Science.gov

Sample records for advective heat transport

  1. Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts.

    PubMed

    Alcaraz, Mar; García-Gil, Alejandro; Vázquez-Suñé, Enric; Velasco, Violeta

    2016-02-01

    Borehole Heat Exchangers (BHEs) are increasingly being used to exploit shallow geothermal energy. This paper presents a new methodology to provide a response to the need for a regional quantification of the geothermal potential that can be extracted by BHEs and the associated environmental impacts. A set of analytical solutions facilitates accurate calculation of the heat exchange of BHEs with the ground and its environmental impacts. For the first time, advection and dispersion heat transport mechanisms and the temporal evolution from the start of operation of the BHE are taken into account in the regional estimation of shallow geothermal resources. This methodology is integrated in a GIS environment, which facilitates the management of input and output data at a regional scale. An example of the methodology's application is presented for Barcelona, in Spain. As a result of the application, it is possible to show the strengths and improvements of this methodology in the development of potential maps of low temperature geothermal energy as well as maps of environmental impacts. The minimum and maximum energy potential values for the study site are 50 and 1800 W/m(2) for a drilled depth of 100 m, proportionally to Darcy velocity. Regarding to thermal impacts, the higher the groundwater velocity and the energy potential, the higher the size of the thermal plume after 6 months of exploitation, whose length ranges from 10 to 27 m long. A sensitivity analysis was carried out in the calculation of heat exchange rate and its impacts for different scenarios and for a wide range of Darcy velocities. The results of this analysis lead to the conclusion that the consideration of dispersion effects and temporal evolution of the exploitation prevent significant differences up to a factor 2.5 in the heat exchange rate accuracy and up to several orders of magnitude in the impacts generated.

  2. Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts.

    PubMed

    Alcaraz, Mar; García-Gil, Alejandro; Vázquez-Suñé, Enric; Velasco, Violeta

    2016-02-01

    Borehole Heat Exchangers (BHEs) are increasingly being used to exploit shallow geothermal energy. This paper presents a new methodology to provide a response to the need for a regional quantification of the geothermal potential that can be extracted by BHEs and the associated environmental impacts. A set of analytical solutions facilitates accurate calculation of the heat exchange of BHEs with the ground and its environmental impacts. For the first time, advection and dispersion heat transport mechanisms and the temporal evolution from the start of operation of the BHE are taken into account in the regional estimation of shallow geothermal resources. This methodology is integrated in a GIS environment, which facilitates the management of input and output data at a regional scale. An example of the methodology's application is presented for Barcelona, in Spain. As a result of the application, it is possible to show the strengths and improvements of this methodology in the development of potential maps of low temperature geothermal energy as well as maps of environmental impacts. The minimum and maximum energy potential values for the study site are 50 and 1800 W/m(2) for a drilled depth of 100 m, proportionally to Darcy velocity. Regarding to thermal impacts, the higher the groundwater velocity and the energy potential, the higher the size of the thermal plume after 6 months of exploitation, whose length ranges from 10 to 27 m long. A sensitivity analysis was carried out in the calculation of heat exchange rate and its impacts for different scenarios and for a wide range of Darcy velocities. The results of this analysis lead to the conclusion that the consideration of dispersion effects and temporal evolution of the exploitation prevent significant differences up to a factor 2.5 in the heat exchange rate accuracy and up to several orders of magnitude in the impacts generated. PMID:26605833

  3. Melt production by viscous dissipation: Role of heat advection by Magma transport

    SciTech Connect

    Feigenson, M.D.; Spera, F.J.

    1980-02-01

    An energy conservation equation is formulated that balances the heat generated by viscous dissipation in a peridotite simultaneously undergoing partial fusion and penetrative constant shear stress deformation with the heat removed by mobilization and ascent of basaltic magma from the region undergoing deformation. The solution of this parameterized energy equation gives the volume fraction of melt (theta) as a function of time (t) after the initiation of deformation. A stability analysis of the conservation equation shows that stable (theta<100%) or unstable (theta..-->..infinity) solutions exist depending on the magnitude of two dimensionless parameters K/sub 1//K/sub 2/ and K/sub 3/. For geologically reasonable values of K/sub 2//K/sub 2/ and K/sub 3/, the analysis indicates that peridotitic thermo-mechanical systems undergoing penetrative deformation at constant shear stress show a two-stage history. An early stage of growth where theta increases monotonically on a 2 to 3 m.y. time scale eventually is replaced by a steady s ate regime (constant theta). Typical values of theta lie in the range 3 to 5 volume percent; melting of peridotite to the extent of 20--30% appears to be precluded by this model.

  4. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  5. Efficient mass transport by optical advection

    NASA Astrophysics Data System (ADS)

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-10-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms.

  6. Efficient mass transport by optical advection

    PubMed Central

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-01-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms. PMID:26440069

  7. Advective turbulent transport in the fluid plasma

    NASA Astrophysics Data System (ADS)

    Min, Byung-Hoon; An, Chan-Yong; Kim, Chang-Bae

    2013-10-01

    The Hasegawa-Wakatani model (HWM) has been employed in pedagogical analyses of the physics behind the behavior of the tokamak plasmas. In addition to the geometric simplicity HWM has an appealing feature of sustaining autonomous quasi-steady state, unstable modes providing the power that is being transported by the nonlinear interactions and is eventually dissipated by the collisional damping at small scales. Emergence of the zonal flow out of the turbulence is a main candidate to cause the transition from the low plasma confinement to the high mode. In the study of such LH transition with the HWM, the adiabaticity parameter has been shown to play an important role in forcing the zonal flow that results in the regulation of the drift-wave turbulence. Instead of concentrating on the physics of the feedback loop between the turbulence and the zonal flow the present study focuses on the presence of the advective transport of the energy. Numerical simulations of HWM are performed and the connections between the advective transport and the zonal flow will be presented. This work was supported by the Supercpmputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2013-C1-009).

  8. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  9. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  10. Advective and diffusive cosmic ray transport in galactic haloes

    NASA Astrophysics Data System (ADS)

    Heesen, Volker; Dettmar, Ralf-Jürgen; Krause, Marita; Beck, Rainer; Stein, Yelena

    2016-05-01

    We present 1D cosmic ray transport models, numerically solving equations of pure advection and diffusion for the electrons and calculating synchrotron emission spectra. We find that for exponential halo magnetic field distributions advection leads to approximately exponential radio continuum intensity profiles, whereas diffusion leads to profiles that can be better approximated by a Gaussian function. Accordingly, the vertical radio spectral profiles for advection are approximately linear, whereas for diffusion they are of `parabolic' shape. We compare our models with deep Australia Telescope Compact Array observations of two edge-on galaxies, NGC 7090 and 7462, at λλ 22 and 6 cm. Our result is that the cosmic ray transport in NGC 7090 is advection dominated with V=150^{+80}_{-30} km s^{-1}, and that the one in NGC 7462 is diffusion dominated with D=3.0± 1.0 × 10^{28}E_GeV^{0.5} cm^2 s^{-1}. NGC 7090 has both a thin and thick radio disc with respective magnetic field scale heights of hB1 = 0.8 ± 0.1 kpc and hB2 = 4.7 ± 1.0 kpc. NGC 7462 has only a thick radio disc with hB2 = 3.8 ± 1.0 kpc. In both galaxies, the magnetic field scale heights are significantly smaller than what estimates from energy equipartition would suggest. A non-negligible fraction of cosmic ray electrons can escape from NGC 7090, so that this galaxy is not an electron calorimeter.

