Pathways for Advective Transport
2001-01-19
the approach is given and an application to the Gulf of Mexico is described where the analysis precisely identifies the boundaries of coherent vortical structures as well as pathways for advective transport.
Advective heat transport associated with regional Earth degassing in central Apennine (Italy)
NASA Astrophysics Data System (ADS)
Chiodini, G.; Cardellini, C.; Caliro, S.; Chiarabba, C.; Frondini, F.
2013-07-01
In this work we show that the main springs of the central Apennine transport a total amount of heat of ˜2.2×109 J s-1. Most of this heat (57%) is the result of geothermal warming while the remaining 43% is due to gravitational potential energy dissipation. This result indicates that a large area of the central Apennines is very hot with heat flux values >300 mW m-2. These values are higher than those measured in the magmatic and famously geothermal provinces of Tuscany and Latium and about 1/3 of the total heat discharged at Yellowstone. This finding is surprising because the central Apennines have been thought to be a relatively cold area. Translated by CO2 rich fluids, this heat anomaly suggests the existence of a thermal source such as a large magmatic intrusion at depth. Recent tomographic images of the area support the presence of such an intrusion visible as a broad negative velocity anomaly in seismic waves. Our results indicate that the thermal regime of tectonically active areas of the Earth, where meteoric waters infiltrate and deeply circulate, should be revised on the basis of mass and energy balances of the groundwater systems.
Alcaraz, Mar; García-Gil, Alejandro; Vázquez-Suñé, Enric; Velasco, Violeta
2016-02-01
Borehole Heat Exchangers (BHEs) are increasingly being used to exploit shallow geothermal energy. This paper presents a new methodology to provide a response to the need for a regional quantification of the geothermal potential that can be extracted by BHEs and the associated environmental impacts. A set of analytical solutions facilitates accurate calculation of the heat exchange of BHEs with the ground and its environmental impacts. For the first time, advection and dispersion heat transport mechanisms and the temporal evolution from the start of operation of the BHE are taken into account in the regional estimation of shallow geothermal resources. This methodology is integrated in a GIS environment, which facilitates the management of input and output data at a regional scale. An example of the methodology's application is presented for Barcelona, in Spain. As a result of the application, it is possible to show the strengths and improvements of this methodology in the development of potential maps of low temperature geothermal energy as well as maps of environmental impacts. The minimum and maximum energy potential values for the study site are 50 and 1800 W/m(2) for a drilled depth of 100 m, proportionally to Darcy velocity. Regarding to thermal impacts, the higher the groundwater velocity and the energy potential, the higher the size of the thermal plume after 6 months of exploitation, whose length ranges from 10 to 27 m long. A sensitivity analysis was carried out in the calculation of heat exchange rate and its impacts for different scenarios and for a wide range of Darcy velocities. The results of this analysis lead to the conclusion that the consideration of dispersion effects and temporal evolution of the exploitation prevent significant differences up to a factor 2.5 in the heat exchange rate accuracy and up to several orders of magnitude in the impacts generated.
Melt production by viscous dissipation: Role of heat advection by Magma transport
Feigenson, M.D.; Spera, F.J.
1980-02-01
An energy conservation equation is formulated that balances the heat generated by viscous dissipation in a peridotite simultaneously undergoing partial fusion and penetrative constant shear stress deformation with the heat removed by mobilization and ascent of basaltic magma from the region undergoing deformation. The solution of this parameterized energy equation gives the volume fraction of melt (theta) as a function of time (t) after the initiation of deformation. A stability analysis of the conservation equation shows that stable (theta<100%) or unstable (theta..-->..infinity) solutions exist depending on the magnitude of two dimensionless parameters K/sub 1//K/sub 2/ and K/sub 3/. For geologically reasonable values of K/sub 2//K/sub 2/ and K/sub 3/, the analysis indicates that peridotitic thermo-mechanical systems undergoing penetrative deformation at constant shear stress show a two-stage history. An early stage of growth where theta increases monotonically on a 2 to 3 m.y. time scale eventually is replaced by a steady s ate regime (constant theta). Typical values of theta lie in the range 3 to 5 volume percent; melting of peridotite to the extent of 20--30% appears to be precluded by this model.
High-resolution two dimensional advective transport
Smith, P.E.; Larock, B.E.
1989-01-01
The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.
Efficient mass transport by optical advection
Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide
2015-01-01
Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms. PMID:26440069
Thermally driven advection for radioxenon transport from an underground nuclear explosion
NASA Astrophysics Data System (ADS)
Sun, Yunwei; Carrigan, Charles R.
2016-05-01
Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.
NASA Astrophysics Data System (ADS)
Schelenz, Sophie; Dietrich, Peter; Vienken, Thomas
2016-04-01
A sustainable thermal exploitation of the shallow subsurface requires a precise understanding of all relevant heat transport processes. Currently, planning practice of shallow geothermal systems (especially for systems < 30 kW) focuses on conductive heat transport as the main energy source while the impact of groundwater flow as the driver for advective heat transport is neglected or strongly simplified. The presented study proves that those simplifications of complex geological and hydrogeological subsurface characteristics are insufficient for a precise evaluation of site-specific energy extraction rates. Based on synthetic model scenarios with varying subsurface conditions (groundwater flow velocity and aquifer thickness) the impact of advection on induced long term temperature changes in 5 and 10 m distance of the borehole heat exchanger is presented. Extending known investigations, this study enhances the evaluation of shallow geothermal energy extraction rates by considering conductive and advective heat transport under varying aquifer thicknesses. Further, it evaluates the impact of advection on installation lengths of the borehole heat exchanger to optimize the initial financial investment. Finally, an evaluation approach is presented that classifies relevant heat transport processes according to their Péclet number to enable a first quantitative assessment of the subsurface energy regime and recommend further investigation and planning procedures.
Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California
NASA Astrophysics Data System (ADS)
Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.
2015-12-01
In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.
A convexity preserving scheme for conservative advection transport
NASA Astrophysics Data System (ADS)
Xiao, Feng; Peng, Xindong
2004-08-01
A simple and practical scheme for advection transport equation is presented. The scheme, namely piecewise rational method (PRM), is a variant of the existing piecewise parabolic method (PPM) of Colella and Woodward (1984). Instead of the parabolic function, a rational function is used for the reconstruction. Making use of the convexity preserving nature of the rational function enables us to obtain oscillation-less numerical solutions, but avoids the adjustments of the cell-interface values to enforce the monotonicity in PPM. The PRM is very simple and computationally efficient. Our numerical results show that PRM is competitive to the PPM in many aspects, such as numerical accuracy and shape-preserving property.
Mobile scintillometry to study heat advection over heterogeneous surfaces
NASA Astrophysics Data System (ADS)
Kleissl, J.
2007-12-01
Large Aperture Scintillometer (LAS) receivers measure the structure parameter of the refractive index from intensity fluctuations of the transmitter beam. Due to the spatial averaging over 1-4 km employed by this emerging technique the constraints for long temporal averaging (15-30 min) and associated uncertainties that have to be met by other flux measurement techniques do not apply for LASs. In this paper the constraints for temporal averaging of LASs will be examined as a function of environmental conditions and transect geometry. Moreover, analysis of data from a mobile LAS measurement across a surface gradient from rough and dry to smoother and wet will be presented. In this experiment the LAS was mounted on a pickup truck, allowing for quick redeployment of the transect after meaurement. The potential for the use of LAS to study local advection of heat in riparian or irrigated areas in the semi-arid southwest will be evaluated.
NASA Technical Reports Server (NTRS)
Levy, Gad; Tiu, Felice S.
1990-01-01
Statistical tests are performed on the Seasat scatterometer observations to examine if and to what degree thermal advection and stratification effects manifest themselves in these remotely sensed measurements of mean wind and wind stress over the ocean. On the basis of a two layer baroclinic boundary layer model which is presented, it is shown that the thermal advection and stratification of the entire boundary layer as well as the geostrophic forcing influence the modeled near surface wind and wind stress profiles. Evidence of diurnal variation in the stratification under barotropic conditions is found in the data, with the daytime marine boundary layer being more convective than its nighttime counterpart. The temporal and spacial sampling pattern of the satellite makes it impossible to recover the full diurnal cycle, however. The observed effects of the thermal advection are shown to be statistically significant during the day (and presumed more convective) hours, causing a systematic increase in the poleward transport of mass and heat. The statistical results are in a qualitative agreement with the model simulations and cannot be reproduced in randomized control tests.
Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma
Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.
2014-12-15
The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
2015-04-15
The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
2015-04-01
The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.
Analytical solution for the advection-dispersion transport equation in layered media
Technology Transfer Automated Retrieval System (TEKTRAN)
The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...
Impact of Ridge Induced Latent Heat Advection on Sea Ice Global Heat Budget.
NASA Astrophysics Data System (ADS)
Hudier, E.; Gosselin, J.
2008-12-01
The effects of permeability on ice keel induced latent heat fluxes are examined using pressure ridge density statistics computed from SAR images and a prognostic simulation of forced brine advection through the bottom ice layer. Under pressure gradients generated in the wake of an ice keel sea water is pushed into and brine pumped out of the bottom ice layer. This in turn causes a new thermodynamic equilibrium to be reached. At spring when the ice permeability increases, brine export combined with sea water import translates into an advective heat flow that is balanced by the latent heat absorbed by volume melting of brine channel walls. Sea ice within the sheltered areas behind keels is modelled as an anisotropic heteregeneous mushy layer. The non-linear equation system within each cell is implemented on a finite volume grid and include volume melt of the brine channels from which porosity, water density, temperature and salinity are computed. Outputs from these simulations are then combined with ridge distribution statistics to evaluate the global impact of latent heat absorbed due to volume melting in the wake of ridges. As anticipated, results are highly dependent on permeability, nevertheless, they show that pressure ridge induced melting within the ice is a significant component of the heat budget when compared with melting at the ice water interface. This work underlines needs for further researches to improve our understanding of ice permeability changes during the melt season, it also calls for better tools to extract pressure ridge characteristics from satellite images.
Theory of advection-driven long range biotic transport
Technology Transfer Automated Retrieval System (TEKTRAN)
We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...
Rigorous upper bounds for fluid and plasma transport due to passive advection
Krommes, J.A.; Smith, R.A.; Kim, C.B.
1987-07-01
The formulation of variational principles for transport due to passive advection is described. A detailed account of the work has been published elsewhere. In the present paper, the motivations, philosophy, and implications of the method are briefly discussed. 15 refs.
An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...
NASA Astrophysics Data System (ADS)
Rushmer, T.; Beier, C.; Turner, S.
2007-12-01
Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that which is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. Excess heat in mantle plumes could reflect either a) an enrichment of the heat producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay or b) advective or conductive heat transport across the core-mantle boundary. The advective transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g. increased 186Os and Fe concentrations. Geophysical and dynamic modelling indicate that at least Afar, Easter, Hawaii, Louisville and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 1.2 Mgs -1(Afar) to 6.5 Mgs -1 (Hawaii) providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat producing elements are the cause of excess heat we looked for correlations between fractionation corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th and U are positively correlated with each other (e.g. Hawaii, Iceland and Galapagos have significantly lower concentrations than e.g. Tristan da Cunha, the Canary Islands and the Azores). We also find no correlation between currently available Fe
MECHANISM OF OUTFLOWS IN ACCRETION SYSTEM: ADVECTIVE COOLING CANNOT BALANCE VISCOUS HEATING?
Gu, Wei-Min
2015-01-20
Based on the no-outflow assumption, we investigate steady-state, axisymmetric, optically thin accretion flows in spherical coordinates. By comparing the vertically integrated advective cooling rate with the viscous heating rate, we find that the former is generally less than 30% of the latter, which indicates that the advective cooling itself cannot balance the viscous heating. As a consequence, for radiatively inefficient flows with low accretion rates such as M-dot ≲10{sup −3} M-dot {sub Edd}, where M-dot {sub Edd} is the Eddington accretion rate, the viscous heating rate will be larger than the sum of the advective cooling rate and the radiative cooling one. Thus, no thermal equilibrium can be established under the no-outflow assumption. We therefore argue that in such cases outflows ought to occur and take away more than 70% of the thermal energy generated by viscous dissipation. Similarly, for optically thick flows with extremely large accretion rates such as M-dot ≳10 M-dot {sub Edd}, outflows should also occur owing to the limited advection and the low efficiency of radiative cooling. Our results may help to understand the mechanism of outflows found in observations and numerical simulations.
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...
Scaling of geochemical reaction rates via advective solute transport
NASA Astrophysics Data System (ADS)
Hunt, A. G.; Ghanbarian, B.; Skinner, T. E.; Ewing, R. P.
2015-07-01
Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture.
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...
It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...
NASA Astrophysics Data System (ADS)
Ballester, Joan; Bordoni, Simona; Petrova, Desislava; Rodó, Xavier
2016-06-01
The oscillatory nature of El Niño-Southern Oscillation results from an intricate superposition of near-equilibrium balances and out-of-phase disequilibrium processes between the ocean and the atmosphere. The main objective of the present work is to perform an exhaustive spatiotemporal analysis of the upper ocean heat budget in an ensemble of state-of-the-art ocean assimilation products. We put specific emphasis on the ocean heat advection mechanisms, and their representation in individual ensemble members and in the different stages of the ENSO oscillation leading to EN events. Our analyses consistently show that the initial subsurface warming in the western equatorial Pacific is advected to the central Pacific by the equatorial undercurrent, which, together with the equatorward advection associated with anomalies in both the meridional temperature gradient and circulation at the level of the thermocline, explains the heat buildup in the central Pacific during the recharge phase. We also find that the recharge phase is characterized by an increase of meridional tilting of the thermocline, as well as a southward upper-ocean cross-equatorial mass transport resulting from Ekman-induced anomalous vertical motion in the off-equatorial regions. Although differences between data sets are generally small, and anomalies tend to have the same sign, the differences in the magnitude of the meridional term are seen to be key for explaining the different propagation speed of the subsurface warming tendency along the thermocline. The only exception is GECCO, which does not produce the patterns of meridional surface Ekman divergence (subsurface Sverdrup convergence) in the western and central equatorial Pacific.
Solis, Kyle Jameson; Martin, James E.
2012-11-01
Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less
Solis, Kyle Jameson; Martin, James E.
2012-11-01
Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one would expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.
NASA Astrophysics Data System (ADS)
Chauhan, R. P.; Kumar, Amit
The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20 Pa to 73.3 kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.
New Solution of Diffusion-Advection Equation for Cosmic-Ray Transport Using Ultradistributions
NASA Astrophysics Data System (ADS)
Rocca, M. C.; Plastino, A. R.; Plastino, A.; Ferri, G. L.; de Paoli, A.
2015-11-01
In this paper we exactly solve the diffusion-advection equation (DAE) for cosmic-ray transport. For such a purpose we use the Theory of Ultradistributions of J. Sebastiao e Silva, to give a general solution for the DAE. From the ensuing solution, we obtain several approximations as limiting cases of various situations of physical and astrophysical interest. One of them involves Solar cosmic-rays' diffusion.
NASA Astrophysics Data System (ADS)
Pérez Guerrero, J. S.; Skaggs, T. H.
2010-08-01
SummaryMathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport equation that has a self-adjoint differential operator, and a solution is found using the generalized integral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor exists for several transport equation formulations of practical importance in groundwater transport modeling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are developed in detail and results are compared with solutions from the literature. Among other applications, the current analytical solution will be particularly useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.
Effects of local advection on the spatial sensible heat flux variation on a mountain glacier
NASA Astrophysics Data System (ADS)
Sauter, Tobias; Galos, Stephan Peter
2016-11-01
Distributed mass balance models, which translate micrometeorological conditions into local melt rates, have proven deficient to reflect the energy flux variability on mountain glaciers. This deficiency is predominantly related to shortcomings in the representation of local processes in the forcing data. We found by means of idealized large-eddy simulations that heat advection, associated with local wind systems, causes small-scale sensible heat flux variations by up to 100 W
An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields
NASA Astrophysics Data System (ADS)
Särkimäki, Konsta; Hirvijoki, Eero; Decker, Joan; Varje, Jari; Kurki-Suonio, Taina
2016-12-01
Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter’s limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present.
Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport
Litvinenko, Yuri E.; Effenberger, Frederic
2014-12-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
Analytical Solutions of a Fractional Diffusion-advection Equation for Solar Cosmic-Ray Transport
NASA Astrophysics Data System (ADS)
Litvinenko, Yuri E.; Effenberger, Frederic
2014-12-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
NASA Astrophysics Data System (ADS)
Gillibrand, P. A.; Herzfeld, M.
2016-05-01
We present a flux-form semi-Lagrangian (FFSL) advection scheme designed for offline scalar transport simulation with coastal ocean models using curvilinear horizontal coordinates. The scheme conserves mass, overcoming problems of mass conservation typically experienced with offline transport models, and permits long time steps (relative to the Courant number) to be used by the offline model. These attributes make the method attractive for offline simulation of tracers in biogeochemical or sediment transport models using archived flow fields from hydrodynamic models. We describe the FFSL scheme, and test it on two idealised domains and one real domain, the Great Barrier Reef in Australia. For comparison, we also include simulations using a traditional semi-Lagrangian advection scheme for the offline simulations. We compare tracer distributions predicted by the offline FFSL transport scheme with those predicted by the original hydrodynamic model, assess the conservation of mass in all cases and contrast the computational efficiency of the schemes. We find that the FFSL scheme produced very good agreement with the distributions of tracer predicted by the hydrodynamic model, and conserved mass with an error of a fraction of one percent. In terms of computational speed, the FFSL scheme was comparable with the semi-Lagrangian method and an order of magnitude faster than the full hydrodynamic model, even when the latter ran in parallel on multiple cores. The FFSL scheme presented here therefore offers a viable mass-conserving and computationally-efficient alternative to traditional semi-Lagrangian schemes for offline scalar transport simulation in coastal models.
Simulation of the advective methane transport and AOM in Shenhu area, the Northern South China Sea
NASA Astrophysics Data System (ADS)
Liu, L.; Wu, N.
2012-04-01
Anaerobic Oxidation of Methane (AOM) occurs in the transition zone between the presence of sulfate and methane. This reaction is an important process for methane and the global carbon cycle. Methane gas hydrates bearing sediments were recovered in Shenhu Area, the Northern South China Sea, and methane advective transport was detected in this area as well. A one dimension numerical simulation tool was implemented to study the AOM process combined with the advective methane transport in Shenhu Area according to the local drilling data and geochemical information. The modeled results suggest that local methane flux will be consumed in the sediment column via dissolution, sorption and AOM reaction. A portion of methane will enter water column and possibly atmosphere if the methane flux was one order of magnitude higher than current level. Furthermore, the calculated rates of AOM in Shenhu area range similar to that of gas hydrate mounds in Mexico Golf. However, AOM is ability to consume more methane than that in Golf of Mexico due to the lower permeable sediment associated with a deeper sulfate methane transition layer.
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
The effects of heat exchange across the sea surface and heat advection on the observed rate of change of temperature were examined using a physical...NOVEMBER during 1954 through 1970 were used. A three-dimensional plot of the annual variations of the monthly means of observed rate of change of...temperature produced three distinct trends. Heat exchange primarily contributed to the modification of the observed rate of change of temperature during the
Space shuttle exhaust plumes in the lower thermosphere: Advective transport and diffusive spreading
NASA Astrophysics Data System (ADS)
Stevens, Michael H.; Lossow, Stefan; Siskind, David E.; Meier, R. R.; Randall, Cora E.; Russell, James M.; Urban, Jo; Murtagh, Donal
2014-02-01
The space shuttle main engine plume deposited between 100 and 115 km altitude is a valuable tracer for global-scale dynamical processes. Several studies have shown that this plume can reach the Arctic or Antarctic to form bursts of polar mesospheric clouds (PMCs) within a few days. The rapid transport of the shuttle plume is currently not reproduced by general circulation models and is not well understood. To help delineate the issues, we present the complete satellite datasets of shuttle plume observations by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument and the Sub-Millimeter Radiometer instrument. From 2002 to 2011 these two instruments observed 27 shuttle plumes in over 600 limb scans of water vapor emission, from which we derive both advective meridional transport and diffusive spreading. Each plume is deposited at virtually the same place off the United States east coast so our results are relevant to northern mid-latitudes. We find that the advective transport for the first 6-18 h following deposition depends on the local time (LT) of launch: shuttle plumes deposited later in the day (~13-22 LT) typically move south whereas they otherwise typically move north. For these younger plumes rapid transport is most favorable for launches at 6 and 18 LT, when the displacement is 10° in latitude corresponding to an average wind speed of 30 m/s. For plumes between 18 and 30 h old some show average sustained meridional speeds of 30 m/s. For plumes between 30 and 54 h old the observations suggest a seasonal dependence to the meridional transport, peaking near the beginning of year at 24 m/s. The diffusive spreading of the plume superimposed on the transport is on average 23 m/s in 24 h. The plume observations show large variations in both meridional transport and diffusive spreading so that accurate modeling requires knowledge of the winds specific to each case. The combination of transport and spreading from the STS-118 plume in August
Pierce, Bill L.
1978-01-01
A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.
NASA Technical Reports Server (NTRS)
Waugh, Darryn W.; Plumb, R. Alan
1994-01-01
We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the deformation field and that CAS can accurately reproduce small scales from low-resolution wind fields. The CAS technique therefore enables examination of atmospheric tracer transport at previously unattainable resolution.
Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be
Perko, Janez; Patel, Ravi A
2014-05-01
The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance.
In situ measurements of advective solute transport in permeable shelf sands
NASA Astrophysics Data System (ADS)
Reimers, Clare E.; Stecher, Hilmar A.; Taghon, Gary L.; Fuller, Charlotte M.; Huettel, Markus; Rusch, Antje; Ryckelynck, Natacha; Wild, Christian
2004-01-01
Solute transport rates within the uppermost 2 cm of a rippled continental shelf sand deposit, with a mean grain size of 400-500 μm and permeabilities of 2.0-2.4×10 -11 m 2, have been measured in situ by detecting the breakthrough of a pulse of iodide after its injection into the bottom water. These tracer experiments were conducted on the USA Middle Atlantic Bight shelf at a water depth of ˜13 m using a small tethered tripod that carried a close-up video camera, acoustic current meter, motorized 1.5 liter "syringe", and a microprofiling system for positioning and operating a solid-state voltammetric microelectrode. When triggered on shipboard, the syringe delivered a 0.21 M solution of potassium iodide and red dye through five nozzles positioned around and above the buried tip of the voltammetric sensor for 0.65-5 min. Bottom turbulence rapidly mixed and dispersed the tracer, which then was carried into the bed by interfacial water flows associated with ripple topography. The advective downward transport to the sensor tip was timed by a sequence of repetitive voltammetric scans. The distance-averaged vertical velocity, expressed as the depth of the sensor tip in the sand divided by the time to iodide breakthrough, was found to vary from 6 to 53 cm h -1 and generally to decrease with sediment depth. Because of episodic pumping and dispersion associated with the greatest 5% of wave heights and current speeds recorded, some concentration vs. time responses showed evidence of uneven solute migration. For reasons of mass balance, the advective flow field in the surface layers of permeable beds includes regions of water intrusion, horizontal pore-water flow and upwelling which also may explain some of the observed uneven migration. Pore-water advection was also evident in oxygen profiles measured before and after tracer injection with the voltammetric sensor. These profiles showed irregular distributions and oxygen penetration depths of 4-4.5 cm. Sand cores from the
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
NASA Astrophysics Data System (ADS)
Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-07-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-01-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459
Harkness, Samuel D.
1982-01-01
A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.
Harkness, S.D.
A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.
A subordinated advection model for uniform bed load transport from local to regional scales
NASA Astrophysics Data System (ADS)
Zhang, Yong; Martin, Raleigh L.; Chen, Dong; Baeumer, Boris; Sun, Hongguang; Chen, Li
2014-12-01
Sediment tracers moving as bed load can exhibit anomalous dispersion behavior deviating from Fickian diffusion. The presence of heavy-tailed resting time distributions and thin-tailed step length distributions motivate adoption of fractional-derivative models (FDMs) to describe sediment dispersion, but these models require many parameters that are difficult to quantify. Here we propose a considerably simplified FDM for anomalous transport of uniformly sized grains along straight channels, the subordinated advection equation (SAE), which is based on the concept of time subordination. Unlike previous FDM models with time index γ between 0 and 1, our SAE model adopts a value of γ between 1 and 2. This γ describes random velocities deviating significantly from the mean velocity and models both long resting periods and relatively fast displacements. We show that the model quantifies the dynamics of four bed load transport experiments recorded in the literature. In addition to γ, SAE model parameters—velocity and capacity coefficient—are related to the mean and variance of particle velocities, respectively. Successful application of the SAE model also implies a universal probability density for the heavy-tailed waiting time distribution (with finite mean) and a relatively lighter tailed step length distribution for uniform bed load transport from local to regional scales.
Transport and Recruitment of Blue Crab Larvae:a Model with Advection and Mortality
NASA Astrophysics Data System (ADS)
Garvine, R. W.; Epifanio, C. E.; Epifanio, C. C.; Wong, K.-C.
1997-07-01
The present paper develops a mathematical model for the transport and recruitment of blue crab (Callinectes sapidus) larvae, and applies it to the inner continental shelf of the Middle Atlantic Bight near Delaware Bay, U.S.A. Blue crab larvae develop through seven or eight planktonic zoeal stages to a megalopa stage suitable for recruitment to adult populations of east coast estuaries. The larvae are concentrated near the surface, and the currents are primarily forced by alongshelf winds and river discharge through major estuaries. Model currents are prescribed based on a realistic synthesis of their observed relationship to wind and river discharge. Besides the resulting advection, particle diffusion and biological mortality are added to determine the fate of larvae released from their parent estuary. Groups of particles were released across the source region of the outflowing buoyancy-driven current in the model estuary mouth. Most larvae were swept alongshelf to the south with the buoyancy-driven coastal current, and thus were lost as recruits to the population of their parent estuary. However, some larvae released close to the seaward edge of the emerging coastal current were able to cross the coastal current front and move seaward into inner shelf water during upwelling-favorable (northward) wind events. Some of these, in turn, were suitably placed near the parent estuary mouth so that they could be advected landward as megalopae into the estuary during a subsequent downwelling-favorable (southward) wind event and thus join the adult population. The model results for megalopae returns were computed from consecutive daily release of 1000 particles, and were compared with 4 years of blue crab megalopa settlement data for Delaware Bay. The model results for 1989 and 1990 matched the observed data remarkably well, with both years showing dominance by a single return event of a few days duration. For 1991 and 1992, the observed results showed multiple return events
Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems
Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.; Karniadakis, George E.
2015-07-07
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport
Baehr, A.L.; Hoag, G.E.; Marley, M.C.
1989-01-01
Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.
The predictability of advection-dominated flux-transport solar dynamo models
Sanchez, Sabrina; Fournier, Alexandre; Aubert, Julien
2014-01-20
Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo. Interested in the forecast horizon of such studies, we quantify the predictability window of a representative, advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τ {sub e}. The e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average estimate for τ {sub e} equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After reviewing these, we discuss their implications for solar cycle prediction.
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
Barbour, S Lee; Hendry, M Jim; Wassenaar, Leonard I
2012-04-01
Solute transport in clay-rich aquitards is characterized as molecular diffusion- or advection-dominated based on the Péclet number (P(e)). However, few field-based measurements of the coefficient of molecular diffusion (D(e)) exist, and none with a range of advection- or diffusion-dominated conditions in the same aquitard. In this long-term field experiment, standing water in a recovering well was spiked with deuterium ((2)H), then water-level recovery and δ(2)H values were monitored as the well returned to static conditions over 1054 days. After a second (2)H spike, water levels and δ(2)H values were monitored to day 1644 while under near static conditions. Modeling of the second spike was used to define the D(e) of (2)H as (3-4)× 10(-10)m(2)s(-1) for an accessible porosity of 0.31. Reservoir concentrations from the initial spike were modeled to define the transition from advection- to diffusion-dominated transport. This occurred after 200 days, consistent with a transition in P(e) from <1 to >1 when the length term is taken as the radial extent of the tracer plume (normalized concentration <0.05). This study verifies plume extent as the characteristic length term in the calculation of P(e) and demonstrates the transition from advection- to diffusion-dominated transport as the value of P(e) decreases below unity.
An oceanic heat transport pathway to the Amundsen Sea Embayment
NASA Astrophysics Data System (ADS)
Rodriguez, Angelica R.; Mazloff, Matthew R.; Gille, Sarah T.
2016-05-01
The Amundsen Sea Embayment (ASE) on the West Antarctic coastline has been identified as a region of accelerated glacial melting. A Southern Ocean State Estimate (SOSE) is analyzed over the 2005-2010 time period in the Amundsen Sea region. The SOSE oceanic heat budget reveals that the contribution of parameterized small-scale mixing to the heat content of the ASE waters is small compared to advection and local air-sea heat flux, both of which contribute significantly to the heat content of the ASE waters. Above the permanent pycnocline, the local air-sea flux dominates the heat budget and is controlled by seasonal changes in sea ice coverage. Overall, between 2005 and 2010, the model shows a net heating in the surface above the pycnocline within the ASE. Sea water below the permanent pycnocline is isolated from the influence of air-sea heat fluxes, and thus, the divergence of heat advection is the major contributor to increased oceanic heat content of these waters. Oceanic transport of mass and heat into the ASE is dominated by the cross-shelf input and is primarily geostrophic below the permanent pycnocline. Diagnosis of the time-mean SOSE vorticity budget along the continental shelf slope indicates that the cross-shelf transport is sustained by vorticity input from the localized wind-stress curl over the shelf break.
Seirin Lee, Sungrim; Shibata, Tatsuo
2015-10-07
Anterior-Posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which depends not only on the several genetic process but also biochemical and biophysical interactions. The mechanism of AP formation of Caenorhabditis elegans embryo is characterized into the three processes: (i) membrane association and dissociation of posterior and anterior proteins, (ii) diffusion into the membrane and cytosol, and (iii) active cortical and cytoplasmic flows induced by the contraction of the acto-myosin cortex. We explored the mechanism of symmetry breaking and AP polarity formation using self-recruitment model of posterior proteins. We found that the AP polarity pattern is established over wide range in the total mass of polarity proteins and the diffusion ratio in the cytosol to the membrane. We also showed that the advective transport in both membrane and cytosol during the establishment phase affects optimal time interval of establishment and positioning of the posterior domain, and plays a role to increase the robustness in the AP polarity formation by reducing the number of posterior domains for the sensitivity of initial conditions. We also demonstrated that a proper ratio of the total mass to cell size robustly regulate the length scale of the posterior domain.
Assessment of nitrate transport parameters using the advection-diffusion cell.
Aljazzar, Taiseer; Al-Qinna, Mohammed
2016-11-01
This study aimed to better understand nitrate transport in the soil system in a part of the state of North Rhine-Westphalia, in Germany, and to aid in the development of groundwater protection plans. An advection-diffusion (AD) cell was used in a miscible displacement experiment setup to characterize nitrate transport in 12 different soil samples from the study area. The three nitrate sorption isotherms were tested to define the exact nitrate interaction with the soil matrix. Soils varied in their properties which in its turn explain the variations in nitrate transport rates. Soil texture and organic matter content showed to have the most important effect on nitrate recovery and retardation. The miscible displacement experiment indicated a decrease in retardation by increasing sand fraction, and an increase in retardation by increasing soil organic matter content. Soil samples with high sand fractions (up to 94 %) exhibited low nitrate sorption capacity of less than 10 %, while soils with high organic matter content showed higher sorption of about 30 %. Based on parameterization for nitrate transport equation, the pore water velocity for both sandy and loamy soils were significantly different (P < 0.001). Pore water velocity in sandy soil (about 4 × 10(-3) m/s) was about 100 to 1000 larger than in loamy soils (8.7 × 10(-5) m/s). On the other hand, the reduction in nitrate transport in soils associated with high organic matter was due to fine pore pathways clogged by fine organic colloids. It is expected that the existing micro-phobicity increased the nitrate recovery from 9 to 32 % resulting in maximum diffusion rates of about 3.5 × 10(-5) m/s(2) in sandy soils (sample number CS-04) and about 1.4 × 10(-7) m/s(2) in silt loam soils (sample number FS-02).
Advective transport observations with MODPATH-OBS--documentation of the MODPATH observation process
Hanson, R.T.; Kauffman, L.K.; Hill, M.C.; Dickinson, J.E.; Mehl, S.W.
2013-01-01
The MODPATH-OBS computer program described in this report is designed to calculate simulated equivalents for observations related to advective groundwater transport that can be represented in a quantitative way by using simulated particle-tracking data. The simulated equivalents supported by MODPATH-OBS are (1) distance from a source location at a defined time, or proximity to an observed location; (2) time of travel from an initial location to defined locations, areas, or volumes of the simulated system; (3) concentrations used to simulate groundwater age; and (4) percentages of water derived from contributing source areas. Although particle tracking only simulates the advective component of conservative transport, effects of non-conservative processes such as retardation can be approximated through manipulation of the effective-porosity value used to calculate velocity based on the properties of selected conservative tracers. This program can also account for simple decay or production, but it cannot account for diffusion. Dispersion can be represented through direct simulation of subsurface heterogeneity and the use of many particles. MODPATH-OBS acts as a postprocessor to MODPATH, so that the sequence of model runs generally required is MODFLOW, MODPATH, and MODPATH-OBS. The version of MODFLOW and MODPATH that support the version of MODPATH-OBS presented in this report are MODFLOW-2005 or MODFLOW-LGR, and MODPATH-LGR. MODFLOW-LGR is derived from MODFLOW-2005, MODPATH 5, and MODPATH 6 and supports local grid refinement. MODPATH-LGR is derived from MODPATH 5. It supports the forward and backward tracking of particles through locally refined grids and provides the output needed for MODPATH_OBS. For a single grid and no observations, MODPATH-LGR results are equivalent to MODPATH 5. MODPATH-LGR and MODPATH-OBS simulations can use nearly all of the capabilities of MODFLOW-2005 and MODFLOW-LGR; for example, simulations may be steady-state, transient, or a combination
Heat transport through atomic contacts.
Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd
2017-02-06
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
An approximate calculation of advective gas-phase transport of 14C at Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Knapp, R. B.
1990-01-01
A quasilinear partial differential equation, which describes gas-phase transport of a 14C kinematic wave through a porous medium, is derived, its sensitivity to system variables is analyzed and it is applied to one possible release scenarion at the porposed Yucca Mountain, Nevada high-level radioactive waste repository. Advection, isotope exchange between CO 2 in a flowing gas phase and HCO 3- in a static aqueous phase, and radioactive decay are incorporated. The governing equation is solved analytically by the method of characteristics. The mass fraction of 14C in the gas phase,X 14g, is controlled by radioactive decay. The relatively long half-line of 14C, about 5720 years, and the relatively shallow proposed burial depth of the radioactive waste, about 350m, requires significant retardation of the 14C wave velocity for significant reduction in X 14g. 14C wave velocity is most sensitive to temperature and pH which control the distribution of total carbon between gas and liquid phase; the greater the partitioning of carbon into the liquid phase, the greater the retardation of the 14C wave velocity and the greater the ultimate reduction in X 14g from initial conditions. Partitioning of total carbon into the liquid phase is greatest at low temperatures, < 100° C, and high pH values, > 8. Increasing water saturation also tends to retard 14C wave velocity but to a lesser extent. The governing equation has been applied using conditions that may possibly occur at the proposed Yucca Mountain repository. Calculations indicate that the 14C wave takes about 5900 years to reach the surface with a X 14g equal to 25 ppm. Diffusion and dispersion are not of major importance for these conditions. These calculations are approximate due to the number of assumptions involved. Discharge of 14C into the gas before the selected time would accelerate wave arrival and increase the amount of 14C reaching the surface.
Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks
NASA Astrophysics Data System (ADS)
Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.
2013-12-01
Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus
Heat transport in nonuniform superconductors
NASA Astrophysics Data System (ADS)
Richard, Caroline; Vorontsov, Anton B.
2016-08-01
We calculate electronic energy transport in inhomogeneous superconductors using a fully self-consistent nonequilibrium quasiclassical Keldysh approach. We develop a general theory and apply it to a superconductor with an order parameter that forms domain walls of the type encountered in the Fulde-Ferrell-Larkin-Ovchinnikov state. The heat transport in the presence of a domain wall is inherently anisotropic and nonlocal. The bound states in the nonuniform region play a crucial role and control heat transport in several ways: (i) they modify the spectrum of quasiparticle states and result in Andreev reflection processes and (ii) they hybridize with the impurity band and produce a local transport environment with properties very different from those in a uniform superconductor. As a result of this interplay, heat transport becomes highly sensitive to temperature, magnetic field, and disorder. For strongly scattering impurities, we find that the transport across domain walls at low temperatures is considerably more efficient than in the uniform superconducting state.
Acoustically enhanced heat transport
NASA Astrophysics Data System (ADS)
Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.
2016-01-01
We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.
Acoustically enhanced heat transport
Ang, Kar M.; Hung, Yew Mun; Tan, Ming K.; Yeo, Leslie Y.
2016-01-15
We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.
Acoustically enhanced heat transport.
Ang, Kar M; Yeo, Leslie Y; Friend, James R; Hung, Yew Mun; Tan, Ming K
2016-01-01
We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10(6) Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ∼ 10(-9) m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ∼ 10(-8) m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10(-8) m with 10(6) Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.
NASA Technical Reports Server (NTRS)
1978-01-01
The progress made on the development and delivery of noncorrosive fluid subsystems is reported. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. At least 100 gallons of each type of fluid recommended by the contractor will be delivered under the contract. The performance testing of a number of fluids is described.
NASA Technical Reports Server (NTRS)
Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.
1990-01-01
Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.
Richon, Patrick; Perrier, Frédéric; Koirala, Bharat Prasad; Girault, Frédéric; Bhattarai, Mukunda; Sapkota, Soma Nath
2011-02-01
Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m(-2) d(-1). Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO(2) concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m(-3), but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO(2) advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m(-3), remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S(1) and semi-diurnal S(2) periodic components. At the advection-dominated points, radon concentration did not exhibit S(1) or S(2) components. At the reference points, however, the S(2) component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S(1) component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the
NASA Astrophysics Data System (ADS)
Lester, D. R.; Trefry, M. G.; Metcalfe, G.
2016-11-01
The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.
NASA Astrophysics Data System (ADS)
Dunn, Andrea M.; Silliman, Stephen E.; Dhamwichukorn, Srisuda; Kulpa, Charles F.
2005-05-01
A laboratory experiment is used to provide preliminary evidence that microbes can be advected into the capillary fringe from the region below the water table under steady flow conditions. A flow cell was packed so as to contain both a region for which pore-water pressure was greater than atmospheric pressure (termed 'below the water table') and a region, where the pore-water pressure was less than atmospheric with the pores essentially saturated with water (termed the 'capillary fringe'). Steady flow was then established through maintaining a hydraulic gradient across the medium. Green fluorescent protein (GFP) transformed bacteria ( E. coli JM109) were used to visualize migration of bacteria from below the water table into the capillary fringe. These transformed bacteria fluoresce brightly and readily when excited by standard UV light (395 nm) in 100 mL LB medium with 100 μg/mL ampicillin. The concentrations of bacterial inoculum and oxygen were adjusted to ensure GFPuv expression at a large scale. Results demonstrated that microbes can move into the capillary fringe from below the water table under horizontal hydraulic gradients. Motion from the capillary fringe into the region below the water table was also observed as was the absence of advection through regions of entrapped air below the water table.
