astrophysics Data System (ADS)
Takeyama, Yoshihiro
2011-10-01
We give diffierential equations compatible with the rational qKZ equation with boundary reflection. The total system contains the trigonometric degeneration of the bispectral qKZ equation of type (Cěen, Cn) which in the case of type GLn was studied by van Meer and Stokman. We construct an integral formula for solutions to our compatible system in a special case.
The compressible adjoint equations in geodynamics: equations and numerical assessment
NASA Astrophysics Data System (ADS)
Ghelichkhan, Siavash; Bunge, Hans-Peter
2016-04-01
The adjoint method is a powerful means to obtain gradient information in a mantle convection model relative to past flow structure. While the adjoint equations in geodynamics have been derived for the conservation equations of mantle flow in their incompressible form, the applicability of this approximation to Earth is limited, because density increases by almost a factor of two from the surface to the Core Mantle Boundary. Here we introduce the compressible adjoint equations for the conservation equations in the anelastic-liquid approximation. Our derivation applies an operator formulation in Hilbert spaces, to connect to recent work in seismology (Fichtner et al (2006)) and geodynamics (Horbach et al (2014)), where the approach was used to derive the adjoint equations for the wave equation and incompressible mantle flow. We present numerical tests of the newly derived equations based on twin experiments, focusing on three simulations. A first, termed Compressible, assumes the compressible forward and adjoint equations, and represents the consistent means of including compressibility effects. A second, termed Mixed, applies the compressible forward equation, but ignores compressibility effects in the adjoint equations, where the incompressible equations are used instead. A third simulation, termed Incompressible, neglects compressibility effects entirely in the forward and adjoint equations relative to the reference twin. The compressible and mixed formulations successfully restore earlier mantle flow structure, while the incompressible formulation yields noticeable artifacts. Our results suggest the use of a compressible formulation, when applying the adjoint method to seismically derived mantle heterogeneity structure.
Estimating Equating Error in Observed-Score Equating. Research Report.
ERIC Educational Resources Information Center
van der Linden, Wim J.
Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and in the population of examinees. This definition underlies, for example, the well-known approximation to the standard error of equating by Lord (1982).…
Continuous time random walks for non-local radial solute transport
NASA Astrophysics Data System (ADS)
Dentz, Marco; Kang, Peter K.; Le Borgne, Tanguy
2015-08-01
This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer
Makkonen, Lasse
2016-04-01
Young's construction for a contact angle at a three-phase intersection forms the basis of all fields of science that involve wetting and capillary action. We find compelling evidence from recent experimental results on the deformation of a soft solid at the contact line, and displacement of an elastic wire immersed in a liquid, that Young's equation can only be interpreted by surface energies, and not as a balance of surface tensions. It follows that the a priori variable in finding equilibrium is not the position of the contact line, but the contact angle. This finding provides the explanation for the pinning of a contact line. PMID:26940644
Noncommutativity and the Friedmann Equations
NASA Astrophysics Data System (ADS)
Sabido, M.; Guzmán, W.; Socorro, J.
2010-07-01
In this paper we study noncommutative scalar field cosmology, we find the noncommutative Friedmann equations as well as the noncommutative Klein-Gordon equation, interestingly the noncommutative contributions are only present up to second order in the noncommutitive parameter.
Solitons and nonlinear wave equations
Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C.
1982-01-01
A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.
Conservational PDF Equations of Turbulence
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2010-01-01
Recently we have revisited the traditional probability density function (PDF) equations for the velocity and species in turbulent incompressible flows. They are all unclosed due to the appearance of various conditional means which are modeled empirically. However, we have observed that it is possible to establish a closed velocity PDF equation and a closed joint velocity and species PDF equation through conditions derived from the integral form of the Navier-Stokes equations. Although, in theory, the resulted PDF equations are neither general nor unique, they nevertheless lead to the exact transport equations for the first moment as well as all higher order moments. We refer these PDF equations as the conservational PDF equations. This observation is worth further exploration for its validity and CFD application
Thaller, B.
1992-01-01
This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics.
Inequivalence between the Schroedinger equation and the Madelung hydrodynamic equations
Wallstrom, T.C.
1994-03-01
By differentiating the Schroedinger equation and separating the real amd imaginary parts, one obtains the Madelung hydrodynamic equations, which have inspired numerous classical interpretations of quantum mechanics. Such interpretations frequently assume that these equations are equivalent to the Schroedinger equation, and thus provide an alternative basis for quantum mechanics. This paper proves that this is incorrect: to recover the Schroedinger equation, one must add by hand a quantization condition, as in the old quantum theory. The implications for various alternative interpretations of quantum mechanics are discussed.
``Riemann equations'' in bidifferential calculus
NASA Astrophysics Data System (ADS)
Chvartatskyi, O.; Müller-Hoissen, F.; Stoilov, N.
2015-10-01
We consider equations that formally resemble a matrix Riemann (or Hopf) equation in the framework of bidifferential calculus. With different choices of a first-order bidifferential calculus, we obtain a variety of equations, including a semi-discrete and a fully discrete version of the matrix Riemann equation. A corresponding universal solution-generating method then either yields a (continuous or discrete) Cole-Hopf transformation, or leaves us with the problem of solving Riemann equations (hence an application of the hodograph method). If the bidifferential calculus extends to second order, solutions of a system of "Riemann equations" are also solutions of an equation that arises, on the universal level of bidifferential calculus, as an integrability condition. Depending on the choice of bidifferential calculus, the latter can represent a number of prominent integrable equations, like self-dual Yang-Mills, as well as matrix versions of the two-dimensional Toda lattice, Hirota's bilinear difference equation, (2+1)-dimensional Nonlinear Schrödinger (NLS), Kadomtsev-Petviashvili (KP) equation, and Davey-Stewartson equations. For all of them, a recent (non-isospectral) binary Darboux transformation result in bidifferential calculus applies, which can be specialized to generate solutions of the associated "Riemann equations." For the latter, we clarify the relation between these specialized binary Darboux transformations and the aforementioned solution-generating method. From (arbitrary size) matrix versions of the "Riemann equations" associated with an integrable equation, possessing a bidifferential calculus formulation, multi-soliton-type solutions of the latter can be generated. This includes "breaking" multi-soliton-type solutions of the self-dual Yang-Mills and the (2+1)-dimensional NLS equation, which are parametrized by solutions of Riemann equations.
The Forced Hard Spring Equation
ERIC Educational Resources Information Center
Fay, Temple H.
2006-01-01
Through numerical investigations, various examples of the Duffing type forced spring equation with epsilon positive, are studied. Since [epsilon] is positive, all solutions to the associated homogeneous equation are periodic and the same is true with the forcing applied. The damped equation exhibits steady state trajectories with the interesting…
Equating with Miditests Using IRT
ERIC Educational Resources Information Center
Fitzpatrick, Joseph; Skorupski, William P.
2016-01-01
The equating performance of two internal anchor test structures--miditests and minitests--is studied for four IRT equating methods using simulated data. Originally proposed by Sinharay and Holland, miditests are anchors that have the same mean difficulty as the overall test but less variance in item difficulties. Four popular IRT equating methods…
Successfully Transitioning to Linear Equations
ERIC Educational Resources Information Center
Colton, Connie; Smith, Wendy M.
2014-01-01
The Common Core State Standards for Mathematics (CCSSI 2010) asks students in as early as fourth grade to solve word problems using equations with variables. Equations studied at this level generate a single solution, such as the equation x + 10 = 25. For students in fifth grade, the Common Core standard for algebraic thinking expects them to…
Evaluating Cross-Lingual Equating.
ERIC Educational Resources Information Center
Rapp, Joel; Allalouf, Avi
This study examined the cross-lingual equating process adopted by a large scale testing system in which target language (TL) forms are equated to the source language (SL) forms using a set of translated items. The focus was on evaluating the degree of error inherent in the routine cross-lingual equating of the Verbal Reasoning subtest of the…
Solving Nonlinear Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
Generalized Klein-Kramers equations
NASA Astrophysics Data System (ADS)
Fa, Kwok Sau
2012-12-01
A generalized Klein-Kramers equation for a particle interacting with an external field is proposed. The equation generalizes the fractional Klein-Kramers equation introduced by Barkai and Silbey [J. Phys. Chem. B 104, 3866 (2000), 10.1021/jp993491m]. Besides, the generalized Klein-Kramers equation can also recover the integro-differential Klein-Kramers equation for continuous-time random walk; this means that it can describe the subdiffusive and superdiffusive regimes in the long-time limit. Moreover, analytic solutions for first two moments both in velocity and displacement (for force-free case) are obtained, and their dynamic behaviors are investigated.
Pardiñas, Antonio F; Roca, Agustín; García-Vazquez, Eva; López, Belén
2014-04-01
Genetic structural patterns of human populations are usually a combination of long-term evolutionary forces and short-term social, cultural, and demographic processes. Recently, using mitochondrial DNA and Y-chromosome loci, various studies in northern Spain have found evidence that the geographical distribution of Iron Age tribal peoples might have influenced current patterns of genetic structuring in several autochthonous populations. Using the wealth of data that are currently available from the whole territory of the Iberian Peninsula, we have evaluated its genetic structuring in the spatial scale of the Atlantic façade. Hierarchical tree modeling procedures, combined with a classic analysis of molecular variance (AMOVA), were used to model known sociocultural divisions from the third century BCE to the eighth century CE, contrasting them with uniparental marker data. Our results show that, while mountainous and abrupt areas of the Iberian North bear the signals of long-term isolation in their maternal and paternal gene pools, the makeup of the Atlantic façade as a whole can be related to tribal population groups that predate the Roman conquest of the Peninsula. The maintenance through time of such a structure can be related to the numerous geographic barriers of the Iberian mainland, which have historically conditioned its settlement patterns and the occurrence of genetic drift processes. PMID:24375152
Bieda, Bogusław
2013-01-01
The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball® (CB), simulation program that helps analyze the uncertainties associated with Microsoft® Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection-dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Kraków, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design. PMID:23194922
Use of CTRW for Prediction of Radionuclide Migration in Fractured Tuff
NASA Astrophysics Data System (ADS)
Pickman, L. H.; Parashar, R.; Reeves, D. M.
2014-12-01
Non-local contaminant transport methods have been extensively studied as an alternative for the classical Advection Dispersion Equation (ADE) to model particle migration in heterogeneous media and in regions with geologic patterns that shape secondary porosity. The challenges encountered in fractured media are usually more complex than un-fractured porous media because of the irregular connectivity patterns between individual fractures, large number of parameters, and wide distribution of parameter space. The Continuous Random Time Walk (CTRW) methodology provides a framework for modeling non-Fickian transport through fracture networks by employing probabilistic distributions to generate particle jump lengths and residence time spanning over orders of magnitude. We apply CTRW framework to model transport of radionuclides in the fractured volcanic tuff of Western Pahute Mesa located at the Nevada National Security Site (NNSS). By analyzing borehole data recorded at the NNSS, statistical attributes of fracture parameters are derived that are used to generate discrete fracture network (DFN) realizations. Through convolution of both particle travel time and fracture length distribution, transport is modeled on a continuum of spatial scales via the CTRW technique and the predictions are compared against DFN results to ascertain the efficacy of upscaling.
Weissmann, Gary S
2013-12-06
The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.
Incorporating Super-Diffusion due to Sub-Grid Heterogeneity to Capture Non-Fickian Transport.
Baeumer, Boris; Zhang, Yong; Schumer, Rina
2015-01-01
Numerical transport models based on the advection-dispersion equation (ADE) are built on the assumption that sub-grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super-diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub-grid super-diffusion in a multidimensional regional-scale transport model by using a recent mathematical model allowing super-diffusion along the flow direction given by the regional model. Here, the time randomizing procedure known as subordination is applied to flow field output from MODFLOW simulations. Numerical tests check the applicability of the novel method in mapping regional-scale super-diffusive transport conditioned on local properties of multidimensional heterogeneous media. PMID:25214174
Multinomial Diffusion Equation
Balter, Ariel I.; Tartakovsky, Alexandre M.
2011-06-01
We have developed a novel stochastic, space/time discrete representation of particle diffusion (e.g. Brownian motion) based on discrete probability distributions. We show that in the limit of both very small time step and large concentration, our description is equivalent to the space/time continuous stochastic diffusion equation. Being discrete in both time and space, our model can be used as an extremely accurate, efficient, and stable stochastic finite-difference diffusion algorithm when concentrations are so small that computationally expensive particle-based methods are usually needed. Through numerical simulations, we show that our method can generate realizations that capture the statistical properties of particle simulations. While our method converges converges to both the correct ensemble mean and ensemble variance very quickly with decreasing time step, but for small concentration, the stochastic diffusion PDE does not, even for very small time steps.
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2015-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789
NASA Astrophysics Data System (ADS)
Cardona, Carlos; Gomez, Humberto
2016-06-01
Recently the CHY approach has been extended to one loop level using elliptic functions and modular forms over a Jacobian variety. Due to the difficulty in manipulating these kind of functions, we propose an alternative prescription that is totally algebraic. This new proposal is based on an elliptic algebraic curve embedded in a mathbb{C}{P}^2 space. We show that for the simplest integrand, namely the n - gon, our proposal indeed reproduces the expected result. By using the recently formulated Λ-algorithm, we found a novel recurrence relation expansion in terms of tree level off-shell amplitudes. Our results connect nicely with recent results on the one-loop formulation of the scattering equations. In addition, this new proposal can be easily stretched out to hyperelliptic curves in order to compute higher genus.
NASA Astrophysics Data System (ADS)
Gomez, Humberto
2016-06-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.
On nonautonomous Dirac equation
Hovhannisyan, Gro; Liu Wen
2009-12-15
We construct the fundamental solution of time dependent linear ordinary Dirac system in terms of unknown phase functions. This construction gives approximate representation of solutions which is useful for the study of asymptotic behavior. Introducing analog of Rayleigh quotient for differential equations we generalize Hartman-Wintner asymptotic integration theorems with the error estimates for applications to the Dirac system. We also introduce the adiabatic invariants for the Dirac system, which are similar to the adiabatic invariant of Lorentz's pendulum. Using a small parameter method it is shown that the change in the adiabatic invariants approaches zero with the power speed as a small parameter approaches zero. As another application we calculate the transition probabilities for the Dirac system. We show that for the special choice of electromagnetic field, the only transition of an electron to the positron with the opposite spin orientation is possible.
Parabolized stability equations
NASA Astrophysics Data System (ADS)
Herbert, Thorwald
1994-04-01
The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.
Mode decomposition evolution equations
Wang, Yang; Wei, Guo-Wei; Yang, Siyang
2011-01-01
Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be
Langevin equation approach to reactor noise analysis: stochastic transport equation
Akcasu, A.Z. ); Stolle, A.M. )
1993-01-01
The application of the Langevin equation method to the study of fluctuations in the space- and velocity-dependent neutron density as well as in the detector outputs in nuclear reactors is presented. In this case, the Langevin equation is the stochastic linear neutron transport equation with a space- and velocity-dependent random neutron source, often referred to as the noise equivalent source (NES). The power spectral densities (PSDs) of the NESs in the transport equation, as well as in the accompanying detection rate equations, are obtained, and the cross- and auto-power spectral densities of the outputs of pairs of detectors are explicitly calculated. The transport-level expression for the R([omega]) ratio measured in the [sup 252]Cf source-driven noise analysis method is also derived. Finally, the implementation of the Langevin equation approach at different levels of approximation is discussed, and the stochastic one-speed transport and one-group P[sub 1] equations are derived by first integrating the stochastic transport equation over speed and then eliminating the angular dependence by a spherical harmonics expansion. By taking the large transport rate limit in the P[sub 1] description, the stochastic diffusion equation is obtained as well as the PSD of the NES in it. This procedure also leads directly to the stochastic Fick's law.