  11. Anomalous transport and chaotic advection in homogeneous porous media.

    PubMed

    Lester, D R; Metcalfe, G; Trefry, M G

    2014-12-01

    The topological complexity inherent to all porous media imparts persistent chaotic advection under steady flow conditions, which, in concert with the no-slip boundary condition, generates anomalous transport. We explore the impact of this mechanism upon longitudinal dispersion via a model random porous network and develop a continuous-time random walk that predicts both preasymptotic and asymptotic transport. In the absence of diffusion, the ergodicity of chaotic fluid orbits acts to suppress longitudinal dispersion from ballistic to superdiffusive transport, with asymptotic variance scaling as σ(L)(2)(t)∼t(2)/(ln t)(3). These results demonstrate that anomalous transport is inherent to homogeneous porous media and has significant implications for macrodispersion.

  12. Anomalous transport and chaotic advection in homogeneous porous media.

    PubMed

    Lester, D R; Metcalfe, G; Trefry, M G

    2014-12-01

    The topological complexity inherent to all porous media imparts persistent chaotic advection under steady flow conditions, which, in concert with the no-slip boundary condition, generates anomalous transport. We explore the impact of this mechanism upon longitudinal dispersion via a model random porous network and develop a continuous-time random walk that predicts both preasymptotic and asymptotic transport. In the absence of diffusion, the ergodicity of chaotic fluid orbits acts to suppress longitudinal dispersion from ballistic to superdiffusive transport, with asymptotic variance scaling as σ(L)(2)(t)∼t(2)/(ln t)(3). These results demonstrate that anomalous transport is inherent to homogeneous porous media and has significant implications for macrodispersion. PMID:25615192

  13. Investigation of the influence of groundwater advection on energy extraction rates for sustainable borehole heat exchanger operation

    NASA Astrophysics Data System (ADS)

    Schelenz, Sophie; Dietrich, Peter; Vienken, Thomas

    2016-04-01

    A sustainable thermal exploitation of the shallow subsurface requires a precise understanding of all relevant heat transport processes. Currently, planning practice of shallow geothermal systems (especially for systems < 30 kW) focuses on conductive heat transport as the main energy source while the impact of groundwater flow as the driver for advective heat transport is neglected or strongly simplified. The presented study proves that those simplifications of complex geological and hydrogeological subsurface characteristics are insufficient for a precise evaluation of site-specific energy extraction rates. Based on synthetic model scenarios with varying subsurface conditions (groundwater flow velocity and aquifer thickness) the impact of advection on induced long term temperature changes in 5 and 10 m distance of the borehole heat exchanger is presented. Extending known investigations, this study enhances the evaluation of shallow geothermal energy extraction rates by considering conductive and advective heat transport under varying aquifer thicknesses. Further, it evaluates the impact of advection on installation lengths of the borehole heat exchanger to optimize the initial financial investment. Finally, an evaluation approach is presented that classifies relevant heat transport processes according to their Péclet number to enable a first quantitative assessment of the subsurface energy regime and recommend further investigation and planning procedures.

  14. Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.

    2015-12-01

    In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.

  15. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-di...

  16. Advective transport in heterogeneous aquifers: Are proxy models predictive?

    NASA Astrophysics Data System (ADS)

    Fiori, A.; Zarlenga, A.; Gotovac, H.; Jankovic, I.; Volpi, E.; Cvetkovic, V.; Dagan, G.

    2015-12-01

    We examine the prediction capability of two approximate models (Multi-Rate Mass Transfer (MRMT) and Continuous Time Random Walk (CTRW)) of non-Fickian transport, by comparison with accurate 2-D and 3-D numerical simulations. Both nonlocal in time approaches circumvent the need to solve the flow and transport equations by using proxy models to advection, providing the breakthrough curves (BTC) at control planes at any x, depending on a vector of five unknown parameters. Although underlain by different mechanisms, the two models have an identical structure in the Laplace Transform domain and have the Markovian property of independent transitions. We show that also the numerical BTCs enjoy the Markovian property. Following the procedure recommended in the literature, along a practitioner perspective, we first calibrate the parameters values by a best fit with the numerical BTC at a control plane at x1, close to the injection plane, and subsequently use it for prediction at further control planes for a few values of σY2≤8. Due to a similar structure and Markovian property, the two methods perform equally well in matching the numerical BTC. The identified parameters are generally not unique, making their identification somewhat arbitrary. The inverse Gaussian model and the recently developed Multi-Indicator Model (MIM), which does not require any fitting as it relates the BTC to the permeability structure, are also discussed. The application of the proxy models for prediction requires carrying out transport field tests of large plumes for a long duration.

  17. Fractional Advective-Dispersive Equation as a Model of Solute Transport in Porous Media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. The common model is the advective-dispersive equation (ADE) describing the superposition of the advective transport and the Brownian motion in water-filled pore space. Deviations from...

  18. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  19. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  20. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  1. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  2. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-12-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ωeτe effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ωeτe as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  3. Analytical solution for the advection-dispersion transport equation in layered media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  4. Theory of advection-driven long range biotic transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...

  5. AN EXACT PEAK CAPTURING AND OSCILLATION-FREE SCHEME TO SOLVE ADVECTION-DISPERSION TRANSPORT EQUATIONS

    EPA Science Inventory

    An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...

  6. Curves to determine the relative importance of advection and dispersion for solute and vapor transport

    USGS Publications Warehouse

    Garges, J.A.; Baehr, A.L.

    1998-01-01

    The relative importance of advection and dispersion for both solute and vapor transport can be determined from type curves or concentration, flux, or cumulative flux. The dimensionless form of the type curves provides a means to directly evaluate the importance of mass transport by advection relative to that of mass transport by diffusion and dispersion. Type curves based on an analytical solution to the advection-dispersion equation are plotted in terms of dimensionless time and Peclet number. Flux and cumulative flux type curves provide additional rationale for transport regime determination in addition to the traditional concentration type curves. The extension of type curves to include vapor transport with phase partitioning in the unsaturated zone is a new development. Type curves for negative Peclet numbers also are presented. A negative Peclet number characterizes a problem in which one direction of flow is toward the contamination source, and thereby diffusion and advection can act in opposite directions. Examples are the diffusion of solutes away from the downgradient edge of a pump-and-treat capture zone, the upward diffusion of vapors through the unsaturated zone with recharge, and the diffusion of solutes through a low hydraulic conductivity cutoff wall with an inward advective gradient.

  7. Modelling of terrain-induced advective flow in Tibet: Implications for assessment of crustal heat flow

    SciTech Connect

    Hochstein, M.P.; Yang Zhongke

    1992-01-01

    In steep terrain the effect of advective flow can be significant, as it can distort the temperature field in the upper brittle crust. The effect was studied by modeling advective flow across a large valley system in Tibet which is associated with several geothermal hot spring systems, the Yanbajing Valley. It was found that, in this setting, all near-surface temperature gradients are significantly disturbed, attaining values differing by up to half an order of magnitude from those resulting from conductive heat transfer. Allowing for advective effects, it was found that the crustal heat flux within the Himalayan Geothermal Belt lies within the range of 60 to 90 mW/m{sup 2} in the Lhasa-Yanbajing area.

  8. Analytical Advection-Dispersion Model for Transport and Plant Uptake of Solutes in the Root Zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We develop an advective-dispersive solute transport equation that includes plant uptake of water and solute, and present an analytical solution. Assumptions underlying the transport model include linear solute sorption, first-order plant uptake, and a uniform soil water content. We examine the lat...

