NASA Astrophysics Data System (ADS)
Cartwright, Ian
Advection-dispersion fluid flow models implicitly assume that the infiltrating fluid flows through an already fluid-saturated medium. However, whether rocks contain a fluid depends on their reaction history, and whether any initial fluid escapes. The behaviour of different rocks may be illustrated using hypothetical marble compositions. Marbles with diverse chemistries (e.g. calcite + dolomite + quartz) are relatively reactive, and will generally produce a fluid during heating. By contrast, marbles with more restricted chemistries (e.g. calcite + quartz or calcite-only) may not. If the rock is not fluid bearing when fluid infiltration commences, mineralogical reactions may produce a reaction-enhanced permeability in calcite + dolomite + quartz or calcite + quartz, but not in calcite-only marbles. The permeability production controls the pattern of mineralogical, isotopic, and geochemical resetting during fluid flow. Tracers retarded behind the mineralogical fronts will probably be reset as predicted by the advection-dispersion models; however, tracers that are expected to be reset ahead of the mineralogical fronts cannot progress beyond the permeability generating reaction. In the case of very unreactive lithologies (e.g. pure calcite marbles, cherts, and quartzites), the first reaction to affect the rocks may be a metasomatic one ahead of which there is little pervasive resetting of any tracer. Centimetre-scale layering may lead to the formation of self-perpetuating fluid channels in rocks that are not fluid saturated due to the juxtaposition of reactants. Such layered rocks may show patterns of mineralogical resetting that are not predicted by advection-dispersion models. Patterns of mineralogical and isotopic resetting in marbles from a number of terrains, for example: Chillagoe, Marulan South, Reynolds Range (Australia); Adirondack Mountains, Old Woman Mountains, Notch Peak (USA); and Stephen Cross Quarry (Canada) vary as predicted by these models.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
Advection Scheme for Phase-changing Porous Media Flow of Fluids with Large Density Ratio
NASA Astrophysics Data System (ADS)
Zhang, Duan; Padrino, Juan
2015-11-01
Many flows in a porous media involve phase changes between fluids with a large density ratio. For instance, in the water-steam phase change the density ratio is about 1000. These phase changes can be results of physical changes, or chemical reactions, such as fuel combustion in a porous media. Based on the mass conservation, the velocity ratio between the fluids is of the same order of the density ratio. As the result the controlling Courant number for the time step in a numerical simulation is determined by the high velocity and low density phase, leading to small time steps. In this work we introduce a numerical approximation to increase the time step by taking advantage of the large density ratio. We provide analytical error estimation for this approximate numerical scheme. Numerical examples show that using this approximation about 40-fold speedup can be achieved at the cost of a few percent error. Work partially supported by LDRD project of LANL.
Advecting Procedural Textures for 2D Flow Animation
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
Chaotic Advection in a Bounded 3-Dimensional Potential Flow
NASA Astrophysics Data System (ADS)
Metcalfe, Guy; Smith, Lachlan; Lester, Daniel
2012-11-01
3-dimensional potential, or Darcy flows, are central to understanding and designing laminar transport in porous media; however, chaotic advection in 3-dimensional, volume-preserving flows is still not well understood. We show results of advecting passive scalars in a transient 3-dimensional potential flow that consists of a steady dipole flow and periodic reorientation. Even for the most symmetric reorientation protocol, neither of the two invarients of the motion are conserved; however, one invarient is closely shadowed by a surface of revolution constructed from particle paths of the steady flow, creating in practice an adiabatic surface. A consequence is that chaotic regions cover 3-dimensional space, though tubular regular regions are still transport barriers. This appears to be a new mechanism generating 3-dimensional chaotic orbits. These results contast with the experimental and theoretical results for chaotic scalar transport in 2-dimensional Darcy flows. Wiggins, J. Fluid Mech. 654 (2010).
Is Chaotic Advection Inherent to Porous Media Flow?
NASA Astrophysics Data System (ADS)
Lester, Daniel; Metcalfe, Guy; Trefry, Mike
2013-11-01
All porous media, including granular and packed media, fractured and open networks, are typified by the inherent topological complexity of the pore-space. This topological complexity admits a large number density of stagnation points under steady Stokes flow, which in turn generates a 3D fluid mechanical analouge of the Bakers map, termed the Baker's flow. We demonstrate that via this mechanism, chaotic advection at the pore-scale is inherent to almost all porous media under reasonable conditions, and such dynamics have significant implications for a range of fluid-borne processes including transport and mixing, chemical reactions and biological activity.
Advective velocity and energy dissipation rate in an oscillatory flow.
Haider, Ziaul; Hondzo, Miki; Porte-Agel, Fernando
2005-07-01
Characterizing the transport processes at the sediment-water interface along sloping boundaries in lakes and reservoirs is of fundamental interest in lake and reservoir water quality management. The turbulent bottom boundary layer (TBBL) along a slope, induced by the breaking of internal waves in a linearly stratified fluid, was investigated through laboratory measurements. Fast response micro-scale conductivity and temperature probes in conjunction with laser-Doppler velocimetry were used to measure the time series of salinity, temperature, and velocity along a sloping boundary. Turbulent energy spectra were computed from the velocity data using a time-dependent advective velocity and Taylor's hypothesis. The energy spectra were used to estimate the energy dissipation rate at different positions in the TBBL. The advective velocity in this near-zero mean shear flow is based on an integral time scale (T(int)). The integral time scale is related to the average frequency of the spectral energy density of the flow velocity. The energy dissipation rate estimated from the variable advective velocity with an averaging time window equal to the integral time scale (T=T(int)) was 43% higher than the energy dissipation rate estimated from a constant advective velocity. The estimated dissipation rates with T=T(int) were comparable to values obtained by curve-fitting a theoretical Batchelor spectrum for the temperature gradient spectra. This study proposes the integral time scale to be used for the oscillatory flows as (a) a time-averaging window to estimate the advective velocity and associated energy dissipation level, and (b) a normalizing parameter in the energy spectrum.
NASA Astrophysics Data System (ADS)
Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.
2013-12-01
Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.
Jet Magnetically Accelerated from Advection Dominated Accretion Flow
NASA Astrophysics Data System (ADS)
Gong, Xiao-Long; Jiang, Zhi-Xiong
2014-08-01
A jet model for the jet power arising from a steady, optically thin, advection dominated accretion flow (ADAF) around a Kerr black hole (BH) is proposed. We investigate the typical numerical solutions of ADAF, and calculate the jet power from an ADAF using a general relativistic version of electronic circuit theory. It is shown that the jet power concentrates in the inner region of the accretion flow, and the higher the degree to which the flow advection-dominated is, the lower the jet power from the ADAF is.
THE ADVECTION OF SUPERGRANULES BY THE SUN'S AXISYMMETRIC FLOWS
Hathaway, David H.; Williams, Peter E.; Rosa, Kevin Dela; Cuntz, Manfred E-mail: peter.williams@nasa.go
2010-12-10
We show that the motions of supergranules are consistent with a model in which they are simply advected by the axisymmetric flows in the Sun's surface shear layer. We produce a 10 day series of simulated Doppler images at a 15 minute cadence that reproduces most spatial and temporal characteristics seen in the SOHO/MDI Doppler data. Our simulated data have a spectrum of cellular flows with just two components-a granule component that peaks at spherical wavenumbers of about 4000 and a supergranule component that peaks at wavenumbers of about 110. We include the advection of these cellular components by the axisymmetric flows-differential rotation and meridional flow-whose variations with latitude and depth (wavenumber) are consistent with observations. We mimic the evolution of the cellular pattern by introducing random variations to the phases of the spectral components at rates that reproduce the levels of cross-correlation as functions of time and latitude. Our simulated data do not include any wave-like characteristics for the supergranules yet can reproduce the rotation characteristics previously attributed to wave-like behavior. We find rotation rates which appear faster than the actual rotation rates and attribute this to projection effects. We find that the measured meridional flow does accurately represent the actual flow and that the observations indicate poleward flow to 65{sup 0}-70{sup 0} latitude with equatorward countercells in the polar regions.
NASA Astrophysics Data System (ADS)
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
Update on Advection-Diffusion Purge Flow Model
NASA Technical Reports Server (NTRS)
Brieda, Lubos
2015-01-01
Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.
Advection-Based Sparse Data Management for Visualizing Unsteady Flow.
Guo, Hanqi; Zhang, Jiang; Liu, Richen; Liu, Lu; Yuan, Xiaoru; Huang, Jian; Meng, Xiangfei; Pan, Jingshan
2014-12-01
When computing integral curves and integral surfaces for large-scale unsteady flow fields, a major bottleneck is the widening gap between data access demands and the available bandwidth (both I/O and in-memory). In this work, we explore a novel advection-based scheme to manage flow field data for both efficiency and scalability. The key is to first partition flow field into blocklets (e.g. cells or very fine-grained blocks of cells), and then (pre)fetch and manage blocklets on-demand using a parallel key-value store. The benefits are (1) greatly increasing the scale of local-range analysis (e.g. source-destination queries, streak surface generation) that can fit within any given limit of hardware resources; (2) improving memory and I/O bandwidth-efficiencies as well as the scalability of naive task-parallel particle advection. We demonstrate our method using a prototype system that works on workstation and also in supercomputing environments. Results show significantly reduced I/O overhead compared to accessing raw flow data, and also high scalability on a supercomputer for a variety of applications.
Dependence of advection-diffusion-reaction on flow coherent structures
NASA Astrophysics Data System (ADS)
Tang, Wenbo; Luna, Christopher
2013-10-01
A study on an advection-diffusion-reaction system is presented. Variability of the reaction process in such a system triggered by a highly localized source is quantified. It is found, for geophysically motivated parameter regimes, that the difference in bulk concentration subject to realizations of different source locations is highly correlated with the local flow topology of the source. Such flow topologies can be highlighted by Lagrangian coherent structures. Reaction is relatively enhanced in regions of strong stretching, and relatively suppressed in regions where vortices are present. In any case, the presence of a divergence-free background flow helps speed up the reaction process, especially when the flow is time-dependent. Probability density of various quantities characterizing the reaction processes is also obtained. This reveals the inherent complexity of the reaction-diffusion process subject to nonlinear background stirring.
NASA Astrophysics Data System (ADS)
Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.
2014-09-01
Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.
A computational Lagrangian-Eulerian advection remap for free surface flows
NASA Astrophysics Data System (ADS)
Ashgriz, Nasser; Barbat, Tiberiu; Wang, Gang
2004-01-01
A VOF-based algorithm for advecting free surfaces and interfaces across a 2-D unstructured grid is presented. This algorithm is based on a combination of a Computational Lagrangian-Eulerian Advection Remap and the Volume of the Fluid method (CLEAR-VOF). A set of geometric tools are used to remap the advected shape of the volume fraction from one cell onto the Eulerian fixed unstructured grid. The geometric remapping is used to compute the fluxes onto a group of neighbouring cells of the mesh. These fluxes are then redistributed and corrected to satisfy the conservation of mass. Here, we present methods for developing identification algorithms for surface cells and incorporating them with CLEAR-VOF. The CLEAR-VOF algorithm is then tested for translation of several geometries. It is also incorporated in a finite element based flow solver and tested in a laminar flow over a broad-crested weir and a turbulent flow over a semi-circular obstacle.
Chaotic advection of finite-size bodies in a cavity flow
NASA Astrophysics Data System (ADS)
Vikhansky, A.
2003-07-01
We considered advection of neutrally buoyant discs in two-dimensional chaotic Stokes flow. The goal of the study is to explore a possibility to enhance laminar mixing in batch-flow mixers. Addition of freely moving bodies to periodically driven chaotic flow renders the flowfield nonperiodic [D. F. Zhang and D. A. Zumbrunnen, AIChE J. 42, 3301 (1996)], i.e., the Lagrangian chaos of the bodies motion induces Eulerian chaos of the flow that makes mixing more intensive. The presence of three bodies creates new topological features that do not exist in "pure" fluid. The trajectories of the discs in the augmented phase space tangle and form a braid that leads to so-called topological chaos [P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]. Simulations were performed using a new variant of the immersed boundaries method that allows the direct numerical simulation of fluid-solid flows on a regular rectangular grid without explicit calculation of the forces that the particles exert on the fluid.
The orientation field of fibers advected by a two-dimensional chaotic flow
NASA Astrophysics Data System (ADS)
Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg
2016-11-01
We examine the orientation of slender fibers advected by a 2D chaotic flow. The orientation field of these fibers show fascinating structures called scar lines, where they rotate by π over short distances. We use the standard map as a convenient model to represent a time-periodic 2D incompressible fluid flow. To understand the fiber orientation field, we consider the stretching field, given by the eigenvalues and eigenvectors of the Cauchy-Green strain tensors. The eigenvector field is strongly aligned with the fibers over almost the entire field, but develops topological singularities at certain points which do not exist in the advected fiber field. The singularities are points that have experienced zero stretching, and the number of such points increases rapidly with time. A key feature of both the fiber orientation and the eigenvector field are the scar lines. We show that certain scar lines form from fluid elements that are initially stretched in one direction and then stretched in an orthogonal direction to cancel the initial stretching. The scar lines that satisfy this condition contain the singularities of the eigenvector field. These scar lines highlight the major differences between the passive director field and the much more widely studied passive scalar field.
MAST solution of advection problems in irrotational flow fields
NASA Astrophysics Data System (ADS)
Aricò, Costanza; Tucciarelli, Tullio
2007-03-01
A new numerical-analytical Eulerian procedure is proposed for the solution of convection-dominated problems in the case of existing scalar potential of the flow field. The methodology is based on the conservation inside each computational elements of the 0th and 1st order effective spatial moments of the advected variable. This leads to a set of small ODE systems solved sequentially, one element after the other over all the computational domain, according to a MArching in Space and Time technique. The proposed procedure shows the following advantages: (1) it guarantees the local and global mass balance; (2) it is unconditionally stable with respect to the Courant number, (3) the solution in each cell needs information only from the upstream cells and does not require wider and wider stencils as in most of the recently proposed higher-order methods; (4) it provides a monotone solution. Several 1D and 2D numerical test have been performed and results have been compared with analytical solutions, as well as with results provided by other recent numerical methods.
STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS
Le, Truong; Wood, Kent S.; Wolff, Michael T.; Becker, Peter A.; Putney, Joy
2016-03-10
Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode with zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.
An advective volume-balance model for flow in porous media
NASA Astrophysics Data System (ADS)
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2016-11-01
Volume-balance models are used by petroleum engineers to simulate multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Preliminary numerical tests of phase separation due to gravity suggest the model reproduces qualitatively the physical phenomena. Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
An improved lattice Boltzmann method for simulating advective-diffusive processes in fluids
NASA Astrophysics Data System (ADS)
Aursjø, Olav; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel
2017-03-01
Lattice Boltzmann methods are widely used to simulate advective-diffusive processes in fluids. Lattice Bhatnagar-Gross-Krook methods presented in the literature mostly just exhibit first order spatial accuracy and introduce errors proportional to the velocity squared. Formulations proposed to alleviate this have only been partly successful and are valid only in certain specific situations. We present and demonstrate here a formulation that produces no such second order errors. This formulation suggests that a subtle, but important, adjustment is all it takes to improve the accuracy of the method. The key to the improved accuracy of this new model is the non-standard definition of the concentration that relates to the distribution function describing the advection-diffusion in lattice Boltzmann. The main advantage of the algorithm comes to view when simulating situations where fluid density variations appear. The present formulation of the advection-diffusion algorithm will, by taking into account these fluid density variations, drastically reduce the errors produced compared to the standard formulations. We also show how a source term is included in this new formulation without it losing its second order spatial accuracy.
Geophysical fluid flow experiment
NASA Technical Reports Server (NTRS)
Broome, B. G.; Fichtl, G.; Fowlis, W.
1979-01-01
The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.
Modeling velocity in gradient flows with coupled-map lattices with advection.
Lind, Pedro G; Corte-Real, João; Gallas, Jason A C
2002-07-01
We introduce a simple model to investigate large scale behavior of gradient flows based on a lattice of coupled maps which, in addition to the usual diffusive term, incorporates advection, as an asymmetry in the coupling between nearest neighbors. This diffusive-advective model predicts traveling patterns to have velocities obeying the same scaling as wind velocities in the atmosphere, regarding the advective parameter as a sort of geostrophic wind. In addition, the velocity and wavelength of traveling wave solutions are studied. In general, due to the presence of advection, two regimes are identified: for strong diffusion the velocity varies linearly with advection, while for weak diffusion a power law is found with a characteristic exponent proportional to the diffusion.
Subsurface barrier design alternatives for confinement and controlled advection flow
Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.
1994-02-01
Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described.
NASA Astrophysics Data System (ADS)
Eslami, Parastou; Seo, Jung-Hee; Rahsepar, Amirali; George, Richard; Lardo, Albert; Mittal, Rajat
2014-11-01
Coronary computed tomography angiography (CTA) is a promising tool for assessment of coronary stenosis and plaque burden. Recent studies have shown the presence of axial contrast concentration gradients in obstructed arteries, but the mechanism responsible for this phenomenon is not well understood. We use computational fluid dynamics to study intracoronary contrast dispersion and the correlation of concentration gradients with intracoronary blood flow and stenotic severity. Data from our CFD patient-specific simulations reveals that contrast dispersions are generated by intracoronary advection effects, and therefore, encode the coronary flow velocity. This novel method- Transluminal Attenuation Flow Encoding (TAFE) - is used to estimate the flowrate in phantom studies as well as preclinical experiments. Our results indicate a strong correlation between the values estimated from TAFE and the values measured in these experiments. The flow physics of contrast dispersion associated with TAFE will be discussed. This work is funded by grants from Coulter Foundation and Maryland Innovation Initiative. The authors have pending patents in this technology and RM and ACL have other financial interests associated with TAFE.
Intermittent Flow In Yield Stress Fluids Slows Down Chaotic Mixing
NASA Astrophysics Data System (ADS)
Boujlel, Jalila; Wendell, Dawn; Gouillart, Emmanuelle; Pigeonneau, Franck; Jop, Pierre; Laboratoire Surface du Verre et Interfaces Team
2013-11-01
Many mixing situations involve fluids with non-Newtonian properties: mixing of building materials such as concrete or mortar are based on fluids that have shear- thinning rheological properties. Lack of correct mixing can waste time and money, or lead to products with defects. When fluids are stirred and mixed together at low Reynolds number, the fluid particles should undergo chaotic trajectories to be well mixed by the so-called chaotic advection resulting from the flow. Previous work to characterize chaotic mixing in many different geometries has primarily focused on Newtonian fluids. First studies into non-Newtonian chaotic advection often utilize idealized mixing geometries such as cavity flows or journal bearing flows for numerical studies. Here, we present experimental results of chaotic mixing of yield stress fluids with non-Newtonian fluids using rod-stirring protocol with rotating vessel. We describe the various steps of the mixing and determine their dependence on the fluid rheology and speeds of rotation of the rods and the vessel. We show how the mixing of yield-stress fluids by chaotic advection is reduced compared to the mixing of Newtonian fluids and explain our results, bringing to light the relevant mechanisms: the presence of fluid that only flows intermittently, a phenomenon enhanced by the yield stress, and the importance of the peripheral region. This result is confirmed via numerical simulations.
The connection of standard thin disk with advection-dominated accretion flow
NASA Astrophysics Data System (ADS)
Lin, Yi-qing; Lu, Ju-fu; G. U., Wei-min
2005-04-01
Using the standard Runge-Kutta method, a global solution of the basic equations describing black hole accretion flows is derived. It is proved that transition from a standard thin disk to an advection-dominated accretion flow is realizable in case of high viscosity, without introducing any additional mechanism of energy transfer or specifying any ad hoc outer boundary condition.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2016-07-12
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Mechanics of coupled granular/fluid flows
NASA Astrophysics Data System (ADS)
Vinningland, J.; Toussaint, R.; Johnsen, O.; Flekkoy, E. G.; Maloy, K. J.
2006-12-01
We introduce a hybrid numerical model for coupled flow of solid grains and intersticial fluid, which renders for complex hydrodynamic interactions between mobile grains. This model treats the solid phase as discrete particles, interacting mechanically with the other particles and with the intersticial flowing fluid. The fluid is described by continuum equations rendering for its advection by the local grains, superposed to a pressure diffusion ruled by a Darcy flow with a permeability depending on the local solid fraction. This model is aimed at describing accurately such coupled flow. This model is tested for two model situations, where it is compared to experimental results: 1/ Injection of a localized overpressure in a grain/fluid filled cell lying horizontally, where gravity is unimportant. 2/ Sedimentation of heavy grains falling into an initially grain-free fluid region. The development of pattern-forming instabilities is obtained in these two situations, corresponding to granular/fluid equivalents of the two-fluids Saffman-Taylor and Rayleigh-Taylor instabilities. Numerical and experimental results are shown to be consistent with each other.
A global spectral element model for poisson equations and advective flow over a sphere
NASA Astrophysics Data System (ADS)
Mei, Huan; Wang, Faming; Zeng, Zhong; Qiu, Zhouhua; Yin, Linmao; Li, Liang
2016-03-01
A global spherical Fourier-Legendre spectral element method is proposed to solve Poisson equations and advective flow over a sphere. In the meridional direction, Legendre polynomials are used and the region is divided into several elements. In order to avoid coordinate singularities at the north and south poles in the meridional direction, Legendre-Gauss-Radau points are chosen at the elements involving the two poles. Fourier polynomials are applied in the zonal direction for its periodicity, with only one element. Then, the partial differential equations are solved on the longitude-latitude meshes without coordinate transformation between spherical and Cartesian coordinates. For verification of the proposed method, a few Poisson equations and advective flows are tested. Firstly, the method is found to be valid for test cases with smooth solution. The results of the Poisson equations demonstrate that the present method exhibits high accuracy and exponential convergence. Highprecision solutions are also obtained with near negligible numerical diffusion during the time evolution for advective flow with smooth shape. Secondly, the results of advective flow with non-smooth shape and deformational flow are also shown to be reasonable and effective. As a result, the present method is proved to be capable of solving flow through different types of elements, and thereby a desirable method with reliability and high accuracy for solving partial differential equations over a sphere.
Stevens, D.E.; Bretherton, S.
1996-12-01
This paper presents a new forward-in-time advection method for nearly incompressible flow, MU, and its application to an adaptive multilevel flow solver for atmospheric flows. MU is a modification of Leonard et al.`s UTOPIA scheme. MU, like UTOPIA, is based on third-order accurate semi-Lagrangian multidimensional upwinding for constant velocity flows. for varying velocity fields, MU is a second-order conservative method. MU has greater stability and accuracy than UTOPIA and naturally decomposes into a monotone low-order method and a higher-order accurate correction for use with flux limiting. Its stability and accuracy make it a computationally efficient alternative to current finite-difference advection methods. We present a fully second-order accurate flow solver for the anelastic equations, a prototypical low Mach number flow. The flow solver is based on MU which is used for both momentum and scalar transport equations. This flow solver can also be implemented with any forward-in-time advection scheme. The multilevel flow solver conserves discrete global integrals of advected quantities and includes adaptive mesh refinements. Its second-order accuracy is verified using a nonlinear energy conservation integral for the anelastic equations. For a typical geophysical problem in which the flow is most rapidly varying in a small part of the domain, the multilevel flow solver achieves global accuracy comparable to uniform-resolution simulation for 10% of the computational cost. 36 refs., 10 figs.
Fluid flow through seamounts and implications for global mass fluxes
NASA Astrophysics Data System (ADS)
Harris, Robert N.; Fisher, Andrew T.; Chapman, David S.
2004-08-01
Seamounts contribute to globally significant hydrothermal fluxes, but the dynamics and impacts of fluid flow through these features are poorly understood. Numerical models of coupled heat and fluid flow illustrate how seamounts induce local convection in the oceanic crust. We consider idealized axisymmetric seamounts and calculate mass and heat fluxes by using a coupled heat- and fluid-flow model. By using P. Wessel's global database of ˜15,000 seamounts identified through satellite gravimetry, we estimate that the mass flux associated with seamounts is ˜1014 kg/yr, a number comparable to estimated regional mass fluxes through mid-ocean ridges and flanks. In addition, the seamount-generated advective heat flux may be locally significant well beyond the 65 Ma average age at which advective lithospheric heat loss on ridge flanks ends. These flows may be important for facilitating geochemical exchange between the crust and ocean and may affect subseafloor microbial ecosystems.
Modeling the advection of discontinuous quantities in Geophysical flows using Particle Level Sets
NASA Astrophysics Data System (ADS)
Aleksandrov, V.; Samuel, H.; Evonuk, M.
2010-12-01
Advection is one of the major processes that commonly acts on various scales in nature (core formation, mantle convective stirring, multi-phase flows in magma chambers, salt diapirism ...). While this process can be modeled numerically by solving conservation equations, various geodynamic scenarios involve advection of quantities with sharp discontinuities. Unfortunately, in these cases modeling numerically pure advection becomes very challenging, in particular because sharp discontinuities lead to numerical instabilities, which prevent the local use of high order numerical schemes. Several approaches have been used in computational geodynamics in order to overcome this difficulty, with variable amounts of success. Despite the use of correcting filters or non-oscillatory, shock-preserving schemes, Eulerian (fixed grid) techniques generally suffer from artificial numerical diffusion. Lagrangian approaches (dynamic grids or particles) tend to be more popular in computational geodynamics because they are not prone to excessive numerical diffusion. However, these approaches are generally computationally expensive, especially in 3D, and can suffer from spurious statistical noise. As an alternative to these aforementioned approaches, we have applied a relatively recent Particle Level set method [Enright et al., 2002] for modeling advection of quantities with the presence of sharp discontinuities. We have tested this improved method, which combines the best of Eulerian and Lagrangian approaches, against well known benchmarks and classical Geodynamic flows. In each case the Particle Level Set method accuracy equals or is better than other Eulerian and Lagrangian methods, and leads to significantly smaller computational cost, in particular in three-dimensional flows, where the reduction of computational time for modeling advection processes is most needed.
NASA Astrophysics Data System (ADS)
Samuel, Henri
2010-05-01
Advection is one of the major processes that commonly acts on various scales in nature (core formation, mantle convective stirring, multi-phase flows in magma chambers, salt diapirism ...). While this process can be modeled numerically by solving conservation equations, various geodynamic scenarios involve advection of quantities with sharp discontinuities. Unfortunately, in these cases modeling numerically pure advection becomes very challenging, in particular because sharp discontinuities lead to numerical instabilities, which prevent the local use of high order numerical schemes. Several approaches have been used in computational geodynamics in order to overcome this difficulty, with variable amounts of success. Despite the use of correcting filters or non-oscillatory, shock-preserving schemes, Eulerian (fixed grid) techniques generally suffer from artificial numerical diffusion. Lagrangian approaches (dynamic grids or particles) tend to be more popular in computational geodynamics because they are not prone to excessive numerical diffusion. However, these approaches are generally computationally expensive, especially in 3D, and can suffer from spurious statistical noise. As an alternative to these aforementioned approaches, I have applied a relatively recent Particle Level set method [Enright et al., 2002] for modeling advection of quantities with the presence of sharp discontinuities. I have adapted this improved method, which combines the best of Eulerian and Lagrangian approaches, and I have tested it against well known benchmarks and classical Geodynamic flows. In each case the Particle Level Set method accuracy equals or is better than other Eulerian and Lagrangian methods, and leads to significantly smaller computational cost, in particular in three-dimensional flows, where the reduction of computational time for modeling advection processes is most needed.
NASA Astrophysics Data System (ADS)
Sharif-Kashani, Pooria; Juan, Tingting; Hubschman, Jean-Pierre; Eldredge, Jeff D.; Pirouz Kavehpour, H.
2011-11-01
Vitrectomy is a microsurgical technique to remove the vitreous gel from the vitreous cavity. Due to the viscoelastic nature of the vitreous gel, its complex fluidic behavior during vitrectomy affects the outcome of the procedure. Therefore, the knowledge of such behavior is essential for better designing the vitrectomy devices, such as vitreous cutters, and tuning the system settings such as port and shaft diameters, infusion, vacuum, and cutting rate. We studied the viscoelastic properties of porcine vitreous humor using a stressed-control shear rheometer and obtained its relaxation time, retardation time, and shear-zero viscosity. We performed a computational study of the flow in a vitreous cutter using the viscoelastic parameters obtained from the rheology experiments. We found significant differences between the modeled vitreous gel and a Newtonian surrogate fluid in the flow behavior and performance of the vitreous cutter. Our results will help in understanding of the vitreous behavior during vitrectomy and providing guidelines for new vitreous cutter design.
NASA Astrophysics Data System (ADS)
Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman
2013-01-01
Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.
Adaptive Computations for Partial Differential Equations Governing Advective Fluid Flows
1990-12-27
finite element methods have been studied in [30,34,42,45]. Mixed methods have been coupled with other techniques in multicomponent and multiphase...D. Guerillot and 0. Guillon, eds.), Editors Technip, Paris, 1990, 157-163. 81. M.S. Espedal, R.E. Ewing, and T.F. Russell, Mixed methods , operator...May 1988, 85-91. B. ACCEPTED 84. M.S. Espedal, R.E. Ewing, T.F. Russell, and 0. Saevareid, Reservoir simula- tion using mixed methods , a modified
Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California
NASA Astrophysics Data System (ADS)
Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.
2015-12-01
In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.
2017-03-01
The field theoretic renormalization group (RG) and the operator product expansion (OPE) are applied to the model of a density field advected by a random turbulent velocity field. The latter is governed by the stochastic Navier-Stokes equation for a compressible fluid. The model is considered near the special space dimension d = 4. It is shown that various correlation functions of the scalar field exhibit anomalous scaling behaviour in the inertial-convective range. The scaling properties in the RG+OPE approach are related to fixed points of the renormalization group equations. In comparison with physically interesting case d = 3, at d = 4 additional Green function has divergences which affect the existence and stability of fixed points. From calculations it follows that a new regime arises there and then by continuity moves into d = 3. The corresponding anomalous exponents are identified with scaling dimensions of certain composite fields and can be systematically calculated as series in y (the exponent, connected with random force) and ɛ = 4 - d. All calculations are performed in the leading one-loop approximation.
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1993-01-01
Effective numerical treatment of multicomponent viscous flow problems involving the advection of sharp interfaces between materials of differing physical properties requires correction techniques to prevent spurious diffusion and dispersion. We develop a particular algorithm, based on modern shock-capture techniques, employing a two-step nonlinear method. The first step involves the global application of a high-order upwind scheme to a hyperbolic advection equation used to model the distribution of distinct material components in a flow field. The second step is corrective and involves the application of a global filter designed to remove dispersion errors that result from the advection of discontinuities (e.g., material interfaces) by high-order, minimally dissipative schemes. The filter introduces no additional diffusion error. Nonuniform viscosity across a material interface is allowed for by the implementation of a compositionally weighted-inverse interface viscosity scheme. The combined method approaches the optimal accuracy of modern shock-capture techniques with a minimal increase in computational time and memory. A key advantage of this method is its simplicity to incorporate into preexisting codes be they finite difference, element, or volume of two or three dimensions.
McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Geophysical Fluid Flow Cell Simulation
NASA Technical Reports Server (NTRS)
1998-01-01
Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center
Rigorous upper bounds for fluid and plasma transport due to passive advection
Krommes, J.A.; Smith, R.A.; Kim, C.B.
1987-07-01
The formulation of variational principles for transport due to passive advection is described. A detailed account of the work has been published elsewhere. In the present paper, the motivations, philosophy, and implications of the method are briefly discussed. 15 refs.
Relaminarization of fluid flows
NASA Technical Reports Server (NTRS)
Narasimha, R.; Sreenivasan, K. R.
1979-01-01
The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.
Fluid Flow Phenomena during Welding
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.
Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole
NASA Astrophysics Data System (ADS)
Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk
2016-07-01
Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Effect of advective flow in fractures and matrix diffusion on natural gas production
Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.
2015-10-12
Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.
Effect of advective flow in fractures and matrix diffusion on natural gas production
Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; ...
2015-10-12
Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less
Rotational fluid flow experiment
NASA Technical Reports Server (NTRS)
1991-01-01
This project which began in 1986 as part of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program focuses on the design and implementation of an electromechanical system for studying vortex behavior in a microgravity environment. Most of the existing equipment was revised and redesigned by this project team, as necessary. Emphasis was placed on documentation and integration of the electrical and mechanical subsystems. Project results include reconfiguration and thorough testing of all hardware subsystems, implementation of an infrared gas entrainment detector, new signal processing circuitry for the ultrasonic fluid circulation device, improved prototype interface circuits, and software for overall control of experiment operation.
A partially open porous media flow with chaotic advection: towards a model of coupled fields.
Metcalfe, Guy; Lester, Daniel; Ord, Alison; Kulkarni, Pandurang; Trefry, Mike; Hobbs, Bruce E; Regenaur-Lieb, Klaus; Morris, Jeffery
2010-01-13
In nature, dissipative fluxes of fluid, heat and/or reacting species couple to each other and may also couple to deformation of a surrounding porous matrix. We use the well-known analogy of Hele-Shaw flow to Darcy flow to make a model porous medium with porosity proportional to local cell height. Time- and space-varying fluid injection from multiple source/sink wells lets us create many different kinds of chaotic flows and chemical concentration patterns. Results of an initial time-dependent potential flow model illustrate that this is a partially open flow, in which parts of the material transported by the flow remain in the cell forever and parts pass through with residence time and exit time distributions that have self-similar features in the control parameter space of the stirring. We derive analytically the existence boundary in stirring control parameter space between where isolated fluid regions can and cannot remain forever in the open flow. Experiments confirm the predictions.
Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.
Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen
2016-01-01
Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.
NASA Astrophysics Data System (ADS)
Fries, Dan; Ochs, Bradley; Ranjan, Devesh; Menon, Suresh
2016-11-01
A new facility has been developed at the Georgia Institute of Technology to study sub- and supersonic combustion, which is based on classical flame bomb studies but incorporates a mean flow, allowing for a wider variety of turbulent conditions and the inclusion of effects like compressibility, while supporting shear-free spherical flames. Homogeneous, isotropic turbulence is generated via an active vane grid. Methane-air flame kernels advecting with the mean flow are generated using Laser Induced Breakdown ignition. The facility is accessing the thin reaction zone regime with uRMS' /SL0 = 6 . 9 - 22 , L11 /δF = 44 - 68 and Reλ = 190 - 550 . The flame kernels are probed with OH-Planar Laser Induced Fluorescence (PLIF). To validate the facility, results at Ū = 30 m/s are compared to existing data using a scaling derived from a spectral closure of the G-equation. This indicates the reacting flow remains Galilean invariant under the given conditions. The differences between global and local turbulent consumption speeds derived from OH-PLIF results are discussed with a focus on modeling efforts. The curvature of flame wrinkles is evaluated to examine the impact of different turbulent scales on flame development. This work was supported by the Air Force Office of Scientific Research under basic research Grant FA9550-15-1-0512 (Project monitor: Dr. Chiping Li).
Orbital Advection by Interpolation: A Fast and Accurate Numerical Scheme for Super-Fast MHD Flows
Johnson, B M; Guan, X; Gammie, F
2008-04-11
In numerical models of thin astrophysical disks that use an Eulerian scheme, gas orbits supersonically through a fixed grid. As a result the timestep is sharply limited by the Courant condition. Also, because the mean flow speed with respect to the grid varies with position, the truncation error varies systematically with position. For hydrodynamic (unmagnetized) disks an algorithm called FARGO has been developed that advects the gas along its mean orbit using a separate interpolation substep. This relaxes the constraint imposed by the Courant condition, which now depends only on the peculiar velocity of the gas, and results in a truncation error that is more nearly independent of position. This paper describes a FARGO-like algorithm suitable for evolving magnetized disks. Our method is second order accurate on a smooth flow and preserves {del} {center_dot} B = 0 to machine precision. The main restriction is that B must be discretized on a staggered mesh. We give a detailed description of an implementation of the code and demonstrate that it produces the expected results on linear and nonlinear problems. We also point out how the scheme might be generalized to make the integration of other supersonic/super-fast flows more efficient. Although our scheme reduces the variation of truncation error with position, it does not eliminate it. We show that the residual position dependence leads to characteristic radial variations in the density over long integrations.
Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics
Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen
2016-01-01
Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network’s structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet. PMID:27128846
Measuring fluid flow and heat output in seafloor hydrothermal environments
NASA Astrophysics Data System (ADS)
Germanovich, Leonid N.; Hurt, Robert S.; Smith, Joshua E.; Genc, Gence; Lowell, Robert P.
2015-12-01
We review techniques for measuring fluid flow and advective heat output from seafloor hydrothermal systems and describe new anemometer and turbine flowmeter devices we have designed, built, calibrated, and tested. These devices allow measuring fluid velocity at high- and low-temperature focused and diffuse discharge sites at oceanic spreading centers. The devices perform at ocean floor depths and black smoker temperatures and can be used to measure flow rates ranging over 2 orders of magnitude. Flow velocity is determined from the rotation rate of the rotor blades or paddle assembly. These devices have an open bearing design that eliminates clogging by particles or chemical precipitates as the fluid passes by the rotors. The devices are compact and lightweight enough for deployment from either an occupied or remotely operated submersible. The measured flow rates can be used in conjunction with vent temperature or geochemical measurements to obtain heat outputs or geochemical fluxes from both vent chimneys and diffuse flow regions. The devices have been tested on 30 Alvin dives on the Juan de Fuca Ridge and 3 Jason dives on the East Pacific Rise (EPR). We measured an anomalously low entrainment coefficient (0.064) and report 104 new measurements over a wide range of discharge temperatures (5°-363°C), velocities (2-199 cm/s), and depths (1517-2511 m). These include the first advective heat output measurements at the High Rise vent field and the first direct fluid flow measurement at Middle Valley. Our data suggest that black smoker heat output at the Main Endeavour vent field may have declined since 1994 and that after the 2005-2006 eruption, the high-temperature advective flow at the EPR 9°50'N field may have become more channelized, predominately discharging through the Bio 9 structure. We also report 16 measurements on 10 Alvin dives and 2 Jason dives with flow meters that predate devices described in this work and were used in the process of their development
Flow sensor for biomedical fluids
NASA Technical Reports Server (NTRS)
Winkler, H. E.