NASA Astrophysics Data System (ADS)
Ahmad, Nawaz; Wörman, Anders; Sanchez-Vila, Xavier; Bottacin-Busolin, Andrea
2016-12-01
CO2 that is injected into a geological storage reservoir can leak in dissolved form because of brine displacement from the reservoir, which is caused by large-scale groundwater motion. Simulations of the reactive transport of leaking CO2aq along a conducting fracture in a clay-rich caprock are conducted to analyze the effect of various physical and geochemical processes. Whilst several modeling transport studies along rock fractures have considered diffusion as the only transport process in the surrounding rock matrix (diffusive transport), this study analyzes the combined role of advection and dispersion in the rock matrix in addition to diffusion (advection-dominated transport) on the migration of CO2aq along a leakage pathway and its conversion in geochemical reactions. A sensitivity analysis is performed to quantify the effect of fluid velocity and dispersivity. Variations in the porosity and permeability of the medium are found in response to calcite dissolution and precipitation along the leakage pathway. We observe that advection and dispersion in the rock matrix play a significant role in the overall transport process. For the parameters that were used in this study, advection-dominated transport increased the leakage of CO2aq from the reservoir by nearly 305%, caused faster transport and increased the mass conversion of CO2aq in geochemical reactions along the transport pathway by approximately 12.20% compared to diffusive transport.
Water, heat and salt transport through the Strait of Otranto
NASA Astrophysics Data System (ADS)
Yari, Sadegh; Gačić, Miroslav; Kovačević, Vedrana; Cardin, Vanessa
2010-05-01
The water, heat and salt transports through the Strait of Otranto are estimated applying direct method to historical current and hydrographical data (from December 94 through November 95). A variational inverse method based on a variational principle and a finite element solver is used to reconstruct the current, temperature and salinity fields across the Strait section from sparse measurements. The mean annual inflow and outflow water transport rates are estimated as 0.901±0.039 Sv and -0.939±0.315 Sv, respectively, and the net transport for the period of study is equal to -0.032±0.208 Sv. Thus, on a yearly time interval, the inflow and the outflow are practically compensated. The heat and salt transports due to advection process are estimated for five monthly periods, namely December 1994, February, May, August and November 1995. Considering these five periods representative of the seasonal cycle during the year, their average values show that there is a net heat advection into the Adriatic Sea on a yearly basis. The estimated value of advected heat and the corresponding error are 2.408±0.490 TW, which is equivalent to a heat gain of 17.37±3.53 W m-2 for the whole basin. This value is compared to the heat loss of -36±152 (std) W m-2 through the air-sea interface calculated by means of bulk formulas over the Adriatic Sea. The two values are expected to be balance each other in order to close the heat budget of the basin. The possible reasons for this difference to occur are discussed. On a yearly basis, the salt transport is estimated as an input of salt equal to 0.05×106 Kg s-1. The average annual fresh water budget is estimated as -0.002 Sv, equivalent to the mass of fresh water of 2.00×106Kg s-1 or to the level of 0.45 m yr-1 for the entire Adriatic Sea. The import of salt that is less than the gain of fresh water is in agreement with the fact that the Adriatic Sea is a dilution basin.
Advective excess Ba transport as shown from sediment and trap geochemical signatures
Fagel, N.; Andre, L.; Dehairs, F.
1999-08-01
The authors report the results of a geochemical study of sediment and trap material. Major and trace elements (Zr, Ba, rare earth elements, and Th) were analyzed on bulk sedimentary material collected along the NE Atlantic margin. The aim is to test the widespread use of Ba-barite as a proxy for paleoproductivity in a continental margin area. This environment is of great interest because atmospheric-oceanic exchanges are important. In sediments, the geochemical signatures remain close to an upper crust reference, with flat shale-normalized rare earth elements patterns and constant elementary ratios. The calculated biogenic fraction of Ba or excess Ba (20--45%) remains lower than the excess Ba record in trap material (80--99%). The evolution of the geochemical signature along the margin reflects variable dilution of a detrital Post Archean Australian Shale-like component by a biogenic carbonaceous seawater-derived component. The trap material displays a wide range of variation in its trace element content (e.g., Ba {approximately}150--3,000 ppm, Zr {approximately}2--100 ppm), except for the abyssal site, which is characterized by constant signature. In the two other sites, all of the trace element contents increase with water depth and present pronounced seasonal changes at each sampled water depth. The amount of excess Ba also increases in the deepest traps, and its evolution throughout the year mimics the change of the other analyzed trace elements. In contrast, its relationships with particulate organic carbon are not obvious. In terms of fluxes, two periods of enhanced excess Ba fluxes are observed: (1) excess Ba flux increases with the detrital-like elements like Th especially during winter, and (2) excess Ba flux is enhanced without any change for the other trace elements during spring. To explain the first case, a supply through lateral advection is proposed. Such transient input of significant excess Ba flux will have a great impact on the yearly averaged
Diabatic heating, divergent circulation and moisture transport in the African monsoon system
Hagos, Samson M.; Zhang, Chidong
2009-12-24
The dynamics of the West African monsoon system is studied through the diagnosis of the roles of diabatic heating in the divergent circulation and moisture transport. The divergent circulation is partitioned into latent-heating and non-latent-heating (the sum of surface sensible heat flux and radiative heating) driven components based on its field properties and its relationship with diabatic heating profiles. Roles of latent and non-latent diabatic heating in the moisture transport of the monsoon system are thus distinguished. The gradient in surface sensible heat flux between the Saharan heat-low and the Gulf of Guinea drives a shallow meridional circulation, which transports moisture far into the continent on the northern side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence maximum is within the region of precipitation and thus enhances local monsoon precipitation. Meanwhile, latent heating also induces dry air advection from the north. The seasonal northward migration of precipitation is encouraged by neither of the two effects. On the other hand, the divergent circulation forced by remote latent heating influences local moisture distribution through advection. Specifically by bringing Saharan air from the north, and driving moisture to the adjacent oceans, global latent heating has an overall drying effect over the Sahel.
Lichtner, P.C.; Helgeson, H.C.
1986-06-20
A general formulation of multi-phase fluid flow coupled to chemical reactions was developed based on a continuum description of porous media. A preliminary version of the computer code MCCTM was constructed which implemented the general equations for a single phase fluid. The computer code MCCTM incorporates mass transport by advection-diffusion/dispersion in a one-dimensional porous medium coupled to reversible and irreversible, homogeneous and heterogeneous chemical reactions. These reactions include aqueous complexing, oxidation/reduction reactions, ion exchange, and hydrolysis reactions of stoichiometric minerals. The code MCCTM uses a fully implicit finite difference algorithm. The code was tested against analytical calculations. Applications of the code included investigation of the propagation of sharp chemical reaction fronts, metasomatic alteration of microcline at elevated temperatures and pressures, and ion-exchange in a porous column. Finally numerical calculations describing fluid flow in crystalline rock in the presence of a temperature gradient were compared with experimental results for quartzite.
Vapor phase heat transport systems
NASA Astrophysics Data System (ADS)
Hedstrom, J. C.; Neeper, D. A.
1985-09-01
Progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating is described, which could also be applied to service water heating. The refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compared the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.
Parkhurst, D.L.
1995-01-01
PHREEQC is a computer program written in the C pwgranuning language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria surface-complex-ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for composition differences between waters, within specified compositional uncertainties. PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox elements among their valence states in speciation calculations; to model ion-exchange and surface-compiexation reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of minerals present in the solid phases and determine antomaticaHy the thermodynamically stable phase assemblage; to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral names and standard chemical symbolism rather than index numbers. The use of (2 eliminates nearly all limitations on army sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character
The role of atmospheric heat transport in the seasonal carbon dioxide cycle
NASA Technical Reports Server (NTRS)
Pollack, James B.; Haberle, R. M.; Murphy, James R.; Schaeffer, J.
1993-01-01
We have carried out numerical experiments with a general circulations model (GCM) and energy balance model of the martian atmosphere to define the importance of heat transported to the polar regions in determining the amount of CO2 condensed on the surface during the fall and winter seasons and the amount sublimated during the spring and summer seasons. In so doing, we performed both sensitivity experiments, in which the dust opacity was varied over the full range of its observed values, and annual simulations, in which the dust opacity varied continuously with seasonal data, in accord with measurements taken at the Viking landers. Dust opacity represents the key variable for determining the contribution of atmospheric heat advection to the energy budget in the polar regions. The amount of heat advected to the winter polar regions increases monotonically as the dust opacity at low and middle latitudes increases. However, the increase is sharpest between optical depths of 0 and 1 tends to level off at still higher optical depths. Heat advection is more important at times of CO2 condensation than CO2 sublimation, since the temperature gradients are much steeper in the winter hemisphere than in the summer hemisphere. Because dust opacity is much higher during northern winter than during southern winter, atmospheric heat advection reduces the amount of CO2 that condenses in the north by a much larger factor than it does in the south.
ADVECTIVE TRANSPORT OF INTERSTELLAR PLASMA INTO THE HELIOSPHERE ACROSS THE RECONNECTING HELIOPAUSE
Strumik, M.; Grzedzielski, S.; Czechowski, A.; Macek, W. M.; Ratkiewicz, R.
2014-02-10
We discuss results of magnetohydrodynamical model simulations of plasma dynamics in the proximity of the heliopause (HP). The model is shown to fit details of the magnetic field variations observed by the Voyager 1 spacecraft during the transition from the heliosphere to the local interstellar medium (LISM). We propose an interpretation of magnetic field structures observed by Voyager 1 in terms of fine-scale physical processes. Our simulations reveal an effective transport mechanism of relatively dense LISM plasma across the reconnecting HP into the heliosphere. The mechanism is associated with annihilation of magnetic sectors in the heliospheric plasma near the HP.
NASA Astrophysics Data System (ADS)
Wheaton, Daniel D.; Singha, Kamini
2010-09-01
Multiple types of physical heterogeneity have been suggested to explain anomalous solute transport behavior, yet determining exactly what controls transport at a given site is difficult from concentration histories alone. Differences in timing between co-located fluid and bulk apparent electrical conductivity data have previously been used to estimate solute mass transfer rates between mobile and less-mobile domains; here, we consider if this behavior can arise from other types of heterogeneity. Numerical models are used to investigate the electrical signatures associated with large-scale hydraulic conductivity heterogeneity and small-scale dual-domain mass transfer, and address issues regarding the scale of the geophysical measurement. We examine the transport behavior of solutes with and without dual-domain mass transfer, in: 1) a homogeneous medium, 2) a discretely fractured medium, and 3) a hydraulic conductivity field generated with sequential Gaussian simulation. We use the finite-element code COMSOL Multiphysics to construct two-dimensional cross-sectional models and solve the coupled flow, transport, and electrical conduction equations. Our results show that both large-scale heterogeneity and subscale heterogeneity described by dual-domain mass transfer produce a measurable hysteresis between fluid and bulk apparent electrical conductivity, indicating a lag between electrical conductivity changes in the mobile and less-mobile domains of an aquifer, or mass transfer processes, at some scale. The shape and magnitude of the observed hysteresis is controlled by the spatial distribution of hydraulic heterogeneity, mass transfer rate between domains, and the ratio of mobile to immobile porosity. Because the rate of mass transfer is related to the inverse square of a diffusion length scale, our results suggest that the shape of the hysteresis curve is indicative of the length scale over which mass transfer is occurring. We also demonstrate that the difference in
Visualization of heat transport in heat pipes using thermocamera
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Čaja, Alexander; Lenhard, Richard
2010-10-01
Heat pipes, as passive elements show a high level of reliability when taking heat away and they can take away heat flows having a significantly higher density than systems with forced convection. A heat pipe is a hermetically closed duct, filled with working fluid. Transport of heat in heat pipes is procured by the change of state of the working fluid from liquid state to steam and vice versa and depends on the hydrodynamic and heat processes in the pipe. This study have been focused on observing the impact these processes have on the heat process, the transport of heat within the heat pipe with the help of thermovision. The experiment is oriented at scanning the changes in the surface temperatures of the basic structural types of capillary heat pipes in vertical position.
McCaulou, Douglas Ray
1993-01-01
Replicate column experiments were done to quantify the effects of temperature and bacterial motility on advective transport through repacked, but otherwise unaltered, natural aquifer sediment. The bacteria used in this study, A0500, was a flagellated, spore-forming rod isolated from the deep subsurface at DOE`s Savannah River Laboratory. Motility was controlled by turning on flagellar metabolism at 18°C but off at 40°α), estimated using a steady-state filtration model. The observed greater microsphere removal at the higher temperature agreed with the physical-chemical model, but bacteria removal at 18{degrees}C was only half that at 4°C. The sticking efficiency for non-motile A0500 (4°C) was over three times that of the motile A0500 (18°C), 0.073 versus 0.022 respectively. Analysis of complete breakthrough curves using a non-steady, kinetically limited, transport model to estimate the time scales of attachment and detachment suggested that motile A 0500 bacteria traveled twice as far as non-motile A 0500 bacteria before becoming attached. Once attached, non-motile colloids detached on the time scale of 9 to 17 days. The time scale for detachment of motile A0500 bacteria was shorter, 4 to 5 days. Results indicate that bacterial attachment was reversible and detachment was enhanced by bacterial motifity. The kinetic energy of bacterial motility changed the attachment-detachment kinetics in favor of the detached state. The chemical factors responsible for the enhanced transport are not known. However, motility may have caused weakly held bacteria to detach from the secondary minimum, and possibly from the primary minimum, as described by DLVO theory.
Simulating water, solute, and heat transport in the subsurface with the VS2DI software package
Healy, R.W.
2008-01-01
The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.
Macroscopic heat transport equations and heat waves in nonequilibrium states
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Jou, David; Wang, Moran
2017-03-01
Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.
Ackerman, D.J.
1995-01-01
Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails
Momentum transport and non-local transport in heat-flux-driven magnetic reconnection in HEDP
NASA Astrophysics Data System (ADS)
Liu, Chang; Fox, Will; Bhattacharjee, Amitava
2016-10-01
Strong magnetic fields are readily generated in high-energy-density plasmas and can affect the heat confinement properties of the plasma. Magnetic reconnection can in turn be important as an inverse process, which destroys or reconfigures the magnetic field. Recent theory has demonstrated a novel physics regime for reconnection in high-energy-density plasmas where the magnetic field is advected into the reconnection layer by plasma heat flux via the Nernst effect. In this work we elucidate the physics of the electron dissipation layer in this heat-flux-driven regime. Through fully kinetic simulation and a new generalized Ohm's law, we show that momentum transport due to the heat-flux-viscosity effect provides the dissipation mechanism to allow magnetic field line reconnection. Scaling analysis and simulations show that the characteristic width of the current sheet in this regime is several electron mean-free-paths. These results additionally show a coupling between non-local transport and momentum transport, which in turn affects the dynamics of the magnetic field. This work was supported by the U.S. Department of Energy under Contract No. DE-SC0008655.
Variability in North Atlantic heat content and heat transport in a coupled ocean-atmosphere GCM
NASA Astrophysics Data System (ADS)
Dong, B.; Sutton, R. T.
2002-06-01
A coupled ocean-atmosphere general circulation model has been used to study the variations of North Atlantic upper ocean heat content (OHC), sea surface temperature (SST) and ocean heat transport (OHT), and the relationships between these three quantities. We find that OHC anomalies, and salinity anomalies, propagate anti-cyclonically around the North Atlantic subtropical gyre. They propagate eastward in midlatitudes and westward in low latitudes. Both the advection of mean temperature by anomalous currents and the advection of temperature anomalies by mean currents are responsible for these zonal propagations. In addition to zonal propagations, upper ocean temperature anomalies propagate southward in the eastern North Atlantic, where subduction plays a dominant role. Variability in the northward OHT in the Atlantic is primarily governed by variability in the ocean circulation rather than variability in temperatures. Fluctuations in OHT are the major cause of anomalies in OHC and SST in the Gulf Stream extension region. This is true both for interannual variability and for decadal variability. On interannual time scales, however, surface fluxes also make a significant contribution. Analysis of the relationships of OHT with OHC and SST suggests that a knowledge of OHT fluctuations could be used to predict variations in OHC, and therefore sea surface temperatures, several years in advance.
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
Heat transport system, method and material
Musinski, Donald L.
1987-01-01
A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.
Anderman, Evan R.; Hill, Mary Catherine
2001-01-01
Observations of the advective component of contaminant transport in steady-state flow fields can provide important information for the calibration of ground-water flow models. This report documents the Advective-Transport Observation (ADV2) Package, version 2, which allows advective-transport observations to be used in the three-dimensional ground-water flow parameter-estimation model MODFLOW-2000. The ADV2 Package is compatible with some of the features in the Layer-Property Flow and Hydrogeologic-Unit Flow Packages, but is not compatible with the Block-Centered Flow or Generalized Finite-Difference Packages. The particle-tracking routine used in the ADV2 Package duplicates the semi-analytical method of MODPATH, as shown in a sample problem. Particles can be tracked in a forward or backward direction, and effects such as retardation can be simulated through manipulation of the effective-porosity value used to calculate velocity. Particles can be discharged at cells that are considered to be weak sinks, in which the sink applied does not capture all the water flowing into the cell, using one of two criteria: (1) if there is any outflow to a boundary condition such as a well or surface-water feature, or (2) if the outflow exceeds a user specified fraction of the cell budget. Although effective porosity could be included as a parameter in the regression, this capability is not included in this package. The weighted sum-of-squares objective function, which is minimized in the Parameter-Estimation Process, was augmented to include the square of the weighted x-, y-, and z-components of the differences between the simulated and observed advective-front locations at defined times, thereby including the direction of travel as well as the overall travel distance in the calibration process. The sensitivities of the particle movement to the parameters needed to minimize the objective function are calculated for any particle location using the exact sensitivity
Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.
2001-01-01
A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.
Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)
2001-01-01
A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.
Heat transport system, method and material
Musinski, D.L.
1987-04-28
A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.
NASA Astrophysics Data System (ADS)
Reiter, M. A.
2004-12-01
Temperature measurements ( T logs ) in the deep vadose zone ( about 60m to 120m depth ) of the Albuquerque Basin have been repeated over the past year at four piezometer nests. The measurements were made with a very fast time response thermistor, which allowed data to be taken every meter going down hole. This depth resolution of temperature data permits a rather detailed observation of the thermal regime in the vadose zone. At one site ( Lincoln Middle School ) the temperature profile below 20m clearly shows a conductive profile resulting from surface temperature change due to urbanization and nearby ( about 10m ) asphalt pavement. At the other three sites the cause of non-linearity in the T log is less certain. Temperature records suggest about 1 deg C increase in near surface air temperature over the past thirty years at the Albuquerque airport; although this data may also be affected by urbanization. The Tome and 98th Street sites are being approached by paved roads and urbanization. At the Tome site expressions representing horizontal advection are the statistically preferred fit to the T log from about 25m to 58m ( F statistic ). At the 98th Street site an expression representing a surface temperature step best fits the T log from 20m to about 75m; however, the temperature step (about 1 deg C to 2 deg C, 3 to 15 yr ago ) is variable between logs, and the profile of the T log with abrupt discontinuities may suggest other than just conductive heat transfer. The fourth piezometer nest at the Mesa del Sol site is the most remote of the sites considered, with as little nearby surface disturbance as might be expected for a drilling location. At depths between 30m and 70m the expressions representing surface temperature change, horizontal advection, and vertical advection, all fit the T log reasonably well. The temperature step expression suggests about 1 deg C to 1.8 deg C surface temperature increase about 13 yr to 28 yr ago. Deeper in the vadose zone, from about
Heat transport in active harmonic chains
Zheng, Mei C.; Ellis, Fred M.; Kottos, Tsampikos; Fleischmann, Ragnar; Geisel, Theo; Prosen, Tomaz
2011-08-15
We show that a harmonic lattice model with amplifying and attenuating elements, when coupled to two thermal baths, exhibits unique heat transport properties. Some of these novel features include anomalous nonequilibrium steady-state heat currents, negative differential thermal conductance, as well as nonreciprocal heat transport. We find that when these elements are arranged in a PT-symmetric manner, the domain of existence of the nonequilibrium steady state is maximized. We propose an electronic experimental setup based on resistive-inductive-capacitive (RLC) transmission lines, where our predictions can be tested.
Shapiro, A.M.; Renken, R.A.; Harvey, R.W.; Zygnerski, M.R.; Metge, D.W.
2008-01-01
A tracer experiment, using a nonreactive tracer, was conducted as part of an investigation of the potential for chemical and pathogen migration to public supply wells that draw groundwater from the highly transmissive karst limestone of the Biscayne aquifer in southeastern Florida. The tracer was injected into the formation over approximately 1 h, and its recovery was monitored at a pumping well approximately 100 m from the injection well. The first detection of the tracer occurred after approximately 5 h, and the peak concentration occurred at about 8 h after the injection. The tracer was still detected in the production well more than 6 days after injection, and only 42% of the tracer mass was recovered. It is hypothesized that a combination of chemical diffusion and slow advection resulted in significant retention of the tracer in the formation, despite the high transmissivity of the karst limestone. The tail of the breakthrough curve exhibited a straight-line behavior with a slope of -2 on a log-log plot of concentration versus time. The -2 slope is hypothesized to be a function of slow advection, where the velocities of flow paths are hypothesized to range over several orders of magnitude. The flow paths having the slowest velocities result in a response similar to chemical diffusion. Chemical diffusion, due to chemical gradients, is still ongoing during the declining limb of the breakthrough curve, but this process is dwarfed by the magnitude of the mass flux by slow advection.
Modeling of heat transport through Fractures with emphasis to roughness and aperture variability
NASA Astrophysics Data System (ADS)
Nigon, Benoit; Englert, Andreas; Pascal, Christophe
2015-04-01
Fractured media are characterized by multi-scale heterogeneities implying high spatial variability of hydraulic properties. At the fracture network scale, spatial organization of fluxes is controlled by the fracture network geometry, itself characterized by fracture connectivity, fracture density, and the respective lengths and apertures of the fractures within the network. At the fracture scale, the variability of the fluxes is mainly controlled by fracture roughness and aperture variability. The multi-scale heterogeneities of fractured rocks imply complexities for prediction of solute and heat transport in space and time, and often lead to the so-called "anomalous transport" behavior. In homogeneous media, heat transport can be described using Fourier's law opening the possibility to apply the advection-dispersion equation to predict transport behavior. However, in real fractured media a "non-Fourier transport" often dominates. The latter phenomenon, characterized by asymmetric breakthrough shape, early breakthrough and long tailing cannot be described by the classical advection-dispersion equation. In the present study, we focus on heat transport within a single fracture and we explore the respective roles of fracture roughness and aperture variability. Fracture roughness has two main effects on heat transport, flow channeling and a spatial variation of heat exchange area between fluid and rock. Fracture aperture variability controls the variability of fracture flow, and thus induces spatial variation of heat transport in a fracture. Micro- to macro-scale fracture roughness measurements will be performed in the field and the laboratory using a terrestrial LIDAR, a X-Ray CT-Scanner Alpha, and a Microscope Keyence VHX 100. Thereafter the measurements will be used to better describe fracture geometry taking in account discontinuity type. To further improve the understanding of heat transfer between fracture and matrix, we will numerically model heat transport as
NASA Astrophysics Data System (ADS)
Valente, Pedro; Vassilicos, Christos
2012-11-01
The cornerstone assumption that Cɛ ≡ ɛL /u3 ~ constant was found to breakdown in certain nonequilibrium regions of decaying grid-generated turbulence with wide power-law near -5/3 spectra where the behaviour of Cɛ is, instead, very close to Cɛ ~ ReL- 1 (Valente & Vassilicos, 2012 [Phys. Rev. Lett. 108, 214503]). We investigate nonequilibrium turbulence by measuring with two cross wire anemometers the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production and transport in the lee of a square-mesh grid and compare with a region of equilibrium turbulence. For the nonequilibrium case it is shown that the production and transport terms are negligible for scales smaller than about a third of L. For both cases it is shown that the peak of the scale-by-scale energy transfer scales as u3 / L which is the expected behaviour for equilibrium turbulence. However, for the nonequilibrium case this implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the equilibrium case. P. V. acknowledges the financial support from Fundação para a Ciência e a Tecnologia (SFRH/BD/61223/2009, cofinanced by POPH/FSE).
Hill, M.C.; Ely, D.M.; Tiedeman, C.R.; O'Brien, G.M.; D'Agnese, F.A.; Faunt, C.C.
2001-08-01
When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system (DVRFS). The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 underground Test Area (UGTA) sites. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work.
Heat transport across structural boundaries
NASA Astrophysics Data System (ADS)
Shaubach, R. M.
1985-06-01
A description of a program which uses heat-pipe principles in the design of prototype rotating thermal joints for the NASA centralized thermal control system, as well as of the first six months of work, during which the contract goals were met, is given. The design requirements include operating in a temperature range from 0 to 40 C, transferring 10 kilowatts with an overall temperature drop of 5 C, and rotating a total of 60,000 revolutions at 2 rpm with a 1700 inch pound moment loading. The predicted and required performance for the rotating joint are compared and the results are presented in a table. Consideration is also given to Phase II of the program.
Heat transport in the Red Lake Bog, Glacial Lake Agassiz Peatlands
McKenzie, J.M.; Siegel, D.I.; Rosenberry, D.O.; Glaser, P.H.; Voss, C.I.
2007-01-01
We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub-daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0.5 W m-1 ??C-1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore-water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero-curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non-linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright ?? 2006 John Wiley & Sons, Ltd.
Capillary heat transport and fluid management device
NASA Technical Reports Server (NTRS)
Owen, James W. (Inventor)
1988-01-01
A passive heat transporting and fluid management apparatus including a housing in the form of an extruded body member having flat upper and lower surfaces is disclosed. A main liquid channel and at least two vapor channels extend longitudinally through the housing from a heat input end to a heat output end. The vapor channels have sintered powdered metal fused about the peripheries to form a porous capillary wick structure. A substantial number of liquid arteries extend transversely through the wicks adjacent the respective upper and lower surfaces of the housing, the arteries extending through the wall of the housing between the vapor channels and the main liquid channel and open into the main liquid channel. Liquid from the main channel enters the artery at the heat input end, wets the wick and is vaporized. When the vapor is cooled at the heat output end, the condensed vapor refills the wick and the liquid reenters the main liquid channel.
NASA Astrophysics Data System (ADS)
de Lorenzo, Salvatore; Loddo, Mariano
2010-01-01
Laboratory experiments on simulated faults in rocks clearly show the temperature dependence of dynamic rock friction. Since rocks surrounding faults are permeable, we have developed a numerical method to describe the thermo-mechanical evolution of the pre-seismic sliding phase which takes into account both the rate-, state- and temperature-dependent friction law and the heat advection term in the energy equation. We consider a laminar fluid motion perpendicular to a vertical fault plane and assume that fluids move away from the fault plane. A semi-analytical temperature solution which accounts for the variability of slip velocity and stress on the fault has been found. This solution has been generalized to the case of a time varying fluid velocity and then was used to include the thermal pressurization effect. After discretizing the temperature solution, the evolution of the system is obtained by the solution of a system of first order differential equations which allows us to determine the evolution of slip, slip rate, friction coefficient, effective normal stress, temperature and fluid velocity. The numerical solutions are found using a Runge-Kutta method with an adaptative stepsize control in time. When the thermal pressurization effects can be neglected, the heat advection effect gives rise to a delay, with respect to the purely conductive case, of the earthquake occurrence time. This delay increases with increasing permeability H of the system. When the thermal pressurization effects are taken into account the situation is opposite, i.e. the onset of instability tends to precede that of the purely conductive case. The advance in the time of occurrence of instability increases with increasing coefficient of thermal pressurization. In the small permeability range ( H ≤ 10 -18 m 2), the seismic moment and nucleation length of the pre-seismic phase are significantly smaller than those predicted by the purely conductive model.
Vibrational Heat Transport in Molecular Junctions.
Segal, Dvira; Agarwalla, Bijay Kumar
2016-05-27
We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.
Vibrational Heat Transport in Molecular Junctions
NASA Astrophysics Data System (ADS)
Segal, Dvira; Agarwalla, Bijay Kumar
2016-05-01
We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.
Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.
2015-01-01
A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532
Monger, Gregg R; Duncan, Candice Morrison; Brusseau, Mark L
2014-12-01
A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation.
Miniature Heat Transport System for Nanosatellite Technology
NASA Technical Reports Server (NTRS)
Douglas, Donya M,
1999-01-01
The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an
Increased ocean heat transports and warmer climate
NASA Technical Reports Server (NTRS)
Rind, D.; Chandler, M.
1991-01-01
The impact of an increased ocean heat transport on climate is investigated in the framework of the GISS GMC model described by Hansen et al. (1983), using two scenarios: one starting from warmer polar temperatures/no sea ice and the other from the current ocean conditions. A 20-percent increase in cross-equatorial heat transport was sufficient to melt all sea ice; it resulted in a climate that was 2 C warmer for the global average, with values some 20-deg warmer at high altitudes and 1-deg warmer near the equator. It is suggested that the hydrological and dynamical changes associated with this different climate regime may be self-sustaining and, as such, would account for the high-latitude warmth of climates in the Mesozoic and Tertiary periods and the decadenal-scale climate fluctuations during the Holocene.
Vapor-phase heat-transport system
NASA Astrophysics Data System (ADS)
Hedstrom, J. C.
1983-11-01
A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.
Vapor-phase heat-transport system
NASA Astrophysics Data System (ADS)
Hedstrom, J. C.
A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.
DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE
A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...
Hill, Mary C.; Ely, D. Matthew; Tiedeman, Claire R.; O'Brien, Grady M.; D'Agnese, Frank A.; Faunt, Claudia C.
2001-01-01
When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system. The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 Underground Test Areas. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work. The methods presented in this report are used in three ways. (1) The ratings for individual observations are obtained by manipulating the measures of prediction uncertainty, and do not involve recalibrating the model. In this analysis, observation locations are each omitted individually and the resulting increase in uncertainty in the predictions is calculated. The uncertainty is quantified as standard deviations on the simulated advective transport. The increase in uncertainty is quantified as the percent increase in the standard deviations caused by omitting the one observation location from the calculation of standard deviations. In general, observation locations associated with larger increases are rated as more important. (2) Ratings for largely geographically based groups are obtained using a straightforward extension of the method used for
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference containment transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2-3 times more reliable than estimates based on temporal data for all parameters except velocity. (Estimated author abstract) Refs.
Merritt, M.L.
1993-01-01
The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.
Fast atomic transport without vibrational heating
Torrontegui, E.; Ibanez, S.; Chen Xi; Ruschhaupt, A.; Guery-Odelin, D.; Muga, J. G.
2011-01-15
We use the dynamical invariants associated with the Hamiltonian of an atom in a one dimensional moving trap to inverse engineer the trap motion and perform fast atomic transport without final vibrational heating. The atom is driven nonadiabatically through a shortcut to the result of adiabatic, slow trap motion. For harmonic potentials this only requires designing appropriate trap trajectories, whereas perfect transport in anharmonic traps may be achieved by applying an extra field to compensate the forces in the rest frame of the trap. The results can be extended to atom stopping or launching. The limitations due to geometrical constraints, energies, and accelerations involved are analyzed along with the relation to previous approaches based on classical trajectories or ''fast-forward'' and ''bang-bang'' methods, which can be integrated in the invariant-based framework.
Thermal Transport Model for Heat Sink Design
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Kelley, Richard L.; Brown, Ari D.; Smith, Stephen J.; Kilbourne, Caroline a.
2009-01-01
A document discusses the development of a finite element model for describing thermal transport through microcalorimeter arrays in order to assist in heat-sinking design. A fabricated multi-absorber transition edge sensor (PoST) was designed in order to reduce device wiring density by a factor of four. The finite element model consists of breaking the microcalorimeter array into separate elements, including the transition edge sensor (TES) and the silicon substrate on which the sensor is deposited. Each element is then broken up into subelements, whose surface area subtends 10 10 microns. The heat capacity per unit temperature, thermal conductance, and thermal diffusivity of each subelement are the model inputs, as are the temperatures of each subelement. Numerical integration using the Finite in Time Centered in Space algorithm of the thermal diffusion equation is then performed in order to obtain a temporal evolution of the subelement temperature. Thermal transport across interfaces is modeled using a thermal boundary resistance obtained using the acoustic mismatch model. The document concludes with a discussion of the PoST fabrication. PoSTs are novel because they enable incident x-ray position sensitivity with good energy resolution and low wiring density.
Modeling Vapor and Heat Transport on Io
NASA Astrophysics Data System (ADS)
Allen, D. R.; Howell, R. R.
2012-12-01
length scales of sulfur deposition that were intermediate between our Ingersoll adapted model and the Moreno scaled lengths. Assumptions that we made in order to simplify our models are likely contributing to the differences in length scales between our radial model and the Moreno model. Results from these sulfur transport models will be presented. In addition to the sulfur transport models, we are beginning to develop models to investigate the role of sulfur in modifying the temperatures. Models of horizontal transport of sulfur in and around the patera and of vertical transport of sulfur from depth within the patera will explore the role of sulfur in modifying the temperatures. Horizontal transport models probe the ability of sulfur to redistribute the heat around the patera creating lower temperatures and uniform temperature profiles. Vertical transport models explore the ability to bring heat from depth and to produce the light deposits in the images. This work was supported in part by NASA JDAP grant NNX09AE06G. References: Ingersoll, A.P. (1989), Io meteorology: How atmospheric pressure is controlled locally by volcanoes and surface frosts, Icarus, 81, 298-313. Moreno, M.A., G. Schubert, J. Baumgardner, M.G. Kivelson, and D.A. Paige (1991), Io's volcanic and sublimation atmospheres, Icarus, 93, 63-81.
Screening for heat transport by groundwater in closed geothermal systems.
Ferguson, Grant
2015-01-01
Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8) m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed.
Convective heat transport in geothermal systems
Lippmann, M.J.; Bodvarsson, G.S.
1986-08-01
Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.
Direct estimate of water, heat, and salt transport through the Strait of Otranto
NASA Astrophysics Data System (ADS)
Yari, Sadegh; Kovačević, Vedrana; Cardin, Vanessa; Gačić, Miroslav; Bryden, Harry L.
2012-09-01
The transport of water volume, salt and heat was calculated using continuous measurements of currents in the Otranto Strait for a one-year period in 1994-95. Temperature and salinity data sets, available from five hydrographic surveys, were used to obtain the seasonal temperature and salinity distributions at the Otranto transect. The Variational Inverse Method (VIM) was applied to reconstruct spatial distributions of the de-tided low-pass inflowing current component, salinity and temperature. Errors associated with estimates of transports are influenced by the data coverage: the higher the spatial resolution, the smaller the error and vice versa. Volume transport reaches a maximum in winter and spring and attains its minimum in summer. The obtained volume transport [˜1 Sv (106 m3s-1)] should be considered a lower limit value since in that period the Adriatic was producing relatively small quantities of deep water due to the inflow of low-salinity (high buoyancy) waters and relatively mild winters. Comparing the mean advective heat input and the air-sea heat loss, the same order of magnitude between the two has been obtained which is satisfactory considering the possible errors of the two approaches. The relative importance of the eddy heat transport to the total transport is estimated to be only about 5% and thus it can be neglected in a first approximation. The salt transport estimates show a net input, suggesting a salinity increase during the period of study; this was confirmed from the long-term salinity data in the Southern Adriatic.
NASA Astrophysics Data System (ADS)
Baechler, S.; Croisé, J.; Altmann, S.
2012-12-01
Chemico-osmosis is a recognized phenomenon taking place in clay mineral-rich sedimentary formations and a number of questions have been raised concerning its potential effects on pressure fields in and around underground radioactive waste repositories installed in such formations. Certain radioactive waste packages contain large quantities of nitrate salts whose release might result in the presence of highly concentrated salt solutions in the disposal cells, during their resaturation after closure of the facility. This would lead to large solute concentration gradients within the formation's porewater which could then potentially induce significant chemico-osmotic fluxes. In this paper, we assess the impact of chemico-osmotic fluxes on the water pressure during the post-closure period of a typical disposal cell for intermediate-level, long-lived bituminised radioactive waste in the Callovo-Oxfordian Clay formation. A numerical model of chemico-osmotic water flow and solute transport has been developed based on the work of Bader and Kooi (2005) [5], and including Bresler's dependence of osmotic efficiency on concentration and compaction state [9]. Model validity has been extended to highly concentrated solutions by incorporating a concentration-dependent activity coefficient, based on the Pitzer's equations. Results show that due to the strong dependence of the osmotic coefficient on concentration, the impact of chemico-osmosis on water flow and on the pressure field around the disposal cell is relatively low. A maximum overpressure of the order of 1 MPa was obtained. No difference in the simulation results were noticed for disposal cell solutions having concentrations higher than 1 M NaNO3. Differences between simulations were found to be almost entirely due to Bresler's relationship i.e., the model of the dependence between osmotic efficiency and concentration, and only slightly on the activity coefficient correction. Questions remain regarding the appropriate
NASA Astrophysics Data System (ADS)
Lund, M. R.; Soegaard, H.
2003-09-01
During two successive growing seasons meteorological measurements were made in a pearl millet field in the Sahel to investigate the evaporation process in relation to crop growth. The evaporation was measured by eddy correlation and simulated using the Shuttleworth Wallace (SW) model [Q. J. R. Meteorol. Soc. 111 (1985) 839-855]. To take sun height and multi-layer scattering into account a radiation balance model was formulated. The model indicates that partitioning of the net radiation between the vegetation and the soil may be estimated ( r2=0.94) from the fraction of diffuse radiation, the leaf area index and an attenuation coefficient, but that the attenuation coefficient may not be similar in different locations. To solve the SW-model with respect to the soil resistance an iterative solution was employed with the total evaporation estimated from the Bowen-ratio calculated from eddy correlation measurements. The procedure made it possible to derive stable estimates of soil resistance at soil evaporation rates down to 25 W m -2. The soil resistance was found to be in accordance with evaporation through a dry surface layer. The SW-model indicates, that advection of sensible heat from the dry soil to the plants, increases transpiration considerably. This will cause management techniques, such as mulching and dry farming, aimed at reducing soil evaporation to be less effective than might be anticipated. The effects of raising the leaf area index to improve the microclimate is discussed in relation to management of the available water and crop security.
Apparatus for downward transport of heat
Neeper, D.A.; Hedstrom, J.C.
1985-08-05
An apparatus for the downward transport of heat by vaporization of a working fluid, usually from a collector which can be powered by the sun to a condenser which drains the condensed working fluid to a lower reservoir, is controled by a control valve which is operationally dependent upon the level of working fluid in either the lower reservoir or an upper reservoir which feeds the collector. Condensed working fluid is driven from the lower to the upper reservoir by vaporized working fluid whose flow is controled by the controll valve. The upper reservoir is in constant communication with the condenser which prevents a buildup in temperature/pressure as the apparatus goes through successive pumping cycles.
Functionalization mediates heat transport in graphene nanoflakes
Han, Haoxue; Zhang, Yong; Wang, Nan; Samani, Majid Kabiri; Ni, Yuxiang; Mijbil, Zainelabideen Y.; Edwards, Michael; Xiong, Shiyun; Sääskilahti, Kimmo; Murugesan, Murali; Fu, Yifeng; Ye, Lilei; Sadeghi, Hatef; Bailey, Steven; Kosevich, Yuriy A.; Lambert, Colin J.; Liu, Johan; Volz, Sebastian
2016-01-01
The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ∼28 °C for a chip operating at 1,300 W cm−2. Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene–graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime. PMID:27125636
Functionalization mediates heat transport in graphene nanoflakes
NASA Astrophysics Data System (ADS)
Han, Haoxue; Zhang, Yong; Wang, Nan; Samani, Majid Kabiri; Ni, Yuxiang; Mijbil, Zainelabideen Y.; Edwards, Michael; Xiong, Shiyun; Sääskilahti, Kimmo; Murugesan, Murali; Fu, Yifeng; Ye, Lilei; Sadeghi, Hatef; Bailey, Steven; Kosevich, Yuriy A.; Lambert, Colin J.; Liu, Johan; Volz, Sebastian
2016-04-01
The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ~28 °C for a chip operating at 1,300 W cm-2. Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.