  9. Two-Dimensional Advective Transport in Ground-Water Flow Parameter Estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of

  10. The Granite Aqueduct and Advection of Water and Heat Through Plutonic Terranes

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.; Bartley, J. M.; Law, B.; Coleman, D. S.

    2011-12-01

    invoke large-volume, long-lived areas of interconnected melt in an attempt to keep alive traditional ideas regarding processes such as magma flow, stoping, and crystal fractionation. However, thermal modeling consistently demonstrates that without continual input of new magma, such volumes cannot be maintained for times greater than a few hundred ka. Furthermore, advective heat loss via the granite aqueduct, coupled with fluid convection in wall rocks, will cool plutons far faster than conductive cooling alone. Models demonstrating long-lived interconnected melt without continued magma input require highly unrealistic and contrived assumptions, such as instantaneous emplacement of huge volumes of magma with no vertical heat transport (Memeti et al., 2010).

  11. MECHANISM OF OUTFLOWS IN ACCRETION SYSTEM: ADVECTIVE COOLING CANNOT BALANCE VISCOUS HEATING?

    SciTech Connect

    Gu, Wei-Min

    2015-01-20

    Based on the no-outflow assumption, we investigate steady-state, axisymmetric, optically thin accretion flows in spherical coordinates. By comparing the vertically integrated advective cooling rate with the viscous heating rate, we find that the former is generally less than 30% of the latter, which indicates that the advective cooling itself cannot balance the viscous heating. As a consequence, for radiatively inefficient flows with low accretion rates such as M-dot ≲10{sup −3} M-dot {sub Edd}, where M-dot {sub Edd} is the Eddington accretion rate, the viscous heating rate will be larger than the sum of the advective cooling rate and the radiative cooling one. Thus, no thermal equilibrium can be established under the no-outflow assumption. We therefore argue that in such cases outflows ought to occur and take away more than 70% of the thermal energy generated by viscous dissipation. Similarly, for optically thick flows with extremely large accretion rates such as M-dot ≳10 M-dot {sub Edd}, outflows should also occur owing to the limited advection and the low efficiency of radiative cooling. Our results may help to understand the mechanism of outflows found in observations and numerical simulations.

  12. Scaling of geochemical reaction rates via advective solute transport.

    PubMed

    Hunt, A G; Ghanbarian, B; Skinner, T E; Ewing, R P

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture. PMID:26232976

  13. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...

  14. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  15. Long-term Rates of Mafic Magma Emplacement and Implications for Heat Advection

    NASA Astrophysics Data System (ADS)

    White, S. M.; Spera, F. J.; Crisp, J. A.

    2003-12-01

    Rates of magmatism (magma emplacement rate) including both volcanic products and intrusive bodies were obtained for terrestrial petrotectonic systems where reliable volumes can be estimated and geochronological data exist. Approximately 50 estimates of magma emplacement rates have been extracted from the literature published between 1982 and 2003 for persistent basaltic systems with durations from 1 ka to ~5 Ma. Although the volcanic output is highly episodic, the data indicate that the mass output rate at individual hotspot volcanoes is on the order of 10-3 km3/yr when averaged over several thousand years. This differs from the estimated output rates of large igneous provinces, such as continental flood basalts and oceanic plateaus, which have maximal output rates on the order of 1 km3/yr per province. For globally averaged mid-ocean ridges, the total volcanic emplacement rate is only 10-6 km3/yr/100 km of ridge. Ratios of intrusive to extrusive emplacement are subject to much uncertainty, but generally lie in the range 6:1 to 10:1 for most crustal mafic magma systems. Recent seismic, geodetic, and gravity work suggests that there may be large regions of underplating and storage in subcrustal magma chambers in areas of basaltic volcanism previously not widely considered in intrusive volume estimates that may increase most of these ratios to 10:1. Rates of magmatism may be translated into excess heat flows for specific magmatic provinces to obtain estimates of advected heat transport via magmatism at regional scales over magmatic province timescales. For mafic eruption rate V and an intrusive/extrusive ratio of R, the volumetric rate of magma flow into the crust is RV. The excess heat power (J/yr) associated with magma transport from mantle to crust is RVρ δ T [Cp + δ h/(Tliquidus-Tsolidus)] where δ T is the temperature difference between the magma and host crust, δ h is the enthalpy of crystallization (250-400 kJ/kg dependent on magma composition), ρ is

  16. THE INTERPLAY BETWEEN GEOCHEMICAL REACTIONS AND ADVECTION-DISPERSION IN CONTAMINANT TRANSPORT AT A URANIUM MILL TAILINGS SITE

    EPA Science Inventory

    It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...

  17. Heat advection processes leading to El Niño events as depicted by an ensemble of ocean assimilation products

    NASA Astrophysics Data System (ADS)

    Ballester, Joan; Bordoni, Simona; Petrova, Desislava; Rodó, Xavier

    2016-06-01

    The oscillatory nature of El Niño-Southern Oscillation results from an intricate superposition of near-equilibrium balances and out-of-phase disequilibrium processes between the ocean and the atmosphere. The main objective of the present work is to perform an exhaustive spatiotemporal analysis of the upper ocean heat budget in an ensemble of state-of-the-art ocean assimilation products. We put specific emphasis on the ocean heat advection mechanisms, and their representation in individual ensemble members and in the different stages of the ENSO oscillation leading to EN events. Our analyses consistently show that the initial subsurface warming in the western equatorial Pacific is advected to the central Pacific by the equatorial undercurrent, which, together with the equatorward advection associated with anomalies in both the meridional temperature gradient and circulation at the level of the thermocline, explains the heat buildup in the central Pacific during the recharge phase. We also find that the recharge phase is characterized by an increase of meridional tilting of the thermocline, as well as a southward upper-ocean cross-equatorial mass transport resulting from Ekman-induced anomalous vertical motion in the off-equatorial regions. Although differences between data sets are generally small, and anomalies tend to have the same sign, the differences in the magnitude of the meridional term are seen to be key for explaining the different propagation speed of the subsurface warming tendency along the thermocline. The only exception is GECCO, which does not produce the patterns of meridional surface Ekman divergence (subsurface Sverdrup convergence) in the western and central equatorial Pacific.

  18. A Comparative Study of Indoor Radon Contributed by Diffusive and Advective Transport through Intact Concrete

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20 Pa to 73.3 kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.

  19. Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a formal exact solution of the linear advection-diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection-diffusion equation into an exclusively diffusive equation. ...

  20. Numerical advection algorithms and their role in atmospheric transport and chemistry models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.

    1987-01-01

    During the last 35 years, well over 100 algorithms for modeling advection processes have been described and tested. This review summarizes the development and improvements that have taken place. The nature of the errors caused by numerical approximation to the advection equation are highlighted. Then the particular devices that have been proposed to remedy these errors are discussed. The extensive literature comparing transport algorithms is reviewed. Although there is no clear cut 'best' algorithm, several conclusions can be made. Spectral and pseudospectral techniques consistently provide the highest degree of accuracy, but expense and difficulties assuring positive mixing ratios are serious drawbacks. Schemes which consider fluid slabs bounded by grid points (volume schemes), rather than the simple specification of constituent values at the grid points, provide accurate positive definite results.

  1. The impact of advective transport by the South Indian Ocean Countercurrent on the Madagascar plankton bloom

    NASA Astrophysics Data System (ADS)

    Huhn, F.; von Kameke, A.; Pérez-Muñuzuri, V.; Olascoaga, M. J.; Beron-Vera, F. J.