1981-01-01
Electronic sensor accurately measures and controls flow of plasma, whole blood, or drugs in solution. Since sensor does not directly contact fluid, it does not have to be sterilized. It is compatible with disposable bottles, tubes, and hypodermic needles widely used in hospitals. Only modification necessary is in tube, which must contain two small metal inserts, spaced to fit in curved thermistor plates.
On the potential importance of transient air flow in advective radon entry into buildings
Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y. )
1990-05-01
The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations.
Unsteady flow of a thixotropic or antithixotropic fluid
NASA Astrophysics Data System (ADS)
Wilson, Stephen; Pritchard, David; Croudace, Andrew
2016-11-01
We describe a general formulation of the governing equations for the unsteady, axisymmetric flow of a thixotropic or antithixotropic fluid in a channel of slowly varying width. These equations are equivalent to the equations of classical lubrication theory for a Newtonian fluid, but incorporate the evolving microstructure of the fluid, described in terms of a scalar structure parameter; they extend and generalise the corresponding results for steady, two-dimensional flow obtained recently by Pritchard, Wilson and McArdle. The magnitudes of temporal and advective thixotropic effects are gauged by naturally defined temporal and advective Deborah numbers. To gain insight into the complicated behaviour of the flow, we explore regimes in which these thixotropic effects first appear at first order in powers of the small aspect ratio. We present illustrative analytical and semi-analytical solutions for particular choices of the constitutive and kinetic laws, including a purely viscous Moore-Mewis-Wagner model and a regularised viscoplastic Hou\\vska model. Partly supported by a United Kingdom EPSRC DTA Studentship and Leverhulme Trust Research Fellowship RF-2013-355.
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2016-02-01
We introduce a piecewise-linear, volume-of-fluid method for reconstructing and advecting three-dimensional interfaces and contact lines formed by three materials. The new method employs a set of geometric constructs that can be used in conjunction with any volume-tracking scheme. In this work, we used the mass-conserving scheme of Youngs to handle two-material cells, perform interface reconstruction in three-material cells, and resolve the contact line. The only information required by the method is the available volume fraction field. Although the proposed method is order dependent and requires a priori information on material ordering, it is suitable for typical contact line applications, where the material representing the contact surface is always known. Following the reconstruction of the contact surface, to compute the interface orientation in a three-material cell, the proposed method minimizes an error function that is based on volume fraction distribution around that cell. As an option, the minimization procedure also allows the user to impose a contact angle. Performance of the proposed method is assessed via both static and advection test cases. The tests show that the new method preserves the accuracy and mass-conserving property of the Youngs method in volume-tracking three materials.
Intermittent flow in yield-stress fluids slows down chaotic mixing.
Wendell, D M; Pigeonneau, F; Gouillart, E; Jop, P
2013-08-01
We present experimental results of chaotic mixing of Newtonian fluids and yield-stress fluids using a rod-stirring protocol with a rotating vessel. We show how the mixing of yield-stress fluids by chaotic advection is reduced compared to the mixing of Newtonian fluids and explain our results, bringing to light the relevant mechanisms: the presence of fluid that only flows intermittently, a phenomenon enhanced by the yield stress, and the importance of the peripheral region. This finding is confirmed via numerical simulations. Anomalously slow mixing is observed when the synchronization of different stirring elements leads to the repetition of slow stretching for the same fluid particles.
Ferroelectric Fluid Flow Control Valve
NASA Technical Reports Server (NTRS)
Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)
1999-01-01
An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.
Fluid flow electrophoresis in space
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1975-01-01
Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.
General Transient Fluid Flow Algorithm
Amsden, A. A.; Ruppel, H. M.; Hirt, C. W.
1992-03-12
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.
Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence
NASA Astrophysics Data System (ADS)
Dutta, Broja G.; Chakrabarti, Sandip K.
2016-09-01
In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006-07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ˜3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.
Cerebrospinal fluid flow in adults.
Bradley, William G; Haughton, Victor; Mardal, Kent-Andre
2016-01-01
This chapter uses magnetic resonance imaging phase-contrast cerebrospinal fluid (CSF) flow measurements to predict which clinical normal-pressure hydrocephalus (NPH) patients will respond to shunting as well as which patients with Chiari I are likely to develop symptoms of syringomyelia. Symptomatic NPH patients with CSF flow (measured as the aqueductal CSF stroke volume) which is shown to be hyperdynamic (defined as twice normal) are quite likely to respond to ventriculoperitoneal shunting. The hyperdynamic CSF flow results from normal systolic brain expansion compressing the enlarged ventricles. When atrophy occurs, there is less brain expansion, decreased aqueductal CSF flow, and less likelihood of responding to shunting. It appears that NPH is a "two-hit" disease, starting as benign external hydrocephalus in infancy, followed by deep white-matter ischemia in late adulthood, which causes increased resistance to CSF outflow through the extracellular space of the brain. Using computational flow dynamics (CFD), CSF flow can be modeled at the foramen magnum and in the upper cervical spine. As in the case of NPH, hyperdynamic CSF flow appears to cause the signs and symptoms in Chiari I and can provide an additional indication for surgical decompression. CFD can also predict CSF pressures over the cardiac cycle. It has been hypothesized that elevated pressure pulses may be a significant etiologic factor in some cases of syringomyelia.
NASA Astrophysics Data System (ADS)
Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.
2015-12-01
FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.
Wang Jianmin; Cheng Cheng; Li Yanrong
2012-04-01
We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.
Axisymmetric flows from fluid injection into a confined porous medium
NASA Astrophysics Data System (ADS)
Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.
2016-02-01
We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime
Diffusion and Advection using Cellular Potts Model
NASA Astrophysics Data System (ADS)
Dan, Debasis; Glazier, James
2005-03-01
The Cellular Potts Model (CPM) is a robust cell level methodology for simulation of biological tissues and morphogenesis. Standard diffusion solvers in the CPM use finite difference methods on the underlying CPM lattice. These methods have difficulty in simulating local advection in the ECM due to physiology and morphogenesis. To circumvent the problem of instabilities we simulate advection-diffusion within the framework of CPM using off-lattice finite-difference methods. We define a set of generalised fluid "cells" or particles which separate advection and diffusion from the lattice. Diffusion occurs between neighboring fluid cells by local averaging rules which approximate the Laplacian. CPM movement of the cells by spin flips handles the advection. The extension allows the CPM to model viscosity explicitly by including a relative velocity constraint on the fluid. The extended CPM correctly reproduces flow profiles of viscous fluids in cylindrical tube, during Stokes flow across a sphere and in flow in concentric cylindrical shells. We illustrate various conditions for diffusion including multiple instantaneous sources, continuous sources, moving sources and different boundary geometries and conditions to validate our approximation by comparing with analytical and established numerical solutions.
Optimal Control of Mixing in Stokes Fluid Flows
NASA Astrophysics Data System (ADS)
Mathew, George; Mezic, Igor; Grivopoulos, Symeon; Vaidya, Umesh; Petzold, Linda
2006-11-01
Motivated by the problem of microfluidic mixing, the problem of optimal control of advective mixing in Stokes fluid flows is considered. The velocity field is assumed to be induced by a finite set of spatially distributed force fields that can be modulated arbitrarily with time and a passive material is advected by the flow. To quantify the degree of mixedness of a density field, we use a Sobolev space norm of negative index. We pose a finite-time optimal control problem where we aim to achieve the best mixing for a fixed value of the action (time integral of the kinetic energy of the fluid body) per unit mass. We derive the first order necessary conditions for optimality that can be expressed as a two point boundary value problem and we discuss some elementary properties that the optimal controls need to satisfy. A conjugate gradient descent method is used to solve the optimal control problem and we present numerical results for two problems involving arrays of vortices. A comparison of the mixing performance shows that optimal aperiodic inputs can do better than periodic inputs.
Steady laminar flow of fractal fluids
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Mena, Baltasar; Susarrey, Orlando; Samayoa, Didier
2017-02-01
We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived.
Fluid Flow Experiment for Undergraduate Laboratory.
ERIC Educational Resources Information Center
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
Fluid flow, mineral reactions, and metasomatism
Ferry, J.M.; Dipple, G.M. )
1991-03-01
A general model that relates fluid flow along a temnperature gradient to chemical reaction in rocks can be used to quantitatively interpret petrologic and geochemical data on metasomatism from ancient flow systems in terms of flow direction and time-integrated fluid flux. The model is applied to regional metamorphism, quartz veins, and a metasomatized ductile fault zone.
NASA Astrophysics Data System (ADS)
Lueptow, Richard M.; Schlick, Conor P.; Umbanhowar, Paul B.; Ottino, Julio M.
2013-11-01
We investigate chaotic advection and diffusion in competitive autocatalytic reactions. To study this subject, we use a computationally efficient method for solving advection-reaction-diffusion equations for periodic flows using a mapping method with operator splitting. In competitive autocatalytic reactions, there are two species, B and C, which both react autocatalytically with species A (A +B -->2B and A +C -->2C). If there is initially a small amount of spatially localized B and C and a large amount of A, all three species will be advected by the velocity field, diffuse, and react until A is completely consumed and only B and C remain. We find that the small scale interactions associated with the chaotic velocity field, specifically the local finite-time Lyapunov exponents (FTLEs), can accurately predict the final average concentrations of B and C after the reaction is complete. The species, B or C, that starts in the region with the larger FTLE has, with high probability, the larger average concentration at the end of the reaction. If species B and C start in regions having similar FTLEs, their average concentrations at the end of the reaction will also be similar. Funded by NSF Grant CMMI-1000469.
Yao, Yijun; Wu, Yun; Wang, Yue; Verginelli, Iason; Zeng, Tian; Suuberg, Eric M; Jiang, Lin; Wen, Yuezhong; Ma, Jie
2015-10-06
At petroleum vapor intrusion (PVI) sites at which there is significant methane generation, upward advective soil gas transport may be observed. To evaluate the health and explosion risks that may exist under such scenarios, a one-dimensional analytical model describing these processes is introduced in this study. This new model accounts for both advective and diffusive transport in soil gas and couples this with a piecewise first-order aerobic biodegradation model, limited by oxygen availability. The predicted results from the new model are shown to be in good agreement with the simulation results obtained from a three-dimensional numerical model. These results suggest that this analytical model is suitable for describing cases involving open ground surface beyond the foundation edge, serving as the primary oxygen source. This new analytical model indicates that the major contribution of upward advection to indoor air concentration could be limited to the increase of soil gas entry rate, since the oxygen in soil might already be depleted owing to the associated high methane source vapor concentration.
Walter, Donald A.; Masterson, John P.
2003-01-01
The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths
A field study of air flow and turbulent features of advection fog
NASA Technical Reports Server (NTRS)
Connell, J. D.
1979-01-01
The setup and initial operation of a set of specialized meteorological data collection hardware are described. To study the life cycle of advection fogs at a lake test site, turbulence levels in the fog are identified, and correlated with the temperature gradients and mean wind profiles. A meteorological tower was instrumented to allow multiple-level measurements of wind and temperature on a continuous basis. Additional instrumentation was: (1)hydrothermograph, (2)microbarograph, (3)transmissometers, and (4)a boundary layer profiler. Two types of fogs were identified, and important differences in the turbulence scales were noted.
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.
Chen, Cheng-lung
1986-01-01
This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii
Sharp, R.W. Jr.; Barton, R.T.
1981-01-21
A continuous rezoning procedure has been implemented in the computational cycle of a version of the HEMP two-dimensional, Lagrange, fluid dynamics code. The rezoning problem is divided into two steps. The first step requires the solving of ordinary Lagrange equations of motion; the second step consists of adding equipotential grid relaxation along with an advective remapping scheme.
Advection around ventilated U-shaped burrows: A model study
NASA Astrophysics Data System (ADS)
Brand, Andreas; Lewandowski, JöRg; Hamann, Enrico; Nützmann, Gunnar
2013-05-01
Advective transport in the porous matrix of sediments surrounding burrows formed by fauna such as Chironomus plumosus has been generally neglected. A positron emission tomography study recently revealed that the pumping activity of the midge larvae can indeed induce fluid flow in the sediment. We present a numerical model study which explores the conditions at which advective transport in the sediment becomes relevant. A 0.15 m deep U-shaped burrow with a diameter of 0.002 m within the sediment was represented in a 3-D domain. Fluid flow in the burrow was calculated using the Navier-Stokes equation for incompressible laminar flow in the burrow, and flow in the sediment was described by Darcy's law. Nonreactive and reactive transport scenarios were simulated considering diffusion and advection. The pumping activity of the model larva results in considerable advective flow in the sediment at reasonable high permeabilities with flow velocities of up to 7.0 × 10-6 m s-1 close to the larva for a permeability of 3 × 10-12 m2. At permeabilities below 7 × 10-13 m2 advection is negligible compared to diffusion. Reactive transport simulations using first-order kinetics for oxygen revealed that advective flux into the sediment downstream of the pumping larva enhances sedimentary uptake, while the advective flux into the burrow upstream of the larvae inhibits diffusive sedimentary uptake. Despite the fact that both effects cancel each other with respect to total solute uptake, the advection-induced asymmetry in concentration distribution can lead to a heterogeneous solute and redox distribution in the sediment relevant to complex reaction networks.
Flow visualization in fluid mechanics
NASA Astrophysics Data System (ADS)
Freymuth, Peter
1993-01-01
The history of flow visualization is reviewed and basic methods are examined. A classification of the field of physical flow visualization is presented. The introduction of major methods is discussed and discoveries made using flow visualization are reviewed. Attention is given to limitations and problem areas in the visual evaluation of velocity and vorticity fields and future applications for flow visualization are suggested.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.
Computation of two-fluid, flowing equilibria
NASA Astrophysics Data System (ADS)
Steinhauer, Loren; Kanki, Takashi; Ishida, Akio
2006-10-01
Equilibria of flowing two-fluid plasmas are computed for realistic compact-toroid and spherical-tokamak parameters. In these examples the two-fluid parameter ɛ (ratio of ion inertial length to overall plasma size) is small, ɛ ˜ 0.03 -- 0.2, but hardly negligible. The algorithm is based on the nearby-fluids model [1] which avoids a singularity that otherwise occurs for small ɛ. These representative equilibria exhibit significant flows, both toroidal and poloidal. Further, the flow patterns display notable flow shear. The importance of two-fluid effects is demonstrated by comparing with analogous equilibria (e.g. fixed toroidal and poloidal current) for a static plasma (Grad-Shafranov solution) and a flowing single-fluid plasma. Differences between the two-fluid, single-fluid, and static equilibria are highlighted: in particular with respect to safety factor profile, flow patterns, and electrical potential. These equilibria are computed using an iterative algorithm: it employs a successive-over-relaxation procedure for updating the magnetic flux function and a Newton-Raphson procedure for updating the density. The algorithm is coded in Visual Basic in an Excel platform on a personal computer. The computational time is essentially instantaneous (seconds). [1] L.C. Steinhauer and A. Ishida, Phys. Plasmas 13, 052513 (2006).
Focused fluid flow in passive continental margins.
Berndt, Christian
2005-12-15
Passive continental margins such as the Atlantic seaboard of Europe are important for society as they contain large energy resources, and they sustain ecosystems that are the basis for the commercial fish stock. The margin sediments are very dynamic environments. Fluids are expelled from compacting sediments, bottom water temperature changes cause gas hydrate systems to change their locations and occasionally large magmatic intrusions boil the pore water within the sedimentary basins, which is then expelled to the surface. The fluids that seep through the seabed at the tops of focused fluid flow systems have a crucial role for seabed ecology, and study of such fluid flow systems can also help in predicting the distribution of hydrocarbons in the subsurface and deciphering the climate record. Therefore, the study of focused fluid flow will become one of the most important fields in marine geology in the future.
Ackerman, D.J.
1995-01-01
Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails
Method and device for measuring fluid flow
Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson
1976-11-23
This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.
The stability of the iodate-arsenous acid reaction front while advected by Poiseuille flow
NASA Astrophysics Data System (ADS)
Spangler, Robert S.
The competition between stabilizing and destabilizing effects is a motif that occurs in every aspect of the human experience. The coupling between the dynamics of chemical reactions and fluids offers a fruitful context in which to examine the patterns that arise in the presence of this competition. The upward-propagating iodate-arsenous acid front is an example of a system in constant struggle. As it moves upward, it leaves a reacted solution of lesser density behind (and below) it. The system is thus subjected to a Raleigh-Taylor-like instability. On the other hand, the well understood (experimentally and theoretically) relationship between the front speed and the curvature of the front is such that the higher a section of front peaks, the slower it goes. The lower a valley of the front, the faster it goes. Thus, the front has a stabilizing tendency. So a natural question is, will the front remain stable, or will it suffer the fate of a convective instability? The answer is a resounding "it depends." Previous research has shown that the onset of instability occurs when a driving parameter exceeds some critical value Sc. This driving parameter involves the fractional difference in density between the chemical species, the acceleration due to gravity, the wall separation, the viscosity, and the chemical diffusivity. The only variable that the earthbound experimenter is free to alter is the wall separation, and experiments have agreed very well with the predicted value of Sc. These successful experimental and theoretical developments were for the case of a stationary fluid. The next step is to extend the understanding of this dynamic to the case of a moving fluid. In a fluid moving between two no-slip boundaries, the fluid velocity assumes a parabolic (or Poiseuille) profile. An interesting question to ask is how is the stability of the chemical reaction front affected by the imposed fluid motion? The answer is contained in this text.
Engineering fluid flow using sequenced microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino
2013-05-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
NASA Astrophysics Data System (ADS)
Kawaguchi, Toshihiro; Shimura, Toshiya; Mineshige, Shin
2001-01-01
Recent multiwaveband observations of Seyfert nuclei and QSOs established significant deviations in the spectral shape of the big blue bump from a blackbody spectral shape; soft X-ray excess has a spectral index α (Fν~ν-α) of 1.6 and hard X-ray tail with α of ~0.7. We construct a disk-corona model which accounts for such broadband spectral properties. We study the emission spectrum emerging from a vertical disk-corona structure composed of two-temperature plasma by solving hydrostatic equilibrium and radiative transfer self-consistently. A fraction f of viscous heating due to mass accretion is assumed to be dissipated in a corona with a Thomson optical depth of τc, where advective cooling is also included, and a remaining fraction, 1-f, dissipates within a main body of the disk. Our model can nicely reproduce the soft X-ray excess with a power-law shape and the hard tail extending to ~50 keV. The different spectral slopes (α~1.5 below 2 keV and ~0.5 above) are the results of different emission mechanisms and different sites; the former slope is due to unsaturated Comptonization from the innermost zone, and the latter is due to a combination of the Comptonization, bremsstrahlung, and a reflection of the coronal radiation at the disk-corona boundary from the inner to surrounding zone (<=300 Schwarzschild radii). The emergent optical spectrum is redder (α~0.3) than that of the standard disk (α~-0.3), being consistent with observations, due to the different efficiencies of spectral hardening of disk emission at different radii. Further, we find that the cutoff frequency of the hard X-ray (~coronal electron temperature) and broadband spectral shape are insensitive to the black hole mass, while the peak frequency of the big blue bump is sensitive to the mass as the peak frequency ~M-1/4BH.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Directed flow fluid rinse trough
Kempka, Steven N.; Walters, Robert N.
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Meshless lattice Boltzmann method for the simulation of fluid flows.
Musavi, S Hossein; Ashrafizaadeh, Mahmud
2015-02-01
A meshless lattice Boltzmann numerical method is proposed. The collision and streaming operators of the lattice Boltzmann equation are separated, as in the usual lattice Boltzmann models. While the purely local collision equation remains the same, we rewrite the streaming equation as a pure advection equation and discretize the resulting partial differential equation using the Lax-Wendroff scheme in time and the meshless local Petrov-Galerkin scheme based on augmented radial basis functions in space. The meshless feature of the proposed method makes it a more powerful lattice Boltzmann solver, especially for cases in which using meshes introduces significant numerical errors into the solution, or when improving the mesh quality is a complex and time-consuming process. Three well-known benchmark fluid flow problems, namely the plane Couette flow, the circular Couette flow, and the impulsively started cylinder flow, are simulated for the validation of the proposed method. Excellent agreement with analytical solutions or with previous experimental and numerical results in the literature is observed in all the simulations. Although the computational resources required for the meshless method per node are higher compared to that of the standard lattice Boltzmann method, it is shown that for cases in which the total number of nodes is significantly reduced, the present method actually outperforms the standard lattice Boltzmann method.
Mukhopadhyay, Banibrata; Chatterjee, Koushik E-mail: kchatterjee009@gmail.com
2015-07-01
We show that the removal of angular momentum is possible in the presence of large-scale magnetic stresses in geometrically thick, advective, sub-Keplerian accretion flows around black holes in steady state, in the complete absence of α-viscosity. The efficiency of such an angular momentum transfer could be equivalent to that of α-viscosity with α = 0.01–0.08. Nevertheless, the required field is well below its equipartition value, leading to a magnetically stable disk flow. This is essentially important in order to describe the hard spectral state of the sources when the flow is non/sub-Keplerian. We show in our simpler 1.5 dimensional, vertically averaged disk model that the larger the vertical-gradient of the azimuthal component of the magnetic field is, the stronger the rate of angular momentum transfer becomes, which in turn may lead to a faster rate of outflowing matter. Finding efficient angular momentum transfer in black hole disks via magnetic stresses alone, is very interesting when the generic origin of α-viscosity is still being explored.
NASA Astrophysics Data System (ADS)
Debnath, Dipak; Mondal, Santanu; Chakrabarti, Sandip K.
2015-02-01
We study spectral properties of GX 339-4 during its 2010-11 outburst with two component advective flow (TCAF) model after its inclusion in XSPEC as a table model. We compare results fitted by TCAF model with combined disc blackbody and power-law model. For a spectral fit, we use 2.5-25 keV spectral data of the Proportional Counter Array instrument onboard RXTE satellite. From our fit, accretion flow parameters such as Keplerian (disc) rate, sub-Keplerian (halo) rate, location and strength of shock are extracted. We quantify how the disc and the halo rates vary during the entire outburst. We study how the halo to disc accretion rate ratio (ARR), quasi-periodic oscillations (QPOs), shock locations and its strength vary when the system passes through hard, hard-intermediate, soft-intermediate and soft states. We find pieces of evidence of monotonically increasing and decreasing nature of QPO frequencies depending on the variation of ARR during rising and declining phases. Interestingly, on days of transition from hard state to hard-intermediate spectral state (during the rising phase) or vice-versa (during decline phase), ARR is observed to be locally maximum. Non-constancy of ARR while obtaining reasonable fits points to the presence of two independent components in the flow.
Fluid flow in carbon nanotubes and nanopipes
NASA Astrophysics Data System (ADS)
Whitby, M.; Quirke, N.
2007-02-01
Nanoscale carbon tubes and pipes can be readily fabricated using self-assembly techniques and they have useful electrical, optical and mechanical properties. The transport of liquids along their central pores is now of considerable interest both for testing classical theories of fluid flow at the nanoscale and for potential nanofluidic device applications. In this review we consider evidence for novel fluid flow in carbon nanotubes and pipes that approaches frictionless transport. Methods for controlling such flow and for creating functional device architectures are described and possible applications are discussed.
Unsteady fluid flow in smart material actuated fluid pumps
NASA Astrophysics Data System (ADS)
John, Shaju; Cadou, Christopher
2005-05-01
Smart materials' ability to deliver large block forces in a small package while operating at high frequencies makes them extremely attractive for converting electrical to mechanical power. This has led to the development of hybrid actuators consisting of co-located smart material actuated pumps and hydraulic cylinders that are connected by a set of fast-acting valves. The overall success of the hybrid concept hinges on the effectiveness of the coupling between the smart material and the fluid. This, in turn, is strongly dependent on the resistance to fluid flow in the device. This paper presents results from three-dimensional unsteady simulations of fluid flow in the pumping chamber of a prototype hybrid actuator powered by a piezo-electric stack. The results show that the forces associated with moving the fluid into and out of the pumping chamber already exceed 10% of the piezo stack blocked force at relatively low frequencies ~120 Hz and approach 40% of the blocked force at 800 Hz. This reduces the amplitude of the piston motion in such a way that the volume flow rate remains approximately constant above operating frequencies of 500 Hz while the efficiency of the pump decreases rapidly.
Fluid flow nozzle energy harvesters
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-04-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
MEANS FOR VISUALIZING FLUID FLOW PATTERNS
Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.
1961-05-16
An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.
Two-fluid equilibrium with flow: FLOW2
Guazzotto, L.; Betti, R.
2015-09-15
The effects of finite macroscopic velocities on axisymmetric ideal equilibria are examined using the two-fluid (ions and electrons) model. A new equilibrium solver, the code FLOW2, is introduced for the two-fluid model and used to investigate the importance of various flow patterns on the equilibrium of tight aspect ratio (NSTX) and regular tokamak (DIII-D) configurations. Several improvements to the understanding and calculation of two-fluid equilibria are presented, including an analytical and numerical proof of the single-fluid and static limits of the two-fluid model, a discussion of boundary conditions, a user-friendly free-function formulation, and the explicit evaluation of velocity components normal to magnetic surfaces.
Electro-osmotic flow in bicomponent fluids
NASA Astrophysics Data System (ADS)
Bazarenko, Andrei; Sega, Marcello
The electroosmotic flow (EOF) is a widely used technique that uses the action of external electric fields on solvated ions to move fluids around in microfluidics devices. For homogeneous fluids, the characteristics of the flow can be well approximated by simple analytical models, but in multicomponent systems such as oil-in-water droplets one has to rely to numerical simulations. The purpose of this study is to investigate physical properties of the EOF in a bicomponent fluid by solving the coupled equations of motions of explicit ions in interaction with a continuous model of the flow. To do so we couple the hydrodynamics equations as solved by a Shan-Chen Lattice-Boltzmann method to the molecular dynamics of the ions. The presence of explicit ions allows us to go beyond the simple Poisson-Boltzmann approximations, and investigate a variety of EOF regimes. ETN-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).
Dynamics of fluid mixing in separated flows
NASA Astrophysics Data System (ADS)
Leder, A.
1991-05-01
Separated flows at high Re (>103) are highly turbulent. In some situations the turbulence generation and mixing processes associated with flow separation are desirable, e.g., in heat exchangers or in many chemical engineering applications. In others, e.g., stalled airfoils, separation must be avoided as it causes loss in pressure and kinetic energy. To control the phenomenon effectively, physical mechanisms of flow separation and related aspects, such as the growth of flow instabilities in shear layers, the process of vortex formation, and the dynamics of fluid mixing in recirculating flow regions, must be understood. In many cases numerical procedures, e.g., Navier-Stokes calculations including k-ɛ turbulence modeling, fail to predict real physical mechanisms in separated flows.1,2 Separated flows in the lee of bluff bodies have been studied for many years.3,4 However, accurate measurements of the magnitude and direction of velocities and the magnitude of the terms of the Reynolds stress tensor have been restricted by the unsuitability of the hot-wire anemometer in recirculating flows. The development of the pulsed-wire anemometer, flying hot-wire anemometer, and laser-Doppler anemometry (LDA) allows more reliable measurements also in turbulent separated flows.5-8 The aim of this paper is to investigate the dynamics of undisturbed fluid mixing in separated regions of 2-D, incompressible flows with visualization techniques and LDA. Measurements were performed with a vertical flat plate model, mounted in a closed-circuit wind tunnel at low blockage ratio. Because of the noninvasive character, optical techniques like LDA are more suitable to analyze complex fluid motions than pulsed-wire and flying-wire anemometry. The LDA system used to investigate turbulent flow structures consists of a two-channel version operating in backscatter mode and a specifically developed phase detector to extract phase-averaged information from recorded measurement ensembles.9 Endplates
Finite-time barriers to front propagation in two-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Mahoney, John R.; Mitchell, Kevin A.
2015-08-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)
1995-01-01
The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for
Fluid Flow in An Evaporating Droplet
NASA Technical Reports Server (NTRS)
Hu, H.; Larson, R.
1999-01-01
Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.
Yuen, Po Ki
2013-05-07
This article presents a simple method for controlling fluid in microfluidic devices without the need for valves or pumps. A fluid conveyance extension is fluidly coupled to the enclosed outlet chamber of a microfluidic device. After a fluid is introduced into the microfluidic device and saturates the fluid conveyance extension, a fluid flow in the microfluidic device is generated by contacting an absorbent microfluidic flow modulator with the fluid conveyance extension to absorb the fluid from the fluid conveyance extension through capillary action. Since the fluid in the microfluidic device is fluidly coupled with the fluid conveyance extension and the fluid conveyance extension is fluidly coupled with the absorbent microfluidic flow modulator, the absorption rate of the absorbent microfluidic flow modulator, which is the rate at which the absorbent microfluidic flow modulator absorbs fluid, matches the fluid flow rate in the microfluidic device. Thus, the fluid flow rate in the microfluidic device is set by the absorption rate of the absorbent microfluidic flow modulator. Sheath flow and fluid switching applications are demonstrated using this simple fluid control method without the need for valves or pumps. Also, the ability to control the fluid flow rate in the microfluidic device is demonstrated using absorbent microfluidic flow modulators with various absorbent characteristics and dimensions.
Messinian Salinity Crisis and basin fluid flow
NASA Astrophysics Data System (ADS)
Bertoni, Claudia; Cartwight, Joe
2014-05-01
Syn- and post-depositional movement of fluids through sediments is one of the least understood aspects in the evolution of a basin. The conventional hydrostratigraphic view on marine sedimentary basins assumes that compactional and meteoric groundwater fluid circulation drives fluid movement and defines its timing. However, in the past few years, several examples of instantaneous and catastrophic release of fluids have been observed even through low-permeability sediments. A particularly complex case-study involves the presence of giant salt bodies in the depocentres of marine basins. Evaporites dramatically change the hydrostratigraphy and fluid-dynamics of the basin, and influence the P/T regimes, e.g. through changes in the geothermal gradient and in the compaction of underlying sediments. Our paper reviews the impact of the Messinian Salinity Crisis (MSC) and evaporites on fluid flow in the Mediterranean sub-basins. The analysis of geological and geophysical sub-surface data provides examples from this basin, and the comparison with analogues in other well-known evaporitic provinces. During the MSC, massive sea-level changes occurred in a relatively limited time interval, and affected the balance of fluid dynamics, e.g. with sudden release or unusual trapping of fluids. Fluid expulsion events are here analysed and classified in relation to the long and short-term effects of the MSC. Our main aim is to build a framework for the correct identification of the fluid flow-related events, and their genetic mechanisms. On basin margins, where evaporites are thin or absent, the sea-level changes associated with the MSC force a rapid basinward shift of the mixing zone of meteoric/gravity flow and saline/compactional flow, 100s-km away from its pre-MSC position. This phenomenon changes the geometry of converging flows, creates hydraulic traps for fluids, and triggers specific diagenetic reactions in pre-MSC deep marine sediments. In basin-centre settings, unloading and
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
Fluid flow along faults in carbonate rocks
NASA Astrophysics Data System (ADS)
Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina
2015-04-01
The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a mathematical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). The Majella is a thrust related, asymmetric, box shaped anticline. The mountain carbonate outcrops are part of a lower Cretaceous-Miocene succession, covered by a siliciclastic sequence of lower Pliocene age. We study a fault zone located in the Bolognano Formation (Oligo-Miocene age) and exposed in the Roman Valley Quarry near the town of Lettomanoppello, in the northern sector of the Majella Mountain. This is one of the best places in the Apennines to investigate a fault zone and has been the subject of numerous field studies. Faults are mechanical and permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead a fault zone to act as a conduit, a barrier or a combined conduit-barrier system. We integrated existing and our own structural surveys of the area to better identify the major fault features (e.g., kind of fractures, statistical properties, geometry and pertrophysical characteristics). Our analytical model describe the Bolognano Formation using a dual porosity/dual permeability model: global flow occurs through the fracture network only, while rock matrix contain the majority of fluid storage and provide fluid drainage to the fractures. Pressure behavior is analyzed by examining the pressure drawdown curves, the derivative plots and the effects of the characteristic parameters. The analytical model has been calibrated against published data on fluid flow and pressure distribution in the Bolognano Formation.
Advanced designs for fluid flow visualization
NASA Technical Reports Server (NTRS)
1978-01-01
Research was carried out on existing and new designs for minimally intrusive measurement of flow fields in the Geophysical Fluid Flow Cell and the proposed Atmospheric General Circulation Experiment. The following topics are discussed: (1) identification and removal of foreign particles, (2) search for higher dielectric photochromic solutions, (3) selection of uv light source, (4) analysis of refractive techniques and (5) examination of fresnel lens applicability.
High Order Semi-Lagrangian Advection Scheme
NASA Astrophysics Data System (ADS)
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
NASA Astrophysics Data System (ADS)
Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri
2017-03-01
Two-component advective flow (TCAF) successfully explains spectral and timing properties of black hole candidates. We study the nature of photon trajectories in the vicinity of a Schwarzschild black hole and incorporate this in predicting images of TCAF with a black hole at the Centre. We also compute the emitted spectra. We employ a Monte Carlo simulation technique to achieve our goal. For accurate prediction of the image and the spectra, null trajectories are generated without constraining the motion to any specific plane. Redshift, bolometric flux and corresponding temperature have been calculated with appropriate relativistic consideration. The CENtrifugal pressure supported BOundary Layer or CENBOL near the inner region of the disc, which acts as the Compton cloud, is appropriately modelled as a thick accretion disc in Schwarzschild geometry for the purpose of imaging and computing spectra. The variations of spectra and image with physical parameters such as the accretion rate (dot{m}_d) and inclination angle are presented. We show that the gravitational bending effects of photons do change the spectral shape to some extent.
NASA Astrophysics Data System (ADS)
Engelbrektson, A. L.; Hubbard, C. G.; Piceno, Y.; Boussina, A.; Jin, Y.; Dubinsky, E. A.; Tom, L.; Hu, P.; Conrad, M. E.; Anderson, G. L.; Coates, J. D.
2013-12-01
Hydrogen sulfide (H2S) biogenesis in oil reservoirs is a primary cause of souring and of associated costs in reservoir and pipeline maintenance. In addition to the corrosive effects of the H2S itself, abiotic and biological oxidation also generates sulfuric acid, further degrading metallic surfaces. Amending these environments with perchlorate (ClO4-) resolves these problems by inhibition of biological sulfate reduction and re-oxidation of H2S to elemental sulfur by dissimilatory (per)chlorate reducing bacteria (DPRB). Triplicate flow through columns packed with San Francisco bay sediment were flushed with bay water ([SO4=] = 25-30 mM) containing yeast extract with 50 mM inhibitor concentrations (NO3-or ClO4-) decreasing to 25 mM and finally 12.5 mM. Influent and effluent geochemistry was monitored and DNA was prepared from the sediment bed for microbial community analysis. Souring was reversed by both treatments (at 50 mM) compared to the control columns that had no ion addition. Nitrate began to re-sour when treatment concentration was decreased to 25 mM but treatment had to be decreased to 12.5 mM before the perchlorate treated columns began to re-sour. However, the treated columns re-soured to a lesser extent than the control columns. Phylochip microbial community analyses indicated microbial community shifts and phylogenetic clustering by treatment. Isotopic analysis of sulfate showed trends that broadly agreed with the geochemistry but also suggested further sulfur cycling was occurring. This study indicates that perchlorate shows great promise as an inhibitor of sulfidogenesis in natural communities and provides insight into which organisms are involved in this process.
The Geophysical Fluid Flow Cell Experiment
NASA Technical Reports Server (NTRS)
Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.
1999-01-01
The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.
Finite scale equations for compressible fluid flow
Margolin, Len G
2008-01-01
Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations.
Embry, Irucka; Roland, Victor; Agbaje, Oluropo; ...
2013-01-01
A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
Enhanced fluid flow through nanoscale carbon pipes.
Whitby, Max; Cagnon, Laurent; Thanou, Maya; Quirke, Nick
2008-09-01
Recent experimental and theoretical studies demonstrate that pressure driven flow of fluids through nanoscale ( d < 10 nm) carbon pores occurs 4 to 5 orders of magnitude faster than predicted by extrapolation from conventional theory. Here, we report experimental results for flow of water, ethanol, and decane through carbon nanopipes with larger inner diameters (43 +/- 3 nm) than previously investigated. We find enhanced transport up to 45 times theoretical predictions. In contrast to previous work, in our systems, decane flows faster than water. These nanopipes were composed of amorphous carbon deposited from ethylene vapor in alumina templates using a single step fabrication process.
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, James W.
1993-01-01
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
Perfluorocarbon Tracers (PFTs) Complement stable Isotopes and Geochemistry for Verifying, Assessing or Modeling Fluid Flow. Geochemistry, Isotopes and PFT’s complement Geophysics to monitor and verify plume movement, leakage to shallow aquifers or surface
Slip mechanisms in complex fluid flows.