Chaotic advection in 2D anisotropic porous media
NASA Astrophysics Data System (ADS)
Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico
2015-11-01
Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.
Heating and Cooling System Design for a Modern Transportable Container
Berger, Jason E.
2015-06-01
Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial system options, and mechanical integration with the container’s structure.
NASA Astrophysics Data System (ADS)
Castro, Maria Clara; Patriarche, Delphine; Goblet, Patrick
2005-09-01
reflect the combined impact of air saturated water (ASW), advection, conduction, and diffusion when steady-state is reached for both tracers. We thus argue that the observed low mantle He / heat flux ratio in the oceans might be, at least partially, the result of processes occurring in the oceanic crust similar to those occurring in the continental crust, rather than deeper into the mantle. Our simulations also indicate that in order for both heat and He to be in steady-state in recently formed crust, the presence of an advective dominated regime is required ( k ≥ 10 - 16 m 2). Under these conditions, only in total absence of contact with ASW (e.g., an atmospheric component provided by freshwater or seawater) is the total 4He / heat flux ratio expected to equal the radiogenic production ratio. Lower 4He / heat fluxes in an advective dominated regime require the incorporation of an ASW component. We argue that the observed low ocean mantle 4He / heat flux results, at least partially, from sea water incorporation within mid-ocean ridge basalts. Our simulations also suggest that 4He transport is in transient state in recently formed crust for permeabilities ≤ 10 - 17 m 2. Under these conditions, low to very low mantle He excesses and thus total He / heat fluxes of up to several orders of magnitude lower than the radiogenic production ratios are expected.
Mohanram, A.; Ray, C.; Harvey, R.W.; Metge, D.W.; Ryan, J.N.; Chorover, J.; Eberl, D.D.
2010-01-01
In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-??m microspheres, almost all (>99%) predictably would be recovered within ~4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was observed
Possible role of oceanic heat transport in Early Eocene climate
NASA Astrophysics Data System (ADS)
Sloan, L. Cirbus; Walker, James C. G.; Moore, T. C.
1995-04-01
Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an ˜30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.
Possible role of oceanic heat transport in early Eocene climate.
Sloan, L C; Walker, J C; Moore, T C
1995-04-01
Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.
Electric heating for high-temperature heat transport fluids
NASA Astrophysics Data System (ADS)
Holmes, J. T.
1985-12-01
Recent experiences with electric resistance heaters at the solar Central Receiver Test Facility are described. These heaters are used to preheat or maintain equipment used with molten nitrate salt or liquid sodium heat transfer fluids. Results of extensive testing performed to improve the reliability of similar heating systems used in the development program for the sodium-cooled liquid metal fast breeder nuclear reactor are also reviewed. Recommendations are made for increasing the reliability of trace heating systems for high-melting-point heat transfer fluids including thermal design, heating element selection, installation, insulation, and controls.
Development and testing of heat transport fluids for use in active solar heating and cooling systems
NASA Technical Reports Server (NTRS)
Parker, J. C.
1981-01-01
Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.
Isotopic and trace element sensors for fluid flow, heat- and mass transport in fractured rocks
NASA Astrophysics Data System (ADS)
DePaolo, D. J.
2012-12-01
The flow of fluids through fractured rocks is critically important in hydrothermal systems associated with geothermal energy production, base metal ore deposits, and global geochemical cycles through the enormous volumes of fluids in mid-ocean ridge systems. The nature of heat and mass transport in hydrothermal systems is determined by the spacing and volume of fractures, the nature of chemical transport in matrix blocks between fractures, the dissolution and precipitation rates of minerals in the matrix blocks, and the rates of fluid flow. Directly measuring these properties in active systems is extremely difficult, but the chemical and isotopic composition of fluids, where they can be adequately sampled, provides this information in coded form. Deciphering the signals requires appropriate models for the mineral-fluid chemical reactions and transport in the inter-fracture rock matrix. Ultimately, numerical reactive transport models are required to properly account for coupling between mineral reaction kinetics and fluid phase transport, but it is surprisingly difficult to adequately represent isotopic exchange in these models. The difficulty comes partly from the additional bookkeeping that is necessary, but more fundamentally from limitations in the detailed molecular dynamics of the mineral-fluid interfaces and how they control isotopic exchange and partitioning. Nevertheless, relatively simple analytical models illustrate how the isotopic and trace element composition of fluids relates to fracture aperture and spacing, mineral dissolution kinetics, competition between diffusive and advective transport, and competition between chemical exchange and heat exchange. The large number of geochemical parameters that can be measured potentially allows for detailed characterization of the effective mass transport and system characteristics like average fracture spacing and mineral dissolution rates. Examples of useful analytical models and applications to available data
Magnetic method for stimulating transport in fluids
Martin, James E.; Solis, Kyle J.
2016-10-18
A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.
Increased Efficiency Thermoelectric Generator With Convective Heat Transport
2011-02-25
term in the denominator is the reversible Seebeck thermal power input. The second and third terms are, respectively, Joule heating and conductive heat...heat transport functions, respectively, for Joule heating and conduction from the hot to cold ends. Figure 1 presents the effect of δ on efficiency...present, as it facilitates the convective effect when present. There is to be no possibility of a convective effect as being studied during this
1990-01-22
the thermal insulation of clothing . Ergonomics 2S, 1617-1632. Nielsen, B., Kasson, K. en Aschengreen, F.E. (1988). Heat balance during exercise in...the sun. Eur. J. Appl. Physiol. 58, 189-196. Nielsen, B. (1989). Solar heat load: heat balance during exercise in clothed subjects. Manuscript voor Eur...Institute for Perception, Soesterberg, The Netherlands Heat transport in clothing during irradiation vith heat A.M.J. Pieters and W.A. Lotens ABSTRACT A
Experimental Study of Heat Transport in Fractured Network
NASA Astrophysics Data System (ADS)
Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta M.; Redondo, Jose M.; Tarquis, Ana Maria
2015-04-01
Fractured rocks play an important role in transport of natural resources or contaminants transport through subsurface systems. In recent years, interest has grown in investigating heat transport by means of tracer tests, driven by the important current development of geothermal applications. In literature different methods are available for predicting thermal breakthrough in fractured reservoirs based on the information coming from tracer tests. Geothermal energy is one of the largest sources of renewable energies that are extracted from the earth. The growing interest in this new energy source has stimulated attempts to develop methods and technologies for extracting energy also from ground resource at low temperature. An example is the exploitation of low enthalpy geothermal energy that can be obtained at any place with the aid of ground-source heat pump system from the soil, rock and groundwater. In such geothermal systems the fluid movement and thermal behavior in the fractured porous media is very important and critical. Existing theory of fluid flow and heat transport through porous media is of limited usefulness when applied to fractured rocks. Many field and laboratory tracer tests in fractured media show that fracture -matrix exchange is more significant for heat than mass tracers, thus thermal breakthrough curves (BTCs) are strongly controlled by matrix thermal diffusivity. In this study the behaviour of heat transport in a fractured network at bench scale has been investigated. Heat tracer tests on an artificially created fractured rock sample have been carried out. The observed thermal BTCs obtained with six thermocouple probes located at different locations in the fractured medium have been modeled with the Explicit Network Model (ENM) based an adaptation of Tang's solution for solute transport in a semi-infinite single fracture embedded in a porous matrix. The ENM model is able to represent the behavior of observed heat transport except where the
Sharp, R.W. Jr.; Barton, R.T.
1981-01-21
A continuous rezoning procedure has been implemented in the computational cycle of a version of the HEMP two-dimensional, Lagrange, fluid dynamics code. The rezoning problem is divided into two steps. The first step requires the solving of ordinary Lagrange equations of motion; the second step consists of adding equipotential grid relaxation along with an advective remapping scheme.
An Overview of Liquid Fluoride Salt Heat Transport Technology
Cetiner, Mustafa Sacit; Holcomb, David Eugene
2010-01-01
Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.
Meridional heat transport at the onset of winter stratospheric warming
NASA Technical Reports Server (NTRS)
Conte, M.
1981-01-01
A continuous vertical flow of energy toward high altitude was verified. This process produced a dynamic instability of the stratospheric polar vortex. A meridional heat transport ws primed toward the north, which generated a warming trend.
Analytic radiative-advective equilibrium as a model for high-latitude climate
NASA Astrophysics Data System (ADS)
Cronin, Timothy W.; Jansen, Malte F.
2016-01-01
We propose radiative-advective equilibrium as a basic-state model for the high-latitude atmosphere. Temperature profiles are determined by a competition between stabilization by atmospheric shortwave absorption and advective heat flux convergence, and destabilization by surface shortwave absorption. We derive analytic expressions for temperature profiles, assuming power law atmospheric heating profiles as a function of pressure and two-stream windowed-gray longwave radiative transfer. We discuss example profiles with and without an atmospheric window and show that the sensitivity of surface temperature to forcing depends on the nature of the forcing, with greatest sensitivity to radiative forcing by increased optical thickness and least sensitivity to increased atmospheric heat transport. These differences in sensitivity of surface temperature to forcing can be explained in terms of a forcing-dependent lapse-rate feedback.
Decomposing the meridional heat transport in the climate system
NASA Astrophysics Data System (ADS)
Yang, Haijun; Li, Qing; Wang, Kun; Sun, Yu; Sun, Daoxun
2015-05-01
The meridional heat transport (MHT) in the climate system is investigated using a state-of-the-art coupled climate model (CESM1.0). This work decomposes the MHT and studies their physics in detail. The meridional ocean heat transport (OHT) can be decomposed into the contributions from the Euler mean circulation, bolus circulation, sub-mesoscale circulation and dissipation. The Euler mean heat transport dominates the total OHT in most latitudes, except that in the Southern Ocean (40-50°S) where the OHT is determined by the eddy-induced circulation and dissipation. In the Indo-Pacific the OHT is fulfilled by the wind-driven circulation, which dominates the total global OHT in the tropics. In the Atlantic the OHT is carried by both the wind-driven circulation and the thermohaline circulation, and the latter dominates the total OHT in the mid-high latitudes. The meridional atmosphere heat transport consists of the dry static energy (DSE) and latent energy (LE) transport. In the tropics the LE transport is equatorward and compensates partially the poleward DSE transport. In the extratropics, the LE and DSE are poleward and reinforce one another, both of which are dominated by the eddy components. The LE transport can be considered as the "joint air-sea mode" since the ocean controls the moisture supply. It can be also precisely obtained from the evaporation minus precipitation over the ocean and thus this work quantifies the individual ocean basin contributions to the LE transport.
Karniadakis, George Em
2014-03-11
The main objective of this project is to develop new computational tools for uncertainty quantifica- tion (UQ) of systems governed by stochastic partial differential equations (SPDEs) with applications to advection-diffusion-reaction systems. We pursue two complementary approaches: (1) generalized polynomial chaos and its extensions and (2) a new theory on deriving PDF equations for systems subject to color noise. The focus of the current work is on high-dimensional systems involving tens or hundreds of uncertain parameters.
NASA Astrophysics Data System (ADS)
Mottaghy, Darius; Rath, Volker
2006-01-01
In cold regions the thermal regime is strongly affected by freezing or melting processes, consuming or releasing large amounts of latent heat. This changes enthalpy by orders of magnitude. We present a numerical approach for the implementation of these effects into a 3-D finite-difference heat transport model. The latent heat effect can be handled by substituting an apparent heat capacity for the volumetric heat capacity of unfrozen soil in the heat transfer equation. The model is verified by the analytical solution of the heat transport equation including phase change. We found significant deviations of temperature profiles when applying the latent heat effect on forward calculations of deep temperature logs. Ground surface temperature histories derived from synthetic data and field data from NE Poland underline the importance of considering freezing processes. In spite of its limitations, the proposed method is appropriate for the study of long-period climatic changes.
A Study of the Physical Processes of an Advection Fog Boundary Layer
NASA Astrophysics Data System (ADS)
Liu, Duan Yang; Yan, Wen Lian; Yang, Jun; Pu, Mei Juan; Niu, Sheng Jie; Li, Zi Hua
2016-01-01
A large quantity of advection fog appeared in the Yangtze River delta region between 1 and 2 December 2009. Here, we detail the fog formation and dissipation processes and the background weather conditions. The fog boundary layer and its formation and dissipation mechanisms have also been analyzed using field data recorded in a northern suburb of Nanjing. The results showed the following: (1) This advection fog was generated by interaction between advection of a north-east cold ground layer and a south-east warm upper layer. The double-inversion structure generated by this interaction between the cold and warm advections and steady south-east vapour transport was the main cause of this long-lasting fog. The double-inversion structure provided good thermal conditions for the thick fog, and the south-east vapour transport was not only conducive to maintaining the thickness of the fog but also sustained its long duration. (2) The fog-top altitude was over 600 m for most of the time, and the fog reduced visibility to less than 100 m for approximately 12 h. (3) The low-level jet near the lower inversion layer also played a role in maintaining the thick fog system by promoting heat, momentum and south-east vapour transport.
Thaw flow control for liquid heat transport systems
Kirpich, Aaron S.
1989-01-01
In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.
NASA Astrophysics Data System (ADS)
Fisher, J. C.; Ackerman, D. J.; Rousseau, J. P.; Rattray, G. W.
2009-12-01
Three-dimensional steady-state and transient models of groundwater flow and advective transport through the fractured basalts and interbedded sediments of the Eastern Snake River Plain (ESRP) aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The model domain covers an area of 1,940 square miles that includes most of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. Numerical models simulated 1980 steady-state conditions and transient flow for 1980-95. In the transient model, streamflow infiltration was the major stress. The models were calibrated using the parameter-estimation program incorporated in MODFLOW-2000. The steady-state model reasonably simulated the observed water-table altitude and gradients. Simulation of transient conditions reproduced changes in the flow system resulting from episodic infiltration from the Big Lost River. Analysis of simulations shows that flow is (1) dominantly horizontal through interflow zones in basalt, vertical anisotropy resulting from contrasts in hydraulic conductivity of different types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. Particle-tracking simulations were used to evaluate how simulated groundwater flow paths and travel times differ between the steady-state and transient flow models, and how well model-derived groundwater flow directions and velocities compare to independently-derived estimates. Particle tracking also was used to simulate the growth of tritium plumes originating at two INL facilities over a 16 year period under steady-state and transient flow conditions (1953-68). The shape, dimensions, and areal extent of these plumes were compared to a map of the plumes for 1968 from tritium releases beginning in 1952
Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.
2010-01-01
Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters
An Overview of Liquid Fluoride Salt Heat Transport Systems
Holcomb, David Eugene; Cetiner, Sacit M
2010-09-01
Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and
Anisotropic Heat Transport in the Presence of Resonant Magnetic Perturbations
NASA Astrophysics Data System (ADS)
Held, Eric; Kruger, Scott
2009-05-01
Heat transport in the H-mode tokamak edge is significantly modified by the presence of resonant magnetic perturbations. Application of collisional transport models to this problem ignores the fact that temperatures at the top of the edge pedestal may be several keV. Here, we compare the effective radial heat transport predicted by local (diffusive) and nonlocal (integral) forms for the parallel heat flux. Accurately predicting this effective radial heat transport becomes important when significant magnetic field line stochasticity is present, as in the case of overlapping magnetic perturbations. For such cases, the integral form for the parallel heat transport correctly assesses the effects of temperature perturbations all along the magnetic field line and yields predictions that vary substantially from the diffusive closure, which relies only on the local temperature gradient. Quantitative comparisons of effective radial transport are given for single helicity and multiple helicity magnetic perturbations in cylindrical and toroidal geometry, with emphasis given to a toroidal case with a narrow pedestal width and a high temperature at the top of the pedestal. E. D. Held, J. D. Callen, C. C. Hegna, C. R. Sovinec, T. A. Gianakon,and S. E. Kruger, Phys Plasmas, 11, 2419 (2004).
Anisotropic Heat Transport in the Presence of Resonant Magnetic Perturbations
NASA Astrophysics Data System (ADS)
Kruger, Scott; Held, Eric
2008-11-01
Heat transport in the H-mode tokamak edge is significantly modified by the presence of resonant magnetic perturbations. Application of collisional transport models to this problem ignores the fact that temperatures at the top of the edge pedestal may be several keV. Here, we compare the effective radial heat transport predicted by local (diffusive) and nonlocal [1] (integral) forms for the parallel heat flux. Accurately predicting this effective radial heat transport becomes important when significant magnetic field line stochasticity is present, as in the case of overlapping magnetic perturbations. For such cases, the integral form for the parallel heat transport correctly assesses the effects of temperature perturbations all along the magnetic field line and yields predictions that vary substantially from the diffusive closure, which relies only on the local temperature gradient. Quantitative comparisons of effective radial transport are given for single helicity and multiple helicity magnetic perturbations in cylindrical and toroidal geometry, with emphasis given to a toroidal case with a narrow pedestal width and a high temperature at the top of the pedestal. [0pt] [1] E. D. Held, J. D. Callen, C. C. Hegna, C. R. Sovinec, T. A. Gianakon, and S. E. Kruger, Phys Plasmas, 11, 2419 (2004).
Multi-decadal Variability of Heat Transport in the Arctic
NASA Astrophysics Data System (ADS)
Outten, S.; Ezau, I.
2015-12-01
The meridional transport of heat from the tropics to the poles, where it can be radiated out to space, is a vital component for maintaining the Earth's climate. Understanding the decadal to multi-decadal changes of these transports provides an insight into the natural variability of the climate system and into the flow of heat into the Arctic. Jacob Bjerknes proposed that the total energy transported by the climate system should remain approximately constant if the ocean heat storage and fluxes at the top-of-the-atmosphere were unchanging [Bjerknes, 1964]. Since heat is transported by the atmosphere and ocean, any large anomalies in the atmospheric heat transport should be balanced by opposing variations in the ocean heat transport, and vice versa; a process that has since been named Bjerknes Compensation. Bjerknes compensation has been identified in the 600-year control run of the Bergen Climate Model by examining the anomalies of the implied meridional heat transports in both the ocean and atmosphere (Figure 1). These anomalies show strong anti-correlation (r = -0.72, p ≤ 0.05), and a multi-decadal variability with a period of approximately 60-80 years. Spatial patterns associated with this multi-decadal variability highlight part of the underlying mechanism which occurs through changes in the sea-ice cover in the Arctic, which lead to strong ocean-atmosphere fluxes and the formation of a thermal low that changes the large scale flow over the Northern Hemisphere. The anomalies in atmospheric heat transport are not only found to be well correlated to the anomalies in Arctic sea-ice, but also to the strength of the sub-polar gyre, suggesting a possible feedback of the atmosphere to the ocean on multi-decadal timescales. Bjerknes Compensation has also been identified in the NorESM model, a member of the CMIP5 archive. Figure 1: Meridional heat transport anomalies at 67N in the atmosphere (solid) and ocean (dashed), for the 600 year control run of the
Passive vapor transport solar heating systems
Hedstrom, J.C.; Neeper, D.A.
1985-01-01
In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.
Heat transport measurements in turbulent rotating Rayleigh-Benard convection
Ecke, Robert E; Liu, Yuanming
2008-01-01
We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.
The importance of planetary rotation period for ocean heat transport.
Cullum, J; Stevens, D; Joshi, M
2014-08-01
The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.
The Importance of Planetary Rotation Period for Ocean Heat Transport
Stevens, D.; Joshi, M.
2014-01-01
Abstract The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier—the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. Key Words: Exoplanet—Oceans—Rotation—Climate—Habitability. Astrobiology 14, 645–650. PMID:25041658
Io Volcanism: Modeling Vapor And Heat Transport
NASA Astrophysics Data System (ADS)
Allen, Daniel R.; Howell, R. R.
2010-10-01
Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.
Effect of Joule heating on electrokinetic transport.
Cetin, Barbaros; Li, Dongqing
2008-03-01
The Joule heating (JH) is a ubiquitous phenomenon in electrokinetic flow due to the presence of electrical potential gradient and electrical current. JH may become pronounced for applications with high electrical potential gradients or with high ionic concentration buffer solutions. In this review, an in-depth look at the effect of JH on electrokinetic processes is provided. Theoretical modeling of EOF and electrophoresis (EP) with the presence of JH is presented and the important findings from the previous studies are examined. A numerical study of a fused-silica capillary PCR reactor powered by JH is also presented to extend the discussion of favorable usage of JH.
Heat transport in bubbling turbulent convection
Lakkaraju, Rajaram; Stevens, Richard J. A. M.; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2013-01-01
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh–Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 106 and 5 × 109. We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh–Bénard convection. PMID:23696657
Heat transport in bubbling turbulent convection.
Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2013-06-04
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.
NASA Technical Reports Server (NTRS)
Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.
2014-01-01
When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.
Overcoming diffusion-limited processes using enhanced advective fields
Rasmussen, T.C.
1995-12-31
Many subsurface cleanup activities focus on the remediation of organic contaminants using induced advective fields. Subsurface heterogeneities cause most advective transport to occur in more permeable zones, with transport from the lower permeability units being limited by diffusion to the higher permeable units. While diffusion rates can be enhanced using thermal sources, many of the treatment strategies, including pump and treat, vapor extraction and bioremediation, are limited by mass exchange rates between the higher and lower permeability sand and clay mixtures. Instead of relying on the enhancement of diffusion rates, it is proposed that remediation strategies should focus on the enhancement of induced advective transport rates through the lower permeability units. Injection-extraction strategies using crosshole and huff-and-puff methods are presented for maximizing advective transport through lower permeability units. Optimization of the design can incorporate diffusion-enhancement technologies, bionourishment, capillary confinement in the unsaturated zone, and DNAPL slurping.
High heat flux transport by microbubble emission boiling
NASA Astrophysics Data System (ADS)
Suzuki, Koichi
2007-10-01
In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.
Laboratory experimental investigation of heat transport in fractured media
NASA Astrophysics Data System (ADS)
Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta Maria
2017-01-01
Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination. Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost. One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge. Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns. In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In the literature there are very few studies on heat transport, especially on fractured media. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation. Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained
Nonlocal heat transport in a stochastic magnetic field
Rax, J.M.; White, R.B.
1991-12-01
Heat transport in a stochastic magnetic field configuration is shown to be nonlocal. Collisional transport processes, in such a disordered media, cannot always be reduced to a standard diffusion process, and the concept of a diffusion coefficient is meaningless for a wide range of typical tokamak parameters. In the nonlocal regime the relaxation of a gradient is described by an integral equation, involving a nonlocal propagator. This propagator is calculated, and the relation to previous results is elucidated. 15 refs.
Miniature Heat Transport System for Spacecraft Thermal Control
NASA Technical Reports Server (NTRS)
Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)
2002-01-01
Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes
Heat transport in the Hadean mantle: From heat pipes to plates
NASA Astrophysics Data System (ADS)
Kankanamge, Duminda G. J.; Moore, William B.
2016-04-01
Plate tectonics is a unique feature of Earth, and it plays a dominant role in transporting Earth's internally generated heat. It also governs the nature, shape, and the motion of the surface of Earth. The initiation of plate tectonics on Earth has been difficult to establish observationally, and modeling of the plate breaking process has not consistently accounted for the nature of the preplate tectonic Earth. We have performed numerical simulations of heat transport in the preplate tectonic Earth to understand the transition to plate tectonic behavior. This period of time is dominated by volcanic heat transport called the heat pipe mode of planetary cooling. These simulations of Earth's mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. We show that when heat pipes are active, the lithosphere thickens and lithospheric isotherms are kept flat by the solidus. Both of these effects act to suppress plate tectonics. As volcanism wanes, conduction begins to control lithospheric thickness, and large slopes arise at the base of the lithosphere. This produces large lithospheric stress and focuses it on the thinner regions of the lithosphere resulting in plate breaking events.
Unidirectional Heat Transport Driven by Rotating Cholesteric Droplets
NASA Astrophysics Data System (ADS)
Sato, Sayumi; Bono, Shinji; Tabe, Yuka
2017-02-01
When a cholesteric liquid crystal (LC) is submitted to a thermal gradient, it exhibits continuous director rotation. The phenomenon is called the Lehmann effect and is understood as a thermomechanical coupling in chiral LCs without mirror symmetry. Since the Lehmann effect is considered to possess time-reversal symmetry, one can expect the inverse process, i.e., rotating chiral LCs to pump heat along the rotational axis. We report the first observation of heat transport driven by rotating cholesteric droplets. This result suggests a new function of the cholesterics as a micro heat pump.
Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1992-01-01
Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.
Classical heat transport in anharmonic molecular junctions: exact solutions.
Liu, Sha; Agarwalla, Bijay Kumar; Wang, Jian-Sheng; Li, Baowen
2013-02-01
We study full counting statistics for classical heat transport through anharmonic or nonlinear molecular junctions formed by interacting oscillators. An analytical result of the steady-state heat flux for an overdamped anharmonic junction with arbitrary temperature bias is obtained. It is found that the thermal conductance can be expressed in terms of a temperature-dependent effective force constant. The role of anharmonicity is identified. We also give the general formula for the second cumulant of heat in steady state, as well as the average geometric heat flux when two system parameters are modulated adiabatically. We present an anharmonic example for which all cumulants for heat can be obtained exactly. For a bounded single oscillator model with mass we found that the cumulants are independent of the nonlinear potential.
Phonon hydrodynamics and its applications in nanoscale heat transport
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Wang, Moran
2015-09-01
Phonon hydrodynamics is an effective macroscopic method to study heat transport in dielectric solid and semiconductor. It has a clear and intuitive physical picture, transforming the abstract and ambiguous heat transport process into a concrete and evident process of phonon gas flow. Furthermore, with the aid of the abundant models and methods developed in classical hydrodynamics, phonon hydrodynamics becomes much easier to implement in comparison to the current popular approaches based on the first-principle method and kinetic theories involving complicated computations. Therefore, it is a promising tool for studying micro- and nanoscale heat transport in rapidly developing micro and nano science and technology. However, there still lacks a comprehensive account of the theoretical foundations, development and implementation of this approach. This work represents such an attempt in providing a full landscape, from physical fundamental and kinetic theory of phonons to phonon hydrodynamics in view of descriptions of phonon systems at microscopic, mesoscopic and macroscopic levels. Thus a systematical kinetic framework, summing up so far scattered theoretical models and methods in phonon hydrodynamics as individual cases, is established through a frame of a Chapman-Enskog solution to phonon Boltzmann equation. Then the basic tenets and procedures in implementing phonon hydrodynamics in nanoscale heat transport are presented through a review of its recent wide applications in modeling thermal transport properties of nanostructures. Finally, we discuss some pending questions and perspectives highlighted by a novel concept of generalized phonon hydrodynamics and possible applications in micro/nano phononics, which will shed more light on more profound understanding and credible applications of this new approach in micro- and nanoscale heat transport science.
Mechanisms of heat transport across a nano-scale gap in heat assisted magnetic recording
NASA Astrophysics Data System (ADS)
Budaev, Bair V.; Bogy, David B.
2012-06-01
This paper compares different mechanisms of heat transport across nano-scale gaps and discusses the role of electromagnetic phenomena in heat transport in general nano-scale layered structures. The results of the analysis suggest that heat transfer across sub-5 nm gaps like that appearing in prototypes of heat assisted magnetic recording (HAMR) systems is dominated by direct intermolecular interactions between the separated bodies and is little affected by electromagnetic radiation. The analysis further suggests that local heating for HAMR with sub-5 nm spacing can be more efficiently achieved by a Joule heater that is simpler to fabricate than laser-based optical systems and is less destructive for the nano-scale transducers than laser radiation, which may lead to their structural damage and short duration life of nanoscale transducers.
NASA Astrophysics Data System (ADS)
Ruokola, Tomi; Ojanen, Teemu
2011-06-01
We introduce a functional nanoscale device, a single-electron heat diode, consisting of two quantum dots or metallic islands coupled to electronic reservoirs by tunnel contacts. Electron transport through the system is forbidden but the capacitive coupling between the two dots allows electronic fluctuations to transmit heat between the reservoirs. When the reservoir temperatures are biased in the forward direction, heat flow is enabled by a four-step sequential tunneling cycle, while in the reverse-biased configuration this process is suppressed due to Coulomb blockade effects. In an optimal setup the leakage heat current in the reverse direction is only a few percent of the forward current.
Predicting Heat Transport across Multiple Devices with Neural Networks
NASA Astrophysics Data System (ADS)
Luna, C. J.; Budny, R. V.; Meneghini, O.; Smith, S. P.; Penna, J.
2014-10-01
Three multi-layer, feed-forward, back-propagation neural networks have been built and trained on heat transport data from DIII-D, TFTR, and JET, respectively. A comparative analysis shows that previous success of neural networks in predicting heat transport in DIII-D is reproduced for both TFTR and JET. The effect of using different neural network topologies has been investigated across all of the devices. It is found that the neural networks can consistently predict the total species' heat fluxes for all of the devices, however they have difficulty in predicting the individual components of the heat fluxes in presence of significant transient variations in stored energy (i.e. non steady-state conditions). Such limitation has been addressed by providing the time-derivative information of the plasma parameters that are input to the neural network. Finally, an attempt is made to draw a connection between the most consistently successful neural network topologies and their relevance to the physics of heat transport in tokamak plasmas. Supported in part by U.S. DoE Contracts No. DE-AC02-09CH1146 and No. DE-FG02-95ER54309.
Studies of local electron heat transport on TFTR
Fredrickson, E.D.; Chang, Z.Y.; Janos, A.; McGuire, K.M.; Scott, S.; Taylor, G.
1993-08-16
The anomalously fast relaxation of the perturbations to the electron temperature profile caused by a sawtooth crash has been studied extensively on TFTR. We will show that on a short timescale the heat pulse is not simply diffusive as has been generally assumed, but that modeling of the heat pulse requires a transient enhancement in {chi}{sub e} following the sawtooth crash. It will be shown that the time-dependent enhancement in {chi}{sub e} predicted by non-linear thermal transport models, i.e., incremental {chi} models or the Rebut-Lallia-Watkins transport model, is much smaller than that required to explain the anomalies in the heat pulse propagation.
Coupling of volatile transport and internal heat flow on Triton
NASA Technical Reports Server (NTRS)
Brown, Robert H.; Kirk, Randolph L.
1994-01-01
Recently Brown et al. (1991) showed that Triton's internal heat source could amount to 5-20% of the absorbed insolation on Triton, thus significantly affecting volatile transport and atmospheric pressure. Subsequently, Kirk and Brown (1991a) used simple analytical models of the effect of internal heat on the distribution of volatiles on Triton's surface, confirming the speculation of Brown et al. that Triton's internal heat flow could strongly couple to the surface volatile distribution. To further explore this idea, we present numerical models of the permanent distribution of nitrogen ice on Triton that include the effects of sunlight, the two-dimensional distribution of internal heat flow, the coupling of internal heat flow to the surface distribution of nitrogen ice, and the finite viscosity of nitrogen ice. From these models we conclude that: (1) The strong vertical thermal gradient induced in Triton's polar caps by internal heat-flow facilitates viscous spreading to lower latitudes, thus opposing the poleward transport of volatiles by sunlight, and, for plausible viscosities and nitrogen inventories, producing permanent caps of considerable latitudinal extent; (2) It is probable that there is a strong coupling between the surface distribution of nitrogen ice on Triton and internal heat flow; (3) Asymmetries in the spatial distribution of Triton's heat flow, possibly driven by large-scale, volcanic activity or convection in Triton's interior, can result in permanent polar caps of unequal latitudinal extent, including the case of only one permanent polar cap; (4) Melting at the base of a permanent polar cap on Triton caused by internal heat flow can significantly enhance viscous spreading, and, as an alternative to the solid-state greenhouse mechanism proposed by Brown et al. (1990), could provide the necessary energy, fluids, and/or gases to drive Triton's geyser-like plumes; (5) The atmospheric collapse predicted to occur on Triton in the next 20 years
Cho, Yeo-Myoung; Werner, David; Moffett, Kevan B; Luthy, Richard G
2010-08-01
Advective porewater movement and molecular diffusion are important factors affecting the mass transfer of hydrophobic organic compounds (HOCs) in marsh and mudflat sediments. This study assessed porewater movement in an intertidal mudflat in South Basin adjacent to Hunters Point Shipyard, San Francisco, CA, where a pilot-scale test of sorbent amendment assessed the in situ stabilization of polychlorinated biphenyls (PCBs). To quantify advective porewater movement within the top 0-60 cm sediment layer, we used temperature as a tracer and conducted heat transport analysis using 14-day data from multidepth sediment temperature logging stations and one-dimensional heat transport simulations. The best-fit conditions gave an average Darcy velocity of 3.8cm/d in the downward vertical direction for sorbent-amended sediment with a plausible range of 0 cm/d to 8 cm/d. In a limiting case with no net advection, the best-fit depth-averaged mechanical dispersion coefficient was 2.2x10(-7) m2/s with a range of 0.9x10(-7) m2/s to 5.6x10(-7) m2/s. The Peclet number for PCB mobilization showed that molecular diffusion would control PCB mass transfer from sediment to sorbent particles for the case of uniform distribution of sorbent. However, the advective flow and mechanical dispersion in the test site would significantly benefit the stabilization effect of heterogeneously distributed sorbent by acting to smooth out the heterogeneities and homogenizing pollutant concentrations across the entire bioactive zone. These measurements and modeling techniques on intertidal sediment porewater transport could be useful for the development of more reliable mass transfer models for the prediction of contaminant release within the sediment bed, the movement of HOCs in the intertidal aquatic environment, and in situ sequestration by sorbent addition.
On mobile element transport in heated Abee. [chondrite thermal metamorphism
NASA Technical Reports Server (NTRS)
Ikramuddin, M.; Lipschutz, M. E.; Gibson, E. K., Jr.
1979-01-01
Abee chondrite samples were heated at 700 C for one week at 0.00001 to 0.001 atm Ne or at 0.00001 atm H2. Samples heated in Ne showed greater loss of Bi and Se and greater retention of Zn than those heated in H2. An inverse relationship between Zn retention and ambient Ne pressure was found. Seven trace elements (Ag, Co, Cs, Ga, In, Te, and Tl) were retained or lost to the same extent regardless of the heating conditions. Variations in the apparent activation energy for C above and below 700 C suggest that diffusive loss from different hosts and/or different mobile transport processes over the temperature range may have been in effect.
Particle model for nonlocal heat transport in fusion plasmas.
Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R
2013-02-01
We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
LAYER DEPENDENT ADVECTION IN CMAQ
The advection methods used in CMAQ require that the Courant-Friedrichs-Lewy (CFL) condition be satisfied for numerical stability and accuracy. In CMAQ prior to version 4.3, the ADVSTEP algorithm established CFL-safe synchronization and advection timesteps that were uniform throu...
A simple Boltzmann transport equation for ballistic to diffusive transient heat transport
Maassen, Jesse Lundstrom, Mark
2015-04-07
Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.
Radiation Transport through cylindrical foams with heated walls
NASA Astrophysics Data System (ADS)
Baker, Kevin; MacLaren, Steve; Kallman, Joshua; Heinz, Ken; Hsing, Warren
2012-10-01
Radiation transport through low density SiO2 foams has been experimentally studied on the Omega laser. In particular these experiments examined the effects on radiation transport when the boundaries of the SiO2 foam are heated such that energy loss to the boundaries is minimized. The initial density of the SiO2 foams was determined by taking an x-ray radiograph of the foams using a monochromatic Henke source at multiple x-ray energies. The radiation drive used to both study the transport in the SiO2 foam as well as to heat the higher density CRF wall was generated in a laser-heated gold hohlraum using ˜7.5 kJ of the laser energy. The time-dependent spatial profile of the heat wave breaking out of the SiO2 foam was detected with an x-ray streak camera coupled with a soft x-ray transmission grating. The Omega DANTE diagnostic measured the radiation drive in the hohlraum and the Omega VISAR diagnostic monitored the spatial temperature gradient in the foam section of the hohlraum.
Fractional-order theory of heat transport in rigid bodies
NASA Astrophysics Data System (ADS)
Zingales, Massimiliano
2014-11-01
The non-local model of heat transfer, used to describe the deviations of the temperature field from the well-known prediction of Fourier/Cattaneo models experienced in complex media, is framed in the context of fractional-order calculus. It has been assumed (Borino et al., 2011 [53], Mongioví and Zingales, 2013 [54]) that thermal energy transport is due to two phenomena: (i) A short-range heat flux ruled by a local transport equation; (ii) A long-range thermal energy transfer proportional to a distance-decaying function, to the relative temperature and to the product of the interacting masses. The distance-decaying function is assumed in the functional class of the power-law decay of the distance yielding a novel temperature equation in terms of α-order Marchaud fractional-order derivative (0⩽α⩽1). Thermodynamical consistency of the model is provided in the context of Clausius-Plank inequality. The effects induced by the boundary conditions on the temperature field are investigated for diffusive as well as ballistic local heat flux. Deviations of the temperature field from the linear distributions in the neighborhood of the thermostated zones of small-scale conductors are qualitatively predicted by the used fractional-order heat transport model, as shown by means of molecular dynamics simulations.
A full-Bayesian approach to the inverse problem for steady-state groundwater flow and heat transport
NASA Astrophysics Data System (ADS)
Jiang, Yefang; Woodbury, Allan D.
2006-12-01
The full (hierarchal) Bayesian approach proposed by Woodbury & Ulrych and Jiang et al. is extended to the inverse problem for 2-D steady-state groundwater flow and heat transport. A stochastic conceptual framework for the heat flow and groundwater flow is adopted. A perturbation of both the groundwater flow and the advection-conduction heat transport equations leads to a linear formulation between heads, temperature and logarithm transmissivity [denoted as ln (T)]. A Bayesian updating procedure similar to that of Woodbury & Ulrych can then be performed. This new algorithm is examined against a generic example through simulations. The prior mean, variance and integral scales of ln (T) (hyperparameters) are treated as random variables and their pdfs are determined from maximum entropy considerations. It is also assumed that the statistical properties of the noise in the hydraulic head and temperature measurements are also uncertain. Uncertainties in all pertinent hyperparameters are removed by marginalization. It is found that the use of temperature measurements is showed to further improve the ln (T) estimates for the test case in comparison to the updated ln (T) field conditioned on ln (T) and head data; the addition of temperature data without hydraulic head data to the update also aids refinement of the ln (T) field compared to simply interpolating ln (T) data alone these results suggest that temperature measurements are a promising data source for site characterization for heterogeneous aquifer, which can be accomplished through the full-Bayesian methodology.
NASA Astrophysics Data System (ADS)
Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel
2016-12-01
Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.
Radiant heat test of Perforated Metal Air Transportable Package (PMATP).
Gronewald, Patrick James; Oneto, Robert; Mould, John; Pierce, Jim Dwight
2003-08-01
A conceptual design for a plutonium air transport package capable of surviving a 'worst case' airplane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A full-scale prototype, designated as the Perforated Metal Air Transport Package (PMATP) was thermally tested in the SNL Radiant Heat Test Facility. This testing, conducted on an undamaged package, simulated a regulation one-hour aviation fuel pool fire test. Finite element thermal predictions compared well with the test results. The package performed as designed, with peak containment package temperatures less than 80 C after exposure to a one-hour test in a 1000 C environment.
Local and nonlocal parallel heat transport in general magnetic fields
Del-Castillo-Negrete, Diego B; Chacon, Luis
2011-01-01
A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.
Microscopic theory and quantum simulation of atomic heat transport
NASA Astrophysics Data System (ADS)
Marcolongo, Aris; Umari, Paolo; Baroni, Stefano
2016-01-01
Quantum simulation methods based on electronic-structure theory are deemed unfit to cope with atomic heat transport within the Green-Kubo formalism, because quantum-mechanical energy densities and currents are inherently ill-defined at the atomic scale. We show that, although this difficulty would also affect classical simulations, thermal conductivity is indeed insensitive to such ill-definedness by virtue of a kind of gauge invariance resulting from energy extensivity and conservation. On the basis of these findings, we derive an expression for the adiabatic energy flux from density-functional theory, which allows heat transport to be simulated using ab initio equilibrium molecular dynamics. Our methodology is demonstrated by comparing its predictions to those of classical equilibrium and ab initio non-equilibrium (Müller-Plathe) simulations for a liquid-argon model, and by applying it to heavy water at ambient conditions.