    2012-03-01

    Based on ten years (1998-2007) of satellite ocean color data we analyze the spatiotemporal patterns in the seasonal Madagascar plankton bloom with respect to the advection of the recently discovered Southern Indian Ocean Countercurrent (SICC). In maps of Finite-time Lyapunov Exponents (FTLE) and Finite-Time Zonal Drift (FTZD) computed from altimetry derived velocities we observe a narrow zonal jet that starts at ˜25°S at the southern tip of Madagascar, an important upwelling region, and extends to the east further than the largest plankton blooms (˜2500 km). In bloom years, the jet coincides with large parts of the northern boundary of the plankton bloom, acting as a barrier to meridional transport. Our findings suggest that advection is an important and so far underestimated mechanism for the eastward propagation and the extent of the plankton bloom. This supports the hypothesis of a single nutrient source south of Madagascar.

  2. Numerical advection algorithms and their role in atmospheric transport and chemistry models

    NASA Astrophysics Data System (ADS)

    Rood, Richard B.

    1987-02-01

    During the last 35 years, well over 100 algorithms for modeling advection processes have been described and tested. This review summarizes the development and improvements that have taken place. The nature of the errors caused by numerical approximation to the advection equation are highlighted. Then the particular devices that have been proposed to remedy these errors are discussed. The extensive literature comparing transport algorithms is reviewed. Although there is no clear cut 'best' algorithm, several conclusions can be made. Spectral and pseudospectral techniques consistently provide the highest degree of accuracy, but expense and difficulties assuring positive mixing ratios are serious drawbacks. Schemes which consider fluid slabs bounded by grid points (volume schemes), rather than the simple specification of constituent values at the grid points, provide accurate positive definite results.

  3. Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport

    NASA Astrophysics Data System (ADS)

    Ancey, C.; Bohorquez, P.; Heyman, J.

    2015-12-01

    The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due

  4. Universal limiter for transient interpolation modeling of the advective transport equations: The ULTIMATE conservative difference scheme

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1988-01-01

    A fresh approach is taken to the embarrassingly difficult problem of adequately modeling simple pure advection. An explicit conservative control-volume formation makes use of a universal limiter for transient interpolation modeling of the advective transport equations. This ULTIMATE conservative difference scheme is applied to unsteady, one-dimensional scalar pure advection at constant velocity, using three critical test profiles: an isolated sine-squared wave, a discontinuous step, and a semi-ellipse. The goal, of course, is to devise a single robust scheme which achieves sharp monotonic resolution of the step without corrupting the other profiles. The semi-ellipse is particularly challenging because of its combination of sudden and gradual changes in gradient. The ULTIMATE strategy can be applied to explicit conservation schemes of any order of accuracy. Second-order schemes are unsatisfactory, showing steepening and clipping typical of currently popular so-called high resolution shock-capturing of TVD schemes. The ULTIMATE third-order upwind scheme is highly satisfactory for most flows of practical importance. Higher order methods give predictably better step resolution, although even-order schemes generate a (monotonic) waviness in the difficult semi-ellipse simulation. Little is to be gained above ULTIMATE fifth-order upwinding which gives results close to the ultimate for which one might hope.

  5. Advective transport and decomposition of chain-forming planktonic diatoms in permeable sediments

    NASA Astrophysics Data System (ADS)

    Ehrenhauss, Sandra; Huettel, Markus

    2004-09-01

    In laboratory chamber experiments we demonstrate that permeable sediments (>7×10 -12 m 2) exposed to boundary flows filter chain-forming coastal bloom diatoms ( Skeletonema costatum and Thalassiosira rotula) from the water column, causing rapid transfer of fresh organic particulate matter into sediment layers as deep as 5 cm within 72 h. The penetration depth of the diatoms depends on the permeability of the bed and the length of the chains. Long chains were not transported as deep into the sediment as short chains or single cells. The fast advective transfer of phytoplankton cells into sandy sediments may be an important process facilitating organic matter uptake and preventing resuspension of deposited organic material in high-energy coastal environments. High advective flushing rates in medium- and coarse-grained sandy sediments enhanced the mineralisation of the trapped diatoms (2300 to 3200 μmol C m -2 d -1), stimulated benthic oxygen consumption (2300 to 3000 μmol O 2 m -2 d -1), as well as nitrification (up to 20 μmol NO 3- m -2 d -1), relative to sediment where diffusion dominated the solute exchange. Advective solute exchange rates that increase with increasing permeability prevent the accumulation of Si(OH) 4 near the dissolving frustules and in the pore water, leading to an effective recycling of dissolved silica to the production process in the water column (95 to 101 μmol Si(OH) 4 m -2 d -1). This process may also enhance dissolution rates of the deposited opal in coarse-grained sands by maintaining higher degrees of undersaturation than in fine-grained sediments. Our results suggest that advective filtration of planktonic diatoms into permeable sediments increases mineralisation and recycling of Si(OH) 4 and organic matter in high energetic shelf areas.

  6. Really TVD advection schemes for the depth-integrated transport equation

    NASA Astrophysics Data System (ADS)

    Mercier, Ch.; Delhez, E. J. M.

    This paper explores the use of TVD advection schemes to solve the depth-integrated transport equation for tracers in finite volume marine models. Numerical experiments show that the blind application of the usual TVD schemes and associated flux limiters can lead to non-TVD solutions when applied in complex geometries. Spatial and/or temporal variations of the local bathymetry can indeed break the TVD property of the usual schemes. Really TVD schemes can be recovered by taking into account the local depth and its variations in the formulation of the flux limiters. Using this approach, a generalized superbee limiter is introduced and validated.

  7. Analytical Solutions of a Fractional Diffusion-advection Equation for Solar Cosmic-Ray Transport

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  8. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    SciTech Connect

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  9. A mass-conserving advection scheme for offline simulation of scalar transport in coastal ocean models

    NASA Astrophysics Data System (ADS)

    Gillibrand, P. A.; Herzfeld, M.

    2016-05-01

    We present a flux-form semi-Lagrangian (FFSL) advection scheme designed for offline scalar transport simulation with coastal ocean models using curvilinear horizontal coordinates. The scheme conserves mass, overcoming problems of mass conservation typically experienced with offline transport models, and permits long time steps (relative to the Courant number) to be used by the offline model. These attributes make the method attractive for offline simulation of tracers in biogeochemical or sediment transport models using archived flow fields from hydrodynamic models. We describe the FFSL scheme, and test it on two idealised domains and one real domain, the Great Barrier Reef in Australia. For comparison, we also include simulations using a traditional semi-Lagrangian advection scheme for the offline simulations. We compare tracer distributions predicted by the offline FFSL transport scheme with those predicted by the original hydrodynamic model, assess the conservation of mass in all cases and contrast the computational efficiency of the schemes. We find that the FFSL scheme produced very good agreement with the distributions of tracer predicted by the hydrodynamic model, and conserved mass with an error of a fraction of one percent. In terms of computational speed, the FFSL scheme was comparable with the semi-Lagrangian method and an order of magnitude faster than the full hydrodynamic model, even when the latter ran in parallel on multiple cores. The FFSL scheme presented here therefore offers a viable mass-conserving and computationally-efficient alternative to traditional semi-Lagrangian schemes for offline scalar transport simulation in coastal models.