Hatzikiriakos, Savvas G
2015-10-28
The classical no-slip boundary condition of fluid mechanics is not always a valid assumption for the flow of several classes of complex fluids including polymer melts, their blends, polymer solutions, microgels, glasses, suspensions and pastes. In fact, it appears that slip effect in these systems is the rule and not the exemption. The occurrence of slip complicates the analysis of rheological data, although it provides new opportunities to understand their behavior in restricted environments delineating additional molecular mechanisms i.e. entropic restrictions due to limitations in the number of molecular conformations. This article discusses these complexities and provides future research opportunities.
Modeling Tools Predict Flow in Fluid Dynamics
NASA Technical Reports Server (NTRS)
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
Fluid dynamics of rivulet flow between plates
NASA Astrophysics Data System (ADS)
Drenckhan, W.; Ritacco, H.; Saint-Jalmes, A.; Saugey, A.; McGuinness, P.; van der Net, A.; Langevin, D.; Weaire, D.
2007-10-01
We present computational and experimental investigations into the fluid dynamics of a narrow stream of surfactant solutions, which descends under gravity between two narrowly spaced, vertical glass plates. Such a "rivulet" is bounded by two liquid/solid and two mobile liquid/gas interfaces, posing fluid dynamic problems of direct relevance to local fluid flow in liquid foams and recently reported meandering phenomena. The rivulet presents a system in which the coupling between the bulk flow and the rheological properties of the gas/liquid interface can be systematically investigated. In particular, it carries the promise of providing an alternative measuring technique for interfacial shear viscosities. We present finite element simulations in conjunction with experiments in order to describe the relationship between the rivulet geometry, the flow field, and the interfacial shear viscosities. We also report on the role of the boundary condition between the liquid-carrying channels (surface Plateau borders) and the thin soap film, which spans the two plates at low flow rates.
Viscosity stratified fluids in turbulent channel flow
NASA Astrophysics Data System (ADS)
Soldati, Alfredo; Ahmadi, Somayeh; Roccon, Alessio; Zonta, Francesco
2016-11-01
Direct Numerical Simulation (DNS) is used to study the turbulent Poiseuille flow of two immiscible liquid layers inside a rectangular channel. A thin liquid layer (fluid 1) flows on top of a thick liquid layer (fluid 2), such that their thickness ratio is h1 /h2 = 1 / 9 . The two liquid layers have the same density but different viscosities (viscosity-stratified fluids). In particular, we consider three different values of the viscosity ratio λ =ν1 /ν2 : λ = 1 , λ = 0 . 875 and λ = 0 . 75 . Numerical Simulations are based on a Phase Field method to describe the interaction between the two liquid layers. Compared with the case of a single phase flow, the presence of a liquid-liquid interface produces a remarkable turbulence modulation inside the channel, since a significant proportion of the kinetic energy is subtracted from the mean flow and converted into work to deform the interface. This induces a strong turbulence reduction in the proximity of the interface and causes a substantial increase of the volume-flowrate. These effects become more pronounced with decreasing λ.
Fluid flow and scalar transport through porous fins
NASA Astrophysics Data System (ADS)
Coletti, F.; Muramatsu, K.; Schiavazzi, D.; Elkins, C. J.; Eaton, J. K.
2014-05-01
Lotus-type porous metals are a promising alternative for compact heat transfer applications. In lotus-type porous fins, jet impingement and transverse mixing play important roles for heat transfer: jets emerging from the pores impinge on the following fin and enhance heat transfer performance, while the transverse fluid motion advects heat away from the fin surface. By means of magnetic resonance imaging we have performed mean flow and scalar transport measurements through scaled-up replicas of two kinds of lotus-type porous fins: one with a deterministic hole pattern and staggered alignment, and one with a random hole pattern, but the same porosity and mean pore diameter. The choice of geometric parameters (fin spacing, thickness, porosity, and hole diameter) is based on previous thermal studies. The Reynolds number based on the mean pore diameter and inner velocity ranges from 80 to 3800. The measurements show that in the random hole pattern the jet characteristic length scale is substantially larger with respect to the staggered hole pattern. The random geometry also produces long coherent vortices aligned with the streamwise direction, which improves the transverse mixing. The random hole distribution causes the time mean streamlines to meander in a random-walk manner, and the diffusivity coefficient associated to the mechanical dispersion (which is nominally zero in the staggered hole configuration) is several times larger than the fluid molecular diffusivity at the higher Reynolds numbers. From the trends in maximum streamwise velocity, streamwise vorticity, and mechanical diffusivity, it is inferred that the flow undergoes a transition to an unsteady/turbulent regime around Reynolds number 300. This is supported by the measurements of concentration of an isokinetic non-buoyant plume of scalar injected upstream of the stack of fins. The total scalar diffusivity for the fully turbulent regime is found to be 22 times larger than the molecular diffusivity, but
Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model
NASA Astrophysics Data System (ADS)
Schwarz, J.-O.; Enzmann, F.
2012-04-01
Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of
Is There an Advection-dominated Accretion Flow in Radio Galaxies with Double-peaked Balmer Lines?
NASA Astrophysics Data System (ADS)
Nagao, Tohru; Murayama, Takashi; Shioya, Yasuhiro; Taniguchi, Yoshiaki
2002-03-01
In order to examine the prediction that the broad-line radio galaxies (BLRGs) with double-peaked Balmer lines harbor an accretion disk characterized by an advection-dominated accretion flow (ADAF) in their nuclei, we investigate narrow emission line flux ratios of the narrow-line regions (NLRs) which are photoionized by nuclear continuum radiation. We compile data from the literature and confirm the pioneering work of Eracleous & Halpern that the BLRGs with the double-peaked Balmer emission exhibit larger flux ratios of both [O I] λ6300/[O III] λ5007 and [O II] λ3727/[O III] λ5007 than the BLRGs without the double-peaked Balmer emission. To examine whether or not these properties are attributed to the difference in the spectral energy distribution (SED) of the ionizing radiation between the BLRGs with and without the double-peaked Balmer emission, we perform photoionization model calculations using two types of input continuum radiation; one has the strong big blue bump which is expected for standard optically thick accretion disks and the other does not exhibit a strong big blue bump as expected for optically thin ADAFs. We find that the data of the BLRGs with the double-peaked Balmer lines are consistent with the models adopting the SED without a strong big blue bump, while the data of the BLRGs without the double-peaked emission lines are well described by the models adopting the SED with a strong big blue bump. On the other hand, the observed differences in the NLR emission are hard to explain by the difference in the contribution of shocks. These results support the idea that the double-peaked Balmer lines arise at an outer region of an accretion disk which is illuminated by an inner, geometrically thick ADAF.
Analysis of Fluid Flow over a Surface
NASA Technical Reports Server (NTRS)
McCloud, Peter L. (Inventor)
2013-01-01
A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.
Incompressible fluid flows in rapidly rotating cavities
NASA Astrophysics Data System (ADS)
Fournier, Alexandre
The subject of incompressible fluid flows in rapidly rotating cavities, relevant to the dynamics of the Earth's outer core, is addressed here by means of numerical modeling. We recall in the introduction what makes this topic fascinating and challenging, and emphasize the need for new, more flexible numerical approaches in line with the evolution of today's parallel computers. Relying upon recent advances in numerical analysis, we first introduce in chapter 2 a spectral element model of the axisymmetric Navier-Stokes equation, in a rotating reference frame. Comparisons with analytical or published numerical solutions are made for various test problems, which highlight the spectral convergence properties and adaptivity of the approach. In chapter 3, we couple this axisymmetric kernel with a Fourier expansion in longitude in order to describe the dynamics of three-dimensional convection flows. Again, several reference problems are studied. In the specific case of a rotating fluid undergoing thermal convection, this so-called Fourier-spectral element method (FSEM) proves to be as accurate as standard pseudo-spectral techniques. Having this numerical tool anchored on solid grounds, we study in chapter 4 fluid flows driven by thermal convection and precession at the same time. A new topic in the vast field of fluid mechanics, convecto-precessing flows are of particular importance for the Earth's core, and the equations governing their evolution are derived in detail. We solve these using the FSEM; results seem to indicate that to first order, thermal convection and precession ignore each other. We discuss the relevance of these calculations for the Earth's core and outline directions for future related research.
Piezoelectric Energy Harvesting in Internal Fluid Flow
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-01-01
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879
Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources
NASA Astrophysics Data System (ADS)
Lacombe, Olivier; Rolland, Yann
2016-11-01
Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.
Global analysis of the effect of fluid flow on subduction zone temperatures
NASA Astrophysics Data System (ADS)
Rotman, Holly M. M.; Spinelli, Glenn A.
2013-08-01
Knowledge of the controls on temperature distributions at subduction zones is critical for understanding a wide range of seismic, metamorphic, and magmatic processes. Here, we present the results of ˜220 thermal model simulations covering the majority of known subduction zone convergence rates, incoming plate ages, and slab dips. We quantify the thermal effects of fluid circulation in the subducting crust by comparing results with and without advective heat transfer in the oceanic crustal aquifer. We find that hydrothermal cooling of a subduction zone is maximized when the subducting slab is young, slowly converging, steeply dipping, and the crustal aquifer is ventilated near the trench. Incoming plate age is one of the primary controls on the effectiveness of advective heat transfer in the aquifer, and the greatest temperature effects occur with an incoming plate <50 Ma. The thermal effects of fluid circulation decrease dramatically with increasing age of the incoming plate. Temperatures in the Cascadia, Nankai, southern Chile, Colombia/Ecuador, Mexico, and Solomon Islands subduction zones are likely strongly affected by fluid circulation; for these systems, only thermal models of Cascadia and Nankai have included fluid flow in subducting crust.
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
Capillary flow of dilute and reacting polymeric fluids
NASA Astrophysics Data System (ADS)
Wood, Bryan Patrick
This dissertation is concerned with the mathematical analysis of improved real-time, at-line polymer characterization using capillaries in industrial polymer processing. The motivation for this work derives directly from the desire for increased quality control of polymers used in commercial products without additional protractive testing. Flow-referenced differential capillary viscometers are studied in a mathematically rigorous fashion. Modeling and formal asymptotic analysis yield a problem which is studied analytically and solved numerically. The results obtained provide a theoretical formulation for the experimental correlation of molecular weight to the elastic and diffusive characteristics of dilute polymeric solutions. This work provides a significant step toward the unambiguous characterization of polymers applicable in industrial environments. The governing equations are analyzed for dilute solutions, that is, asymptotically as the dilution goes to zero. Those equations are then considered in the second limit of small Peclet number. In this special case, analytic solutions are obtained which help illuminate the process dependence on salient parameters and guide the numerics for the general case. This formal asymptotic development sheds new light on the classic Taylor dispersion problem for dilute polymeric solutions but more than that extends those ideas to fluids with high viscosity differential as well as to fluids with elasticity. Free-radical polymerization in capillaries is also investigated. The analysis provided is, more specifically, applicable to photoinitiated polymerization: a procedure of considerable industrial interest. In the context of dilute polymerizing solutions, a coupled system of nonlinear advection-reaction-diffusion equations is derived and its numerical solution studied. The main interests are the interplay between the mechanisms of reaction and dispersion as well as the spatial variation in average polymer chain length due to the
Quantitative evaluation fo cerebrospinal fluid shunt flow
Chervu, S.; Chervu, L.R.; Vallabhajosyula, B.; Milstein, D.M.; Shapiro, K.M.; Shulman, K.; Blaufox, M.D.
1984-01-01
The authors describe a rigorous method for measuring the flow of cerebrospinal fluid (CSF) in shunt circuits implanted for the relief of obstructive hydrocephalus. Clearance of radioactivity for several calibrated flow rates was determined with a Harvard infusion pump by injecting the Rickham reservoir of a Rickham-Holter valve system with 100 ..mu..Ci of Tc-99m as pertechnetate. The elliptical and the cylindrical Holter valves used as adjunct valves with the Rickham reservoir yielded two different regression lines when the clearances were plotted against flow rats. The experimental regression lines were used to determine the in vivo flow rates from clearances calculated after injecting the Rickham reservoirs of the patients. The unique clearance characteristics of the individual shunt systems available requires that calibration curves be derived for an entire system identical to one implanted in the patient being evaluated, rather than just the injected chamber. Excellent correlation between flow rates and the clinical findings supports the reliability of this method of quantification of CSF shunt flow, and the results are fully accepted by neurosurgeons.
Magnetic fluid flow meter for gases
Popa, N.C.; Potencz, I.; Vekas, L.
1994-03-01
The paper presents the constructive details and functioning principle of an electronic volumetric flow meter for gases, which exploits the properties of magnetic fluids and has no moving mechanical components. It is a bidirectional flow meter, operating both in static and in moving conditions. The flow meter has a sensing unit, which consists of two sensors, one for differential pressure and an other for acceleration or inclination angle and of a tubular measuring element, as well as an electronic measuring system. Details are given on the hydrodynamic-electronic correction mechanism, which eliminates the Influences of inclinations and accelerations on the volumic flow signal, followed by a description of the main features of the electronic system. The experiments performed showed the possibility of metering even very small gas volumes, such as 0.1 cm{sup 3} at a flow rate of 50 cm{sup 3} /min. The metering at higher flow rate values, up to 100 m{sup 3}/h, needed only the insert of the measuring element corresponding to the requested How rate domain.
NASA Astrophysics Data System (ADS)
Solomon, E. A.; Torres, M. E.; Harris, R. N.; Formolo, M.; Nuzzo, M.; Expedition 334 Scientists
2011-12-01
Fluid flow in subduction zones influences the shallow thermal structure and fluid content of the subducting and upper plates, fault zone stability and seismogenesis, and the transfer of elements and isotopes to the oceans, volcanic arc, and mantle. Most of our knowledge of subduction zone hydrogeology results from 3 decades of studying accretionary margins. More recently, focused studies have started examining the tectonics and hydrogeology at erosive margins. The CRISP project aims to understand the processes that control the nucleation and seismic rupture of large earthquakes at erosional subduction zones, focusing on the region offshore the Osa Peninsula of Costa Rica. IODP Expedition 334 penetrated the slope sediments at Sites U1378 and U1380, the entire sequence of the slope sediments and the upper part of the basement at Site U1379, and input sediments and oceanic crust at Site U1381. Typical of erosive margins is the upper plate provenance of the material in the subduction channel. To date, the nature and progressive changes of properties of this upper plate material down the subduction zone is unconstrained. Fluids advected within fault zones in the upper plate may record fluid-mineral reactions occurring at depths marking the onset seismogenesis. Fluid chemistry is predictably altered with increasing temperature and pressure, and can facilitate estimation of the depth and type of fluid sources. Three zones of fluid flow have been identified along the CRISP transect from pore fluid solute and isotope ratio profiles. The flow at each site overprints the general geochemical profiles influenced by in situ diagenetic reactions such as ash alteration, ongoing microbial metabolic reactions, and carbonate precipitation/dissolution. At Site U1379, a zone from 600-800 mbsf contains a fluid with low Cl concentrations and peaks in the concentrations of thermogenic hydrocarbons. The geothermal gradient at this site is too low to support the in situ production of
Influence of different retraction techniques on crevicular fluid flow.
Wöstmann, Bernd; Rehmann, Peter; Balkenhol, Markus
2008-01-01
This study aimed to analyze the influence of different retraction techniques (pure cotton cord, cord impregnated with epinephrine, and chemical retraction [Expa-syl]) on the crevicular fluid flow in vivo. A total of 340 prepared teeth were randomly assigned to one of the retraction procedures. Crevicular fluid flow was measured prior to and immediately after the removal of the respective retraction material. Pure cotton cords led to a significant increase in crevicular fluid flow, whereas impregnated cords and Expa-syl significantly reduced crevicular fluid flow (P < .01). The retraction technique has a high impact on the reduction of crevicular fluid flow in patients. Pure cotton retraction cords should be avoided.
Poiseuille flow of a micropolar fluid
NASA Astrophysics Data System (ADS)
Delhommelle, Jerome; Evans, Denis J.
We use non-equilibrium molecular dynamics simulations to study the flow of a micropolar fluid and to test an extended Navier-Stokes theory (ENS) for such fluids. The angular streaming velocity (which is of course missing in the classical Navier-Stokes theory) and the translational streaming velocity are found to be in good agreement with the predictions of ENS theory. Besides, owing to molecular rotation, the translational streaming velocity profile is shown to deviate from the classical parabolic profile. Finally, temperature profiles calculated using three different expressions (a kinetic translational, a kinetic rotational and a recently derived configurational expression) are found to be in excellent agreement, demonstrating that the equipartition principle still holds in this non-equilibrium system. No deviation from the classical quartic temperature profile is observed.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.
2014-03-01
In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon-Vey invariant for special flows for which the magnetic helicity is zero are also discussed.
Fluid flow through packings of rotating obstacles
NASA Astrophysics Data System (ADS)
Oliveira, Rafael S.; Andrade, José S.; Andrade, Roberto F. S.
2015-03-01
We investigate through numerical simulation the nonstationary flow of a Newtonian fluid through a two-dimensional channel filled with an array of circular obstacles of distinct sizes. The disks may rotate around their respective centers, modeling a nonstationary, inhomogeneous porous medium. Obstacle sizes and positions are defined by the geometry of an Apollonian packing (AP). To allow for fluid flow, the radii of the disks are uniformly reduced by a factor 0.6 ≤s ≤0.8 for assemblies corresponding to the four first AP generations. The investigation is targeted to elucidate the main features of the rotating regime as compared to the fixed disk condition. It comprises the evaluation of the region of validity of Darcy's law as well as the study of the nonlinear hydraulic resistance as a function of the channel Reynolds number, the reduction factor s , and the AP generation. Depending on a combination of these factors, the resistance of rotating disks may be larger or smaller than that of the corresponding static case. We also analyze the flow redistribution in the interdisk channels as a result of the rotation pattern and characterize the angular velocity of the disks. Here, the striking feature is the emergence of a stable oscillatory behavior of the angular velocity for almost all disks that are inserted into the assemblies after the second generation.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Fluid flow dynamics in MAS systems
NASA Astrophysics Data System (ADS)
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Flow Diode and Method for Controlling Fluid Flow Origin of the Invention
NASA Technical Reports Server (NTRS)
Dyson, Rodger W (Inventor)
2015-01-01
A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.
Fluid flow through the larynx channel
NASA Astrophysics Data System (ADS)
Miller, J. A.; Pereira, J. C.; Thomas, D. W.
1988-03-01
The classic two-mass model of the larynx channel is extended by including the false vocal folds and the laryngeal ventricle. Several glottis profiles are postulated to exist which are the result of the forces applied to the mucus membrane due to intraglottal pressure variation. These profiles constrain the air flow which allows the formation of one or two "venae contractae". The location of these influences the pressure in the glottis and layrngeal ventricle and also gives rise to additional viscous losses as well as losses due to flow enlargement. Sampled waveforms are calculated from the model for volume velocity, glottal area, Reynolds number and fluid forces over the vocal folds for various profiles. Results show that the computed waveforms agree with physiological data [1,2] and that it is not necessary to use any empirical constants to match the simulation results. Also, the onset of phonation is shown to be possible either with abduction or adduction of the vocal folds.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Toussaint, Renaud; Gomez-Rivas, Enrique; Bons, Paul; Chung, Peter; Martín-Martín, Juan Diego
2014-05-01
Fluid migrations are the principal agent for mineral replacement in the upper crust, leading to dramatic changes in the porosity and permeability of rocks over several kilometers. Consequently, a better understanding of the physical parameters leading to mineral replacement is required to better understand and model fluid flow and rock reservoir properties. Large-scale dolostone bodies are one of the best and most debated examples of such fluid-related mineral replacement. These formations received a lot of attention lately, and although genetic mechanics and implications for fluid volume are understood, the mechanisms controlling the formation and propagation of the dolomitization reaction front remain unclear. This contribution aims at an improvement of the knowledge about how this replacement front propagates over space and time. We study the front sharpness on hand specimen and thin section scale and what the influence of advection versus diffusion of material is on the front development. In addition, we demonstrate how preexisting heterogeneities in the host rock affect the propagation of the reaction front. The rock is normally not homogeneous but contains grain boundaries, fractures and stylolites, and such structures are important on the scale of the front width. Using Scanning Electron Microscopy and Raman Spectroscopy we characterized the reaction front chemistry and morphology in different context. Specimens of dolomitization fronts, collected from carbonate sequences of the southern Maestrat Basin, Spain and the Southwestern Scottish Highlands suggest that the front thickness is about several mm being relatively sharp. Fluid infiltrated grain boundaries and fractures forming mm-scale transition zone. We study the structure of the reaction zone in detail and discuss implications for fluid diffusion-advection models and mineral replacement. In addition we formulate a numerical model taking into account fluid flow, diffusion and advection of the mobile
Microscale imaging of cilia-driven fluid flow
Huang, Brendan K.; Choma, Michael A.
2015-01-01
Cilia-driven fluid flow is important for multiple processes in the body, including respiratory mucus clearance, gamete transport in the oviduct, right-left patterning in the embryonic node, and cerebrospinal fluid circulation. Multiple imaging techniques have been applied towards quantifying ciliary flow. Here we review common velocimetry methods of quantifying fluid flow. We then discuss four important optical modalities, including light microscopy, epifluorescence, confocal microscopy, and optical coherence tomography, that have been used to investigate cilia-driven flow. PMID:25417211
Pattern palette for complex fluid flows
NASA Astrophysics Data System (ADS)
Sandnes, B.
2012-04-01
From landslides to oil and gas recovery to the squeeze of a toothpaste tube, flowing complex fluids are everywhere around us in nature and engineering. That is not to say, though, that they are always well understood. The dissipative interactions, through friction and inelastic collisions, often give rise to nonlinear dynamics and complexity manifested in pattern formation on large scales. The images displayed on this poster illustrate the diverse morphologies found in multiphase flows involving wet granular material: Air is injected into a generic mixture of granular material and fluid contained in a 500 µm gap between two parallel glass plates. At low injection rates, friction between the grains - glass beads averaging 100 µm in diameter - dominates the rheology, producing "stick-slip bubbles" and labyrinthine frictional fingering. A transition to various other morphologies, including "corals" and viscous fingers, emerges for increasing injection rate. At sufficiently high granular packing fractions, the material behaves like a deformable, porous solid, and the air rips through in sudden fractures.
Solving the advection-diffusion equations in biological contexts using the cellular Potts model
NASA Astrophysics Data System (ADS)
Dan, Debasis; Mueller, Chris; Chen, Kun; Glazier, James A.
2005-10-01
The cellular Potts model (CPM) is a robust, cell-level methodology for simulation of biological tissues and morphogenesis. Both tissue physiology and morphogenesis depend on diffusion of chemical morphogens in the extra-cellular fluid or matrix (ECM). Standard diffusion solvers applied to the cellular potts model use finite difference methods on the underlying CPM lattice. However, these methods produce a diffusing field tied to the underlying lattice, which is inaccurate in many biological situations in which cell or ECM movement causes advection rapid compared to diffusion. Finite difference schemes suffer numerical instabilities solving the resulting advection-diffusion equations. To circumvent these problems we simulate advection diffusion within the framework of the CPM using off-lattice finite-difference methods. We define a set of generalized fluid particles which detach advection and diffusion from the lattice. Diffusion occurs between neighboring fluid particles by local averaging rules which approximate the Laplacian. Directed spin flips in the CPM handle the advective movement of the fluid particles. A constraint on relative velocities in the fluid explicitly accounts for fluid viscosity. We use the CPM to solve various diffusion examples including multiple instantaneous sources, continuous sources, moving sources, and different boundary geometries and conditions to validate our approximation against analytical and established numerical solutions. We also verify the CPM results for Poiseuille flow and Taylor-Aris dispersion.
Space Coffee Cup: Capillary Flow Driven Fluids in Space
Interested in learning more about how fluids react in Space? In this video, Professor Mark Weislogel, and Dr. Marshall Porterfield will discuss the Space Coffee Cup and Capillary Flow Driven Fluids...
Thermal and Fluid Flow Brazing Simulations
HOSKING, FLOYD MICHAEL; GIANOULAKIS,STEVEN E.; GIVLER,RICHARD C.; SCHUNK,P. RANDALL
1999-12-15
The thermal response of fixtured parts in a batch-type brazing furnace can require numerous, time-consuming development runs before an acceptable furnace schedule or joint design is established. Powerful computational simulation tools are being developed to minimize the required number of verification experiments, improve furnace throughput, and increase product yields. Typical furnace simulations are based on thermal, fluid flow, and structural codes that incorporate the fundamental physics of the brazing process. The use of massively parallel computing to predict furnace and joint-level responses is presented. Measured and computed data are compared. Temperature values are within 1-270 of the expected peak brazing temperature for different loading conditions. Sensitivity studies reveal that the thermal response is more sensitive to the thermal boundary conditions of the heating enclosure than variability y in the materials data. Braze flow simulations predict fillet geometry and free surface joint defects. Dynamic wetting conditions, interfacial reactions, and solidification structure add a high degree of uncertainty to the flow results.
NASA Astrophysics Data System (ADS)
Quilichini, A.; Teyssier, C.; Mulch, A.; Nachlas, W.
2009-12-01
Fluid flow is likely a major parameter controlling the dynamics of extensional detachment zones. Buoyancy-driven fluid flow is generated by high heat flow beneath the detachment zone, where heat is advected by crustal thinning and magma intrusions. This hydrothermal convective flow is focused in the detachment zone for the duration of activity of the detachment at relatively high temperature (300-500°C), resulting in very significant fluid-rock interaction and isotopic exchange. Quantifying sources and fluid flux in detachments is a challenge because permeability of ductilely deforming rocks is poorly understood. In order to solve these problems, we studied two different Eocene extensional systems in the North American Cordillera: the quartzitic detachment which borders the Kettle dome metamorphic core complex (WA), and the quartzo-feldspathic Bitterroot shear zone along the Idaho batholith (MT). The Kettle Dome detachment provides a continuous section of ~200 m thick quartzite mylonite where high-resolution sampling (~5 m) indicates that Deuterium isotopic ratios that are obtained from synkinematic muscovite grains are consistent with a meteoric fluid source (-130 per mil). In the Bitterroot shear zone, Coyner (2003) reported similar Deuterium isotopic ratios (down to -140 per mil) in muscovite from mylonites and ultramylonites. Microprobe analyses were obtained for white mica porphyroclasts by performing transects perpendicular to the basal (001) cleavage in order to determine intragrain chemical zoning. Preliminary results for the Kettle dome indicate increasing phengite composition with depth, suggesting enhanced activity of the Tschermak exchange. The variations of the phengitic signature in muscovite indicates that temperature diminuish downsection, which is contradictory with the results obtained by the Qz-Ms oxygen isotope thermometer along the Kettle section. Our recent work provides geologic data for numerical models that address the permeability of
Isotopic and trace element sensors for fluid flow, heat- and mass transport in fractured rocks
NASA Astrophysics Data System (ADS)
DePaolo, D. J.
2012-12-01
The flow of fluids through fractured rocks is critically important in hydrothermal systems associated with geothermal energy production, base metal ore deposits, and global geochemical cycles through the enormous volumes of fluids in mid-ocean ridge systems. The nature of heat and mass transport in hydrothermal systems is determined by the spacing and volume of fractures, the nature of chemical transport in matrix blocks between fractures, the dissolution and precipitation rates of minerals in the matrix blocks, and the rates of fluid flow. Directly measuring these properties in active systems is extremely difficult, but the chemical and isotopic composition of fluids, where they can be adequately sampled, provides this information in coded form. Deciphering the signals requires appropriate models for the mineral-fluid chemical reactions and transport in the inter-fracture rock matrix. Ultimately, numerical reactive transport models are required to properly account for coupling between mineral reaction kinetics and fluid phase transport, but it is surprisingly difficult to adequately represent isotopic exchange in these models. The difficulty comes partly from the additional bookkeeping that is necessary, but more fundamentally from limitations in the detailed molecular dynamics of the mineral-fluid interfaces and how they control isotopic exchange and partitioning. Nevertheless, relatively simple analytical models illustrate how the isotopic and trace element composition of fluids relates to fracture aperture and spacing, mineral dissolution kinetics, competition between diffusive and advective transport, and competition between chemical exchange and heat exchange. The large number of geochemical parameters that can be measured potentially allows for detailed characterization of the effective mass transport and system characteristics like average fracture spacing and mineral dissolution rates. Examples of useful analytical models and applications to available data
On stability and turbulence of fluid flows
NASA Technical Reports Server (NTRS)
Heisenberg, Werner
1951-01-01
This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.
Saffer, D.M.; Bekins, B.A.
1998-01-01
Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations
Fluid flow dynamics under location uncertainty
NASA Astrophysics Data System (ADS)
Mémin, Etienne
2014-03-01
We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent "subgrid" bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modelling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems.
Striated populations in disordered environments with advection
NASA Astrophysics Data System (ADS)
Chotibut, Thiparat; Nelson, David R.; Succi, Sauro
2017-01-01
Growth in static and controlled environments such as a Petri dish can be used to study the spatial population dynamics of microorganisms. However, natural populations such as marine microbes experience fluid advection and often grow up in heterogeneous environments. We investigate a generalized Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation describing single species population subject to a constant flow field and quenched random spatially inhomogeneous growth rates with a fertile overall growth condition. We analytically and numerically demonstrate that the non-equilibrium steady-state population density develops a flow-driven striation pattern. The striations are highly asymmetric with a longitudinal correlation length that diverges linearly with the flow speed and a transverse correlation length that approaches a finite velocity-independent value. Linear response theory is developed to study the statistics of the steady states. Theoretical predictions show excellent agreement with the numerical steady states of the generalized FKPP equation obtained from Lattice Boltzmann simulations. These findings suggest that, although the growth disorder can be spatially uncorrelated, correlated population structures with striations emerge naturally at sufficiently strong advection.
Reactive fluid flow models and applications to diagenesis, mineral deposits and crustal rocks
Lasaga, A.C.; Rye, D.M.
1993-08-01
Funds are requested for a combined theoretical and field study of coupled fluid flow, heat and mass transport, and chemical reaction in hydrothermal and metamorphic systems. An existing computer code developed by the applicants which numerically treats multi-component, finite-rate reactions combined with advective and dispersive transport in one and two dimensions and which incorporates isotopic exchange and heat and mass transfer will continue to be developed and applied in a variety of geological settings. The code we have developed simultaneously solves for mass transport and reaction, thus offering a significant improvement in computational efficiency over existing ``batch`` reaction path codes. By coupling flow and chemical reaction in a hydrothermal system, we can explicitly investigate the extent to which characteristic flow-reaction paths govern the chemical evolution of the fluids in a hydrothermal system. The concept of a flow-reaction path is particularly important where certain portions of mature hydrothermal systems may exhaust the buffer capacity of the rock as the primary mineralogy is consumed. In these instances 7 fluids traversing distinct regions within the hydrothermal system may experience very different reaction histories, even where the system can be described as nearly isothermal. The study of paleo-hydrothermal systems can yield some important insights into the chemical dynamics of hydrothermal systems in general. As an example of a paleo-hydrothermal system, we have considered the geochemical evolution of ``porphyry-copper`` type mineralization.
Flow dichroism in critical colloidal fluids
Lenstra, T. A. J.; Dhont, J. K. G.
2001-06-01
Due to long-range correlations and slow dynamics of concentration fluctuations in the vicinity of the gas-liquid critical point, shear flow is very effective in distorting the microstructure of near-critical fluids. The anisotropic nature of the shear-field renders the microstructure highly anisotropic, leading to dichroism. Experiments on the dichroic behavior can thus be used to test theoretical predictions on microstructural order under shear flow conditions. We performed both static and dynamic dichroism and turbidity measurements on a colloid-polymer mixture, existing of silica spheres (radius 51 nm) and polydimethylsiloxane polymer (molar weight 204 kg/mol). Sufficiently far away from the critical point, in the mean-field region, the experimental data are in good agreement with theory. Very close to the critical point, beyond mean field, for which no theory exists yet, an unexpected decrease of dichroism on approach of the critical point is observed. Moreover, we do not observe critical slowing down of shear-induced dichroism, right up to the critical point, in contrast to the turbidity.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.
Mills, Brantley
2016-01-01
A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1996-01-01
Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.
Flow and Geometry Control the Onset of Jamming in Fractures with High Solid-Fraction Fluids
NASA Astrophysics Data System (ADS)
Medina, R.; Elkhoury, J. E.; Shannon, L. J.; Detwiler, R. L.; Morris, J.; Prioul, R.; Desroches, J.
2013-12-01
Fluids containing a large fraction of suspended solids are common in the subsurface. Examples include fluids used for environmental remediation, hydraulic fracturing fluids and magma. These fluid-solid mixtures behave as non-Newtonian fluids where interactions between fluid, suspended solids, and pore walls can lead to jamming of the suspended solids. Jamming causes the velocity of the solid to decrease locally to zero causing a rapid decrease in permeability as the fluid is forced to flow through the pore space within the immobilized solid. Here we present results from experiments that quantify the flow of non-Newtonian suspensions in an analog parallel-plate fracture (transparent 15cm x 15cm with ~3-mm aperture) and explore the dependence of jamming on flow conditions, fracture geometry, and the action of gravity. We used guar gum mixed with water (0.75%) as the fluid and added 50% by volume of crushed silica (< 300μm). Flow rates ranged from 0.2ml/min to 6.0ml/min, cell orientation varied from horizontal to vertical (bottom to top) flow and a transducer provided continuous measurement of differential pressure across the cell. A strobed LED panel backlit the cell and a high-resolution CCD camera captured frequent (0.2 Hz) images during all experiments. Particle image velocimetry (PIV) yielded measurements of the evolving velocity field during experiments (see Figure). In the vertical orientation during the initial period of high flow rate, outflow decreased rapidly and the differential pressure increased indicating jamming within the cell. Subsequent efforts to flush solids from the cell suggested that jamming occurred at the inlet of the cell. This was likely due to settling of solids within the flow field indicating that the time scale associated with settling was shorter than the time scale of advection through the cell. In the horizontal orientation, localized jamming occurred at the lowest flow rate in a region near the outlet. This suggests that when
Flow of an electrorheological fluid between eccentric rotating cylinders
NASA Astrophysics Data System (ADS)
Průša, Vít; Rajagopal, K. R.
2012-01-01
Electrorheological fluids have numerous potential applications in vibration dampers, brakes, valves, clutches, exercise equipment, etc. The flows in such applications are complex three-dimensional flows. Most models that have been developed to describe the flows of electrorheological fluids are one-dimensional models. Here, we discuss the behavior of two fully three-dimensional models for electrorheological fluids. The models are such that they reduce, in the case of simple shear flows with the intensity of the electric field perpendicular to the streamlines, to the same constitutive relation, but they would not be identical in more complicated three-dimensional settings. In order to show the difference between the two models, we study the flow of these fluids between eccentrically placed rotating cylinders kept at different potentials, in the setting that corresponds to technologically relevant problem of flow of electrorheological fluid in journal bearing. Even though the two models have quite a different constitutive structure, due to the assumed forms for the velocity and pressure fields, the models lead to the same velocity field but to different pressure fields. This finding illustrates the need for considering the flows of fluids described by three-dimensional constitutive models in complex geometries, and not restricting ourselves to flows of fluids described by one-dimensional models or simple shear flows of fluids characterized by three-dimensional models.
Fluid flows created by swimming bacteria drive self-organization in confined suspensions
NASA Astrophysics Data System (ADS)
Lushi, Enkeleida; Wioland, Hugo; Goldstein, Raymond
Concentrated suspensions of micro-swimmers can display intricate self-organized spatiotemporal patterns on scales larger than those of the individual motile units. The collective dynamics of swimming microorganisms exhibits a complex interplay with the surrounding fluid: the motile cells stir the fluid, which in turn can reorient and advect them. This feedback loop can result in long-range interactions between the cells. We present a computational model that takes into account these cell-fluid interactions and cell-cell forces and that predicts counterintuitive cellular order driven by long-range flows. The predictions are confirmed by new experiments with Bacillus Subtilis bacteria. Simulations and experiments show that if the micro-swimmers are confined inside thin cylindrical chambers the suspension self-organizes into a stable swirling vortex. If the micro-swimmers are confined in thin racetracks, a persistent unidirectional stream can emerge. Both these phenomena emerge as a result of the complex interplay between the swimmers, the specific confining boundaries and the fluid flow.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is.... (b) The fluid must be introduced into the air induction system— (1) Close to, and upstream of, the carburetor; and (2) So that it is equally distributed over the entire cross section of the induction...
Rowan, E.L.; Goldhaber, M.B.; Hatch, J.R.
2002-01-01
Vitrinite reflectance measurements on Pennsylvanian coals in the Illinois basin indicate significantly higher thermal maturity than can be explained by present-day burial depths. An interval of additional sedimentary section, now removed by erosion, has been suggested to account for the discrepancy. Although burial could indeed account for the observed maturity levels of organic matter, fluid-inclusion temperatures provide a stringent additional constraint. In this article, we combine measurements of coal maturity with fluid-inclusion temperatures from three sites to constrain the basin's thermal and burial history: the Fluorspar district at the Illinois basin's southern margin, the Upper Mississippi Valley zinc district at the basin's northern margin, and a north-central location. Two-dimensional numerical modeling of a north-south cross section through the basin tests scenarios both with and without regional fluid flow. Vitrinite reflectance values can be matched assuming burial by 1.8-2.8 km of southward-thickening additional, post-Pennsylvanian sedimentary section. In the central and northern Illinois basin, however, these burial depths and temperatures are not sufficient to account for the fluid-inclusion data. To account for both parameters with burial alone does not appear feasible. In contrast, our best hypothesis assumes a wedge of post-Pennsylvanian sediment-thickening southward to about 1.2 km and a brief period of magmatism in the Fluorspar district. Significant advective heat redistribution by northward regional fluid flow accounts for fluid-inclusion temperatures and coal maturities throughout the basin. The modeling results demonstrate the potential contribution of advective heat transport to the thermal history of the Illinois basin.