Solar coronal loop heating by cross-field wave transport
NASA Technical Reports Server (NTRS)
Amendt, Peter; Benford, Gregory
1989-01-01
Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.
Parker, Jack C; Kim, Ungtae
2015-11-01
The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of
Capillary deposition of advected floating particles
NASA Astrophysics Data System (ADS)
Dressaire, Emilie; Debaisieux, Aymeric; Gregori, Federico
2016-11-01
The deposition and aggregation of particles flowing through a confined environment can dramatically hinder the transport of suspensions. Yet, the mechanisms responsible for the deposition of particles in shear flow are not fully understood. Here, we use an experimental model system in which floating particles are advected on the surface of a water channel and deposited on fixed obstacles through attractive capillary effects. By varying the flow rate of the liquid, the wetting properties and size of the particles and obstacles, we can tune the magnitude of the capillary and hydrodynamic forces that determine the probability of deposition and the equilibrium position on the substrate. We show that arrays of obstacles can be designed to efficiently capture the floating particles advected by the flow.
Advection around ventilated U-shaped burrows: A model study
NASA Astrophysics Data System (ADS)
Brand, Andreas; Lewandowski, JöRg; Hamann, Enrico; Nützmann, Gunnar
2013-05-01
Advective transport in the porous matrix of sediments surrounding burrows formed by fauna such as Chironomus plumosus has been generally neglected. A positron emission tomography study recently revealed that the pumping activity of the midge larvae can indeed induce fluid flow in the sediment. We present a numerical model study which explores the conditions at which advective transport in the sediment becomes relevant. A 0.15 m deep U-shaped burrow with a diameter of 0.002 m within the sediment was represented in a 3-D domain. Fluid flow in the burrow was calculated using the Navier-Stokes equation for incompressible laminar flow in the burrow, and flow in the sediment was described by Darcy's law. Nonreactive and reactive transport scenarios were simulated considering diffusion and advection. The pumping activity of the model larva results in considerable advective flow in the sediment at reasonable high permeabilities with flow velocities of up to 7.0 × 10-6 m s-1 close to the larva for a permeability of 3 × 10-12 m2. At permeabilities below 7 × 10-13 m2 advection is negligible compared to diffusion. Reactive transport simulations using first-order kinetics for oxygen revealed that advective flux into the sediment downstream of the pumping larva enhances sedimentary uptake, while the advective flux into the burrow upstream of the larvae inhibits diffusive sedimentary uptake. Despite the fact that both effects cancel each other with respect to total solute uptake, the advection-induced asymmetry in concentration distribution can lead to a heterogeneous solute and redox distribution in the sediment relevant to complex reaction networks.
Climate in the Absence of Ocean Heat Transport
NASA Astrophysics Data System (ADS)
Rose, B. E. J.
2015-12-01
The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.
Heat transport modelling in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.
2009-02-01
A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.
Transport phenomena of crystal growth—heat and mass transfer
NASA Astrophysics Data System (ADS)
Rudolph, Peter
2010-07-01
Selected fundamentals of transport processes and their importance for crystal growth are given. First, principal parameters and equations of heat and mass transfer, like thermal flux, radiation and diffusion are introduced. The heat- and mass- balanced melt-solid and solution-solid interface velocities are derived, respectively. The today's significance of global numeric simulation for analysis of thermo-mechanical stress and related dislocation dynamics within the growing crystal is shown. The relation between diffusion and kinetic regime is discussed. Then, thermal and solutal buoyancy-driven and Marangoni convections are introduced. Their important interplay with the diffusion boundary layer, component and particle incorporation as well as morphological interface stability is demonstrated. Non-steady crystallization phenomena (striations) caused by convective fluctuations are considered. Selected results of global 3D numeric modeling are shown. Finally, advanced methods to control heat and mass transfer by external forces, such as accelerated container rotation, ultrasonic vibration and magnetic fields are discussed.
Finite element analysis of heat transport in a hydrothermal zone
Bixler, N.E.; Carrigan, C.R.
1987-01-01
Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).
Peterson, G.P.; Ma, H.B.
1995-12-31
A mathematical model for predicting the minimum meniscus radius and the maximum heat transport in micro heat pipes is presented. In this model, a theoretical minimum meniscus radius was found and used to calculate the capillary heat transport limit based on the physical characteristics and geometry. A control volume technique was employed to determine the flow characteristics of wickless micro heat pipes, and incorporate the effects of the frictional vapor-liquid interaction on the liquid flow. Unlike previous models, this model for the first time considers the true characteristics of micro heat pipes to determine the minimum meniscus radius and the maximum heat transport capacity. In order to compare the heat transport and flow characteristics, an effective hydraulic diameter was defined and the resulting model was solved numerically. The results indicate that the heat transport capacity of micro heat pipes is strongly dependent on the apex channel angle of the liquid arteries, the contact angle of the liquid flow, the length of the heat pipe, the vapor flow velocity and characteristics, and the tilt angle. In addition, the analysis presented here provides a mechanism, which for a given set of conditions, allows the geometry to be optimized and a micro heat pipe designed with a maximum heat transport capacity. This investigation will help optimize the design of micro heat pipes, making them capable of operating at increased power levels with greater reliability.
Gowrishankar, TR; Stewart, Donald A; Martin, Gregory T; Weaver, James C
2004-01-01
Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the skin was solved by
Why convective heat transport in the solar nebula was inefficient
NASA Technical Reports Server (NTRS)
Cassen, P.
1993-01-01
The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.
NASA Astrophysics Data System (ADS)
Briggs, Kevin A.
QUIC EnvSim (QES) is a complete building-resolving urban microclimate modeling system developed to rapidly compute mass, momentum, and heat transport for the design of sustainable cities. One of the more computationally intensive components of this type of modeling system is the transport and dispersion of scalars. In this paper, we describe and evaluate QESTransport, a Reynolds-averaged Navier-Stokes (RANS) scalar transport model. QESTransport makes use of light-weight methods and modeling techniques. It is parallelized for Graphics Processing Units (GPUs), utilizing NVIDIA's OptiX application programming interfaces (APIs). QESTransport is coupled with the well-validated QUIC Dispersion Modeling system. To couple the models, a new methodology was implemented to efficiently prescribe surface flux boundary conditions on both vertical walls and flat surfaces. In addition, a new internal boundary layer parameterization was introduced into QUIC to enable the representation of momentum advection across changing surface conditions. QESTransport is validated against the following three experimental test cases designed to evaluate the model's performance under idealized conditions: (i) flow over a step change in moisture, roughness, and temperature, (ii) flow over an isolated heated building, and (iii) flow through an array of heated buildings. For all three cases, the model is compared against published simulation results. QESTransport produces velocity, temperature, and moisture fields that are comparable to much more complex numerical models for each case. The code execution time performance is evaluated and demonstrates linear scaling on a single GPU for problem sizes up to 4.5 x 4.5 km at 5 m grid resolution, and is found to produce results at much better than real time for a 1.2 x 1.2 km section of downtown Salt Lake City, Utah.
Heat transport dynamics at a sandy intertidal zone
NASA Astrophysics Data System (ADS)
Befus, Kevin M.; Cardenas, M. Bayani; Erler, Dirk V.; Santos, Isaac R.; Eyre, Bradley D.
2013-06-01
Intertidal zones are spatially complex and temporally dynamic environments. Coastal groundwater discharge, including submarine groundwater discharge, may provide stabilizing conditions for intertidal zone permeable sediments. In this study, we integrated detailed time series temperature observations, porewater pressure measurements, and two-dimensional electrical resistivity tomography profiles to understand the coupled hydraulic-thermal regime of a tropical sandy intertidal zone in a fringing coral reef lagoon (Rarotonga, Cook Islands). We found three heating patterns across the 15 m study transect over tidal and diel periods: (1) a highly variable thermal regime dominated by swash infiltration and changes in saturation state in the upper foreshore with net heat import into the sediment, (2) a groundwater-supported underground stable, cool region just seaward of the intertidal slope break also importing heat into the subsurface, and (3) a zone of seawater recirculation that sustained consistently warm subsurface temperatures that exported heat across the sediment-water interface. Simple calculations suggested thermal conduction as the main heat transport mechanism for the shallow intertidal sediment, but deeper and/or multidimensional groundwater flow was required to explain temperature patterns beyond 20 cm depth. Temperature differences between the distinct hydrodynamic zones of the foreshore site resulted in significant thermal gradients that persisted beyond tidal and diel periods. The thermal buffering of intertidal zones by coastal groundwater systems, both at surface seeps and in the shallow subsurface, can be responsible for thermal refugia for some coastal organisms and hotspots for biogeochemical reactions.
NASA Technical Reports Server (NTRS)
Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.
1990-01-01
A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.
Sääskilahti, K; Oksanen, J; Tulkki, J
2013-07-01
Modeling of thermal transport in practical nanostructures requires making tradeoffs between the size of the system and the completeness of the model. We study quantum heat transfer in a self-consistent thermal bath setup consisting of two lead regions connected by a center region. Atoms both in the leads and in the center region are coupled to quantum Langevin heat baths that mimic the damping and dephasing of phonon waves by anharmonic scattering. This approach treats the leads and the center region on the same footing and thereby allows for a simple and physically transparent thermalization of the system, enabling also perfect acoustic matching between the leads and the center region. Increasing the strength of the coupling reduces the mean-free path of phonons and gradually shifts phonon transport from ballistic regime to diffusive regime. In the center region, the bath temperatures are determined self-consistently from the requirement of zero net energy exchange between the local heat bath and each atom. By solving the stochastic equations of motion in frequency space and averaging over noise using the general fluctuation-dissipation relation derived by Dhar and Roy [J. Stat. Phys. 125, 801 (2006)], we derive the formula for thermal current, which contains the Caroli formula for phonon transmission function and reduces to the Landauer-Büttiker formula in the limit of vanishing coupling to local heat baths. We prove that the bath temperatures measure local kinetic energy and can, therefore, be interpreted as true atomic temperatures. In a setup where phonon reflections are eliminated, the Boltzmann transport equation under gray approximation with full phonon dispersion is shown to be equivalent to the self-consistent heat bath model. We also study thermal transport through two-dimensional constrictions in square lattice and graphene and discuss the differences between the exact solution and linear approximations.
Parallel heat transport in integrable and chaotic magnetic fields
Del-Castillo-Negrete, Diego B; Chacon, Luis
2012-01-01
The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.
Heat and salt transport throughout the North Pacific Ocean
NASA Astrophysics Data System (ADS)
Yang, Lina; Yuan, Dongliang
2016-11-01
Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F.
2011-12-01
Almost all natural phenomena on Earth are highly nonlinear. Even simplifications to the equations describing nature usually end up being nonlinear partial differential equations. Transport (ADR) equation is a pivotal equation in atmospheric sciences and water quality. This nonlinear equation needs to be solved numerically for practical purposes so academicians and engineers thoroughly rely on the assistance of numerical codes. Thus, numerical codes require verification before they are utilized for multiple applications in science and engineering. Model verification is a mathematical procedure whereby a numerical code is checked to assure the governing equation is properly solved as it is described in the design document. CFD verification is not a straightforward and well-defined course. Only a complete test suite can uncover all the limitations and bugs. Results are needed to be assessed to make a distinction between bug-induced-defect and innate limitation of a numerical scheme. As Roache (2009) said, numerical verification is a state-of-the-art procedure. Sometimes novel tricks work out. This study conveys the synopsis of the experiences we gained during a comprehensive verification process which was done for a transport solver. A test suite was designed including unit tests and algorithmic tests. Tests were layered in complexity in several dimensions from simple to complex. Acceptance criteria defined for the desirable capabilities of the transport code such as order of accuracy, mass conservation, handling stiff source term, spurious oscillation, and initial shape preservation. At the begining, mesh convergence study which is the main craft of the verification is performed. To that end, analytical solution of ADR equation gathered. Also a new solution was derived. In the more general cases, lack of analytical solution could be overcome through Richardson Extrapolation and Manufactured Solution. Then, two bugs which were concealed during the mesh convergence
Entropy flux and anomalous axial heat transport at the nanoscale
NASA Astrophysics Data System (ADS)
Sellitto, A.; Cimmelli, V. A.; Jou, D.
2013-02-01
The form and the role of the entropy flux in the thermodynamic analysis of the transport equations are essentially open questions in nonequilibrium thermodynamics. In particular, nonlocal heat-transport equations at nanoscale may exhibit some peculiar behaviors which seem to violate well-known statements of the second law of thermodynamics. Here we examine one of these behaviors in axial heat transport from the perspective of a generalized entropy flux, i.e., J(s)=q/T+k, and show that such a generalization allows it to be consistent with the second law. In contrast with previous formal analyses, this paper provides an explicit form for the nonclassical part of the entropy flux, that is, k=ℓ2/(λT2)∇qT·q and links it to a concrete physical phenomenon which is accessible to current experimental possibilities for systems with sufficiently long mean-free path ℓ, whereas for short enough ℓ the classical results are recovered. The derivation of the nonclassical part of the entropy flux is obtained within the frame of extended irreversible thermodynamics from two different perspectives, namely, a 13-field theory with higher-order fluxes and a 4-field theory with higher-order gradients.
S-PRIME Heat Transport and Heat Rejection Subsystems Design Optimization
NASA Astrophysics Data System (ADS)
Moriarty, Michael P.
1994-07-01
The purpose of this paper is to describe the design status of the Rocketdyne space power reactor, incore, multicell, evolutionary (S-PRIME) design of the heat transport and heat rejection subsystems. The basic design concept is similar to that described previously; however, several detail design changes have resulted from changes in requirements. Improved definition of the various loop components has evolved from the performance of various trade studies. Overall layouts of the subsystem have been completed and the majority of the components are ready for preliminary design. The design will provide for the safe and reliable cooling of the nuclear reactor in a proven lightweight configuration.
Cascade: a review of heat transport and plant design issues
Murray, K.A.; McDowell, M.W.
1984-07-31
A conceptual heat transfer loop for Cascade, a centrifugal-action solid-breeder reaction chamber, has been investigated and results are presented. The Cascade concept, a double-cone-shaped reaction chamber, rotates along its horizontal axis. Solid Li/sub 2/O or other lithium-ceramic granules are injected tangentially through each end of the chamber. The granules cascade axially from the smaller radii at the ends to the larger radius at the center, where they are ejected into a stationary granule catcher. Heat and tritium are then removed from the granules and the granules are reinjected into the chamber. A 50% dense Li/sub 2/O granule throughput of 2.8 m/sup 3//s is transferred from the reaction chamber to the steam generators via continuous bucket elevators. The granules then fall by gravity through 4 vertical steam generators. The entire transport system is maintained at the same vacuum conditions present inside the reaction chamber.
Tropical Cyclone-Induced Ocean Mixing and Ocean Heat Transport
NASA Astrophysics Data System (ADS)
Sriver, R. L.; Huber, M.
2004-12-01
Turbulent mixing driven by tropical cyclones (TCs) creates cool sea surface temperature (SST) anomalies in their wakes. Restoration to `normal' SST patterns must be driven by anomalous (with respect to climatological values) surface fluxes. The upward turbulent mixing of cool water and the anomalous post-storm heat fluxes into the ocean should drive a substantial amount of poleward ocean heat transport (OHT) and significantly perturb the meridional overturning circulation. Given the sensitivity of TC activity to SSTs, strong feedbacks may exist that alter SST gradients and link TC activity to the mean climate state through OHT. A recent study estimates the magnitude of the TC-induced OHT to be on the order of 1015 Watts, representing the majority of the present-day total annual heat transported by the Earth's oceans (Emanuel, 2001, 2002, 2003). Here we analyze a variety of the latest SST and ocean heat content re-analyses datasets, including ECMWF ERA-40, and calculate SST anomalies for the majority of strong TCs occurring during the last forty years. Using SST anomalies, we attempt to quantify the annually averaged global OHT attributable to TC-induced mixing and compare between datasets and measurements/observations. Surface flux data along storm paths are extracted from ERA-40 data, and radiative energy imbalances within storm wakes are also used to calculate the implied OHT. Results are compared with satellite-based climatologies in the period in which they overlap and differences between reanalysis and satellite-based estimates of TC-induced OHT are described.
Universal heat transport in Sr2RuO4.
Suzuki, M; Tanatar, M A; Kikugawa, N; Mao, Z Q; Maeno, Y; Ishiguro, T
2002-06-03
We present the temperature dependence of the thermal conductivity kappa(T) of the unconventional superconductor Sr2RuO4 down to low temperatures ( approximately 100 mK). In the T-->0 K limit we found a finite residual term in kappa/T, providing clear evidence for the superconducting state with an unconventional pairing. The residual term remains unchanged for samples with different T(c), demonstrating the universal character of heat transport in this spin-triplet superconductor. The low-temperature behavior of kappa suggests the strong impurity scattering with a phase shift close to pi/2. A criterion for the observation of universality is experimentally deduced.
Linear delta-f simulations of nonlocal electron heat transport
NASA Astrophysics Data System (ADS)
Brunner, S.; Valeo, E.; Krommes, J. A.
2000-07-01
Nonlocal electron heat transport calculations are carried out by making use of some of the techniques developed previously for extending the δf method to transport time scale simulations [S. Brunner, E. Valeo, and J. Krommes, Phys. Plasmas 6, 4504 (1999)]. By considering the relaxation of small amplitude temperature perturbations of an homogeneous Maxwellian background, only the linearized Fokker-Planck equation has to be solved, and direct comparisons can be made with the equivalent, nonlocal hydrodynamic approach [V. Yu. Bychenkov et al., Phys. Rev. Lett. 75, 4405 (1995)]. A quasineutrality-conserving algorithm is derived for computing the self-consistent electric fields driving the return currents. In the low-collisionality regime, results illustrate the importance of taking account of nonlocality in both space and time.
Topological angular momentum and radiative heat transport in closed orbits
NASA Astrophysics Data System (ADS)
Silveirinha, Mário G.
2017-03-01
We study the role of topological edge states of light in the transport of thermally generated radiation in a closed cavity at a thermodynamic equilibrium. It is shown that even in the zero temperature limit—when the field fluctuations are purely quantum mechanical—there is a persistent flow of electromagnetic momentum in the cavity in closed orbits, deeply rooted in the emergence of spatially separated unidirectional edge state channels. It is highlighted that the electromagnetic orbital angular momentum of the system is nontrivial, and that the energy circulation is towards the same direction as that determined by incomplete cyclotron orbits near the cavity walls. Our findings open inroads in topological photonics and suggest that topological states of light can determine novel paradigms in the context of radiative heat transport.
Boening, C.W.; Holland, W.R.; Bryan, F.O.; Danabasoglu, G.; Mcwilliams, J.C. |
1995-03-01
Many models of the large-scale thermohaline circulation in the ocean exhibit strong zonally integrated upwelling in the midlatitude North Atlantic that significantly decreases the amount of deep water that is carried from the formation regions in the subpolar North Atlantic toward low latitudes and across the equator. In an analysis of results from the Community Modeling Effort using a suite of models with different horizontal resolution, wind and thermohaline forcing, and mixing parameters, it is shown that the upwelling is always concentrated in the western boundary layer between roughly 30 deg and 40 deg N. The vertical transport across 1000 m appears to be controlled by local dynamics and strongly depends on the horizontal resolution and mixing parameters of the model. It is suggested that in models with a realistic deep-water formation rate in the subpolar North Atlantic, the excessive upwelling can be considered as the prime reason for the typically too low meridional overturning rates and northward heat transports in the subtropical North Atlantic. A new isopycnal advection and mixing parameterization of tracer transports by mesoscale eddies yield substantial improvements in these integral measures of the circulation.
A Reactive-Heat-Pipe for Combined Heat Generation and Transport
1977-12-01
Pumping Heights for Different Temperatures. . . 70 22 Effect of Flow Losses on System Thermal Performance with No Argon in the Condenser...73 23 Flow Losses in the Vapor Transport System with Argon in the Condenser ................... 75 24 Temperature Distributions in a Reactive-Heat...shroud flow of inert gas, usually argon. The inert gas is recirculated through a vent system . The outer shroud flow prevents the direct contact
Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric
2012-01-01
Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix
NASA Astrophysics Data System (ADS)
Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric
2012-02-01
SummaryTwo physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32 m diameter by 0.99 m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed. Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1 cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9 cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6 cm of water and 55.9 cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat
Validation of the SOLPS Parallel Heat Transport Model
NASA Astrophysics Data System (ADS)
Canik, J. M.; Briesemeister, A. R.; Lasnier, C. J.; McLean, A. G.; Makowski, M. A.; Leonard, A. W.; Watkins, J. G.
2014-10-01
Recent SOLPS 2D fluid plasma/neutrals edge transport simulations have shown a consistent under-prediction of radiated power that when accounted for allows simulations to successfully match high resolution divertor and scrape-off-layer density (ne) and temperature (Te) measurements near detached conditions in DIII-D. The parallel heat transport model has been evaluated in simulations with the upstream ne and Te and divertor heat flux matched to experiments. Simulations of L-mode discharges near detachment onset require either increased carbon sources or hydrogenic recombination radiation to match measured radiative losses. With this increase, the poloidal Te profile shows good agreement with 2D divertor Thomson scattering data, including an extended region with very low Te, which cannot be reproduced without the additional radiative loss. Similar scaling of the radiated power also results in agreement for the Te profile measured in H-mode experiments; however, in this case the plasma data show a poloidally extended region of high ne that is not captured in simulations. Work supported by the US DOE under DE-AC05-00ER22725, DE-FC02-04ER54698 and DE-AC52-07NA27344.
Simulation of fluid, heat transport to estimate desert stream infiltration
Kulongoski, J.T.; Izbicki, J.A.
2008-01-01
In semiarid regions, the contribution of infiltration from intermittent streamflow to ground water recharge may be quantified by comparing simulations of fluid and heat transport beneath stream channels to observed ground temperatures. In addition to quantifying natural recharge, streamflow infiltration estimates provide a means to characterize the physical properties of stream channel sediments and to identify suitable locations for artificial recharge sites. Rates of winter streamflow infiltration along stream channels are estimated based on the cooling effect of infiltrated water on streambed sediments, combined with the simulation of two-dimensional fluid and heat transport using the computer program VS2DH. The cooling effect of ground water is determined by measuring ground temperatures at regular intervals beneath stream channels and nearby channel banks in order to calculate temperature-depth profiles. Additional data inputs included the physical, hydraulic, and thermal properties of unsaturated alluvium, and monthly ground temperatures measurements over an annual cycle. Observed temperatures and simulation results can provide estimates of the minimum threshold for deep infiltration, the variability of infiltration along stream channels, and also the frequency of infiltration events.
The role of oceanic heat transport in abrupt millennial-scale climate transitions
NASA Astrophysics Data System (ADS)
Arzel, Olivier; de Verdière, Alain Colin; England, Matthew H.
2010-05-01
The last glacial period was punctuated by rapid climate shifts, known as Dansgaard-Oeschger events, with strong imprint in the North Atlantic sector suggesting that they were linked with the Atlantic Meridional Overturning Circulation. Here an idealized single-hemisphere three-dimensional ocean-atmosphere-sea ice coupled model is used to explore the possible origin of the instability driving these abrupt events and to provide a plausible explanation for the relative stability of the Holocene. Focusing on the physics of noise-free millennial oscillations under steady external (solar) forcing, we show that cold climates become unstable, that is, exhibit abrupt millennial-scale transitions, for significantly lower freshwater fluxes than warm climates, in agreement with previous studies making use of zonally-averaged coupled models. This fundamental difference is a direct consequence of the weaker temperature stratification of the glacial ocean, mainly caused by upper ocean cooling. With similar overturning strengths between the cold and warm climates, this weaker temperature stratification implies a weaker baroclinic heat transport that ultimately leads to a weaker stabilization of the circulation by the negative temperature advection feedback. Using a two-hemisphere configuration of a coupled climate model of intermediate complexity, we show that this result is robust to the added presence of a bottom water mass of southern origin. The analysis reveals that under particular conditions, a pronounced interdecadal variability develops during warm interstadials, with maximum variance in the northern extension of the western boundary current in the North Atlantic. While the nature of the instability driving the millennial oscillations is identical to that found in ocean models under mixed boundary conditions, these interstadial-interdecadal oscillations share the same characteristics as those previously found in ocean models forced by fixed surface fluxes: they originate
Constraints upon water advection in sediments of the Mariana Trough
Abbott, D.H.; Menke, W.; Morin, R.
1983-02-10
Thermal gradient measurements, consolidation tests, and pore water compositions from the Mariana Trough imply that water is moving through the sediments in areas with less than about 100 m of sediment cover. The maximum advection rates implied by the thermal measurements and consolidation tests may be as high as 10/sup -5/ cm s/sup -1/ but are most commonly in the range of 1 to 5 x 10/sup -6/ cm s/sup -1/. Theoretical calculations of the effect of the highest advection rates upon carbonate dissolution indicate that dissolution may be impeded or enhanced (depending upon the direction of flow) by a factor of 2 to 5 times the rate for diffusion alone. The average percentage of carbonate is consistently higher in two cores from the area with no advection or upward advection than the average percentage of carbonate in three cores from the area with downward advection. This increase in average amount of carbonate in cores with upward moving water or no movement cannot be attributed solely to differences in water depth or in amount of terrigenous dilution. If the sediment column acts as a passive boundary layer, then the water velocities necessary to affect chemical gradients of silica are in the range 10/sup -9/ to 10/sup -10/ cm s/sup -1/. However, if dissolution of silica occurs within the sediment column, then the advection velocities needed to affect chemical gradients are at least 3 x 10/sup -8/ cm s/sup -1/ and may be as high as 3 x 10/sup -6/ cm s/sup -1/. This order of magnitude increase in advection velocities when chemical reactions occur within the sediments is probably applicable to other cations in addition to silica. If so, then the advection velocities needed to affect heat flow (>10/sup -8/ cm s/sup -1/) and pore water chemical gradients are much nearer in magnitude than previously assumed.
NASA Astrophysics Data System (ADS)
Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.
2017-01-01
We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.
A computational method for sharp interface advection
Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619
Concentration polarization, surface currents, and bulk advection in a microchannel
NASA Astrophysics Data System (ADS)
Nielsen, Christoffer P.; Bruus, Henrik
2014-10-01
We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction.
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical
A new Remesh-Lagrange technique for advecting temperature that minimizes numerical diffusion
NASA Astrophysics Data System (ADS)
Hasenclever, J.; Phipps Morgan, J.; Shi, C.
2007-12-01
The proper treatment of heat-advection is a generally underappreciated problem within CFD, yet particularly critical for calculating physically sound erosion in plume-lithosphere interactions and temperature sensitive melting processes. Typically, Eulerian (fixed-mesh) codes have been preferred to solve for fluid flow and they are almost essential for finite-difference-based algorithms. Unfortunately, the Eulerian approach introduces numerical artifacts into the solution of the advection-diffusion heat transport problem that can only be suppressed by adding 'too-diffusive' artificial diffusion to the equations, as for example in the Smolarkiewicz formulation for heat advection. We have developed a 'Remesh-Lagrange' method using a partly deforming finite element mesh and find it to be significantly more accurate than our previous methods. In several test scenarios we show the large improvement in accuracy that can be obtained by using a Lagrangian approach for 10-30 time steps (depending upon the distortion of the finite elements in the deformed Lagrangian mesh) and then regridding to the initial mesh. When an element becomes too distorted the nodes connected to it become fixed and we switch from Lagrange to a Semi-Lagrange formulation for these nodes. Instead of the standard 'linear backward' Semi-Lagrange we are also experimenting with a more accurate interpolation scheme for an unstructured mesh that additionally includes the nodal derivatives of the temperature field when calculating the value at the Semi-Lagrange traceback point. The same bicubic interpolation method for an unstructured grid is used to remesh the 'too-distorted' Lagrange grid back to the initial undistorted mesh. We compare the Remesh-Lagrange technique against the following Eulerian methods in a series of 2-D numerical experiments advecting stripes and Gaussian peaks in steady circulating flow: linear back-interpolation Semi-Lagrange method; bicubic back-interpolation Semi-Lagrange method
Heat- and mass-transport in aqueous silica nanofluids
NASA Astrophysics Data System (ADS)
Turanov, A. N.; Tolmachev, Yuriy V.
2009-10-01
Using the transient hot wire and pulsed field gradient nuclear magnetic resonance methods we determined the thermal conductivity and the solvent self-diffusion coefficient (SDC) in aqueous suspensions of quasi-monodisperse spherical silica nanoparticles. The thermal conductivity was found to increase at higher volume fraction of nanoparticles in accordance with the effective medium theory albeit with a smaller slope. On the other hand, the SDC was found to decrease with nanoparticle volume fraction faster than predicted by the effective medium theory. These deviations can be explained by the presence of an interfacial heat-transfer resistance and water retention by the nanoparticles, respectively. We found no evidence for anomalous enhancement in the transport properties of nanofluids reported earlier by other groups.
Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation
NASA Astrophysics Data System (ADS)
Dou, Nicholas G.; Minnich, Austin J.
2016-01-01
Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials.
Nuclear reactor heat transport system component low friction support system
Wade, Elman E.
1980-01-01
A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.
Seasonal Cycle of Ocean Heat Transport and its Projected Changes
NASA Astrophysics Data System (ADS)
Yang, D.; Saenko, O.
2011-12-01
Seasonal cycle of ocean heat transport (OHT) and its projected changes are analyzed using the second-generation Canadian Earth System Model (CanESM2). The future anthropogenic forcing is assessed using two newly-developed representative concentration pathways (RCPs) of greenhouse gases and aerosols (RCP 4.5 and RCP 8.5). Consistent with some previous results based on eddy-permitting models, it is found that much of the seasonal variability of meridional circulation in the CanESM2 ocean is captured by the seasonal cycle of meridional Ekman fluxes, compensated by deep-reaching barotropic return flows. Since the seasonal cycle of zonal wind stress is projected to change at some latitudes, both in the Northern and Southern hemispheres, the projected seasonal variability of OHT essentially follows these changes in the wind.
Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation
Dou, Nicholas G.; Minnich, Austin J.
2016-01-04
Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials.
BUOYANT ADVECTION OF GASES IN UNSATURATED SOIL
Seely, Gregory E.; Falta, Ronald W.; Hunt, James R.
2010-01-01
In unsaturated soil, methane and volatile organic compounds can significantly alter the density of soil gas and induce buoyant gas flow. A series of laboratory experiments was conducted in a two-dimensional, homogeneous sand pack with gas permeabilities ranging from 110 to 3,000 darcy. Pure methane gas was injected horizontally into the sand and steady-state methane profiles were measured. Experimental results are in close agreement with a numerical model that represents the advective and diffusive components of methane transport. Comparison of simulations with and without gravitational acceleration permits identification of conditions where buoyancy dominates methane transport. Significant buoyant flow requires a Rayleigh number greater than 10 and an injected gas velocity sufficient to overcome dilution by molecular diffusion near the source. These criteria allow the extension of laboratory results to idealized field conditions for methane as well as denser-than-air vapors produced by volatilizing nonaqueous phase liquids trapped in unsaturated soil. PMID:20396624
Energy Conversion Advanced Heat Transport Loop and Power Cycle
Oh, C. H.
2006-08-01
The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various
Experimental Characterization of the Electron Heat Transport in Low-Density ASDEX Upgrade Plasmas
Ryter, F.; Imbeaux, F.; Leuterer, F.; Fahrbach, H.-U.; Suttrop, W.; ASDEX Upgrade Team
2001-06-11
The electron heat transport is investigated in ASDEX Upgrade conventional L -mode plasmas with pure electron heating provided by electron-cyclotron heating (ECH) at low density. Under these conditions, steady-state and ECH modulation experiments indicate without ambiguity that electron heat transport exhibits a clear threshold in {nabla}T{sub e}/T{sub e} and also suggest that it has a gyro-Bohm character.
Heat and momentum transport scalings in vertical convection
NASA Astrophysics Data System (ADS)
Shishkina, Olga
2016-11-01
For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr << 1 and Nu Pr0 Ra 1 / 4 , Re Pr-1 Ra 1 / 2 for Pr >> 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.
NASA Technical Reports Server (NTRS)
Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.
1981-01-01
Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.
The nature of the sunspot phenomenon. I - Solutions of the heat transport equation
NASA Technical Reports Server (NTRS)
Parker, E. N.
1974-01-01
It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.
Photothermal heating in metal-embedded microtools for material transport
NASA Astrophysics Data System (ADS)
Villangca, Mark; Palima, Darwin; Bañas, Andrew; Glückstad, Jesper
2016-03-01
Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an optically fabricated and actuated microtool. As proof of concept, we demonstrate loading and unloading of beads. This can be extended to controlled transport and release of genetic material, bio-molecules, fluorescent dyes. We envisioned these microtools to be an important addition to the portfolio of structure-mediated contemporary biophotonics.
Tuning heat transport in trapped-ion chains across a structural phase transition
NASA Astrophysics Data System (ADS)
Ruiz, A.; Alonso, D.; Plenio, M. B.; del Campo, A.
2014-06-01
We analyze the heat transport in an ion chain that is confined in a strongly anisotropic Paul trap. To drive a heat current across the chain different pairs of counterpropagating laser beams are applied to the ions on the edges. The lasers behave as heat reservoirs operating at different temperatures, and a nonequilibrium heat flow can be sustained. The control of the spatial distribution of the ions in the chain by variation of the trapping frequencies makes ion chains an ideal testbed to study heat transport properties in finite open systems of low dimensionality with tunable nonlinearities. We explore heat transport across a structural phase transition between the linear and zigzag configurations, identifying the condition for optimal heat transport.
The impact of oceanic heat transport on the mean meridional circulation
NASA Astrophysics Data System (ADS)
Knietzsch, Marc-Andre; Lucarini, Valerio; Lunkeit, Frank
2014-05-01
A general circulation model of intermediate complexity and an idealized earthlike aquaplanet setup are used to study the impact of oceanic heat transport on the mean meridional circulation. Oceanic heat transport is prescribed by a q-flux following Rose et al. (2012) with peak at 27°. Annual means of 30 years of investigation are used. The mean meridional circulation is studied by means of the zonal mean mass stream function. It shows that the mean circulation weakens with increasing oceanic heat transport especially the Hadley cell. The margin between the Hadley and the Ferrel cell is shifted poleward. Hence the Hadley cell expands with increasing oceanic heat transport. If the maximum magnitude of oceanic heat transport exceeds 3 PW, the whole tropical Hadley circulation shifts poleward and a weak inverse cell develops in the deep tropics. The diagnostic equation of the zonal mean mass stream function called Kuo-Eliassen equation is used to investigate the forcings of the mean meridional circulation. These are the meridional gradient of diabatic heating, the meridional gradient of eddy heat flux divergence and the vertical gradient of eddy momentum flux convergence. Frictional effects are ignored. Increasing oceanic heat transport affects the zonal mean diabatic heating distribution leading to a decreasing of its meridional gradient with increasing oceanic heat transport. With increasing oceanic heat transport the region of baroclinic unstable waves shifts poleward and both the eddy fluxes and their gradients decline. This leads to a weakening of the eddy flux driven Ferrel cell. Furthermore the poleward shifting of the eddy influenced region leads to Hadley cell's expansion and Ferrel cell's poleward shifting. The whole Hadley circulation is shifted poleward, if the oceanic heat transport leads to a poleward shifting of the diabatic heating maximum away from the equator.
Moore, William B; Webb, A Alexander G
2013-09-26
The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.
Williams, M.L.; Yuecel, A.; Nadkarny, S.
1988-05-01
The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.
Enhanced heat transport in environmental systems using microencapsulated phase change materials
NASA Technical Reports Server (NTRS)
Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.
1992-01-01
A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.
Compensation of Meridional Heat Transport: Testing the Bjerknes Hypothesis in a Freshening World
NASA Astrophysics Data System (ADS)
Wang, Y.
2012-04-01
The compensation between the meridional heat transports in the atmosphere and ocean is studied through a coupled model water hosing experiments. It is found that the Bjerknes compensation hypothesis is valid in the extratropics. In the tropics, the atmospheric heat transport (AHT) overcompensates the total oceanic heat transport, because of an enhanced wind-driven oceanic heat transport (OHT) in the Pacific-Indian Oceans. The water hosing in the high latitude Atlantic weakens the Atlantic meridional overturning circulation and thus the northward Atlantic OHT significantly. This leads to an enhanced interhemispheric SST gradient across the global tropics and in turn an enhanced (weakened) atmosphere Hadley Cell in the Northern (Southern) Hemisphere. The enhanced Hadley Cell itself increases the northward AHT, compensating the reduced Atlantic OHT. Meanwhile, it increases the surface trade wind and in turn the wind-driven northward OHT in the Pacific-Indian Oceans, leading to an overcompensation of the northward heat transport.
Advection, diffusion, and delivery over a network.
Heaton, Luke L M; López, Eduardo; Maini, Philip K; Fricker, Mark D; Jones, Nick S
2012-08-01
Many biological, geophysical, and technological systems involve the transport of a resource over a network. In this paper, we present an efficient method for calculating the exact quantity of the resource in each part of an arbitrary network, where the resource is lost or delivered out of the network at a given rate, while being subject to advection and diffusion. The key conceptual step is to partition the resource into material that does or does not reach a node over a given time step. As an example application, we consider resource allocation within fungal networks, and analyze the spatial distribution of the resource that emerges as such networks grow over time. Fungal growth involves the expansion of fluid filled vessels, and such growth necessarily involves the movement of fluid. We develop a model of delivery in growing fungal networks, and find good empirical agreement between our model and experimental data gathered using radio-labeled tracers. Our results lead us to suggest that in foraging fungi, growth-induced mass flow is sufficient to account for long-distance transport, if the system is well insulated. We conclude that active transport mechanisms may only be required at the very end of the transport pathway, near the growing tips.
Interface Exchange as an Indicator for Eddy Heat Transport
Petersen, Mark R.; Williams, Sean J.; Hecht, Matthew W.; Maltrud, Mathew E.; Hamann, Bernd; Patchett, John M.; Ahrens, James P.
2012-06-12
The ocean contains many large-scale, long-lived vortices, called mesoscale eddies, that are believed to have a role in the transport and redistribution of salt, heat, and nutrients throughout the ocean. Determining this role, however, has proven to be a challenge, since the mechanics of eddies are only partly understood; a standard definition for these ocean eddies does not exist and, therefore, scientifically meaningful, robust methods for eddy extraction, characterization, tracking and visualization remain a challenge. In order to shed light on the nature and potential roles of eddies, we have combined our previous research on eddy identification and tracking, and have used those approaches as the basis for analysis-driven computational experiments on the nature of eddies. Based on the resulting visualizations of eddy behavior, we have devised a new metric to characterize the transfer of water into and out of eddies across their boundary, and have developed visualization methods for this new metric to provide clues about the role eddies play in the global ocean and, potentially, climate change.
NASA Astrophysics Data System (ADS)
Plesa, A.-C.; Tosi, N.; Hüttig, C.