A spinor representation of Maxwell equations and Dirac equation
Vaz, J. Jr.; Rodrigues, W.A. Jr.
1993-02-01
Using the Clifford bundle formalism and starting from the free Maxwell equations dF = {delta}F = 0 we show by writing F = b{psi}{gamma}{sup 1}{gamma}{sup 2}{psi}{sup *}, where {psi} is a Dirac-Hestenes spinor field, that the Dirac-Hestenes equation (which is the representative of the standard Dirac equation in the Clifford bundle over Minkowski spacetime) is equivalent under general assumptions to those free Maxwell equations. We briefly discuss the implications of our findings for the interpretation of quantum mechanics. 15 refs.
Menikoff, Ralph
2015-12-15
The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ≥ 0, T ≥ 0, and the isothermal bulk modulus is positive. Typically, this limits the low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.
Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium
NASA Astrophysics Data System (ADS)
Zhang, Mingkan; Zhang, Ye
2015-03-01
A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems
Dispersion of solutes in porous media
NASA Astrophysics Data System (ADS)
Hunt, A. G.; Skinner, T. E.; Ewing, R. P.; Ghanbarian-Alavijeh, B.
2011-04-01
A recently introduced theory of solute transport in porous media is tested by comparison with experiment. The solute transport is predicted using an adaptation of the cluster statistics of percolation theory to critical path analysis together with knowledge of how the structure of such percolation clusters affects the time of transport across them. Only the effects of a single scale of medium heterogeneity are incorporated, and a minimal amount of information regarding the structure of the medium is required. This framework is used to find effectively the distributions of solute velocities and travel distances and thus generate arrival time distributions. The comparison with experiment focuses on the dispersivity (the ratio of the second to the first moment of the spatial solute distribution). The predictions of the theory in the absence of diffusion are verified by comparing with over 2200 experiments over length scales from a few microns to 100 km. At larger length scales (centimeters on up) about 95% of the data lie within our predicted bounds. At smaller length scales approximately 99.8% of the data lie where we predict. These comparisons are not trivial as the typical values of the dispersivity increase by ten orders of magnitude over ten orders of magnitude of length scale. Noteworthy is that the classical advection-dispersion (ADE) equation predicts that the dispersivity should be independent of length scale! This agreement with experiment requires rethinking of the relevance of diffusion and multi-scale heterogeneity and would also appear to signal the complete inappropriateness of using the classical ADE or any of its derivatives to model solute transport.
A note on "Kepler's equation".
NASA Astrophysics Data System (ADS)
Dutka, J.
1997-07-01
This note briefly points out the formal similarity between Kepler's equation and equations developed in Hindu and Islamic astronomy for describing the lunar parallax. Specifically, an iterative method for calculating the lunar parallax has been developed by the astronomer Habash al-Hasib al-Marwazi (about 850 A.D., Turkestan), which is surprisingly similar to the iterative method for solving Kepler's equation invented by Leonhard Euler (1707 - 1783).
Electronic representation of wave equation
NASA Astrophysics Data System (ADS)
Veigend, Petr; Kunovský, Jiří; Kocina, Filip; Nečasová, Gabriela; Šátek, Václav; Valenta, Václav
2016-06-01
The Taylor series method for solving differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used algorithms for numerically solving differential equations. This paper deals with solution of Telegraph equation using modelling of a series small pieces of the wire. Corresponding differential equations are solved by the Modern Taylor Series Method.
The mass transport (advection-dispersion) equations allowing coupled second-order reaction (i.e. Omega sub 1, C sub 1) + (omega sub 2, C sub 2) (R sub 12) -> Re) between two constituents are derived and result in a set of coupled nonlinear partial differential equations. Neglecti...
Uncertainty of empirical correlation equations
NASA Astrophysics Data System (ADS)
Feistel, R.; Lovell-Smith, J. W.; Saunders, P.; Seitz, S.
2016-08-01
The International Association for the Properties of Water and Steam (IAPWS) has published a set of empirical reference equations of state, forming the basis of the 2010 Thermodynamic Equation of Seawater (TEOS-10), from which all thermodynamic properties of seawater, ice, and humid air can be derived in a thermodynamically consistent manner. For each of the equations of state, the parameters have been found by simultaneously fitting equations for a range of different derived quantities using large sets of measurements of these quantities. In some cases, uncertainties in these fitted equations have been assigned based on the uncertainties of the measurement results. However, because uncertainties in the parameter values have not been determined, it is not possible to estimate the uncertainty in many of the useful quantities that can be calculated using the parameters. In this paper we demonstrate how the method of generalised least squares (GLS), in which the covariance of the input data is propagated into the values calculated by the fitted equation, and in particular into the covariance matrix of the fitted parameters, can be applied to one of the TEOS-10 equations of state, namely IAPWS-95 for fluid pure water. Using the calculated parameter covariance matrix, we provide some preliminary estimates of the uncertainties in derived quantities, namely the second and third virial coefficients for water. We recommend further investigation of the GLS method for use as a standard method for calculating and propagating the uncertainties of values computed from empirical equations.
Graphical Solution of Polynomial Equations
ERIC Educational Resources Information Center
Grishin, Anatole
2009-01-01
Graphing utilities, such as the ubiquitous graphing calculator, are often used in finding the approximate real roots of polynomial equations. In this paper the author offers a simple graphing technique that allows one to find all solutions of a polynomial equation (1) of arbitrary degree; (2) with real or complex coefficients; and (3) possessing…
Drug Levels and Difference Equations
ERIC Educational Resources Information Center
Acker, Kathleen A.
2004-01-01
American university offers a course in finite mathematics whose focus is difference equation with emphasis on real world applications. The conclusion states that students learned to look for growth and decay patterns in raw data, to recognize both arithmetic and geometric growth, and to model both scenarios with graphs and difference equations.
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
Complete solution of Boolean equations
NASA Technical Reports Server (NTRS)
Tapia, M. A.; Tucker, J. H.
1980-01-01
A method is presented for generating a single formula involving arbitary Boolean parameters, which includes in it each and every possible solution of a system of Boolean equations. An alternate condition equivalent to a known necessary and sufficient condition for solving a system of Boolean equations is given.
Students' Understanding of Quadratic Equations
ERIC Educational Resources Information Center
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-01-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…
The Equations of Oceanic Motions
NASA Astrophysics Data System (ADS)
Müller, Peter
2006-10-01
Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.
Jia, Wei; Li, Caiyun; Zhang, Haiyun; Li, Gang; Liu, Xiaoming; Wei, Jun
2015-01-01
The objective of this study was to explore the molecular epidemiology and the genetic support of clinical multidrug resistant (MDR) Acinetobacter baumannii (A. baumannii) isolates in an ICU ward of a comprehensive hospital. A total of 102 non-duplicate drug-resistant A. baumannii isolates were identified and 93 (91.1%) of them were MDR strains. Molecular analysis demonstrated that carbapenemase genes blaOXA-23 and blaOXA-51 were presented in all 93 MDR isolates (100%), but other carbapenemase genes, including blaOXA-24, blaOXA-58, blaIMP-1, blaIMP-4, blaSIM, and blaVIM genes were completely absent in all isolates. In addition, genes of AdeABC efflux system were detected in 88.2% (90/102) isolates. Interestingly, an addition to efflux pump inhibitor, reserpine could significantly enhance the susceptibility of MDR isolates to moxifloxacin, cefotaxime, and imipenem (p < 0.01). Clonal relationship analysis further grouped these clinical drug-resistant isolates into nine clusters, and the MDR strains were mainly in clusters A, B, C, and D, which include 16, 13, 25, and 15 isolates, respectively. This study demonstrated that clinical isolates carrying carbapenemase-encoding genes blaOXA-23 and AdeABC efflux pump genes are the main prevalent MDR A. baumannii, and the co-expression of oxacillinase and efflux pump proteins are thus considered to be the important reason for the prevalence of this organism in the ICU of this hospital. PMID:26308027
Extended Trial Equation Method for Nonlinear Partial Differential Equations
NASA Astrophysics Data System (ADS)
Gepreel, Khaled A.; Nofal, Taher A.
2015-04-01
The main objective of this paper is to use the extended trial equation method to construct a series of some new solutions for some nonlinear partial differential equations (PDEs) in mathematical physics. We will construct the solutions in many different functions such as hyperbolic function solutions, trigonometric function solutions, Jacobi elliptic function solutions, and rational functional solutions for the nonlinear PDEs when the balance number is a real number via the Zhiber-Shabat nonlinear differential equation. The balance number of this method is not constant as we shown in other methods, but it is changed by changing the trial equation derivative definition. This method allowed us to construct many new types of solutions. It is shown by using the Maple software package that all obtained solutions satisfy the original PDEs.
Higher derivative gravity: Field equation as the equation of state
NASA Astrophysics Data System (ADS)
Dey, Ramit; Liberati, Stefano; Mohd, Arif
2016-08-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
Sedeonic Equations of Massive Fields
NASA Astrophysics Data System (ADS)
Mironov, Sergey V.; Mironov, Victor L.
2015-01-01
Prior work on space-time sedeon algebra models relativistic quantum mechanical equation of motion with corresponding field equations, mediated by massive or massless spin-1 or spin-1/2 particles. In the massless spin-1 case, such exchange particles mediate fields in analogy to Maxwell's equations in Lorentz gauge. This paper demonstrates fundamental aspects of massive field's theory, such as gauge invariance, charge conservation, Poynting's theorem, potential of a stationary scalar point source, plane wave solution, and interaction between point sources. We briefly discuss some aspects of sedeonic algebra and their potential physical applications.
Primordial equation of state transitions
NASA Astrophysics Data System (ADS)
Aravind, Aditya; Lorshbough, Dustin; Paban, Sonia
2016-06-01
We revisit the physics of transitions from a general equation of state parameter to the final stage of slow-roll inflation. We show that it is unlikely for the modes comprising the cosmic microwave background to contain imprints from a preinflationary equation of state transition and still be consistent with observations. We accomplish this by considering observational consistency bounds on the amplitude of excitations resulting from such a transition. As a result, the physics which initially led to inflation likely cannot be probed with observations of the cosmic microwave background. Furthermore, we show that it is unlikely that equation of state transitions may explain the observed low multipole power suppression anomaly.
SETS. Set Equation Transformation System
Worrel, R.B.
1992-01-13
SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system.
Friedmann equation with quantum potential
Siong, Ch'ng Han; Radiman, Shahidan; Nikouravan, Bijan
2013-11-27
Friedmann equations are used to describe the evolution of the universe. Solving Friedmann equations for the scale factor indicates that the universe starts from an initial singularity where all the physical laws break down. However, the Friedmann equations are well describing the late-time or large scale universe. Hence now, many physicists try to find an alternative theory to avoid this initial singularity. In this paper, we generate a version of first Friedmann equation which is added with an additional term. This additional term contains the quantum potential energy which is believed to play an important role at small scale. However, it will gradually become negligible when the universe evolves to large scale.
Evolutions equations in computational anatomy.
Younes, Laurent; Arrate, Felipe; Miller, Michael I
2009-03-01
One of the main purposes in computational anatomy is the measurement and statistical study of anatomical variations in organs, notably in the brain or the heart. Over the last decade, our group has progressively developed several approaches for this problem, all related to the Riemannian geometry of groups of diffeomorphisms and the shape spaces on which these groups act. Several important shape evolution equations that are now used routinely in applications have emerged over time. Our goal in this paper is to provide an overview of these equations, placing them in their theoretical context, and giving examples of applications in which they can be used. We introduce the required theoretical background before discussing several classes of equations of increasingly complexity. These equations include energy minimizing evolutions deriving from Riemannian gradient descent, geodesics, parallel transport and Jacobi fields. PMID:19059343
Overdetermined Systems of Linear Equations.
ERIC Educational Resources Information Center
Williams, Gareth
1990-01-01
Explored is an overdetermined system of linear equations to find an appropriate least squares solution. A geometrical interpretation of this solution is given. Included is a least squares point discussion. (KR)
Parametric Equations, Maple, and Tubeplots.
ERIC Educational Resources Information Center
Feicht, Louis
1997-01-01
Presents an activity that establishes a graphical foundation for parametric equations by using a graphing output form called tubeplots from the computer program Maple. Provides a comprehensive review and exploration of many previously learned topics. (ASK)
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1987-01-01
The Boussinesq approximation is extended so as to explicitly account for the transfer of fluid energy through viscous action into thermal energy. Ideal and dissipative integral invariants are discussed, in addition to the general equations for thermal-fluid motion.
Bogoliubov equations and functional mechanics
NASA Astrophysics Data System (ADS)
Volovich, I. V.
2010-09-01
The functional classical mechanics based on the probability approach, where a particle is described not by a trajectory in the phase space but by a probability distribution, was recently proposed for solving the irreversibility problem, i.e., the problem of matching the time reversibility of microscopic dynamics equations and the irreversibility of macrosystem dynamics. In the framework of functional mechanics, we derive Bogoliubov-Boltzmann-type equations for finitely many particles. We show that a closed equation for a one-particle distribution function can be rigorously derived in functional mechanics without any additional assumptions required in the Bogoliubov method. We consider the possibility of using diffusion processes and the Fokker-Planck-Kolmogorov equation to describe isolated particles.
Improved beam propagation method equations.
Nichelatti, E; Pozzi, G
1998-01-01
Improved beam propagation method (BPM) equations are derived for the general case of arbitrary refractive-index spatial distributions. It is shown that in the paraxial approximation the discrete equations admit an analytical solution for the propagation of a paraxial spherical wave, which converges to the analytical solution of the paraxial Helmholtz equation. The generalized Kirchhoff-Fresnel diffraction integral between the object and the image planes can be derived, with its coefficients expressed in terms of the standard ABCD matrix. This result allows the substitution, in the case of an unaberrated system, of the many numerical steps with a single analytical step. We compared the predictions of the standard and improved BPM equations by considering the cases of a Maxwell fish-eye and of a Luneburg lens. PMID:18268554
Solving Differential Equations in R
Although R is still predominantly applied for statistical analysis and graphical representation, it is rapidly becoming more suitable for mathematical computing. One of the fields where considerable progress has been made recently is the solution of differential equations. Here w...
New determination equation for visibility
Fang Qiwan; Rao Jionghui; Ying Zhixiang; Tang Haijun; Jiang Chuanfu
1996-12-31
Range is an important tactical hard index in designing and manufacturing military laser rangefinders. But in practice it is also a soft index which is influenced by target characteristic and atmospheric visibility. In this article the problems in the range index are analyzed. The way to determine visibility is put forward. Extinction determination equation for visibility is derived. And it is applied in practice, which verifies the determination equation is functional and effective.
Boltzmann equation and hydrodynamic fluctuations.
Colangeli, Matteo; Kröger, Martin; Ottinger, Hans Christian
2009-11-01
We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics. PMID:20364972
Hidden Statistics of Schroedinger Equation
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.
Revisiting the Simplified Bernoulli Equation
Heys, Jeffrey J; Holyoak, Nicole; Calleja, Anna M; Belohlavek, Marek; Chaliki, Hari P
2010-01-01
Background: The assessment of the severity of aortic valve stenosis is done by either invasive catheterization or non-invasive Doppler Echocardiography in conjunction with the simplified Bernoulli equation. The catheter measurement is generally considered more accurate, but the procedure is also more likely to have dangerous complications. Objective: The focus here is on examining computational fluid dynamics as an alternative method for analyzing the echo data and determining whether it can provide results similar to the catheter measurement. Methods: An in vitro heart model with a rigid orifice is used as a first step in comparing echocardiographic data, which uses the simplified Bernoulli equation, catheterization, and echocardiographic data, which uses computational fluid dynamics (i.e., the Navier-Stokes equations). Results: For a 0.93cm2 orifice, the maximum pressure gradient predicted by either the simplified Bernoulli equation or computational fluid dynamics was not significantly different from the experimental catheter measurement (p > 0.01). For a smaller 0.52cm2 orifice, there was a small but significant difference (p < 0.01) between the simplified Bernoulli equation and the computational fluid dynamics simulation, with the computational fluid dynamics simulation giving better agreement with experimental data for some turbulence models. Conclusion: For this simplified, in vitro system, the use of computational fluid dynamics provides an improvement over the simplified Bernoulli equation with the biggest improvement being seen at higher valvular stenosis levels. PMID:21625471
An Exact Mapping from Navier-Stokes Equation to Schr"odinger Equation via Riccati Equation
NASA Astrophysics Data System (ADS)
Christianto, Vic; Smarandache, Florentin
2010-03-01
In the present article we argue that it is possible to write down Schr"odinger representation of Navier-Stokes equation via Riccati equation. The proposed approach, while differs appreciably from other method such as what is proposed by R. M. Kiehn, has an advantage, i.e. it enables us extend further to quaternionic and biquaternionic version of Navier-Stokes equation, for instance via Kravchenko's and Gibbon's route. Further observation is of course recommended in order to refute or verify this proposition.