Inclined fluid-film flow with bottom filtration
NASA Astrophysics Data System (ADS)
Kandel, H. N.; Pascal, J. P.
2013-11-01
We investigate the interfacial instability of the steady uniform flow of a fluid-film layer down a permeable incline. A theoretical model is obtained by coupling the clear fluid flow equations governing the fluid film with Darcy's law for the filtration of fluid through the porous medium. A linear stability analysis is conducted and the effect of various parameters on the state of neutral stability is investigated. A simplified model is developed by reducing the dimensionality of the problem, which is then employed in order to determine the nonlinear effects on the stability of the equilibrium flow.
Working fluid flow visualization in gravity heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-03-01
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
Flowmeter measures flow rates of high temperature fluids
NASA Technical Reports Server (NTRS)
Vary, A.
1966-01-01
Flowmeter in which flow rate is determined by measuring the position and thus the displacement of an internal float acted upon by the flowing fluid determines the flow rates of various liquid metals at elevated temperatures. Viscous forces cause the float to move from its mounted position, affording several means for measuring this motion and the flow rate.
Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows
Ueckermann, M.P.; Lermusiaux, P.F.J.; Sapsis, T.P.
2013-01-15
The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier-Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.
Fluid mechanic phenomena relating to flow control in conduits and pumps
NASA Astrophysics Data System (ADS)
Bayazit, Yilmaz
The attainment of controlled homogenized fluid flow is a major issue in the efficient utilization of internal flows for applications as diverse as heat exchange, electrostatic filtration, water purification, particle conveyance, swirl control, and waste disposal. Among the candidate methodologies for accomplishing the homogenization task, perforated plates provide exceptional versatility and adaptability. The principle that underlies perforated plate flow control is the tendency of a flowing fluid to seek the path of least resistance. This tendency is coupled with the capability of the fluid to "see" what lies ahead, enabling it to adjust its trajectory. That capability is due to streamwise diffusion, which transfers information both upstream and downstream. In contrast, advection is a one-way information transfer mechanism, the direction of transfer coinciding with the direction of fluid motion. The degree of homogenization afforded by perforated plates depends on several geometrical and operating parameters. The geometrical parameters include: (a) plate porosity, (b) plate thickness, (c) aperture diameter, (d) pattern of aperture deployment, and (e) distance between apertures. With respect to operating parameters, those investigated here encompass (f) fluid velocity, (g) flow regime, and (h) angle of attack. Nondimensionalization diminished the total number of parameters to five. Numerical simulation was employed to solve the three-dimensional flow covering a Reynolds number range from 0.01 to 25,000. Results extracted from the solutions included dimensionless pressure drop, downstream distance for disturbance decay, vector diagrams and streamlines, and flow regime boundaries. A paradox where the pressure drop for a thin plate exceeded that for a thick plate was rationalized. The pressure drop characteristics of a perforated plate are akin to those for a porous medium. The Darcy-Forchheimer pressure drop model was extended into the turbulent flow regime for the
Hill, M.C.; Ely, D.M.; Tiedeman, C.R.; O'Brien, G.M.; D'Agnese, F.A.; Faunt, C.C.
2001-08-01
When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system (DVRFS). The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 underground Test Area (UGTA) sites. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work.
Numerical Simulation of Turbulent Fluid Flows
NASA Technical Reports Server (NTRS)
Leonard, A.
1983-01-01
Numerical simulation of turbulent flows is discussed. Computational requirements for the direct simulaton of turbulence, simulation of arbitrary homogeneous flows, an expansion technique for wall bounded flows with application to pipe flow, and possibilities of flow representations or modeling techniques that allow the simulation of high Reynolds number flows with a relatively small number of dependent variables are included.
Poiseuille flow to measure the viscosity of particle model fluids.
Backer, J A; Lowe, C P; Hoefsloot, H C J; Iedema, P D
2005-04-15
The most important property of a fluid is its viscosity, it determines the flow properties. If one simulates a fluid using a particle model, calculating the viscosity accurately is difficult because it is a collective property. In this article we describe a new method that has a better signal to noise ratio than existing methods. It is based on using periodic boundary conditions to simulate counter-flowing Poiseuille flows without the use of explicit boundaries. The viscosity is then related to the mean flow velocity of the two flows. We apply the method to two quite different systems. First, a simple generic fluid model, dissipative particle dynamics, for which accurate values of the viscosity are needed to characterize the model fluid. Second, the more realistic Lennard-Jones fluid. In both cases the values we calculated are consistent with previous work but, for a given simulation time, they are more accurate than those obtained with other methods.
Hsieh, Paul A.
2001-01-01
This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks
Srivastava, Neetu
2014-01-01
This analytical investigation examines the magnetohydrodynamic flow problem of an incompressible micropolar fluid between the two eccentrically placed disks. Employing suitable transformations, the flow governing partial differential equations is reduced to ordinary differential equations. An exact solution representing the different flow characteristic of micropolar fluid has been derived by solving the ordinary differential equations. Analysis of the flow characteristics of the micropolar fluid has been done graphically by varying the Reynolds number and the Hartmann number. This analysis has been carried out for the weak and strong interactions. PMID:27355040
Friction-Induced Fluid Heating in Nanoscale Helium Flows
Li Zhigang
2010-05-21
We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.
Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration
NASA Astrophysics Data System (ADS)
Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.
2015-12-01
Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low
Thermodynamics and flow-frames for dissipative relativistic fluids
Ván, P.; Biró, T. S.
2014-01-14
A general thermodynamic treatment of dissipative relativistic fluids is introduced, where the temperature four vector is not parallel to the velocity field of the fluid. Generic stability and kinetic equilibrium points out a particular thermodynamics, where the temperature vector is parallel to the enthalpy flow vector and the choice of the flow fixes the constitutive functions for viscous stress and heat. The linear stability of the homogeneous equilibrium is proved in a mixed particle-energy flow-frame.
López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.
1994-01-01
The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.
Fundamental Processes of Atomization in Fluid-Fluid Flows
NASA Technical Reports Server (NTRS)
Gallagher, Christopher; Leighton, David T.; Chang, Hsueh-Chia; McCready, Mark J.
1996-01-01
This paper discusses our proposed experimental and theoretical study of atomization in gas-liquid and liquid-liquid flows. While atomization is a very important process in these flows, the fundamental mechanism is not understood and there is no predictive theory. Previous photographic studies in (turbulent) gas-liquid flows have shown that liquid is atomized when it is removed by the gas flow from the crest of large solitary or roll waves. Our preliminary studies in liquid-liquid laminar flows exhibit the same mechanism. The two-liquid system is easier to study than gas-liquid systems because the time scales are much slower, the length scales much larger, and there is no turbulence. The proposed work is intended to obtain information about the mechanism of formation, rate of occurrence and the evolving shape of solitary waves; and quantitative aspects of the detailed events of the liquid removal process that can be used to verify a general predictive theory.
NASA Astrophysics Data System (ADS)
Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.
2016-09-01
A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.
Curious Fluid Flows: From Complex Fluid Breakup to Helium Wetting
NASA Astrophysics Data System (ADS)
Huisman, Fawn Mitsu
This work encompasses three projects; pinch-off dynamics in non-Newtonian fluids; helium wetting on alkali metals; and the investigation of quartz tuning forks as cryogenic pressure transducers. Chapter 1 discusses the breakup of a non-Newtonian yield stress fluid bridge. We measured the minimum neck radius, hmin, as a function of time and fit it to a power law with exponent n 1. We then compare n1 to exponent n2, obtained from a rotational rheometer using a Herschel-Bulkley model. We confirm n1=n2 for the widest variety of non-Newtonian fluids to date. When these fluids are diluted with a Newtonian fluid n1 does not equal n2. No current models predict that behavior, identifying a new class of fluid breakup. Chapter 2 presents the first chemical potential-temperature phase diagram of helium on lithium, sodium and gold, using a novel pressure measurement system. The growth and superfluid transition of a helium film on these substrates is measured via an oscillator for isotherms (fixed temperature, varying amount of helium gas), and quenches (fixed amount of helium gas, varying temperature). The chemical potential-temperature plot is similar for gold, lithium and sodium despite the large difference in the substrate binding energies. No signs of a 2-D liquid-vapor transition were seen. Chapter 3 discusses the creation of a 32.768 kHz quartz tuning fork in situ pressure transducer. Tuning forks are used to measure pressure at room temperature, but no work addresses their potential as cryogenic pressure transducers. We mapped out the behavior of a tuning fork as a function of pressure at 298, 7.0, 2.5, 1.6, 1.0 and 0.7 K by measuring the quality factor. The fork is sensitive to pressures above 0.1 mTorr, limiting its use as a pressure gauge at 0.6 K and below. The experimental curves were compared to a theoretical Q(P, T) function that was refined using the 298 K data. At cryogenic temperatures the formula breaks down in the viscous region and becomes inaccurate. The
A two-fluid model for black-hole accretion flows: particle acceleration and disc structure
NASA Astrophysics Data System (ADS)
Lee, Jason P.; Becker, Peter A.
2017-02-01
Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.
NASA Astrophysics Data System (ADS)
Licata, Nicholas; Clark, Aaron
2014-03-01
Aquatic microorganisms face a variety of challenges in the course of development. One central challenge is efficiently regulating the export of toxic molecules inside the developing embryo. The strategies employed should be robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed. In this talk we consider the first-passage problem for the uptake of exported toxins by a spherical embryo. A perturbative solution of the advection-diffusion equation reveals that a concentration boundary layer forms in the vicinity of the embryo, and that fluid flow enhances the effectiveness of toxin export. We highlight connections between the model results and recent experiments on the development of sea urchin embryos. We acknowledge financial support from the University of Michigan-Dearobrn CASL Faculty Summer Research Grant.
1999-01-03
cooling phenomenon in pressure driven polymer flows , Cao et al. developed a thermal-mechanically consistent theory by postulating density a function...1, iqqfr-T>r. TT. 1998. Fluid mschanics and zfreolcgy of fluid fiH*r flows : fundaTmtal sciaxe and tedrological applications 6. AUTHOR(S) QLtfeqg...research activities are focused on modeling of polymeric liquid crystal (LCP) flows . We first summarizes our comprehensive studies on the shear and
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
NASA Technical Reports Server (NTRS)
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
Flow and structure of fluids in functionalized nanopores
NASA Astrophysics Data System (ADS)
Bordin, José Rafael; Barbosa, Marcia C.
2017-02-01
We investigate through non-equilibrium molecular dynamics simulations the structure and flow of fluids in functionalized nanopores. The nanopores are modeled as cylindrical structures with solvophilic and solvophobic sites. Two fluids are modeled. The first is a standard Lennard Jones fluid. The second one is modeled with an isotropic two-length scale potential, which exhibits in bulk water-like anomalies. Our results indicate distinct dependence of the overall mass flux for each species of fluid with the number of solvophilic sites for different nanotubes' radii. Also, the density and fluid structure are dependent on the nanotube radius and the solvophilic properties of the nanotube. This indicates that the presence of a second length scale in the fluid-fluid interaction will lead to distinct behavior. Also, our results show that chemically functionalized nanotubes with different radii will have distinct nanofluidic features. Our results are explained on the basis of the characteristic scale fluid properties and the effects of nanoconfinement.
Magnetic fluid driven flow in a capillary channel
NASA Astrophysics Data System (ADS)
Bruno, Nickolaus M.; Ciocanel, Constantin
2010-04-01
This paper presents simulated and experimental results on the flow induced in a closed channel by a magnetic fluid (i.e. magnetorheological (MR) fluid and a ferrofluid) plunger. The results are used to assess the feasibility of using such fluids for development of milli-micro-scale pumps. The magnetic fluid plunger acts as a piston that is moved along the channel by an array of drive coils (or by a permanent magnet) to displace an immiscible fluid. The excited drive coils produce a traveling magnetic field wave inside the channel which in turn produces magnetic dipoles in the magnetic fluid. The dipoles react with the traveling wave leading to a Kelvin force that drags the magnetic fluid plunger through the channel. The flow rates achievable in this approach are a function of channel geometry, magnetic fluid properties, plug size, frequency of the current passing through the drive coils, and the location of the drive coils along the channel. Representative results of the analysis of the effect of these parameters on the flow rates are presented here. While the simulations indicate that both, MR and ferrofluids may be used for fluid actuation in the selected geometry, the experiments validated only the MR fluid option.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
Apparatus for irradiating a continuously flowing stream of fluid
Speir, Leslie G.; Adams, Edwin L.
1984-01-01
An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Destabilization of confined granular packings due to fluid flow
NASA Astrophysics Data System (ADS)
Monloubou, Martin; Sandnes, Bjørnar
2016-04-01
Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.
NASA Astrophysics Data System (ADS)
Hunt, J. C. R.
1981-05-01
The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.
Collapsible sheath fluid reservoirs for flow cytometers
Mark, Graham A.
2000-01-01
The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.
Grilli, Muzio; Vázquez-Quesada, Adolfo; Ellero, Marco
2013-04-26
Using Lagrangian simulations of a viscoelastic fluid modeled with an Oldroyd-B constitutive equation, we demonstrate that the flow through a closely spaced linear array of cylinders confined in a channel undergoes a transition to a purely elastic turbulent regime above a critical Weissenberg number (We). The high-We regime is characterized by an unsteady motion and a sudden increase in the flow resistance in qualitative agreement with experimental observations. Furthermore, a power-law scaling behavior of the integral quantities as well as enhanced mixing of mass is observed. A stability analysis based on the dynamic mode decomposition method allows us to identify the most energetic modes responsible for the unsteady behavior, which correspond to filamental structures of polymer over- or underextension advected by the main flow preserving their shape. These time-dependent flow features strictly resemble the elastic waves reported in recent numerical simulations.
A two-fluid model for avalanche and debris flows.
Pitman, E Bruce; Le, Long
2005-07-15
Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.
Nonlinear gel electrophoresis: an analogy with ideal fluid flow.
Dennison, C; Phillips, A M; Nevin, J M
1983-12-01
The behavior of electrolytes undergoing electrophoresis in various shaped gels was investigated using bromphenol blue as a model electrolyte. The results suggest that during gel electrophoresis, small electrolytes behave in a manner analogous to the flow of ideal, irrotational fluids.
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
Afonso, A M; Alves, M A; Pinho, F T
2013-04-01
This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased.
Thermal analysis of turbulent flow of a supercritical fluid
NASA Technical Reports Server (NTRS)
Yamane, E.
1979-01-01
The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.
Near critical swirling flow of a viscoelastic fluid
NASA Astrophysics Data System (ADS)
Ly, Nguyen; Rusak, Zvi; Tichy, John; Wang, Shixiao
2016-11-01
The interaction between flow inertia and elasticity in high Re, axisymmetric, and near-critical swirling flows of a viscoelastic fluid in a finite-length straight circular pipe is studied. The viscous stresses are described by the Giesekus constitutive model. The application of this model to columnar streamwise vortices is first investigated. Then, a nonlinear small-disturbance analysis is developed from the governing equations of motion. It explores the complicated interactions between flow inertia, swirl, and fluid viscosity and elasticity. An effective Re that links between steady states of swirling flows of a viscoelastic fluid and those of a Newtonian fluid is revealed. The effects of the fluid viscosity, relaxation time, retardation time and mobility parameter on the flow development and on the critical swirl for the appearance of vortex breakdown are explored. Decreasing the ratio of the viscoelastic characteristic times from one increases the critical swirl for breakdown. Increasing the Weissenberg number from zero or increasing the fluid mobility parameter from zero cause a similar effect. Results may explain changes in the appearance of breakdown zones as a function of swirl level that were observed in Stokes et al. (2001) experiments, where Boger fluids were used.
Control of Low Reynolds Number Flows with Fluid Structure Interactions
2014-02-02
2010, pp. 539- 544. [55] Yilmaz, T.O., and Rockwell, D., "Flow Structure on Finite-Span Wings Due to Pitch - up Motion," Journal of Fluid...flows with large separated regions are also typical for flapping - wing MAVs. Leading-edge vortices are known to enhance lift in unsteady aerodynamics...effective for delta wings [6]; 2) instability of the separation bubble [7]; and 3) wake instability [8,9]. Flow control research on separated flows
A fast pressure-correction method for incompressible two-fluid flows
NASA Astrophysics Data System (ADS)
Dodd, Michael S.; Ferrante, Antonino
2014-09-01
We have developed a new pressure-correction method for simulating incompressible two-fluid flows with large density and viscosity ratios. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation, which can be solved with an FFT-based, fast Poisson solver. This reduction is achieved by splitting the variable density pressure gradient term in the governing equations. The validity of this splitting is demonstrated from our numerical tests, and it is explained from a physical viewpoint. In this paper, the new pressure-correction method is coupled with a mass-conserving volume-of-fluid method to capture the motion of the interface between the two fluids but, in general, it could be coupled with other interface advection methods such as level-set, phase-field, or front-tracking. First, we verified the new pressure-correction method using the capillary wave test-case up to density and viscosity ratios of 10,000. Then, we validated the method by simulating the motion of a falling water droplet in air and comparing the droplet terminal velocity with an experimental value. Next, the method is shown to be second-order accurate in space and time independent of the VoF method, and it conserves mass, momentum, and kinetic energy in the inviscid limit. Also, we show that for solving the two-fluid Navier-Stokes equations, the method is 10-40 times faster than the standard pressure-correction method, which uses multigrid to solve the variable coefficient Poisson equation. Finally, we show that the method is capable of performing fully-resolved direct numerical simulation (DNS) of droplet-laden isotropic turbulence with thousands of droplets using a computational mesh of 10243 points.
Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks
Rye, Danny M.; Bolton, Edward W.
2002-11-04
The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective and dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.
Viscoelastic fluid-structure interaction between a non-Newtonian fluid flow and flexible cylinder
NASA Astrophysics Data System (ADS)
Dey, Anita; Modarres-Sadeghi, Yahya; Rothstein, Jonathan
2016-11-01
It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. If the same flexible object is placed in non-Newtonian flows, however, the structure's response is still unknown. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable at infinitesimal Reynolds numbers due to a purely elastic flow instability. In this talk, we will present a series of experiments investigating the response of a flexible cylinder placed in the cross flow of a viscoelastic fluid. The elastic flow instabilities occurring at high Weissenberg numbers can exert fluctuating forces on the flexible cylinder thus leading to nonlinear periodic oscillations of the flexible structure. These oscillations are found to be coupled to the time-dependent state of viscoelastic stresses in the wake of the flexible cylinder. The static and dynamic responses of the flexible cylinder will be presented over a range of flow velocities, along with measurements of velocity profiles and flow-induced birefringence, in order to quantify the time variation of the flow field and the state of stress in the fluid.
The effect of fluid flow on coiled tubing reach
Bhalla, K.; Walton, I.C.
1996-12-31
A critical parameter to the success of many coiled tubing (CT) operations in highly deviated or horizontal wells is the depth penetration that can be attained before the CT buckles and locks up. Achieving a desired depth is always critical in CT operations and attaining an additional reach of a few hundred feet can be crucial. This paper addresses the effect of fluid flow in the CT and in the CT/wellbore annulus on the state of force and stress in the CT, and thereby predicts its effect on the reach attainable by the CT. The flow of fluid through the CT and annulus between the CT and borehole modifies the pressures and the effective force which governs the mechanical stability of the CT. The net force per unit length due to fluid flow in the coiled tubing and annulus between the coiled tubing casing/well is calculated in terms of the shear stress and its effect on the onset of buckling and lockup is determined. The model is then implemented in a full tubing forces calculation and the effect of flowing fluids and producing fluids on reach is analyzed. The new model is utilized in the design of commercial jobs. The exact analytic model shows that fluid flow inside the CT has zero impact on reach, that downward flow in the annulus has a favourable impact, and upward flow in the annulus reduces the maximum attainable reach. Using the full tubing forces model, a coiled tubing job can be designed taking into account the flow of a fluid with a specified rheology, density and flow rate. Thus the feasibility of attaining a given reach can be more accurately determined. Results are presented in the form of the surface weight for commercial wells and compared to field jobs.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Coumou, D.
2005-12-01
We compare temperature-based and enthalpy-based numerical schemes for compressible non-isothermal subsurface fluid flow. We formulate a diffusion equation for the fluid pressure, a diffusion equation for heat conduction, and an equation for the advective transport of temperature or enthalpy in the fluid. These equations can readily be solved by a combination of finite element and higher-order finite volume methods, which are capable of preserving steep temperature gradients in advection dominated flows and handling complex two- and three-dimensional geologic structures with orders of magnitude variation in permeability. Since the time-scale of pressure diffusion is slower than the time-scale for advective fluid flow, it is possible to decouple the equations and use implicit finite element methods for the parabolic (diffusion) equations and explicit finite volume methods for the hyperbolic (advection) equations. For single-phase flow, we use the thermal wave speed to compute the advection of the temperature field on the finite volumes. Since the thermal front is advected at a slower rate than the actual fluid flow, a significant (i.e., a factor 10 at liquid and a factor 1000 at vapor conditions) computational speedup can be achieved in comparison to the formulation where enthalpy is advected. The results for temperature-based and enthalpy-based formulations at vapor or liquid conditions, however, are identical and compare extremely well with results obtained from other codes that use fully coupled solution techniques. Our results do not improve if we use Picard iteration to couple the pressure, conduction, and advection equations. For the enthalpy-based transport schemes, we use a Newton iteration to equilibrate the energy in the fluid and rock. This also allows us to use more modern equation of states for complex multi-component systems, that are formulated in terms of pressure p, temperature T, and composition X, and hence cannot use the specific enthalpy h to
Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.
Bone tissue engineering: the role of interstitial fluid flow
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1994-01-01
It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.
Stochastic effects on single phase fluid flow in porous media.
Mansfield, P; Bencsik, M
2001-01-01
The flow encoded PEPI technique has been used to measure the fluid velocity distribution and fluid flow of water passing through a phantom comprising randomly distributed 10 mm glass beads. The object of these experiments is to determine the degree of causality between one steady-state flow condition and another. That is to say, knowing the mean fluid velocity and velocity distribution, can one predict what happens at a higher mean fluid velocity? In a second related experiment flow is established at a given mean fluid velocity. The velocity distribution is measured. The flow is then turned off and later re-established. In both kinds of experiment we conclude that the errors in predicting the flow velocity distribution and the errors in re-establishing a given velocity distribution lie well outside the intrinsic thermal noise associated with velocity measurement. It follows, therefore, that the causal approach to prediction of flow velocity distributions in porous media using the Navier-Stokes approach is invalid.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Numerical modeling of heat transfer and fluid flow in laser metal deposition by powder injection
NASA Astrophysics Data System (ADS)
Fan, Zhiqiang
Laser metal deposition is an additive manufacturing technique which allows quick fabrication of fully-dense metallic components directly from Computer Aided Design (CAD) solid models. A self-consistent three-dimensional model was developed for the laser metal deposition process by powder injection, which simulates heat transfer, phase changes, and fluid flow in the melt pool. The governing equations for solid, liquid and gas phases in the calculation domain have been formulated using the continuum model. The free surface in the melt pool has been tracked by the Volume of Fluid (VOF) method, while the VOF transport equation was solved using the Piecewise Linear Interface Calculation (PLIC) method. Surface tension was modeled by taking the Continuum Surface Force (CSF) model combined with a force-balance flow algorithm. Laser-powder interaction was modeled to account for the effects of laser power attenuation and powder temperature rise during the laser metal deposition process. The governing equations were discretized in the physical space using the finite volume method. The advection terms were approximated using the MUSCL flux limiter scheme. The fluid flow and energy equations were solved in a coupled manner. The incompressible flow equations were solved using a two-step projection method, which requires a solution of a Poisson equation for the pressure field. The discretized pressure Poisson equation was solved using the ICCG (Incomplete Cholesky Conjugate Gradient) solution technique. The energy equation was solved by an enthalpy-based method. Temperature-dependent thermal-physical material properties were considered in the numerical implementation. The numerical model was validated by comparing simulations with experimental measurements.
Surface tension driven flow in glass melts and model fluids
NASA Technical Reports Server (NTRS)
Mcneil, T. J.; Cole, R.; Subramanian, R. S.
1982-01-01
Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.
Deformation and fluid flow in the Huab Basin and Etendeka Plateau, NW Namibia
NASA Astrophysics Data System (ADS)
Salomon, Eric; Koehn, Daniel; Passchier, Cees; Chung, Peter; Häger, Tobias; Salvona, Aron; Davis, Jennifer
2016-07-01
The Lower Cretaceous Twyfelfontein sandstone formation in the Huab Basin in NW Namibia shows the effects of volcanic activity on a potential reservoir rock. The formation was covered by the Paraná-Etendeka Large Igneous Province shortly before or during the onset of South-Atlantic rifting. Deformation bands found in the sandstone trend mostly parallel to the continental passive margin and must have formed during the extrusion of the overlying volcanic rocks, indicating that their formation is related to South-Atlantic rifting. 2D-image porosity analysis of deformation bands reveals significant porosity reduction from host rock to band of up to 70%. Cementation of the sandstone, linked to advective hydrothermal flow during volcanic activity, contributes an equal amount to porosity reduction from host rock to band when compared to initial grain crushing. Veins within the basaltic cover provide evidence for hot fluid percolation, indicated by spallation of wall rock and colloform quartz growth, and for a later low-temperature fluid circulation at low pressures indicated by stilbite growth sealing cavities. Sandstone samples and veins in the overlying volcanic rocks show that diagenesis of the Twyfelfontein sandstone is linked to Atlantic rifting and was affected by both hydrothermal and low-thermal fluid circulation.
Pulmonary Fluid Flow Challenges for Experimental and Mathematical Modeling
Levy, Rachel; Hill, David B.; Forest, M. Gregory; Grotberg, James B.
2014-01-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging.
Van Eyndhoven, Geert; Batenburg, K Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D; Dobson, Katherine J; Sijbers, Jan
2015-11-01
The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed.
NASA Astrophysics Data System (ADS)
Dolejš, D.
2012-04-01
Fluid flow through the Earth's lithosphere is an inevitable consequence of fluid production during sediment compaction, prograde metamorphic reactions, and magmatic degassing, in settings ranging from subducting zones, continental crust underplating to shallow magma chambers. In addition, high buoyancy and low viscosity of aqueous fluid in a rock environment make flow universally viable and efficient. Fluids are not preserved in their pathways and much of their evidence including chemical composition is often retrieved from mineral mode, chemical, or isotopic variations. Several important links, advantages and artifacts arising from dimensional consistency and from correlations with mineral-fluid thermodynamics are worthy to revisit. The magnitude of fluid-rock interaction is measured by the fluid-rock ratio (mfl3 mr-3) or a time-integrated fluid flux (mfl3 mr-2). These two measures differ by mr, the characteristic distance of alteration or front propagation, parallel to the flow direction. As a consequence, the fluid-rock ratios depend on spatial relationships between flow direction, temperature- and pressure-gradient orientation, and alteration zone or vein geometry. The reservoir ratios, which are required in mass-balance or phase-equilibrium calculations, can still be unambiguously defined when the above variables are scaled to the flow direction. Gradients in mole amounts of reaction progress or mineral precipitated, n, per unit temperature or pressure are directly related to standard reaction enthalpy and volume, respectively. The effects of pressure are commonly assumed to be negligible. Systematic evaluation of mineral solubilities, however, reveals that (i) dn/dT is nearly identical for a variety of phases and from subduction to collisional geotherms but minerals dissolving into charged species exhibit higher solubilities, therefore, yield greater reaction progress and lower fluid fluxes along low-dT /dzgeotherms; (ii) during lateral (isobaric) flow, dn
NASA Astrophysics Data System (ADS)
Quilichini, A.; Teyssier, C.; Mulch, A.; Nachlas, W.
2009-04-01
In detachment systems that border metamorphic core complexes fluids convect from the surface to the detachment along faults and fractures in the brittle crust that serve as zones of recharge and discharge. This buoyancy-driven fluid flow is controlled by a high heat flow at the base of the system, beneath the detachment, where heat is advected by crustal thinning and magma intrusions. This hydrothermal convective flow is focused in the detachment for the duration of activity of the detachment and at relatively high temperature (300-500°C), resulting in very significant fluid-rock interaction and isotopic exchange. Studies of detachments in the North American Cordilleran core complexes suggest that meteoric fluids permeate detachment zones, as recorded by the deuterium composition of hydrous phases such as white mica, biotite, and amphibole. Quantifying fluid flux in detachments is a challenge because permeability of ductilely deforming rocks is poorly understood. The approach we are using focuses on oxygen and hydrogen isotopes in quartzite (+ minor mica) sections of detachments, complemented by high-precision chemical analyses of mica to understand their growth history and recrystallization process. The initial fluid isotopic composition is approximated using the deuterium composition of mica at a particular temperature that is given by oxygen isotopes in quartz-mica pairs. The more fluid interact with the quartzite, the larger the expected shift in oxygen isotope value. The Eocene Kettle Dome detachment in the North American Cordillera provides a continuous section of ~200 m thick quartzite mylonite where this methodology is applied. High-resolution sampling (up to 5 m) complements the initial sampling that was performed every 10 m in this section (Mulch et al., 2006, Tectonics, TC4001). Based on mica deuterium values, the fluid that participated in mica crystallization was meteoric in origin (~110 per mil). Interaction of this fluid with the quartz mylonite
Numerical modeling of fluid flow with rafts: An application to lava flows
NASA Astrophysics Data System (ADS)
Tsepelev, Igor; Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander
2016-07-01
Although volcanic lava flows do not significantly affect the life of people, its hazard is not negligible as hot lava kills vegetation, destroys infrastructure, and may trigger a flood due to melting of snow/ice. The lava flow hazard can be reduced if the flow patterns are known, and the complexity of the flow with debris is analyzed to assist in disaster risk mitigation. In this paper we develop three-dimensional numerical models of a gravitational flow of multi-phase fluid with rafts (mimicking rigid lava-crust fragments) on a horizontal and topographic surfaces to explore the dynamics and the interaction of lava flows. We have obtained various flow patterns and spatial distribution of rafts depending on conditions at the surface of fluid spreading, obstacles on the way of a fluid flow, raft landing scenarios, and the size of rafts. Furthermore, we analyze two numerical models related to specific lava flows: (i) a model of fluid flow with rafts inside an inclined channel, and (ii) a model of fluid flow from a single vent on an artificial topography, when the fluid density, its viscosity, and the effusion rate vary with time. Although the studied models do not account for lava solidification, crust formation, and its rupture, the results of the modeling may be used for understanding of flows with breccias before a significant lava cooling.
System proportions fluid-flow in response to demand signals
NASA Technical Reports Server (NTRS)
1966-01-01
Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.
Fluid migration in the subduction zone: a coupled fluid flow approach
NASA Astrophysics Data System (ADS)
Wang, Hongliang; Huismans, Ritske; Rondenay, Stéphane
2016-04-01
Subduction zone are the main entry point of water into earth's mantle and play an important role in the global water cycle. The progressive release of water by metamorphic dehydration induce important physical-chemical process in the subduction zone, such as hydrous melting, hydration and weakening of the mantle wedge, creation of pore fluid pressures that may weaken the subduction interface and induce earthquakes. Most previous studies on the role of fluids in subduction zones assume vertical migration or migration according to the dynamic pressure in the solid matrix without considering the pore fluid pressure effect on the deformation of the solid matrix. Here we investigate this interaction by explicitly modeling two-phase coupled poro-plastic flow during subduction. In this approach, the fluid migrates by compaction and decompaction of the solid matrix and affects the subduction dynamics through pore fluid pressure dependent frictional-plastic yield. Our preliminary results indicate that: 1) the rate of fluid migration depends strongly on the permeability and the bulk viscosity of the solid matrix, 2) fluid transfer occurs preferentially along the slab and then propagates into the mantle wedge by viscous compaction driven fluid flow, 3) fluid transport from the surface to depth is a prerequisite for producing high fluid pore pressures and associated hydration induced weakening of the subduction zone interface.
Flow over a membrane-covered, fluid-filled cavity
Mongeau, Luc; Frankel, Steven H.
2014-01-01
The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field. PMID:24723738
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
A numerical model for dynamic crustal-scale fluid flow
NASA Astrophysics Data System (ADS)
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Hill, Mary C.; Ely, D. Matthew; Tiedeman, Claire R.; O'Brien, Grady M.; D'Agnese, Frank A.; Faunt, Claudia C.
2001-01-01
When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system. The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 Underground Test Areas. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work. The methods presented in this report are used in three ways. (1) The ratings for individual observations are obtained by manipulating the measures of prediction uncertainty, and do not involve recalibrating the model. In this analysis, observation locations are each omitted individually and the resulting increase in uncertainty in the predictions is calculated. The uncertainty is quantified as standard deviations on the simulated advective transport. The increase in uncertainty is quantified as the percent increase in the standard deviations caused by omitting the one observation location from the calculation of standard deviations. In general, observation locations associated with larger increases are rated as more important. (2) Ratings for largely geographically based groups are obtained using a straightforward extension of the method used for
Advances in modelling of biomimetic fluid flow at different scales
2011-01-01
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
Fluid dynamics: Water flows out of touch
NASA Astrophysics Data System (ADS)
Hof, Björn
2017-01-01
Superhydrophobic surfaces reduce the frictional drag between water and solid materials, but this effect is often temporary. The realization of sustained drag reduction has applications for water vehicles and pipeline flows.
A Causal, Covariant Theory of Dissipative Fluid Flow
NASA Astrophysics Data System (ADS)
Scofield, Dillon; Huq, Pablo
2015-04-01
The use of newtonian viscous dissipation theory in covariant fluid flow theories is known to lead to predictions that are inconsistent with the second law of thermodynamics and to predictions that are acausal. For instance, these problems effectively limit the covariant form of the Navier-Stokes theory (NST) to time-independent flow regimes. Thus the NST, the work horse of fluid dynamical theory, is limited in its ability to model time-dependent turbulent, stellar or thermonuclear flows. We show how such problems are avoided by a new geometrodynamical theory of fluids. This theory is based on a recent result of geometrodynamics showing current conservation implies gauge field creation, called the vortex field lemma and classification of flows by their Pfaff dimension. Experimental confirmation of the theory is reviewed.
Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.
2010-01-01
Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
Oblique two-fluid stagnation-point flow
NASA Astrophysics Data System (ADS)
Weidman, P. D.; Tilley, B. S.
1998-11-01
Exact similarity solutions for the impingement of two viscous, immiscible oblique stagnation flows forming a flat interface are given. The problem is governed by three parameters: the ratios of density ρ = ρ_1/ρ2 and of viscosity μ = μ_1/μ2 of the two fluids and R = tanθ_1/tanθ2 where θ1 and θ2 are the asymptotic angles of the incident streamlines in each fluid layer. For given values of ρ, μ, and θ_1, the compatible flows in the lower fluid, as measured by the strain rate ratio β = β_1/β2 of the two fluids and the asymptotic angle of incidence θ_1, are found such that the interface remains horizontal in a uniform gravitational field. For ρ = 1, explicit solutions show that a family of co-current and counter-current shears supporting a flat interface exist for all finite, nonzero values of R. For ρ ne 1, the normal stress interfacial boundary conditions restricts the flow to a unique combination of asymptotic far-field shear and Hiemenz stagnation-point flow in each fluid layer. The displacement thicknesses in each layer are always positive when the fluid densities are not equal, but vanish simultaneoulsy as ρ arrow 1. At each value of ρ the interfacial velocities increase with increasing viscosity ratio μ.
Pathways for Advective Transport
2001-01-19
the approach is given and an application to the Gulf of Mexico is described where the analysis precisely identifies the boundaries of coherent vortical structures as well as pathways for advective transport.
Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions
ERIC Educational Resources Information Center
Hrenya, Christine M.
2011-01-01
Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…
Molecular dynamics of fluid flows in the Knudsen regime
NASA Astrophysics Data System (ADS)
Cieplak, Marek
2000-03-01
Novel technological applications often involve fluid flows in the Knudsen regime in which the mean free path is comparable to the system size. The boundary conditions at the wall-fluid interface are studied. The wall is modelled by atoms tethered to a lattice that interact by Lennard-Jones forces with the fluid atoms. Monoatomic and polymeric Lennard-Jones fluids are considered and Couette and gravity-driven flows are studied. The scenarios of behavior envisioned by J. C. Maxwell are found not to be valid in general. For instance, there are novel effects related to a non-zero residence time of the fluid molecules in the wall vicinity. In the limiting case of strongly attractive fluid-wall interactions, the velocity distribution of the outcoming atoms is indeed thermal. However, when the attractive tail in the fluid-wall interactions is weak, there are significant deviations from Maxwell's hypothesis. Striking many body effects are found as one interpolates between the dilute gas and the dense fluid regime. The molecular nature of the viscous and thermal slip phenomena are elucidated.
Sources of sound in fluid flows
NASA Technical Reports Server (NTRS)
Williams, J. E. F.