2012-04-01
Thermal and chemical convection in planetary mantles are the most dominant dynamical processes influencing the thermal and geological evolution of a planet. After the planetary formation, convection in the interior is one of the most prominent processes being responsible for the heat transport efficiency, the interior structure, the magnetic field generation and the geological structures at the surface of a planet such as volcanoes, rifts and others. The slow creep of the silicate materials that make up the mantle of terrestrial planets (i.e. Mercury, Venus, the Earth and Mars) is driven by a combination of thermal and compositional buoyancy. On the one hand, the primordial heat accumulated after accretion and core formation and the heat released by the decay of radiogenic isotopes are transported from the interior to the surface by thermal convection. This process involves the transfer of heat both via diffusion, which occurs mainly across thermal boundary layers, and advection due to fluid motion in the bulk of the mantle. On the other hand, density anomalies of non-thermal origin associated with chemical (i.e. compositional) heterogeneities provide an additional source of buoyancy that actively contributes to the transport of energy and mass. In the present work we discuss the modeling of active compositional fields in the framework of solid-state mantle convection using the 3D spherical/2D cylindrical code Gaia [1, 2]. Numerical methods for the advection of active compositional fields fall in two main categories [3, 4]. They are based either on a fixed computational grid (Eulerian methods) or on evolving grids or moving particles (Lagrangian methods). We compare an Eulerian method based on double-diffusive convection against a Lagrangian, particle-based method. Though straightforward, the first method generally suffers from non-negligible numerical diffusion and demands then the use of grids with a high resolution. Moreover, its accuracy can substantially
Numerical modeling for energy transport and isochoric heating in ultra-fast heated high Z target
NASA Astrophysics Data System (ADS)
Mishra, Rohini; Sentoku, Yasuhiko; Hakel, Peter; Mancini, Roberto C.
2010-11-01
Collisional Particle-in-Cell (PIC) code is an effective tool to study extreme energy density conditions achieved in intense laser-solid interactions. In the continuous process of developing PIC code, we have recently implemented models to incorporate dynamic ionizations, namely Saha and Thomas Fermi, and radiation cooling (due to Bremsstrahlung and line emissions). We have also revised the existing collision model to take into account bounded electrons in dynamically ionizing target (partially ionized target). One-dimensional PIC simulation of a gold target with new collision model shows strong local heating in a micron distance due to shorter stopping range of fast electrons, which reflects the increased collision frequency due to bound electrons. The peak temperature in the heated region drops significantly due to the radiation cooling to a level of a few hundred eV from keV. We also discuss the target Z dependence on radiation loss and two-dimensional effects such as the resistive magnetic fields in the hot electron transport in metal targets.
Spin-dependent heat transport and thermal boundary resistance
NASA Astrophysics Data System (ADS)
Jeong, Taehee
In this thesis, thermal conductivity change depending on the magnetic configurations has been studied. In order to make different magnetic configurations, we developed a spin valve structure, which has high MR ratio and low saturation field. The high MR ratio was achieved using Co/Cu multilayer and 21A or 34A thick Cu layer. The low saturation field was obtained by implementing different coercivities of the successive ferromagnetic layers. For this purpose, Co/Cu/Cu tri-layered structure was used with the thicknesses of the Co layers; 15 A and 30 A. For the thermal conductivity measurement, a three-omega method was employed with a thermally isolated microscale rod. We fabricated the microscale rod using optical lithography and MEMS process. Then the rod was wire-bonded to a chip-carver for further electrical measurement. For the thermal conductivity measurement, we built the three-omega measurement system using two lock-in amplifiers and two differential amplifiers. A custom-made electromagnet was added to the system to investigate the impact of magnetic field. We observed titanic thermal conductivity change depending on the magnetic configurations of the Co/Cu/Co multilayer. The thermal conductivity change was closely correlated with that of the electric conductivity in terms of the spin orientation, but the thermal conductivity was much more sensitive than that of the electric conductivity. The relative thermal conductivity change was 50% meanwhile that of electric resistivity change was 8.0%. The difference between the two ratios suggests that the scattering mechanism for charge and heat transport in the Co/Cu/Co multilayer is different. The Lorentz number in Weidemann-Franz law is also spin-dependent. Thermal boundary resistance between metal and dielectrics was also studied in this thesis. The thermal boundary resistance becomes critical for heat transport in a nanoscale because the thermal boundary resistance can potentially determine overall heat transport
Chaotic Advection in a Bounded 3-Dimensional Potential Flow
NASA Astrophysics Data System (ADS)
Metcalfe, Guy; Smith, Lachlan; Lester, Daniel
2012-11-01
3-dimensional potential, or Darcy flows, are central to understanding and designing laminar transport in porous media; however, chaotic advection in 3-dimensional, volume-preserving flows is still not well understood. We show results of advecting passive scalars in a transient 3-dimensional potential flow that consists of a steady dipole flow and periodic reorientation. Even for the most symmetric reorientation protocol, neither of the two invarients of the motion are conserved; however, one invarient is closely shadowed by a surface of revolution constructed from particle paths of the steady flow, creating in practice an adiabatic surface. A consequence is that chaotic regions cover 3-dimensional space, though tubular regular regions are still transport barriers. This appears to be a new mechanism generating 3-dimensional chaotic orbits. These results contast with the experimental and theoretical results for chaotic scalar transport in 2-dimensional Darcy flows. Wiggins, J. Fluid Mech. 654 (2010).
Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Graham, Jennifer A.; Dinniman, Michael S.; Klinck, John M.
2016-10-01
The flux of warm deep water onto Antarctic continental shelves plays a vital role in determining water mass properties adjacent to the continent. A regional model, with two different grid resolutions, has been used to simulate ocean processes along the West Antarctic Peninsula. At both 4 km and 1.5 km resolution, the model reproduces the locations of warm intrusions, as shown through comparison with observations from instrumented seals. However, the 1.5 km simulation shows greater on-shelf heat transport, leading to improved representation of heat content on the shelf. This increased heat transport is associated with increased eddy activity, both at the shelf-break and in the deep ocean off-shore. Cross-shelf troughs are key locations of on-shelf heat transport. Comparison of two troughs, Belgica and Marguerite, shows differing responses to increased resolution. At higher resolution, there is an increased on-shelf volume transport at Belgica Trough, but not at Marguerite Trough. This is likely related to the differing structure of the shelf-break jet between these two locations. The increased heat flux at Marguerite Trough is attributed to increased heat content in the on-shelf transport. Increased eddy activity off-shelf may lead to greater cross-front heat transport, and therefore increased heat available above the continental slope. While these simulations differ in their magnitude of heat transport, both show similar patterns of variability. Variations in wind stress lead to variations in speed of the shelf-break jet, and therefore on-shelf heat transport. These results demonstrate the importance of model resolution for understanding cross-shelf transport around Antarctica.
Heat transport in metals irradiated by ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Kanavin, A. P.; Smetanin, I. V.; Isakov, V. A.; Afanasiev, Yu. V.; Chichkov, B. N.; Wellegehausen, B.; Nolte, S.; Momma, C.; Tünnermann, A.
1998-06-01
Different regimes of heat propagation in metals irradiated by subpicosecond laser pulses are studied on the basis of a two-temperature diffusion model. Analytical solutions for the heat conduction equation, corresponding to the different temperature dependences of the electron thermal conductivity, are obtained. It is shown that in case of a strong electron-lattice nonequilibrium, the heat penetration depth grows linearly with time, and the heat propagation velocity decreases with increasing laser fluence. Investigations of this ``counterintuitive'' regime of heat propagation are performed.
Why ocean heat transport warms the global mean climate
NASA Astrophysics Data System (ADS)
Herweijer, Celine; Seager, Richard; Winton, Michael; Clement, Amy
2005-08-01
Observational and modelling evidence suggest that poleward ocean heat transport (OHT) can vary in response to both natural climate variability and greenhouse warming. Recent modelling studies have shown that increased OHT warms both the tropical and global mean climates. Using two different coupled climate models with mixed-layer oceans, with and without OHT, along with a coupled model with a fixed-current ocean component in which the currents are uniformly reduced and increased by 50%, an attempt is made to explain why this may happen.OHT warms the global mean climate by 1 to 1.6K in the atmospheric general circulation (AGCM) ML model and 3.5K in the AGCM fixed current model. In each model the warming is attributed to an increase in atmospheric greenhouse trapping, primarily clear-sky greenhouse trapping, and a reduction in albedo. This occurs as OHT moistens the atmosphere, particularly at subtropical latitudes. This is not purely a thermodynamic response to the reduction in planetary albedo at these latitudes. It is a change in atmospheric circulation that both redistributes the water vapour and allows for a global atmospheric moistening—a positive 'dynamical' water vapour feedback. With increasing OHT the atmospheric water vapour content increases as atmospheric convection spreads out of the deep tropics. The global mean planetary albedo is decreased with increased OHT. This change is explained by a decrease in subtropical and mid-latitude low cloudiness, along with a reduction in high-latitude surface albedo due to decreased sea ice. The climate models with the mixed layer oceans underestimate both the subtropical low cloud cover and the high-latitude sea ice/surface albedo, and consequently have a smaller warming response to OHT.
AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION
Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...
Anomalous heat transport and condensation in convection of cryogenic helium.
Urban, Pavel; Schmoranzer, David; Hanzelka, Pavel; Sreenivasan, Katepalli R; Skrbek, Ladislav
2013-05-14
When a hot body A is thermally connected to a cold body B, the textbook knowledge is that heat flows from A to B. Here, we describe the opposite case in which heat flows from a colder but constantly heated body B to a hotter but constantly cooled body A through a two-phase liquid-vapor system. Specifically, we provide experimental evidence that heat flows through liquid and vapor phases of cryogenic helium from the constantly heated, but cooler, bottom plate of a Rayleigh-Bénard convection cell to its hotter, but constantly cooled, top plate. The bottom plate is heated uniformly, and the top plate is cooled by heat exchange with liquid helium maintained at 4.2 K. Additionally, for certain experimental conditions, a rain of helium droplets is detected by small sensors placed in the cell at about one-half of its height.
Global anomalous transport of ICRH- and NBI-heated fast ions
NASA Astrophysics Data System (ADS)
Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.
2017-04-01
By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.
A computational approach to calculate the heat of transport of aqueous solutions
NASA Astrophysics Data System (ADS)
di Lecce, Silvia; Albrecht, Tim; Bresme, Fernando
2017-03-01
Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations >0.5 M. The heats of transport are significantly different for Li+ and Cl‑ ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions.
A computational approach to calculate the heat of transport of aqueous solutions
Di Lecce, Silvia; Albrecht, Tim; Bresme, Fernando
2017-01-01
Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations >0.5 M. The heats of transport are significantly different for Li+ and Cl− ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions. PMID:28322266
Device for passive downward heat transport - Design criteria and operational results
NASA Astrophysics Data System (ADS)
de Beni, G.; Friesen, R.; Thoma, H.; Veneroni, R.
A semi-continuous device for passive downward heat transport has been designed, built and operated. Heat is transported as latent heat of vaporization as in a heat pipe; the return of the liquid is obtained through the action of an energy accumulator containing an inert gas and charged by the vapour itself during the transport of heat. The capability of winning the difference in level is exchanged with a difference of a few degrees centigrade between evaporator and condenser. The laboratory device worked with a difference in level of 1.7 m. Working under pressure, differences in level of 10 meters and more can be attained. A typical application can be the storage of heat available from solar collectors.
NASA Astrophysics Data System (ADS)
Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp
2014-05-01
Temperatures in shallow urban ground are typically elevated. They manifest as subsurface urban heat islands, which are observed worldwide in different metropolitan areas and which have a site-specific areal extent and intensity. As of right now the governing heat transport processes accumulating heat in the subsurface of cities are insufficiently understood. Based on a spatial assessment of groundwater temperatures, six individual heat flux processes could be identified: (1) heat flux from elevated ground surface temperatures (GST), (2) heat flux from basements of buildings, (3) reinjection of thermal waste water, (4) sewage drains, (5) sewage leakage, and (6) district heating. In this study, the contributions of these processes are quantified on local and regional scales for the city of Karlsruhe in Germany. For the regional scale, the Regionalized Monte Carlo (RMC) method is used. This method applies a single Monte Carlo (MC) simulation for the entire study area. At relatively low data demand, the RMC method provides basic insights into the heat contribution for the entire city. For the local scale, the Local Monte Carlo (LMC) method was developed and applied. This method analyzes all dominant heat fluxes spatially dependent by performing an MC simulation for each arbitrary sized pixel of the study area (here 10 x 10 m). This more intricate approach allows for a spatial representation of all heat flux processes, which is necessary for the local planning of geothermal energy use. In order to evaluate the heat transport processes on a regional scale, we compared the mean annual thermal energies that result from the individual heat flux processes. Both methods identify the heat flux from elevated GST and the heat flux from buildings as the dominant regional processes. However, reinjection of thermal wastewater is by far the most dominant local heat flux processes with an average heat flux of 16 ± 2 W/m2 in the affected areas. Although being dominant on the regional
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
del-Castillo-Negrete, Diego; Blazevski, Daniel
2016-04-01
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
del-Castillo-Negrete, Diego; Blazevski, Daniel
2016-04-01
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter is $\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$ that determines the length scale, $1/\\gamma$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $\\omega \\gg 1$, or small parallel thermal conductivities, $\\chi_\\parallel \\ll 1$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $\\gamma$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay of modulated heat
ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.
Hromadka, T.V.
1987-01-01
Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.
Heat transport in metals irradiated by ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Kanavin, Andrei P.; Afanasiev, Yuri V.; Chichkov, Boris N.; Isakov, Vladimir A.; Smetanin, Igor V.
2000-02-01
Different regimes of heat propagation in metals irradiated by subpicosecond laser pulses are studied on the basis of two-temperature diffusion model. New analytical solutions for the heat conduction equation, corresponding to the different temperature dependences of the electron thermal conductivity (formula available n paper), are found. It is shown that in case of a strong electron-lattice nonequilibrium, the heat penetration depth grows linearly with time, lT varies direct as t, in opposite to the ordinary diffusionlike behavior, lT varies direct as t1/2. Moreover, the heat propagation velocity decreases with increasing laser fluence.
NASA Astrophysics Data System (ADS)
Grist, Jeremy P.; Josey, Simon A.; Marsh, Robert; Good, Simon A.; Coward, Andrew. C.; de Cuevas, Beverly A.; Alderson, Steven G.; New, Adrian L.; Madec, Gurvan
2010-08-01
The temperature variability of the Atlantic Ocean is investigated using an eddy-permitting (1/4°) global ocean model (ORCA-025) forced with historical surface meteorological fields from 1958 to 2001. The simulation of volume-averaged temperature and the vertical structure of the zonally averaged temperature trends are compared with those from observations. In regions with a high number of observations, in particular above a depth of 500 m and between 22° N and 65° N, the model simulation and the dataset are in good agreement. The relative contribution of variability in ocean heat transport (OHT) convergence and net surface heat flux to changes in ocean heat content is investigated with a focus on three regions: the subpolar and subtropical gyres and the tropics. The surface heat flux plays a relatively minor role in year-to-year changes in the subpolar and subtropical regions, but in the tropical North Atlantic, its role is of similar significance to the ocean heat transport convergence. The strongest signal during the study period is a cooling of the subpolar gyre between 1970 and 1990, which subsequently reversed as the mid-latitude OHT convergence transitioned from an anomalously weak to an anomalously strong state. We also explore whether model OHT anomalies can be linked to surface flux anomalies through a Hovmöller analysis of the Atlantic sector. At low latitudes, increased ocean heat gain coincides with anomalously strong northward transport, whereas at mid-high latitudes, reduced ocean heat loss is associated with anomalously weak heat transport.
Pablant, N. A.; Satake, S.; Yokoyama, M.; ...
2016-01-28
An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-more » $${{T}_{\\text{e}}}$$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ($${{T}_{\\text{eo}}}=9$$ keV) at moderately low densities ($${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ($${{E}_{\\text{r}}}$$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.« less
Seasonal and interannual variations of upper ocean heat balance off the west coast of Australia
NASA Astrophysics Data System (ADS)
Feng, Ming; Biastoch, Arne; BöNing, Claus; Caputi, Nick; Meyers, Gary
2008-12-01
The Leeuwin Current, a warm, poleward flowing eastern boundary current, dominates the surface circulation off the west coast of Australia and has profound influence on regional marine ecosystem and fisheries recruitment. In this study, the seasonal and interannual variations of upper ocean heat balance in the Leeuwin Current region are analyzed by using an eddy-resolving numerical model simulation, as a first step to quantify the climate impacts on regional ocean thermodynamics and marine ecosystem. The volume transport and heat advection of the Leeuwin Current are stronger during the austral winter on the seasonal cycle and are stronger during a La Nina event on the interannual scale. On both seasonal and interannual timescales, the mixed layer heat budget off the west coast of Australia is predominantly balanced between the variations of the Leeuwin Current heat advection and heat flux across the air-sea interface. On the interannual timescale, the variation of the Leeuwin Current heat advection tends to lead that of the air-sea (latent) heat flux by two months, which is likely a reflection of advection timescales of the Leeuwin Current and its eddy field. The interannual variation of the average February-April sea surface temperature off the west coast of Australia, which is crucial for the larval settlement of western rock lobster, is mostly influenced by the Leeuwin Current heat advection as well as the ocean memory from the previous austral winter, with the air-sea heat exchange playing a buffering role.
A non-equilibrium model for soil heating and moisture transport during extreme surface heating
NASA Astrophysics Data System (ADS)
Massman, W. J.
2015-03-01
With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank-Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m-2. The Hertz-Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50-90 °C). Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure), which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different) models developed for somewhat different purposes and for different porous media. Overall, this non
Is the Standard Definition of Poleward Heat Transport Appropriate in Climate Research?
NASA Astrophysics Data System (ADS)
Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi
2016-04-01
In this paper, a problem with the standard definition of poleward heat transport is highlighted. This, we argue, arises because of the dependence of the standard definition on an arbitrary reference state for moist static energy. This dependence may result in large uncertainty in the estimates of ocean-atmosphere coupling, the signature in heat transport of the atmospheric storm track and annular modes of variability. A new definition is proposed to address the problem, which removes unrealistically large fluctuations (4PW) found when using the standard definition. A practical way to implement the new formulation is also discussed. The new heat transport definition is shown to lead to better correlations with climate indices compared to the traditional definition. In particular a clear relationship between the AO, El Niño and heat transport emerges in our analysis. In addition, it also produces different time sequence of event with large/weak poleward heat transport. It is hoped that the new heat transport definition may shed light on studies exploring the link between energy transport and climate variability.
NASA Astrophysics Data System (ADS)
Narita, E.; Honda, M.; Yoshida, M.; Hayashi, N.; Urano, H.; Ide, S.
2017-04-01
Two types of JT-60U discharges are studied with an emphasis on toroidal rotation: in one discharge, which is characterized by the existence of an internal transport barrier (ITB), electron heat transport in the core region is affected by the toroidal rotation direction, while in the other discharge, which is a conventional H-mode plasma without an ITB, the clear correlation between the toroidal rotation direction and electron heat transport is not observed. In both discharges, the impurity density is also found to vary together with the rotation velocity profile. With a flux-tube gyrokinetic code, we have found that the effects of the changes in the rotation velocity profile and the impurity density on electron heat transport are different between these discharges. Including the effects explains the tendency observed in the experiments. First, regarding the rotation velocity profile, which influences heat transport through the inertial force, the dependence of heat transport on the rotation direction changes, according to the gradient of the rotation velocity. Next, an increase in the impurity density stabilizes the ion temperature gradient mode, but can destabilize the trapped electron mode. Therefore, it is found that the difference in the impact of the impurity density on electron heat transport in these discharges can be attributed to the difference in the dominant instability.
Changes in Tropical Precipitation at the Mid-Holocene: Role of the Oceanic Heat Transport
NASA Astrophysics Data System (ADS)
Liu, X.; Battisti, D. S.; Donohoe, A.
2015-12-01
There is ample geological and geochemical evidence that precipitation in the tropics is largely different from today at the mid-Holocene, an era roughly 6,000 years ago when the Northern Hemisphere summer (winter) insolation was stronger (weaker) than today. These insolation differences are caused mainly by the precession of the earth's rotational axis, or called "precessional forcing". Using the mid-Holocene experiments of PMIP3, we studied changes in the zonal mean tropical precipitation, and its associated change in cross-equatorial energy transport. A northward movement of the zonal mean precipitation in the mid-Holocene is seen in 10 out of 13 PMIP3 models, with a correspondingly anomalous southward atmospheric heat transport across the equator. The slope is 3.0º per PW, close to the estimate given by Donohoe et al. (2013). The changes in cross-equatorial atmospheric heat transport are dictated by changes in the hemispheric asymmetry of heating from the surface, which in turn are associated with changes in the cross-equatorial oceanic heat transport: an anomalous northward oceanic heat transport at the equator is seen in all of the PMIP3 models. Analysis on this anomalous oceanic heat transport reveals that changes in the wind-driven gyre in the Pacific Ocean are primarily responsible for the changes in cross-equatorial ocean heat transport. Specifically, stronger easterly anomalies north of the equator in the western Pacific drives an anomalous northward mass transport, and therefore accomplishes an anomalous northward heat transport across the equator by acting on the asymmetric mean-state zonal temperature. The wind anomalies responsible for this anomalous ocean heat transport are seen in every PMIP3 model, as well as an ECHAM4-slab ocean model, indicating that it is atmospherically driven and independent of the changes in ocean heat transport. It also explains the consistency of ocean heat transport change, and eventually the relative consistency of zonal
Advective-diffusive contaminant migration in unsaturated sand and gravel
Rowe, R.K.; Badv, K.
1996-12-01
A method is presented for estimating the diffusion coefficients for chloride and sodium in unsaturated coarse sand and fine gravel based on parameters obtained from saturated diffusion tests conducted for similar material. The method is tested by comparing the observed and predicted diffusion profiles through unsaturated soil. The method is shown to work well for predicting the advective-diffusive migration of chloride and sodium through a two-layer soil system consisting of a compacted clayey silt underlain by an unsaturated fine gravel. Over the range of conditions examined, it is concluded that existing solute transport theory along with the proposed procedure for estimating the unsaturated diffusion coefficients can adequately predict chloride and sodium diffusion through both unsaturated coarse sand and fine gravel as well as predict advective-diffusive transport through a compacted clayey layer and underlying unsaturated fine gravel.
Directional heat transport through thermal reflection meta-device
NASA Astrophysics Data System (ADS)
Hu, Run; Zhou, Shuling; Shu, Weicheng; Xie, Bin; Ma, Yupu; Luo, Xiaobing
2016-12-01
Directional heat transfer may be hard to realize due to the fact that heat transfer is diffusive. In this paper, we try to take one step forward based on the transformation thermodynamics. A special structure and meta-device is proposed to "reflect" the heat flow directionally-just like the mirror to the light beam, in which the heat flow just one-time changes the direction rather than gradually changing the directions in isotropic materials. The benefits of such thermal reflection meta-device are discussed by comparing the corresponding thermal resistance with the same structures of isotropic materials. The proposed meta-device is verified to possess the low thermal resistance and high heat transfer ability with least energy loss, and can be made by nature-existing isotropic materials with specific structures.
A Quasi-Conservative Adaptive Semi-Lagrangian Advection-Diffusion Scheme
NASA Astrophysics Data System (ADS)
Behrens, Joern
2014-05-01
Many processes in atmospheric or oceanic tracer transport are conveniently represented by advection-diffusion type equations. Depending on the magnitudes of both components, the mathematical representation and consequently the discretization is a non-trivial problem. We will focus on advection-dominated situations and will introduce a semi-Lagrangian scheme with adaptive mesh refinement for high local resolution. This scheme is well suited for pollutant transport from point sources, or transport processes featuring fine filamentation with corresponding local concentration maxima. In order to achieve stability, accuracy and conservation, we combine an adaptive mesh refinement quasi-conservative semi-Lagrangian scheme, based on an integral formulation of the underlying advective conservation law (Behrens, 2006), with an advection diffusion scheme as described by Spiegelman and Katz (2006). The resulting scheme proves to be conservative and stable, while maintaining high computational efficiency and accuracy.
Per F. Peterson
2010-03-01
This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.
Intestinal transport of hexoses in the rat following chronic heat exposure
NASA Technical Reports Server (NTRS)
Carpenter, M.; Musacchia, X. J.
1979-01-01
The study examines intestinal transport of sugars (D-glucose and D-galactose) in vitro and assesses organ maintenance in chronically heat-exposed rats. The results suggest that the response of intestinal absorption to heat exposure in the rat involves changes in intestinal weight and in glucose utilization. Despite the reduction in total intestinal weight, the ability of intestinal tissue to transport hexose per unit weight remains stable. Differences in intestinal weight and glucose utilization between pair-fed and heat-exposed animals suggest that the intestinal response to chronic heat exposure is not solely a function of the amount of food consumed. Alterations of hexose transport appear to be related to altered glucose metabolism and not altered transport capacity.
ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.
Hromadka, T.V.; ,
1985-01-01
Besides providing an exact solution for steady-state heat conduction processes (Laplace Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximative boundary generation. This error evaluation can be used to develop highly accurate CVBEM models of the heat transport process, and the resulting model can be used as a test case for evaluating the precision of domain models based on finite elements or finite differences.
Ocean heat transport in Simple Ocean Data Assimilation: Structure and mechanisms
NASA Astrophysics Data System (ADS)
Zheng, Yangxing; Giese, Benjamin S.
2009-11-01
The trend and variability of global ocean heat transport for the period 1958-2004 are investigated using the Simple Ocean Data Assimilation (SODA) analysis. The ocean model is forced with the European Center for Medium Range Weather Forecast (ECMWF) ERA-40 atmospheric reanalysis winds from 1958 to 2001 and with QuikSCAT winds from 2002 to 2004. The assimilation is based on a sequential estimation algorithm, with observations from the historical archive of hydrographic profiles supplemented by ship intake measurements, moored hydrographic observations and remotely sensed sea surface temperature. Heat transport is calculated using temperature and velocity from the ocean analysis. Mean heat transport from the analysis generally agrees with previously published estimates from observational and modeling studies. Trends of heat transport show a range of behaviors. In the Atlantic and Pacific Oceans there is mostly increasing poleward heat transport with two important exceptions. In the Atlantic Ocean there is decreasing heat transport around 50°N and 60°N, and in both the Atlantic and Pacific Oceans there is decreasing heat transport near 10°S. There is also prominent interannual and decadal variability in all of the ocean basins. The results suggest that ocean heat transport variability is primarily determined by the strength of the meridional overturning circulation (MOC), which is controlled by complex processes governing fresh water flux in the northern North Atlantic and surface wind stress. However, the role of temperature variability increases at high latitude, particularly in the northern North Atlantic Ocean. Eddies play an important role in heat transport in the Gulf Stream and its extension in the Atlantic Ocean, and the Kuroshio and its extension in the Pacific Ocean and enhanced Subtropical cells (STCs) affect heat transport estimates in the tropics. In the northern North Atlantic Ocean, a small increase in meridional heat transport and a slight weakening
Radiative heat transport instability in a laser produced inhomogeneous plasma
Bychenkov, V. Yu.; Rozmus, W.
2015-08-15
A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.
Eddy heat and salt transports in the South China Sea and their seasonal modulations
NASA Astrophysics Data System (ADS)
Chen, Gengxin; Gan, Jianping; Xie, Qiang; Chu, Xiaoqing; Wang, Dongxiao; Hou, Yijun
2012-05-01
This study describes characteristics of eddy (turbulent) heat and salt transports, in the basin-scale circulation as well as in the embedded mesoscale eddy found in the South China Sea (SCS). We first showed the features of turbulent heat and salt transports in mesoscale eddies using sea level anomaly (SLA) data, in situ hydrographic data, and 375 Argo profiles. We found that the transports were horizontally variable due to asymmetric distributions of temperature and salinity anomalies and that they were vertically correlated with the thermocline and halocline depths in the eddies. An existing barrier layer caused the halocline and eddy salt transport to be relatively shallow. We then analyzed the transports in the basin-scale circulation using an eddy diffusivity method and the sea surface height data, the Argo profiles, and the climatological hydrographic data. We found that relatively large poleward eddy heat transports occurred to the east of Vietnam (EOV) in summer and to the west of the Luzon Islands (WOL) in winter, while a large equatorward heat transport was located to the west of the Luzon Strait (WLS) in winter. The eddy salt transports were mostly similar to the heat transports but in the equatorward direction due to the fact that the mean salinity in the upper layer in the SCS tended to decrease toward the equator. Using a 21/2-layer reduced-gravity model, we conducted a baroclinic instability study and showed that the baroclinic instability was critical to the seasonal variation of eddy kinetic energy (EKE) and thus the eddy transports. EOV, WLS, and WOL were regions with strong baroclinic instability, and, thus, with intensified eddy transports in the SCS. The combined effects of vertical velocity shear, latitude, and stratification determined the intensity of the baroclinic instability, which intensified the eddy transports EOV during summer and WLS and WOL during winter.
Heat transport measurements in turbulent rotating Rayleigh-Bénard convection.
Liu, Yuanming; Ecke, Robert E
2009-09-01
We present experimental heat transport measurements of turbulent Rayleigh-Bénard convection with rotation about a vertical axis. The fluid, water with a Prandtl number (sigma) of about 6, was confined in a cell with a square cross section of 7.3 x 7.3 cm2 and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10(5)
Thermal Instability of Advection-Dominated Disks against Revised Local Perturbations
NASA Astrophysics Data System (ADS)
Kato, Shoji; Yamasaki, Tatsuya; Abramowicz, Marek A.; Chen, Xingming
1997-04-01
The thermal stability of advection-dominated accretion disks against local perturbations is re-examined in order to correct some errors in our previous paper. Thermal perturbations which are local in the radial direction are found to also be local in the vertical direction. Because of this, the using of vertically integrated quantities was irrelevant in analyzing the stability of local thermal perturbations when the disks are geometrically thick. Our new results, obtained by correcting the error, show that if the turbulence acts as a diffusion process in thermal energy transport, it strongly dampens the thermal perturbations. In these cases when the diffusion process is weak, however, perturbations grow due to a variation of the viscous heating associated with the perturbations. One such example of growth is in the case where radiation pressure greatly dominates the gas pressure.
Evolution and advection of solar mesogranulation
NASA Technical Reports Server (NTRS)
Muller, Richard; Auffret, Herve; Roudier, Thierry; Vigneau, Jean; Simon, George W.; Frank, Zoe; Shine, Richard A.; Title, Alan M.
1992-01-01
A three-hour sequence of observations at the Pic du Midi observatory has been obtained which shows the evolution of solar mesogranules from appearance to disappearance with unprecedented clarity. It is seen that the supergranules, which are known to advect the granules with their convective motion, also advect the mesogranules to their boundaries. This process controls the evolution and disappearance of mesogranules.
Lewis-Brown, Jean C.; Carleton, Glen B.; Imbrigiotta, Thomas E.
2006-01-01
Volatile organic compounds, predominantly trichloroethylene and its degradation products, have been detected in ground water at the Naval Air Warfare Center (NAWC), West Trenton, New Jersey. An air-stripping pump-and-treat system has been in operation at the NAWC since 1998. An existing ground-water-flow model was used to evaluate the effect of a change in the configuration of the network of recovery wells in the pump-and-treat system on flow paths of contaminated ground water. The NAWC is underlain by a fractured-rock aquifer composed of dipping layers of sedimentary rocks of the Lockatong and Stockton Formations. Hydraulic and solute-transport properties of the part of the aquifer composed of the Lockatong Formation were measured using aquifer tests and tracer tests. The heterogeneity of the rocks causes a wide range of values of each parameter measured. Transmissivity ranges from 95 to 1,300 feet squared per day; the storage coefficient ranges from 9 x 10-5 to 5 x 10-3; and the effective porosity ranges from 0.0003 to 0.002. The average linear velocity of contaminated ground water was determined for ambient conditions (when no wells at the site are pumped) using an existing ground-water-flow model, particle-tracking techniques, and the porosity values determined in this study. The average linear velocity of flow paths beginning at each contaminated well and ending at the streams where the flow paths terminate ranges from 0.08 to 130 feet per day. As a result of a change in the pump-and-treat system (adding a 165-foot-deep well pumped at 5 gallons per minute and reducing the pumping rate at a nearby 41-foot-deep well by the same amount), water in the vicinity of three 100- to 165-foot-deep wells flows to the deep well rather than the shallower well.
The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...
A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes
Tokunaga, S.; Jhang, Hogun; Kim, S. S.; Diamond, P. H.
2012-09-15
We present a statistical analysis of heat transport in stationary enhanced confinement regimes obtained from flux-driven gyrofluid simulations. The probability density functions of heat flux in improved confinement regimes, characterized by the Nusselt number, show significant deviation from Gaussian, with a markedly fat tail, implying the existence of heat avalanches. Two types of avalanching transport are found to be relevant to stationary states, depending on the degree of turbulence suppression. In the weakly suppressed regime, heat avalanches occur in the form of quasi-periodic (QP) heat pulses. Collisional relaxation of zonal flow is likely to be the origin of these QP heat pulses. This phenomenon is similar to transient limit cycle oscillations observed prior to edge pedestal formation in recent experiments. On the other hand, a spectral analysis of heat flux in the strongly suppressed regime shows the emergence of a 1/f (f is the frequency) band, suggesting the presence of self-organized criticality (SOC)-like episodic heat avalanches. This episodic 1/f heat avalanches have a long temporal correlation and constitute the dominant transport process in this regime.
Transports and budgets of volume, heat, and salt from a global eddy-resolving ocean model
McCann, M.P.; Semtner, A.J. Jr.; Chervin, R.M.
1994-07-01
The results from an integration of a global ocean circulation model have been condensed into an analysis of the volume, heat, and salt transports among the major ocean basins. Transports are also broken down between the model`s Ekman, thermocline, and deep layers. Overall, the model does well. Horizontal exchanges of mass, heat, and salt between ocean basins have reasonable values: and the volume of North Atlantic Deep Water (NADW) transport is in general agreement with what limited observations exist. On a global basis the zonally integrated meridional heat transport is poleward at all latitudes except for the latitude band 30{degrees}S to 45{degrees}S. This anomalous transport is most likely a signature of the model`s inability to form Antarctic Intermediate (AAIW) and Antarctic bottom water (AABW) properly. Eddy heat transport is strong at the equator where its convergence heats the equatorial Pacific about twice as much as it heats the equatorial Atlantic. The greater heating in the Pacific suggests that mesoscale eddies may be a vital mechanism for warming and maintaining an upwelling portion of the global conveyor-belt circulation. The model`s fresh water transport compares well with observations. However, in the Atlantic there is an excessive southward transport of fresh water due to the absence of the Mediterranean outflow and weak northward flow of AAIW. Perhaps the model`s greatest weakness is the lack of strong AAIW and AABW circulation cells. Accurate thermohaline forcing in the North Atlantic (based on numerous hydrographic observations) helps the model adequately produce NADW. In contrast, the southern ocean is an area of sparse observation. Better thermohaline observations in this area may be needed if models such as this are to produce the deep convection that will achieve more accurate simulations of the global 3-dimensional circulation. 41 refs., 18 figs., 1 tab.
Lattice Boltzmann method for the fractional advection-diffusion equation.
Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
Lattice Boltzmann method for the fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
Effect of correlations on heat transport in a magnetized strongly coupled plasma
NASA Astrophysics Data System (ADS)
Ott, T.; Bonitz, M.; Donkó, Z.
2015-12-01
In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much less and even enhances the parallel transport. These surprising observations are explained by the competition of kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle molecular dynamics simulations of a one-component plasma.
NASA Astrophysics Data System (ADS)
Merges, V.; Klippel, E.
1983-12-01
A solar plant with 21 sq m of highly efficient flat plate collectors and which requires no electricity is described. Heat transport is provided by saturated steam that condenses in a four cubic meter storage tank. The operation temperature is set by the buffer gas pressure between 100 and 140 C, and an absorption chiller is simulated as a heat consumer. The solar collectors were observed to exhibit high performance. Heat transport and temperature control offered high reliability and the thermal stratification in the tank was satisfactory. The positive result permits the design and construction of larger solar plants following the same technical principles.
Advective velocity and energy dissipation rate in an oscillatory flow.
Haider, Ziaul; Hondzo, Miki; Porte-Agel, Fernando
2005-07-01
Characterizing the transport processes at the sediment-water interface along sloping boundaries in lakes and reservoirs is of fundamental interest in lake and reservoir water quality management. The turbulent bottom boundary layer (TBBL) along a slope, induced by the breaking of internal waves in a linearly stratified fluid, was investigated through laboratory measurements. Fast response micro-scale conductivity and temperature probes in conjunction with laser-Doppler velocimetry were used to measure the time series of salinity, temperature, and velocity along a sloping boundary. Turbulent energy spectra were computed from the velocity data using a time-dependent advective velocity and Taylor's hypothesis. The energy spectra were used to estimate the energy dissipation rate at different positions in the TBBL. The advective velocity in this near-zero mean shear flow is based on an integral time scale (T(int)). The integral time scale is related to the average frequency of the spectral energy density of the flow velocity. The energy dissipation rate estimated from the variable advective velocity with an averaging time window equal to the integral time scale (T=T(int)) was 43% higher than the energy dissipation rate estimated from a constant advective velocity. The estimated dissipation rates with T=T(int) were comparable to values obtained by curve-fitting a theoretical Batchelor spectrum for the temperature gradient spectra. This study proposes the integral time scale to be used for the oscillatory flows as (a) a time-averaging window to estimate the advective velocity and associated energy dissipation level, and (b) a normalizing parameter in the energy spectrum.
An operator splitting algorithm for the three-dimensional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Khan, Liaqat Ali; Liu, Philip L.-F.
1998-09-01
Operator splitting algorithms are frequently used for solving the advection-diffusion equation, especially to deal with advection dominated transport problems. In this paper an operator splitting algorithm for the three-dimensional advection-diffusion equation is presented. The algorithm represents a second-order-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The governing equation is split into an advection equation and a diffusion equation, and they are solved by a backward method of characteristics and a finite element method, respectively. The Hermite interpolation function is used for interpolation of concentration in the advection step. The spatial gradients of concentration in the Hermite interpolation are obtained by solving equations for concentration gradients in the advection step. To make the composite algorithm efficient, only three equations for first-order concentration derivatives are solved in the diffusion step of computation. The higher-order spatial concentration gradients, necessary to advance the solution in a computational cycle, are obtained by numerical differentiations based on the available information. The simulation characteristics and accuracy of the proposed algorithm are demonstrated by several advection dominated transport problems.
NASA Astrophysics Data System (ADS)
López, Rosa; Sánchez, David
2013-07-01
We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.
Heat and fresh water transport by eddies into the Gulf of Alaska
NASA Astrophysics Data System (ADS)
Crawford, William R.
2005-04-01
Anticyclonic mesoscale eddies form in winter along the continental margin of Canada and Southeast Alaska between the latitudes of 51N and 60N and drift westward into the Gulf of Alaska, carrying warmer, fresher water away from the continental margin. Detailed measurements of temperature and salinity between 1995 and 2001 were examined to determine the amount of heat and fresh water transported seaward by several eddies that formed west of the Queen Charlotte Islands. Eddies formed in a typical winter carry about 30×10 18 J of heat into the gulf, which is about 35% to 60% of the heat transported northward each winter along the continental margin toward this region. The observed range of eddy heat transport is 10 19 to 10 20 J. Largest observed eddy heat transport coincided with increased northward heat flow along the continental margin during the El Niño winter of 1997/1998. Fresh-water volume was determined by evaluating the amount of fresh water required to reduce the salinity from a reference level to that observed in eddies. This volume varied from 0 to 70 km 3, and was largest during the 1997/1998 El Niño winter. Eddies formed in a typical winter transport 50 km 3 of fresh water seaward, which is about 15% of the estimated fresh-water input to the continental margin in winter between the Columbia River and 54N attributed to local runoff, plus direct rainfall and flow in major rivers.
Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars
Hu, Yongyun; Yang, Jun
2014-01-01
The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386
Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.
Hu, Yongyun; Yang, Jun
2014-01-14
The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.
Combined Heat, Air, Moisture, and Pollutants Transport in Building Environmental Systems
NASA Astrophysics Data System (ADS)
Zhang, Jianshun Jensen S.