Allidina, A.Y.; Malinowski, K.; Singh, M.G.
1982-12-01
The possibilities were explored for enhancing parallelism in the simulation of systems described by algebraic equations, ordinary differential equations and partial differential equations. These techniques, using multiprocessors, were developed to speed up simulations, e.g. for nuclear accidents. Issues involved in their design included suitable approximations to bring the problem into a numerically manageable form and a numerical procedure to perform the computations necessary to solve the problem accurately. Parallel processing techniques used as simulation procedures, and a design of a simulation scheme and simulation procedure employing parallel computer facilities, were both considered.
Solving Parker's transport equation with stochastic differential equations on GPUs
NASA Astrophysics Data System (ADS)
Dunzlaff, P.; Strauss, R. D.; Potgieter, M. S.
2015-07-01
The numerical solution of transport equations for energetic charged particles in space is generally very costly in terms of time. Besides the use of multi-core CPUs and computer clusters in order to decrease the computation times, high performance calculations on graphics processing units (GPUs) have become available during the last years. In this work we introduce and describe a GPU-accelerated implementation of Parker's equation using Stochastic Differential Equations (SDEs) for the simulation of the transport of energetic charged particles with the CUDA toolkit, which is the focus of this work. We briefly discuss the set of SDEs arising from Parker's transport equation and their application to boundary value problems such as that of the Jovian magnetosphere. We compare the runtimes of the GPU code with a CPU version of the same algorithm. Compared to the CPU implementation (using OpenMP and eight threads) we find a performance increase of about a factor of 10-60, depending on the assumed set of parameters. Furthermore, we benchmark our simulation using the results of an existing SDE implementation of Parker's transport equation.
Turbulent fluid motion 3: Basic continuum equations
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1991-01-01
A derivation of the continuum equations used for the analysis of turbulence is given. These equations include the continuity equation, the Navier-Stokes equations, and the heat transfer or energy equation. An experimental justification for using a continuum approach for the study of turbulence is given.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
NASA Astrophysics Data System (ADS)
Stanaway, D. J.; Flores, A. N.; Haggerty, R.; Benner, S. G.; Feris, K. P.
2011-12-01
Concurrent assessment of biogeochemical and solute transport data (i.e. advection, dispersion, transient storage) within lotic systems remains a challenge in eco-hydrological research. Recently, the Resazurin-Resorufin Smart Tracer System (RRST) was proposed as a mechanism to measure microbial activity at the sediment-water interface [Haggerty et al., 2008, 2009] associating metabolic and hydrologic processes and allowing for the reach scale extrapolation of biotic function in the context of a dynamic physical environment. This study presents a Markov Chain Monte Carlo (MCMC) data assimilation technique to solve the inverse model of the Raz Rru Advection Dispersion Equation (RRADE). The RRADE is a suite of dependent 1-D reactive ADEs, associated through the microbially mediated reduction of Raz to Rru (k12). This reduction is proportional to DO consumption (R^2=0.928). MCMC is a suite of algorithms that solve Bayes theorem to condition uncertain model states and parameters on imperfect observations. Here, the RRST is employed to quantify the effect of chronic metal exposure on hyporheic microbial metabolism along a 100+ year old metal contamination gradient in the Clark Fork River (CF). We hypothesized that 1) the energetic cost of metal tolerance limits heterotrophic microbial respiration in communities evolved in chronic metal contaminated environments, with respiration inhibition directly correlated to degree of contamination (observational experiment) and 2) when experiencing acute metal stress, respiration rate inhibition of metal tolerant communities is less than that of naïve communities (manipulative experiment). To test these hypotheses, 4 replicate columns containing sediment collected from differently contaminated CF reaches and reference sites were fed a solution of RRST, NaCl, and cadmium (manipulative experiment only) within 24 hrs post collection. Column effluent was collected and measured for Raz, Rru, and EC to determine the Raz Rru breakthrough
How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation
ERIC Educational Resources Information Center
Heras, Jose A.
2009-01-01
The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.
Fractional-calculus diffusion equation
2010-01-01
Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677
Students' understanding of quadratic equations
NASA Astrophysics Data System (ADS)
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-05-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.
Explicit integration of Friedmann's equation with nonlinear equations of state
NASA Astrophysics Data System (ADS)
Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong
2015-05-01
In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.
Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells.
Stubbe, Marco; Gimsa, Jan
2015-07-21
We derived a series of, to our knowledge, new analytic expressions for the characteristic features of the impedance spectra of suspensions of homogeneous and single-shell spherical, spheroidal, and ellipsoidal objects, e.g., biological cells of the general ellipsoidal shape. In the derivation, we combined the Maxwell-Wagner mixing equation with our expression for the Clausius-Mossotti factor that had been originally derived to describe AC-electrokinetic effects such as dielectrophoresis, electrorotation, and electroorientation. The influential radius model was employed because it allows for a separation of the geometric and electric problems. For shelled objects, a special axial longitudinal element approach leads to a resistor-capacitor model, which can be used to simplify the mixing equation. Characteristic equations were derived for the plateau levels, peak heights, and characteristic frequencies of the impedance as well as the complex specific conductivities and permittivities of suspensions of axially and randomly oriented homogeneous and single-shell ellipsoidal objects. For membrane-covered spherical objects, most of the limiting cases are identical to-or improved with respect to-the known solutions given by researchers in the field. The characteristic equations were found to be quite precise (largest deviations typically <5% with respect to the full model) when tested with parameters relevant to biological cells. They can be used for the differentiation of orientation and the electric properties of cell suspensions or in the analysis of single cells in microfluidic systems. PMID:26200856
Transport equations in tokamak plasmas
Callen, J. D.; Hegna, C. C.; Cole, A. J.
2010-05-15
Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfven waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The 'mean field' effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The
Technology Transfer Automated Retrieval System (TEKTRAN)
Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of t...
ATTENUATION OF GROUND-WATER CONTAMINANT PULSES
Analytical solutions to the one-dimensional advection-dispersion equation are presented for several cases where the source concentration is either input continuously at a periodically fluctuating level or input as a single pulse of finite duration. The solute of interest can unde...
Technology Transfer Automated Retrieval System (TEKTRAN)
Field tests were conducted to obtain irrigation evaluation and solute transport data that were used to calibrate and validate an advection-dispersion model for furrow irrigation. Empirical infiltration equation and roughness parameters were estimated from the field data. These estimates were used a...
A KINETIC MODEL FOR CELL DENSITY DEPENDENT BACTERIAL TRANSPORT IN POROUS MEDIA
A kinetic transport model with the ability to account for variations in cell density of the aqueous and solid phases was developed for bacteria in porous media. Sorption kinetics in the advective-dispersive-sorptive equation was described by assuming that adsorption was proportio...
ENHANCED STREAM WATER QUALITY MODEL (QUAL2EU)
The enhanced stream water quality model QUAL2E and QUAL2E-UNCAS (37) permits simulation of several water quality constituents in a branching stream system using a finite difference solution to the one-dimensional advective-dispersive mass transport and reaction equation. The con...
Young's Equation at the Nanoscale
NASA Astrophysics Data System (ADS)
Seveno, David; Blake, Terence D.; De Coninck, Joël
2013-08-01
In 1805, Thomas Young was the first to propose an equation to predict the value of the equilibrium contact angle of a liquid on a solid. Today, the force exerted by a liquid on a solid, such as a flat plate or fiber, is routinely used to assess this angle. Moreover, it has recently become possible to study wetting at the nanoscale using an atomic force microscope. Here, we report the use of molecular-dynamics simulations to investigate the force distribution along a 15 nm fiber dipped into a liquid meniscus. We find very good agreement between the measured force and that predicted by Young’s equation.
NASA Astrophysics Data System (ADS)
Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.
2013-07-01
The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.
The Forced Soft Spring Equation
ERIC Educational Resources Information Center
Fay, T. H.
2006-01-01
Through numerical investigations, this paper studies examples of the forced Duffing type spring equation with [epsilon] negative. By performing trial-and-error numerical experiments, the existence is demonstrated of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions. Subharmonic boundaries are…
The Symbolism Of Chemical Equations
ERIC Educational Resources Information Center
Jensen, William B.
2005-01-01
A question about the historical origin of equal sign and double arrow symbolism in balanced chemical equation is raised. The study shows that Marshall proposed the symbolism in 1902, which includes the use of currently favored double barb for equilibrium reactions.
Mathematics and Reading Test Equating.
ERIC Educational Resources Information Center
Lee, Ong Kim; Wright, Benjamin D.
As part of a larger project to assess changes in student learning resulting from school reform, this study equates levels 6 through 14 of the mathematics and reading comprehension components of Form 7 of the Iowa Tests of Basic Skills (ITBS) with levels 7 through 14 of the mathematics and reading comprehension components of the CPS90 (another…
Optimized solution of Kepler's equation
NASA Technical Reports Server (NTRS)
Kohout, J. M.; Layton, L.
1972-01-01
A detailed description is presented of KEPLER, an IBM 360 computer program used for the solution of Kepler's equation for eccentric anomaly. The program KEPLER employs a second-order Newton-Raphson differential correction process, and it is faster than previously developed programs by an order of magnitude.
The solution of transcendental equations
NASA Technical Reports Server (NTRS)
Agrawal, K. M.; Outlaw, R.
1973-01-01
Some of the existing methods to globally approximate the roots of transcendental equations namely, Graeffe's method, are studied. Summation of the reciprocated roots, Whittaker-Bernoulli method, and the extension of Bernoulli's method via Koenig's theorem are presented. The Aitken's delta squared process is used to accelerate the convergence. Finally, the suitability of these methods is discussed in various cases.
Duffing's Equation and Nonlinear Resonance
ERIC Educational Resources Information Center
Fay, Temple H.
2003-01-01
The phenomenon of nonlinear resonance (sometimes called the "jump phenomenon") is examined and second-order van der Pol plane analysis is employed to indicate that this phenomenon is not a feature of the equation, but rather the result of accumulated round-off error, truncation error and algorithm error that distorts the true bounded solution onto…
Scale Shrinkage in Vertical Equating.
ERIC Educational Resources Information Center
Camilli, Gregory; And Others
1993-01-01
Three potential causes of scale shrinkage (measurement error, restriction of range, and multidimensionality) in item response theory vertical equating are discussed, and a more comprehensive model-based approach to establishing vertical scales is described. Test data from the National Assessment of Educational Progress are used to illustrate the…
Sonar equations for planetary exploration.
Ainslie, Michael A; Leighton, Timothy G
2016-08-01
The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus. PMID:27586766
Perceptions of the Schrodinger equation
NASA Astrophysics Data System (ADS)
Efthimiades, Spyros
2014-03-01
The Schrodinger equation has been considered to be a postulate of quantum physics, but it is also perceived as the quantum equivalent of the non-relativistic classical energy relation. We argue that the Schrodinger equation cannot be a physical postulate, and we show explicitly that its second space derivative term is wrongly associated with the kinetic energy of the particle. The kinetic energy of a particle at a point is proportional to the square of the momentum, that is, to the square of the first space derivative of the wavefunction. Analyzing particle interactions, we realize that particles have multiple virtual motions and that each motion is accompanied by a wave that has constant amplitude. Accordingly, we define the wavefunction as the superposition of the virtual waves of the particle. In simple interaction settings we can tell what particle motions arise and can explain the outcomes in direct and tangible terms. Most importantly, the mathematical foundation of quantum mechanics becomes clear and justified, and we derive the Schrodinger, Dirac, etc. equations as the conditions the wavefunction must satisfy at each space-time point in order to fulfill the respective total energy equation.
Renaissance Learning Equating Study. Report
ERIC Educational Resources Information Center
Sewell, Julie; Sainsbury, Marian; Pyle, Katie; Keogh, Nikki; Styles, Ben
2007-01-01
An equating study was carried out in autumn 2006 by the National Foundation for Educational Research (NFER) on behalf of Renaissance Learning, to provide validation evidence for the use of the Renaissance Star Reading and Star Mathematics tests in English schools. The study investigated the correlation between the Star tests and established tests.…
Pendulum Motion and Differential Equations
ERIC Educational Resources Information Center
Reid, Thomas F.; King, Stephen C.
2009-01-01
A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…
Ordinary Differential Equation System Solver
1992-03-05
LSODE is a package of subroutines for the numerical solution of the initial value problem for systems of first order ordinary differential equations. The package is suitable for either stiff or nonstiff systems. For stiff systems the Jacobian matrix may be treated in either full or banded form. LSODE can also be used when the Jacobian can be approximated by a band matrix.
Empirical equation estimates geothermal gradients
Kutasov, I.M. )
1995-01-02
An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.
Simulated Equating Using Several Item Response Curves.
ERIC Educational Resources Information Center
Boldt, R. F.
The comparison of item response theory models for the Test of English as a Foreign Language (TOEFL) was extended to an equating context as simulation trials were used to "equate the test to itself." Equating sample data were generated from administration of identical item sets. Equatings that used procedures based on each model (simple item…
Relativistic equations with fractional and pseudodifferential operators
Babusci, D.; Dattoli, G.; Quattromini, M.
2011-06-15
In this paper we use different techniques from the fractional and pseudo-operators calculus to solve partial differential equations involving operators with noninteger exponents. We apply the method to equations resembling generalizations of the heat equations and discuss the possibility of extending the procedure to the relativistic Schroedinger and Dirac equations.
Simple Derivation of the Lindblad Equation
ERIC Educational Resources Information Center
Pearle, Philip
2012-01-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…
A Versatile Technique for Solving Quintic Equations
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2006-01-01
In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…
NASA Astrophysics Data System (ADS)
Capilla, J. E.; Sanchez Fuster, I.; Sanchez Barrero, L.
2012-12-01
The limitations of the classical Advection-Dispersion Equation (ADE) approach to model mass transport remain a subject of research. The term anomalous transport is usually applied when the ADE fails to reproduce real field or lab experiments tracer tests data. Some authors address this limitation using high-resolution heterogeneous hydraulic conductivity (K) fields. Besides, the non-Fickian behavior of transport is another issue addressed. However, the effects of the spatial variability of dispersivity, and the influence of the model support scale on this property, have been rarely studied. The lack of experimental knowledge on the dispersivity behavior leads to model this basic parameter as an averaged calibrated parameter highly dependent on the model discretization size. In order to study the local behavior of the dispersivity a porous medium tank was designed and built at the Technical University of Valencia (Spain). This paper presents new results and conclusions obtained from the experiments conducted in this lab prototype. The steady flow through the porous medium tank lab is quasi-2D, and the K field imitates the patterns of spatial variability found in a real and highly heterogeneous formation (MADE2 site). The tracer tests are run using a conservative dye tracer and the tank is monitored by a grid of pressure transducers and taking digital images that are processed to map the evolution of solute concentrations in the tank. The set of exhaustive head and concentration data is used to compute detail local information of the effective dispersivity field at different time steps, and at different support scales. The analysis of results shows that the dispersivity field displays patterns of spatial variability related with the physical nature of the local material and also with the local evolution of concentrations at every grid block. We have found that the anomalous transport behavior observed in the lab tank can be accurately modeled using the classical ADE
Isothermal Equation Of State For Compressed Solids
NASA Technical Reports Server (NTRS)
Vinet, Pascal; Ferrante, John
1989-01-01
Same equation with three adjustable parameters applies to different materials. Improved equation of state describes pressure on solid as function of relative volume at constant temperature. Even though types of interatomic interactions differ from one substance to another, form of equation determined primarily by overlap of electron wave functions during compression. Consequently, equation universal in sense it applies to variety of substances, including ionic, metallic, covalent, and rare-gas solids. Only three parameters needed to describe equation for given material.