1974-01-01
Some features of a flow that produce acoustic radiation, particularly when the flow is turbulent and interacting with solid surfaces such as turbine or compressor blades are discussed. Early theoretical ideas on the subject are reviewed and are shown to be inadequate at high Mach number. Some recent theoretical developments that form the basis of a description of sound generation by supersonic flows interacting with surfaces are described. At high frequencies the problem is treated as one of describing the surface-induced diffraction field of adjacent aerodynamic quadrupole sources. This approach has given rise to distinctly new features of the problem that seem to have bearing on the radiating properties of relatively large aerodynamic surfaces.
Generalized Knudsen Number for Unsteady Fluid Flow
NASA Astrophysics Data System (ADS)
Kara, V.; Yakhot, V.; Ekinci, K. L.
2017-02-01
We explore the scaling behavior of an unsteady flow that is generated by an oscillating body of finite size in a gas. If the gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description of the flow becomes more appropriate. The failure of the Navier-Stokes equations can be thought to take place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a finite size effect or local equilibrium is violated due to the high rate of strain. By independently tuning the relevant linear dimension and the frequency of the oscillating body, we can experimentally observe these two different physical mechanisms. All the experimental data, however, can be collapsed using a single dimensionless scaling parameter that combines the relevant linear dimension and the frequency of the body. This proposed Knudsen number for an unsteady flow is rooted in a fundamental symmetry principle, namely, Galilean invariance.
The origin of massive hydrothermal alterations: what drives fluid flow?
NASA Astrophysics Data System (ADS)
Gomez-Rivas, Enrique; Bons, Paul D.; Martín-Martín, Juan-Diego; Corbella, Mercè; Stafford, Sherry L.; Griera, Albert; Teixell, Antonio; Salas, Ramón; Travé, Anna
2014-05-01
Hydrothermal alterations form when fluids warmer than the host rocks flow through them dissolving and precipitating minerals. These fluids typically flow upwards from deeper geologic units using faults as major conduits. In some cases, hydrothermal alterations affect large (km-scale) rock volumes. One example of such process is the massive high-temperature dolostones that crop out at the Benicàssim outcrop analogue (Maestrat Basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults, replacing Lower Cretaceous limestones. The fluid responsible for such alteration is a seawater-derived brine that interacted with underlying Permian-Triassic and Paleozoic basement rocks. The estimated volume of fluid required to produce the Benicàssim dolomitization is huge, with fluid-rock ratios in the order of several tens to a few hundreds, depending on composition and reaction temperature (Gomez-Rivas et al., 2014). An open key question is what brought this warm fluid (80 - 150 ºC) upwards to a depth of less than 1 km, where the dolomitization reaction took place. The driving forces should have been able not only to provide sufficient fluid volumes at shallow depths but also to heat up the whole host rock, including the non-replaced limestones. There are two hyphoteses for driving a warm fluid upwards in the Maestrat Basin: (a) rapid release through faults of overpressured solutions in recurrent pulses and (b) thermal convection. We present a series of heat and fluid flow numerical simulations to constrain the dolomitization conditions under these two end-member cases. The results indicate that in a pulsating model the fluid must flow upwards at velocities higher than cm/s to keep their elevated temperature. Otherwise they cool down quickly, and the host rocks cannot be heated. Such velocities can be reached if the fluid flow velocity equals that of fracture propagation, as in mobile
The fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
Moduli spaces of vortex knots for an exact fluid flow
NASA Astrophysics Data System (ADS)
Bogoyavlenskij, Oleg
2017-01-01
The moduli spaces S ( D ) of non-isotopic vortex knots are introduced for the ideal fluid flows in invariant domains D . The analogous moduli spaces of the magnetic fields B knots are defined. We derive and investigate new exact fluid flows (and analogous plasma equilibria) satisfying the Beltrami equation which have nested invariant balls Bk 3 with radii Rk ≈ (k + 1) π, k⟶∞. The first flow is z-axisymmetric; the other ones do not possess any rotational symmetries. The axisymmetric flow has an invariant plane z = 0. Due to an involutive symmetry of the flow, its vortex knots in the invariant half-spaces z > 0 and z < 0 are equivalent. It is demonstrated that the moduli space 𝒮(ℝ3) for the derived fluid flow in ℝ3 is naturally isomorphic to the set of all rational numbers p/q in the interval J 1 : 0 . 25 < q < M ˜ 1 ≈ 0 . 5847 , where q is the safety factor. For the fluid flow in the first invariant ball B1 3 , it is shown that all values of the safety factor q belong to a small interval of length ℓ ≈ 0.1261. It is established that only torus knots Kp,q with 0.25 < p/q < 0.5847 are realized as vortex knots for the constructed flow in ℝ3. Each torus knot Kp,q with 0.25 < p/q < 0.5 is realized on countably many invariant tori Tk 2 located between the invariant spheres Sk 2 and Sk + 1 2 , while torus knots with 0 . 5 < p / q < M ˜ 1 are realized only on finitely many invariant tori. The moduli spaces S m ( Ba 3 ) ( m = 1 , 2 , … ) of vortex knots are constructed for some axisymmetric steady fluid flows that are solutions to the boundary eigenvalue problem for the curl operator on a ball Ba 3 .
Seismogenic Permeability and Fluid Flow in Crustal Rocks
NASA Astrophysics Data System (ADS)
Talwani, P.
2005-12-01
Pore fluids play both a chemical and a mechanical role in the onset of seismicity. The mechanical role is usually associated with time dependent increases in pore pressures. A study of the temporal and spatial pattern of reservoir and fluid injection induced seismicity, and aftershock patterns of large earthquakes suggest that these pore pressure increases occur by diffusion to hypocentral regions through suitably located fractures. The efficiency of this diffusion depends on the hydraulic diffusivity of the fractures, which in turn is related to their intrinsic permeability, k. I have estimated the permeability from the temporal and spatial pattern of these earthquakes. For 82/84 cases this fracture permeability was found to lie between 0.5x10-15 m2 and 50x10-15 m2 (0.5 to 50 mDarcy), a range that I have labeled seismogenic permeability, ks. Theoretical modeling shows that when the fracture permeability, k
On statistical equilibrium in helical fluid flows
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2006-06-01
The statistical mechanics of 3-D helical flows is re-examined for a continuum truncated at a top wavenumber. Based on the principle of equipartition of the flow enstrophy between helical modes, the emerging (i) energy spectrum law "-2" and (ii) formal mathematical analogy between the helicity and the thermodynamic entropy are discussed. It is noted that the "-2" scaling law is consistent with both spectral equilibrium and spectral cascade paradigms. In an attempt to apply the obtained results to a turbulent flow regime within the Earth's outer liquid core, where the net helicity of a turbulent flow component is presumably explained by Earth's rotation, it has been noticed that it is the energy spectral law "-1", but not "-2", which is likely realized there and within the logarithmic accuracy corresponds to the case of the velocity structure function [u(l)]2 independency on the spatial scale l, the latter is consistent with observations. It is argued that the "-1" scaling law can also be interpreted in terms of the spectral equilibrium and it is emphasized that the causes of the likely dominance of the spectral law "-1" over the spectral law "-2" in this geophysical application deserve further investigation and clarification.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
Fluid flow sensing with ionic polymer-metal composites
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.
2016-04-01
Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.
NASA Astrophysics Data System (ADS)
Yapici, Kerim; Uludag, Yusuf
2013-11-01
Computational results for steady laminar flow of three different shear thinning fluids lid-driven square cavity are presented. The viscoelastic nature of the fluids is represented by linear and exponential Phan-Thien Tanner (PTT) and Giesekus constitutive models. Computations are based on finite volume technique incorporating non-uniform collocated grids. The stress terms in the constitutive equations are approximated by higher-order and bounded scheme of Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA). Effects of the elasticity, inertia as well as constitutive model parameters on the stress and velocity fields, size and intensity of the primary and secondary vortexes are investigated and discussed in detail. Moreover highly accurate benchmark numerical solutions are provided for each considered constitutive model.
Flow lasers. [fluid mechanics of high power continuous output operations
NASA Technical Reports Server (NTRS)
Christiansen, W. H.; Russell, D. A.; Hertzberg, A.
1975-01-01
The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.
Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
NASA Astrophysics Data System (ADS)
Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas
2002-11-01
Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.
Triangular spectral elements for incompressible fluid flow
NASA Technical Reports Server (NTRS)
Mavriplis, C.; Vanrosendale, John
1993-01-01
We discuss the use of triangular elements in the spectral element method for direct simulation of incompressible flow. Triangles provide much greater geometric flexibility than quadrilateral elements and are better conditioned and more accurate when small angles arise. We employ a family of tensor product algorithms for triangles, allowing triangular elements to be handled with comparable arithmetic complexity to quadrilateral elements. The triangular discretizations are applied and validated on the Poisson equation. These discretizations are then applied to the incompressible Navier-Stokes equations and a laminar channel flow solution is given. These new triangular spectral elements can be combined with standard quadrilateral elements, yielding a general and flexible high order method for complex geometries in two dimensions.
Apparatus for controlling fluid flow in a conduit wall
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2003-05-13
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
Depth resolved granular transport driven by shearing fluid flow
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Kudrolli, Arshad
2017-02-01
We investigate granular transport by a fluid flow under steady-state driving conditions, from the bed-load regime to the suspension regime, with an experimental system based on a conical rheometer. The mean granular volume fraction ϕg, the mean granular velocity ug, and the fluid velocity uf are obtained as a function of depth inside the bed using refractive index matching and particle-tracking techniques. A torque sensor is utilized to measure the applied shear stress to complement estimates obtained from measured strain rates high above the bed where ϕg≈0 . The flow is found to be transitional at the onset of transport and the shear stress required to transport grains rises sharply as grains are increasingly entrained by the fluid flow. A significant slip velocity between the fluid and the granular phases is observed at the bed surface before the onset of transport as well as in the bed-load transport regime. We show that ug decays exponentially deep into the bed for ϕg>0.45 with a decay constant which is described by a nonlocal rheology model of granular flow that neglects fluid stress. Further, we show that uf and ug can be described using the applied shear stress and the Krieger-Dougherty model for the effective viscosity in the suspension regime, where 0 <ϕg<0.45 and where ug≈uf .
A locally implicit method for fluid flow problems
NASA Technical Reports Server (NTRS)
Reddy, K. C.
1986-01-01
The fluid flow inside the space shuttle main engine (SSME) traverses through a complex geometrical configuration. The flow is compressible, viscous, and turbulent with pockets of separated regions. Several computer codes are being developed to solve three dimensional Navier-Stokes equations with different turbulence models for analyzing the SSME internal flow. The locally implicit scheme is a computationally efficient scheme which converges rapidly in multi-grid modes for elliptic problems. It has the promise of providing a rapidly converging algorithm for steady-state viscous flow problems.
Thermal radiation effects in squeezing flow of a Jeffery fluid
NASA Astrophysics Data System (ADS)
Hayat, T.; Qayyum, A.; Alsaadi, F.; Awais, M.; Dobaie, Abdullah M.
2013-08-01
The aim of this work is to analyze the thermal radiation effects in a time-dependent axisymmetric flow of a Jeffery fluid. The flow in a fluid is induced by the unsteady squeezing of two parallel disks. The related partial differential equations for the modeled problem are simplified and transformed into coupled ordinary differential equations by using appropriate transformations. The differential system is solved for the convergent series solution. Effects of the various physical parameters have been analyzed for suction and injection cases.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Dynamic typology of hydrothermal systems: competing effects of advection, dispersion and reactivity
NASA Astrophysics Data System (ADS)
Dolejs, David
2016-04-01
Genetic interpretation hydrothermal systems relies on recognition of (i) hydrothermal fluid source, (ii) fluid migration pathways, and (iii) deposition site identified by hydrothermal alteration and/or mineralization. Frequently, only the last object is of interest or accessible to direct observation, but constraints on the fluid source (volume) and pathways can be obtained from evaluation of the time-integrated fluid flux during hydrothermal event. Successful interpretation of the petrological record, that is, progress of alteration reactions, relies on identification of individual contributions arising from solute advection (to the deposition site), its lateral dispersion, and reaction efficiency. Although these terms are all applicable in a mass-conservation relationship within the framework of the transport theory, they are rarely considered simultaneously and their relative magnitudes evaluated. These phenomena operate on variable length and time scales, and may in turn provide insight into the system dynamics such as flow, diffusion and reaction rates, or continuous vs. episodic behavior of hydrothermal events. In addition, here we demonstrate that they also affect estimate of the net fluid flux, frequently by several orders of magnitude. The extent of alteration and mineralization reactions between the hydrothermal fluid and the host environment is determined by: (i) temperature, pressure or any other gradients across the mineralization site, (ii) magnitude of disequilibrium at inflow to the mineralization site, which is related to physico-chemical gradient between the fluid source and the mineralization site, and (iii) chemical redistribution (dispersion) within the mineralization site. We introduce quantitative mass-transport descriptors - Péclet and Damköhler II numbers - to introduce division into dispersion-dominated, advection-dominated and reaction-constrained systems. Dispersive systems are characterized by lateral solute redistribution, driven by
Balanced Flow Metering and Conditioning: Technology for Fluid Systems
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.
2006-01-01
Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.
A thermal stack structure for measurement of fluid flow
NASA Astrophysics Data System (ADS)
Zhao, Hao; Mitchell, S. J. N.; Campbell, D. H.; Gamble, Harold S.
2003-03-01
A stacked thermal structure for fluid flow sensing has been designed, fabricated, and tested. A double-layer polysilicon process was employed in the fabrication. Flow measurement is based on the transfer of heat from a temperature sensor element to the moving fluid. The undoped or lightly doped polysilicon temperature sensor is located on top of a heavily doped polysilicon heater element. A dielectric layer between the heater and the sensor elements provides both thermal coupling and electrical isolation. In comparison to a hot-wire flow sensor, the heating and sensing functions are separated, allowing the electrical characteristics of each to be optimized. Undoped polysilicon has a large temperature coefficient of resistance (TCR) up to 7 %/K and is thus a preferred material for the sensor. However, heavily doped polysilicon is preferred for the heater due to its lower resistance. The stacked flow sensor structure offers a high thermal sensitivity making it especially suitable for medical applications where the working temperatures are restricted. Flow rates of various fluids can be measured over a wide range. The fabricated flow sensors were used to measure the flow rate of water in the range μl - ml/min and gas (Helium) in the range 10 - 100ml/min.
NASA Astrophysics Data System (ADS)
Fisher, J. C.; Ackerman, D. J.; Rousseau, J. P.; Rattray, G. W.
2009-12-01
Three-dimensional steady-state and transient models of groundwater flow and advective transport through the fractured basalts and interbedded sediments of the Eastern Snake River Plain (ESRP) aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The model domain covers an area of 1,940 square miles that includes most of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. Numerical models simulated 1980 steady-state conditions and transient flow for 1980-95. In the transient model, streamflow infiltration was the major stress. The models were calibrated using the parameter-estimation program incorporated in MODFLOW-2000. The steady-state model reasonably simulated the observed water-table altitude and gradients. Simulation of transient conditions reproduced changes in the flow system resulting from episodic infiltration from the Big Lost River. Analysis of simulations shows that flow is (1) dominantly horizontal through interflow zones in basalt, vertical anisotropy resulting from contrasts in hydraulic conductivity of different types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. Particle-tracking simulations were used to evaluate how simulated groundwater flow paths and travel times differ between the steady-state and transient flow models, and how well model-derived groundwater flow directions and velocities compare to independently-derived estimates. Particle tracking also was used to simulate the growth of tritium plumes originating at two INL facilities over a 16 year period under steady-state and transient flow conditions (1953-68). The shape, dimensions, and areal extent of these plumes were compared to a map of the plumes for 1968 from tritium releases beginning in 1952
NASA Astrophysics Data System (ADS)
Jalalisendi, Mohammad; Panciroli, Riccardo; Cha, Youngsu; Porfiri, Maurizio
2014-02-01
In this paper, we study the flow physics produced by a thin rigid lamina oscillating in an otherwise quiescent viscous fluid. Particle image velocimetry (PIV) is used to extract the flow kinematics, which is, in turn, utilized to reconstruct the pressure distribution around the lamina through the integration of Navier-Stokes equations. The hydrodynamic loading experienced by the lamina is ultimately estimated from PIV data to investigate added mass and fluid damping phenomena. Experiments are conducted for varying Reynolds and Keulegan-Carpenter numbers to elucidate the relative weight of inertial, convective, and viscous phenomena on the resulting flow physics. In agreement with prior numerical studies, experimental results demonstrate that increasing the Reynolds and the Keulegan-Carpenter numbers results into the formation of coherent structures that are shed at the edges of the lamina and advected by the flow. This phenomenon is associated with nonlinearities in the hydrodynamic loading, whereby fluid damping is found to increase nonlinearly with the oscillation of the lamina.
Dynamics of a fluid flow on Mars: lava or mud?
NASA Astrophysics Data System (ADS)
Wilson, L.; Mouginis-Mark, P. J.
2013-12-01
We have identified an enigmatic flow in S.W. Cerberus Fossae, Mars. The flow originates from an almost circular pit within a remnant of a yardang at 0.58 degrees N, 155.28 degrees E, within the lower unit of the Medusae Fossae Formation. The flow is ~42 km long and 0.5 to 2.0 km wide. The surface textures of the resulting deposit show that the material flowed in such a way that the various deformation patterns on its surface were generally preserved as it moved, only being distorted or disrupted when the flow encountered major topographic obstacles or was forced to make rapid changes of direction. This observation of a stiff, generally undeformed surface layer overlying a relatively mobile base suggests that, while it was moving, the fluid material flowed in a laminar, and possibly non-Newtonian, fashion. The least-complicated non-Newtonian fluids are Bingham plastics. On this basis we use measurements of flow width, length, thickness and substrate slope obtained from images, a DEM constructed from stereo pairs of Context Camera (CTX) images, and Mars Orbiter Laser Altimeter (MOLA) altimetry points to deduce the rheological properties of the fluid, treating it as both a Newtonian and a Bingham material for comparison. The Newtonian option requires the fluid to have a viscosity close to 100 Pa s and to have flowed everywhere in a turbulent fashion. The Bingham option requires laminar flow, a plastic viscosity close to 1 Pa s, and a yield strength of ~185 Pa. We compare these parameters values with those of various environmental fluids on Earth in an attempt to narrow the range of possible materials forming the martian flow. A mafic to ultramafic lava would fit the Newtonian option but the required turbulence does not seem consistent with the surface textures. The Bingham option satisfies the morphological constraint of laminar motion if the material is a mud flow consisting of ~40% water and ~60% silt-sized silicate solids. Elsewhere on Mars, deposits with similar
On two-dimensional flows of compressible fluids
NASA Technical Reports Server (NTRS)
Bergman, Stefan
1945-01-01
This report is devoted to the study of two-dimensional steady motion of a compressible fluid. It is shown that the complete flow pattern around a closed obstacle cannot be obtained by the method of Chaplygin. In order to overcome this difficulty, a formula for the stream-function of a two-dimensional subsonic flow is derived. The formula involves an arbitrary function of a complex variable and yields all possible subsonic flow patterns of certain types. Conditions are given so that the flow pattern in the physical plane will represent a flow around a closed curve. The formula obtained can be employed for the approximate determination of a subsonic flow around an obstacle. The method can be extended to partially supersonic flows.
Advection, diffusion, and delivery over a network.
Heaton, Luke L M; López, Eduardo; Maini, Philip K; Fricker, Mark D; Jones, Nick S
2012-08-01
Many biological, geophysical, and technological systems involve the transport of a resource over a network. In this paper, we present an efficient method for calculating the exact quantity of the resource in each part of an arbitrary network, where the resource is lost or delivered out of the network at a given rate, while being subject to advection and diffusion. The key conceptual step is to partition the resource into material that does or does not reach a node over a given time step. As an example application, we consider resource allocation within fungal networks, and analyze the spatial distribution of the resource that emerges as such networks grow over time. Fungal growth involves the expansion of fluid filled vessels, and such growth necessarily involves the movement of fluid. We develop a model of delivery in growing fungal networks, and find good empirical agreement between our model and experimental data gathered using radio-labeled tracers. Our results lead us to suggest that in foraging fungi, growth-induced mass flow is sufficient to account for long-distance transport, if the system is well insulated. We conclude that active transport mechanisms may only be required at the very end of the transport pathway, near the growing tips.
Dense brushes of stiff polymers or filaments in fluid flow
NASA Astrophysics Data System (ADS)
Römer, F.; Fedosov, D. A.
2015-03-01
Dense filamentous brush-like structures are present in many biological interfacial systems (e.g., glycocalyx layer in blood vessels) to control their surface properties. Such structures can regulate the softness of a surface and modify fluid flow. In this letter, we propose a theoretical model which predicts quantitatively flow-induced deformation of a dense brush of stiff polymers or filaments, whose persistence length is larger or comparable to their contour length. The model is validated by detailed mesoscopic simulations and characterizes different contributions to brush deformation including hydrodynamic friction due to flow and steric excluded-volume interactions between grafted filaments. This theoretical model can be used to describe the effect of a stiff-polymer brush on fluid flow and to aid in the quantification of experiments.
Fluid flow near the surface of earth's outer core
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy; Jackson, Andrew
1991-01-01
This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.
The flow of a compressible fluid past a curved surface
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1943-01-01
An iteration method is employed to obtain the flow of a compressible fluid past a curved surface. The first approximation which leads to the Prandtl-Glauert rule, is based on the assumption that the flow differs but little from a pure translation. The iteration process then consists in improving this first approximation in order that it will apply to a flow differing from pure translatory motion to a greater degree. The method fails when the Mach number of the undisturbed stream reaches unity but permits a transition from subsonic to supersonic conditions without the appearance of a compression shock. The limiting value at which potential flow no longer exits is indicated by the apparent divergence of the power series representing the velocity of the fluid at the surface of the solid boundary.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
Lattice fluid dynamics from perfect discretizations of continuum flows
Katz, E.; Wiese, U.
1998-11-01
We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. {copyright} {ital 1998} {ital The American Physical Society}
Fluid flow in the juxtaglomerular interstitium visualized in vivo.
Rosivall, László; Mirzahosseini, Shahrokh; Toma, Ildikó; Sipos, Arnold; Peti-Peterdi, János
2006-12-01
Earlier electron microscopy studies demonstrated morphological signs of fluid flow in the juxtaglomerular apparatus (JGA), including fenestrations of the afferent arteriole (AA) endothelium facing renin granular cells. We aimed to directly visualize fluid flow in the JGA, the putative function of the fenestrated endothelium, using intravital multiphoton microscopy of Munich-Wistar rats and C57BL6 mice. Renin content of the AA correlated strongly with the length of the fenestrated, filtering AA segment. Fluorescence of the extracellular fluid marker lucifer yellow (LY) injected into the cannulated femoral vein in bolus was followed in the renal cortex by real-time imaging. LY was detected in the interstitium around the JG AA before the plasma LY filtered into Bowman's capsule and early proximal tubule. The fluorescence intensity of LY in the JGA interstitium was 17.9 +/- 3.5% of that in the AA plasma (n = 6). The JGA fluid flow was oscillatory, consisting of two components: a fast (one every 5-10 s) and a slow (one every 45-50 s) oscillation, most likely due to the rapid transmission of both the myogenic and tubuloglomerular feedback (TGF)-mediated hemodynamic changes. LY was also detected in the distal tubular lumen about 2-5 s later than in the AA, indicating the flow of JGA interstitial fluid through the macula densa. In the isolated microperfused JGA, blocking the early proximal tubule with a micropipette caused significant increases in MD cell volume by 62 +/- 4% (n = 4) and induced dilation of the intercellular lateral spaces. In summary, significant and dynamic fluid flow exists in the JGA which may help filter the released renin into the renal interstitium (endocrine function). It may also modulate TGF and renin signals in the JGA (hemodynamic function).
Wave front distortion based fluid flow imaging
NASA Astrophysics Data System (ADS)
Iffa, Emishaw; Heidrich, Wolfgang
2013-03-01
In this paper, a transparent flow surface reconstruction based on wave front distortion is investigated. A camera lens is used to focus the image formed by the micro-lens array to the camera imaging plane. The irradiance of the captured image is transformed to frequency spectrum and then the x and y spatial components are separated. A rigid spatial translation followed by low pass filtering yields a single frequency component of the image intensity. Index of refraction is estimated from the inverse Fourier transform of the spatial frequency spectrum of the irradiance. The proposed method is evaluated with synthetic data of a randomly generated index of refraction value and used to visualize a fuel injection volumetric data.
Two-Fluid Couette Flow between Concentric Cylinders.
1984-01-01
CONCENTRIC CYLINDERS Yuriko Renardy and Daniel D. Joseph* Technical Summary Report #2622 January 1984 ABSTRACT -1W considers,he flow of two immiscible...CYLINDERS Yuriko Renardy and Daniel D. Joseph* Introduction We consider linear stability of the flow of two immiscible fluids separated by an interface...AUTiOR(,) 8. CONTRACT OR GRANT NUMBER(@) Yuriko Renardy and Daniel D. Joseph DAAGZ9-80-C-0041 11. PERFORMING ORGANIZATION NAME AND ADDRESS 10
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-12-31
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-01-01
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Fluid Dynamic Mechanisms and Interactions within Separated Flows
1993-08-01
for this research has I been Dr. Thomas L. Doligalski, Chief, Fluid Dynamics Branch, Engineering and Environmental Sciences Division. The authors of...KOOIO, with Thomas L. gation of the Effects of a Base Cavity on the Near-Wake Flowfiel od a Body at Subsonic and Transonic Speeds," Department of...F.. Quincey , V. G., and Callinan, J., "Experiments on Flow." ARC R&M No. 3323. March 1962. Two-Dimensional Base Flow at Subsonic and Transonic Speeds
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report
Detwiler, Russell
2014-04-30
capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high--resolution mechanistic model that couples elastic deformation of contacts and aperture-dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.
Alternative experiments using the geophysical fluid flow cell
NASA Technical Reports Server (NTRS)
Hart, J. E.
1984-01-01
This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.
Experimental observation of fluid flow channels in a single fracture
NASA Astrophysics Data System (ADS)
Brown, Stephen; Caprihan, Arvind; Hardy, Robert
1998-03-01
A method for obtaining precise replicas of real fracture surfaces using transparent epoxy resins was developed, allowing detailed study of fluid flow paths within a fracture plane. A natural rock fracture was collected from the field and prepared for study. Silicon rubber molds of the fracture surfaces were used to make a transparent epoxy replica of the original fracture. Clear and dyed water were injected into the fracture pore space allowing examination of the flow field. Digitized optical images were used to observe wetting, saturated flow, and drying of the specimen. Nuclear magnetic resonance imaging was used for quantitative measurements of flow velocity. Both video imaging and nuclear magnetic resonance imaging techniques show distinct and strong channeling of the flow at the submillimeter to several-centimeter scale. Each phenomenon, including wetting, drying, dye transport, and velocity channeling, has its own distinct geometric structure and scale. We find that fluid velocities measured simultaneously at various locations in the fracture plane during steady state flow range over several orders of magnitude, with the maximum velocity a factor of 5 higher than the mean velocity. This suggests that flow channeling in fractured rock can cause the breakthrough velocity of contaminants to far exceed the mean flow.
Tracing fluid flow in geothermal reservoirs
Rose, P.E.; Adams, M.C.
1997-12-31
A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.
Flow Curve Determination for Non-Newtonian Fluids.
ERIC Educational Resources Information Center
Tjahjadi, Mahari; Gupta, Santosh K.
1986-01-01
Describes an experimental program to examine flow curve determination for non-Newtonian fluids. Includes apparatus used (a modification of Walawender and Chen's set-up, but using a 50cc buret connected to a glass capillary through a Tygon tube), theoretical information, procedures, and typical results obtained. (JN)
Solving fluid-flow control problems with porous plastics.
Wolbrom, I M
1993-01-01
To tackle fluid-flow control problems, traditional porous materials, such as ceramics, glass, metal, fabric, paper, and fibres, are now being replaced by an increasing range of porous plastics. In this article, the author discusses some of those that are available, and outlines the advantages of using these materials to replace traditional ones.
Dispersion of solids in fracturing flows of yield stress fluids
NASA Astrophysics Data System (ADS)
Hormozi, Sarah; Frigaard, Ian
2016-11-01
Solids dispersion is an important part of hydraulic fracturing. Whereas many frac fluids are low-viscous others transport solids through increased viscosity. In this context, one method for influencing both dispersion and solids carrying capacity is to use a yield stress fluid as the frac fluid. We propose a model framework for this scenario and analyse one of the simplifications. A key effect of including a yield stress is to focus high shear rates near the fracture walls. In typical fracturing flows this results in a large variation in shear rates across the fracture. In using shear-thinning viscous frac fluids, flows may vary significantly on the particle scale, from Stokesian behaviour to inertial behaviour across the width of the fracture. Equally, according to the flow rates, Hele-Shaw style models give way at higher Reynolds number to those in which inertia must be considered. We develop a model framework able to include this range of flows and make estimates of the streamwise dispersion in various relevant scenarios. Schlumberger Oilfield Services, NSF and ACS PRF.
Comparing volume of fluid and level set methods for evaporating liquid-gas flows
NASA Astrophysics Data System (ADS)
Palmore, John; Desjardins, Olivier
2016-11-01
This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.
Review of coaxial flow gas core nuclear rocket fluid mechanics
NASA Technical Reports Server (NTRS)
Weinstein, H.
1976-01-01
Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.
Forecasting Fluid Flows Using the Geometry of Turbulence
NASA Astrophysics Data System (ADS)
Suri, Balachandra; Tithof, Jeffrey; Grigoriev, Roman O.; Schatz, Michael F.
2017-03-01
The existence and dynamical role of particular unstable solutions (exact coherent structures) of the Navier-Stokes equation is revealed in laboratory studies of weak turbulence in a thin, electromagnetically driven fluid layer. We find that the dynamics exhibit clear signatures of numerous unstable equilibrium solutions, which are computed using a combination of flow measurements from the experiment and fully resolved numerical simulations. We demonstrate the dynamical importance of these solutions by showing that turbulent flows visit their state space neighborhoods repeatedly. Furthermore, we find that the unstable manifold associated with one such unstable equilibrium predicts the evolution of turbulent flow in both experiment and simulation for a considerable period of time.
Instability of fluid flow over saturated porous medium
NASA Astrophysics Data System (ADS)
Lyubimova, Tatyana; Kolchanova, Ekaterina; Lyubimov, Dmitry
2013-04-01
We investigate the stability of a fluid flow over a saturated porous medium. The problem is of importance due to the applications to washing out of contaminants from the bottom layer of vegetation, whose properties are similar to the properties of porous medium. In the case of porous medium with the relatively high permeability and porosity the flow involves a part of the fluid saturating the porous medium, with the tangential fluid velocity drop occurring because of the resistance of the solid matrix. The drop leads to the instability analogous to Kelvin-Helmholtz one accompanied by the formation of travelling waves. In the present paper we consider a two-layer system consisting of a pure fluid layer and a porous layer saturated by the fluid located underneath. The system is bounded by a rigid surface at the bottom and a non-deformable free surface at the top. It is under the gravity and inclined at a slight angle to the horizontal axis. The boundary conditions at the interface between the fluid and porous layers are the continuity of fluid velocities and the balance of normal and tangential stresses taking into account the resistance of the solid matrix with respect to the fluid flow near the interface [1-2]. The problem is solved in the framework of the Brinkman model applying the classical shooting algorithm with orthogonalization. The stability boundaries of the stationary fluid flow over the saturated porous medium with respect to the small oscillatory perturbations are obtained for the various values of the Darcy number and the ratio of the porous layer thickness to the full thickness of the system d. It was shown that at the d > 0.5 with increasing the porous layer thickness (or with decreasing of the fluid layer thickness) the stability threshold rises. This is because of the fact that the instability is primarily caused by perturbations located in the fluid layer. At the d < 0.5 the reduction of the porous layer thickness leads to the stability threshold
Fluid flow and dissipation in intersecting counter-flow pipes
NASA Astrophysics Data System (ADS)
Pekkan, Kerem
2005-11-01
Intersecting pipe junctions are common in industrial and biomedical flows. For the later application, standard surgical connections of vessel lumens results a ``+'' shaped topology through a side-to-side or end-to-side anastomosis. Our earlier experimental/computational studies have compared different geometries quantifying the hydrodynamic power loss through the junction where dominant coherent structures are identified. In this study we have calculated the contribution of these structures to the total energy dissipation and its spatial distribution in the connection. A large set of idealized models are studied in which the basic geometric configuration is parametrically varied (from side-to-side to end-to-side anastomosis) which quantified the strength of the secondary flows and coherent structures as a function of the geometric configuration. Steady-state, 3D, incompressible computations are performed using the commercial CFD code FIDAP with unstructured tetrahedral grids. Selected cases are compared with the in-house code results (in Cartesian and structured grids). Grid verification and experimental validation with flow-vis and PIV are presented. Identifying the dissipation hot-spots will enable a targeted inverse design of the junction by reducing the degree of optimization with a focused parameter space.
NASA Astrophysics Data System (ADS)
Luff, Roger; Wallmann, Klaus
2003-09-01
A numerical model was applied to investigate and to quantify biogeochemical processes and methane turnover in gas hydrate-bearing surface sediments from a cold vent site situated at Hydrate Ridge, an accretionary structure located in the Cascadia Margin subduction zone. Steady state simulations were carried out to obtain a comprehensive overview on the activity in these sediments which are covered with bacterial mats and are affected by strong fluid flow from below. The model results underline the dominance of advective fluid flow that forces a large inflow of methane from below (869 μmol cm -2 a -1) inducing high oxidation rates in the surface layers. Anaerobic methane oxidation is the major process, proceeding at a depth-integrated rate of 870 μmol cm -2 a -1. A significant fraction (14%) of bicarbonate produced by anaerobic methane oxidation is removed from the fluids by precipitation of authigenic aragonite and calcite. The total rate of carbonate precipitation (120 μmol cm -2 a -1) allows for the build-up of a massive carbonate layer with a thickness of 1 m over a period of 20,000 years. Aragonite is the major carbonate mineral formed by anaerobic methane oxidation if the flow velocity of methane-charge fluids is high enough (≥10 cm a -1) to maintain super-saturation with respect to this highly soluble carbonate phase. It precipitates much faster within the studied surface sediments than previously observed in abiotic laboratory experiments, suggesting microbial catalysis. The investigated station is characterized by high carbon and oxygen turnover rates (≈1000 μmol cm -2 a -1) that are well beyond the rates observed at other continental slope sites not affected by fluid venting. This underlines the strong impact of fluid venting on the benthic system, even though the flow velocity of 10 cm a -1 derived by the model is relative low compared to fluid flow rates found at other cold vent sites. Non-steady state simulations using measured fluid flow
High frequency flow-structural interaction in dense subsonic fluids
NASA Technical Reports Server (NTRS)
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
Squeeze flow of a Carreau fluid during sphere impact
NASA Astrophysics Data System (ADS)
Uddin, J.; Marston, J. O.; Thoroddsen, S. T.
2012-07-01
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Ztip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Ztip = Zmin) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
Visualization of two-fluid flows of superfluid helium-4
Guo, Wei; La Mantia, Marco; Lathrop, Daniel P.; Van Sciver, Steven W.
2014-01-01
Cryogenic flow visualization techniques have been proved in recent years to be a very powerful experimental method to study superfluid turbulence. Micron-sized solid particles and metastable helium molecules are specifically being used to investigate in detail the dynamics of quantum flows. These studies belong to a well-established, interdisciplinary line of inquiry that focuses on the deeper understanding of turbulence, one of the open problem of modern physics, relevant to many research fields, ranging from fluid mechanics to cosmology. Progress made to date is discussed, to highlight its relevance to a wider scientific community, and future directions are outlined. The latter include, e.g., detailed studies of normal-fluid turbulence, dissipative mechanisms, and unsteady/oscillatory flows. PMID:24704871
Neutron radigoraphy of fluid flow for geothermal energy research
Bingham, Philip R.; Polsky, Yarom; Anovitz, L.; Carmichael, Justin R.; Bilheux, Hassina Z; Jacobson, David; Hussey, Dan
2015-01-01
Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the “particles” and imaging with 10 ms exposures.
Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation
NASA Astrophysics Data System (ADS)
Ortiz de Zárate, José M.; Sengers, Jan V.
2013-02-01
We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.
Fluid dynamics aspects of miniaturized axial-flow blood pump.
Kang, Can; Huang, Qifeng; Li, Yunxiao
2014-01-01
Rotary blood pump (RBP) is a kind of crucial ventricular assist device (VAD) and its advantages have been evidenced and acknowledged in recent years. Among the factors that influence the operation performance and the durability of various rotary blood pumps, medium property and the flow features in pump's flow passages are conceivably significant. The major concern in this paper is the fluid dynamics aspects of such a kind of miniaturized pump. More specifically, the structural features of axial-flow blood pump and corresponding flow features are analyzed in detail. The narrow flow passage between blade tips and pump casing and the rotor-stator interaction (RSI) zone may exert a negative effect on the shear stress distribution in the blood flow. Numerical techniques are briefly introduced in view of their contribution to facilitating the optimal design of blood pump and the visualization of shear stress distribution and multiphase flow analysis. Additionally, with the development of flow measurement techniques, the high-resolution, effective and non-intrusive flow measurement techniques catering to the measurement of the flows inside rotary blood pumps are highly anticipated.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2003-11-11
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-05-10
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2007-06-12
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive fluid flow measurements in microfluidic channels with backscatter interferometry.