Combined heat, air, moisture and pollutants transport (CHAMP) exists across multi-scales of a building environmental system (BES): around the building, through the building shell/envelope, inside a multizone building, and in the micro-environments around occupants. This paper reviews previous work and presents a system model for simulating these transport processes and their impacts on indoor environmental quality. Components of the system model include a multizone network flow model for whole building, a room model for air and pollutant movement in ventilated spaces, a coupled heat, air, moisture, and pollutant transport model for building shell, an HVAC model for describing the dynamics of the heating, ventilating and air-conditioning (HVAC) system, and shared databases of weather conditions, transport properties of building materials, and volatile organic compounds (VOCs) emissions from building materials and furnishings. The interactions among the different components, and challenges in developing the CHAMP system model for intelligent control of BES are also discussed.
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles
2014-01-07
A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles
2016-01-19
A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5
Remote joule heating assisted carrier transport in MWCNTs probed at nanosecond time scale.
Mishra, Abhishek; Shrivastava, Mayank
2016-10-19
Quantum model of joule heating relies on electron-phonon scattering in the high field region (hot side contact), which locally increases phonon population and forms hot spots. Hot spots in the high field region are known to suffer carrier transport. In this work, for the first time we report remote joule heating of the cold side contact, i.e. zero electric field region, through multi-walled CNTs (MWCNTs), which is discovered to assist in carrier transport through the MWCNT channels. To precisely capture the dynamics of remote joule heating assisted carrier transport, MWCNTs are probed at nanosecond time scales. This leverages investigations at time scales comparable to characteristic thermal diffusion times and allows electron-phonon interactions and the nature of carrier transport to be probed under non-equilibrium conditions.
Viswanathan, H.S.
1995-12-31
The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K{sub d} model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect {sup 14}C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies.
Size effects in long-term quasistatic heat transport.
Panasyuk, George Y; Yerkes, Kirk L
2013-06-01
We consider finite-size effects on heat transfer between thermal reservoirs mediated by a quantum system, where the number of modes in each reservoir is finite. Our approach is based on the generalized quantum Langevin equation and the thermal reservoirs are described as ensembles of oscillators within the Drude-Ullersma model. A general expression for the heat current between the thermal reservoirs in the long-time quasistatic regime, when an observation time is of the order of Δ(-1) and Δ is the mode spacing constant of a thermal reservoir, is obtained. The resulting equations that govern the long-time relaxation for the mode temperatures and the average temperatures of the reservoirs are derived and approximate analytical solutions are found. The obtained time dependencies of the temperatures and the resulting heat current reveal peculiarities at t=2πm/Δ with non-negative integers m and the heat current vanishes nonmonotonically when t→∞. The validity of Fourier's law for a chain of finite-size macroscopic subsystems is considered. As is shown, for characteristic times of the order of Δ(-1) the temperatures of subsystems' modes deviate from each other and the validity of Fourier's law cannot be established. In a case when deviations of initial temperatures of the subsystems from their average value are small, t→∞ asymptotic values for the mode temperatures do not depend on a mode's number and are the same as if Fourier's law were valid for all times.
Size effects in long-term quasistatic heat transport
NASA Astrophysics Data System (ADS)
Panasyuk, George Y.; Yerkes, Kirk L.
2013-06-01
We consider finite-size effects on heat transfer between thermal reservoirs mediated by a quantum system, where the number of modes in each reservoir is finite. Our approach is based on the generalized quantum Langevin equation and the thermal reservoirs are described as ensembles of oscillators within the Drude-Ullersma model. A general expression for the heat current between the thermal reservoirs in the long-time quasistatic regime, when an observation time is of the order of Δ-1 and Δ is the mode spacing constant of a thermal reservoir, is obtained. The resulting equations that govern the long-time relaxation for the mode temperatures and the average temperatures of the reservoirs are derived and approximate analytical solutions are found. The obtained time dependencies of the temperatures and the resulting heat current reveal peculiarities at t=2πm/Δ with non-negative integers m and the heat current vanishes nonmonotonically when t→∞. The validity of Fourier's law for a chain of finite-size macroscopic subsystems is considered. As is shown, for characteristic times of the order of Δ-1 the temperatures of subsystems' modes deviate from each other and the validity of Fourier's law cannot be established. In a case when deviations of initial temperatures of the subsystems from their average value are small, t→∞ asymptotic values for the mode temperatures do not depend on a mode's number and are the same as if Fourier's law were valid for all times.
Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.
1998-01-01
The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.
Absorption of intense microwaves and ion acoustic turbulence due to heat transport
De Groot, J.S.; Liu, J.M.; Matte, J.P.
1994-02-04
Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.
Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.
1997-01-01
The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.
NASA Astrophysics Data System (ADS)
Yang, Haijun; Dai, Haijin
2015-09-01
The effect of the ocean surface winds on the meridional heat transports is studied in a coupled model. Shutting down the global surface winds causes significant reductions in both wind-driven and thermohaline ocean circulations, resulting in a remarkable decrease in the poleward oceanic heat transport (OHT). The sea surface temperature responds with significant warming in the equator and cooling off the equator, causing an enhancement and equatorward shift in the Hadley cell. This increases the poleward atmospheric heat transport (AHT), which in turn compensates the decrease in the OHT. This compensation implies a fundamental constraint in changes of ocean-atmosphere energy transports. Several other compensation changes are also identified. For the OHT components, the changes in the Eulerian mean and bolus OHT are compensated with each other in the Southern Ocean, since a stronger wind driven Ekman transport is associated with a stronger meridional density gradient (stronger bolus circulation) and vice versa. For the AHT components, the changes in the dry static energy (DSE) and latent energy transports are compensated within the tropics (30°N/S), because a stronger Hadley cell causes a stronger equatorward convergence of moisture. In the extratropics, the changes in the mean and eddy DSE transports show perfect compensation, as a result of the equatorward shift of the Ferrell Cell and enhancement of atmospheric baroclinicity in mid-high latitudes, particularly over the North Atlantic. This work also shows how the Earth's climate is trying to maintain the balance between two hemispheres: the ocean in the Northern Hemisphere is colder than that in the Southern Hemisphere due to much reduced northward heat transports cross the Equator in the Atlantic, therefore, the atmosphere responds to the ocean with temperature colder in the Southern Hemisphere than in the Northern Hemisphere by transporting more heat northward cross the equator over the Pacific, in association
NASA Technical Reports Server (NTRS)
Fu, L.-L.
1981-01-01
The circulation and meridional heat transport of the subtropical South Atlantic Ocean are determined through the application of the inverse method of Wunsch (1978) to hydrographic data from the IGY and METEOR expeditions. Meridional circulation results of the two data sets agree on a northward mass transport of about 20 million metric tons/sec for waters above the North Atlantic Deep Water (NADW), and a comparable southward transport of deep waters. Additional gross features held in common are the Benguela, South Equatorial and North Brazilian Coastal currents' northward transport of the Surface Water, and the deflection of the southward-flowing NADW from the South American Coast into the mid ocean by a seamount chain near 20 deg S. Total heat transport is equatorward, with a magnitude of 0.8 X 10 to the 15th W near 30 deg S and indistinguishable from zero near 8 deg S.
CONSEQUENCES OF MAGNETIC FIELD STRUCTURE FOR HEAT TRANSPORT IN MAGNETOHYDRODYNAMICS
Li Shule; Frank, Adam; Blackman, Eric
2012-03-20
Interfaces between hot and cold magnetized plasmas exist in various astrophysical contexts, for example, where hot outflows impinge on an ambient interstellar medium. It is of interest to understand how the structure of the magnetic field spanning the interface affects the temporal evolution of the temperature gradient. Here, we explore the relation between the magnetic field topology and the heat transfer rate by adding various fractions of tangled versus ordered field across a hot-cold interface that allows the system to evolve to a steady state. We find a simple mathematical relation for the rate of heat conduction as a function of the initial ratio of ordered-to-tangled field across the interface. We discuss potential implications for the astrophysical context of magnetized wind blown bubbles around evolved stars.
Water and heat transport in boreal soils: implications for soil response to climate change.
Fan, Zhaosheng; Neff, Jason C; Harden, Jennifer W; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, Claudia I; Winston, Gregory C; O'Donnell, Jonathan A
2011-04-15
Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4°C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.
Water and heat transport in boreal soils: Implications for soil response to climate change
Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.
2011-01-01
Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.
Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations
NASA Astrophysics Data System (ADS)
Gorthala, R.; Harris, K. T.; Roux, J. A.; McCarty, T. A.
1994-01-01
A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite difference method was used to solve the energy equation and the species equations. The method of discrete ordinates was used in solving the radiative transport equation. For H2O transport, both diffusion of vapor H2O and bound H2O and moisture adsorption/desorption within the insulation binder are included in the model. The experimental data measured at an occupied North Mississippi residence for R19STD (standard R19 fiberglass insulation batt without a foil radiant barrier) were used to validate the model which predicted heat fluxes for summer, spring, winter, and fall seasonal conditions. These predictions were compared with the measured heat flux data and the predictions from the dry model (without the moisture transport). Various profiles such as temperature-time histories, relative humidity time histories, spatial H2O concentrations, spatial temperatures, and spatial heat fluxes are presented to explain the overall heat transfer behavior.
NASA Technical Reports Server (NTRS)
Baker, David (Inventor)
1998-01-01
A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.
NASA Astrophysics Data System (ADS)
Liu, Caixi; Tang, Shuai; Shen, Lian; Dong, Yuhong
2017-03-01
The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties.
Transient in-plane thermal transport in nanofilms with internal heating
Cao, Bing-Yang
2016-01-01
Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, Diego; Blazevski, Daniel
2016-04-01
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.
Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y
2015-11-01
This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.
Modeling electron heat transport during magnetic field buildup in SSPX
Hua, D.D.; Hooper, E.B.; Fowler, T.K.
1997-10-01
A model for spheromak magnetic field buildup and electron thermal transport, including a thermal diffusivity associated with magnetic turbulence during helicity injection is applied to a SSPX equilibrium, with a maximum final magnetic field of 1.3 T. Magnetic field-buildup times of 1.0 X 10-3, 5.0 X 10-4 and 1.0 X 10-4 s were used in the model to examine their effects on electron thermal transport. It is found that at transport run time of 4 x 10-3 s, the fastest buildup-time results in the highest final temperature profile, with a core temperature of 0.93 kev while requiring the lowest input energy at 140 KJ. The results show that within the model the most rapid buildup rate generates the highest electron temperature at the fastest rate and at the lowest consumption of energy. However, the peak power requirements are large (> 600 MW for the fastest buildup case examined).
Evolution and Advection of Solar Mesogranulation
1992-03-01
unprecedented clarity. We see that the supergranules, which are known to carry along (advect) the granules with their convective motion, also advect...I Solar mesogranulation, Solar observations, Solar super- 2 granulation 16. PRICE COCE 1i7. SECJ-3T LSiIATO 8 EUITY CLASSIFICA ION 19. SECURITY CLAS...mo~iesý sho~ed that granules are adl~ectedl b• Richard Muller*, Hers& Auffret*, Thierry Roudiert, the larger-scale consectie flowss. and thu, could
The effects of increasing humidity on heat transport by extratropical waves
NASA Astrophysics Data System (ADS)
Geen, Ruth; Czaja, Arnaud; Haigh, Joanna D.
2016-08-01
This study emphasizes the separate contributions of the warm and cold sectors of extratropical cyclones to poleward heat transport. Aquaplanet simulations are performed with an intermediate complexity climate model in which the response of the atmosphere to a range of values of saturation vapor pressure is assessed. These simulations reveal stronger poleward transport of latent heat in the warm sector as saturation vapor pressure is increased and an unexpected increase in poleward sensible heat transport in the cold sector. The latter results nearly equally from changes in the background stability of the atmosphere at low levels and changes in the temporal correlation between wind and temperature fields throughout the troposphere. Increased stability at low level reduces the likelihood that movement of cooler air over warmer water results in an absolutely unstable temperature profile, leading to less asymmetric damping of temperature and meridional velocity anomalies in cold and warm sectors.
Dynamical transition of heat transport in a physical gel near the sol-gel transition
NASA Astrophysics Data System (ADS)
Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei
2015-12-01
We experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective. Subsequently, during later stages, we observe that the transport dynamics are much more complex than conventional thermal convections. At the sample’s surface we observe the formation of stagnant domains, which lack fluid flow. Their formation is not due to the effects of local cooling. We determine that it is the dynamics of these stagnant domains that induce convective-conductive-convective transitions.
Dynamical transition of heat transport in a physical gel near the sol-gel transition
Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei
2015-01-01
We experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective. Subsequently, during later stages, we observe that the transport dynamics are much more complex than conventional thermal convections. At the sample’s surface we observe the formation of stagnant domains, which lack fluid flow. Their formation is not due to the effects of local cooling. We determine that it is the dynamics of these stagnant domains that induce convective-conductive-convective transitions. PMID:26690696
Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon
NASA Astrophysics Data System (ADS)
Resplandy, L.; Keeling, R. F.; Stephens, B. B.; Bent, J. D.; Jacobson, A.; Rödenbeck, C.; Khatiwala, S.
2016-11-01
Despite its importance to the climate system, the ocean meridional heat transport is still poorly quantified. We identify a strong link between the northern hemisphere deficit in atmospheric potential oxygen (APO = O_2 + 1.1 × CO_2) and the asymmetry in meridional heat transport between northern and southern hemispheres. The recent aircraft observations from the HIPPO campaign reveal a northern APO deficit in the tropospheric column of -10.4 ± 1.0 per meg, double the value at the surface and more representative of large-scale air-sea fluxes. The global northward ocean heat transport asymmetry necessary to explain the observed APO deficit is about 0.7-1.1 PW, which corresponds to the upper range of estimates from hydrographic sections and atmospheric reanalyses.
Nanoscale heat transport via electrons and phonons by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Lin, Keng-Hua
Nanoscale heat transport has become a crucial research topic due to the growing importance of nanotechnology for manufacturing, energy conversion, medicine and electronics. Thermal transport properties at the nanoscale are distinct from the macroscopic ones since the sizes of nanoscale features, such as free surfaces and interfaces, are comparable to the wavelengths and mean free paths of the heat carriers (electrons and phonons), and lead to changes in thermal transport properties. Therefore, understanding how the nanoscale features and energy exchange between the heat carriers affect thermal transport characteristics are the goals of this research. Molecular dynamics (MD) is applied in this research to understand the details of nanoscale heat transport. The advantage of MD is that the size effect, anharmonicity, atomistic structure, and non-equilibrium behavior of the system can all be captured since the dynamics of atoms are described explicitly in MD. However, MD neglects the thermal role of electrons and therefore it is unable to describe heat transport in metal or metal-semiconductor systems accurately. To address this limitation of MD, we develop a method to simulate electronic heat transport by implementing electronic degrees of freedom to MD. In this research, nanoscale heat transport in semiconductor, metal, and metal-semiconductor systems is studied. Size effects on phonon thermal transport in SiGe superlattice thin films and nanowires are studied by MD. We find that, opposite to the macroscopic trend, superlattice thin films can achieve lower thermal conductivity than nanowires at small scales due to the change of phonon nature caused by adjusting the superlattice periodic length and specimen length. Effects of size and electron-phonon coupling rate on thermal conductivity and thermal interface resistivity in Al and model metal-semiconductor systems are studied by MD with electronic degrees of freedom. The results show that increasing the specimen
Unified model of tectonics and heat transport in a frigid Enceladus
Gioia, Gustavo; Chakraborty, Pinaki; Marshak, Stephen; Kieffer, Susan W.
2007-01-01
Recent data from the Cassini spacecraft have revealed that Enceladus, the 500-km-diameter moon of Saturn, has a southern hemisphere with a distinct arrangement of tectonic features, intense heat flux, and geyser-like plumes. How did the tectonic features form? How is the heat transported from depth? To address these questions, we formulate a simple model that couples the mechanics and thermodynamics of Enceladus and gives a unified explanation of the salient tectonic features, the plumes, and the transport of heat from a source at a depth of tens of kilometers to the surface. Our findings imply that tiny, icy moons can develop complex surficial geomorphologies, high heat fluxes, and geyser-like activity even if they do not have hot, liquid, and/or convecting interiors. PMID:17699628
Unified model of tectonics and heat transport in a frigid Enceladus.
Gioia, Gustavo; Chakraborty, Pinaki; Marshak, Stephen; Kieffer, Susan W
2007-08-21
Recent data from the Cassini spacecraft have revealed that Enceladus, the 500-km-diameter moon of Saturn, has a southern hemisphere with a distinct arrangement of tectonic features, intense heat flux, and geyser-like plumes. How did the tectonic features form? How is the heat transported from depth? To address these questions, we formulate a simple model that couples the mechanics and thermodynamics of Enceladus and gives a unified explanation of the salient tectonic features, the plumes, and the transport of heat from a source at a depth of tens of kilometers to the surface. Our findings imply that tiny, icy moons can develop complex surficial geomorphologies, high heat fluxes, and geyser-like activity even if they do not have hot, liquid, and/or convecting interiors.
Evaluating MT3DMS for heat transport simulation of closed geothermal systems.
Hecht-Méndez, Jozsef; Molina-Giraldo, Nelson; Blum, Philipp; Bayer, Peter
2010-01-01
Owing to the mathematical similarities between heat and mass transport, the multi-species transport model MT3DMS should be able to simulate heat transport if the effects of buoyancy and changes in viscosity are small. Although in several studies solute models have been successfully applied to simulate heat transport, these studies failed to provide any rigorous test of this approach. In the current study, we carefully evaluate simulations of a single borehole ground source heat pump (GSHP) system in three scenarios: a pure conduction situation, an intermediate case, and a convection-dominated case. Two evaluation approaches are employed: first, MT3DMS heat transport results are compared with analytical solutions. Second, simulations by MT3DMS, which is finite difference, are compared with those by the finite element code FEFLOW and the finite difference code SEAWAT. Both FEFLOW and SEAWAT are designed to simulate heat flow. For each comparison, the computed results are examined based on residual errors. MT3DMS and the analytical solutions compare satisfactorily. MT3DMS and SEAWAT results show very good agreement for all cases. MT3DMS and FEFLOW two-dimensional (2D) and three-dimensional (3D) results show good to very good agreement, except that in 3D there is somewhat deteriorated agreement close to the heat source where the difference in numerical methods is thought to influence the solution. The results suggest that MT3DMS can be successfully applied to simulate GSHP systems, and likely other systems with similar temperature ranges and gradients in saturated porous media.
Solar-energy heats a transportation test center--Pueblo, Colorado
NASA Technical Reports Server (NTRS)
1981-01-01
Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.
The impact of advection on stratification and chlorophyll variability in the equatorial Pacific
NASA Astrophysics Data System (ADS)
Dave, Apurva C.; Lozier, M. Susan
2015-06-01
Previously reported global-scale correlations between interannual variability in upper ocean stratification and chlorophyll a (a proxy for phytoplankton biomass) have been shown to be driven by strong associations between the two properties in the central and western equatorial Pacific. Herein, we present evidence that these correlations are not causal but instead result from the advection of heat, salt, and nutrients in the region. Specifically, we demonstrate that stratification and chlorophyll are simultaneously influenced by shifts in the horizontal advective inputs of cold/saline/nutrient-rich waters from upwelling regions to the east and warm/fresh/nutrient-poor waters to the west. We find that horizontal advection contributes substantially to the annual surface layer nutrient budget and, together with vertical advection, significantly impacts interannual variability in chlorophyll. These results highlight the importance of a three-dimensional framework for examining nutrient supply in the upper ocean—a crucial requirement for assessing future marine ecosystem responses to a changing climate.
Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone
NASA Astrophysics Data System (ADS)
Jiang, Jianmei; Zhao, Lin; Zhai, Zhe
2016-09-01
The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continuously measures temperature and water content of soil profiles to simulate heat transport based on the Philip and de Vries (PDV) model. Three experiments were conducted to measure soil properties at depths of 5 cm, 10 cm, 20 cm, and 30 cm when groundwater tables reached 10 cm, 30 cm, and 60 cm (Experiments I, II, and III). Results show that both the soil temperature near shallow groundwater and the soil water content were effectively simulated by the PDV model. The root mean square errors of the temperature at depths of 5 cm, 10 cm, and 20 cm were 1.018°C, 0.909°C, and 0.255°C, respectively. The total heat flux generated the convergent and divergent planes in space-time fields with valley values of-161.5W•m-2 at 7:30 and-234.6W•m-2 at 11:10 in Experiments II and III, respectively. The diurnal heat transport of the saturated soil occurred in five stages, while that of saturated-unsaturated and unsaturated soil profiles occurred in four stages because high moisture content led to high thermal conductivity, which hastened the heat transport.
Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous aquifer
NASA Astrophysics Data System (ADS)
Seibert, Simone; Prommer, Henning; Siade, Adam; Harris, Brett; Trefry, Mike; Martin, Michael
2014-12-01
Changes in subsurface temperature distribution resulting from the injection of fluids into aquifers may impact physiochemical and microbial processes as well as basin resource management strategies. We have completed a 2 year field trial in a hydrogeologically and geochemically heterogeneous aquifer below Perth, Western Australia in which highly treated wastewater was injected for large-scale groundwater replenishment. During the trial, chloride and temperature data were collected from conventional monitoring wells and by time-lapse temperature logging. We used a joint inversion of these solute tracer and temperature data to parameterize a numerical flow and multispecies transport model and to analyze the solute and heat propagation characteristics that prevailed during the trial. The simulation results illustrate that while solute transport is largely confined to the most permeable lithological units, heat transport was also affected by heat exchange with lithological units that have a much lower hydraulic conductivity. Heat transfer by heat conduction was found to significantly influence the complex temporal and spatial temperature distribution, especially with growing radial distance and in aquifer sequences with a heterogeneous hydraulic conductivity distribution. We attempted to estimate spatially varying thermal transport parameters during the data inversion to illustrate the anticipated correlations of these parameters with lithological heterogeneities, but estimates could not be uniquely determined on the basis of the collected data.
Xuan, Xiangchun; Li, Dongqing
2005-02-04
Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.
Heat-driven spin transport in a ferromagnetic metal
Xu, Yadong; Yang, Bowen; Tang, Chi; Jiang, Zilong; Shi, Jing; Schneider, Michael; Whig, Renu
2014-12-15
As a non-magnetic heavy metal is attached to a ferromagnet, a vertically flowing heat-driven spin current is converted to a transverse electric voltage, which is known as the longitudinal spin Seebeck effect (SSE). If the ferromagnet is a metal, this voltage is also accompanied by voltages from two other sources, i.e., the anomalous Nernst effect in both the ferromagnet and the proximity-induced ferromagnetic boundary layer. By properly identifying and carefully separating those different effects, we find that in this pure spin current circuit the additional spin current drawn by the heavy metal generates another significant voltage by the ferromagnetic metal itself which should be present in all relevant experiments.
Momentum and heat transport scalings in laminar vertical convection.
Shishkina, Olga
2016-05-01
We derive the dependence of the Reynolds number Re and the Nusselt number Nu on the Rayleigh number Ra and the Prandtl number Pr in laminar vertical convection (VC), where a fluid is confined between two differently heated isothermal vertical walls. The boundary layer equations in laminar VC yield two limiting scaling regimes: Nu∼Pr^{1/4}Ra^{1/4}, Re∼Pr^{-1/2}Ra^{1/2} for Pr≪1 and Nu∼Pr^{0}Ra^{1/4}, Re∼Pr^{-1}Ra^{1/2} for Pr≫1. These theoretical results are in excellent agreement with direct numerical simulations for Ra from 10^{5} to 10^{10} and Pr from 10^{-2} to 30. The transition between the regimes takes place for Pr around 10^{-1}.
Ballistic heat transport in laser generated nano-bubbles.
Lombard, Julien; Biben, Thierry; Merabia, Samy
2016-08-04
Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.
A predictive transport modeling code for ICRF-heated tokamaks
Phillips, C.K.; Hwang, D.Q. . Plasma Physics Lab.); Houlberg, W.; Attenberger, S.; Tolliver, J.; Hively, L. )
1992-02-01
In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3. Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.
Spin current draining effect on heat-driven spin transport
NASA Astrophysics Data System (ADS)
Xu, Yadong; Yang, Bowen; Tang, Chi; Jiang, Zilong; Shi, Jing; Schneider, Michael; Whig, Renu
As a non-magnetic heavy metal is attached to a ferromagnet, a vertically flowing heat-driven spin current is converted to a transverse electric voltage, which is known as the longitudinal spin Seebeck effect. If the ferromagnet is a metal, this voltage is also accompanied by voltages from two other sources, i.e. the anomalous Nernst effect in both the ferromagnet and the proximity-induced ferromagnetic boundary layer. In this work, we have investigated these phenomena in NiFe/Cu/heavy metal multilayer structure. By identifying and carefully separating those effects, we find that in this pure spin current circuit the additional spin current drawn by the heavy metal generates another voltage in the ferromagnetic metal via the inverse spin Hall effect. The research was supported by the DOE BES Award #DE-FG02-07ER46351 and DARPA/DMEA under H94003-10-2-1004.
Anisotropic heat transport in integrable and chaotic 3-D magnetic fields
Del-Castillo-Negrete, Diego B; Blazevski, D.; Chacon, Luis
2012-01-01
A study of anisotropic heat transport in 3-D chaotic magnetic fields is presented. The approach is based on the recently proposed Lagrangian-Green s function (LG) method in Ref. [1] that allows an efficient and accurate integration of the parallel transport equation applicable to general magnetic fields with local or non-local parallel flux closures. We focus on reversed shear magnetic field configurations known to exhibit separatrix reconnection and shearless transport barriers. The role of reconnection and magnetic field line chaos on temperature transport is studied. Numerical results are presented on the anomalous relaxation of radial temperature gradients in the presence of shearless Cantori partial barri- ers. Also, numerical evidence of non-local effective radial temperature transport in chaotic fields is presented. Going beyond purely parallel transport, the LG method is generalized to include finite perpendicular diffusivity, and the problem of temperature flattening inside a magnetic island is studied.
Ballistic heat transport in laser generated nano-bubbles
NASA Astrophysics Data System (ADS)
Lombard, Julien; Biben, Thierry; Merabia, Samy
2016-08-01
Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02144A
Investigation of heat and momentum transport in turbulent flows via numerical simulations
NASA Technical Reports Server (NTRS)
Kim, John
1988-01-01
Turbulent transport of heat is studied by examining the flow fields obtained from a direct simulation of a turbulent channel flow. The turbulence structures associated with the velocity and scalar fields are presented using air (Pr = 0.71) as the medium. A comparison is made between the wall-layer structures identified by the temperature field and the structures found in the velocity field. Consideration is also given to the role of the organized turbulence structures in scalar transport.
Viswanathan, H.S.
1996-08-01
The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory`s site scale model of Yucca Mountain to model two-dimensional, vadose zone {sup 14}C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect {sup 14}C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies.
NASA Astrophysics Data System (ADS)
Yvonne, Cherubini; Mauro, Cacace; Scheck-Wenderoth, Magdalena
2013-04-01
Faults can provide permeable pathways for fluids at a variety of scales, from great depth in the crust to flow through fractured aquifers, geothermal fields, and hydrocarbon reservoirs (Barton et al. 1995). In terms of geothermal energy exploration, it is essential to understand the role of faults and their impact on the thermal field and fluid system. 3D numerical simulations provide a useful tool for investigating the active physical processes in the subsurface. To assess the influence of major fault zones on the thermal field and fluid system, 3D coupled fluid and heat transport simulations are carried out. The study is based on a recently published structural model of the Brandenburg area, which is located in the south-eastern part of the Northeast German Basin (NEGB) (Noack et al. 2010). Two major fault zones of the Elbe Fault System (Gardelegen and Lausitz Escarpments) vertically offset the pre-Permian basement against the Permian to Cenozoic basin fill at the southern margin by several km (Scheck et al. 2002). Within the numerical models, these two major fault zones are represented as equivalent porous media and vertical discrete elements. The coupled system of equations describing fluid flow and heat transport in saturated porous media are numerically solved by the Finite Element software FEFLOW® (Diersch, 2002). Different possible geological scenarios are modelled and compared to a simulation in which no faults are considered. In one scenario the fault zones are set as impermeable. In this case, the thermal field is similar to the no fault model. Fluid flow is redirected because the fault zones act as hydraulic barriers that prevent a lateral fluid advection into the fault zones. By contrast, modelled permeable fault zones induce a pronounced thermal signature with distinctly cooler temperatures than in the no fault model. Fluid motion within the fault is initially triggered by advection due to hydraulic head gradients, but may be even enhanced by
An alternative treatment of heat flow for charge transport in semiconductor devices
Grupen, Matt
2009-12-15
A unique thermodynamic model of Fermi gases suitable for semiconductor device simulation is presented. Like other models, such as drift diffusion and hydrodynamics, it employs moments of the Boltzmann transport equation derived using the Fermi-Dirac distribution function. However, unlike other approaches, it replaces the concept of an electron thermal conductivity with the heat capacity of an ideal Fermi gas to determine heat flow. The model is used to simulate a field-effect transistor and show that the external current-voltage characteristics are strong functions of the state space available to the heated Fermi distribution.
Local momentum and heat fluxes in transient transport processes and inhomogeneous systems.
Chen, Youping; Diaz, Adrian
2016-11-01
This work examines existing formalisms for the derivation of microscopic momentum and heat fluxes. Both analytical and simulation results are provided to show that the widely used flux formulas are not applicable to transient transport processes or highly inhomogeneous systems, e.g., materials with atomically sharp interfaces. A method is formulated for formally deriving microscopic momentum and heat fluxes through the integral representation of conservation laws. The resulting flux formulas are mathematically rigorous, fully consistent with the physical concepts of momentum and heat fluxes, and applicable to nonequilibrium transient processes in atomically inhomogeneous systems with general many-body forces.
Local momentum and heat fluxes in transient transport processes and inhomogeneous systems
NASA Astrophysics Data System (ADS)
Chen, Youping; Diaz, Adrian
2016-11-01
This work examines existing formalisms for the derivation of microscopic momentum and heat fluxes. Both analytical and simulation results are provided to show that the widely used flux formulas are not applicable to transient transport processes or highly inhomogeneous systems, e.g., materials with atomically sharp interfaces. A method is formulated for formally deriving microscopic momentum and heat fluxes through the integral representation of conservation laws. The resulting flux formulas are mathematically rigorous, fully consistent with the physical concepts of momentum and heat fluxes, and applicable to nonequilibrium transient processes in atomically inhomogeneous systems with general many-body forces.
NASA Astrophysics Data System (ADS)
Huang, Qian; Marsham, John; Parker, Doug; Tian, Wenshou; Grams, Christian; Cuesta, Juan; Flamant, Cyrille
2010-05-01
The very large surface sensible and very low latent heat fluxes in the Sahara desert lead to its unusually deep, almost dry-adiabatic boundary layer, that often reaches 6 km. This is often observed to consist of a shallow convective boundary layer (CBL) with a near neutral residual layer above (the Saharan Residual Layer, or SRL). It has been shown that the SRL can be both spatially extensive and persist throughout the day. Multiple near-neutral layers are frequently observed within the SRL, or within the SAL, each with a different water vapour and/or dust content, and each separated by a weak lid (e.g., Figure 1). A local maximum in not only relative humidity, but also water vapour mixing ratio (WVMR) is often seen at the top of the SRL or SAL. This structure suggests that in some locations, at some times, convection from the surface is mixing the full depth of the Saharan boundary layer, but in most locations and times this is not the case, and varying horizontal advection leads to the multiple layering observed. During the GERBILS (GERB Intercomparison of Longwave and Shortwave radiation) field campaign in the Sahara, coherent couplings were observed between surface albedo, CBL air temeperatures and CBL winds. Using two cases based on observations from GERBILS, large eddy model (LEM) simulations have been used to investigate the effects of surface flux anomalies on the growth of the summertime Saharan CBL into the Saharan Residual layer (SRL) above, and transport from the CBL into the SRL. Hot surface anomalies generated updraughts and convergence in the CBL that increased transport from the CBL into the SRL. The induced subsidence in regions away from the anomalies inhibited growth of the CBL there. If the domain-averaged surface fluxes were kept constant this led to a shallower, cooler CBL. If fluxes outside the anomalies were kept constant, so that stronger anomalies led to increased domain-averaged fluxes, this gave a warmer, shallower CBL. These effects
The contiguous domains of Arctic Ocean advection: Trails of life and death
NASA Astrophysics Data System (ADS)
Wassmann, P.; Kosobokova, K. N.; Slagstad, D.; Drinkwater, K. F.; Hopcroft, R. R.; Moore, S. E.; Ellingsen, I.; Nelson, R. J.; Carmack, E.; Popova, E.; Berge, J.
2015-12-01
The central Arctic Ocean is not isolated, but tightly connected to the northern Pacific and Atlantic Oceans. Advection of nutrient-, detritus- and plankton-rich waters into the Arctic Ocean forms lengthy contiguous domains that connect subarctic with the arctic biota, supporting both primary production and higher trophic level consumers. In turn, the Arctic influences the physical, chemical and biological oceanography of adjacent subarctic waters through southward fluxes. However, exports of biomass out of the Arctic Ocean into both the Pacific and Atlantic Oceans are thought to be far smaller than the northward influx. Thus, Arctic Ocean ecosystems are net biomass beneficiaries through advection. The biotic impact of Atlantic- and Pacific-origin taxa in arctic waters depends on the total supply of allochthonously-produced biomass, their ability to survive as adults and their (unsuccessful) reproduction in the new environment. Thus, advective transport can be thought of as trails of life and death in the Arctic Ocean. Through direct and indirect (mammal stomachs, models) observations this overview presents information about the advection and fate of zooplankton in the Arctic Ocean, now and in the future. The main zooplankton organisms subjected to advection into and inside the Arctic Ocean are (a) oceanic expatriates of boreal Atlantic and Pacific origin, (b) oceanic Arctic residents and (c) neritic Arctic expatriates. As compared to the Pacific gateway the advective supply of zooplankton biomass through the Atlantic gateways is 2-3 times higher. Advection characterises how the main planktonic organisms interact along the contiguous domains and shows how the subarctic production regimes fuel life in the Arctic Ocean. The main differences in the advective regimes through the Pacific and Atlantic gateways are presented. The Arctic Ocean is, at least in some regions, a net heterotrophic ocean that - during the foreseeable global warming trend - will more and more rely
Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013
NASA Astrophysics Data System (ADS)
Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.
2015-09-01
The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intense of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21st century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport has made it difficult to establish whether there are trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv = 106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW = 1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall increase over the 2 decades of observation was 9 ± 8 % for volume transport and 18 ± 9 % for heat transport (95 % confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the
NASA Astrophysics Data System (ADS)
Sodemann, H.; Stohl, A.
2010-12-01
The bulk of the atmospheric latent heat transport induced by extratropical cyclones is organized in the warm conveyor belt, also known as atmospheric rivers. In order to enhance the process understanding of atmospheric sensible and latent heat transport with these structures into the European Arctic, the magnitude and variability of the energy flux from individual cyclones in this region was studied. We applied a moisture source tracking algorithm embedded in the limited-area numerical weather prediction model (NWP) Climate High-Resolution Model (CHRM) to trace the evaporation sources and transport of water vapour from different latitude bands of the North Atlantic Ocean. September 2002 and December 2006 were chosen as initial analysis periods, since a particularly large number of cyclones (including former hurricanes) traveled within the North Atlantic storm track during these months. The main findings are that latent heat (LH) from more southerly source regions is transported at higher altitudes. Stronger storms draw latent heat from a larger area (further south), and the ensuing precipitation will hence on average originate from further south as well. Most long-range transport of LH occurs in the cold frontal bands. Individual cyclones are the main source of sub-monthly LH flux variability, and can cause up to 4-sigma variation of the mean flux. LH flux is almost permanently net positive (northward), unlike for sensible heat (SH) and other energy fluxes. Most LH that is "permanently" transferred to north of 60°N in the Atlantic storm track originates from directly south of that latitude, implying on average short atmospheric moisture lifetimes, and hence a fast energy turnover. We compare these findings to results from a Lagrangian moisture tracking method based on the FLEXPART model. Remarks with regard to differences in the transport conditions of latent head in such structures along the North American West Coast and the Norwegian West Coast will be made.
A conceptual model of oceanic heat transport in the Snowball Earth scenario
NASA Astrophysics Data System (ADS)
Comeau, Darin; Kurtze, Douglas A.; Restrepo, Juan M.
2016-12-01
Geologic evidence suggests that the Earth may have been completely covered in ice in the distant past, a state known as Snowball Earth. This is still the subject of controversy, and has been the focus of modeling work from low-dimensional models up to state-of-the-art general circulation models. In our present global climate, the ocean plays a large role in redistributing heat from the equatorial regions to high latitudes, and as an important part of the global heat budget, its role in the initiation a Snowball Earth, and the subsequent climate, is of great interest. To better understand the role of oceanic heat transport in the initiation of Snowball Earth, and the resulting global ice covered climate state, the goal of this inquiry is twofold: we wish to propose the least complex model that can capture the Snowball Earth scenario as well as the present-day climate with partial ice cover, and we want to determine the relative importance of oceanic heat transport. To do this, we develop a simple model, incorporating thermohaline dynamics from traditional box ocean models, a radiative balance from energy balance models, and the more contemporary "sea glacier" model to account for viscous flow effects of extremely thick sea ice. The resulting model, consisting of dynamic ocean and ice components, is able to reproduce both Snowball Earth and present-day conditions through reasonable changes in forcing parameters. We find that including or neglecting oceanic heat transport may lead to vastly different global climate states, and also that the parameterization of under-ice heat transfer in the ice-ocean coupling plays a key role in the resulting global climate state, demonstrating the regulatory effect of dynamic ocean heat transport.
Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos
2012-07-11
The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.
Update on Advection-Diffusion Purge Flow Model
NASA Technical Reports Server (NTRS)
Brieda, Lubos
2015-01-01
Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.
Subsurface barrier design alternatives for confinement and controlled advection flow
Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.
1994-02-01
Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described.
Is Chaotic Advection Inherent to Porous Media Flow?
NASA Astrophysics Data System (ADS)
Lester, Daniel; Metcalfe, Guy; Trefry, Mike
2013-11-01
All porous media, including granular and packed media, fractured and open networks, are typified by the inherent topological complexity of the pore-space. This topological complexity admits a large number density of stagnation points under steady Stokes flow, which in turn generates a 3D fluid mechanical analouge of the Bakers map, termed the Baker's flow. We demonstrate that via this mechanism, chaotic advection at the pore-scale is inherent to almost all porous media under reasonable conditions, and such dynamics have significant implications for a range of fluid-borne processes including transport and mixing, chemical reactions and biological activity.
Surfzone alongshore advective accelerations: observations and modeling
NASA Astrophysics Data System (ADS)
Hansen, J.; Raubenheimer, B.; Elgar, S.
2014-12-01
The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.
Dowsett, H.J.; Cronin, T. M.; Poore, R.Z.; Thompson, R.S.; Whatley, R.C.; Wood, A.M.
1992-01-01
The Middle Pliocene (???3 million years ago) has been identified as the last time the Earth was significantly warmer than it was during the Last Interglacial and Holocene. A quantitative micropaleontological paleotemperature transect from equator to high latitudes in the North Atlantic indicates that Middle Pliocene warmth involved increased meridional oceanic heat transport.
Mass and heat transport in the two-phase Buckley-Leverett model
NASA Astrophysics Data System (ADS)
Akhmetzyanov, Atlas V.; Kushner, Alexei G.; Lychagin, Valentin V.
2017-03-01
In this article we study the initial boundary value problem for two-phase heat and mass transport in porous media described by the Buckley-Leverett model. We outline a method to construct asymptotic solutions of the initial boundary problem and show how to overcome singularities in solutions and shock waves.
Measurements of Combined Axial Mass and Heat Transport in He II.
ERIC Educational Resources Information Center
Johnson, Warren W.; Jones, Michael C.