Integrable (2 k)-Dimensional Hitchin Equations
NASA Astrophysics Data System (ADS)
Ward, R. S.
2016-07-01
This letter describes a completely integrable system of Yang-Mills-Higgs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang-Mills equations in 4 k real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg-Witten equations. Some simple solutions in the k = 2 case are described.
Graviton corrections to Maxwell's equations
NASA Astrophysics Data System (ADS)
Leonard, Katie E.; Woodard, R. P.
2012-05-01
We use dimensional regularization to compute the one loop quantum gravitational contribution to the vacuum polarization on flat space background. Adding the appropriate Bogoliubov-Parsiuk-Hepp-Zimmermann counterterm gives a fully renormalized result which we employ to quantum correct Maxwell’s equations. These equations are solved to show that dynamical photons are unchanged, provided the free state wave functional is appropriately corrected. The response to the instantaneous appearance of a point dipole reveals a perturbative version of the long-conjectured, “smearing of the light cone”. There is no change in the far radiation field produced by an alternating dipole. However, the correction to the static electric field of a point charge shows strengthening at short distances, in contrast to expectations based on the renormalization group. We check for gauge dependence by working out the vacuum polarization in a general 3-parameter family of covariant gauges.
Renewal equations for option pricing
NASA Astrophysics Data System (ADS)
Montero, M.
2008-09-01
In this paper we will develop a methodology for obtaining pricing expressions for financial instruments whose underlying asset can be described through a simple continuous-time random walk (CTRW) market model. Our approach is very natural to the issue because it is based in the use of renewal equations, and therefore it enhances the potential use of CTRW techniques in finance. We solve these equations for typical contract specifications, in a particular but exemplifying case. We also show how a formal general solution can be found for more exotic derivatives, and we compare prices for alternative models of the underlying. Finally, we recover the celebrated results for the Wiener process under certain limits.
Applications of film thickness equations
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
A number of applications of elastohydrodynamic film thickness expressions were considered. The motion of a steel ball over steel surfaces presenting varying degrees of conformity was examined. The equation for minimum film thickness in elliptical conjunctions under elastohydrodynamic conditions was applied to roller and ball bearings. An involute gear was also introduced, it was again found that the elliptical conjunction expression yielded a conservative estimate of the minimum film thickness. Continuously variable-speed drives like the Perbury gear, which present truly elliptical elastohydrodynamic conjunctions, are favored increasingly in mobile and static machinery. A representative elastohydrodynamic condition for this class of machinery is considered for power transmission equipment. The possibility of elastohydrodynamic films of water or oil forming between locomotive wheels and rails is examined. The important subject of traction on the railways is attracting considerable attention in various countries at the present time. The final example of a synovial joint introduced the equation developed for isoviscous-elastic regimes of lubrication.
Fresnel Integral Equations: Numerical Properties
Adams, R J; Champagne, N J II; Davis, B A
2003-07-22
A spatial-domain solution to the problem of electromagnetic scattering from a dielectric half-space is outlined. The resulting half-space operators are referred to as Fresnel surface integral operators. When used as preconditioners for nonplanar geometries, the Fresnel operators yield surface Fresnel integral equations (FIEs) which are stable with respect to dielectric constant, discretization, and frequency. Numerical properties of the formulations are discussed.
Linear superposition in nonlinear equations.
Khare, Avinash; Sukhatme, Uday
2002-06-17
Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of some remarkable new identities involving elliptic functions. PMID:12059300
Equation of State Project Overview
Crockett, Scott
2015-09-11
A general overview of the Equation of State (EOS) Project will be presented. The goal is to provide the audience with an introduction of what our more advanced methods entail (DFT, QMD, etc.. ) and how these models are being utilized to better constrain the thermodynamic models. These models substantially reduce our regions of interpolation between the various thermodynamic limits. I will also present a variety example of recent EOS work.
ON THE GENERALISED FANT EQUATION.
Howe, M S; McGowan, R S
2011-06-20
An analysis is made of the fluid-structure interactions involved in the production of voiced speech. It is usual to avoid time consuming numerical simulations of the aeroacoustics of the vocal tract and glottis by the introduction of Fant's 'reduced complexity' equation for the glottis volume velocity Q (G. Fant, Acoustic Theory of Speech Production, Mouton, The Hague 1960). A systematic derivation is given of Fant's equation based on the nominally exact equations of aerodynamic sound. This can be done with a degree of approximation that depends only on the accuracy with which the time-varying flow geometry and surface-acoustic boundary conditions can be specified, and replaces Fant's original 'lumped element' heuristic approach. The method determines all of the effective 'source terms' governing Q. It is illustrated by consideration of a simplified model of the vocal system involving a self-sustaining single-mass model of the vocal folds, that uses free streamline theory to account for surface friction and flow separation within the glottis. Identification is made of a new source term associated with the unsteady vocal fold drag produced by their oscillatory motion transverse to the mean flow. PMID:21603054
ON THE GENERALISED FANT EQUATION
Howe, M. S.; McGowan, R. S.
2011-01-01
An analysis is made of the fluid-structure interactions involved in the production of voiced speech. It is usual to avoid time consuming numerical simulations of the aeroacoustics of the vocal tract and glottis by the introduction of Fant’s ‘reduced complexity’ equation for the glottis volume velocity Q (G. Fant, Acoustic Theory of Speech Production, Mouton, The Hague 1960). A systematic derivation is given of Fant’s equation based on the nominally exact equations of aerodynamic sound. This can be done with a degree of approximation that depends only on the accuracy with which the time-varying flow geometry and surface-acoustic boundary conditions can be specified, and replaces Fant’s original ‘lumped element’ heuristic approach. The method determines all of the effective ‘source terms’ governing Q. It is illustrated by consideration of a simplified model of the vocal system involving a self-sustaining single-mass model of the vocal folds, that uses free streamline theory to account for surface friction and flow separation within the glottis. Identification is made of a new source term associated with the unsteady vocal fold drag produced by their oscillatory motion transverse to the mean flow. PMID:21603054
NASA Technical Reports Server (NTRS)
Brown, James L.; Naughton, Jonathan W.
1999-01-01
A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.
The complex chemical Langevin equation
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2014-07-14
The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE’s main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE’s predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE’s accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the “complex CLE” predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.
Nonlocal Equations with Measure Data
NASA Astrophysics Data System (ADS)
Kuusi, Tuomo; Mingione, Giuseppe; Sire, Yannick
2015-08-01
We develop an existence, regularity and potential theory for nonlinear integrodifferential equations involving measure data. The nonlocal elliptic operators considered are possibly degenerate and cover the case of the fractional p-Laplacean operator with measurable coefficients. We introduce a natural function class where we solve the Dirichlet problem, and prove basic and optimal nonlinear Wolff potential estimates for solutions. These are the exact analogs of the results valid in the case of local quasilinear degenerate equations established by Boccardo and Gallouët (J Funct Anal 87:149-169, 1989, Partial Differ Equ 17:641-655, 1992) and Kilpeläinen and Malý (Ann Scuola Norm Sup Pisa Cl Sci (IV) 19:591-613, 1992, Acta Math 172:137-161, 1994). As a consequence, we establish a number of results that can be considered as basic building blocks for a nonlocal, nonlinear potential theory: fine properties of solutions, Calderón-Zygmund estimates, continuity and boundedness criteria are established via Wolff potentials. A main tool is the introduction of a global excess functional that allows us to prove a nonlocal analog of the classical theory due to Campanato (Ann Mat Pura Appl (IV) 69:321-381, 1965). Our results cover the case of linear nonlocal equations with measurable coefficients, and the one of the fractional Laplacean, and are new already in such cases.
On the generalised Fant equation
NASA Astrophysics Data System (ADS)
Howe, M. S.; McGowan, R. S.
2011-06-01
An analysis is made of the fluid-structure interactions involved in the production of voiced speech. It is usual to avoid time consuming numerical simulations of the aeroacoustics of the vocal tract and glottis by the introduction of Fant's 'reduced complexity' equation for the glottis volume velocity Q [G. Fant, Acoustic Theory of Speech Production, Mouton, The Hague 1960]. A systematic derivation is given of Fant's equation based on the nominally exact equations of aerodynamic sound. This can be done with a degree of approximation that depends only on the accuracy with which the time-varying flow geometry and surface-acoustic boundary conditions can be specified, and replaces Fant's original 'lumped element' heuristic approach. The method determines all of the effective 'source terms' governing Q. It is illustrated by consideration of a simplified model of the vocal system involving a self-sustaining single-mass model of the vocal folds, that uses free streamline theory to account for surface friction and flow separation within the glottis. Identification is made of a new source term associated with the unsteady vocal fold drag produced by their oscillatory motion transverse to the mean flow.
ADVANCED WAVE-EQUATION MIGRATION
L. HUANG; M. C. FEHLER
2000-12-01
Wave-equation migration methods can more accurately account for complex wave phenomena than ray-tracing-based Kirchhoff methods that are based on the high-frequency asymptotic approximation of waves. With steadily increasing speed of massively parallel computers, wave-equation migration methods are becoming more and more feasible and attractive for imaging complex 3D structures. We present an overview of several efficient and accurate wave-equation-based migration methods that we have recently developed. The methods are implemented in the frequency-space and frequency-wavenumber domains and hence they are called dual-domain methods. In the methods, we make use of different approximate solutions of the scalar-wave equation in heterogeneous media to recursively downward continue wavefields. The approximations used within each extrapolation interval include the Born, quasi-Born, and Rytov approximations. In one of our dual-domain methods, we use an optimized expansion of the square-root operator in the one-way wave equation to minimize the phase error for a given model. This leads to a globally optimized Fourier finite-difference method that is a hybrid split-step Fourier and finite-difference scheme. Migration examples demonstrate that our dual-domain migration methods provide more accurate images than those obtained using the split-step Fourier scheme. The Born-based, quasi-Born-based, and Rytov-based methods are suitable for imaging complex structures whose lateral variations are moderate, such as the Marmousi model. For this model, the computational cost of the Born-based method is almost the same as the split-step Fourier scheme, while other methods takes approximately 15-50% more computational time. The globally optimized Fourier finite-difference method significantly improves the accuracy of the split-step Fourier method for imaging structures having strong lateral velocity variations, such as the SEG/EAGE salt model, at an approximately 30% greater
NASA Astrophysics Data System (ADS)
Mollerup, Mikkel; Abrahamsen, Per; Petersen, Carsten T.; Hansen, Søren
2014-02-01
For large-scale hydrological modeling, the accuracy of the models used is a trade-off with the computational requirements. The models that perform well on the daily/meter scale may not perform well when applied at the yearly/kilometer scale. We compare two models of water flow and nitrate and bromide transport in a tile drained soil. The first model is based on a 2-D grid with an explicit drain node, here called the Dynamic Drainage Model (DDM). The second and less computationally expensive model is based on an 1-D vertical discretization where the horizontal flow is included as a sink term based on the Hooghoudt theory, here called the Hooghoudt Drainage Model (HDM). Both are based on Finite Volume Method solutions to Richard's equation and to the advection-dispersion equation (ADE), and embedded within the Daisy agroecological model, which includes the nitrogen cycle. The two models are run with 10 years of weather data and three different lower-boundary conditions. Losses of water, nitrogen, and bromide to both drain pipes and deep percolation/leaching are compared between the models, at daily and yearly time scales. In no case do we find the discrepancy large enough to warrant a rejection of the use of the faster HDM instead of DDM. For the daily time scale, we find in general a higher Nash-Sutcliffe efficiency coefficient for water (0.98-1.00) than for nitrate (0.97-1.00), and the lowest for bromide (0.95-1.00). The results are explained with a low concentration gradient along the water flow pathway toward the drain.
NASA Astrophysics Data System (ADS)
Akter, Jesmin; Ali Akbar, M.
The modified simple equation (MSE) method is a competent and highly effective mathematical tool for extracting exact traveling wave solutions to nonlinear evolution equations (NLEEs) arising in science, engineering and mathematical physics. In this article, we implement the MSE method to find the exact solutions involving parameters to NLEEs via the Benney-Luke equation and the Phi-4 equations. The solitary wave solutions are derived from the exact traveling wave solutions when the parameters receive their special values.
ERIC Educational Resources Information Center
Savoye, Philippe
2009-01-01
In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.
Logistic equation of arbitrary order
NASA Astrophysics Data System (ADS)
Grabowski, Franciszek
2010-08-01
The paper is concerned with the new logistic equation of arbitrary order which describes the performance of complex executive systems X vs. number of tasks N, operating at limited resources K, at non-extensive, heterogeneous self-organization processes characterized by parameter f. In contrast to the classical logistic equation which exclusively relates to the special case of sub-extensive homogeneous self-organization processes at f=1, the proposed model concerns both homogeneous and heterogeneous processes in sub-extensive and super-extensive areas. The parameter of arbitrary order f, where -∞
ERIC Educational Resources Information Center
Chen, Haiwen; Holland, Paul
2010-01-01
In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…
Germanium multiphase equation of state
Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.
2014-05-07
A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element
Advanced lab on Fresnel equations
NASA Astrophysics Data System (ADS)
Petrova-Mayor, Anna; Gimbal, Scott
2015-11-01
This experimental and theoretical exercise is designed to promote students' understanding of polarization and thin-film coatings for the practical case of a scanning protected-metal coated mirror. We present results obtained with a laboratory scanner and a polarimeter and propose an affordable and student-friendly experimental arrangement for the undergraduate laboratory. This experiment will allow students to apply basic knowledge of the polarization of light and thin-film coatings, develop hands-on skills with the use of phase retarders, apply the Fresnel equations for metallic coating with complex index of refraction, and compute the polarization state of the reflected light.
Research on two equation models
NASA Technical Reports Server (NTRS)
Yang, Z.
1993-01-01
The k-epsilon model is the most widely used turbulence model in engineering calculations. However, the model has several deficiencies that need to be fixed. This document presents improvements to the capabilities of the k-epsilon model in the following areas: a Galilean and tensorial invariant k-epsilon model for near wall turbulence; a new set of wall functions for attached flows; a new model equation for the dissipation rate, which has a better theoretical basis, contains the contribution of flow inhomogeneity, and captures the effect of the pressure gradient accurately; and a better model for bypass transition due to freestream turbulence.
On the connection of the quadratic Lienard equation with an equation for the elliptic functions
NASA Astrophysics Data System (ADS)
Kudryashov, Nikolay A.; Sinelshchikov, Dmitry I.
2015-07-01
The quadratic Lienard equation is widely used in many applications. A connection between this equation and a linear second-order differential equation has been discussed. Here we show that the whole family of quadratic Lienard equations can be transformed into an equation for the elliptic functions. We demonstrate that this connection can be useful for finding explicit forms of general solutions of the quadratic Lienard equation. We provide several examples of application of our approach.