  10. Modeling of advection-diffusion-reaction processes using transport dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-11-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. In particular, the transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of Lagrangian particles. To validate the proposed tDPD model and the boundary conditions, three benchmark simulations of one-dimensional diffusion with different boundary conditions are performed, and the results show excellent agreement with the theoretical solutions. Also, two-dimensional simulations of ADR systems are performed and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, an application of tDPD to the spatio-temporal dynamics of blood coagulation involving twenty-five reacting species is performed to demonstrate the promising biological applications of the tDPD model. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.

  11. Simulation of the advective methane transport and AOM in Shenhu area, the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wu, N.

    2012-04-01

    Anaerobic Oxidation of Methane (AOM) occurs in the transition zone between the presence of sulfate and methane. This reaction is an important process for methane and the global carbon cycle. Methane gas hydrates bearing sediments were recovered in Shenhu Area, the Northern South China Sea, and methane advective transport was detected in this area as well. A one dimension numerical simulation tool was implemented to study the AOM process combined with the advective methane transport in Shenhu Area according to the local drilling data and geochemical information. The modeled results suggest that local methane flux will be consumed in the sediment column via dissolution, sorption and AOM reaction. A portion of methane will enter water column and possibly atmosphere if the methane flux was one order of magnitude higher than current level. Furthermore, the calculated rates of AOM in Shenhu area range similar to that of gas hydrate mounds in Mexico Golf. However, AOM is ability to consume more methane than that in Golf of Mexico due to the lower permeable sediment associated with a deeper sulfate methane transition layer.

  12. Renormalization group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George

    1993-01-01

    The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.

  13. Exact PDF equations and closure approximations for advective-reactive transport

    SciTech Connect

    Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2013-06-01

    Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recently proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.

  14. Local- and field-scale stochastic-advective vertical solute transport in horizontally heterogeneous unsaturated soils

    NASA Astrophysics Data System (ADS)

    Ojha, Richa; Prakash, A.; Govindaraju, Rao S.

    2014-08-01

    Description of field-scale solute transport in unsaturated soils is essential for assessing the degree of contamination, estimating fluxes past a control plane and for designing remedial measures. The flow field is usually described by numerical solution of the Richards equation followed by numerical solution of the advection-dispersion equation to describe contaminant movement. These numerical solutions are highly complex, and do not provide the insights that are possible from simpler analytical representations. In this study, analytical solutions at the local scale are developed to describe purely advective vertical transport of a conservative solute along the principle characteristic of the flow field. Local-scale model development is simplified by using a sharp-front approximation for water movement. These local solutions are then upscaled to field-scale solute transport by adopting a lognormally distributed horizontal hydraulic conductivity field to represent the natural heterogeneity observed in field soils. Analytical expressions are developed for the mean behavior of solute transport at the field scale. Comparisons with experimental observations find that trends of field-scale solute behavior are reasonably reproduced by the model. The accuracy of the proposed solution improves with increasing spatial variability in the hydraulic conductivity as revealed by further comparisons with numerical results of the Richards equation-based field-scale solute movement. In some cases, the sharp-front approximation may lead to anomalous field-scale behavior depending on the role of pre and postponded conditions in the field, and this limitation is discussed. The proposed method shows promise for describing field-scale solute movement in loamy sand and sandy loam soils.

  15. Contour advection with surgery: A technique for investigating finescale structure in tracer transport

    NASA Technical Reports Server (NTRS)

    Waugh, Darryn W.; Plumb, R. Alan

    1994-01-01

    We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the deformation field and that CAS can accurately reproduce small scales from low-resolution wind fields. The CAS technique therefore enables examination of atmospheric tracer transport at previously unattainable resolution.

  16. Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport.

    PubMed

    Perko, Janez; Patel, Ravi A

    2014-05-01

    The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance.

  17. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  18. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems.

    PubMed

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  19. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    PubMed Central

    Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-01-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  20. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems.

    PubMed

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  1. A subordinated advection model for uniform bed load transport from local to regional scales

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Martin, Raleigh L.; Chen, Dong; Baeumer, Boris; Sun, Hongguang; Chen, Li

    2014-12-01

    Sediment tracers moving as bed load can exhibit anomalous dispersion behavior deviating from Fickian diffusion. The presence of heavy-tailed resting time distributions and thin-tailed step length distributions motivate adoption of fractional-derivative models (FDMs) to describe sediment dispersion, but these models require many parameters that are difficult to quantify. Here we propose a considerably simplified FDM for anomalous transport of uniformly sized grains along straight channels, the subordinated advection equation (SAE), which is based on the concept of time subordination. Unlike previous FDM models with time index γ between 0 and 1, our SAE model adopts a value of γ between 1 and 2. This γ describes random velocities deviating significantly from the mean velocity and models both long resting periods and relatively fast displacements. We show that the model quantifies the dynamics of four bed load transport experiments recorded in the literature. In addition to γ, SAE model parameters—velocity and capacity coefficient—are related to the mean and variance of particle velocities, respectively. Successful application of the SAE model also implies a universal probability density for the heavy-tailed waiting time distribution (with finite mean) and a relatively lighter tailed step length distribution for uniform bed load transport from local to regional scales.

  2. Transport and Recruitment of Blue Crab Larvae:a Model with Advection and Mortality

    NASA Astrophysics Data System (ADS)

    Garvine, R. W.; Epifanio, C. E.; Epifanio, C. C.; Wong, K.-C.

    1997-07-01

    The present paper develops a mathematical model for the transport and recruitment of blue crab (Callinectes sapidus) larvae, and applies it to the inner continental shelf of the Middle Atlantic Bight near Delaware Bay, U.S.A. Blue crab larvae develop through seven or eight planktonic zoeal stages to a megalopa stage suitable for recruitment to adult populations of east coast estuaries. The larvae are concentrated near the surface, and the currents are primarily forced by alongshelf winds and river discharge through major estuaries. Model currents are prescribed based on a realistic synthesis of their observed relationship to wind and river discharge. Besides the resulting advection, particle diffusion and biological mortality are added to determine the fate of larvae released from their parent estuary. Groups of particles were released across the source region of the outflowing buoyancy-driven current in the model estuary mouth. Most larvae were swept alongshelf to the south with the buoyancy-driven coastal current, and thus were lost as recruits to the population of their parent estuary. However, some larvae released close to the seaward edge of the emerging coastal current were able to cross the coastal current front and move seaward into inner shelf water during upwelling-favorable (northward) wind events. Some of these, in turn, were suitably placed near the parent estuary mouth so that they could be advected landward as megalopae into the estuary during a subsequent downwelling-favorable (southward) wind event and thus join the adult population. The model results for megalopae returns were computed from consecutive daily release of 1000 particles, and were compared with 4 years of blue crab megalopa settlement data for Delaware Bay. The model results for 1989 and 1990 matched the observed data remarkably well, with both years showing dominance by a single return event of a few days duration. For 1991 and 1992, the observed results showed multiple return events

  3. Exploring a semimechanistic episodic Langevin model for bed load transport: Emergence of normal and anomalous advection and diffusion regimes

    NASA Astrophysics Data System (ADS)

    Fan, Niannian; Singh, Arvind; Guala, Michele; Foufoula-Georgiou, Efi; Wu, Baosheng

    2016-04-01

    Bed load transport is a highly stochastic, multiscale process, where particle advection and diffusion regimes are governed by the dynamics of each sediment grain during its motion and resting states. Having a quantitative understanding of the macroscale behavior emerging from the microscale interactions is important for proper model selection in the absence of individual grain-scale observations. Here we develop a semimechanistic sediment transport model based on individual particle dynamics, which incorporates the episodic movement (steps separated by rests) of sediment particles and study their macroscale behavior. By incorporating different types of probability distribution functions (PDFs) of particle resting times Tr, under the assumption of thin-tailed PDF of particle velocities, we study the emergent behavior of particle advection and diffusion regimes across a wide range of spatial and temporal scales. For exponential PDFs of resting times Tr, we observe normal advection and diffusion at long time scales. For a power-law PDF of resting times (i.e., f>(Tr>)˜Tr-ν), the tail thickness parameter ν is observed to affect the advection regimes (both sub and normal advective), and the diffusion regimes (both subdiffusive and superdiffusive). By comparing our semimechanistic model with two random walk models in the literature, we further suggest that in order to reproduce accurately the emerging diffusive regimes, the resting time model has to be coupled with a particle motion model able to produce finite particle velocities during steps, as the episodic model discussed here.