Markov, Dmitry A; Dotson, Stephen; Wood, Scott; Bornhop, Darryl J
2004-11-01
The ability to measure fluid velocity within picoliter volumes or on-chip noninvasively, is important toward fully realizing the potential of microfluidics and micrototal analysis systems, particularly in applications such as micro-high-performance liquid chromatography (HPLC) or in metering mixing where the flow rate must be quantified. Additionally, these measurements need to be performed directly on moving fluids in a noninvasive fashion. We presented here the proof of principle experiments showing nonintrusive fluid flow measurements can be accomplished on-chip using a pump and probe configuration with backscattering interferometry. The on-chip interferometric backscatter detector (OCIBD) is based on a fiber-coupled HeNe laser that illuminates a portion of an isotropically etched 40 microm radius channel and a position sensitive transducer to measure fringe pattern shifts. An infrared laser with a mechanical shutter is used to heat a section of a flowing volume and the resulting refractive index (RI) change is detected with the OCIBD downstream as a time-dependent RI perturbation. Fluid velocity is quantified as changes in the phase difference between the shutter signal and the OCIBD detected signal in the Fourier domain. The experiments are performed in the range of 3-6 microL/h with 3sigma detection limits determined to be 0.127 nL/s. Additionally, the RI response of the system is calibrated using temperature changes as well as glycerol solutions.
Flow in the well: computational fluid dynamics is essential in flow chamber construction.
Vogel, Markus; Franke, Jörg; Frank, Wolfram; Schroten, Horst
2007-09-01
A perfusion system was developed to generate well defined flow conditions within a well of a standard multidish. Human vein endothelial cells were cultured under flow conditions and cell response was analyzed by microscopy. Endothelial cells became elongated and spindle shaped. As demonstrated by computational fluid dynamics (CFD), cells were cultured under well defined but time varying shear stress conditions. A damper system was introduced which reduced pulsatile flow when using volumetric pumps. The flow and the wall shear stress distribution were analyzed by CFD for the steady and unsteady flow field. Usage of the volumetric pump caused variations of the wall shear stresses despite the controlled fluid environment and introduction of a damper system. Therefore the use of CFD analysis and experimental validation is critical in developing flow chambers and studying cell response to shear stress. The system presented gives an effortless flow chamber setup within a 6-well standard multidish.
Gravity-Driven Thin Film Flow of an Ellis Fluid.
Kheyfets, Vitaly O; Kieweg, Sarah L
2013-12-01
The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity (η0), τ1/2, and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ, on the front velocity saturation depended on τ1/2. This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications.
Deformation and Fluid Flow in the Etendeka Plateau, NW Namibia
NASA Astrophysics Data System (ADS)
Salomon, Eric; Koehn, Daniel; Passchier, Cees; Davis, Jennifer; Salvona, Aron; Chung, Peter
2014-05-01
We studied deformation bands in sandstone and breccia veins in overlying basalts of the Etendeka Plateau, NW Namibia, regarding their development and history of fluid flow within. The studied deformation bands can be divided into disaggregation bands and cataclastic bands. The former appear to develop in unsorted sandstone, whereas the latter form in well sorted sandstone. We estimated the porosity of the bands and host rock in thin sections using a simple image analysis software (ImageJ). Results show, that no or only a minor decrease in porosity occur in disaggregation bands, while the porosity in cataclastic bands is decreased by up to 82 % with respect to the host rock. These observations are in agreement with results of existing studies (e.g. Fossen et al., 2007). Hence the cataclastic bands form a seal to fluid flow in the host rock, yet it is observed in outcrops that deformation bands can develop into open fractures which in turn increase the permeability of the rock. Breccia veins in the overlying basalts show intense fracturing where the basalt is locally fractured into elongated chips. Mineral precipitation in these breccia veins indicates a hydrothermal origin of the fluids since the precipitates consist of extremely fine-grained quartz aggregates. Secondary mineralization with large crystals indicates that a long-lived fluid circulation through tubular networks was active at a later stage, which eventually sealed the veins completely. We propose that the Etendeka basalts on top of the sandstone formation produced a localized deformation along deformation bands and heated up fluid below the lavas. At a later stage fluid pressures were either high enough to break through the basalt or fracturing due to ongoing extension produced fluid pathways. References Fossen, H., Schultz, R., Shipton, Z. and Mair, K. (2007). Deformation bands in sandstone: a review. J. Geol. Soc., 164, 755-769.
Preconditioning methods for ideal and multiphase fluid flows
NASA Astrophysics Data System (ADS)
Gupta, Ashish
The objective of this study is to develop a preconditioning method for ideal and multiphase multispecies compressible fluid flow solver using homogeneous equilibrium mixture model. The mathematical model for fluid flow going through phase change uses density and temperature in the formulation, where the density represents the multiphase mixture density. The change of phase of the fluid is then explicitly determined using the equation of state of the fluid, which only requires temperature and mixture density. The method developed is based on a finite-volume framework in which the numerical fluxes are computed using Roe's approximate Riemann solver and the modified Harten, Lax and Van-leer scheme (HLLC). All speed Roe and HLLC flux based schemes have been developed either by using preconditioning or by directly modifying dissipation to reduce the effect of acoustic speed in its numerical dissipation when Mach number decreases. Preconditioning proposed by Briley, Taylor and Whitfield, Eriksson and Turkel are studied in this research, where as low dissipation schemes proposed by Rieper and Thornber, Mosedale, Drikakis, Youngs and Williams are also considered. Various preconditioners are evaluated in terms of development, performance, accuracy and limitations in simulations at various Mach numbers. A generalized preconditioner is derived which possesses well conditioned eigensystem for multiphase multispecies flow simulations. Validation and verification of the solution procedure are carried out on several small model problems with comparison to experimental, theoretical, and other numerical results. Preconditioning methods are evaluated using three basic geometries; 1) bump in a channel 2) flow over a NACA0012 airfoil and 3) flow over a cylinder, which are then compared with theoretical and numerical results. Multiphase capabilities of the solver are evaluated in cryogenic and non-cryogenic conditions. For cryogenic conditions the solver is evaluated by predicting
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Ignatieva, A. A.
2006-11-01
Critical behaviour of a fluid (binary mixture or liquid crystal), subjected to strongly anisotropic turbulent mixing, is studied by means of the field theoretic renormalization group. As a simplified model, relaxational stochastic dynamics of a non-conserved scalar order parameter, coupled to a random velocity field with prescribed statistics, is considered. The velocity is taken Gaussian, white in time, with a correlation function of the form ~δ(t - t')/|kbottom|d+ξ, where kbottom is the component of the wave vector, perpendicular to the distinguished direction ('direction of the flow')—the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda (1990 Commun. Math. Phys. 131 381) within the context of passive scalar advection. It is shown that, depending on the relation between the exponent ξ and the space dimensionality d, the system exhibits various types of large-scale self-similar behaviour, associated with different infrared attractive fixed points of the renormalization group equations. In addition to well-known asymptotic regimes (model A of equilibrium critical dynamics and a passively advected scalar with no self-interaction), the existence of a new, non-equilibrium and strongly anisotropic type of critical behaviour (universality class) is established, and the corresponding critical dimensions are calculated to the second order of the double expansion in ξ and ɛ = 4 - d (two-loop approximation). The most realistic values of the model parameters (for example, d = 3 and the Kolmogorov exponent ξ = 4/3) belong to this class. The scaling behaviour appears anisotropic in the sense that the critical dimensions related to the directions parallel and perpendicular to the flow are essentially different. The results are in qualitative agreement with the results, obtained in experiments and simulations of fluid systems subjected to various kinds of regular and chaotic anisotropic flows.
Shear-thinning of molecular fluids in Couette flow
NASA Astrophysics Data System (ADS)
Raghavan, Bharath V.; Ostoja-Starzewski, Martin
2017-02-01
We use non-equilibrium molecular dynamics simulations, the Boltzmann equation, and continuum thermomechanics to investigate and characterize the shear-thinning behavior of molecular fluids undergoing Couette flow, interacting via a Lennard-Jones (LJ) potential. In particular, we study the shear-stress under steady-state conditions and its dependency on fluid density and applied shear-strain rate. Motivated by kinetic theory, we propose a rheological equation of state that fits observed system responses exceptionally well and captures the extreme shear-thinning effect. We notice that beyond a particular strain-rate threshold, the fluid exhibits shear-thinning, the degree of which is dependent on the density and temperature of the system. In addition, we obtain a shear-rate dependent model for the viscosity which matches the well established Cross viscosity model. We demonstrate how this model arises naturally from the Boltzmann equation and possesses an inherent scaling parameter that unifies the rheological properties of the LJ fluid. We compare our model with those in the literature. Finally, we formulate a dissipation function modeling the LJ fluid as a quasilinear fluid.
Particle hopping vs. fluid-dynamical models for traffic flow
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
Flow regime classification in air-magnetic fluid two-phase flow.
Kuwahara, T; De Vuyst, F; Yamaguchi, H
2008-05-21
A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.
Flow regime classification in air magnetic fluid two-phase flow
NASA Astrophysics Data System (ADS)
Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.
2008-05-01
A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.
Transient fluid flow and heat transfer in petroleum production systems
NASA Astrophysics Data System (ADS)
Lin, Dongqing
Heat transfer is an important phenomenon in both wellbore and reservoir. The pertinent temperature distribution can provide a valuable perspective in analyzing and optimizing the oil production. In this work, two kinds of co-production, production fluid through the annulus and tubing, and through two independent tubings, have been modeled using steady state analysis. The fluid temperatures in the production string and annulus have been solved analytically in both cases. Furthermore, we extended the theory of steady state energy transport to remedy asphaltene deposition problem by circulating the cooling fluid in the annulus. Due to the complex nature of two-phase flow in the oil/gas production, more reliable mechanistic modeling approaches have been developed since early 1980's. Rooted in Hasan-Kabir model, we have developed a wellbore/reservoir coupling simulator for the transient non-Darcy two-phase flow in the flow-after-flow well test. The entire historical flow behavior has been modeled using superposition method and validated with field data. Our second simulation is for the investigation of a blowout well, which is a great concern in the oil field. When the pressure in the wellbore is sufficiently high, the fluids will attain sonic velocity at the wellhead. We presented a computational algorithm to estimate the blowout rate in a given wellbore/reservoir system and examined four major parameters, such as formation permeability, Gas-Oil-Ratio (GOR), reservoir pressure and tubing diameter. The transient nature of this approach also illustrates the evolution process of a blowout. We have also developed a transient simulator to determine the location and severity of a blockage in a gas pipeline based on the theory of two-phase flow and pressure transient analysis. The presence of a sizeable blockage will affect the outlet gas pressure response by decreasing the available pipe volume and increasing the friction loss of the fluid flow. The simulator solves for the
Characterization of fluid flow by digital correlation of scattered light
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Matthys, Donald R.
1989-01-01
The objective is to produce a physical system suitable for a space environment that can measure fluid velocities in a three-dimensional volume by the development of a particle correlation velocimetry technique. Experimental studies were conducted on a field test cell to demonstrate the suitability and accuracy of digital correlation techniques for measuring two-dimensional fluid flows. This objective was satisfied by: (1) the design of an appropriate illumination and detection system for making velocity measurements within a test cell; (2) the design and construction of a test cell; (3) the preliminary evaluations on fluid and seeding requirements; and (4) the performance of controlled tests using a multiple exposure correlation technique. This presentation is represented by viewgraphs with very little text.
Selected topics on the topology of ideal fluid flows
NASA Astrophysics Data System (ADS)
Peralta-Salas, Daniel
2016-08-01
This is a survey of certain geometric aspects of inviscid and incompressible fluid flows, which are described by the solutions to the Euler equations. We will review Arnold’s theorem on the topological structure of stationary fluids in compact manifolds, and Moffatt’s theorem on the topological interpretation of helicity in terms of knot invariants. The recent realization theorem by Enciso and Peralta-Salas of vortex lines of arbitrarily complicated topology for stationary solutions to the Euler equations will also be introduced. The aim of this paper is not to provide detailed proofs of all the stated results but to introduce the main ideas and methods behind certain selected topics of the subject known as Topological Fluid Mechanics. This is the set of lecture notes, the author gave at the XXIV International Fall Workshop on Geometry and Physics held in Zaragoza (Spain) during September 2015.
Hiemenz flow and heat transfer of a third grade fluid
NASA Astrophysics Data System (ADS)
Sahoo, Bikash
2009-03-01
The laminar flow and heat transfer of an incompressible, third grade, electrically conducting fluid impinging normal to a plane in the presence of a uniform magnetic field is investigated. The heat transfer analysis has been carried out for two heating processes, namely, (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). By means of the similarity transformation, the governing non-linear partial differential equations are reduced to a system of non-linear ordinary differential equations and are solved by a second-order numerical technique. Effects of various non-Newtonian fluid parameters, magnetic parameter, Prandtl number on the velocity and temperature fields have been investigated in detail and shown graphically. It is found that the velocity gradient at the wall decreases as the third grade fluid parameter increases.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
NASA Astrophysics Data System (ADS)
Lin, Jian-Yu; Shen, Yi; Ding, Hang; Liu, Nan-Sheng; Lu, Xi-Yun
2017-01-01
We develop a robust cut-cell method for numerical simulation of compressible two-phase flows with topology change of the fluid-fluid interface. In cut cell methods the flows can be solved in the finite volume framework and the jump conditions at the interface are resolved by solving a local Riemann problem. Therefore, cut cell methods can obtain interface evolution with high resolution, and at the same time satisfactorily maintain the conservation of flow quantities. However, it remains a challenge for the cut cell methods to handle interfaces with topology change or very high curvature, where the mesh is not sufficiently fine to resolve the interface. Inappropriate treatment could give rise to either distorted interface advection or unphysical oscillation of flow variables, especially when the regularization process (e.g. reinitialization in the level set methods) is implemented. A robust cut-cell method is proposed here, with the interface being tracked by a level set function. The local unphysical oscillation of flow variables in the presence of topology change is shown to be greatly suppressed by using a delayed reinitialization. The method can achieve second-order accuracy with respect to the interface position in the absence of topology changes of interface, while locally degrading to first-order at the interface region where topology change occurs. Its performance is examined through a variety of numerical tests, such as Rayleigh collapse, shock-bubble interaction, and shock-induced bubble collapse in water. Numerical results are compared against either benchmark solutions or experimental observations, and good agreement has been achieved qualitatively and/or quantitatively. Finally, we apply the method to investigating the collapse process of two tandem bubbles in water.
Laminar boundary-layer flow of non-Newtonian fluid
NASA Technical Reports Server (NTRS)
Lin, F. N.; Chern, S. Y.
1979-01-01
A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
Cary, Robert E.
2015-12-08
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
Magnetic method for stimulating transport in fluids
Martin, James E.; Solis, Kyle J.
2016-10-18
A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.
Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes
NASA Astrophysics Data System (ADS)
de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric
2015-11-01
The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.
SALE2D. General Transient Fluid Flow Algorithm
Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.
1981-06-01
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.
Effects of physical properties on thermo-fluids cavitating flows
NASA Astrophysics Data System (ADS)
Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.
2015-12-01
The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.
Optimization of micropillar sequences for fluid flow sculpting
Stoecklein, Daniel; Ganapathysubramanian, Baskar; Wu, Chueh-Yu; Kim, Donghyuk; Di Carlo, Dino
2016-01-15
Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces for a fixed channel length per pillar. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy.
Dynamics of a fluid flow on Mars: Lava or mud?
NASA Astrophysics Data System (ADS)
Wilson, Lionel; Mouginis-Mark, Peter J.
2014-05-01
A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.
Validation of Computational Fluid Dynamics Simulations for Realistic Flows (Preprint)
2007-12-01
these calculations, the reference length is the vortex core radius, the reference flow conditions are the free stream conditions with the Mach number M...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED...From - To) 11-10-2007 Technical Paper & Briefing Charts 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Validation of Computational Fluid Dynamics
Fluid flow measurements by means of vibration monitoring
NASA Astrophysics Data System (ADS)
Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano
2015-11-01
The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.
Using heteroclinic orbits to quantify topological entropy in fluid flows
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas
2010-04-01
We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.
Cerebrospinal fluid flow dynamics in the central nervous system.
Sweetman, Brian; Linninger, Andreas A
2011-01-01
Cine-phase-contrast-MRI was used to measure the three-dimensional cerebrospinal fluid (CSF) flow field inside the central nervous system (CNS) of a healthy subject. Image reconstruction and grid generation tools were then used to develop a three-dimensional fluid-structure interaction model of the CSF flow inside the CNS. The CSF spaces were discretized using the finite-element method and the constitutive equations for fluid and solid motion solved in ADINA-FSI 8.6. Model predictions of CSF velocity magnitude and stroke volume were found to be in excellent agreement with the experimental data. CSF pressure gradients and amplitudes were computed in all regions of the CNS. The computed pressure gradients and amplitudes closely match values obtained clinically. The highest pressure amplitude of 77 Pa was predicted to occur in the lateral ventricles. The pressure gradient between the lateral ventricles and the lumbar region of the spinal canal did not exceed 132 Pa (~1 mmHg) at any time during the cardiac cycle. The pressure wave speed in the spinal canal was predicted and found to agree closely with values previously reported in the literature. Finally, the forward and backward motion of the CSF in the ventricles was visualized, revealing the complex mixing patterns in the CSF spaces. The mathematical model presented in this article is a prerequisite for developing a mechanistic understanding of the relationships among vasculature pulsations, CSF flow, and CSF pressure waves in the CNS.
Oscillatory fluid flow influences primary cilia and microtubule mechanics.
Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R
2014-07-01
Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.
Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S
2016-11-15
Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically
Nanoscale transient porosity controls large-scale metamorphic fluid flow
NASA Astrophysics Data System (ADS)
Plümper, Oliver; Botan, Alexandru; Los, Catharina; Malthe-Sørenssen, Anders; Jamtveit, Bjørn
2016-04-01
The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localize deformation enabling tectonic responses to plate motion. During these fluid-rock interactions it is the ability of a rock to transmit fluid, its permeability, that controls the rates of metamorphic reactions. However, although some geological environments (e.g., sediments) are open to fluids, the majority of solid rocks (e.g., granites, elcogites, peridotites, etc.) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Here we investigate one of the most wide-spread fluid-mediated metamorphic processes in the Earth's crust, the albitization of feldspatic rocks. We show that fluid flow and element mobilization during albitization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-precipitation process. Using a combination of focused ion beam scanning electron microscopy (FIB-SEM)-assisted nanotomography combined with transmission electron microscopy (TEM) reveals that the porosity is dictated by pore channels with a pore diameter ranging between 10 to 100 nm. Three-dimensional visualization of the feldspar pore network reveals that the pore channels must have been connected during the replacement reaction. Analysis of the pore aspect ratios suggests that a Rayleigh-Taylor-type instability associated to surface energy minimization caused the disconnection of the pore channels. Fluid transport in nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of physical phenomena that are impossible at bigger length scales. Thus, on the basis of our microstructural
NASA Astrophysics Data System (ADS)
Kerrich, R.; Feng, R.
1992-01-01
Giant quartz vein systems of all ages, from the Archean to Cenozoic, are characterised by similarities of geodynamic setting, local structure, paragenesis, metal budget, P-T-t paths, and chemical, fluid dynamic and isotopic properties that collectively imply a singular hydrothermal process. Such quartz vein provinces form in regional brittle-ductile shear zones that define terrane boundaries, including closure of back-arc basins, and arc-continent or continent-continent collisions. Examples include the SVZ of the Archean Abitibi belt; the Norseman Wiluna belt, Yilgarn block; Kolar schist belt, India; Foothills Metamorphic Belt, California, and Coast Ranges Megalineament, in the Cordillera; and the Cenozoic Monte Rosa district, Insubric line. Evidence for an Archean collisional environment comes from the Abitibi and Pontiac Subprovince tectonic boundary, which hosts giant quartz vein systems. In this region, the amphibolite facies Lacorne tectonic block in the Archean Abitibi greenstone belt is anomalous with respect to the prevalent low-grade supracrustal sequences in neighbouring blocks. The Lacorne block has mature clastic sediments with a zircon provenance age spectrum from 3040-2691 Ma, and two granitic magma series; a late syntectonic monzodiorite-monzonite-granodiorite-syenite series formed over 2685-2670 Ma, similar to Phanerozoic volcanic arc granites, and post-tectonic garnet-muscovite granites emplaced at 2650-2630 Ma, which compositionally resemble Phanerozic collisional S-type granites. The Pontiac subprovince to the south of the Abitibi greenstone belt shares all the above features with the Lacorne block, and collided with and was locally thrust under the Abitibi belt, with differential uplift of the Lacorne block following collision to generate a tectonic window. Following collision of allochthonous terranes, the conjuction of large volumes of subcreted oceanic crust and sediments between accreted terranes, displaced isotherms rise, and metamorphic
Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion
NASA Astrophysics Data System (ADS)
Barclay, Paul L.; Lukes, Jennifer R.
2016-12-01
A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.
The numerical methods for the fluid flow of UCMCWS
Zhang Wenfu; Li Hui; Zhu Shuquan; Wang Zuna
1997-12-31
As an alternative for diesel oil for internal combustion engines, the fluid flow state of Ultra Clean Micronized Coal-Water Slurry (UCMCWS) in mini pipe and nozzle of a diesel engine must be known. In the laboratory three kinds of UCMCWS have been made with coal containing less than 0.8% ash, viscosity less than 600 mPa.s and concentration between 50% and 56%. Because the UCMCWS is a non-Newtonian fluid, there are no analytical resolution for pipe flow, especially in inlet and outlet sections. In this case using the numerical methods to research the flow state of UCMCWS is a useful method. Using the method of finite element, the flow state of UCMCWS in inlet and outlet sections (similar to a nozzle) have been studied. The distribution of velocity at different pressures of UCMCWS in outlet and inlet sections have been obtained. The result of the numerical methods is the efficient base for the pipe and nozzle design.
Vortical Flows Research Program of the Fluid Dynamics Research Branch
NASA Technical Reports Server (NTRS)
1986-01-01
The research interests of the staff of the Fluid Dynamics Research Branch in the general area of vortex flows are summarized. A major factor in the development of enchanced maneuverability and reduced drag by aerodynamic means is the use of effective vortex control devices. The key to control is the use of emerging computational tools for predicting viscous fluid flow in close coordination with fundamental experiments. In fact, the extremely complex flow fields resulting from numerical solutions to boundary value problems based on the Navier-Stokes equations requires an intimate relationship between computation and experiment. The field of vortex flows is important in so many practical areas that a concerted effort in this area is justified. A brief background of the research activity undertaken is presented, including a proposed classification of the research areas. The classification makes a distinction between issues related to vortex formation and structure, and work on vortex interactions and evolution. Examples of current research results are provided, along with references where available. Based upon the current status of research and planning, speculation on future research directions of the group is also given.
Lymphatic vessel development: fluid flow and valve-forming cells.
Kume, Tsutomu
2015-08-03
Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders.
The role of advection and diffusion in waste disposal by sea urchin embryos
NASA Astrophysics Data System (ADS)
Clark, Aaron; Licata, Nicholas
2014-03-01
We determine the first passage probability for the absorption of waste molecules released from the microvilli of sea urchin embryos. We calculate a perturbative solution of the advection-diffusion equation for a linear shear profile similar to the fluid environment which the embryos inhabit. Rapid rotation of the embryo results in a concentration boundary layer of comparable thickness to the length of the microvilli. A comparison of the results to the regime of diffusion limited transport indicates that fluid flow is advantageous for efficient waste disposal.
Advanced numerics for multi-dimensional fluid flow calculations
NASA Technical Reports Server (NTRS)
Vanka, S. P.
1984-01-01
In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.
Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.
Archambault-Léger, Véronique; Lynd, Lee R
2014-04-01
The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow.
Flow behaviour of negatively buoyant jets in immiscible ambient fluid
NASA Astrophysics Data System (ADS)
Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.
2012-01-01
In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.
Advanced numerics for multi-dimensional fluid flow calculations
Vanka, S.P.
1984-04-01
In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.
Particle-fluid two-phase flow modeling
Mortensen, G.A.; Trapp, J.A. |
1992-09-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Particle-fluid two-phase flow modeling
Mortensen, G.A. ); Trapp, J.A. Idaho National Engineering Lab., Idaho Falls, ID )
1992-01-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Local mesh refinement for incompressible fluid flow with free surfaces
Terasaka, H.; Kajiwara, H.; Ogura, K.
1995-09-01
A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.
Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Nemcik, Jan
2013-01-01
SummaryThe presence of fracture roughness, isolated contact areas and the occurrence of nonlinear flow complicate the fracture flow process. To experimentally investigate the fluid flow regimes through deformable rock fractures, water flow tests through both mated and non-mated sandstone fractures were conducted in triaxial cell under changing confining stress from 1.0 MPa to 3.5 MPa. For the first time Forchheimer's nonlinear factor b describing flow in non-mated fractures under variable confining stress has been quantified. The results show that linear Darcy's law holds for water flow through mated fracture samples due to high flow resistance caused by the small aperture and high tortuosity of the flow pathway, while nonlinear flow occurs for non-mated fracture due to enlarged aperture. Regression analyses of experimental data show that both Forchheimer equation and Izbash's law provide an excellent description for this nonlinear fracture flow process. Further, the nonlinear flow data indicate that for smaller true transmissivity, the appreciable nonlinear effect occurs at lower volumetric flow rates. The experimental data of both mated and non-mated fracture flow show that the confining stress does not change the linear and nonlinear flow patterns, however, it has a significant effect on flow characteristics. For mated fracture flow, the slope of pressure gradient versus flow rate becomes steeper and the transmissivity decreases hyperbolically with increase of confining stress, while for non-mated fracture flow, the rate of increase of the nonlinear coefficient b used in Forchheimer equation steadily diminishes with the increase of confining stress. Based on Forchheimer equation and taking 10% of the nonlinear effect as the critical state to distinguish between linear and nonlinear flow, the critical Reynolds number was successfully estimated by using a nonlinear effect coefficient E. This method appears effective to determine critical Reynolds numbers for
Fluid flow paths and upper plate tectonics at erosional margins
NASA Astrophysics Data System (ADS)
Ranero, C. R.; Weinrebe, W.; von Huene, R.; Huguen, C.; Sahling, H.; Bohrmann, G.
2003-04-01
An understanding of fluid flow regime and tectonics of convergent margins dominated by subduction erosion processes lags behind that for accretionary margins. Recent seafloor mapping and seismic images along Middle America and North Chile indicate that tectonic processes that pervasively fracture the upper plate across the entire continental slope create a complex hydrological system characterizing erosional margins. The most spectacular fracturing occurs where seamounts underthrust the margin locally uplifting and breaking the upper plate. Fractures concentrate at the summit of the uplift and leave a trail of mass wasting. At the summit, high backscatter energy is coincident with outcrops of authigenic carbonates. Away from the areas of seamount subduction, a pervasive extensional tectonic fabric develops due to collapse of the margin from basal erosion (upper plate material removal along the plate boundary). High resolution bathymetry displays arrays of margin semiparallel normal faults across the middle-upper slope. Associated with the faults groups of mud diapirs pierce through the slope sediment cover and crop out at the seafloor. Photographs and dredging indicate that the mounds are partially covered by chemoherm carbonates and locally chemosynthetic fauna were observed. Seismic data image some of the normal faults cutting from the seafloor to great depths into the upper plate, in some cases perhaps reaching the plate boundary. Thus, mud diapirs and faults might be tapping fluids from that depth. In addition to those areas of focussed fluids flow, positive temperature anomalies over large areas, deduced from depth to Bottom Simulating Reflectors, indicate a diffuse fluid flow. The lower slope is fronted by a small sediment prism (typically 5-15 km wide) constructed from debris wasted from the margin that increases pore pressure along the decollement and facilitates subduction of the incoming sediment. In some cases mass wasting may fill the trench with up to
Visualization periodic flows in a continuously stratified fluid.
NASA Astrophysics Data System (ADS)
Bardakov, R.; Vasiliev, A.
2012-04-01
To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken
Fluid Flow Prediction with Development System Interwell Connectivity Influence
NASA Astrophysics Data System (ADS)
Bolshakov, M.; Deeva, T.; Pustovskikh, A.
2016-03-01
In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.
Capillary deposition of advected floating particles
NASA Astrophysics Data System (ADS)
Dressaire, Emilie; Debaisieux, Aymeric; Gregori, Federico
2016-11-01
The deposition and aggregation of particles flowing through a confined environment can dramatically hinder the transport of suspensions. Yet, the mechanisms responsible for the deposition of particles in shear flow are not fully understood. Here, we use an experimental model system in which floating particles are advected on the surface of a water channel and deposited on fixed obstacles through attractive capillary effects. By varying the flow rate of the liquid, the wetting properties and size of the particles and obstacles, we can tune the magnitude of the capillary and hydrodynamic forces that determine the probability of deposition and the equilibrium position on the substrate. We show that arrays of obstacles can be designed to efficiently capture the floating particles advected by the flow.
Fluid dynamic mechanisms and interactions within separated flows
NASA Astrophysics Data System (ADS)
Dutton, J. C.; Addy, A. L.
1990-02-01
The significant results of a joint research effort investigating the fundamental fluid dynamic mechanisms and interactions within high-speed separated flows are presented in detail. The results have obtained through analytical and numerical approaches, but with primary emphasis on experimental investigations of missile and projectile base flow-related configurations. The objectives of the research program focus on understanding the component mechanisms and interactions which establish and maintain high-speed separated flow regions. The analytical and numerical efforts have centered on unsteady plume-wall interactions in rocket launch tubes and on predictions of the effects of base bleed on transonic and supersonic base flowfields. The experimental efforts have considered the development and use of a state-of-the-art two component laser Doppler velocimeter (LDV) system for experiments with planar, two-dimensional, small-scale models in supersonic flows. The LDV experiments have yielded high quality, well documented mean and turbulence velocity data for a variety of high-speed separated flows including initial shear layer development, recompression/reattachment processes for two supersonic shear layers, oblique shock wave/turbulent boundary layer interactions in a compression corner, and two-stream, supersonic, near-wake flow behind a finite-thickness base.
Capillary Corner Flows With Partial and Nonwetting Fluids
NASA Technical Reports Server (NTRS)
Bolleddula, D. A.; Weislogel, M. M.
2009-01-01
Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.
Marangoni flow of Ag nanoparticles from the fluid-fluid interface.
Johnson, Donald D; Kang, Barry; Vigorita, John L; Amram, Alec; Spain, Eileen M
2008-10-02
Fluid flow is observed when a volume of passivated Ag nanoparticles suspended in chloroform is mixed with a water/ethanol (v/v) mixture containing acidified 11-mercaptoundecanoic acid. Following mechanical agitation, Ag nanoparticles embedded in a film are driven from the organic-aqueous interface. A reddish-brown colored film, verified by transmission electron microscopy to contain uniformly dispersed Ag nanoparticles, is observed to spontaneously climb the interior surface of an ordinary, laboratory glass vial. This phenomenon is recorded by a digital video recorder, and a measurement of the distance traveled by the film front versus time is extracted. Surface (interfacial) tension gradients due to surfactant concentration, temperature, and electrostatic potential across immiscible fluids are known to drive interface motion; this well-known phenomenon is termed Marangoni flow or the Marangoni effect. Experimental results are presented that show the observed mass transfer is dependent on an acid surfactant concentration and on the volume fraction of water in the aqueous phase, consistent with fluid flow induced by interfacial tension gradients. In addition, an effective desorption rate constant for the Marangoni flow is measured in the range of approximately 0.01 to approximately 1 s(-1) from a fit to the relative film front distance traveled versus time data. The fit is based on a time-dependent expression for the surface (interface) excess for desorption kinetics. Such flow suggests that purposeful creation of interfacial tension gradients may aid in the transfer of 2- and 3-dimensional assemblies, made with nanostructures at the liquid-liquid interface, to solid surfaces.
Microscopic and continuum descriptions of Janus motor fluid flow fields
NASA Astrophysics Data System (ADS)
Reigh, Shang Yik; Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond
2016-11-01
Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
New Methods for Sensitivity Analysis in Chaotic, Turbulent Fluid Flows
NASA Astrophysics Data System (ADS)
Blonigan, Patrick; Wang, Qiqi
2012-11-01
Computational methods for sensitivity analysis are invaluable tools for fluid mechanics research and engineering design. These methods are used in many applications, including aerodynamic shape optimization and adaptive grid refinement. However, traditional sensitivity analysis methods break down when applied to long-time averaged quantities in chaotic fluid flowfields, such as those obtained using high-fidelity turbulence simulations. Also, a number of dynamical properties of chaotic fluid flows, most notably the ``Butterfly Effect,'' make the formulation of new sensitivity analysis methods difficult. This talk will outline two chaotic sensitivity analysis methods. The first method, the Fokker-Planck adjoint method, forms a probability density function on the strange attractor associated with the system and uses its adjoint to find gradients. The second method, the Least Squares Sensitivity method, finds some ``shadow trajectory'' in phase space for which perturbations do not grow exponentially. This method is formulated as a quadratic programing problem with linear constraints. This talk is concluded with demonstrations of these new methods on some example problems, including the Lorenz attractor and flow around an airfoil at a high angle of attack.
Surfactant/solvent combination aids flow back of treatment fluids
Blauch, M.E.; Venitto, J.J.; Gardner, T.R. ); Hyde, P.V.; Friend, L.L.; Schindler, R.E. )
1993-01-04
A foaming surfactant combined with a microemulsion solvent effectively restored permeability by removing treating fluids from reservoir pore spaces of low-pressure, low-permeability formations such as Devonian shales. In a joint effort to improve gas production from the tight gas Devonian shale, Halliburton Co. and Columbia Natural Resources Inc. (CNR) conducted extensive formation core and laboratory analyses. The work led to developing the surfactant system, referred to as a microemulsion foaming surfactant (MFS). In tests, MFS has recovered from 70 to 100% of treatment fluid. Without MFS, the combination of in situ water and treatment fluid can reduce the gas flow to the well bore. MFS techniques in other low-permeability reservoirs have shown gas production improvements ranging from 10% to 15-fold. Treated reservoirs include carbonates, sandstones, siltstones, and carbonaceous formations including coal. This article, the fourth in a series of five, describes the testing that determined the most effective fluids for treating low-pressure low-permeability formations.
Homogenization of two fluid flow in porous media
Daly, K. R.; Roose, T.
2015-01-01
The macroscopic behaviour of air and water in porous media is often approximated using Richards' equation for the fluid saturation and pressure. This equation is parametrized by the hydraulic conductivity and water release curve. In this paper, we use homogenization to derive a general model for saturation and pressure in porous media based on an underlying periodic porous structure. Under an appropriate set of assumptions, i.e. constant gas pressure, this model is shown to reduce to the simpler form of Richards' equation. The starting point for this derivation is the Cahn–Hilliard phase field equation coupled with Stokes equations for fluid flow. This approach allows us, for the first time, to rigorously derive the water release curve and hydraulic conductivities through a series of cell problems. The method captures the hysteresis in the water release curve and ties the macroscopic properties of the porous media with the underlying geometrical and material properties. PMID:27547073
Electrochemically actuated mercury pump for fluid flow and delivery
NASA Technical Reports Server (NTRS)
Ni, J.; Zhong, C. J.; Coldiron, S. J.; Porter, M. D.
2001-01-01
This paper describes the development of a prototype pumping system with the potential for incorporation into miniaturized, fluid-based analytical instruments. The approach exploits the well-established electrocapillarity phenomena at a mercury/electrolyte interface as the mechanism for pump actuation. That is, electrochemically induced changes in the surface tension of mercury result in the pistonlike movement of a mercury column confined within a capillary. We present herein theoretical and experimental assessments of pump performance. The design and construction of the pump are detailed, and the potential attributes of this design, including the generated pumping pressure, flow rate, and power consumption, are discussed. The possible miniaturization of the pump for use as a field-deployable, fluid-delivery device is also briefly examined.
Characterization of fluid flow in naturally fractured reservoirs. Final report
Evans, R.D.
1981-08-01
This report summarizes the results of a four month study of the characteristics of multiphase flow in naturally fractured porous media. An assessment and evaluation of the literature was carried out and a comprehensive list of references compiled on the subject. Mathematical models presented in the various references cited were evaluated along with the stated assumptions or those inherent in the equations. Particular attention was focused upon identifying unique approaches which would lead to the formulation of a general mathematical model of multiphase/multi-component flow in fractured porous media. A model is presented which may be used to more accurately predict the movement of multi-phase fluids through such type formations. Equations of motion are derived for a multiphase/multicomponent fluid which is flowing through a double porosity, double permeability medium consisting of isotropic primary rock matrix blocks and an anisotropic fracture matrix system. The fractures are assumed to have a general statistical distribution in space and orientation. A general distribution function, called the fracture matrix function is introduced to represent the statistical nature of the fractures.
Microfluidic-SANS: flow processing of complex fluids
NASA Astrophysics Data System (ADS)
Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.
2015-01-01
Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (~3-15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01-0.3 Å-1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter.
Microfluidic-SANS: flow processing of complex fluids
Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.
2015-01-01
Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01–0.3 Å−1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter. PMID:25578326
Modelling couplings between reaction, fluid flow and deformation: Kinetics
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.
2016-04-01
Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.
Two-fluid model for two-phase flow
Ishii, M.
1987-01-01
The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research. 87 refs.