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
Langevin Equation for DNA Dynamics
NASA Astrophysics Data System (ADS)
Grych, David; Copperman, Jeremy; Guenza, Marina
Under physiological conditions, DNA oligomers can contain well-ordered helical regions and also flexible single-stranded regions. We describe the site-specific motion of DNA with a modified Rouse-Zimm Langevin equation formalism that describes DNA as a coarse-grained polymeric chain with global structure and local flexibility. The approach has successfully described the protein dynamics in solution and has been extended to nucleic acids. Our approach provides diffusive mode analytical solutions for the dynamics of global rotational diffusion and internal motion. The internal DNA dynamics present a rich energy landscape that accounts for an interior where hydrogen bonds and base-stacking determine structure and experience limited solvent exposure. We have implemented several models incorporating different coarse-grained sites with anisotropic rotation, energy barrier crossing, and local friction coefficients that include a unique internal viscosity and our models reproduce dynamics predicted by atomistic simulations. The models reproduce bond autocorrelation along the sequence as compared to that directly calculated from atomistic molecular dynamics simulations. The Langevin equation approach captures the essence of DNA dynamics without a cumbersome atomistic representation.
Higher spin versus renormalization group equations
NASA Astrophysics Data System (ADS)
Sachs, Ivo
2014-10-01
We present a variation of earlier attempts to relate renormalization group equations to higher spin equations. We work with a scalar field theory in 3 dimensions. In this case we show that the classical renormalization group equation is a variant of the Vasiliev higher spin equations with Kleinians on AdS4 for a certain subset of couplings. In the large N limit this equivalence extends to the quantum theory away from the conformal fixed points.
Nonlinear SCHRÖDINGER-PAULI Equations
NASA Astrophysics Data System (ADS)
Ng, Wei Khim; Parwani, Rajesh R.
2011-11-01
We obtain novel nonlinear Schrüdinger-Pauli equations through a formal non-relativistic limit of appropriately constructed nonlinear Dirac equations. This procedure automatically provides a physical regularisation of potential singularities brought forward by the nonlinear terms and suggests how to regularise previous equations studied in the literature. The enhancement of contributions coming from the regularised singularities suggests that the obtained equations might be useful for future precision tests of quantum nonlinearity.
Coupled rotor and fuselage equations of motion
NASA Technical Reports Server (NTRS)
Warmbrodt, W.
1979-01-01
The governing equations of motion of a helicopter rotor coupled to a rigid body fuselage are derived. A consistent formulation is used to derive nonlinear periodic coefficient equations of motion which are used to study coupled rotor/fuselage dynamics in forward flight. Rotor/fuselage coupling is documented and the importance of an ordering scheme in deriving nonlinear equations of motion is reviewed. The nature of the final equations and the use of multiblade coordinates are discussed.
Wave equation on spherically symmetric Lorentzian metrics
Bokhari, Ashfaque H.; Al-Dweik, Ahmad Y.; Zaman, F. D.; Kara, A. H.; Karim, M.
2011-06-15
Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of {theta} and {phi} are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients.
One-Equation Algebraic Model Of Turbulence
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Barth, T. J.
1993-01-01
One-equation model of turbulence based on standard equations of k-epsilon model of turbulence, where k is turbulent energy and e is rate of dissipation of k. Derivation of one-equation model motivated partly by inaccuracies of flows computed by some Navier-Stokes-equations-solving algorithms incorporating algebraic models of turbulence. Satisfies need to avoid having to determine algebraic length scales.
On a Equation in Finite Algebraically Structures
ERIC Educational Resources Information Center
Valcan, Dumitru
2013-01-01
Solving equations in finite algebraically structures (semigroups with identity, groups, rings or fields) many times is not easy. Even the professionals can have trouble in such cases. Therefore, in this paper we proposed to solve in the various finite groups or fields, a binomial equation of the form (1). We specify that this equation has been…
Some new modular equations and their applications
NASA Astrophysics Data System (ADS)
Yi, Jinhee; Sim, Hyo Seob
2006-07-01
Ramanujan derived 23 beautiful eta-function identities, which are certain types of modular equations. We found more than 70 of certain types of modular equations by using Garvan's Maple q-series package. In this paper, we prove some new modular equations which we found by employing the theory of modular form and we give some applications for them.
The Effects of Repeaters on Test Equating.
ERIC Educational Resources Information Center
Andrulis, Richard S.; And Others
The purpose of this investigation was to establish the effects of repeaters on test equating. Since consideration was not given to repeaters in test equating, such as in the derivation of equations by Angoff (1971), the hypothetical effect needed to be established. A case study was examined which showed results on a test as expected; overall mean…
The Effect of Repeaters on Equating
ERIC Educational Resources Information Center
Kim, HeeKyoung; Kolen, Michael J.
2010-01-01
Test equating might be affected by including in the equating analyses examinees who have taken the test previously. This study evaluated the effect of including such repeaters on Medical College Admission Test (MCAT) equating using a population invariance approach. Three-parameter logistic (3-PL) item response theory (IRT) true score and…
Solving Absolute Value Equations Algebraically and Geometrically
ERIC Educational Resources Information Center
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Local Observed-Score Kernel Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.
2014-01-01
Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…
More Issues in Observed-Score Equating
ERIC Educational Resources Information Center
van der Linden, Wim J.
2013-01-01
This article is a response to the commentaries on the position paper on observed-score equating by van der Linden (this issue). The response focuses on the more general issues in these commentaries, such as the nature of the observed scores that are equated, the importance of test-theory assumptions in equating, the necessity to use multiple…
Symmetry Breaking for Black-Scholes Equations
NASA Astrophysics Data System (ADS)
Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng
2007-06-01
Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.
Boundary conditions for the subdiffusion equation
Shkilev, V. P.
2013-04-15
The boundary conditions for the subdiffusion equations are formulated using the continuous-time random walk model, as well as several versions of the random walk model on an irregular lattice. It is shown that the boundary conditions for the same equation in different models have different forms, and this difference considerably affects the solutions of this equation.
Equating Scores from Adaptive to Linear Tests
ERIC Educational Resources Information Center
van der Linden, Wim J.
2006-01-01
Two local methods for observed-score equating are applied to the problem of equating an adaptive test to a linear test. In an empirical study, the methods were evaluated against a method based on the test characteristic function (TCF) of the linear test and traditional equipercentile equating applied to the ability estimates on the adaptive test…
Shaped cassegrain reflector antenna. [design equations
NASA Technical Reports Server (NTRS)
Rao, B. L. J.
1973-01-01
Design equations are developed to compute the reflector surfaces required to produce uniform illumination on the main reflector of a cassegrain system when the feed pattern is specified. The final equations are somewhat simple and straightforward to solve (using a computer) compared to the ones which exist already in the literature. Step by step procedure for solving the design equations is discussed in detail.
Effectiveness of Analytic Smoothing in Equipercentile Equating.
ERIC Educational Resources Information Center
Kolen, Michael J.
1984-01-01
An analytic procedure for smoothing in equipercentile equating using cubic smoothing splines is described and illustrated. The effectiveness of the procedure is judged by comparing the results from smoothed equipercentile equating with those from other equating methods using multiple cross-validations for a variety of sample sizes. (Author/JKS)
Multidimensional soliton equations in inhomogeneous media
NASA Astrophysics Data System (ADS)
Degasperis, A.; Manakov, S. V.; Zenchuk, A. I.
1998-12-01
We use the general formalism of the overline∂-problem to derive nonlinear PDEs that are soliton equations with coordinate-dependent coefficients. Examples of these novel equations are a reduction of the Darboux equations, and a NWRI-type system.
Stability for a class of difference equations
NASA Astrophysics Data System (ADS)
Muroya, Yoshiaki; Ishiwata, Emiko
2009-06-01
We consider the following non-autonomous and nonlinear difference equations with unbounded delays: where 0equation to be globally asymptotically stable. These conditions improve the well known stability conditions for linear and nonlinear difference equations.
COST EQUATIONS FOR SMALL DRINKING WATER SYSTEMS
This report presents capital and operation/maintenance cost equations for 33 drinking water treatment processes as applied to small flows (2,500 gpd to 1 mgd). The equations are based on previous cost data development work performed under contract to EPA. These equations provide ...
Spectrum Analysis of Some Kinetic Equations
NASA Astrophysics Data System (ADS)
Yang, Tong; Yu, Hongjun
2016-05-01
We analyze the spectrum structure of some kinetic equations qualitatively by using semigroup theory and linear operator perturbation theory. The models include the classical Boltzmann equation for hard potentials with or without angular cutoff and the Landau equation with {γ≥q-2} . As an application, we show that the solutions to these two fundamental equations are asymptotically equivalent (mod time decay rate {t^{-5/4}} ) as {tto∞} to that of the compressible Navier-Stokes equations for initial data around an equilibrium state.
The Riesz-Bessel Fractional Diffusion Equation
Anh, V.V. McVinish, R.
2004-05-15
This paper examines the properties of a fractional diffusion equation defined by the composition of the inverses of the Riesz potential and the Bessel potential. The first part determines the conditions under which the Green function of this equation is the transition probability density function of a Levy motion. This Levy motion is obtained by the subordination of Brownian motion, and the Levy representation of the subordinator is determined. The second part studies the semigroup formed by the Green function of the fractional diffusion equation. Applications of these results to certain evolution equations is considered. Some results on the numerical solution of the fractional diffusion equation are also provided.
Bogomol'nyi equations of classical solutions
NASA Astrophysics Data System (ADS)
Atmaja, Ardian N.; Ramadhan, Handhika S.
2014-11-01
We review the Bogomol'nyi equations and investigate an alternative route in obtaining it. It can be shown that the known Bogomol'nyi-Prasad-Sommerfield equations can be derived directly from the corresponding Euler-Lagrange equations via the separation of variables, without having to appeal to the Hamiltonian. We apply this technique to the Dirac-Born-Infeld solitons and obtain the corresponding equations and the potentials. This method is suitable for obtaining the first-order equations and determining the allowed potentials for noncanonical defects.
Sparse dynamics for partial differential equations
Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D.; Osher, Stanley
2013-01-01
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms. PMID:23533273
Binomial moment equations for stochastic reaction systems.
Barzel, Baruch; Biham, Ofer
2011-04-15
A highly efficient formulation of moment equations for stochastic reaction networks is introduced. It is based on a set of binomial moments that capture the combinatorics of the reaction processes. The resulting set of equations can be easily truncated to include moments up to any desired order. The number of equations is dramatically reduced compared to the master equation. This formulation enables the simulation of complex reaction networks, involving a large number of reactive species much beyond the feasibility limit of any existing method. It provides an equation-based paradigm to the analysis of stochastic networks, complementing the commonly used Monte Carlo simulations. PMID:21568538
Model Equations: "Black Box" Reconstruction
NASA Astrophysics Data System (ADS)
Bezruchko, Boris P.; Smirnov, Dmitry A.
Black box reconstruction is both the most difficult and the most tempting modelling problem when any prior information about an appropriate model structure is lacking. An intriguing thing is that a model capable of reproducing an observed behaviour or predicting further evolution should be obtained only from an observed time series, i.e. "from nothing" at first sight. Chances for a success are not large. Even more so, a "good" model would become a valuable tool to characterise an object and understand its dynamics. Lack of prior information causes one to utilise universal model structures, e.g. artificial neural networks, radial basis functions and algebraic polynomials are included in the right-hand sides of dynamical model equations. Such models are often multi-dimensional and involve quite many free parameters.
Evolution equation for quantum coherence
NASA Astrophysics Data System (ADS)
Hu, Ming-Liang; Fan, Heng
2016-07-01
The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures.
The equations of medieval cosmology
NASA Astrophysics Data System (ADS)
Buonanno, Roberto; Quercellini, Claudia
2009-04-01
In Dantean cosmography the Universe is described as a series of concentric spheres with all the known planets embedded in their rotation motion, the Earth located at the centre and Lucifer at the centre of the Earth. Beyond these "celestial spheres", Dante represents the "angelic choirs" as other nine spheres surrounding God. The rotation velocity increases with decreasing distance from God, that is with increasing Power (Virtù). We show that, adding Power as an additional fourth dimension to space, the modern equations governing the expansion of a closed Universe (i.e. with the density parameter Ω0 > 1) in the space-time, can be applied to the medieval Universe as imaged by Dante in his Divine Comedy. In this representation, the Cosmos acquires a unique description and Lucifer is not located at the centre of the hyperspheres.
Evolution equation for quantum coherence
Hu, Ming-Liang; Fan, Heng
2016-01-01
The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933
Entropic corrections to Friedmann equations
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad
2010-05-01
Recently, Verlinde discussed that gravity can be understood as an entropic force caused by changes in the information associated with the positions of material bodies. In Verlinde’s argument, the area law of the black hole entropy plays a crucial role. However, the entropy-area relation can be modified from the inclusion of quantum effects, motivated from the loop quantum gravity. In this note, by employing this modified entropy-area relation, we derive corrections to Newton’s law of gravitation as well as modified Friedmann equations by adopting the viewpoint that gravity can be emerged as an entropic force. Our study further supports the universality of the log correction and provides a strong consistency check on Verlinde’s model.
Evolution equation for quantum coherence.
Hu, Ming-Liang; Fan, Heng
2016-01-01
The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933
Inferring Mathematical Equations Using Crowdsourcing
Wasik, Szymon
2015-01-01
Crowdsourcing, understood as outsourcing work to a large network of people in the form of an open call, has been utilized successfully many times, including a very interesting concept involving the implementation of computer games with the objective of solving a scientific problem by employing users to play a game—so-called crowdsourced serious games. Our main objective was to verify whether such an approach could be successfully applied to the discovery of mathematical equations that explain experimental data gathered during the observation of a given dynamic system. Moreover, we wanted to compare it with an approach based on artificial intelligence that uses symbolic regression to find such formulae automatically. To achieve this, we designed and implemented an Internet game in which players attempt to design a spaceship representing an equation that models the observed system. The game was designed while considering that it should be easy to use for people without strong mathematical backgrounds. Moreover, we tried to make use of the collective intelligence observed in crowdsourced systems by enabling many players to collaborate on a single solution. The idea was tested on several hundred players playing almost 10,000 games and conducting a user opinion survey. The results prove that the proposed solution has very high potential. The function generated during weeklong tests was almost as precise as the analytical solution of the model of the system and, up to a certain complexity level of the formulae, it explained data better than the solution generated automatically by Eureqa, the leading software application for the implementation of symbolic regression. Moreover, we observed benefits of using crowdsourcing; the chain of consecutive solutions that led to the best solution was obtained by the continuous collaboration of several players. PMID:26713846
Inferring Mathematical Equations Using Crowdsourcing.
Wasik, Szymon; Fratczak, Filip; Krzyskow, Jakub; Wulnikowski, Jaroslaw
2015-01-01
Crowdsourcing, understood as outsourcing work to a large network of people in the form of an open call, has been utilized successfully many times, including a very interesting concept involving the implementation of computer games with the objective of solving a scientific problem by employing users to play a game-so-called crowdsourced serious games. Our main objective was to verify whether such an approach could be successfully applied to the discovery of mathematical equations that explain experimental data gathered during the observation of a given dynamic system. Moreover, we wanted to compare it with an approach based on artificial intelligence that uses symbolic regression to find such formulae automatically. To achieve this, we designed and implemented an Internet game in which players attempt to design a spaceship representing an equation that models the observed system. The game was designed while considering that it should be easy to use for people without strong mathematical backgrounds. Moreover, we tried to make use of the collective intelligence observed in crowdsourced systems by enabling many players to collaborate on a single solution. The idea was tested on several hundred players playing almost 10,000 games and conducting a user opinion survey. The results prove that the proposed solution has very high potential. The function generated during weeklong tests was almost as precise as the analytical solution of the model of the system and, up to a certain complexity level of the formulae, it explained data better than the solution generated automatically by Eureqa, the leading software application for the implementation of symbolic regression. Moreover, we observed benefits of using crowdsourcing; the chain of consecutive solutions that led to the best solution was obtained by the continuous collaboration of several players. PMID:26713846
Exact solution to fractional logistic equation
NASA Astrophysics Data System (ADS)
West, Bruce J.