  4. Heat transport system

    DOEpatents

    Pierce, Bill L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.

  5. The advective-dispersive equation with spatial fractional derivatives as a model for tracer transport in structured soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The classical model to describe solute transport in soil is based on the advective-dispersive equation where Fick’s law is used to explain dispersion. From the microscopic point of view this is equivalent to consider that the motion of the particles of solute may be simulated by the Brownian motion....

  6. The predictability of advection-dominated flux-transport solar dynamo models

    SciTech Connect

    Sanchez, Sabrina; Fournier, Alexandre; Aubert, Julien

    2014-01-20

    Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo. Interested in the forecast horizon of such studies, we quantify the predictability window of a representative, advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τ {sub e}. The e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average estimate for τ {sub e} equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After reviewing these, we discuss their implications for solar cycle prediction.

  7. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport

    USGS Publications Warehouse

    Baehr, A.L.; Hoag, G.E.; Marley, M.C.

    1989-01-01

    Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.

  8. Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems

    SciTech Connect

    Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2015-07-07

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  9. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  10. Relative effects of advection, sorption and diffusion on transport and tailing of chlorinated solvents

    NASA Astrophysics Data System (ADS)

    Maghrebi, M.; Jankovic, I.; Rabideau, A. J.; Allen-King, R. M.; Weissmann, G. S.

    2011-12-01

    Effects of three key transport mechanisms (advection, diffusion and sorption) on transport and contaminant tailing of chlorinated solvents have been investigated using a numerical model. Thousands of model simulations have been conducted for various combinations of transport parameters that govern three key mechanisms in order to quantify tailing and relative importance of each mechanism. Hydraulic conductivity model contains a single inclusion of constant conductivity K embedded in a homogeneous anisotropic background of conductivity Kh,Kv. The inclusion is shaped as an oblate ellipsoid and subject to uniform flow. The background represents "average" conductivity of a heterogeneous formation while inclusion is used to represent geologic units that are more or less conductive than the background. The ratio of long to short semi-axis of the inclusion (a/b) models the ratio of horizontal to vertical integral scales (Ih/Iv) of different geologic units, where integral scales can be obtained, for example, using indicator variograms. The flow solution for present problem is obtained analytically as a closed form solution with exact expressions for Darcy velocity valid both inside and outside the inclusion. Sorption is modeled as an equilibrium process governed by a linear isotherm. The effects on transport and tailing are accounted for using retardation factors. Sorption heterogeneity is created by allowing different values of retardation factor for the interior (Ri) and the exterior of the inclusion (Rb). Diffusive displacements have been added to retarded advective displacements using random walk method. Peclet number, defined as Pe=U Ih/D (U is the groundwater velocity, D is the molecular diffusion coefficient for chlorinated solvents), is used to quantify the diffusion process. Very large numbers of particles (hundreds of thousands) have been tracked using very small time steps (as small as a/10,000) to provide sufficient resolution to breakthrough curves and to

  11. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    NASA Astrophysics Data System (ADS)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  12. Heat transport system

    DOEpatents

    Harkness, Samuel D.

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  13. Heat transport system

    DOEpatents

    Harkness, S.D.

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  14. Self-organization and advective transport in the cell polarity formation for asymmetric cell division.

    PubMed

    Seirin Lee, Sungrim; Shibata, Tatsuo

    2015-10-01

    Anterior-Posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which depends not only on the several genetic process but also biochemical and biophysical interactions. The mechanism of AP formation of Caenorhabditis elegans embryo is characterized into the three processes: (i) membrane association and dissociation of posterior and anterior proteins, (ii) diffusion into the membrane and cytosol, and (iii) active cortical and cytoplasmic flows induced by the contraction of the acto-myosin cortex. We explored the mechanism of symmetry breaking and AP polarity formation using self-recruitment model of posterior proteins. We found that the AP polarity pattern is established over wide range in the total mass of polarity proteins and the diffusion ratio in the cytosol to the membrane. We also showed that the advective transport in both membrane and cytosol during the establishment phase affects optimal time interval of establishment and positioning of the posterior domain, and plays a role to increase the robustness in the AP polarity formation by reducing the number of posterior domains for the sensitivity of initial conditions. We also demonstrated that a proper ratio of the total mass to cell size robustly regulate the length scale of the posterior domain.

  15. Correcting transport errors during advection of aerosol and cloud moment sequences in eulerian models

    SciTech Connect

    McGraw R.

    2012-03-01

    Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.

  16. Characterization of the role of heterogeneous advection and diffusion on transport in weathered and fractured granite

    NASA Astrophysics Data System (ADS)

    Guihéneuf, N.; Boisson, A.; Bour, O.; Le Borgne, T.; Marechal, J.; Nigon, B.; Wajiddudin, M.; Ahmed, S.

    2013-12-01

    The prediction of transport in weathered and fractured rocks is critical as it represents the primary control of contaminant transfer from the subsurface in many parts of the world. This is the case in Southern India, where the subsurface is composed mainly of weathered and fractured granite and where the overexploitation of the groundwater resource since the 70's has led to high water table depletion and strong groundwater quality deterioration. One key issue for modelling transport in such systems is to quantify the respective role of advective heterogeneities and matrix diffusion, which can both lead to strongly non Fickian transport properties. We investigate this question by analysing tracer test experiments performed under different flow configurations at a fractured granite experimental site located in Andhra Pradesh (India). We performed both convergent and push-pull tracer tests within the same fracture and at different scales. Three convergent tracer tests were performed with a solution of fluorescein for different pumping rate and for different distances between injection and pumping boreholes: 6, 30 and 41 meters. To evaluate diffusive process, we performed two long-duration push-pull tests (push time of 3 hours) with a solution of two conservative tracers of different diffusion coefficient (fluorescein and sodium chloride). We performed also six others push-pull tests with only fluorescein but for a variable push times of 14 min and 55 min with or without resting time of about 60 min. The late-time behaviour on the breakthrough curves (BTCs) obtained for all convergent tracer tests showed a power-law slope of -2. Two of them showed an inflexion in the BTCs suggesting the existence of two independent flow paths and thus a highly channelized flow. The long-duration push-pull tests showed similar late-time behaviour with a power-law slope of -2.2 for both tracers. The six others push-pull tests showed a variation of power-law exponent from -3 to -2

  17. Gaining a Better Understanding of Surface-Subsurface Reactive Transport using a High-Order Advection Approach

    NASA Astrophysics Data System (ADS)

    Beisman, J. J., III; Maxwell, R. M.; Navarre-Sitchler, A.; Steefel, C. I.