FLUID FLOW, SOLUTE MIXING AND PRECIPITATION IN POROUS MEDIA
Redden, George D; Y. Fang; T.D. Scheibe; A.M. Tartakovsky; Fox, Don T; Fujita, Yoshiko; White, Timothy A
2006-09-01
Reactions that lead to the formation of mineral precipitates, colloids or growth of biofilms in porous media often depend on the molecular-level diffusive mixing. For example, for the formation of mineral phases, exceeding the saturation index for a mineral is a minimum requirement for precipitation to proceed. Solute mixing frequently occurs at the interface between two solutions each containing one or more soluble reactants, particularly in engineered systems where contaminant degradation or modification or fluid flow are objectives. Although many of the fundamental component processes involved in the deposition or solubilization of solid phases are reasonably well understood, including precipitation equilibrium and kinetics, fluid flow and solute transport, the deposition of chemical precipitates, biofilms and colloidal particles are all coupled to flow, and the science of such coupled processes is not well developed. How such precipitates (and conversely, dissolution of solids) are distributed in the subsurface along flow paths with chemical gradients is a complex and challenging problem. This is especially true in systems that undergo rapid change where equilibrium conditions cannot be assumed, particularly in subsurface systems where reactants are introduced rapidly, compared to most natural flow conditions, and where mixing fronts are generated. Although the concept of dispersion in porous media is frequently used to approximate mixing at macroscopic scales, dispersion does not necessarily describe pore-level or molecular level mixing that must occur for chemical and biological reactions to be possible. An example of coupling between flow, mixing and mineral precipitation, with practical applications to controlling fluid flow or contaminant remediation in subsurface environments is shown in the mixing zone between parallel flowing solutions. Two- and three-dimensional experiments in packed-sand media were conducted where solutions containing calcium and
Oscillatory Fluid Flow Influences Primary Cilia and Microtubule Mechanics
Espinha, Lina C.; Hoey, David A.; Fernandes, Paulo R.; Rodrigues, Hélder C.; Jacobs, Christopher R.
2014-01-01
Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. PMID:25044764
Reducing or stopping the uncontrolled flow of fluid such as oil from a well
Hermes, Robert E
2014-02-18
The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.
Manipulation and Confinement of Single Particles using Fluid Flow
Tanyeri, Melikhan; Schroeder, Charles M.
2013-01-01
High precision control of micro- and nanoscale objects in aqueous media is an essential technology for nanoscience and engineering. Existing methods for particle trapping primarily depend on optical, magnetic, electrokinetic, and acoustic fields. In this work, we report a new hydrodynamic flow based approach that allows for fine-scale manipulation and positioning of single micro- and nanoscale particles using automated fluid flow. As a proof-of-concept, we demonstrate trapping and two-dimensional manipulation of 500 nm and 2.2 μm diameter particles with a positioning precision as small as 180 nm during confinement. By adjusting a single flow parameter, we further show that the shape of the effective trap potential can be efficiently controlled. Finally, we demonstrate two distinct features of the flow-based trapping method, including isolation of a single particle from a crowded particle solution and active control over the surrounding medium of a trapped object. The 2-D flow-based trapping method described here further expands the micro/nanomanipulation toolbox for small particles and holds strong promise for applications in biology, chemistry, and materials research. PMID:23682823
Mechanics of fluid flow over compliant wrinkled polymeric surfaces
NASA Astrophysics Data System (ADS)
Raayai, Shabnam; McKinley, Gareth; Boyce, Mary
2014-03-01
Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.
Manipulation and confinement of single particles using fluid flow.
Tanyeri, Melikhan; Schroeder, Charles M
2013-06-12
High precision control of micro- and nanoscale objects in aqueous media is an essential technology for nanoscience and engineering. Existing methods for particle trapping primarily depend on optical, magnetic, electrokinetic, and acoustic fields. In this work, we report a new hydrodynamic flow based approach that allows for fine-scale manipulation and positioning of single micro- and nanoscale particles using automated fluid flow. As a proof-of-concept, we demonstrate trapping and two-dimensional (2D) manipulation of 500 nm and 2.2 μm diameter particles with a positioning precision as small as 180 nm during confinement. By adjusting a single flow parameter, we further show that the shape of the effective trap potential can be efficiently controlled. Finally, we demonstrate two distinct features of the flow-based trapping method, including isolation of a single particle from a crowded particle solution and active control over the surrounding medium of a trapped object. The 2D flow-based trapping method described here further expands the micro/nanomanipulation toolbox for small particles and holds strong promise for applications in biology, chemistry, and materials research.
k Spectrum of Passive Scalars in Lagrangian Chaotic Fluid Flows
NASA Astrophysics Data System (ADS)
Antonsen, Thomas M., Jr.; Fan, Zhencan Frank; Ott, Edward
1995-08-01
An eikonal-type description for the evolution of k spectra of passive scalars convected in a Lagrangian chaotic fluid flow is shown to accurately reproduce results from orders of magnitude more time consuming computations based on the full passive scalar partial differential equation. Furthermore, the validity of the reduced description, combined with concepts from chaotic dynamics, allows new theoretical results on passive scalar k spectra to be obtained. Illustrative applications are presented to long-time passive scalar decay, and to Batchelor's law k spectrum and its diffusive cutoff.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
Application of image processing techniques to fluid flow data analysis
NASA Technical Reports Server (NTRS)
Giamati, C. C.
1981-01-01
The application of color coding techniques used in processing remote sensing imagery to analyze and display fluid flow data is discussed. A minicomputer based color film recording and color CRT display system is described. High quality, high resolution images of two-dimensional data are produced on the film recorder. Three dimensional data, in large volume, are used to generate color motion pictures in which time is used to represent the third dimension. Several applications and examples are presented. System hardware and software is described.
Direction of fluid flow and the properties of fibrous filters
Pich, J.; Spurny, K.
1991-01-01
The influence of the fluid flow direction (downflow and upflow) on the filtration properties of filters that have a fibrous structure is investigated. It is concluded that selectivity of these filters (dependence of the filter efficiency on the particle size) in the case of upflow is changed - in comparison with the case of downflow - in three ways: the position of the minimum of this dependence is shifted to larger particle sizes, and the whole selectivity is decreased and simultaneously deformed. Corresponding equations for this shift and changes are derived and analyzed. Theoretical predictions are compared with available experimental data. In all cases qualitative agreement and in some cases quantitative agreement is found.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
Pattern formation in granular and granular-fluid flows
NASA Astrophysics Data System (ADS)
Duong, Nhat-Hang P.
Particles and suspensions of particles in fluids are regularly used in many engineering disciplines such as catalysis and reaction engineering, environmental engineering, pharmaceutical engineering, etc. A few issues that are commonly encountered include ensuring homogeneity in pharmaceutical suspensions, predicting particle transport in atmospheric and effluent streams, and manufacturing uniform composite materials. Yet the fundamental study of particle motions in granular media or in highly concentrated granular suspensions has received little attention. Relevant issues of research interest include development of adaptive models that permit wide ranges of particle concentrations, improvement of analyses that allow physical interpretation of particle motions in any medium, of scales ranging from particle size to system size, and accurate validation of theoretical with experimental data. Given the above shortcomings, this dissertation will focus on investigating basic transport behavior of particles in fluids and developing predictive models for granular media and granular suspensions. Emphasis will be given to combining experiments with computations through examples of pattern forming phenomena in a granular medium and a dense granular-fluid system. The background motivation and the objectives of this dissertation are stated in the opening chapter 1. The next three chapters address these objectives in detail. First, chapter 2 presents experimental evidence, descriptions, and characteristics of novel patterns in a dense granular suspension. This is followed by chapter 3 in which a mean-field continuum model is derived to further elucidate the reported patterning phenomena. Chapter 4 uncovers several novel granular patterns experimentally and is concluded with a coarse-grained phenomenological model for granular surface flows. Lastly, chapter 5 closes the dissertation with conclusions and possible future directions. This work provides additional understanding and
Fluid flow vorticity measurement using laser beams with orbital angular momentum.
Ryabtsev, A; Pouya, S; Safaripour, A; Koochesfahani, M; Dantus, M
2016-05-30
Vorticity is one of the most important dynamic flow variables and is fundamental to the basic flow physics of many areas of fluid dynamics, including aerodynamics, turbulent flows and chaotic motion. We report on the direct measurements of fluid flow vorticity using a beam with orbital angular momentum that takes advantage of the rotational Doppler shift from microparticles intersecting the beam focus. Experiments are carried out on fluid flows with well-characterized vorticity and the experimental results are found to be in excellent agreement with the expected values. This method allows for localized real-time determination of vorticity in a fluid flow with three-dimensional resolution.
Energy flow model for thin plate considering fluid loading with mean flow
NASA Astrophysics Data System (ADS)
Han, Ju-Bum; Hong, Suk-Yoon; Song, Jee-Hun
2012-11-01
Energy Flow Analysis (EFA) has been developed to predict the vibration energy density of system structures in the high frequency range. This paper develops the energy flow model for the thin plate in contact with mean flow. The pressure generated by mean flow affects energy governing equation and power reflection-transmission coefficients between plates. The fluid pressure is evaluated by using velocity potential and Bernoulli's equation, and energy governing equations are derived by considering the flexural wavenumbers of a plate, which are different along the direction of flexural wave and mean flow. The derived energy governing equation is composed of two kinds of group velocities. To verify the developed energy flow model, various numerical analyses are performed for a simple plate and a coupled plate for several excitation frequencies. The EFA results are compared with the analytical solutions, and correlations between the EFA results and the analytical solutions are verified.
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)
2014-01-01
A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.
NASA Astrophysics Data System (ADS)
Eslami, Parastou; Seo, Jung-Hee; Lardo, Albert C.; Mittal, Rajat
2013-11-01
Recent coronary computed tomography angiography studies have noted the presence of axial contrast concentration gradients in stenosed coronary arteries, but the mechanism responsible for this phenomenon is not well understood. We use computational fluid dynamics to study intracoronary contrast dispersion and the correlation of concentration gradients with intracoronary blood flow and stenotic severity. Simulations of flow and contrast dispersion in both canonical and patient derived models of the left coronary artery (LCA) are carried out with a prescribed contrast bolus profile, and stenoses of varying severities (0% to 80%) considered. Data from our CFD simulations show the presence of measurable contrast gradients, the magnitude of which is found to decrease monotonically with stenotic severity and increase monotonically with the pressure drop across the stenosis. All simulated cases indicate a strong inverse correlation between contrast gradients and coronary flow rate. The study reveals that contrast gradients are generated by intracoronary advection effects, and therefore, encode coronary flow velocity. This research is supported by a grant from Coulter Foundation.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai
1998-01-01
This paper considers an algebraic preconditioning algorithm for hyperbolic-elliptic fluid flow problems. The algorithm is based on a parallel non-overlapping Schur complement domain-decomposition technique for triangulated domains. In the Schur complement technique, the triangulation is first partitioned into a number of non-overlapping subdomains and interfaces. This suggests a reordering of triangulation vertices which separates subdomain and interface solution unknowns. The reordering induces a natural 2 x 2 block partitioning of the discretization matrix. Exact LU factorization of this block system yields a Schur complement matrix which couples subdomains and the interface together. The remaining sections of this paper present a family of approximate techniques for both constructing and applying the Schur complement as a domain-decomposition preconditioner. The approximate Schur complement serves as an algebraic coarse space operator, thus avoiding the known difficulties associated with the direct formation of a coarse space discretization. In developing Schur complement approximations, particular attention has been given to improving sequential and parallel efficiency of implementations without significantly degrading the quality of the preconditioner. A computer code based on these developments has been tested on the IBM SP2 using MPI message passing protocol. A number of 2-D calculations are presented for both scalar advection-diffusion equations as well as the Euler equations governing compressible fluid flow to demonstrate performance of the preconditioning algorithm.
Characterization of Fluid Flow in Paper-Based Microfluidic Systems
NASA Astrophysics Data System (ADS)
Walji, Noosheen; MacDonald, Brendan
2014-11-01
Paper-based microfluidic devices have been presented as a viable low-cost alternative with the versatility to accommodate many applications in disease diagnosis and environmental monitoring. Current microfluidic designs focus on the use of silicone and PDMS structures, and several models have been developed to describe these systems; however, the design process for paper-based devices is hindered by a lack of prediction capability. In this work we simplify the complex underlying physics of the capillary-driven flow mechanism in a porous medium and generate a practical numerical model capable of predicting the flow behaviour. We present our key insights regarding the properties that dictate the behaviour of fluid wicking in paper-based microfluidic devices. We compare the results from our model to experiments and discuss the application of our model to design of paper-based microfluidic devices for arsenic detection in drinking water in Bangladesh.
Generalized Newtonian fluid flow through fibrous porous media
NASA Astrophysics Data System (ADS)
Mierzwiczak, Magdalena; Kołodziej, Jan Adam; Grabski, Jakub Krzysztof
2016-06-01
The numerical calculations of the velocity field and the component of transverse permeability in the filtration equation for steady, incompressible flow of the generalized Newtonian fluid through the assemblages of cylindrical fibers are presented in this paper. The fibers are arranged regularly in arrays. Flow is transverse with respect to the fibers. The non-linear governing equation in the repeated element of the array is solved using iteration method. At each iteration step the method of fundamental solutions and the method of particular solutions are used. The bundle of fibers is treated as a porous media and on the base of velocity field the permeability coefficients are calculated as a function of porosity.
Hiemenz flow of a micropolar viscoelastic fluid in hydromagnetics
NASA Astrophysics Data System (ADS)
El-Kabeir, S. M. M.
2005-10-01
Boundary-layer equations are solved for the hydromagnetic problem of two-dimensional Hiemenz flow, for a micropolar, viscoelastic, incompressible, viscous, electrically conducting fluid, impinging perpendicularly onto a plane in the presence of a transverse magnetic field. The governing system of equations is first transformed into a dimensionless form. The resulting equations then are solved by using the Runge-Kutta numerical integration procedure in conjunction with shooting technique. Numerical solutions are presented for the governing momentum and angular-momentum equations. The proposed approximate solution, although simple, is nevertheless sufficiently accurate for the entire investigated range of values of the Hartman number. The effect of micropolar and viscoelastic parameters on Hiemenz flow in hydromagnetics is discussed.
Fluid mechanics experiments in oscillatory flow. Volume 1: Report
NASA Technical Reports Server (NTRS)
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).
Fluid mechanics experiments in oscillatory flow. Volume 1
Seume, J.; Friedman, G.; Simon, T.W.
1992-03-01
Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).
NASA Astrophysics Data System (ADS)
Lester, D. R.; Trefry, M. G.; Metcalfe, G.
2016-11-01
The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, James R.
1982-01-01
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1982-05-04
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.
NASA Astrophysics Data System (ADS)
Bose, Sayan; Banerjee, Moloy
2015-07-01
Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region
Fluid-rock Interaction and Episodic Fluid Flow within the Hurricane Fault-zone
NASA Astrophysics Data System (ADS)
Koger, J.; Newell, D. L.
2015-12-01
The Hurricane Fault is an active 250-km long, west dipping, Basin and Range bounding normal fault in SW Utah and NW Arizona. Fault rock alteration and mineralization is common in the damage zone along strike, indicating that this structure has influenced past groundwater flow. Multiple Quaternary basaltic centers are located proximal to the fault. This study tests the hypothesis that fault-zone diagenesis is being driven by deeply circulated meteoric groundwater infiltration and associated rock-water interaction that is punctuated by periods of hydrothermal alteration associated with local magmatism. Fault-parallel/oblique fractures and small-offset antithetic and synthetic normal faults have been found within fault-zone rocks. The intensity of fracturing and associated evidence of fluid-rock interaction progressively decreases away from the main fault trace into the footwall. Host rock alteration, hematite mineralized fault surfaces, and calcite and hematite cemented deformation bands and veins are observed. These features are focused in 1 - 2 m wide zones of fracturing with densities of 6 - 18 m-1 located within the footwall damage zone. Host rock alteration in the form of both "bleaching" and oxidation along fractures provides evidence for past redox reactions. Mineralization in deformation bands suggests that some fluid flow and diagenesis was penecontemporaneous with deformation. Laminations and cross-cutting relationships in veins indicate periodic mineralization that could be controlled by episodic fluid flow, or fracturing and degassing leading to calcite precipitation. Stable isotopic results from calcite veins show δ13CPDB values of -7 to 3 ‰ and δ18OPDB values of -19 to -9 ‰. Carbon stable isotope ratios suggest multiple carbon sources such as marine carbonates, organic sedimentary rocks, and mantle derived CO2. Temperature differences in paleofluids and associated fluid-rock interaction may explain the observed range in δ18O values. Fluid
Sensor for Boundary Shear Stress in Fluid Flow
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.
2012-01-01
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.
Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles
NASA Astrophysics Data System (ADS)
Tzirtzilakis, E. E.
2015-06-01
In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.
A review of interaction mechanisms in fluid-solid flows
Johnson, G.; Rajagopal, K.R. . Dept. of Mechanical Engineering); Massoudi, M. )
1990-09-01
Multiphase flows have become the subject of considerable attention because of their importance in many industrial applications, such as fluidized beds, pneumatic transport of solids, coal combustion, etc. Fundamental research into the nature of pneumatic transport has made significant progress in identifying key parameters controlling the characteristics of these processes. The emphasis of this study is on a mixture composed of spherical particles of uniform size and a linearly viscous fluid. Section 1 introduces our approach and the importance of this study. In Section 2, the dynamics of a single particle as studied in classical hydrodynamics and fluid dynamics is presented. This has been a subject of study for more than 200 years. In Section 3, we review the literature for the constitutive relations as given in multiphase studies, i.e., generalization of single particle and as given in literature concerning the continuum theories of mixtures or multicomponent systems. In Section 4, a comparison between these representations and the earlier approach, i.e., forces acting on a single particle will be made. The importance of flow regimes, particle concentration, particle size and shape, rotation of the particle, effect of solid walls, etc. are discussed. 141 refs.
Applying uncertainty quantification to multiphase flow computational fluid dynamics
Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C
2013-07-01
Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.
Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data
NASA Technical Reports Server (NTRS)
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).
Protein Crystal Movements and Fluid Flows During Microgravity Growth
NASA Technical Reports Server (NTRS)
Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.
1998-01-01
The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.
Breakup modes of fluid drops in confined shear flows
NASA Astrophysics Data System (ADS)
Barai, Nilkamal; Mandal, Nibir
2016-07-01
Using a conservative level set method we investigate the deformation behavior of isolated spherical fluid drops in a fluid channel subjected to simple shear flows, accounting the following three non-dimensional parameters: (1) degree of confinement (Wc = 2a/h, where a is the drop radius and h is the channel thickness); (2) viscosity ratio between the two fluids (λ = μd/μm, where μd is the drop viscosity and μm is the matrix viscosity); and (3) capillary number (Ca). For a given Wc, a drop steadily deforms to attain a stable geometry (Taylor number and inclination of its long axis to the shear direction) when Ca < 0.3. For Ca > 0.3, the deformation behavior turns to be unsteady, leading to oscillatory variations of both its shape and orientation with progressive shear. This kind of unsteady deformation also occurs in a condition of high viscosity ratios (λ > 2). Here we present a detailed parametric analysis of the drop geometry with increasing shear as a function of Wc, Ca, and λ. Under a threshold condition, deforming drops become unstable, resulting in their breakup into smaller droplets. We recognize three principal modes of breakup: Mode I (mid-point pinching), Mode II (edge breakup), and Mode III (homogeneous breakup). Each of these modes is shown to be most effective in the specific field defined by Ca and λ. Our study also demonstrates the role of channel confinement (Wc) in controlling the transition of Mode I to III. Finally, we discuss implications of the three modes in determining characteristic drop size distributions in multiphase flows.
NASA Astrophysics Data System (ADS)
Doughty, Christine; Tsang, Chin-Fu; Yabuuchi, Satoshi; Kunimaru, Takanori
2013-03-01
SummaryThe flowing fluid electric conductivity (FFEC) logging method is a well-logging technique that may be used to estimate flow rate, salinity, transmissivity, and hydraulic head of individual fractures or high-permeability zones intersected by a wellbore. Wellbore fluid is first replaced with fluid of a contrasting electric conductivity, then repeated FEC logging is done while the well is pumped. Zones where fluid flows into the wellbore show peaks in the FEC logs, which may be analyzed to infer inflow rate and salinity of the individual fractures. Conducting the procedure with two or more pumping rates (multi-rate FFEC logging) enables individual fracture transmissivity and hydraulic head to be determined. Here we describe the first application of the multi-rate FFEC logging method to an artesian well, using a 500-m well in fractured rock at Horonobe, Japan. An additional new factor at the site is the presence of regional groundwater flow, which heretofore has only been studied with synthetic data. FFEC logging was conducted for two different pumping rates. Several analysis techniques had to be adapted to account for the artesian nature of the well. The results were subsequently compared with independent salinity measurements and transmissivity and hydraulic head values obtained from packer tests in the same well. Despite non-ideal operating conditions, multi-rate FFEC logging successfully determined flow rate, salinity, and transmissivity of 17 conducting fractures intercepted by the logged section of the borehole, including two fractures with regional groundwater flow. Predictions of hydraulic head were less accurate, a not unexpected result in light of operational problems and the form of the equation for hydraulic head, which involves the difference between two uncertain quantities. This study illustrates the strengths and weaknesses of the multi-rate FFEC logging method applied to artesian wells. In conjunction with previous studies, it demonstrates the
Elliptical Particle Clustering in Cellular Flows
NASA Astrophysics Data System (ADS)
Atis, Severine; Sapsis, Themistoklis; Peacock, Thomas
2015-11-01
The transport of finite-sized objects by fluid flows is relevant to a wide variety of phenomena, such as debris transport on the ocean surface or bacteria advection in fluid environment. The shape of the advected objects can strongly alter their coupling with the surrounding flow field, and hence, greatly affecting their dispersion by the flow. We present the results of investigations of the behavior of neutrally buoyant, elliptical particles in two-dimensional cellular flows. We find that their trajectories, and overall organization, are markedly different than for spherical particles, with clear clustering for the elliptical particles associated with vortices.
Large-eddy simulation of supercritical fluid flow and combustion
NASA Astrophysics Data System (ADS)
Huo, Hongfa
The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The
Occurrence of turbulent flow conditions in supercritical fluid chromatography.
De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2014-09-26
Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going
How Hydrate Saturation Anomalies are Diffusively Constructed and Advectively Smoothed
NASA Astrophysics Data System (ADS)
Rempel, A. W.; Irizarry, J. T.; VanderBeek, B. P.; Handwerger, A. L.
2015-12-01
The physical processes that control the bulk characteristics of hydrate reservoirs are captured reasonably well by long-established model formulations that are rooted in laboratory-verified phase equilibrium parameterizations and field-based estimates of in situ conditions. More detailed assessments of hydrate distribution, especially involving the occurrence of high-saturation hydrate anomalies have been more difficult to obtain. Spatial variations in sediment properties are of central importance for modifying the phase behavior and promoting focussed fluid flow. However, quantitative predictions of hydrate anomaly development cannot be made rigorously without also addressing the changes in phase behavior and mechanical balances that accompany changes in hydrate saturation level. We demonstrate how pore-scale geometrical controls on hydrate phase stability can be parameterized for incorporation in simulations of hydrate anomaly development along dipping coarse-grained layers embedded in a more fine-grained background that is less amenable to fluid transport. Model simulations demonstrate how hydrate anomaly growth along coarse-layer boundaries is promoted by diffusive gas transport from the adjacent fine-grained matrix, while advective transport favors more distributed growth within the coarse-grained material and so effectively limits the difference between saturation peaks and background levels. Further analysis demonstrates how sediment contacts are unloaded once hydrate saturation reaches sufficient levels to form a load-bearing skeleton that can evolve to produce segregated nodules and lenses. Decomposition of such growth forms poses a significant geohazard that is expected to be particularly sensitive to perturbations induced by gas extraction. The figure illustrates the predicted evolution of hydrate saturation Sh in a coarse-grained dipping layer showing how prominent bounding hydrate anomalies (spikes) supplied by diffusive gas transport at early times
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis
NASA Technical Reports Server (NTRS)
Oren, J. A.; Williams, D. R.
1975-01-01
The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.
Sylolites in carbonate rock: barriers to fluid flow?
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Reuschlé, T.
2012-04-01
Stylolites, products of intergranular pressure-solution, form laterally-extensive, clay-enriched, planar features in porous sedimentary rocks. While mechanical strain localisation has been shown to dramatically decrease permeability in sedimentary rock (Baud et al., 2012), little attention has focused on the impact of chemical strain localisation. Potentially, stylolites could significantly influence regional fluid flow, an important consideration in, for example, geotechnical engineering and petroleum geoscience. To this end, we have performed a systematic study of the influence of stylolites (both parallel and perpendicular to the imposed flow direction) on the water and gas permeability of three oolitic limestones with porosities ranging from 6 to 16 %. Our experimental data show that the presence of stylolites increased the permeability of our limestone samples by about a factor of two (when compared to the adjacent stylolite-free material). However, the magnitude of the permeability increase was found to be independent of stylolite orientation and number. Porosity measurements demonstrated that core samples containing stylolites were consistently more porous than the adjacent stylolite-free material. We therefore suggest that it is the increase in porosity (or "stylolitic porosity", as a result of the presence of a stylolite) that is responsible for the observed modest increase in permeability. This conclusion is supported by x-ray computed tomographic images of the samples that show that sample density is unperturbed by the presence of a stylolite. We can further conclude that the impact of mechanical strain localisation (e.g., compaction bands, see Baud et al., 2012) has a much greater impact on fluid flow than chemical strain localisation (e.g., stylolites, this study).
Fluid Flow Induced Calcium Response in Bone Cell Network
Huo, Bo; Lu, Xin L.; Hung, Clark T.; Costa, Kevin D.; Xu, Qiaobing; Whitesides, George M.; Guo, X. Edward
2010-01-01
In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95–107, 2006]. The present study investigated the calcium response and the underlying signaling pathways in patterned bone cell networks exposed to a steady fluid flow. The glass slides with cell networks were separated into eight groups for treatment with specific pharmacological agents that inhibit pathways significant in bone cell calcium signaling. The calcium transients of the network were recorded and quantitatively evaluated with a set of network parameters. The results showed that 18α-GA (gap junction blocker), suramin (ATP inhibitor), and thapsigargin (depleting intracellular calcium stores) significantly reduced the occurrence of multiple calcium peaks, which were visually obvious in the untreated group. The number of responsive peaks also decreased slightly yet significantly when either the COX-2/PGE2 or the NOS/nitric oxide pathway was disrupted. Different from all other groups, cells treated with 18α-GA maintained a high concentration of intracellular calcium following the first peak. In the absence of calcium in the culture medium, the intracellular calcium concentration decreased slowly with fluid flow without any calcium transients observed. These findings have identified important factors in the flow mediated calcium signaling of bone cells within a patterned network. PMID:20852730
Modeling breakup and relaxation of Newtonian droplets using the advected phase-field approach
NASA Astrophysics Data System (ADS)
Beaucourt, J.; Biben, T.; Leyrat, A.; Verdier, C.
2007-02-01
The relaxation and breakup of Newtonian droplets is considered using the advected field approach. This method allows one to follow the deformation of interfaces using an order parameter field [Biben , Europhys. Lett. 63, 623 (2003)] based on a Ginzburg-Landau equation. Using this method, it is possible to follow the breakup of droplets and stability curves can be obtained in both two- and three-dimensional shear and elongational flows. Finally, relaxation of a droplet is considered, following the application of an elongational flow. The results are compared with previous experimental data [Ha and Leal, Phys. Fluids 13, 1568 (2001)], and are found to be in satisfactory agreement. The method is general enough to be applied to other non-Newtonian fluids, such as Oldroyd-B fluids or viscoplastic materials.
NASA Astrophysics Data System (ADS)
Culling, D. P.; Solomon, E. A.; Kastner, M.; Berg, R. D.
2013-12-01
Fluid flow through marine sediments and oceanic crust impacts seawater chemistry as well as diagenetic, thermal, seismic, and magmatic processes at plate boundaries, creates ore and gas hydrate deposits at and below seafloor, and establishes and maintains deep microbial ecosystems. However, steady-state fluid flow rates, as well as the temporal and spatial variability of fluid flow and composition are poorly constrained in many marine environments. A new, low-cost instrument deployable by ROV or submersible, named the Mosquito, was recently developed to provide continuous, long-term and campaign style monitoring of fluid flow rate and contemporaneous solute fluxes at multiple depths below the sea floor. The Mosquito consists of a frame that houses several osmotic pumps (Osmo-Samplers [OS]) connected to coils of tubing that terminate with an attachment to long thin titanium (Ti) needles, all of which are mounted to a release plate. The OS's consist of an acrylic housing which contains a brine chamber (BC) and a distilled water chamber (DWC) separated by semi permeable membranes. The osmotic gradient between the chambers drives the flow of distilled water into the BC. The DWC is connected to the Teflon tubing coil and a Ti needle, both of which are also filled with distilled water, thus the OS pulls fluid from the base of the needle through the tubing coil. One central Ti needle is attached to a custom-made tracer injection assembly, filled with a known volume of tracer, which is triggered, injecting a point source in the sediment. On a typical Mosquito, 4 needles are mounted vertically at varying depths with respect to the tracer injection needle, and 4 needles are mounted at equal depth but set at variable horizontal distances away from the tracer injection. Once the Mosquito has been placed on the seafloor, the release plate is manually triggered pushing the Ti needles into the sediment, then the tracer injection assembly is actuated. As the tracer is advected
Advanced tomographic flow diagnostics for opaque multiphase fluids
Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.
1997-05-01
This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji
2011-12-16
Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed
Advective removal of intraparticle uranium from contaminated vadose zone sediments, Hanford, U.S.
Ilton, Eugene S; Qafoku, Nikolla P; Liu, Chongxuan; Moore, Dean A; Zachara, John M
2008-03-01
A column study on U(VI)-contaminated vadose zone sediments from the Hanford Site, WA, was performed to investigate U(VI) release kinetics with water advection and variable geochemical conditions. The sediments were collected from an area adjacent to and below tank BX-102 that was contaminated as a result of a radioactive tank waste overfill event. The primary reservoir for U(VI) in the sediments are micrometer-size precipitates composed of nanocrystallite aggregates of a Na-U-Silicate phase, most likely Na-boltwoodite, that nucleated and grew within microfractures of the plagioclase component of sand-sized granitic clasts. Two sediment samples, with different U(VI) concentrations and intraparticle mass transfer properties, were leached with advective flows of three different solutions. The influent solutions were all calcite-saturated and in equilibrium with atmospheric CO2. One solution was prepared from DI water, the second was a synthetic groundwater (SGW) with elevated Na that mimicked groundwater at the Hanford site, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments, and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by slower near steady-state release. U(VI)aq concentrations increased during subsequent stop-flow events. The electrolytes with elevated Na and Si depressed U(VL)aq concentrations in effluent solutions. Effluent U(VI)aq concentrations for both sediments and all three electrolytes were simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution, intraparticle U(VI)aq diffusion, and interparticle advection, where diffusion and dissolution properties were parameterized in a previous batch study.
Fluid flow patterns in porous media with partially ordered microstructure
NASA Astrophysics Data System (ADS)
Mirsaeidi, A.; Thompson, K. E.
2014-12-01
Natural granular porous media found in geosciences applications are disordered at the pore scale, which contributes to the interesting behavior that they exhibit including hydrodynamic dispersion, capillary pressure and wetting behavior, and various types of fingering. Many standard equations and models that have been developed for transport in porous media are based on the assumption of uniform disorder, randomly distributed parameters, and isotropic behavior. However, factors that cause partial ordering (e.g., settling of oblong grains, alignment of elongated particles, or packing structures near a boundary) can lead to anomalous flow behavior relative to the base case, when in turn requires different ways to understand and describe transport. In this work we examine the packing structure and fluid flow patterns in packings of equilateral cylindrical particles that are packed in a tube. The detailed packing structures are obtained experimentally from microCT experiments, and the flow patterns are simulated by numerical solution of the Stokes equations using the finite element method. This research is of interest in chemical engineering because this type of packing is used in catalytic reactors. However, the structures are also interesting from both a fundamental perspective and as prototypes for partially ordered natural materials because the packings undergo a transition from fully disordered internally to highly structured at the wall, and therefore provide insight into differences caused by the ordering.
Spatial and temporal resolution of fluid flows: LDRD final report
Tieszen, S.R.; O`Hern, T.J.; Schefer, R.W.; Perea, L.D.
1998-02-01
This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.
Numerical modeling of coupled pressure solution and fluid flow in quartz sandstones
NASA Astrophysics Data System (ADS)
Sheldon, H. A.; Wheeler, J.; Worden, R.
2001-12-01
Pressure solution in quartz sandstones can be envisaged as a 3-stage process, involving dissolution along grain contacts, diffusion of the solute along the grain contact to the pore space, and removal of the solute from the pore fluid by a combination of diffusive and/or advective transport and chemical reactions (e.g. precipitation of dissolved silica on free grain surfaces). A number of authors have developed mathematical models of pressure solution in order to assess the impact of this process on porosity and permeability in sandstones. However, such models have always been based on a simplified subset of the governing equations, in order to reduce the computation time to an acceptable level. For example, some models assume diffusion through the grain contact zone to be the rate-limiting step, with all the dissolved material precipitating locally in the pore space. Other models assume that the rate of removal of solute from the pore fluid, by diffusion and precipitation, is rate-limiting. It is now possible to solve the full coupled system of equations on a PC, without such simplifications. This enables us to investigate the coupling and interactions between pressure solution, chemical reactions in the pore spaces and macroscale advective/diffusive transport in the pore fluid. Preliminary results of such modeling will be presented, highlighting the importance of modeling pressure solution in an open system, where there is a strong coupling between macroscale transport in the pore fluid and the rate of porosity loss due to compaction and cementation.
LAYER DEPENDENT ADVECTION IN CMAQ
The advection methods used in CMAQ require that the Courant-Friedrichs-Lewy (CFL) condition be satisfied for numerical stability and accuracy. In CMAQ prior to version 4.3, the ADVSTEP algorithm established CFL-safe synchronization and advection timesteps that were uniform throu...
A computational method for sharp interface advection
Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619
NASA Astrophysics Data System (ADS)
Cochran, Robert James
A study of the finite element method applied to two-dimensional incompressible fluid flow analysis with heat transfer is performed using a mixed Galerkin finite element method with the primitive variable form of the model equations. Four biquadratic, quadrilateral elements are compared in this study--the serendipity biquadratic element with bilinear continuous pressure interpolation (Q2(8)-Q1) and the Lagrangian biquadratic element with bilinear continuous pressure interpolation (Q2-Q1) of the Taylor-Hood form. A modified form of the Q-2Q1 element is also studied. The pressure interpolation is augmented by a discontinuous constant shape function for pressure (Q2-Q1+). The discontinuous pressure element formulation makes use of biquadratic shape functions and a discontinuous linear interpolation of the pressure (Q2-P1(3)). Laminar flow solutions, with heat transfer, are compared to analytical and computational benchmarks for flat channel, backward-facing step and buoyancy driven flow in a square cavity. It is shown that the discontinuous pressure elements provide superior solution characteristics over the continuous pressure elements. Highly accurate heat transfer solutions are obtained and the Q2-P1(3) element is chosen for extension to turbulent flow simulations. Turbulent flow solutions are presented for both low turbulence Reynolds number and high Reynolds number formulations of two equation turbulence models. The following three forms of the length scale transport equation are studied: the turbulence energy dissipation rate (epsilon), the turbulence frequency (omega) and the turbulence time scale (tau). It is shown that the low turbulence Reynolds number model consisting of the k-tau transport equations, coupled with the damping functions of Shih and Hsu, provides an optimal combination of numerical stability and solution accuracy for the flat channel flow. Attempts to extend the formulation beyond the flat channel were not successful due to oscillatory
Optimal Stretching in Advection-Reaction-Diffusion Systems
NASA Astrophysics Data System (ADS)
Nevins, Thomas D.; Kelley, Douglas H.
2016-10-01
We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted by the same optimal range of the local advective stretching, but stronger stretching causes reaction blowout and can hinder reaction from spreading. We hypothesize that optimal stretching and blowout occur in many advection-diffusion-reaction systems, perhaps creating ecological niches for phytoplankton in the ocean.
Optimal Stretching in Advection-Reaction-Diffusion Systems.
Nevins, Thomas D; Kelley, Douglas H
2016-10-14
We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted by the same optimal range of the local advective stretching, but stronger stretching causes reaction blowout and can hinder reaction from spreading. We hypothesize that optimal stretching and blowout occur in many advection-diffusion-reaction systems, perhaps creating ecological niches for phytoplankton in the ocean.
Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok
2011-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.
Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface
Munir, Asif; Shahzad, Azeem; Khan, Masood
2015-01-01
The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem. PMID:26110873
Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2015-01-01
The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem.
Flow of viscous fluid along a nonlinearly stretching curved surface
NASA Astrophysics Data System (ADS)
Sanni, K. M.; Asghar, S.; Jalil, M.; Okechi, N. F.
This paper focuses on the flow of viscous fluid over a curved surface stretching with nonlinear power-law velocity. The boundary layer equations are transformed into ordinary differential equations using suitable non-dimensional transformations. These equations are solved numerically using shooting and Runge-Kutta (RK) methods. The impact of non-dimensional radius of curvature and power-law indices on the velocity field, the pressure and the skin friction coefficient are investigated. The results deduced for linear stretching are compared with the published work to validate the numerical procedure. The important findings are: (a) Slight variation of the curvature of the stretching sheet increases the velocity and the skin friction coefficient significantly. (b) The nonlinearity of the stretching velocity increases the skin friction. (c) The results for linear stretching and the flat surface are the special cases of this problem.