2015-07-01
The logistic equation is one of the most familiar nonlinear differential equations in the biological and social sciences. Herein we provide an exact solution to an extension of this equation to incorporate memory through the use of fractional derivatives in time. The solution to the fractional logistic equation (FLE) is obtained using the Carleman embedding technique that allows the nonlinear equation to be replaced by an infinite-order set of linear equations, which we then solve exactly. The formal series expansion for the initial value solution of the FLE is shown to be expressed in terms of a series of weighted Mittag-Leffler functions that reduces to the well known analytic solution in the limit where the fractional index for the derivative approaches unity. The numerical integration to the FLE provides an excellent fit to the analytic solution. We propose this approach as a general technique for solving a class of nonlinear fractional differential equations.
10. Exploring the Conformal Constraint Equations
NASA Astrophysics Data System (ADS)
Butscher, Adrian
One method of studying the asymptotic structure of spacetime is to apply Penrose's conformal rescaling technique. In this setting, the rescaled Einstein equations for the metric and the conformal factor in the unphysical spacetime degenerate where the conformal factor vanishes, namely at the boundary representing null infinity. This problem can be avoided by means of a technique of H. Friedrich, which replaces the Einstein equations in the unphysical spacetime by an equivalent system of equations which is regular at the boundary. The initial value problem for these equations produces a system of constraint equations known as the conformal constraint equations. This work describes some of the properties of the conformal constraint equations and develops a perturbative method of generating solutions near Euclidean space under certain simplifying assumptions.
Solving Space-Time Fractional Differential Equations by Using Modified Simple Equation Method
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet
2016-05-01
In this article, we establish new and more general traveling wave solutions of space-time fractional Klein–Gordon equation with quadratic nonlinearity and the space-time fractional breaking soliton equations using the modified simple equation method. The proposed method is so powerful and effective to solve nonlinear space-time fractional differential equations by with modified Riemann–Liouville derivative.
Exact solutions of the time-fractional Fisher equation by using modified trial equation method
NASA Astrophysics Data System (ADS)
Tandogan, Yusuf Ali; Bildik, Necdet
2016-06-01
In this study, modified trial equation method has been proposed to obtain precise solutions of nonlinear fractional differential equation. Using the modified test equation method, we obtained some new exact solutions of the time fractional nonlinear Fisher equation. The obtained results are classified as a soliton solution, singular solutions, rational function solutions and periodic solutions.
The properties of the first equation of the Vlasov chain of equations
NASA Astrophysics Data System (ADS)
Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.
2015-05-01
A derivation of the first Vlasov equation as a well-known Schrödinger equation for the probabilistic description of a system and families of the classic diffusion equations and heat conduction for the deterministic description of physical systems was inferred. A physical meaning of the phase of the wave function which is a scalar potential of the probabilistic flow velocity is demonstrated. Occurrence of the velocity potential vortex component leads to the Pauli equation for one of the spinar components. A scheme for the construction of the Schrödinger equation solution from the Vlasov equation solution and vice-versa is shown. A process of introduction of the potential to the Schrödinger equation and its interpretation are given. The analysis of the potential properties gives us the Maxwell equation, the equation of the kinematic point movement, and the equation for movement of the medium within electromagnetic fields.
Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
Yan, Zhenya
2013-04-28
The complex -symmetric nonlinear wave models have drawn much attention in recent years since the complex -symmetric extensions of the Korteweg-de Vries (KdV) equation were presented in 2007. In this review, we focus on the study of the complex -symmetric nonlinear Schrödinger equation and Burgers equation. First of all, we briefly introduce the basic property of complex symmetry. We then report on exact solutions of one- and two-dimensional nonlinear Schrödinger equations (known as the Gross-Pitaevskii equation in Bose-Einstein condensates) with several complex -symmetric potentials. Finally, some complex -symmetric extension principles are used to generate some complex -symmetric nonlinear wave equations starting from both -symmetric (e.g. the KdV equation) and non- -symmetric (e.g. the Burgers equation) nonlinear wave equations. In particular, we discuss exact solutions of some representative ones of the complex -symmetric Burgers equation in detail. PMID:23509385
Dust levitation about Itokawa's equator
NASA Astrophysics Data System (ADS)
Hartzell, C.; Zimmerman, M.; Takahashi, Y.
2014-07-01
levitation about Itokawa, we must include accurate plasma and gravity models. We use a 2D PIC code (described in [8]) to model the plasma environment about Itokawa's equator. The plasma model includes photoemission and shadowing. Thus, we model the plasma environment for various solar incidence angles. The plasma model gives us the 2D electric field components and the plasma potential. We model the gravity field around the equatorial cross-section using an Interior Gravity model [9]. The gravity model is based on the shape model acquired by the Hayabusa mission team and, unlike other models, is quick and accurate close to the surface of the body. Due to the nonspherical shape of Itokawa, the electrostatic force and the gravity may not be collinear. Given our accurate plasma and gravity environments, we are able to simulate the trajectories of dust grains about the equator of Itokawa. When modeling the trajectories of the grains, the current to the grains is calculated using Nitter et al.'s formulation [10] with the plasma sheath parameters provided by our PIC model (i.e., the potential minimum, the potential at the surface, and the sheath type). Additionally, we are able to numerically locate the equilibria about which dust grains may levitate. Interestingly, we observe that equilibria exist for grains up to 20 microns in radius about Itokawa's equator when the Sun is illuminating Itokawa's 'otter tail'. This grain size is significantly larger than the stably levitating grains we observed using our 1D plasma and gravity models. Conclusions and Future Work: The possibility of dust levitation above asteroids has implications both for our understanding of their evolution and for the design of future missions to these bodies. Using detailed gravity and plasma models, we are above to propagate the trajectories of dust particles about Itokawa's equator and identify the equilibria about which these grains will levitate. Using these simulations, we see that grains up to 20 microns
NASA Astrophysics Data System (ADS)
Saripalli, K. Prasad; Lindberg, Michael J.; Meyer, Philip D.
2006-09-01
SummaryUnderstanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using vapor hydration testing (VHT) at 200 °C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D advection dispersion equation (ADE) solution revealed that a different fractured media transport model, which accurately accounts for the heterogeneous transport behavior in 3D, may be necessary for such interpretation. It was found that glass reactions could have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are useful to better understand the effect of chemical reactions on
Evaluation of dispersivity coefficients by means of a laboratory image analysis
NASA Astrophysics Data System (ADS)
Citarella, Donato; Cupola, Fausto; Tanda, Maria Giovanna; Zanini, Andrea
2015-01-01
This paper describes the application of an innovative procedure that allows the estimation of longitudinal and transverse dispersivities in an experimental plume devised in a laboratory sandbox. The phenomenon of transport in porous media is studied using sodium fluorescein as tracer. The fluorescent excitation was achieved by using blue light and the concentration data were obtained through the processing of side wall images collected with a high resolution color digital camera. After a calibration process, the relationship between the luminosity of the emitted fluorescence and the fluorescein concentration was determined at each point of the sandbox. The relationships were used to describe the evolution of the transport process quantitatively throughout the entire domain. Some check tests were performed in order to verify the reliability of the experimental device. Numerical flow and transport models of the sandbox were developed and calibrated comparing computed and observed flow rates and breakthrough curves. The estimation of the dispersivity coefficients was carried out by analyzing the concentration field deduced from the images collected during the experiments; the dispersivity coefficients were evaluated in the domain zones where the tracer affected the porous medium under the hypothesis that the transport phenomenon is described by advection-dispersion equation (ADE) and by computing the differential components of the concentration by means of a numerical leap-frog scheme. The values determined agree with the ones referred in literature for similar media and with the coefficients obtained by calibrating the numerical model. Very interesting considerations have been made from the analysis of the performance of the methodology at different locations in the flow domain and phases of the plume evolution.
NASA Astrophysics Data System (ADS)
Swanson, Ryan D.; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini
2015-02-01
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.
The telegraph equation in charged particle transport
NASA Technical Reports Server (NTRS)
Gombosi, T. I.; Jokipii, J. R.; Kota, J.; Lorencz, K.; Williams, L. L.
1993-01-01
We present a new derivation of the telegraph equation which modifies its coefficients. First, an infinite order partial differential equation is obtained for the velocity space solid angle-averaged phase-space distribution of particles which underwent at least a few collisions. It is shown that, in the lowest order asymptotic expansion, this equation simplifies to the well-known diffusion equation. The second-order asymptotic expansion for isotropic small-angle scattering results in a modified telegraph equation with a signal propagation speed of v(5/11) exp 1/2 instead of the usual v/3 exp 1/2. Our derivation of a modified telegraph equation follows from an expansion of the Boltzmann equation in the relevant smallness parameters and not from a truncation of an eigenfunction expansion. This equation is consistent with causality. It is shown that, under steady state conditions in a convecting plasma, the telegraph equation may be regarded as a diffusion equation with a modified transport coefficient, which describes a combination of diffusion and cosmic-ray inertia.
On some differential transformations of hypergeometric equations
NASA Astrophysics Data System (ADS)
Hounkonnou, M. N.; Ronveaux, A.
2015-04-01
Many algebraic transformations of the hypergeometric equation σ(x)z"(x) + τ(x)z'(x) + lz(x) = 0, where σ, τ, l are polynomial functions of degrees 2 (at most), 1, 0, respectively, are well known. Some of them involve x = x(t), a polynomial of degree r, in order to recover the Heun equation, extension of the hypergeometric equation by one more singularity. The case r = 2 was investigated by K. Kuiken (see 1979 SIAM J. Math. Anal. 10 (3) 655-657) and extended to r = 3,4, 5 by R. S. Maier (see 2005 J. Differ. Equat. 213 171 - 203). The transformations engendered by the function y(x) = A(x)z(x), also very popular in mathematics and physics, are used to get from the hypergeometric equation, for instance, the Schroedinger equation with appropriate potentials, as well as Heun and confluent Heun equations. This work addresses a generalization of Kimura's approach proposed in 1971, based on differential transformations of the hypergeometric equations involving y(x) = A(x)z(x) + B(x)z'(x). Appropriate choices of A(x) and B(x) permit to retrieve the Heun equations as well as equations for some exceptional polynomials. New relations are obtained for Laguerre and Hermite polynomials.
Exact and explicit solitary wave solutions to some nonlinear equations
Jiefang Zhang
1996-08-01
Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative {Phi}{sup 4}-model equation, the generalized Fisher equation, and the elastic-medium wave equation.
Three-body equations for nuclear reactions
Chao, S.H.
1980-01-01
The problem of calculating three-body differential cross sections for two-body interactions which are local in configuration space is considered. The integral equations of Faddeev and recent modifications are reviewed. The difficulties both in solving and interpreting the various equations are discussed. An alternative set of exact operator equations is proposed. This new set of operator equations involve the two-body potentials directly rather than the two-body t-matrices. The solutions represent quantities different from those of previous equations. The formal structure of the operator equations is similar to but different from the Faddeev equations. It is demonstrated that the equations contain no terms which correspond to disconnected diagrams. The transformation of the equations to the Faddeev equations is given. Integral equations are obtained using the momentum representation. Only Cauchy-type singularities occur in the Green's function, and the equations have unique solutions. No off-energy shell t-matrices are required. Transition amplitudes are obtained from the solutions by quadrature, so that effects which result from the nature of the final state can be separated from the three-body effects. The angular momentum reduction of Omnes is used to obtain two-dimensional coupled integral equations. A method of numerical solution is developed using a generalization of the approximate product integration method due to Young. Examples corresponding to the reactions /sup 16/O(d,p)/sup 17/O g.s and /sup 16/O(d,d)/sup 16/O in two dimensions and /sup 16/O(d,p)/sup 17/O* (0.87 MeV) in three dimensions for a deuteron enegy of 5 MeV are considered using Gaussian potentials. The convergence of the summation over angular momentum is examined and a comparison is made with experiment to obtain the spectroscopic factor for the 0.87 MeV state of /sup 17/O.
Cosmic-Ray Modulation Equations
NASA Astrophysics Data System (ADS)
Moraal, H.
2013-06-01
The temporal variation of the cosmic-ray intensity in the heliosphere is called cosmic-ray modulation. The main periodicity is the response to the 11-year solar activity cycle. Other variations include a 27-day solar rotation variation, a diurnal variation, and irregular variations such as Forbush decreases. General awareness of the importance of this cosmic-ray modulation has greatly increased in the last two decades, mainly in communities studying cosmogenic nuclides, upper atmospheric physics and climate, helio-climatology, and space weather, where corrections need to be made for these modulation effects. Parameterized descriptions of the modulation are even used in archeology and in planning the flight paths of commercial passenger jets. The qualitative, physical part of the modulation is generally well-understood in these communities. The mathematical formalism that is most often used to quantify it is the so-called Force-Field approach, but the origins of this approach are somewhat obscure and it is not always used correct. This is mainly because the theory was developed over more than 40 years, and all its aspects are not collated in a single document. This paper contains a formal mathematical description intended for these wider communities. It consists of four parts: (1) a description of the relations between four indicators of "energy", namely energy, speed, momentum and rigidity, (2) the various ways of how to count particles, (3) the description of particle motion with transport equations, and (4) the solution of such equations, and what these solutions mean. Part (4) was previously described in Caballero-Lopez and Moraal (J. Geophys. Res, 109: A05105, doi: 10.1029/2003JA010358, 2004). Therefore, the details are not all repeated here. The style of this paper is not to be rigorous. It rather tries to capture the relevant tools to do modulation studies, to show how seemingly unrelated results are, in fact, related to one another, and to point out the
Stability analysis of ecomorphodynamic equations
NASA Astrophysics Data System (ADS)
Bärenbold, F.; Crouzy, B.; Perona, P.
2016-02-01
In order to shed light on the influence of riverbed vegetation on river morphodynamics, we perform a linear stability analysis on a minimal model of vegetation dynamics coupled with classical one- and two-dimensional Saint-Venant-Exner equations of morphodynamics. Vegetation is modeled as a density field of rigid, nonsubmerged cylinders and affects flow via a roughness change. Furthermore, vegetation is assumed to develop following a logistic dependence and may be uprooted by flow. First, we perform the stability analysis of the reduced one-dimensional framework. As a result of the competitive interaction between vegetation growth and removal through uprooting, we find a domain in the parameter space where originally straight rivers are unstable toward periodic longitudinal patterns. For realistic values of the sediment transport parameter, the dominant longitudinal wavelength is determined by the parameters of the vegetation model. Bed topography is found to adjust to the spatial pattern fixed by vegetation. Subsequently, the stability analysis is repeated for the two-dimensional framework, where the system may evolve toward alternate or multiple bars. On a fixed bed, we find instability toward alternate bars due to flow-vegetation interaction, but no multiple bars. Both alternate and multiple bars are present on a movable, vegetated bed. Finally, we find that the addition of vegetation to a previously unvegetated riverbed favors instability toward alternate bars and thus the development of a single course rather than braiding.
Silicon Nitride Equation of State
NASA Astrophysics Data System (ADS)
Swaminathan, Pazhayannur; Brown, Robert
2015-06-01
This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.
Equation of state of polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Bourne, N. K.; Gray, G. T.
2003-06-01
The present drive to make munitions as safe as is feasible and to develop predictive models describing their constitutive response, has led to the development and production of plastic bonded explosives and propellants. There is a range of elastomers used as binder materials with the energetic components. One of these is known as Kel-F-800™ (poly-chloro-trifluroethylene) whose structure is in some ways analogous to that of poly-tetrafluoroethylene (PTFE or Teflon). Thus, it is of interest to assess the mechanical behavior of Teflon and to compare the response of five different production Teflon materials, two of which were produced in pedigree form, one as-received product, and two from previous in-depth literature studies. The equations of state of these variants were quantified by conducting a series of shock impact experiments in which both pressure-particle velocity and shock velocity-particle velocity dependencies were measured. The compressive behavior of Teflon, based upon the results of this study, appears to be independent of the production route and additives introduced.