    2014-12-01

    Understanding the interactions between physical, geochemical, and biological processes in the shallow subsurface is prerequisite to the development of effective contamination remediation techniques, or the accurate quantification of nutrient fluxes and biogeochemical cycling. Here we present recent developments to the massively parallel reactive transport code ParCrunchFlow. This model, previously applicable only to steady-state, saturated subsurface flows, has been extended to transient, surface-subsurface systems. Proof-of-concept simulations detailing reactive transport processes in hillslope and floodplain settings will be presented. In order to reduce the numerical dispersion inherent in grid based advection schemes, which can lead to an over prediction of reaction rates, a weighted, essentially non-oscillatory (WENO) advection scheme has been implemented, providing formal fifth-order spatial and third-order temporal accuracy. We use a mass-conservative, positivity-preserving flux limiter while advecting solute concentrations to prevent non-physical solutions. The effects of advection schemes and their associated numerical dispersion on reaction rates are evaluated by comparing our scheme to a monotonic lower order scheme in a transverse mixing scenario. The work presented here allows a better understanding of nutrient cycling dynamics in watershed systems.

  18. Subcontinental lithosphere reactivation beneath the Hoggar swell (Algeria): Localized deformation, melt channeling and heat advection

    NASA Astrophysics Data System (ADS)

    Kourim, Fatna; Vauchez, Alain; Bodinier, Jean-Louis; Alard, Olivier; Bendaoud, Abderrahmane

    2015-05-01

    advective heating of melt conduits was transient and rapidly followed by thermal relaxation due to conductive heat loss into wall-rock peridotites represented by the IT xenoliths, then by exhumation due to volcanic activity.

  19. Modelling transport in media with heterogeneous advection properties and mass transfer with a Continuous Time Random Walk approach

    NASA Astrophysics Data System (ADS)

    Comolli, Alessandro; Moussey, Charlie; Dentz, Marco

    2016-04-01

    Transport processes in groundwater systems are strongly affected by the presence of heterogeneity. The heterogeneity leads to non-Fickian features, that manifest themselves in the heavy-tailed breakthrough curves, as well as in the non-linear growth of the mean squared displacement and in the non-Gaussian plumes of solute particles. The causes of non-Fickian transport can be the heterogeneity in the flow fields and the processes of mass exchange between mobile and immobile phases, such as sorption/desorption reactions and diffusive mass transfer. Here, we present a Continuous Time Random Walk (CTRW) model that describes the transport of solutes in d-dimensional systems by taking into account both heterogeneous advection and mobile-immobile mass transfer. In order to account for these processes in the CTRW, the heterogeneities are mapped onto a distribution of transition times, which can be decomposed into advective transition times and trapping times, the latter being treated as a compound Poisson process. While advective transition times are related to the Eulerian flow velocities and, thus, to the conductivity distribution, trapping times depend on the sorption/desorption time scale, in case of reactive problems, or on the distribution of diffusion times in the immobile zones. Since the trapping time scale is typically much larger than the advective time scale, we observe the existence of two temporal regimes. The pre-asymptotic regime is defined by a characteristic time scale at which the properties of transport are fully determined by the heterogeneity of the advective field. On the other hand, in the asymptotic regime both the heterogeneity and the mass exchange processes play a role in conditioning the behaviour of transport. We consider different scenarios to discuss the relative importance of the advective heterogeneity and the mass transfer for the occurrence of non-Fickian transport. For each case we calculate analytically the scalings of the breakthrough

  20. Advective transport observations with MODPATH-OBS--documentation of the MODPATH observation process

    USGS Publications Warehouse

    Hanson, R.T.; Kauffman, L.K.; Hill, M.C.; Dickinson, J.E.; Mehl, S.W.

    2013-01-01

    The MODPATH-OBS computer program described in this report is designed to calculate simulated equivalents for observations related to advective groundwater transport that can be represented in a quantitative way by using simulated particle-tracking data. The simulated equivalents supported by MODPATH-OBS are (1) distance from a source location at a defined time, or proximity to an observed location; (2) time of travel from an initial location to defined locations, areas, or volumes of the simulated system; (3) concentrations used to simulate groundwater age; and (4) percentages of water derived from contributing source areas. Although particle tracking only simulates the advective component of conservative transport, effects of non-conservative processes such as retardation can be approximated through manipulation of the effective-porosity value used to calculate velocity based on the properties of selected conservative tracers. This program can also account for simple decay or production, but it cannot account for diffusion. Dispersion can be represented through direct simulation of subsurface heterogeneity and the use of many particles. MODPATH-OBS acts as a postprocessor to MODPATH, so that the sequence of model runs generally required is MODFLOW, MODPATH, and MODPATH-OBS. The version of MODFLOW and MODPATH that support the version of MODPATH-OBS presented in this report are MODFLOW-2005 or MODFLOW-LGR, and MODPATH-LGR. MODFLOW-LGR is derived from MODFLOW-2005, MODPATH 5, and MODPATH 6 and supports local grid refinement. MODPATH-LGR is derived from MODPATH 5. It supports the forward and backward tracking of particles through locally refined grids and provides the output needed for MODPATH_OBS. For a single grid and no observations, MODPATH-LGR results are equivalent to MODPATH 5. MODPATH-LGR and MODPATH-OBS simulations can use nearly all of the capabilities of MODFLOW-2005 and MODFLOW-LGR; for example, simulations may be steady-state, transient, or a combination

  1. Rigorous upper bounds for transport due to passive advection by inhomogeneous turbulence

    SciTech Connect

    Krommes, J.A.; Smith, R.A.

    1987-05-01

    A variational procedure, due originally to Howard and explored by Busse and others for self-consistent turbulence problems, is employed to determine rigorous upper bounds for the advection of a passive scalar through an inhomogeneous turbulent slab with arbitrary generalized Reynolds number R and Kubo number K. In the basic version of the method, the steady-state energy balance is used as a constraint; the resulting bound, though rigorous, is independent of K. A pedagogical reference model (one dimension, K = infinity) is described in detail; the bound compares favorably with the exact solution. The direct-interaction approximation is also worked out for this model; it is somewhat more accurate than the bound, but requires considerably more labor to solve. For the basic bound, a general formalism is presented for several dimensions, finite correlation length, and reasonably general boundary conditions. Part of the general method, in which a Green's function technique is employed, applies to self-consistent as well as to passive problems, and thereby generalizes previous results in the fluid literature. The formalism is extended for the first time to include time-dependent constraints, and a bound is deduced which explicitly depends on K and has the correct physical scalings in all regimes of R and K. Two applications from the theory of turbulent plasmas ae described: flux in velocity space, and test particle transport in stochastic magnetic fields. For the velocity space problem the simplest bound reproduces Dupree's original scaling for the strong turbulence diffusion coefficient. For the case of stochastic magnetic fields, the scaling of the bounds is described for the magnetic diffusion coefficient as well as for the particle diffusion coefficient in the so-called collisionless, fluid, and double-streaming regimes.

  2. An oceanic heat transport pathway to the Amundsen Sea Embayment

    NASA Astrophysics Data System (ADS)

    Rodriguez, Angelica R.; Mazloff, Matthew R.; Gille, Sarah T.