An experiment was performed that allowed measurements of both axial mass and heat transport of He-II (the superfluid phase of helium 4) in a long tube. The apparatus allowed the pressure difference and the temperature difference across the flow tube to each be independently adjusted, and the resulting steady-state values of net fluid velocity and…
3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel
Technology Transfer Automated Retrieval System (TEKTRAN)
A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...
Competing orders in LSCO probed by heat transport
NASA Astrophysics Data System (ADS)
Li, Shiyan; Hawthorn, D. G.; Taillefer, Louis; Yamada, K.
2006-03-01
We elucidate the nature of the thermal metal-to-insulator transition in La2-xSrxCuO4 (LSCO) [1] through measurements of the thermal conductivity κ performed very close to the transition, down to temperatures as low as 50 mK and in magnetic fields H up to 17 T. For a single crystal with x = 0.15, a monotonic increase in the residual linear term κ0/T is observed up to 17 T, as expected for a d-wave superconductor. For a crystal with x = 0.144, however, we observe an initial increase in κ0/T at low field, followed by a decrease when H exceeds a critical field H^*. This result is consistent with recent neutron scattering measurements on a similar sample [2], which show that static spin-density-wave (SDW) order is not present in zero field, but sets in at a critical magnetic field H^*, and then co-exists/competes with superconductivity (SC) for H > H^*. Taken together, these two measurements reveal that the SC phase gives way to a phase which is both magnetic and insulating, whether by increasing magnetic field or by decreasing doping. Using low-energy quasiparticle transport, we map out the T = 0 field-doping (H-x) phase diagram of LSCO. [1] D.G. Hawthorn et al., Phys. Rev. Lett. 90, 197004 (2003); X.F. Sun et al., Phys. Rev. Lett. 90, 117004 (2003). [2] B. Khaykovich et al., Phys. Rev. B 71, 220508(R) (2005).
Effects of demographic stochasticity on population persistence in advective media.
Kolpas, Allison; Nisbet, Roger M
2010-07-01
Many populations live and disperse in advective media. A fundamental question, known as the "drift paradox" in stream ecology, is how a closed population can survive when it is constantly being transported downstream by the flow. Recent population-level models have focused on the role of diffusive movement in balancing the effects of advection, predicting critical conditions for persistence. Here, we formulate an individual-based stochastic analog of the model described in (Lutscher et al., SIAM Rev. 47(4):749-772, 2005) to quantify the effects of demographic stochasticity on persistence. Population dynamics are modeled as a logistic growth process and dispersal as a position-jump process on a finite domain divided into patches. When there is no correlation in the interpatch movement of residents, stochasticity simply smooths the persistence-extinction boundary. However, when individuals disperse in "packets" from one patch to another and the flow field is memoryless on the timescale of packet transport, the probability of persistence is greatly enhanced. The latter transport mechanism may be characteristic of larval dispersal in the coastal ocean or wind-dispersed seed pods.
NASA Technical Reports Server (NTRS)
Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)
2001-01-01
Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.
NASA Astrophysics Data System (ADS)
Hegele, P. R.; Mumford, K. G.
2015-05-01
Condensation of volatile organic compounds in colder zones can be detrimental to the performance of an in situ thermal treatment application for the remediation of chlorinated solvent source zones. A novel method to increase gas production and limit convective heat loss in more permeable, potentially colder, zones involves the injection and liberation of dissolved gas from solution during heating. Bench-scale electrical resistance heating experiments were performed with a dissolved carbon dioxide and sodium chloride solution to investigate exsolved gas saturations and transport regimes at elevated, but sub-boiling, temperatures. At sub-boiling temperatures, maximum exsolved gas saturations of Sg = 0.12 were attained, and could be sustained when the carbon dioxide solution was injected during heating rather than emplaced prior to heating. This gas saturation was estimated to decrease groundwater relative permeability to krw = 0.64. Discontinuous gas transport was observed above saturations of Sg = 0.07, demonstrating the potential of exsolved CO2 to bridge vertical gas transport through colder zones.
NASA Technical Reports Server (NTRS)
Shoji, J. M.; Larson, V. R.
1976-01-01
The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.
Role of the magnetic island and low- k turbulence on radial electron heat transport
NASA Astrophysics Data System (ADS)
Choi, M. J.; Park, H. K.; in, Y.; Ko, S. H.; Kim, H. S.; Bae, C.; Kwon, J. M.; Lee, W.; Lee, K. D.; Lee, H. H.; Ko, W. H.; Lee, S. H.; Lee, J. H.; Ko, J.; Kim, J.; Woo, M. H.; Jeong, M.; Park, B. H.; Yun, G. S.; Lee, J.; Kim, M.; Luhmann, N. C., Jr.
2016-10-01
Magnetic islands can enhance or reduce the radial transport either by reconnecting field lines or producing the poloidal flow shear across the rational surface. Both cases have been observed in the KSTAR L-mode plasmas. In the first case, the temperature inside the q = 2 surface decreases severely ( 25%) with the enhanced transport by the rotating m / n = 2 / 1 magnetic island. However, in the case where the 2/1 magnetic island is driven and locked by the n = 1 resonant magnetic perturbation, the transport is reduced and the electron temperature (Te) gradient is increased across the island with a clear poloidal flow shear. The poloidal flow shear has been identified utilizing electron cyclotron emission imaging (ECEI) measurements of the low-k turbulent Te fluctuations driven by the increased Te gradient. In addition, the interaction between the Te turbulence and magnetic island causes the transient heat transport events and affects the transport characteristics near the q = 2 region.
The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium
NASA Astrophysics Data System (ADS)
Yoshimori, Masakazu; Abe-Ouchi, Ayako; Laîné, Alexandre
2017-01-01
It is well known that the Arctic warms much more than the rest of the world even under spatially quasi-uniform radiative forcing such as that due to an increase in atmospheric CO2 concentration. While the surface albedo feedback is often referred to as the explanation of the enhanced Arctic warming, the importance of atmospheric heat transport from the lower latitudes has also been reported in previous studies. In the current study, an attempt is made to understand how the regional feedbacks in the Arctic are induced by the change in atmospheric heat transport and vice versa. Equilibrium sensitivity experiments that enable us to separate the contributions of the Northern Hemisphere mid-high latitude response to the CO2 increase and the remote influence of surface warming in other regions are carried out. The result shows that the effect of remote forcing is predominant in the Arctic warming. The dry-static energy transport to the Arctic is reduced once the Arctic surface warms in response to the local or remote forcing. The feedback analysis based on the energy budget reveals that the increased moisture transport from lower latitudes, on the other hand, warms the Arctic in winter more effectively not only via latent heat release but also via greenhouse effect of water vapor and clouds. The change in total atmospheric heat transport determined as a result of counteracting dry-static and latent heat components, therefore, is not a reliable measure for the net effect of atmospheric dynamics on the Arctic warming. The current numerical experiments support a recent interpretation based on the regression analysis: the concurrent reduction in the atmospheric poleward heat transport and future Arctic warming predicted in some models does not imply a minor role of the atmospheric dynamics. Despite the similar magnitude of poleward heat transport change, the Arctic warms more than the Southern Ocean even in the equilibrium response without ocean dynamics. It is shown that a
NASA Astrophysics Data System (ADS)
Martin, T.; Ruprecht, E.
2007-02-01
The effects of the meridional heat transport in the North Atlantic Ocean (HTR) on the north hemispheric climate are studied using the results of the coupled model ECHAM5/MPI-OM. Significant correlations exist between HTR and atmospheric processes over the Nordic Seas and the Eurasian continent only for low (periods longer than 40 years) and intermediate frequency variations (periods between 25 and 40 years). A positive HTR anomaly at 30°N is highly correlated with turbulent heat fluxes around 50°N. The transport through 70°N is directly related to the fluxes over the Nordic seas. From the correlation pattern with the atmospheric surface temperature and pressure one can conclude that the heat anomalies propagate along the cyclone tracks towards northeast over the Eurasian continent. The HRT anomalies are negatively correlated with the pressure over the Nordic seas and with the winter time anticyclone intensity over Siberia.
Heat transport in the quasi-single-helicity islands of EXTRAP T2R
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Brunsell, P. R.; Drake, J.
2009-03-01
The heat transport inside the magnetic island generated in a quasi-single-helicity regime of a reversed-field pinch device is studied by using a numerical code that simulates the electron temperature and the soft x-ray emissivity. The heat diffusivity χe inside the island is determined by matching the simulated signals with the experimental ones. Inside the island, χe turns out to be from one to two orders of magnitude lower than the diffusivity in the surrounding plasma, where the magnetic field is stochastic. Furthermore, the heat transport properties inside the island are studied in correlation with the plasma current and with the amplitude of the magnetic fluctuations.
[The design of heat dissipation of the field low temperature box for storage and transportation].
Wei, Jiancang; Suin, Jianjun; Wu, Jian
2013-02-01
Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.
Mohanram, Arvind; Ray, Chittaranjan; Metge, David W; Barber, Larry B; Ryan, Joseph N; Harvey, Ronald W
2012-02-21
Transport of Cryptosporidium parvum oocysts and microspheres in two disparate (a clay- and Fe-rich, volcanic and a temperate, humic) agricultural soils were studied in the presence and absence of 100 mg L(-1) of sodium dodecyl benzene sulfonate (SDBS), and Suwannee River Humic Acid (SRHA) at pH 5.0-6.0. Transport of carboxylate-modified, 1.8 μm microspheres in soil columns was highly sensitive to the nature of the dissolved organic carbon (DOC), whereas oocysts transport was more affected by soil mineralogy. SDBS increased transport of microspheres from 48% to 87% through the tropical soil and from 43% to 93% in temperate soil. In contrast, SRHA reduced transport of microspheres from 48% to 28% in tropical soil and from 43% to 16% in temperate soil. SDBS also increased oocysts transport through the temperate soil 5-fold, whereas no oocyst transport was detected in tropical soil. SRHA had only a nominal effect in increasing oocysts transport in tropical soil, but caused a 6-fold increase in transport through the temperate soil. Amendments of only 4 mg L(-1) SRHA and SDBS decreased oocyst hydrophobicity from 66% to 20% and from 66% to 5%, respectively. However, SDBS increased microsphere hydrophobicity from 16% to 33%. Soil fines, which includes clays, and SRHA, both caused the oocysts zeta potential (ζ) to become more negative, but caused the highly hydrophilic microspheres to become less negatively charged. The disparate behaviors of the two colloids in the presence of an ionic surfactant and natural organic matter suggest that microspheres may not be suitable surrogates for oocysts in certain types of soils. These results indicate that whether or not DOC inhibits or promotes transport of oocysts and microspheres in agricultural soils and by how much, depends not only on the surface characteristics of the colloid, but the nature of the DOC and the soil mineralogy.
Phonon and magnon heat transport and drag effects
NASA Astrophysics Data System (ADS)
Heremans, Joseph P.
2014-03-01
Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable
Water and heat transport in hilly red soil of southern China: II. Modeling and simulation.
Lu, Jun; Huang, Zhi-Zhen; Han, Xiao-Fei
2005-05-01
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top end, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation from Taylor and Lary (1964), the effects of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that K(h), soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, K(S), and the water diffusivity, D(theta), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution.
Thermal transport in shock wave–compressed solids using pulsed laser heating
La Lone, B. M.; Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.
2014-07-01
A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ~25 GPa and ~1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.
Thermal transport in shock wave–compressed solids using pulsed laser heating
La Lone, B. M. Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.
2014-07-15
A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.
Electron heat transport comparison in the Large Helical Device and TJ-II
NASA Astrophysics Data System (ADS)
García, J.; Dies, J.; Castejón, F.; Yamazaki, K.
2007-10-01
The electron heat transport in the Large Helical Device (LHD) [K. Ida, T. Shimozuma, H. Funaba et al., Phys. Rev. Lett. 91, 085003 (2003)] and TJ-II [F. Castejón, V. Tribaldos, I. García-Cortés, E. de la Luna, J. Herranz, I. Pastor, T. Estrada, and TJ-II Team, Nucl. Fusion 42, 271 (2002)] is analyzed by means of the TOTAL [K. Yamazaki and T. Amano, Nucl. Fusion 32, 4 (1992)] and PRETOR-Stellarator [J. Dies, F. Castejon, J. M. Fontdecaba, J. Fontanet, J. Izquierdo, G. Cortes, and C. Alejaldre, Proceedings of the 29th European Physical Society Conference on Plasma Physics and Controlled Fusion, Montreux, 2002, Europhysics Conference Abstracts, 2004, Vol. 26B, P-5.027] plasma simulation codes and assuming a global transport model mixing GyroBohm-like drift wave model and other drift wave model with shorter wavelength. The stabilization of the GyroBohm-like model by the E ×B shear has been also taken into account. Results show how such kind of electron heat transport can simulate experimental evidence in both devices, leading to the electron internal transport barrier (eITB) formation in the LHD and to the so-called "enhanced heat confinement regimes" in TJ-II when electron density is low enough. Therefore, two sources for the anomalous electron heat transport can coexist in plasmas with eITB; however, for each device the relative importance of anomalous and neoclassical transport can be different.
Topics in quantum transport of charge and heat in solid state systems
NASA Astrophysics Data System (ADS)
Choi, Yunjin
In the thesis, we present a series of investigations for quantum transport of charge and heat in solid state systems. The first topic of the thesis focuses on the fundamental quantum problems which can be studied with electron transport along with the correlations of detectors to measure physical properties. We theoretically describe a generalized ``which-path'' measurement using a pair of coupled electronic Mach-Zehnder Interferometers. In the second topic of thesis, we investigate an operational approach to measure the tunneling time based on the Larmor clock. To handle the cases of indirect measurement from the first and second topics, we introduce the contextual values formalism. The form of the contextual values provides direct physical insight into the measurement being performed, providing information about the correlation strength between system and detector, the measurement inefficiency, the proper background removal, and the conditioned average value of the system operator. Additionally, the weak interaction limit of these conditioned averages produces weak values of the system operator and an additional detector dependent disturbance term for both cases. In our treatment of the third topic of the thesis, we propose a three terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window to allow electron transport. We find that this device delivers a large amount of power, nearly twice that produced by the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk
Controlling and measuring quantum transport of heat in trapped-ion crystals.
Bermudez, A; Bruderer, M; Plenio, M B
2013-07-26
Measuring heat flow through nanoscale devices poses formidable practical difficulties as there is no "ampere meter" for heat. We propose to overcome this problem in a chain of trapped ions, where laser cooling the chain edges to different temperatures induces a heat current of local vibrations (vibrons). We show how to efficiently control and measure this current, including fluctuations, by coupling vibrons to internal ion states. This demonstrates that ion crystals provide an ideal platform for studying quantum transport, e.g., through thermal analogues of quantum wires and quantum dots. Notably, ion crystals may give access to measurements of the elusive bosonic fluctuations in heat currents and the onset of Fourier's law. Our results are strongly supported by numerical simulations for a realistic implementation with specific ions and system parameters.
Limits on modes of lithospheric heat transport on Venus from impact crater density
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1987-01-01
Based on the observed density of impact craters on the Venus surface obtained from Venera 15-16 radar images, a formalism to estimate the upper bounds on the contributions made to lithospheric heat transport by volcanism and lithospheric recycling is presented. The Venera 15-16 data, if representative of the entire planet, limit the average rate of volcanic resurfacing on Venus to less than 2 cu km/yr (corresponding to less than 1 percent of the global heat loss), and limit the rate of lithospheric recycling to less than 1.5 sq km/yr (and probably to less than 0.5 sq km/yr), corresponding to 25 percent (and to 9 percent) of the global heat loss. The present results indicate that heat loss at lithospheric levels in Venus is dominated by conduction.
Sensitivity of solute advective travel time to porosities of hydrogeologic units.
Zhu, Jianting; Pohlmann, Karl F; Chapman, Jenny B; Russell, Charles E; Carroll, Rosemary W H; Shafer, David S
2010-01-01
An integral approach is proposed to quantify uncertainty and sensitivity of advective travel time to the effective porosities of hydrogeologic units (HGUs) along groundwater flow paths. The approach is applicable in situations where a groundwater flow model exists, but a full solute transport model is not available. The approach can be used to: (1) determine HGUs whose porosities are influential to the solute advective travel time; and (2) apportion uncertainties of solute advective travel times to the uncertainty contributions from individual HGU porosities. A simple one-dimensional steady-state flow example is used to illustrate the approach. Advective travel times of solutes are obtained based on the one-dimensional steady-state flow results in conjunction with the HGU porosities. The approach can be easily applicable to more complex multi-dimensional cases where advective solute travel time can be calculated based on simulated flow results from groundwater flow models. This approach is particularly valuable for optimizing limited resources when designing field characterization programs for uncertainty reduction by identifying HGUs that contribute most to the estimation uncertainty of advective travel times of solutes.
NASA Astrophysics Data System (ADS)
Yu, Lei; Gao, Yongqi
2011-06-01
The Atlantic Meridional Overturning Circulation (AMOC) transports a large amount of heat to northern high latitudes, playing an important role in the global climate change. Investigation of the freshwater perturbation in North Atlantic (NA) has become one of the hot topics in the recent years. In this study, the mechanism and pathway of meridional ocean heat transport (OHT) under the enhanced freshwater input to the northern high latitudes in the Atlantic are investigated by an ocean-sea ice-atmosphere coupled model. The results show that the anomalous OHT in the freshwater experiment (FW) is dominated by the meridional circulation kinetic and ocean thermal processes. In the FW, OHT drops down during the period of weakened AMOC while the upper tropical ocean turns warmer due to the retained NA warm currents. Conversely, OHT recovers as the AMOC recovers, and the mechanism can be generalized as: 1) increased ocean heat content in the tropical Southern Ocean during the early integration provides the thermal condition for the recovery of OHT in NA; 2) the OHT from the Southern Ocean enters the NA through the equator along the deep Ekman layer; 3) in NA, the recovery of OHT appears mainly along the isopycnic layers of 24.70-25.77 below the mixing layer. It is then transported into the mixing layer from the "outcropping points" in northern high latitudes, and finally released to the atmosphere by the ocean-atmosphere heat exchange.
Heat and water transport in a polymer electrolyte fuel cell electrode
Mukherjee, Partha P; Mukundan, Rangachary; Borup, Rod L; Ranjan, Devesh
2010-01-01
In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.
Heat transport in a liquid layer locally heated on its free surface
NASA Astrophysics Data System (ADS)
Pumir, Alain; Blumenfeld, Laure
1996-11-01
A strong heat flux, localized on the upper surface of a fluid, sets up strong convection motions through thermocapillary forces, which limits the temperature elevation in the pool, therefore limiting the efficiency in fusion welding processes. We propose a theoretical estimate of the temperature elevation when the fluid motion is laminar or turbulent, the weld pool surface remaining flat. Our treatment follows the theoretical work of Shraiman and Siggia [
How Hydrate Saturation Anomalies are Diffusively Constructed and Advectively Smoothed
NASA Astrophysics Data System (ADS)
Rempel, A. W.; Irizarry, J. T.; VanderBeek, B. P.; Handwerger, A. L.
2015-12-01
The physical processes that control the bulk characteristics of hydrate reservoirs are captured reasonably well by long-established model formulations that are rooted in laboratory-verified phase equilibrium parameterizations and field-based estimates of in situ conditions. More detailed assessments of hydrate distribution, especially involving the occurrence of high-saturation hydrate anomalies have been more difficult to obtain. Spatial variations in sediment properties are of central importance for modifying the phase behavior and promoting focussed fluid flow. However, quantitative predictions of hydrate anomaly development cannot be made rigorously without also addressing the changes in phase behavior and mechanical balances that accompany changes in hydrate saturation level. We demonstrate how pore-scale geometrical controls on hydrate phase stability can be parameterized for incorporation in simulations of hydrate anomaly development along dipping coarse-grained layers embedded in a more fine-grained background that is less amenable to fluid transport. Model simulations demonstrate how hydrate anomaly growth along coarse-layer boundaries is promoted by diffusive gas transport from the adjacent fine-grained matrix, while advective transport favors more distributed growth within the coarse-grained material and so effectively limits the difference between saturation peaks and background levels. Further analysis demonstrates how sediment contacts are unloaded once hydrate saturation reaches sufficient levels to form a load-bearing skeleton that can evolve to produce segregated nodules and lenses. Decomposition of such growth forms poses a significant geohazard that is expected to be particularly sensitive to perturbations induced by gas extraction. The figure illustrates the predicted evolution of hydrate saturation Sh in a coarse-grained dipping layer showing how prominent bounding hydrate anomalies (spikes) supplied by diffusive gas transport at early times
Graphene transport properties upon exposure to PMMA processing and heat treatments
NASA Astrophysics Data System (ADS)
Gammelgaard, Lene; Caridad, José M.; Cagliani, Alberto; Mackenzie, David M. A.; Petersen, Dirch H.; Booth, Timothy J.; Bøggild, Peter
2014-12-01
The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties of graphene while PMMA residues are found to be surprisingly benign. In accordance with this picture, graphene devices with initially high carrier mobility tend to suffer a decrease in carrier mobility, while in contrast an improvement is observed for low carrier mobility devices. We explain this by noting that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200 °C.
NASA Astrophysics Data System (ADS)
Wang, Xidong; Wang, Chunzai; Han, Guijun; Li, Wei; Wu, Xinrong
2014-12-01
In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000-2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.
Diffusion and Advection using Cellular Potts Model
NASA Astrophysics Data System (ADS)
Dan, Debasis; Glazier, James
2005-03-01
The Cellular Potts Model (CPM) is a robust cell level methodology for simulation of biological tissues and morphogenesis. Standard diffusion solvers in the CPM use finite difference methods on the underlying CPM lattice. These methods have difficulty in simulating local advection in the ECM due to physiology and morphogenesis. To circumvent the problem of instabilities we simulate advection-diffusion within the framework of CPM using off-lattice finite-difference methods. We define a set of generalised fluid "cells" or particles which separate advection and diffusion from the lattice. Diffusion occurs between neighboring fluid cells by local averaging rules which approximate the Laplacian. CPM movement of the cells by spin flips handles the advection. The extension allows the CPM to model viscosity explicitly by including a relative velocity constraint on the fluid. The extended CPM correctly reproduces flow profiles of viscous fluids in cylindrical tube, during Stokes flow across a sphere and in flow in concentric cylindrical shells. We illustrate various conditions for diffusion including multiple instantaneous sources, continuous sources, moving sources and different boundary geometries and conditions to validate our approximation by comparing with analytical and established numerical solutions.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
NASA Astrophysics Data System (ADS)
Ebner, Pirmin Philipp; Andreoli, Christian; Schneebeli, Martin; Steinfeld, Aldo
2015-12-01
Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. A functional understanding of this process is essential for many disciplines, from modeling the effects of snow on regional and global climate to assessing avalanche formation. Time-lapse X-ray microtomography was applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Experiments specifically analyzed sublimation and deposition of water vapor on the ice structure. In addition, an analysis of the ice-air interface dynamics was carried out using a macroscopic equivalent model of heat and water vapor transport through a snow layer. The results indicate that sublimation of the ice matrix dominated for flow rates < 10-6 m3 s-1 while during increased mass flow rates the water vapor deposition supplied by the advective flow counteracted sublimation. A flow rate dependence of water vapor deposition at the ice interface was observed, asymptotically approaching an average estimated maximum deposition rate on the whole sample of 1.05 · 10-4 kg m-3 s-1. The growth of microsized whisker-like crystals on larger ice crystals was detected on microscope photographs, leading to an increase of the specific surface area and thus suggest a change of the physical and optical properties of the snow. The estimated values of the curvature effect of the ice crystals and the interface kinetic coefficient are in good agreement with previously published values.
Finite speed heat transport in a quantum spin chain after quenched local cooling
NASA Astrophysics Data System (ADS)
Fries, Pascal; Hinrichsen, Haye
2017-04-01
We study the dynamics of an initially thermalized spin chain in the quantum XY-model, after sudden coupling to a heat bath of lower temperature at one end of the chain. In the semi-classical limit we see an exponential decay of the system-bath heatflux by exact solution of the reduced dynamics. In the full quantum description however, we numerically find the heatflux to reach intermediate plateaus where it is approximately constant—a phenomenon that we attribute to the finite speed of heat transport via spin waves.
Working fluid selection for space-based two-phase heat transport systems
NASA Technical Reports Server (NTRS)
Mclinden, Mark O.
1988-01-01
The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.
NASA Astrophysics Data System (ADS)
Rencurrel, M. C.; Rose, B. E. J.
2015-12-01
The poleward transport of energy is a key aspect of the climate system, with surface ocean currents presently dominating the transport out of deep tropics. A classic study by Stone (1978) proposed that the total heat transport is determined by astronomical parameters and is highly insensitive to the detailed atmosphere-ocean dynamics. On the other hand, previous modeling work has shown that past continental configurations could have produced substantially different tropical ocean heat transport (OHT). How thoroughly does the atmosphere compensate for changes in ocean transport in terms of the top-of-atmosphere (TOA) radiative budget, what are the relevant mechanisms, and what are the consequences for surface temperature and climate on tectonic timescales? We examine these issues in a suite of aquaplanet GCM simulations subject to large prescribed variations in OHT. We find substantial but incomplete compensation, in which adjustment of the atmospheric Hadley circulation plays a key role. We then separate out the dynamical and thermodynamical components of the adjustment mechanism. Increased OHT tends to warm the mid- to high latitudes without cooling the tropics due asymmetries in radiative feedback processes. The warming is accompanied by hydrological cycle changes that are completely different from those driven by greenhouse gases, suggesting that drivers of past global change might be detectable from combinations of hydroclimate and temperature proxies.
Steady-state heat transport: Ballistic-to-diffusive with Fourier's law
Maassen, Jesse Lundstrom, Mark
2015-01-21
It is generally understood that Fourier's law does not describe ballistic phonon transport, which is important when the length of a material is similar to the phonon mean-free-path. Using an approach adapted from electron transport, we demonstrate that Fourier's law and the heat equation do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key to including the non-equilibrium nature of the phonon population is to apply the proper boundary conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magnitude of the temperature jumps is simply related to the material properties and (ii) the observation of reduced apparent thermal conductivity physically stems from a reduction in the temperature gradient and not from a reduction in actual thermal conductivity. We demonstrate how our approach, equivalent to Fourier's law, easily reproduces results of the Boltzmann transport equation, in all transport regimes, even when using a full phonon dispersion and mean-free-path distribution.
Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald
2011-01-01
Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant
A novel method for analytically solving a radial advection-dispersion equation
NASA Astrophysics Data System (ADS)
Lai, Keng-Hsin; Liu, Chen-Wuing; Liang, Ching-Ping; Chen, Jui-Sheng; Sie, Bing-Ruei
2016-11-01
An analytical solution for solute transport in a radial flow field has a variety of practical applications in the study of the transport in push-pull/divergent/convergent flow tracer tests, aquifer remediation by pumping and aquifer storage and recovery. However, an analytical solution for radial advective-dispersive transport has been proven very difficult to develop and relatively few in subsurface hydrology have made efforts to do so, because variable coefficients in the governing partial differential equations. Most of the solutions for radial advective-dispersive transport presented in the literature have generally been solved semi-analytically with the final concentration values being obtained with the help of a numerical Laplace inversion. This study presents a novel solution strategy for analytically solving the radial advective-dispersive transport problem. A Laplace transform with respect to the time variable and a generalized integral transform technique with respect to the spatial variable are first performed to convert the transient governing partial differential equations into an algebraic equation. Subsequently, the algebraic equation is solved using simple algebraic manipulations, easily yielding the solution in the transformed domain. The solution in the original domain is ultimately obtained by successive applications of the Laplace and corresponding generalized integral transform inversions. A convergent flow tracer test is used to demonstrate the robustness of the proposed method for deriving an exact analytical solution to the radial advective-dispersive transport problem. The developed analytical solution is verified against a semi-analytical solution taken from the literature. The results show perfect agreement between our exact analytical solution and the semi-analytical solution. The solution method presented in this study can be applied to create more comprehensive analytical models for a great variety of radial advective
Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.
2014-09-01
We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while the second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X_{⊥} /X_{∥} becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L^{2}_{∥}/X1L^{2}_{⊥} → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.
NASA Astrophysics Data System (ADS)
Villaluenga, Juan P. G.; Kjelstrup, Signe
2012-12-01
The framework of non-equilibrium thermodynamics (NET) is used to derive heat and mass transport equations for pervaporation of a binary mixture in a membrane. In this study, the assumption of equilibrium of the sorbed phase in the membrane and the adjacent phases at the feed and permeate sides of the membrane is abandoned, defining the interface properties using local equilibrium. The transport equations have been used to model the pervaporation of a water-ethanol mixture, which is typically encountered in the dehydration of organics. The water and ethanol activities and temperature profiles are calculated taking mass and heat coupling effects and surfaces into account. The NET approach is deemed good because the temperature results provided by the model are comparable to experimental results available for water-alcohol systems.
On the influence of advection on the "Guardia dei Lombardi" geothermal field
NASA Astrophysics Data System (ADS)
Ebigbo, Anozie; Niederau, Jan; Marquart, Gabriele; Gola, Gianluca; Inversi, Barbara; Scrocca, Davide; Manzella, Adele; Montegrossi, Giordano
2014-05-01
Due to local specific-heat-flow maxima of up to 90 mW/m2 and temperatures of about 100 °C at less than 1.7 km depth, a southern Italian (Province of Avelino) carbonate reservoir is being explored as a medium-enthalpy geothermal resource. Hydrocarbon exploration wells and several seismic profiles within the chosen area (with dimensions of 43 x 28 km) provide the basis for a complex, three-dimensional geological model. The reservoir is faulted, anticlinal in structure, and overlain by dense, partly clay-rich sedimentary layers. A hydraulic and thermal characterisation of the geological units is possible through a combination of laboratory measurements, literature sources, and well log data. Under the assumption of purely conductive heat transport, the specific heat flow at the bottom of the reservoir (at 6 km depth) can be estimated using temperature data from several boreholes in the region to 67 mW/m2 . The goal of this study is the investigation of advective flow and the evaluation of its influence on the temperature distribution in the reservoir. First hydrothermal simulation models show a complicated flow structure in the anticlinal reservoir. But an inversion for constant reservoir permeability based on the borehole-temperature observations results in a relatively low value of 0.5 to 1 mD. However, pointwise comparisons between modelled and measured temperatures show large differences. Thus, for an accurate inclusion of regional flow processes and thermal convection, a proper representation of the geometry of the anticlinal Apulian platform and a karstified, highly permeable layer at the interface between the reservoir and its sedimentary cover is necessary. Such a refined model will also lead to a recalibration of the specific basal heat flow.
Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System
NASA Technical Reports Server (NTRS)
Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)
2002-01-01
This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.
2014-11-01
The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an
SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport
Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing
2008-01-01
The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant
The Arctic Mediterranean Sea - Deep convection, oceanic heat transport and freshwater
NASA Astrophysics Data System (ADS)
Rudels, Bert
2014-05-01
The speculations about the driving forces behind the oceanic meridional circulation and the importance of the northward transports of oceanic heat for the ice conditions in the Arctic Ocean have a long history, but only after the Fram expedition 1893-1896 and from the studies by Nansen, Helland-Hansen and Sandström in the early 1900s did these speculations attain observational substance. In the late 1970s and onward these questions have again risen to prominence. A study of deep convection in the Greenland Sea, then assumed to drive the global thermohaline circulation, started with the Greenland Sea Project (GSP), while the investigation of the exchanges of volume and heat through Fram Strait had a more hesitant start in the Fram Strait Project (FSP). Not until 1997 with the EC project VEINS (Variation of Exchanges in the Northern Seas) was a mooring array deployed across Fram Strait. This array has been maintained and has measured the exchanges ever since. Eberhard Fahrbach was closely involved in these studies, as a secretary for the GSP and as the major driving force behind the Fram Strait array. Here we shall examine the legacy of these projects; How our understanding of these themes has evolved in recent years. After the 1980s no convective bottom water renewal has been observed in the Greenland Sea, and the Greenland Sea deep waters have gradually been replaced by warmer, more saline deep water from the Arctic Ocean passing through Fram Strait. Small-scale convective events penetrating deeper than 2500m but there less dense than their surroundings were, however, observed in the early 2000s. The Fram Strait exchanges have proven difficult to estimate due to strong variability, high barotropic and baroclinic eddy activity and short lateral coherence scales. The fact that the mass transports through Fram Strait do not balance complicates the assessment of the heat transport through Fram Strait into the Arctic Ocean and mass (volume) and salt (freshwater
Three-Dimensional Modeling of Fluid and Heat Transport in an Accretionary Complex
NASA Astrophysics Data System (ADS)
Paula, C. A.; Ge, S.; Screaton, E. J.
2001-12-01
As sediments are scraped off of the subducting oceanic crust and accreted to the overriding plate, the rapid loading causes pore pressures in the underthrust sediments to increase. The change in pore pressure drives fluid flow and heat transport within the accretionary complex. Fluid is channeled along higher permeability faults and fractures and expelled at the seafloor. In this investigation, we examined the effects of sediment loading on fluid flow and thermal transport in the decollement at the Barbados Ridge subduction zone. Both the width and thickness of the Barbados Ridge accretionary complex increase from north to south. The presence of mud diapers south of the Tiburon Rise and an observed southward decrease in heat flow measurements indicate that the increased thickness of the southern Barbados accretionary prism affects the transport of chemicals and heat by fluids. The three-dimensional geometry and physical properties of the accretionary complex were utilized to construct a three-dimensional fluid flow/heat transport model. We calculated the pore pressure change due to a period of sediment loading and added this to steady-state pressure conditions to generate initial conditions for transient simulations. We then examined the diffusion of pore pressure and possible perturbation of the thermal regime over time due to loading of the underthrust sediments. The model results show that the sediment-loading event was sufficient to create small temperature fluctuations in the decollement zone. The magnitude of temperature fluctuation in the decollement was greatest at the deformation front but did not vary significantly from north to south of the Tiburon Rise.
The development of a high-capacity instrument module heat transport system, appendixes
NASA Technical Reports Server (NTRS)
1981-01-01
Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.
Song, Guowen; Chitrphiromsri, Patirop; Ding, Dan
2008-01-01
A numerical model of heat and moisture transport in thermal protective clothing during exposure to a flash fire was introduced. The model was developed with the assumption that textiles are treated as porous media. The numerical model predictions were compared with experimental data from different fabric systems and configurations. Additionally, with the introduction of a skin model, the parameters that affect the performance of thermal protective clothing were investigated.
Heat transport in polymer thin films for micro/nano-manufacturing
NASA Astrophysics Data System (ADS)
Hung, Ming-Tsung
The rapid growth in micro/nanotechnology has opened a great opportunity for polymer thin films and polymer nanocomposites. Thermal management or thermal effects in those applications need to be carefully examined. For example, the local heating in electron-beam lithography, emersion lithography, and scanning near field optical lithography may cause the degradation of photoresists and reduce the resolution. The development of many organic electronics, polymer micro-electro-mechanical-systems (MEMS) devices, and polymer nanocomposites may require the knowledge of heat transport in micro/nano-sized polymers. Thermolithography, a novel lithography, uses controlled localized heating to transfer patterns and requires the thermal conductivity data to control. It is of considerable scientific and technological interests for study heat transport in polymer thin films. Unlike bulk polymers that can be measured using commercially available instruments, polymer thin films are difficult to measure. In this manuscript, we develop the measurement techniques suitable for measuring thermal conductivity of polymer thin films and polymer nanocomposites. Using a microfabricated membrane-based device, we study the heat conduction in photoresists at difference process stages. This data is used in our thermolithography study, where we use microheater to study the kinetic of crosslinking reaction of photoresist. The feasibility of thermolithography and potential three dimensional micro/nano-fabrication is presented. The uniqueness of thermolithography is also demonstrated by patterning amorphous fluoropolymers. A modified hot-wire technique is used to measure the thermal conductivity of graphite nanoplatelet (GNP) reinforced nanocomposites, one of the promising candidates for multifunctional materials. Thermal interface resistance in GNP nanocomposites is investigated, which shows a strong effect on energy transport in the nanocomposites and can be diminished through surface treatment.
Heat Exchanger Design Options and Tritium Transport Study for the VHTR System
Chang H. Oh; Eung S. Kim
2008-09-01
This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived
NASA Technical Reports Server (NTRS)
Gelder, Thomas F.; Lewis, James P.; Koutz, Stanley L.
1953-01-01
The problems associated with providing icing protection for the critical components of a typical turbojet transport airplane operating over a range of probable icing conditions are analyzed and discussed. Heating requirements for several thermal methods of protection are evaluated and the airplane performance penalties associated with providing this protection from various energy sources are assessed. The continuous heating requirements for icing protection and the associated airplane performance penalties for the turbojet transport are considerably increased over those associated with lower-speed aircraft. Experimental results show that the heating requirements can be substantially reduced by the deve1opment of a satisfactory cyclic deicing system. The problem of providing protection can be minimized by employing a proper energy source since the airplane performance penalties vary considerably with the source of energy employed. The optimum icing protection system for the turbojet transport or for any other particular aircraft cannot be generally specified; the choice of the optimum system is dependent upon the specific characteristics of the airplane and engine, the flight plan, the probable icing conditions, and the performance requirements of the aircraft.
A one-dimensional heat-transport model for conduit flow in karst aquifers
Long, A.J.; Gilcrease, P.C.
2009-01-01
A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.
Colvin, Jeffrey; Shestakov, Aleksei; Stolken, James; Vignes, Ryan
2011-03-09
Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the P_{n} method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.
Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation
NASA Astrophysics Data System (ADS)
Olsrud, Johan Karl Otto
1998-12-01
Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was
The effect of anisotropic heat transport on magnetic islands in 3-D configurations
Schlutt, M. G.; Hegna, C. C.
2012-08-15
An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlueter current effects. Implications for finite pressure-induced island healing are discussed.
Linearization of a heat-transfer system model with approximation of transport time delay
NASA Astrophysics Data System (ADS)
Shilin, A. A.; Bukreev, V. G.
2014-10-01
A method is proposed for linearizing the nonlinear model of a heat-transfer facility the state variables of which at equilibrium points are determined by numerically solving the initial bilinear system of differential equations for a stationary position of the control valve equipped with a constant-speed electric drive. The considerable transport time delay resulting from the distributed design of the heat-transfer system secondary circuit is approximated by a limited number of first-order inertial sections for obtaining a mathematical model in the Cauchy form. The proposed linearization method is tested on an operating hot-water supply heat-transfer system, and the study results are presented in the form of transient curves.
Fingerprint of topological Andreev bound states in phase-dependent heat transport
NASA Astrophysics Data System (ADS)
Sothmann, Björn; Hankiewicz, Ewelina M.
2016-08-01
We demonstrate that phase-dependent heat currents through superconductor-topological insulator Josephson junctions provide a useful tool to probe the existence of topological Andreev bound states, even for multichannel surface states. We predict that in the tunneling regime topological Andreev bound states lead to a minimum of the thermal conductance for a phase difference ϕ =π , in clear contrast to a maximum of the thermal conductance at ϕ =π that occurs for trivial Andreev bound states in superconductor-normal-metal tunnel junctions. This opens up the possibility that phase-dependent heat transport can distinguish between topologically trivial and nontrivial 4 π modes. Furthermore, we propose a superconducting quantum interference device geometry where phase-dependent heat currents can be measured using available experimental technology.
Anomalous quantum heat transport in a one-dimensional harmonic chain with random couplings.
Yan, Yonghong; Zhao, Hui
2012-07-11
We investigate quantum heat transport in a one-dimensional harmonic system with random couplings. In the presence of randomness, phonon modes may normally be classified as ballistic, diffusive or localized. We show that these modes can roughly be characterized by the local nearest-neighbor level spacing distribution, similarly to their electronic counterparts. We also show that the thermal conductance G(th) through the system decays rapidly with the system size (G(th) ∼ L(-α)). The exponent α strongly depends on the system size and can change from α < 1 to α > 1 with increasing system size, indicating that the system undergoes a transition from a heat conductor to a heat insulator. This result could be useful in thermal control of low-dimensional systems.
Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers
Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.
1996-07-01
Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.
Hegele, P R; Mumford, K G
2014-09-01
The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc=0.233±0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.
NASA Astrophysics Data System (ADS)
Hegele, P. R.; Mumford, K. G.
2014-09-01
The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc = 0.233 ± 0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.
NASA Astrophysics Data System (ADS)
Morita, Shin-ichi; Hayamizu, Yasutaka; Inaba, Hideo
2011-06-01
The purpose of this study is the development of latent heat transport system by using the mixture of the minute latent heat storage materials and the saccharine solution as medium. The experimental studies are carried out by the evaluation of viscosity and pressure loss in a pipe. Polyethylene (P.E.) is selected as the dispersed minute material that has closeness density (920kg/m3) of ice (917kg/m3). D-sorbitol and D-xylose solutions are picked as continuum phase of the test mixture. The concentration of D-sorbitol solution is set 48mass% from measured results of saturation solubility and the melting point. 40mass% solution of D-xylose is selected as the other test continuum phase. The non-ion surfactant, EA157 Dai-ichiseiyaku CO. Ltd, is used in order to prevent of dispersed P.E. powder cohere. The pressure loss of test mixture is measured by the straight circular pipe that has smooth inner surface. The measuring length for pressure loss is 1000 mm, and the inner diameter of pipe is 15mm. The accuracy of experiment apparatus for measuring pressure loss is within ±5%. The pressure loss data is estimated by the relationship between the heat transport ratio and the required pump power. It is clarified that the optimum range of mixing ratio exists over 10mass% of latent heat storage material.
Solute and heat transport model of the Henry and hilleke laboratory experiment.
Langevin, Christian D; Dausman, Alyssa M; Sukop, Michael C
2010-01-01
SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment.
Solute and heat transport model of the Henry and Hilleke laboratory experiment
Langevin, C.D.; Dausman, A.M.; Sukop, M.C.
2010-01-01
SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.
Turbulent transport regimes and the scrape-off layer heat flux width
Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.
2015-04-15
Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.
Brauckmann, Hannes J; Eckhardt, Bruno; Schumacher, Jörg
2017-03-13
Rayleigh-Bénard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Bénard convection in air at Rayleigh number Ra=10(7) and Taylor-Couette flow at shear Reynolds number ReS=2×10(4) for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angular momentum currents, there are differences in the fluctuations outside the boundary layers that increase with overall rotation and can be related to differences in the flow structures in the boundary layer and in the bulk. The study extends the similarities between the two flows from global quantities to local quantities and reveals the effects of rotation on the transport.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.
NASA Astrophysics Data System (ADS)
Brauckmann, Hannes J.; Eckhardt, Bruno; Schumacher, Jörg
2017-03-01
Rayleigh-Bénard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Bénard convection in air at Rayleigh number Ra=107 and Taylor-Couette flow at shear Reynolds number ReS=2×104 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angular momentum currents, there are differences in the fluctuations outside the boundary layers that increase with overall rotation and can be related to differences in the flow structures in the boundary layer and in the bulk. The study extends the similarities between the two flows from global quantities to local quantities and reveals the effects of rotation on the transport.
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2017-02-01
The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great
Large-eddy Advection in Evapotranspiration Estimates from an Array of Eddy Covariance Towers
NASA Astrophysics Data System (ADS)
Lin, X.; Evett, S. R.; Gowda, P. H.; Colaizzi, P. D.; Aiken, R.
2014-12-01
Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a sorghum in Bushland, Texas in 2014. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms were integrated from the depth of soil heat flux plate to the height of eddy covariance measurement. Therefore, a comparison between the eddy covariance system and large weighing lysimeter was conducted on hourly and daily basis. The results for the discrepancy between eddy covariance towers and the lysimeter will be discussed in terms of advection and storage contributions in time domain and frequency domain.
Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems
NASA Astrophysics Data System (ADS)
Hunt, George L.; Drinkwater, Kenneth F.; Arrigo, Kevin; Berge, Jørgen; Daly, Kendra L.; Danielson, Seth; Daase, Malin; Hop, Haakon; Isla, Enrique; Karnovsky, Nina; Laidre, Kristin; Mueter, Franz J.; Murphy, Eugene J.; Renaud, Paul E.; Smith, Walker O.; Trathan, Philip; Turner, John; Wolf-Gladrow, Dieter
2016-12-01
We compare and contrast the ecological impacts of atmospheric and oceanic circulation patterns on polar and sub-polar marine ecosystems. Circulation patterns differ strikingly between the north and south. Meridional circulation in the north provides connections between the sub-Arctic and Arctic despite the presence of encircling continental landmasses, whereas annular circulation patterns in the south tend to isolate Antarctic surface waters from those in the north. These differences influence fundamental aspects of the polar ecosystems from the amount, thickness and duration of sea ice, to the types of organisms, and the ecology of zooplankton, fish, seabirds and marine mammals. Meridional flows in both the North Pacific and the North Atlantic oceans transport heat, nutrients, and plankton northward into the Chukchi Sea, the Barents Sea, and the seas off the west coast of Greenland. In the North Atlantic, the advected heat warms the waters of the southern Barents Sea and, with advected nutrients and plankton, supports immense biomasses of fish, seabirds and marine mammals. On the Pacific side of the Arctic, cold waters flowing northward across the northern Bering and Chukchi seas during winter and spring limit the ability of boreal fish species to take advantage of high seasonal production there. Southward flow of cold Arctic waters into sub-Arctic regions of the North Atlantic occurs mainly through Fram Strait with less through the Barents Sea and the Canadian Archipelago. In the Pacific, the transport of Arctic waters and plankton southward through Bering Strait is minimal. In the Southern Ocean, the Antarctic Circumpolar Current and its associated fronts are barriers to the southward dispersal of plankton and pelagic fishes from sub-Antarctic waters, with the consequent evolution of Antarctic zooplankton and fish species largely occurring in isolation from those to the north. The Antarctic Circumpolar Current also disperses biota throughout the Southern Ocean
Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT
Thorne, D.; Langevin, C.D.; Sukop, M.C.
2006-01-01
SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burke, Alexander Thomas
1999-11-01
We study electron heat transport and spontaneous fluctuations during the DC injection of an electron beam by a 3 mm diameter crystal of LaB 6 at 20 eV and 200 mA, into a magnetized plasma with an ambient magnetic field of 500-1500 G. Thermalization of the beam current and subsequent transport of the electron heat creates a filamentary region about 1 cm wide, on the order of the electron skin depth, c/wpe. This ``temperature filament'' extends along the field about 5 m into the 10 m long, 40 cm wide plasma column, with a peak temperature 5-20 times greater than the 0.2-0.5 eV temperature of the bulk plasma. The plasma density, on the order of 1 × 1012 cm-3, is unperturbed in the filament because the energy of the beam is below the ionization potential of helium. In the temperature filament, under quiescent conditions, we observe simultaneous axial and radial electron heat transport that occurs at the classically predicted rates within the limits of uncertainty in the electron temperature measurement of about 20%. This is based on a comparison of space-time measurements of the filament temperature with the prediction of a computer code developed specifically to model 2-dimensional classical electron heat conduction in the beamheated filament. Langmuir probes were used to measure the temperature profile of the filament, and the spontaneous fluctuations in the filament region. Non-classical or so-called anomalous transport is observed after the onset of fluctuations. Initially these fluctuations are highly coherent with a frequency on the order of 0.1 fci and an m = 1 spiral shape in the x-y plane, having a density fluctuation amplitude, dn/n, of 20% and a magnetic fluctuation amplitude, δB/ B, of.01%. Measurements of the transverse magnetic fluctuation vectors confirm the m = 1 nature of the mode. These fluctuations are identified as drift- Alfven waves. Later in time, a low-frequency fluctuation occurs, on the order of.02 fci, which is confined to the radial center
Distributed Parallel Particle Advection using Work Requesting
Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph
2013-09-30
Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.
Space-fractional advection-diffusion and reflective boundary condition.
Krepysheva, Natalia; Di Pietro, Liliana; Néel, Marie-Christine
2006-02-01
Anomalous diffusive transport arises in a large diversity of disordered media. Stochastic formulations in terms of continuous time random walks (CTRWs) with transition probability densities showing space- and/or time-diverging moments were developed to account for anomalous behaviors. A broad class of CTRWs was shown to correspond, on the macroscopic scale, to advection-diffusion equations involving derivatives of noninteger order. In particular, CTRWs with Lévy distribution of jumps and finite mean waiting time lead to a space-fractional equation that accounts for superdiffusion and involves a nonlocal integral-differential operator. Within this framework, we analyze the evolution of particles performing symmetric Lévy flights with respect to a fluid moving at uniform speed . The particles are restricted to a semi-infinite domain limited by a reflective barrier. We show that the introduction of the boundary condition induces a modification in the kernel of the nonlocal operator. Thus, the macroscopic space-fractional advection-diffusion equation obtained is different from that in an infinite medium.
Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming
Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.
2004-01-01
Quantitative estimates of increased heat transfer by atmospheric H 2O vapor during the Albian greenhouse warming suggest that the intensified hydrologic cycle played a greater role in warming high latitudes than at present and thus represents a viable alternative to oceanic heat transport. Sphaerosiderite ??18O values in paleosols of the North American Cretaceous Western Interior Basin are a proxy for meteoric ??18O values, and mass-balance modeling results suggest that Albian precipitation rates exceeded modern rates at both mid and high latitudes. Comparison of modeled Albian and modern precipitation minus evaporation values suggests amplification of the Albian moisture deficit in the tropics and moisture surplus in the mid to high latitudes. The tropical moisture deficit represents an average heat loss of ???75 W/m2 at 10??N paleolatitude (at present, 21 W/m2). The increased precipitation at higher latitudes implies an average heat gain of ???83 W/m2 at 45??N (at present, 23 W/m2) and of 19 W/m2 at 75??N (at present, 4 W/m2). These estimates of increased poleward heat transfer by H2O vapor during the Albian may help to explain the reduced equator-to-pole temperature gradients. ?? 2004 Geological Society of America.
Fluid Transport Driven by Heat-Generating Nuclear Waste in Bedded Salt
NASA Astrophysics Data System (ADS)
Jordan, A.; Harp, D. R.; Stauffer, P. H.; Ten Cate, J. A.; Labyed, Y.; Boukhalfa, H.; Lu, Z.; Person, M. A.; Robinson, B. A.
2013-12-01
The question of where to safely dispose high-level nuclear waste (HLW) provides ample motivation for scientific research on deep geologic disposal options. The goal of this study is to model the dominant heat and mass transport processes that would be driven by heat generating nuclear waste buried in bedded salt. The interaction between liquid brine flow towards the heat source, establishment of a heat pipe in the mine-run salt backfill, boiling, and vapor condensation leads to changes in porosity, permeability, saturation, thermal conductivity, and rheology of the salt surrounding potential waste canisters. The Finite Element Heat and Mass transfer code (FEHM) was used to simulate these highly coupled thermal, hydrological, and chemical processes. The numerical model has been tested against recent and historical experimental data to develop and improve the salt material model. We used the validated numerical model to make predictions of temperature gradients, porosity changes, and tracer behavior that will be testable in a future 2-year field-scale heater experiment to be carried out in an experimental test bed at the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, NM.
High Order Semi-Lagrangian Advection Scheme
NASA Astrophysics Data System (ADS)
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
Water and heat transport in hilly red soil of southern China: I. Experiment and analysis.
Lu, Jun; Huang, Zhi-Zhen; Han, Xiao-Fei
2005-05-01
Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depended on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great air temperature differences annually and diurnally result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields' conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 degrees C temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively. Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent, when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evaporation. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water.
Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.
Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T
2012-07-01
Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors.
Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores
2016-01-01
The integration of local heat sources with solid-state nanopores offers new means for controlling the transmembrane transport of charged biomacromolecules. In the case of electrophoretic transport of DNA, recent experimental studies revealed unexpected temperature dependences of the DNA capture rate, the DNA translocation velocity, and the ionic current blockades produced by the presence of DNA in the nanopore. Here, we report the results of all-atom molecular dynamics simulations that elucidated the effect of temperature on the key microscopic processes governing electric field-driven transport of DNA through nanopores. Mimicking the experimental setup, we simulated the capture and subsequent translocation of short DNA duplexes through a locally heated nanopore at several temperatures and electrolyte conditions. The temperature dependence of ion mobility at the DNA surface was found to cause the dependence of the relative conductance blockades on temperature. To the first order, the effective force on DNA in the nanopore was found to be independent of temperature, despite a considerable reduction of solution viscosity. The temperature dependence of the solution viscosity was found to make DNA translocations faster for a uniformly heated system but not in the case of local heating that does not affect viscosity of solution surrounding the untranslocated part of the molecule. Increasing solution temperature was also found to reduce the lifetime of bonds formed between cations and DNA. Using a flow suppression algorithm, we were able to separate the effects of electro-osmotic flow and direct ion binding, finding the reduced durations of DNA–ion bonds to increase, albeit weakly, the effective force experienced by DNA in an electric field. Unexpectedly, our simulations revealed a considerable temperature dependence of solvent velocity at the DNA surface—slip velocity, an effect that can alter hydrodynamic coupling between the motion of DNA and the surrounding fluid
NASA Astrophysics Data System (ADS)
Shao, H.; Watanabe, N.; Singh, A. K.; Nagel, T.; Linder, M.; Woerner, A.; Kolditz, O.
2012-12-01
As a carbon-free energy supply technology, the operation time and final energy output of thermal solar power plants can be greatly extended if efficient thermal storage systems are applied. One of the proposed design of such system is to utilize reversible thermochemical reactions and its embedded reaction enthalpy, e.g. the Ca(OH)2/CaO hydration circle, in a fixed-bed gas-solid reactor (Schaube et al. 2011) The modeling of such a storage system involves multiple strongly-coupled physical and chemical processes. Seepage velocity is calculated by the nonlinear Forchheimer law. Gas phase density and viscosity are temperature, pressure and composition dependent. Also, heat transfer between gas and solid phases is largely influenced by the exothermal heat produced by the hydration of calcium oxide. Numerical solution of four governing PDEs include the mass balance, reactive transport, heat balance equations for gas and solid phases, which are implemented into the open source scientific software OpenGeoSys in a monolithic way. Based on it, a 2D numerical model, considering the boundary heat loss of the system, was set up to simulate the energy-storage and release circle. The high performance computing techniques were employed in two stages. First, the dynamic behavior of the heat storage system is simulated on a parallel platform. Second, a large number of processors are employed to perform sensitivity analysis, whereas the reaction rates and efficiency factor of heat transfer are parameterized so that the measured and simulated temperature profile fit with each other. The model showed that heat transfer coefficient between solid and gas phase, grain size of the filling material will influence the final performance greatly. By varying these factors, the calibrated model will be further applied to optimize the design of such energy storage system.
Pattrick Calderoni
2010-09-01
Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the
Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.
1991-01-01
The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.
The Role of Greenland on Heat and Moisture Transports Into the Arctic.
NASA Astrophysics Data System (ADS)
Kindig, D.; Tsukernik, M.; Serreze, M. C.
2006-12-01
The region between Greenland and northern Scandinavia is a primary gateway for the transport of moist static energy into the Arctic. Much of this transport is via eddies, namely synoptic scale cyclones associated with the North Atlantic storm track and Icelandic Low. The orography of Greenland strongly influences the evolution, track and behavior of cyclones in the region. Here we examine how Greenland helps to control moist static energy transports into the Arctic through experiments with the Polar MM5 regional model (MM5), forced at the boundaries by NCEP/NCAR Reanalysis data. The focus is on the winter season. Sensitivity studies are run comparing transports under control simulations (CONTROL) with those for which the orography of Greenland is removed (NO_GREEN). Monthly climatologies are built comparing CONTROL and NO_GREEN simulations for positive, negative and neutral phases of the North Atlantic Oscillation. In most NO_GREEN simulations, there are substantial changes in the longitude of peak pole-ward transports of latent and sensible heat, which can in turn be related to shifts in storm tracks and the location/intensity of the Icelandic Low. In global climate simulations with no Greenland orography, the Icelandic Low tends to shift eastward. By contrast, the MM5 NO_GREEN simulations show a westward shift in the storm track.
Tomography-based monitoring of isothermal snow metamorphism under advective conditions
NASA Astrophysics Data System (ADS)
Ebner, P. P.; Schneebeli, M.; Steinfeld, A.
2015-07-01
Time-lapse X-ray microtomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. The effect of diffusion and advection across the snow pores on the snow microstructure were analysed in controlled laboratory experiments and possible effects on natural snowpacks discussed. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective permeability. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Isothermal snow metamorphism is driven by sublimation deposition caused by the Kelvin effect and is the limiting factor independently of the transport regime in the pores.
Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber
NASA Astrophysics Data System (ADS)
Gomez-Heredia, C. L.; Macias, J.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J. J.
2017-01-01
Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen's number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorr
heat transport.
Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport
Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur
2016-09-25
We report that while Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. Finally, by identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contribute towards improved thermal performance of Li-ion cells.
Study of fast electron transport and ionization in isochorically heated solid foil
NASA Astrophysics Data System (ADS)
Sawada, Hiroshi; Sentoku, Yasuhiko; Pandit, Rishi; Yabuuchi, Toshinori; Zastrau, Ulf; Foerster, Eckhart; Beg, Farhat; McLean, Harry; Chen, Hui; Park, J.-B.; Patel, Prav; Link, Anthony; Ping, Yuan
2016-10-01
Interaction of a high-power, short-pulse laser with a solid target generates a significant number of relativistic MeV electrons, subsequently heating the target isochorically in the transport process. Fast electron driven ionization of a solid titanium foil was studied by measuring Ti K-alpha x-rays and performing 2-D particle-in-cell simulations. The experiment was performed using the 50 TW Leopard short-pulse laser at UNR's Nevada Terawatt Facility. The 15 J, 0.35 ps laser was tightly focused on to a various sized, 2- μm thick Ti foil within a 8 μm spot to achieve the peak intensity of 2×1019 W/cm2. The transport of the fast electrons produced 4.51 keV Ti K-alpha x-rays. The yields and 2-D monochromatic images were recorded with a Bragg crystal spectrometer and a spherically bent crystal imager. The ionization degree of the heated foil was determined to be 15 from the ionized K-alpha lines and the missing emission in the images. 2-D PIC simulations using a PICLS code with a radiation transport module were performed to calculate the K-alpha profiles and spectra. Details of the experiment and comparison will be presented.
Exact solution of a Lévy walk model for anomalous heat transport.
Dhar, Abhishek; Saito, Keiji; Derrida, Bernard
2013-01-01
The Lévy walk model is studied in the context of the anomalous heat conduction of one-dimensional systems. In this model, the heat carriers execute Lévy walks instead of normal diffusion as expected in systems where Fourier's law holds. Here we calculate exactly the average heat current, the large deviation function of its fluctuations, and the temperature profile of the Lévy walk model maintained in a steady state by contact with two heat baths (the open geometry). We find that the current is nonlocally connected to the temperature gradient. As observed in recent simulations of mechanical models, all the cumulants of the current fluctuations have the same system-size dependence in the open geometry. For the ring geometry, we argue that a size-dependent cutoff time is necessary for the Lévy walk model to behave like mechanical models. This modification does not affect the results on transport in the open geometry for large enough system sizes.
Modeling of limiter heat loads and impurity transport in Wendelstein 7-X startup plasmas
NASA Astrophysics Data System (ADS)
Effenberg, Florian; Feng, Y.; Frerichs, H.; Schmitz, O.; Hoelbe, H.; Koenig, R.; Krychowiak, M.; Pedersen, T. S.; Bozhenkov, S.; Reiter, D.
2015-11-01
The quasi-isodynamic stellarator Wendelstein 7-X starts plasma operation in a limiter configuration. The field consists of closed magnetic flux surfaces avoiding magnetic islands in the plasma boundary. Because of the small size of the limiters and the absence of wall-protecting elements in this phase, limiter heat loads and impurity generation due to plasma surface interaction become a concern. These issues are studied with the 3D fluid plasma edge and kinetic neutral transport code EMC3-Eirene. It is shown that the 3D SOL consists of three separate helical magnetic flux bundles of different field line connection lengths. A density scan at input power of 4MW reveals a strong modulation of the plasma paramters with the connection length. The limiter peak heat fluxes drop from 14 MWm-2 down to 10 MWm-2 with raising the density from 1 ×1018m-3 to 1.9 ×1019m-3, accompanied by an increase of the heat flux channel widths λq. Radiative power losses can help to avoid thermal overloads of the limiters at the upper margin of the heating power. The power removal feasibility of the intrinsic carbon and other extrinsic light impurities via active gas injection is discussed as a preparation of this method for island divertor operation. Work supported in part by start up funds of the Department of Engineering Physics at the University of Wisconsin - Madison, USA and by the U.S. Department of Energy under grant DE-SC0013911.
Numerical modeling of diffusive heat transport across magnetic islands and local stochastic field
Yu, Q.
2006-06-15
The heat diffusion across magnetic islands is studied numerically and compared with analytical results. For a single island, the enhanced radial heat diffusivity, {chi}{sub r}, due to the parallel transport along the field lines is increased over a region of about the island width w. The maximum enhanced heat conductivity at the rational surface is proportional to w{sup 2}({chi}{sub parallel}{chi}{sub perpendicular}){sup 1/2} for sufficiently high values of {chi}{sub parallel}/{chi}{sub perpendicular}, where {chi}{sub parallel}/{chi}{sub perpendicular} is the ratio between the parallel and the perpendicular heat diffusivity. For low ratios of {chi}{sub parallel}/{chi}{sub perpendicular}, however, the maximum value of {chi}{sub r} is proportional to w{sup 4}{chi}{sub parallel}. In a locally stochastic magnetic field, {chi}{sub r} is again proportional to w{sup 4}{chi}{sub parallel} for low {chi}{sub parallel}/{chi}{sub perpendicular}, which is in agreement with the analytical results. With increasing {chi}{sub parallel/}{chi}{sub perpendicular}, {chi}{sub r} is dominated first by the additive effect of individual islands and then by the field ergodicity.
Nanoscale phase engineering of thermal transport with a Josephson heat modulator.
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
2016-03-01
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
Exact solution of a Lévy walk model for anomalous heat transport
NASA Astrophysics Data System (ADS)
Dhar, Abhishek; Saito, Keiji; Derrida, Bernard
2013-01-01
The Lévy walk model is studied in the context of the anomalous heat conduction of one-dimensional systems. In this model, the heat carriers execute Lévy walks instead of normal diffusion as expected in systems where Fourier's law holds. Here we calculate exactly the average heat current, the large deviation function of its fluctuations, and the temperature profile of the Lévy walk model maintained in a steady state by contact with two heat baths (the open geometry). We find that the current is nonlocally connected to the temperature gradient. As observed in recent simulations of mechanical models, all the cumulants of the current fluctuations have the same system-size dependence in the open geometry. For the ring geometry, we argue that a size-dependent cutoff time is necessary for the Lévy walk model to behave like mechanical models. This modification does not affect the results on transport in the open geometry for large enough system sizes.
Nanoscale phase engineering of thermal transport with a Josephson heat modulator
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
2016-03-01
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
NASA Astrophysics Data System (ADS)
Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.
2013-07-01
The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.
A Transport Model for Non-Local Heating of Electrons in ICP Reactors
NASA Technical Reports Server (NTRS)
Chang, C. H.; Bose, Deepak; Arnold, James O. (Technical Monitor)
1998-01-01
A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements.
Scaling of high-field transport and localized heating in graphene transistors.
Bae, Myung-Ho; Islam, Sharnali; Dorgan, Vincent E; Pop, Eric
2011-10-25
We use infrared thermal imaging and electrothermal simulations to find that localized Joule heating in graphene field-effect transistors on SiO(2) is primarily governed by device electrostatics. Hot spots become more localized (i.e., sharper) as the underlying oxide thickness is reduced, such that the average and peak device temperatures scale differently, with significant long-term reliability implications. The average temperature is proportional to oxide thickness, but the peak temperature is minimized at an oxide thickness of ∼90 nm due to competing electrostatic and thermal effects. We also find that careful comparison of high-field transport models with thermal imaging can be used to shed light on velocity saturation effects. The results shed light on optimizing heat dissipation and reliability of graphene devices and interconnects.
Electron temperature measurements and heat transport improvement in the RFX-mod experiment.
NASA Astrophysics Data System (ADS)
Alfier, Alberto; Bonomo, Federica; Franz, Paolo; Marrelli, Lionello; Pasqualotto, Roberto; Piovesan, Paolo; Spizzo, Gianluca; Annibaldi, Silvia Valeria
2007-11-01
Electron temperature profiles at about 1keV have been measured in the RFX-mod experiment during the recent high plasma current campaign (Ip>1.2MA, ne˜4.10^19): peaked Te profiles, obtained through the Thomson scattering diagnostic, are characterized by a steep gradient in the core during the quasi-single helicity (QSH) state. The formation of well defined magnetic flux surfaces during QSH states determines a reduction of thermal heat conductivity, whose estimate is essential to quantify this transport improvement. We apply the M1TeV code [1] to various experimental scenarios in order to estimate heat diffusivity, then also calculating electron confinement time: in this study, we consider the effect of the increase of plasma current and also of eventual external current drive. [1] F.Porcelli et al., Phys. Rev. Lett. 82, 1458 (1999).
Prandtl-Number Dependence of Heat Transport in Laminar Horizontal Convection.
Shishkina, Olga; Wagner, Sebastian
2016-01-15
We report the Prandtl-number (Pr) and Rayleigh-number (Ra) dependencies of the Reynolds number (Re) and mean convective heat transport, measured by the Nusselt number (Nu), in horizontal convection (HC) systems, where the heat supply and removal are provided exclusively through a lower horizontal surface of a fluid layer. For laminar HC, we find that Re∼Ra^{2/5}Pr^{-4/5}, Nu∼Ra^{1/5}Pr^{1/10} with a transition to Re∼Ra^{1/2}Pr^{-1}, Nu∼Ra^{1/4}Pr^{0} for large Pr. The results are based on direct numerical simulations for Ra from 3×10^{8} to 5×10^{10} and Pr from 0.05 to 50 and are explained by applying the Grossmann-Lohse approach [J. Fluid Mech. 407, 27 (2000)] transferred from the case of Rayleigh-Bénard convection to the case of laminar HC.
NASA Technical Reports Server (NTRS)
Malone, R. C.; Auer, L. H.; Glatzmaier, G. A.; Wood, M. C.; Toon, O. B.
1986-01-01
A reexamination is conducted of the 'nuclear winter' hypothesis with a three-dimensional global model modified to allow for localized injection of smoke, its transport by the simulated winds, its absorption of sunlight, and its removal by model-simulated precipitation. Smoke injected into the troposphere is driven upward by solar heating. The tropopause, initially above the smoke, reforms below the heat smoke layer and separates it from precipitation below. Although much smoke is scavenged while the thermal structure is being altered, the residence time of the remaining smoke is greatly increased. Particularly for July conditions, a longer-lasting 'nuclear winter' effect is observed than was found in earlier modeling studies in which normal tropospheric residence times were assumed. In January the smaller solar flux in the northern hemisphere allows faster removal of smoke than in July. Significant cooling of the northern hemisphere continents is predicted; its dependence on season and injected smoke mass is described.
A possible closure relation for heat transport in the solar wind
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.
1979-01-01
The objective of the present paper is to search for an empirical closure relation for solar wind heat transport that applies to a microscopic scale. This task is approached by using the quasi-linear wave-particle formalism proposed by Perkins (1973) as a guide to derive an equation relating the relative drift speed between core-electron and proton populations to local bulk flow conditions. The resulting relationship, containing one free parameter, is found to provide a good characterization of Los Alamos Imp electron data measuring during the period from March 1971 through August 1974. An empirical closure relation is implied by this result because of the observed proportionality between heat flux and relative drift speed.
Understanding the Atmospheric Response to Ocean Heat Transport: a Model Inter-Comparison
NASA Astrophysics Data System (ADS)
Rose, B.
2012-12-01
The oceans' contribution to poleward heat transport (1 to 2 PW) is dwarfed by the atmosphere, and yet ocean heat transport (OHT) exerts a powerful climatic influence by exciting various atmospheric feedbacks. OHT drives polar-amplified greenhouse warming through a dynamical redistribution of tropospheric water vapor, and helps set the strength and position of the ITCZ. These complex responses explicitly couple tropical and extra-tropical processes, and depend on interactions between large-scale dynamics and moist physics. Considerable insights have been drawn from recent idealized experiments with aquaplanet GCMs coupled to slab oceans with prescribed OHT convergence (q-flux). However sensitivity to uncertain model parameterizations pose a barrier to deeper understanding. I will introduce a new multi-institution collaboration called the Q-flux / Aquaplanet Model Inter-comparison Project (QAquMIP), designed to test the robustness of the climatic impact of OHT and its relationship to traditional climate sensitivity. A standardized set of GCM experiments, repeated across a broad range of models, are forced by a few simple analytical q-fluxes. Experimental controls include the meridional scale of poleward OHT, strength of inter-hemispheric OHT, and zonally asymmetric equatorial heating. I will compare robust spatial patterns of temperature and precipitation changes associated with OHT forcing to those driven by CO2, and discuss the underlying spatial pattern of atmospheric feedbacks. A recurring theme is the key role of moist convection in communicating sea surface heating signals throughout the atmosphere, with consequences for clouds, water vapor, radiation, and hydrology. QAquMIP will better constrain the possible role of the oceans in past warm climates, provide a standard framework for testing new parameterizations, and advance our fundamental understanding of the moist processes contributing to present-day climate sensitivity.
NASA Astrophysics Data System (ADS)
Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.
2015-12-01
The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary
Nodal superconductivity in FeS: Evidence from quasiparticle heat transport
NASA Astrophysics Data System (ADS)
Ying, T. P.; Lai, X. F.; Hong, X. C.; Xu, Y.; He, L. P.; Zhang, J.; Wang, M. X.; Yu, Y. J.; Huang, F. Q.; Li, S. Y.
2016-09-01
We report low-temperature heat transport measurements on superconducting iron sulfide FeS with Tc≈5 K, which has the same crystal structure and similar electronic band structure to the superconducting iron selenide FeSe. In zero magnetic field, a significant residual linear term κ0/T is observed. At low field, κ0/T increases rapidly with increasing field. These results suggest a nodal superconducting gap in FeS. We compare it with the sister compound FeSe and other iron-based superconductors with nodal gaps.
Saturation of poleward atmospheric heat transport in warm climates and the low-gradient paradox.
NASA Astrophysics Data System (ADS)
Caballero, R.; Langen, P.
2004-12-01
The equable climates of the deep past featured higher atmospheric greenhouse gas concentrations, greater global-mean surface temperatures and much weaker equator-to-pole temperature contrasts than today. Climate models readily reproduce the higher mean temperatures, given sufficient increases in greenhouse gases, but they have proved incapable of matching the low meridional gradients indicated by proxy data. A crucial step in resolving this 'low-gradient paradox' is uderstanding why climate models fail to reproduce the correct feedback between global mean temperature and its meridional gradient. Though models do achieve some reduction in temperature gradients, mostly through snow and sea-ice albedo feedback, the remaining discrepancy must be accounted for by either more exotic forms of radiative forcing feedback, which are not represented in current models, or by more efficient oceanic and/or atmospheric poleward heat transports, which the models for some reason do not capture. This latter feature is especially puzzling for the atmosphere, since there are plausible reasons to expect atmospheric energy transport to be be considerably more efficient in a warmer climate. We explore this issue by systematically studying the response of atmospheric heat transpor in a GCM to a very broad range of global mean temperatures and meridional gradients. We find that heat transport increases with global mean temperature when the latter is less than about 15C; above this value, heat transport saturates, becoming insensitive to surface temperature. This behavior has a dynamical origin traceble to changes in the structure of the atmosphere's general circulation. Mean tropospheric static stability increases with surface temperature, reducing baroclinicity and suppressing storm-track eddy activity. Furthermore, as temperature increases the storm-tracks as a whole migrate poleward over cooler waters, and thus do not experience the full global-mean surface temperature increase. These
Rotation drive and momentum transport with electron cyclotron heating in tokamak plasmas.
Yoshida, M; Sakamoto, Y; Takenaga, H; Ide, S; Oyama, N; Kobayashi, T; Kamada, Y
2009-08-07
The role of electron cyclotron resonance heating (ECRH) on the toroidal rotation velocity profile has been investigated in the JT-60U tokamak device by separating the effects of the change in momentum transport, the intrinsic rotation by pressure gradient, and the intrinsic rotation by ECRH. It is found that ECRH increases the toroidal momentum diffusivity and the convection velocity. It is also found that ECRH drives the codirection (co) intrinsic rotation inside the EC deposition radius and the counterdirection (ctr) intrinsic rotation outside the EC deposition radius. This ctr rotation starts from the EC deposition radius and propagates to the edge region.
Multiresonance of energy transport and absence of heat pump in a force-driven lattice.
Zhang, Song; Ren, Jie; Li, Baowen
2011-09-01
Energy transport control in low dimensional nanoscale systems has attracted much attention in recent years. In this paper, we investigate the energy transport properties of the Frenkel-Kontorova lattice subject to a periodic driving force, in particular, the resonance behavior of the energy current by varying the external driving frequency. It is discovered that, in certain parameter ranges, multiple resonance peaks, instead of a single resonance, emerge. By comparing the nonlinear lattice model with a harmonic chain, we unravel the underlying physical mechanism for such a resonance phenomenon. Other parameter dependencies of the resonance behavior are examined as well. Finally, we demonstrate that heat pumping is actually absent in this force-driven model.
Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks
Kaye, S.M.
1985-05-01
Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.
Pablant, N. A.; Satake, S.; Yokoyama, M.; Gates, D. A.; Bitter, M.; Bertelli, N.; Delgado-Aparicio, L.; Dinklage, A.; Goto, M.; Hill, K. W.; Igamai, S.; Kubo, S.; Lazerson, S.; Matsuoka, S.; Mikkelsen, D. R.; Morita, S.; Oishi, T.; Seki, R.; Shimozuma, T.; Suzuki, C.; Suzuki, Y.; Takahashi, H.; Yamada, H.; Yoshimura, Y.
2016-01-28
An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-${{T}_{\\text{e}}}$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature (${{T}_{\\text{eo}}}=9$ keV) at moderately low densities (${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field (${{E}_{\\text{r}}}$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.
Modification of argon impurity transport by electron cyclotron heating in KSTAR H-mode plasmas
NASA Astrophysics Data System (ADS)
Hong, Joohwan; Henderson, S. S.; Kim, Kimin; Seon, C. R.; Song, Inwoo; Lee, H. Y.; Jang, Juhyeok; Park, Jae Sun; Lee, S. G.; Lee, J. H.; Lee, Seung Hun; Hong, Suk-Ho; Choe, Wonho
2017-03-01
Experiments with a small amount of Ar gas injection as a trace impurity were conducted in the Korea Superconducting Tokamak Advanced Research (KSTAR) H-mode plasma ({{B}\\text{T}} = 2.8 T, {{I}\\text{P}} = 0.6 MA, and {{P}\\text{NBI}} = 4.0 MW). 170 GHz electron cyclotron resonance heating (ECH) at 600 and 800 kW was focused along the mid-plane with a fixed major radial position of R = 1.66 m. The emissivity of the Ar16+ (3.949 {\\mathring{\\text{A}}} ) and Ar15+ (353.860 {\\mathring{\\text{A}}} ) spectral lines were measured by x-ray imaging crystal spectroscopy (XICS) and a vacuum UV (VUV) spectrometer, respectively. ECH reduces the peak Ar15+ emission and increases the Ar16+ emission, an effect largest with 800 kW. The ADAS-SANCO impurity transport code was used to evaluate the Ar transport coefficients. It was found that the inward convective velocity found in the plasma core without ECH was decreased with ECH, while diffusion remained approximately constant resulting in a less-peaked Ar density profile. Theoretical results from the NEO code suggest that neoclassical transport is not responsible for the change in transport, while the microstability analysis using GKW predicts a dominant ITG mode during both ECH and non-ECH plasmas.
Xia, Mingjun; Ghafouri-Shiraz, H
2016-03-01
This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers.
NASA Astrophysics Data System (ADS)
Zheng, Yangxing
A Simple Ocean Data Assimilation (SODA) reanalysis is used to investigate the trend and variability of global ocean heat transport for the period 1958-2004. The forecast model utilizes Parallel Ocean Program (POP) physics, with an average 0.4° (lon) x 0.25° (lat) x 40-level resolution, and is forced with ERA-40 atmospheric reanalysis from 1958 to 2001. The reanalysis is updated in a second run which is forced with QuickSCAT wind stress from 2000 to 2004. SODA uses a sequential estimation algorithm, with observations from the historical archive of hydrographic profiles supplemented by ship intake measurements, moored hydrographic observations and remotely sensed sea surface temperature. The results suggest that the interannual to decadal variability of ocean heat transport (OHT) is primarily controlled by the strength of the meridional overturning circulation (MOC), particularly in the Atlantic Ocean. The role of variation of temperature on variability of meridional OHT increases in the northern North Atlantic Ocean. Results from an analysis of the vertical structure of OHT show that most change of OHT in the oceans occurs in the upper 1000m. A heat budget analysis for the North Atlantic Ocean suggests that the long-term change of surface heat flux is principally balanced by the convergence of OHT as compared to change in the heat storage. The linear change in heat storage rate is only about one third as large as the convergence of OHT. Enhanced subtropical cells (STCs), largely affected by strengthened equatorial upwelling processes, are responsible for an intensified northward OHT in the north tropical Atlantic Ocean and a weakened northward OHT in the south tropical Atlantic Ocean. Convergence of flow due to a northward shift of the atmospheric circulation in the mid-latitude Atlantic reinforces the MOCs, which contribute to a positive trend of OHT. Finally, in the northern North Atlantic Ocean, a small increase in meridional OHT and a slight weakening of MOC
The role of ocean heat transport in the habitaility of tidal-locking exoplanets around M dwarfs
NASA Astrophysics Data System (ADS)
Hu, Y.; Yang, J.
2013-12-01
The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone (HZ) around M dwarfs. In the present paper, we carry out the first simulation with a fully coupled atmosphere-ocean general circulation model (AOGCM) to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an 'eyeball'. For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' HZ. This study provides the first demonstration of the importance of exo-oceanography in determining climate states and habitability of exoplanets.
Ng, C W W; Feng, S; Liu, H W
2015-03-01
Methane oxidation in landfill covers is a complex process involving water, gas and heat transfer as well as microbial oxidation. The coupled phenomena of microbial oxidation, water, gas, and heat transfer are not fully understood. In this study, a new model is developed that incorporates water-gas-heat coupled reactive transport in unsaturated soil with methane oxidation. Effects of microbial oxidation-generated water and heat are included. The model is calibrated using published data from a laboratory soil column test. Moreover, a series of parametric studies are carried out to investigate the influence of microbial oxidation-generated water and heat, initial water content on methane oxidation efficiency. Computed and measured results of gas concentration and methane oxidation rate are consistent. It is found that the coupling effects between water-gas-heat transfer and methane oxidation are significant. Ignoring microbial oxidation-generated water and heat can result in a significant difference in methane oxidation efficiency by 100%.
Siemens, M.; Li, Q.; Yang, R.; Nelson, K.; Anderson, E.; Murnane, M.; Kapteyn, H.
2009-03-02
Understanding heat transport on nanoscale dimensions is important for fundamental advances in nanoscience, as well as for practical applications such as thermal management in nano-electronics, thermoelectric devices, photovoltaics, nanomanufacturing, as well as nanoparticle thermal therapy. Here we report the first time-resolved measurements of heat transport across nanostructured interfaces. We observe the transition from