Dirac equations with confining potentials
NASA Astrophysics Data System (ADS)
Noble, J. H.; Jentschura, U. D.
2015-01-01
This paper is devoted to a study of relativistic eigenstates of Dirac particles which are simultaneously bound by a static Coulomb potential and added linear confining potentials. Under certain conditions, despite the addition of radially symmetric, linear confining potentials, specific bound-state energies surprisingly preserve their exact Dirac-Coulomb values. The generality of the "preservation mechanism" is investigated. To this end, a Foldy-Wouthuysen transformation is used to calculate the corrections to the spin-orbit coupling induced by the linear confining potentials. We find that the matrix elements of the effective operators obtained from the scalar, and time-like confining potentials mutually cancel for specific ratios of the prefactors of the effective operators, which must be tailored to the preservation mechanism. The result of the Foldy-Wouthuysen transformation is used to verify that the preservation is restricted (for a given Hamiltonian) to only one reference state, rather than traceable to a more general relationship among the obtained effective low-energy operators. The results derived from the nonrelativistic effective operators are compared to the fully relativistic radial Dirac equations. Furthermore, we show that the preservation mechanism does not affect antiparticle (negative-energy) states.
Scalable Equation of State Capability
Epperly, T W; Fritsch, F N; Norquist, P D; Sanford, L A
2007-12-03
The purpose of this techbase project was to investigate the use of parallel array data types to reduce the memory footprint of the Livermore Equation Of State (LEOS) library. Addressing the memory scalability of LEOS is necessary to run large scientific simulations on IBM BG/L and future architectures with low memory per processing core. We considered using normal MPI, one-sided MPI, and Global Arrays to manage the distributed array and ended up choosing Global Arrays because it was the only communication library that provided the level of asynchronous access required. To reduce the runtime overhead using a parallel array data structure, a least recently used (LRU) caching algorithm was used to provide a local cache of commonly used parts of the parallel array. The approach was initially implemented in a isolated copy of LEOS and was later integrated into the main trunk of the LEOS Subversion repository. The approach was tested using a simple test. Testing indicated that the approach was feasible, and the simple LRU caching had a 86% hit rate.
Double distributions and evolution equations
A.V. Radyushkin
1998-05-01
Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements < p{prime} {vert_bar}O(0,z){vert_bar}p > of quark and gluon light-cone operators. In their previous papers the authors used two types of nonperturbative functions parameterizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions F{sub {zeta}}(X;t). Here they discuss in more detail the double distributions (DD's) and evolution equations which they satisfy. They propose simple models for F(x,y;t=0) DD's with correct spectral and symmetry properties which also satisfy the reduction relations connecting them to the usual parton densities f(x). In this way, they obtain self-consistent models for the {zeta}-dependence of nonforward distributions. They show that, for small {zeta}, one can easily obtain nonforward distributions (in the X > {zeta} region) from the parton densities: F{sub {zeta}} (X;t=0) {approx} f(X{minus}{zeta}/2).
Stochastic differential equation model to Prendiville processes
Granita; Bahar, Arifah
2015-10-22
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Remarks on the Kuramoto-Sivashinsky equation
Nicolaenko, B.; Scheurer, B.
1983-01-01
We report here a joint work in progress on the Kuramoto-Sivashinsky equation. The question we address is the analytical study of a fourth order nonlinear evolution equation. This equation has been obtained by Sivashinsky in the context of combustion and independently by Kuramoto in the context of reaction diffusion-systems. Both were motivated by (nonlinear) stability of travelling waves. Numerical calculations have been done on this equation. All the results seem to indicate a chaotic behavior of the solution. Therefore, the analytical study is of interest in analogy with the Burger's and Navier-Stokes equations. Here we give some existence and uniqueness results for the equation in space dimension one, and we also study a fractional step method of numerical resolution. In a forthcoming joint paper with R. Temam, we will study the asymptotic behavior, as t approaches infinity, of the solution of (0.1) and give an estimate on the number of determining modes.
A state estimation of Liu equations
NASA Astrophysics Data System (ADS)
Ananyev, B. I.
2015-11-01
This paper is concerned with state estimation problems for so-called Liu equations. These equations are counterparts of well-known Ito ones and they were introduced by B. Liu under elaboration of his uncertain theory. The Liu equations may be solved backward and they represent a more convenient object for the state estimation problem solution especially for the case when distributions of disturbances are unknown. Using the dynamic programming principle, we derive an equation for the informational set consisting of all states that are compatible with measuring data. Special cases of Liu equations and constraints for disturbances are examined. Among them the linear equations with quadratic constraints are considered in most details. Some examples are also given.
Comparison of logistic equations for population growth.
Jensen, A L
1975-12-01
Two different forms of the logistic equation for population growth appear in the ecological literature. In the form of the logistic equation that appears in recent ecology textbooks the parameters are the instantaneous rate of natural increase per individual and the carrying capacity of the environment. In the form of the logistic equation that appears in some older literature the parameters are the instantaneous birth rate per individual and the carrying capacity. The decision whether to use one form or the other depends on which form of the equation is biologically more realistic. In this study the form of the logistic equation in which the instantaneous birth rate per individual is a parameter is shown to be more realistic in terms of the birth and death processes of population growth. Application of the logistic equation to calculate yield from an exploited fish population also shows that the parameters must be the instantaneous birth rate per individual and the carrying capacity. PMID:1203427
Darboux transformation for the NLS equation
Aktosun, Tuncay; Mee, Cornelis van der
2010-03-08
We analyze a certain class of integral equations associated with Marchenko equations and Gel'fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unperturbed quantities and the finite-rank perturbation. We show that this result provides a fundamental approach to derive Darboux transformations for various systems of ordinary differential operators. We illustrate our theory by providing the explicit Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a simple discrete eigenvalue is added to the spectrum, and thus we also provide a one-parameter family of Darboux transformations for the nonlinear Schroedinger equation.
Exact solutions of population balance equation
NASA Astrophysics Data System (ADS)
Lin, Fubiao; Flood, Adrian E.; Meleshko, Sergey V.
2016-07-01
Population balance equations have been used to model a wide range of processes including polymerization, crystallization, cloud formation, and cell dynamics, but the lack of analytical solutions necessitates the use of numerical techniques. The one-dimensional homogeneous population balance equation with time dependent but size independent growth rate and time dependent nucleation rate is investigated. The corresponding system of equations is solved analytically in this paper.
Dielectric polarization evolution equations and relaxation times
Baker-Jarvis, James; Riddle, Bill; Janezic, Michael D.
2007-05-15
In this paper we develop dielectric polarization evolution equations, and the resulting frequency-domain expressions, and relationships for the resulting frequency dependent relaxation times. The model is based on a previously developed equation that was derived using statistical-mechanical theory. We extract relaxation times from dielectric data and give illustrative examples for the harmonic oscillator and derive expressions for the frequency-dependent relaxation times and a time-domain integrodifferential equation for the Cole-Davidson model.
The Boltzmann equation in the difference formulation
Szoke, Abraham; Brooks III, Eugene D.
2015-05-06
First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.
Switched electrical networks and bilinear equations
NASA Technical Reports Server (NTRS)
Wood, J. R.
1974-01-01
An investigation is conducted concerning the state equations which arise in the description of power processing systems. Attention is given to the role played by Lie groups and Lie algebras in the characterization of the dynamical features of the systems. The bilinear equations used for the representation of the network characteristics are discussed along with the nature of the solutions for the equations. The application of the described approaches is illustrated with the aid of a number of network examples.
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R. K.
1985-01-01
Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.
Partitioning And Packing Equations For Parallel Processing
NASA Technical Reports Server (NTRS)
Arpasi, Dale J.; Milner, Edward J.
1989-01-01
Algorithm developed to identify parallelism in set of coupled ordinary differential equations that describe physical system and to divide set into parallel computational paths, along with parts of solution proceeds independently of others during at least part of time. Path-identifying algorithm creates number of paths consisting of equations that must be computed serially and table that gives dependent and independent arguments and "can start," "can end," and "must end" times of each equation. "Must end" time used subsequently by packing algorithm.
Geometrical and Graphical Solutions of Quadratic Equations.
ERIC Educational Resources Information Center
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Some remarks on unilateral matrix equations
Cerchiai, Bianca L.; Zumino, Bruno
2001-02-01
We briefly review the results of our paper LBNL-46775: We study certain solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials.
Analytic solutions of the relativistic Boltzmann equation
NASA Astrophysics Data System (ADS)
Hatta, Yoshitaka; Martinez, Mauricio; Xiao, Bo-Wen
2015-04-01
We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.
Non-Markovian stochastic evolution equations
NASA Astrophysics Data System (ADS)
Costanza, G.
2014-05-01
Non-Markovian continuum stochastic and deterministic equations are derived from a set of discrete stochastic and deterministic evolution equations. Examples are given of discrete evolution equations whose updating rules depend on two or more previous time steps. Among them, the continuum stochastic evolution equation of the Newton second law, the stochastic evolution equation of a wave equation, the stochastic evolution equation for the scalar meson field, etc. are obtained as special cases. Extension to systems of evolution equations and other extensions are considered and examples are given. The concept of isomorphism and almost isomorphism are introduced in order to compare the coefficients of the continuum evolution equations of two different smoothing procedures that arise from two different approaches. Usually these discrepancies arising from two sources: On the one hand, the use of different representations of the generalized functions appearing in the models and, on the other hand, the different approaches used to describe the models. These new concept allows to overcome controversies that were appearing during decades in the literature.
Integral equations for flows in wind tunnels
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1979-01-01
This paper surveys recent work on the use of integral equations for the calculation of wind tunnel interference. Due to the large number of possible physical situations, the discussion is limited to two-dimensional subsonic and transonic flows. In the subsonic case, the governing boundary value problems are shown to reduce to a class of Cauchy singular equations generalizing the classical airfoil equation. The theory and numerical solution are developed in some detail. For transonic flows nonlinear singular equations result, and a brief discussion of the work of Kraft and Kraft and Lo on their numerical solution is given. Some typical numerical results are presented and directions for future research are indicated.
Integral equations for resonance and virtual states
Orlov, Y.V.; Turovtsev, V.V.
1984-05-01
Integral equations are derived for the resonance and virtual (antibound) states consisting of two or three bodies. The derivation is based on the analytic continuation of the integral equations of scattering theory to nonphysical energy sheets. The resulting equations can be used to exhibit the analytic properties of amplitudes that are necessary for practical calculations using the equations for the quasistationary levels and Gamov wave functions derived in this paper. The Fourier transformation and the normalization rule for the wave function are generalized to the case of nonstationary states. The energy of the antibound state of the tritium nucleus is calculated for a ''realistic'' local potential.
Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet
2015-10-01
The auxiliary equation method presents wide applicability to handling nonlinear wave equations. In this article, we establish new exact travelling wave solutions of the nonlinear Zoomeron equation, coupled Higgs equation, and equal width wave equation. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Throughout the article, all calculations are made with the aid of the Maple packet program.
He, Xiaoyi; Lou, Li-Shi Lou, Li-Shi
1997-12-01
In this paper, the lattice Boltzmann equation is directly derived from the Boltzmann equation. It is shown that the lattice Boltzmann equation is a special discretized form of the Boltzmann equation. Various approximations for the discretization of the Boltzmann equation in both time and phase space are discussed in detail. A general procedure to derive the lattice Boltzmann model from the continuous Boltzmann equation is demonstrated explicitly. The lattice Boltzmann models derived include the two-dimensional 6-bit, 7-bit, and 9-bit, and three-dimensional 27-bit models. {copyright} {ital 1997} {ital The American Physical Society}
Cylindrical nonlinear Schroedinger equation versus cylindrical Korteweg-de Vries equation
Fedele, Renato; De Nicola, Sergio; Grecu, Dan; Visinescu, Anca; Shukla, Padma K.
2008-10-15
A correspondence between the family of cylindrical nonlinear Schroedinger (cNLS) equations and the one of cylindrical Korteweg-de Vries (cKdV) equations is constructed. It associates non stationary solutions of the first family with the ones of the second family. This is done by using a correspondence, recently found, between the families of generalized NLS equation and generalized KdV equation, and their solutions in the form of travelling waves, respectively. In particular, non-stationary soliton-like solutions of the cNLS equation can be associated with non-stationary soliton-like solutions of cKdV equation.
NASA Astrophysics Data System (ADS)
Zhuravlev, V. M.
2016-03-01
We discuss an extension of the theory of multidimensional second-order equations of the elliptic and hyperbolic types related to multidimensional quasilinear autonomous first-order partial differential equations. Calculating the general integrals of these equations allows constructing exact solutions in the form of implicit functions. We establish a connection with hydrodynamic equations. We calculate the number of free functional parameters of the constructed solutions. We especially construct and analyze implicit solutions of the Laplace and d'Alembert equations in a coordinate space of arbitrary finite dimension. In particular, we construct generalized Penrose-Rindler solutions of the d'Alembert equation in 3+1 dimensions.
Note on the Wyoming Resolution and ADE.
ERIC Educational Resources Information Center
Slevin, James F.
1987-01-01
Details the resolution passed at the Wyoming Conference on English, calling for major professional organizations in English, especially CCCC, to take steps to correct the exploitation of English faculty members, particularly writing teachers. (JC)
Interpersonal psychoanalysis' radical façade.
Hirsch, Irwin
2002-01-01
The participant-observation model initiated the relational turn, as well as the shift from modernism to postmodernism in psychoanalysis. This two-person, coparticipant conceptualization of the psychoanalytic situation moved psychoanalysis from the realm of alleged objective science toward intersubjectivity and hermeneutics. From this perspective, the analyst as subjective other is constantly engaged affectively with the patient in ways that are very often out of awareness. Analyst and patient both, for better or for worse, are believed to unwittingly influence one another. This description of the analytic dyad has led many to mistakingly conclude that interpersonal psychoanalysts advocate wittinly affective expressiveness, often in the form of deliberate self-disclosure of feelings, as part of a standard analytic stance. Upon closer examination, radical interventions are no more emblematic of interpersonal analysts than they are of analysts from most other traditions, though the interpersonalists have indeed expanded what had theretofore been a rather narrow repertoire of interventions. PMID:12597105
NASA Astrophysics Data System (ADS)
Tatarskii, V. I.
1995-06-01
The steps necessary to produce the Rayleigh equation that is based on the Rayleigh hypothesis from the equation that is based on the Green's formula are shown. First a definition is given for the scattering amplitude that is true not only in the far zone of diffraction but also near the scattering surface. With this definition the Rayleigh equation coincides with the rigorous equation for the surface secondary sources that is based on Green's formula. The Rayleigh hypothesis is equivalent to substituting the far-zone expression of the scattering amplitude into this rigorous equation. In this case it turns out to be the equation not for the sources but directly for the scattering amplitude, which is the main advantage of this method. For comparing the Rayleigh equation with the initial rigorous equation, the Rayleigh equation is represented in terms of secondary sources. The kernel of this equation contains an integral that converges for positive and diverges for negative values of some parameter. It is shown that if we regularize this integral, defining it for the negative values of this parameter as an analytical continuation from the domain of positive values, this kernel becomes equal to the kernel of the initial rigorous equation. It follows that the formal perturbation series for the scattering amplitude obtained from the Rayleigh equation and from Green's equation always coincide. This means that convergence of the perturbation series is a sufficient condition
A primitive pseudo wave equation formulation for solving the harmonic shallow water equations
NASA Astrophysics Data System (ADS)
Westerink, J. J.; Connor, J. J.; Stolzenbach, K. D.