Fluid flow effects in evaporation from liquid-vapor meniscus
Khrustalev, D.; Faghri, A.
1996-12-31
A mathematical model of the evaporating liquid-vapor meniscus in a capillary slot has been developed. The model includes two-dimensional steady-state momentum conservation and energy equations for both the vapor and liquid phases, and incorporates the existing simplified one-dimensional model of the evaporating microfilm. The numerical results, obtained for water, demonstrate the importance of accounting for the fluid flow in calculating the effective evaporative heat transfer coefficient and the superheat of the vapor over the liquid-vapor meniscus due to the heat transfer from the heated wall. With higher heat fluxes, a recirculation zone appears in the vapor near the heated wall due to the extensive evaporation in the thin-film region of the liquid-vapor meniscus.
Fractal scaling and fluid flow in fracture networks in rock
Barton, C.C.
1996-12-31
Recovery of oil and gas resources and injection of toxic waste materials requires quantitative models to describe and predict the movement of fluids in rock. Existing models based on pore-space flow are inappropriate for study of the more rapid process of fluid flow through fracture networks. This type of flow is not a simple function of the fracture characteristics at any particular scale, but rather the integration of fracture contributions at all scales. The mathematical constructs of fractal geometry are well suited to quantify and model relationships within complex systems that are statistically self-similar over a wide range of scales. Analyses show that fracture traces mapped on two-dimensional slices through three-dimensional nature fracture networks in rock follow a fractal scaling law over six orders of magnitude. Detailed measurements of 17 two-dimensional samples of fracture networks (at diverse scales in rocks of dissimilar age, lithology, and tectonic setting) show similar fractal dimensions in the range 1.3-1.7. The range in fractal dimension implies that a single physical process of rock fracturing operates over a wide range of scales, from microscopic cracks to large, regional fault systems. The knowledge that rock-fracture networks are fractal allows the use of data from a one-dimensional drill-hole sample to predict the two- and three-dimensional scaling of the fracture system. The spacing of fractures in drill holes is a fractal Cantor distribution, and the range of fractal dimension is 0.4-0.6, which is an integer dimension less than that of fracture-trace patterns exposed on two-dimensional, planar sections. A reconstruction of the fracture history at the point of initial connectivity across the network (percolation) has a fractal dimension of 1.35 as compared to a dimension of 1.9 for the percolation cluster in a two-dimensional model. Paleo flow was mapped based on the deposition of aqueous minerals on the fracture surface.
Fractal scaling and fluid flow in fracture networks in rock
Barton, C.C. )
1996-01-01
Recovery of oil and gas resources and injection of toxic waste materials requires quantitative models to describe and predict the movement of fluids in rock. Existing models based on pore-space flow are inappropriate for study of the more rapid process of fluid flow through fracture networks. This type of flow is not a simple function of the fracture characteristics at any particular scale, but rather the integration of fracture contributions at all scales. The mathematical constructs of fractal geometry are well suited to quantify and model relationships within complex systems that are statistically self-similar over a wide range of scales. Analyses show that fracture traces mapped on two-dimensional slices through three-dimensional nature fracture networks in rock follow a fractal scaling law over six orders of magnitude. Detailed measurements of 17 two-dimensional samples of fracture networks (at diverse scales in rocks of dissimilar age, lithology, and tectonic setting) show similar fractal dimensions in the range 1.3-1.7. The range in fractal dimension implies that a single physical process of rock fracturing operates over a wide range of scales, from microscopic cracks to large, regional fault systems. The knowledge that rock-fracture networks are fractal allows the use of data from a one-dimensional drill-hole sample to predict the two- and three-dimensional scaling of the fracture system. The spacing of fractures in drill holes is a fractal Cantor distribution, and the range of fractal dimension is 0.4-0.6, which is an integer dimension less than that of fracture-trace patterns exposed on two-dimensional, planar sections. A reconstruction of the fracture history at the point of initial connectivity across the network (percolation) has a fractal dimension of 1.35 as compared to a dimension of 1.9 for the percolation cluster in a two-dimensional model. Paleo flow was mapped based on the deposition of aqueous minerals on the fracture surface.
Fluid Structural Analysis of Urine Flow in a Stented Ureter
Gómez-Blanco, J. Carlos; Martínez-Reina, F. Javier; Cruz, Domingo; Pagador, J. Blas; Sánchez-Margallo, Francisco M.; Soria, Federico
2016-01-01
Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach. PMID:27127535
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, M.G.
1999-03-23
A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, Marcos German
1999-01-01
A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.
Muir, Peter; Sample, Susannah J; Barrett, Jennifer G; McCarthy, Jenna; Vanderby, Ray; Markel, Mark D; Prokuski, Laura J; Kalscheur, Vicki L
2007-04-01
Functional adaptation of bone to cyclic fatigue involves a complex physiological response that is targeted to sites of microdamage. The mechanisms that regulate this process are not understood, although lacunocanalicular interstitial fluid flow is likely important. We investigated the effect of a single period of cyclic fatigue on bone blood flow and interstitial fluid flow. The ulnae of 69 rats were subjected to cyclic fatigue unilaterally using an initial peak strain of -6000 muepsilon until 40% loss of stiffness developed. Groups of rats (n=23 per group) were euthanized immediately after loading, at 5 days, and at 14 days. The contralateral ulna served as a treatment control, and a baseline control group (n=23) that was not loaded was also included. After euthanasia, localization of intravascular gold microspheres within the ulna (n=7 rats/group) and tissue distribution of procion red tracer were quantified (n=8 rats/group). Microcracking, modeling, and remodeling (Cr.S.Dn, microm/mm(2), Ne.Wo.B.T.Ar, mm(2), and Rs.N/T.Ar, #/mm(2) respectively) were also quantified histologically (n=8 rats/group). Cyclic fatigue loading induced hyperemia of the loaded ulna, which peaked at 5 days after loading. There was an associated overall decrease in procion tracer uptake in both the loaded and contralateral control ulnae. Tracer uptake was also decreased in the periosteal region, when compared with the endosteal region of the cortex. Pooling of tracer was seen in microdamaged bone typically adjacent to an intracortical stress fracture at all time points after fatigue loading; in adjacent bone tracer uptake was decreased. New bone formation was similar at 5 days and at 14 days, whereas formation of resorption spaces was increased at 14 days. These data suggest that a short period of cyclic fatigue induces bone hyperemia and associated decreased lacunocanalicular interstitial fluid flow, which persists over the time period in which osteoclasts are recruited to sites of
Mathematical modeling of slope flows with entrainment as flows of non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Zayko, Julia; Eglit, Margarita
2015-04-01
Non-Newtonian fluids in which the shear stresses are nonlinear functions of the shear strain rates are used to model slope flows such as snow avalanches, mudflows, debris flows. The entrainment of bottom material is included into the model basing on the assumption that in entraining flows the bed friction is equal to the shear stress of the bottom material (Issler et al, 2011). Unsteady motion down long homogeneous slopes with constant inclines is studied numerically for different flow rheologies and different slope angles. Variation of the velocity profile, increase of the flow depth and velocity due to entrainment as well as the value of the entrainment rate is calculated. Asymptotic formulae for the entrainment rate are derived for unsteady flows of different rheological properties. REFERENCES Chowdhury M., Testik F., 2011. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents. Ocean Engineering 38, 256-270. Eglit, M.E., Demidov, K.S., 2005. Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43 (1-2), 10-23. Eglit M. E., Yakubenko A. E., 2012, Mathematical Modeling of slope flows entraining bottom material. Eglit M. E., Yakubenko A. E., 2014, Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol. 108, 139-148. Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), pp.143-147 Kern M. A., Tiefenbacher F., McElwaine J., N., 2004. The rheology of snow in large chute flows. Cold Regions Science and Technology, 39, 181 -192. Naaim, M., Faug, T., Naaim-Bouvet, F., 2003. Dry granular flow modelling including erosion and deposition. Surv. Geophys. 24, 569-585. Naaim, M., Naaim-Bouvet, F., Faug, T., Bouchet, A., 2004. Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol. 39, 193-204. Rougier, J & Kern, M 2010, 'Predicting snow
An advection-based model to increase the temporal resolution of PIV time series.
Scarano, Fulvio; Moore, Peter
A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence. In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence, where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time. An additional favorable effect is observed by the analysis in the frequency
Fiantini, Rosalina; Umar, Efrizon
2010-06-22
Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.
NASA Astrophysics Data System (ADS)
Rushmer, T.; Beier, C.; Turner, S.
2007-12-01
Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that which is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. Excess heat in mantle plumes could reflect either a) an enrichment of the heat producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay or b) advective or conductive heat transport across the core-mantle boundary. The advective transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g. increased 186Os and Fe concentrations. Geophysical and dynamic modelling indicate that at least Afar, Easter, Hawaii, Louisville and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 1.2 Mgs -1(Afar) to 6.5 Mgs -1 (Hawaii) providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat producing elements are the cause of excess heat we looked for correlations between fractionation corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th and U are positively correlated with each other (e.g. Hawaii, Iceland and Galapagos have significantly lower concentrations than e.g. Tristan da Cunha, the Canary Islands and the Azores). We also find no correlation between currently available Fe
Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish
2016-03-01
OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml
Flow Visualization of Low Prandtl Number Fluids using Electrochemical Measurements
NASA Technical Reports Server (NTRS)
Crunkleton, D.; Anderson, T.; Narayanan, R.; Labrosse, G.
2003-01-01
It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically
Factorizable Schemes for the Equations of Fluid Flow
NASA Technical Reports Server (NTRS)
Sidilkover, David
1999-01-01
We present an upwind high-resolution factorizable (UHF) discrete scheme for the compressible Euler equations that allows to distinguish between full-potential and advection factors at the discrete level. The scheme approximates equations in their general conservative form and is related to the family of genuinely multidimensional upwind schemes developed previously and demonstrated to have good shock-capturing capabilities. A unique property of this scheme is that in addition to the aforementioned features it is also factorizable, i.e., it allows to distinguish between full-potential and advection factors at the discrete level. The latter property facilitates the construction of optimally efficient multigrid solvers. This is done through a relaxation procedure that utilizes the factorizability property.
Winters, W.S.
1984-01-01
An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.
Effect of Reactive Flow on Multi-size Scaling of Fluid Flow and Seismic Fracture Stiffness
NASA Astrophysics Data System (ADS)
Pyrak-Nolte, L. J.
2014-12-01
A goal of geophysical monitoring is to detect and characterize alterations in the subsurface induced by natural and anthropogenic processes that affect local fracture geometry and local fluid flow. Recently, we demonstrated that a key seismic signature of a fracture (specific stiffness) is related to its hydraulic properties if the aperture distributions have only weak spatial correlations. An open challenge remains to determine if this relationship holds for correlated aperture distributions and whether this relationship differs for fractures altered only by stress or also for those altered by reactive flow and stress. A finite-size scaling analysis was performed on fractures to determine the effect of correlated aperture distributions with and without chemical alteration on the fundamental scaling relationship between fracture stiffness and fracture flow behavior. Computational models were used to analyze fluid flow through a fracture undergoing deformation and chemical alteration. The numerical methods included a stratified percolation approach to generate pore-scale fracture void geometry, a combined conjugate-gradient method and fast-multipole method for determining fracture deformation, and a network model for simulating fluid flow through a fracture. Fracture apertures were chemically eroded based on the local flux field through the fracture. For correlated aperture distributions without chemical alteration, fracture stiffness captures the deformation of the fracture void geometry that includes both changes in contact area and aperture. This enabled a collapse of the numerical flow-stiffness data, from multiple length scales, to a single scaling function. When fracture apertures were slightly eroded, the flow-stiffness relationship exhibited the same functional form as the unaltered case, but the scaling of flow depended on the aperture of the critical neck. These results suggest that geophysical methods that characterize fracture stiffness have the
Effect of asynchrony on numerical simulations of fluid flow phenomena
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Mahoney, Bryan; Donzis, Diego
2015-11-01
Designing scalable CFD codes on massively parallel computers is a challenge. This is mainly due to the large number of communications between processing elements (PEs) and their synchronization, leading to idling of PEs. Indeed, communication will likely be the bottleneck in the scalability of codes on Exascale machines. Our recent work on asynchronous computing for PDEs based on finite-differences has shown that it is possible to relax synchronization between PEs at a mathematical level. Computations then proceed regardless of the status of communication, reducing the idle time of PEs and improving the scalability. However, accuracy of the schemes is greatly affected. We have proposed asynchrony-tolerant (AT) schemes to address this issue. In this work, we study the effect of asynchrony on the solution of fluid flow problems using standard and AT schemes. We show that asynchrony creates additional scales with low energy content. The specific wavenumbers affected can be shown to be due to two distinct effects: the randomness in the arrival of messages and the corresponding switching between schemes. Understanding these errors allow us to effectively control them, rendering the method's feasibility in solving turbulent flows at realistic conditions on future computing systems.
Response time correlations for platinum resistance thermometers in flowing fluids
NASA Technical Reports Server (NTRS)
Pandey, D. K.; Ash, R. L.
1985-01-01
The thermal response of two types of Platinum Resistance Thermometers (PRT's), which are being considered for use in the National Transonic Wind Tunnel Facility, were studied. Response time correlations for each PRT, in flowing water, oil and air, were established separately. A universal correlation, tau WOA = 2.0 + 1264, 9/h, for a Hy-Cal Sensor (with a reference resistance of 100 ohm) within an error of 20% was established while the universal correlation for the Rosemount Sensor (with a reference resistance of 1000 ohm), tau OA = 0.122 + 1105.6/h, was found with a maximum percentage error of 30%. The correlation for the Rosemount Sensor was based on air and oil data only which is certainly not sufficient to make a correlation applicable to every condition. Therefore, the correlation needs more data to be gathered in different fluids. Also, it is necessary to state that the calculation of the parameter, h, was based on the available heat transfer correlations, whose accuracies are already reported in literature uncertain within 20-30%. Therefore, the universal response constant correlations established here for the Hy-Cal and Rosemount sensors are consistent with the uncertainty in the input data and are recommended for future use in flowing liquids and gases.
Quasi-3D Cytoskeletal Dynamics of Osteocytes under Fluid Flow
Baik, Andrew D.; Lu, X. Lucas; Qiu, Jun; Huo, Bo; Hillman, Elizabeth M.C.; Dong, Cheng; Guo, X. Edward
2010-01-01
Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes. PMID:21044578
Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion
NASA Astrophysics Data System (ADS)
Mikel-Stites, Maxwell; Staples, Anne
2014-11-01
While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).
Velocity fluctuations and energy amplification in laminar fluid flows
NASA Astrophysics Data System (ADS)
Ortiz de Zarate, Jose M.; Sengers, Jan V.
2008-11-01
We present a systematic procedure for evaluating the intrinsic velocity fluctuations and the resulting intrinsic energy amplification that are always present in laminar fluid flows. For this purpose we formulate a stochastic Orr-Sommerfeld equation and a stochastic Squire equation by applying a fluctuation-dissipation theorem for the random part of the dissipative stresses. From the solution of the stochastic Orr- Sommerfeld and Squire equations the intrinsic energy amplification can be deduced. As an illustration of the procedure we present an explicit solution for the case of planar Couette flow. We first solve the fluctuating hydrodynamics equations in the bulk, obtaining an exact representation of the spatial spectrum of the velocity fluctuations valid for large wave numbers. The resulting energy amplification is proportional to Re^3/2. Next, we show how to a good approximation confinement can be incorporated by a simple Galerkin projection technique. The effect of the boundary conditions is to reduce the energy amplification to a logarithmic dependence on Re. We shall also indicate how an exact solution for the case of confined geometries can be obtained by an expansion into a set of hydrodynamic modes, conveniently expressed in terms of Airy functions.
Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow
Raj, Rahul; Lakshmanan, Shanmugamurthy; Apigo, David; Kanwal, Alokik; Liu, Sheng; Russell, Thomas; Madsen, Joseph R.; Thomas, Gordon A.; Farrow, Reginald C.
2015-01-01
A flow sensor has been fabricated and tested that is capable of measuring the slow flow characteristic of the cerebrospinal fluid in the range from less than 4 mL/h to above 100 mL/h. This sensor is suitable for long-term implantation because it uses a wireless external spectrometer to measure passive subcutaneous components. The sensors are pressure-sensitive capacitors, in the range of 5 pF with an air gap at atmospheric pressure. Each capacitor is in series with an inductor to provide a resonant frequency that varies with flow rate. At constant flow, the system is steady with drift <0.3 mL/h over a month. At variable flow rate, V̇, the resonant frequency, f0, which is in the 200–400 MHz range, follows a second order polynomial with respect to V̇. For this sensor system the uncertainty in measuring f0 is 30 kHz which corresponds to a sensitivity in measuring flow of ΔV̇= 0.6 mL/hr. Pressures up to 20 cm H2O relative to ambient pressure were also measured. An implantable twin capacitor system is proposed that can measure flow, which is fully compensated for all hydrostatic pressures. For twin capacitors, other sources of systematic variation within clinical range, such as temperature and ambient pressure, are smaller than our sensitivity and we delineate a calibration method that should maintain clinically useful accuracy over long times. PMID:26543321
Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures
NASA Technical Reports Server (NTRS)
Haj-Hariri, Hossein; Borhan, A.
1996-01-01
A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.
NASA Astrophysics Data System (ADS)
Hari, Sridhar
2003-07-01
In this study, commercially available Computational Fluid Dynamics (CFD) software, CFX-4.4 has been used for the simulations of aerosol transport through various aerosol-sampling devices. Aerosol transport was modeled as a classical dilute and dispersed two-phase flow problem. Eulerian-Lagrangian framework was adopted wherein the fluid was treated as the continuous phase and aerosol as the dispersed phase, with a one-way coupling between the phases. Initially, performance of the particle transport algorithm implemented in the code was validated against available experimental and numerical data in the literature. Code predictions were found to be in good agreement against experimental data and previous numerical predictions. As a next step, the code was used as a tool to optimize the performance of a virtual impactor prototype. Suggestions on critical geometrical details available in the literature, for a virtual impactor, were numerically investigated on the prototype and the optimum set of parameters was determined. Performance curves were generated for the optimized design at various operating conditions. A computational model of the Linear Slot Virtual Impactor (LSVI) fabricated based on the optimization study, was constructed using the worst-case values of the measured geometrical parameters, with offsets in the horizontal and vertical planes. Simulations were performed on this model for the LSVI operating conditions. Behavior of various sized particles inside the impactor was illustrated with the corresponding particle tracks. Fair agreement was obtained between code predictions and experimental results. Important information on the virtual impactor performance, not known earlier, or, not reported in the literature in the past, obtained from this study, is presented. In the final part of this study, simulations on aerosol deposition in turbulent pipe flow were performed. Code predictions were found to be completely uncorrelated to experimental data. The
Upscaling Multiphase Fluid Flow in Naturally Fractured Reservoirs
NASA Astrophysics Data System (ADS)
Matthai, S.; Maghami-Nick, H.; Belayneh, M.; Geiger, S.
2009-04-01
Hydrocarbon recovery from fractured porous reservoirs is difficult to predict as it depends on the focusing of the flow and the local balance of viscous, gravitational, and capillary forces. Hecto-metre scale sub-volumes of fractured oil reservoirs contain thousands of fractures with highly variable flow properties, dimensions and orientations. This complexity precludes direct geometric incorporation into field scale multiphase flow models. Macroscopic laws of their integral effects on multiphase flow are required. These can be investigated by DFM (discrete fracture and matrix) numerical simulations based on discrete fracture models representing fractured reservoir analogues. Here we present DFM results indicating that hecto-metre-scale relative permeability, the time to water breakthrough, and the subsequent water cut primarily depend on the fracture-to-rock matrix flux ratio, qf/qm, quantifying the proportion of the cross-sectional flux that occurs through the fractures. Relative permeability during imbibition runs is best approximated by a rate-dependent new model taking into account capillary fracture-matrix transfer. The up-scaled fractional flow function fo(sw) derived from this new kri formulation is convex with a near-infinity slope at the residual water saturation. This implies that the hector-metre scale spatially averaged Buckley-Leverett equation for fractured porous media does not contain a shock, but a long leading edge in the averaged profile of the invading phase. This dispersive behaviour marks the progressively widening saturation front and an early water breakthrough observed in the discrete fracture reservoir analogues. Since fracture porosity φf is usually only a fraction of a percent, a cross-over from krw < kro to krw/kro ≈ qf/qm occurs after the first few percent of recovery, and because qf/qm ranges between 10-1,000, sweep efficiency ignoring the positive influence of counter-current imbibition is extremely low. The accuracy of reservoir
Computational Fluid Dynamic simulations of pipe elbow flow.
Homicz, Gregory Francis
2004-08-01
One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and mesh were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation
Heat transfer by fluids in granulite metamorphism
NASA Technical Reports Server (NTRS)
Morgan, Paul; Ashwal, Lewis D.
1988-01-01
The thermal role of fluids in granulite metamorphism was presented. It was shown that for granulites to be formed in the middle crust, heat must be advected by either magma or by volatile fluids, such as water or CO2. Models of channelized fluid flow indicate that there is little thermal difference between channelized and pervasive fluid flow, for the same total fluid flux, unless the channel spacing is of the same order or greater than the thickness of the layer through which the fluids flow. The volumes of volatile fluids required are very large and are only likely to be found associated with dehydration of a subducting slab, if volatile fluids are the sole heat source for granulite metamorphism.
Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media
Wu, Yu-Shu.
1990-02-01
A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: development of numerical and analytical solutions; theoretical studies of transient flow of non-Newtonian fluids in porous media; and applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. In another study, an idealized fracture model has been used to obtain some insights into the flow of a power-law fluid in a double-porosity medium. Transient flow of a general pseudoplastic fluid has been studied numerically. 125 refs., 91 figs., 12 tabs.
Interstitial fluid flow: simulation of mechanical environment of cells in the interosseous membrane
NASA Astrophysics Data System (ADS)
Yao, Wei; Ding, Guang-Hong
2011-08-01
In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array, we set up a porous media model simulating the flow field with FLUENT software, studied the shear stress on interstitial cells' surface due to the interstitial fluid flow, and analyzed the effect of flow on protein space distribution around the cells. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells, up to 30 Pa or so, which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries, blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion, numerical simulation provides an effective way for in vivo dynamic interstitial velocity research, helps to set up the vivid subtle interstitial flow environment of cells, and is beneficial to understanding the physiological functions of interstitial fluid flow.
COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA
A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...
NASA Astrophysics Data System (ADS)
Lacroix, Brice; Travé, Anna; Buatier, Martine; Labaume, Pierre
2013-04-01
During compressive events, deformation in sedimentary basins is mainly accommodated by thrust faults emplacement and related fold growth. In such a structure, thrust faults are generally rooted in the basement and may act as conduits or barriers for crustal fluid flow. However, most of recent studies suggest that fluid flow through such discontinuities is not so evident and depends on the structural levels of the thrust inside the fold-and-thrust belt. In order to constrain the paleofluid flow through the Jaca thrust-sheet-top basin (Paleogene southwest-Pyrenean fold-and-thrust belt) we focus our study on different thrust faults located at different structural levels. The microstructures observed in the different studied fault zones are similar and consist of pervasive cleavage, calcite shear and extension veins and late dilatation veins. In order to constrain the nature and the source of fluids involved in fluid-rock interactions in fault zones, a geochemical approach, based on oxygen and carbon stable isotopes and trace elements on calcite, was adopted on the different vein generations and host rocks. The results suggest a high complexity in the paleo-hydrological behaviors of thrust faults evidencing a fluid-flow compartmentalization of the basin. North of the Jaca basin, previous studies in the southern part of the Axial Zones showed the contribution of deep metamorphic water, probably derived from the Paleozoic basement, along along fault zones related the major Gavarnie thrust. Contrarily, in the northern part of the Jaca basin, we evidence the contribution of formation water during the Monte Perdido thrust fault activity. These data suggest a closed hydrological fluid system where distance of fluid flow did not exceeded 70 m. On the other hand, the Jaca and Cotiella thrust faults, both located more to the south in the basin, are characterized by a composite fluid flow system. Indeed, stable isotopes and trace elements compositions of the first generation of
NASA Astrophysics Data System (ADS)
Abolhasani, Milad
Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a
Experimental study of fluid dynamics in the pebble bed in a radial coolant flow
NASA Astrophysics Data System (ADS)
Smorchkova, Y. V.; Varava, A. N.; Dedov, A. V.; Komov, A. T.
2016-10-01
The results of experimental studies of pebble bed hydrodynamics are presented. For the first time experimental data on the pressure loss in a radial flow of fluid through the pebble bed was obtained. Experiments were carried out in the liquid flow rate ranging from 0.09 to 0.4 kg / s, fluid temperature is 20°C.
SSME LOX post flow analysis/fluid structure interaction. Volume 1: Flow analysis
NASA Technical Reports Server (NTRS)
Burke, Roger W.
1989-01-01
The realization of measures to improve the performance of the Space Shuttle is, to a large extent, dependent on an improved understanding of the fluid flow phenomena occurring in the main engine. The overall arrangement of the primary components of the Space Shuttle Main Engine (SSME) are presented. The impingement of the hot gases from the transfer ducts onto the LOX posts causes them to be subjected to severe thermal and gas dynamic loads, which in the past have resulted in the occasional breakage of some elements of the outer row of posts during test firings of the engine, particularly at higher power levels. Large velocities in the gap between the LOX posts may also be a contributing factor in causing dynamic stability problems. The deforming structural response of the posts to the pressure loading may likely affect the gas flowfield by producing a moving flowfield boundary, thereby creating a dynamically coupled unsteady fluid-structure system. The objective was to investigate the three-dimensional, turbulent flow around a simplified SSME LOX post array using an existing Reynolds averaged Navier-Stokes flow solver and a suitable turbulence model to parameterize the turbulent shear stresses. Numerical computations were performed to analyze the effect on the flowfield of varying the spacing between the LOX posts, which were modeled as rigid, three-dimensional circular cylinders. The methodology used in the computations is described. Results are presented.
Clustering of randomly advected low-inertia particles using an economical simulation method
NASA Astrophysics Data System (ADS)
Oh, Jaekyoon; Krueger, Steven; Kerstein, Alan
2007-11-01
In the EMPM (Explicit Mixing Parcel Model), turbulent advection of fluid is implemented by rearranging the fluid cells. Each permutation represents an individual turbulent eddy, and is called a ``triplet map.'' This implementation of the triplet map captures flow processes as small as the smallest turbulent eddy (Kolmogorov microscale), but the response of small droplets to turbulence has important features at scales as small as the droplet radius. Namely, droplet motion relative to the fluid at scales less than the Kolmogorov microscale induces droplet clustering that is estimated to increase droplet collision rates significantly. We have developed (Kerstein and Krueger 2006), implemented, and tested a 3D triplet map for droplets that captures this clustering effect. There is excellent agreement between our results and DNS (direct numerical simulation) results obtained by Reade and Collins (2000). We are now implementing a collision detection algorithm into the model so that we can simulate collisions and coalescence between finite-inertia particles.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research
Pore fluid pressure and shear behavior in debris flows of different compositions
NASA Astrophysics Data System (ADS)
Kaitna, Roland; Palucis, Marisa; Yohannes, Bereket; Hill, Kimberly; Dietrich, William
2016-04-01
Debris flows are mixtures of sediment and water that can have a wide range of different grain size distributions and water contents. The composition of the material is expected to have a strong effect on the development of pore fluid pressures in excess to hydrostatic, which in turn might affect the internal deformation behavior. We present a set of large scale experiments with debris flow mixtures of different compositions in a 4-m diameter rotating drum. Longitudinal profiles of basal fluid pressure and normal stress were measured and a probe to determine fluid pressure at different depths within the flow was developed and tested. Additionally we determined vertical profiles of mean particle velocities in the flow interior by measuring small variations of conductivity of the passing material and calculating the time lag between signals from two independent measurements at a small, known distance apart. Mean values of basal pore fluid pressure range from hydrostatic pressure for gravel-water flows to nearly complete liquefaction for muddy mixtures having a wide grain size distribution. The data indicate that the presence of fines dampens fluctuations of normalized fluid pressure and normal stress and concentrates shear at the base. The mobility of grain-fluid flows is strongly enhanced by a combination of fines in suspension as part of the interstitial fluid and a wide grain size distribution. Excess fluid pressure may arise from fluid displacement by converging grains at the front of the flow and the slow settling of grains through a highly viscous non-Newtonian fluid. Our findings support the need for pore pressure evolution and diffusion equations in debris flow models as they depend on particle size distributions. This study contributes to the understanding of the production of excess fluid pressure in grain fluid mixtures and may guide the development of constitutive models that describe natural events.
Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid
Mehmood, Ahmer; Ali, Asif; Saleem, Najma
2014-01-01
This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ≤ τ < ∞. Flow properties of the viscoelastic fluid are discussed through graphs. PMID:24892060
Anisotropic material synthesis by capillary flow in a fluid stripe.
Hancock, Matthew J; Piraino, Francesco; Camci-Unal, Gulden; Rasponi, Marco; Khademhosseini, Ali
2011-09-01
We present a simple bench-top technique to produce centimeter long concentration gradients in biomaterials incorporating soluble, material, and particle gradients. By patterning hydrophilic regions on a substrate, a stripe of prepolymer solution is held in place on a glass slide by a hydrophobic boundary. Adding a droplet to one end of this "pre-wet" stripe causes a rapid capillary flow that spreads the droplet along the stripe to generate a gradient in the relative concentrations of the droplet and pre-wet solutions. The gradient length and shape are controlled by the pre-wet and droplet volumes, stripe thickness, fluid viscosity and surface tension. Gradient biomaterials are produced by crosslinking gradients of prepolymer solutions. Demonstrated examples include a concentration gradient of cells encapsulated in three dimensions (3D) within a homogeneous biopolymer and a constant concentration of cells encapsulated in 3D within a biomaterial gradient exhibiting a gradient in cell spreading. The technique employs coated glass slides that may be purchased or custom made from tape and hydrophobic spray. The approach is accessible to virtually any researcher or student and should dramatically reduce the time required to synthesize a wide range of gradient biomaterials. Moreover, since the technique employs passive mechanisms it is ideal for remote or resource poor settings.
Miniatuization of the flowing fluid electric conductivity loggingtec hnique
Su, Grace W.; Quinn, Nigel W.T.; Cook, Paul J.; Shipp, William
2005-10-19
An understanding of both the hydraulic properties of the aquifer and the depth distribution of salts is critical for evaluating the potential of groundwater for conjunctive water use and for maintaining suitable groundwater quality in agricultural regions where groundwater is used extensively for irrigation and drinking water. The electrical conductivity profiles recorded in a well using the flowing fluid electric conductivity logging (FEC logging) method can be analyzed to estimate interval specific hydraulic conductivity and estimates of the salinity concentration with depth. However, irrigation wells that are common in agricultural regions have limited access into them because these wells are still in operation, and the traditional equipment used for FEC logging cannot fit through the small access pipe intersecting the well. A modified, miniaturized FEC logging technique was developed such that this logging method could be used in wells with limited access. In addition, a new method for injecting water over the entire screened interval of the well was developed to reduce the time required to perform FEC logging. Results of FEC logging using the new methodology and miniaturized system in two irrigation wells are also summarized.
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionallymore » dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.« less
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.
FLIP (fluid-implicit-particle): A low-dissipation, particle-in-cell method for fluid flow
Brackbill, J.U.; Kothe, D.B.; Ruppel, H.M.
1987-01-01
Since convective transport is the largest source of computational diffusion, FLIP (fluid-implicit-particle) eliminates convection, and uses instead a Lagrangian formulation. In FLIP, as in PIC, particles represent the fluid: a grid is used only to calculate interactions among particles. FLIP is an adaptation to fluid flows of the implicit moment method for plasma simulation. The particles carry coordinates, momentum, mass and energy; everything necessary to describe the fluid. Using the particle data, Lagrangian moment equations solved on a grid advance the particle variables from time step to time step. An adaptive grid and implicit time differencing extend the method to singular and low-speed flows. Aspects of FLIP's properties are illustrated by calculations of the Rayleigh-Taylor instability, an unstable, subsonic stream, and a supersonic jet. The results demonstrate FLIP's applicability to the many problems where low dissipation is crucial to correct modeling. 21 refs.
Force acting on a particle in unsteady flow of a pseudoplastic fluid
NASA Astrophysics Data System (ADS)
Bocharov, O. B.; Ignatenko, Ya. S.
2016-11-01
The accelerated flow of a pseudoplastic fluid around a quiescent sphere at Reynolds numbers Re = 0-200 and dimensionless acceleration Ga = 10-104 is studied by numerical simulation. It is shown that the analytical expression of the added mass force for an ideal fluid is appropriate for a pseudoplastic fluid. An expression for calculating the hereditary Basset force for a pseudoplastic fluid is proposed.
Simulation of Two Phase Fluid Flow With Various Kinds of Barriers Using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Wijaya, Imam; Purqon, Acep
2016-08-01
Multiphase fluid flow in a pore medium is a problem that is very interesting to be learned. In its flow, the fluid can experience a few of barriers / obstacles like the exsisting of things in the flow medium. The existence of the barriers can detain the rate speed of the fluid flow. The barries that its form is different will provide influence to the speed of of fluid flow that is different as well. To know the influence of barriers form twards the profile of fluid speed rate, is conducted by the simulation by using Lattice Boltzmann Methode (LBM). In this simulation, the barriers is varied in the form of circle, square, and ellips. From simulation that is conducted, to known the influence of barriers variations twards the fluid speed, ploted by the graph of the fluid speed relations along simulation time and plotted by the fluid speed vector in each posisition. From the simulation, it is obtained that the barriers with square formed produced the higest speed rate of the fluid flow, with the speed rate 0.26 lu/ts, then circle formed with the speed rate 0.24 lu/ts, and the last square formed with speed rate 0.24 lu/ts.
Non-Newtonian fluid effects on surface reactions in a microfluidic flow cell
NASA Astrophysics Data System (ADS)
Akgül, M. Bahattin; Sarı, Gözde; Pakdemirli, Mehmet
2012-11-01
Mass transfer over a reactive surface in microfluidic flow cells plays a key role in understanding biomoleculer interactions and diagnosis of small molecules for biomedical and environmental applications. The effects of Non-Newtonian power law fluid on the binding reaction kinetic of immunoglobulin G in a flow cell are analyzed in this study. Governing equations for the fluid flow, mass transport and surface reaction are derived. The finite element method is employed to solve resulting equations. In addition, the effects of volumetric flow rate, fluid behavior index and reaction constants on the surface reaction are analyzed and presented graphically.
Pattern formation induced by a differential shear flow
NASA Astrophysics Data System (ADS)
Stucchi, L.; Vasquez, Desiderio A.
2013-02-01
Fluid flow advecting one substance while others are immobilized can generate an instability in a homogeneous steady state of a reaction-diffusion-advection system. This differential-flow instability leads to the formation of steady spatial patterns in a moving reference frame. We study the effects of shear flow on this instability by considering two layers of fluid moving independently from each other, but allowing the substances to diffuse along and across the layers. We find that shear flow can generate instabilities even if the average flow velocity is zero for both substances. These instabilities are strongly dependent on which substance is advected by the shear flow. We explain these effects using the results of Taylor dispersion, where an effective diffusivity is enhanced by shear flow.
Mineralogical controls on metamorphic fluid flow in metabasaltic sills from Islay, Scotland
NASA Astrophysics Data System (ADS)
Kleine, Barbara I.; Pitcairn, Iain K.; Skelton, Alasdair D. L.
2016-04-01
In this study we show that mineralogy was the primary control of metamorphic fluid flow in the well-studied metabasaltic sills in the SW Scottish Highlands. Here, basaltic sills have been partially carbonated by H2O-CO2 fluids at greenschist facies conditions. This has led to mineral zonation with carbonate-poor sill interiors separated from carbonate-rich sill margins by reaction fronts. Although deformation set the stage for metamorphic fluid flow in the SW Scottish Highlands by causing the preferred alignment of mineral grains, metamorphic fluid flow was not coupled with active deformation but occurred later utilizing the pre-existing mineral alignment as a means of accessing the sill interiors. The sills which were studied were partially carbonated with well-preserved reaction fronts. They were selected because (atypically for the SW Scottish Highlands) they are mineralogically heterogeneous making them ideal for a study of mineralogical controls of metamorphic fluid flow. Their mineralogical heterogeneity reflects chemical heterogeneity arising from magmatic flow differentiation and spilitization, which occurred before greenschist facies metamorphism. Magmatic flow differentiation resulted in parts of the sill containing large crystals with no preferred alignment. Large (up to 3 cm) plagioclase phenocrysts were concentrated in the sill interior whereas large (up to 1 cm) amphibole (after pyroxene) grains formed cumulate layers close to the sill margins. These large randomly oriented crystals were replaced by an interface-coupled dissolution-precipitation mechanism. Replacement is constant volume and with hydration and carbonation affecting the cores of these minerals while the rims are remained intact and unaltered. This finding points to intra-granular metamorphic fluid flow. In contrast inter-granular metamorphic fluid flow was facilitated by mineral alignment on different scales. Pre-metamorphic spilitization, produced layers of epidote called segregations