A finite element method formulation for solving the harmonic shallow water equations in their primitive or unmodified form is developed and analysed. The scheme, referred to as the Primitive Pseudo Wave Equation Formulation (PPWE), involves developing a weak weighted residual form of the continuity equation and furthermore forming a pseudo wave equation by substituting the discretized form of the momentum equation into the discretized form of the continuity equation. The final set of equations to be solved, the pseudo wave equation and the primitive momentum equations, deceptively resemble the discretized equations of the wave equation formulation of Lynch and Gray. Despite this resemblance, Fourier analysis indicates that the PPWE scheme is still fundamentally primitive. However, application of the PPWE scheme to a set of stringent test problems results in very good solutions with well controlled nodal oscillations. It is shown that this low degree of spurious oscillations is due to the treatment of the boundary conditions such that elevation is taken as an essential condition and normal flux is taken as a natural condition. This particular boundary condition treatment is suggested by the formation of the pseudo wave equation. Furthermore, even though the equation re-arrangement does not in itself effect the solutions, it does make the scheme much more efficient.
The Forced van der Pol Equation
ERIC Educational Resources Information Center
Fay, Temple H.
2009-01-01
We report on a study of the forced van der Pol equation x + [epsilon](x[superscript 2] - 1)x + x = F cos[omega]t, by solving numerically the differential equation for a variety of values of the parameters [epsilon], F and [omega]. In doing so, many striking and interesting trajectories can be discovered and phenomena such as frequency entrainment,…
Equations of state for detonation problems
Davis, W.C.
1997-08-01
The words `Equation of State` have usually been used in the detonation physics community to mean whatever information about the materials involved that would make it possible to solve the problem at hand. As the problems have become more complicated and the computer simulation more detailed, better and better equations of state have been developed and used. Still, most equations of state have been limited to use in solving the hydrodynamic equations for an inviscid, non-heat-conducting, non-radiating, non-reacting fluid. All the information in these equations of state is about the mechanical properties. There is no information about the temperature, entropy, or specific heat. The focus of this paper is not on providing a new equation of state that will allow the solution of all problems, but to discuss the restrictions on equations of state, and the effect of those restrictions on their properties. Later, when there are more data, it will be time to search for the best equations of state for all the various problems.
Euler's Amazing Way to Solve Equations.
ERIC Educational Resources Information Center
Flusser, Peter
1992-01-01
Presented is a series of examples that illustrate a method of solving equations developed by Leonhard Euler based on an unsubstantiated assumption. The method integrates aspects of recursion relations and sequences of converging ratios and can be extended to polynomial equation with infinite exponents. (MDH)
The Effects of Repeaters on Test Equating.
ERIC Educational Resources Information Center
Andrulis, Richard S.; And Others
1978-01-01
The effects of repeaters (testees included in both administrations of two forms of a test) on the test equating process are examined. It is shown that repeaters do effect test equating and tend to lower the cutoff point for passing the test. (JKS)
Congeneric Models and Levine's Linear Equating Procedures.
ERIC Educational Resources Information Center
Brennan, Robert L.
In 1955, R. Levine introduced two linear equating procedures for the common-item non-equivalent populations design. His procedures make the same assumptions about true scores; they differ in terms of the nature of the equating function used. In this paper, two parameterizations of a classical congeneric model are introduced to model the variables…
On solvable Dirac equation with polynomial potentials
Stachowiak, Tomasz
2011-01-15
One-dimensional Dirac equation is analyzed with regard to the existence of exact (or closed-form) solutions for polynomial potentials. The notion of Liouvillian functions is used to define solvability, and it is shown that except for the linear potentials the equation in question is not solvable.
Fractional transport equation on random fractals
NASA Astrophysics Data System (ADS)
Zeng, Qiuhua; Li, Houqiang; Fang, Yaquan
1998-12-01
According to the ways of H.E. Roman and M. Giona with the constitutive equation of diffusive particles in isotropic and homogeneous three dimensions and the Laplace transform we derive the multiscaling fractional transport equation in disordered fractal media, whose solution is consistent with literature results.
Hopf algebras and Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Weinzierl, Stefan
2016-06-01
In this paper I discuss Hopf algebras and Dyson-Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson-Schwinger equations.
Student Understanding of Chemical Equation Balancing.
ERIC Educational Resources Information Center
Yarroch, W. L.
1985-01-01
Results of interviews with high school chemistry students (N=14) during equation-solving sessions indicate that those who were able to construct diagrams consistent with notation of their balanced equation possessed good concepts of subscript and the balancing rule. Implications for chemistry teaching are discussed. (DH)
Singular perturbation equations for flexible satellites
NASA Technical Reports Server (NTRS)
Huang, T. C.; Das, A.
1980-01-01
Force equations of motion of the individual flexible elements of a satellite were obtained in a previous paper. Moment equations of motion of the composite bodies of a flexible satellite are to be developed using two sets of equations which form the basic system for any dynamic model of flexible satellites. This basic system consists of a set of N-coupled, nonlinear, ordinary, or partial differential equations, for a flexible satellite with n generalized, structural position coordinates. For single composite body satellites, N is equal to (n + 3); for dual-spin systems, N is equal to (n + 9). These equations involve time derivatives up to the second order. The study shows a method of avoiding this linearization by reducing the N equations to 3 or 9 nonlinear, coupled, first order, ordinary, differential equations involving only the angular velocities of the composite bodies. The solutions for these angular velocities lead to linear equations in the n generalized structural position coordinates, which can be solved by known methods.
The Specific Analysis of Structural Equation Models
ERIC Educational Resources Information Center
McDonald, Roderick P.
2004-01-01
Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…
Entropy viscosity method applied to Euler equations
Delchini, M. O.; Ragusa, J. C.; Berry, R. A.
2013-07-01
The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)
Modeling Projects in a Differential Equations Course.
ERIC Educational Resources Information Center
Claus-McGahan, Elly
1998-01-01
Discusses the value of student-designed, in-depth, modeling projects in a differential equations course and how to prepare students. Provides excerpts from worksheets, a list of computer software for Macintosh that can be used in teaching differential equations, and an annotated bibliography. (Author/ASK)
Rate equations for sodium catalyzed quartz dissolution
NASA Astrophysics Data System (ADS)
Rimstidt, J. Donald
2015-10-01
Quartz dissolution rate data were fit to an equation that predicts the dissolution flux (J, mol/m2 sec) as a function of temperature (T, K), sodium concentration (mNa+, molal), and hydrogen ion activity (aH+). The same data fit equally well to an equation that expresses the rate as a function of temperature, sodium concentration, and hydroxide ion activity (aOH-) . These equations are more convenient to use than those given by Bickmore et al. (2008) because rates can be predicted without the implementation of a surface speciation model. They predict that at 25 °C quartz dissolves more than 200 times faster in seawater than in pure water. These two equations fit the data just as well as five other equations from Bickmore et al. (2008) that are based on surface species concentrations. All of these rate equations contain information about the reaction mechanism(s) for quartz dissolution but that information is ambiguous because the independent variables used to develop the equations are correlated. This means that rate equations alone cannot be used to infer the dissolution mechanism. Existing surface complexation, surface charge, terrace-ledge-kink, and Lewis acid-base models must be modified and amalgamated in order to develop a reliable model of the reaction mechanism(s).
Equations for Automotive-Transmission Performance
NASA Technical Reports Server (NTRS)
Chazanoff, S.; Aston, M. B.; Chapman, C. P.
1984-01-01
Curve-fitting procedure ensures high confidence levels. Threedimensional plot represents performance of small automatic transmission coasting in second gear. In equation for plot, PL power loss, S speed and T torque. Equations applicable to manual and automatic transmissions over wide range of speed, torque, and efficiency.
Solving Differential Equations Using Modified Picard Iteration
ERIC Educational Resources Information Center
Robin, W. A.
2010-01-01
Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…
NASA Astrophysics Data System (ADS)
Doikou, Anastasia; Ioannidou, Theodora
2011-04-01
A non-compact version of the Weyl equation is proposed, based on the infinite dimensional spin zero representation of the mathfrak{s}{mathfrak{l}_2} algebra. Solutions of the aforementioned equation are obtained in terms of the Kummer functions. In this context, we discuss the ADHMN approach in order to construct the corresponding non-compact BPS monopoles.
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Does the Wave Equation Really Work?
ERIC Educational Resources Information Center
Armstead, Donald C.; Karls, Michael A.
2006-01-01
The wave equation is a classic partial differential equation that one encounters in an introductory course on boundary value problems or mathematical physics, which can be used to describe the vertical displacement of a vibrating string. Using a video camera and Wave-in-Motion software to record displacement data from a vibrating string or spring,…
MACSYMA's symbolic ordinary differential equation solver
NASA Technical Reports Server (NTRS)
Golden, J. P.
1977-01-01
The MACSYMA's symbolic ordinary differential equation solver ODE2 is described. The code for this routine is delineated, which is of interest because it is written in top-level MACSYMA language, and may serve as a good example of programming in that language. Other symbolic ordinary differential equation solvers are mentioned.
Symbolic Solution of Linear Differential Equations
NASA Technical Reports Server (NTRS)
Feinberg, R. B.; Grooms, R. G.
1981-01-01
An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.
Solving Cubic Equations by Polynomial Decomposition
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
Lattice Boltzmann equation for relativistic quantum mechanics.
Succi, Sauro
2002-03-15
Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation. PMID:16210189
Energy Equation Approximation in Fluid Mechanics
NASA Technical Reports Server (NTRS)
Goldstein, Arthur W.
1959-01-01
There is some confusion in the literature of fluid mechanics in regard to the correct form of the energy equation for the study of the flow of nearly incompressible fluids. Several forms of the energy equation and their use are therefore discussed in this note.
Reduction of dispersionless coupled Korteweg-de Vries equations to the Euler-Darboux equation
NASA Astrophysics Data System (ADS)
Matsuno, Yoshimasa
2001-04-01
A quasilinear hyperbolic system of two first-order equations is introduced. The system is linearized by means of the hodograph transformation combined with Riemann's method of characteristics. In the process of linearization, the main step is to explicitly express the characteristic velocities in terms of the Riemann invariants. The procedure is shown to be performed by quadrature only for specific combinations of the parameters in the system. We then apply the method developed here to the dispersionless versions of the typical coupled Korteweg-de Vries (cKdV) equations including the Broer-Kaup, Ito, Hirota-Satsuma, and Bogoyavlenskii equations and show that these equations are transformed into the classical Euler-Darboux equation. A more general quasilinear system of equations is also considered with application to the dispersionless cKdV equations for the Jaulent-Miodek and Nutku-Ög˜uz equations.
Turbulence kinetic energy equation for dilute suspensions
NASA Technical Reports Server (NTRS)
Abou-Arab, T. W.; Roco, M. C.
1989-01-01
A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.
Covariant Conformal Decomposition of Einstein Equations
NASA Astrophysics Data System (ADS)
Gourgoulhon, E.; Novak, J.
It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.
Hybrid method for the chemical master equation
Hellander, Andreas Loetstedt, Per
2007-11-10
The chemical master equation is solved by a hybrid method coupling a macroscopic, deterministic description with a mesoscopic, stochastic model. The molecular species are divided into one subset where the expected values of the number of molecules are computed and one subset with species with a stochastic variation in the number of molecules. The macroscopic equations resemble the reaction rate equations and the probability distribution for the stochastic variables satisfy a master equation. The probability distribution is obtained by the Stochastic Simulation Algorithm due to Gillespie. The equations are coupled via a summation over the mesoscale variables. This summation is approximated by Quasi-Monte Carlo methods. The error in the approximations is analyzed. The hybrid method is applied to three chemical systems from molecular cell biology.
The focusing energy-critical Hartree equation
NASA Astrophysics Data System (ADS)
Li, Dong; Miao, Changxing; Zhang, Xiaoyi
We consider the focusing energy-critical nonlinear Hartree equation iu+Δu=-(|∗|)u. We proved that if a maximal-lifespan solution u:I×R→C satisfies sup‖∇u(t)‖2<‖∇W‖2, where W is the static solution of the equation, then the maximal-lifespan I=R, moreover, the solution scatters in both time directions. For spherically symmetric initial data, similar result has been obtained in [C. Miao, G. Xu, L. Zhao, Global wellposedness, scattering and blowup for the energy-critical, focusing Hartree equation in the radial case, Colloq. Math., in press]. The argument is an adaptation of the recent work of R. Killip and M. Visan [R. Killip, M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, preprint] on energy-critical nonlinear Schrödinger equations.
Completeness of solutions of Bethe's equations.
Hao, Wenrui; Nepomechie, Rafael I; Sommese, Andrew J
2013-11-01
We consider the Bethe equations for the isotropic spin-1/2 Heisenberg quantum spin chain with periodic boundary conditions. We formulate a conjecture for the number of solutions with pairwise distinct roots of these equations, in terms of numbers of so-called singular (or exceptional) solutions. Using homotopy continuation methods, we find all such solutions of the Bethe equations for chains of length up to 14. The numbers of these solutions are in perfect agreement with the conjecture. We also discuss an indirect method of finding solutions of the Bethe equations by solving the Baxter T-Q equation. We briefly comment on implications for thermodynamical computations based on the string hypothesis. PMID:24329220
Singular perturbation equations for flexible satellites
NASA Technical Reports Server (NTRS)
Huang, T. C.; Das, A.
1973-01-01
The dynamic model of a flexible satellite with n generalized structural position coordinates requires the solution of a set of N coupled nonlinear ordinary or partial differential equations. For single composite body satellites, N is equal to (n + 3). For dual-spin systems, N is equal to (n + 9). These equations usually involve time derivatives up to the second order. For large values of n, linearization of the system has so far been the only practicable way of solution. The present study shows a method of avoiding this linearization by reducing the N equations to three or nine nonlinear, coupled, first-order ordinary differential equations involving only the angular velocities of the composite bodies. The solutions for these angular velocities lead to linear equations in the n generalized structural position coordinates, which can then be solved by known methods.
Riemann equation for prime number diffusion
NASA Astrophysics Data System (ADS)
Chen, Wen; Liang, Yingjie
2015-05-01
This study makes the first attempt to propose the Riemann diffusion equation to describe in a manner of partial differential equation and interpret in physics of diffusion the classical Riemann method for prime number distribution. The analytical solution of this equation is the well-known Riemann representation. The diffusion coefficient is dependent on natural number, a kind of position-dependent diffusivity diffusion. We find that the diffusion coefficient of the Riemann diffusion equation is nearly a straight line having a slope 0.99734 in the double-logarithmic axis. Consequently, an approximate solution of the Riemann diffusion equation is obtained, which agrees well with the Riemann representation in predicting the prime number distribution. Moreover, we interpret the scale-free property of prime number distribution via a power law function with 1.0169 the scale-free exponent in respect to logarithmic transform of the natural number, and then the fractal characteristic of prime number distribution is disclosed.
Almost periodic solutions to difference equations
NASA Technical Reports Server (NTRS)
Bayliss, A.
1975-01-01
The theory of Massera and Schaeffer relating the existence of unique almost periodic solutions of an inhomogeneous linear equation to an exponential dichotomy for the homogeneous equation was completely extended to discretizations by a strongly stable difference scheme. In addition it is shown that the almost periodic sequence solution will converge to the differential equation solution. The preceding theory was applied to a class of exponentially stable partial differential equations to which one can apply the Hille-Yoshida theorem. It is possible to prove the existence of unique almost periodic solutions of the inhomogeneous equation (which can be approximated by almost periodic sequences) which are the solutions to appropriate discretizations. Two methods of discretizations are discussed: the strongly stable scheme and the Lax-Wendroff scheme.
Planck-scale corrections to Friedmann equation
NASA Astrophysics Data System (ADS)
Awad, Adel; Ali, Ahmed
2014-04-01
Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic force. In this work, we extend Verlinde's proposal to accommodate generalized uncertainty principles (GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity (DSR). Using Verlinde's proposal and two known models of GUPs, we obtain modifications to Newton's law of gravitation as well as the Friedmann equation. Our modification to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a corresponding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to Friedmann-Robertson-Walker (FRW) solutions for the p = ωp equation of state.