    2016-05-01

    The Amundsen Sea Embayment (ASE) on the West Antarctic coastline has been identified as a region of accelerated glacial melting. A Southern Ocean State Estimate (SOSE) is analyzed over the 2005-2010 time period in the Amundsen Sea region. The SOSE oceanic heat budget reveals that the contribution of parameterized small-scale mixing to the heat content of the ASE waters is small compared to advection and local air-sea heat flux, both of which contribute significantly to the heat content of the ASE waters. Above the permanent pycnocline, the local air-sea flux dominates the heat budget and is controlled by seasonal changes in sea ice coverage. Overall, between 2005 and 2010, the model shows a net heating in the surface above the pycnocline within the ASE. Sea water below the permanent pycnocline is isolated from the influence of air-sea heat fluxes, and thus, the divergence of heat advection is the major contributor to increased oceanic heat content of these waters. Oceanic transport of mass and heat into the ASE is dominated by the cross-shelf input and is primarily geostrophic below the permanent pycnocline. Diagnosis of the time-mean SOSE vorticity budget along the continental shelf slope indicates that the cross-shelf transport is sustained by vorticity input from the localized wind-stress curl over the shelf break.

  3. Two-dimensional atmospheric transport and chemistry model - Numerical experiments with a new advection algorithm

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.

    1990-01-01

    Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  4. A study of turbulent transport of an advective nature in a fluid plasma

    NASA Astrophysics Data System (ADS)

    Min, Byunghoon; An, Chan-Yong; Kim, Chang-Bae

    2014-08-01

    The advective nature of the electrostatic turbulent flux of plasma energy in Fourier space is studied numerically in a nearly adiabatic state. Such a state is represented by the Hasegawa-Mima equation, which is driven by a noise that may model the destabilization due to the phase mismatch of the plasma density and the electric potential. The noise is assumed to be Gaussian and not to be invariant under reflection along a direction ŝ. The flux density induced by such noise is found to be anisotropic: While it is random along ŝ, it is not along the perpendicular direction ŝ ⊥, and the flux is not diffusive. The renormalized response may be approximated as advective, with the velocity being proportional to ( kρ s )2, in the Fourier space.

  5. Two-dimensional atmospheric transport and chemistry model: numerical experiments with a new advection algorithm.

    PubMed

    Shia, R L; Ha, Y L; Wen, J S; Yung, Y L

    1990-05-20

    Extensive testing of the advective scheme, proposed by Prather (1986), has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. We generalize the original scheme to include higher-order moments. In addition, we show how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  6. Capture and release zones of permeable reactive barriers under the influence of advective-dispersive transport in the aquifer

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk; Mohamed, Mohamed M.; Perminova, Irina V.; Perlmutter, Mike

    2014-07-01

    The problem of permeable reactive barrier (PRB) capture and release behavior is investigated by means of an approximate analytical approach exploring the invariance of steady-state solutions of the advection-dispersion equation to conformal mapping. PRB configurations considered are doubly-symmetric funnel-and-gate as well as less frequent drain-and-gate systems. The effect of aquifer heterogeneity on contaminant plume spreading is hereby incorporated through an effective transverse macro-dispersion coefficient, which has to be known. Results are normalized and graphically represented in terms of a relative capture efficiency M of contaminant mass or groundwater passing a control plane (transect) at a sufficient distance up-stream of a PRB as to comply with underlying assumptions. Factors of safety FS are given as the ratios of required capture width under advective-dispersive and purely advective transport for achieving equal capture efficiency M. It is found that M also applies to the release behavior down-stream of a PRB, i.e., it describes the spreading and dilution of PRB treated groundwater possibly containing incompletely remediated contamination and/or remediation reaction products. Hypothetical examples are given to demonstrate results.

  7. Time-Lapse Micro-Tomography Measurements and Determination of Effective Transport Properties of Snow Metamorphism Under Advective Conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S.; Steen-Larsen, H. C.; Schneebeli, M.; Steinfeld, A.

    2014-12-01

    The metamorphism of snow under advective air flow, with and without temperature gradient, was never experimentally investigated. We developed a new sample holder where metamorphism under advective conditions can be observed and measured using time-lapse micro-tomography [1]. Long-term experiments were performed and direct pore-level simulation (DPLS) [2,3] was directly applied on the extracted 3D digital geometry of the snow to calculate the effective transport properties by solving the governing fluid flow equations. The results showed no effect of isothermal advection, compared to rates typical for isothermal metamorphism. Appling a temperature gradient, the results showed increased snow metamorphism compared to rates typical for temperature gradient metamorphism. However, for both cases a change in the isotopic composition in the air as well as in the snow sample could be observed. These measurements could be influential to better understand snow-air exchange processes relevant for atmospheric chemistry and isotopic composition. REFERENCES[1] Ebner P. P., Grimm S., Schneebeli M., and Steinfeld A.: An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow. Geoscientific Instrumentation, Methods and Data Systems 4(2014), 353-373. [2] Zermatten E., Haussener S., Schneebeli M., and Steinfeld A.: Tomography-based determination of permeability and Dupuit-Forchheimer coefficient of characteristic snow samples. Journal of Glaciology 57(2011), 811-816. [3] Zermatten E., Schneebeli M., Arakawa H., and Steinfeld A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. Cold Regions Science and Technology 97 (2014), 33-40. Fig. 1: 3-D surface rendering of a refrozen wet snow sample with fluid flow streamline.

  8. Mantle viscosity - A comparison of models from postglacial rebound and from the geoid, plate driving forces, and advected heat flux

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1991-01-01

    Models of the radial variation of effective viscosity inferred from the earth's response to surface loads associated with Pleistocene deglaciation are compared to structures inferred from models of geodynamic phenomena associated with convection: the geoid, plate-driving forces, and advected heat flux. While observations of the earth's response to surface loads do not have sufficient resolution to justify more than two viscous layers, adequately matching the observed long-wavelength geoid anomalies associated with density contrasts in the lower mantle (inferred from seismic tomography) and in the upper mantle (inferred from a model of subducted slabs) requires more structure. It is possible to explain the geoid, observed plate velocities, the advected heat flux in the lower mantle, and relative sea-level variations in oceanic regions, all with a mantle with a high-viscosity/elastic lid, an asthenospheric channel of 2 x 10 exp 19 Pa s from 100 to 400-km depth, a 6 x 10 exp 20 Pa s transition zone, and a lower mantle of 6 x 10 exp 21 Pa s. The uplift history of Australia, Fennoscandia, and Laurentia can be explained with an asthenospheric viscosity less than a factor of 10 higher. Lateral variations in lower mantle viscosity are not required. Transient creep appears to be unimportant for the recent response-to-surface loads from Pleistocene deglaciation.

  9. Heat transport in nonuniform superconductors

    NASA Astrophysics Data System (ADS)

    Richard, Caroline; Vorontsov, Anton B.

    2016-08-01

    We calculate electronic energy transport in inhomogeneous superconductors using a fully self-consistent nonequilibrium quasiclassical Keldysh approach. We develop a general theory and apply it to a superconductor with an order parameter that forms domain walls of the type encountered in the Fulde-Ferrell-Larkin-Ovchinnikov state. The heat transport in the presence of a domain wall is inherently anisotropic and nonlocal. The bound states in the nonuniform region play a crucial role and control heat transport in several ways: (i) they modify the spectrum of quasiparticle states and result in Andreev reflection processes and (ii) they hybridize with the impurity band and produce a local transport environment with properties very different from those in a uniform superconductor. As a result of this interplay, heat transport becomes highly sensitive to temperature, magnetic field, and disorder. For strongly scattering impurities, we find that the transport across domain walls at low temperatures is considerably more efficient than in the uniform superconducting state.

  10. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development and delivery of noncorrosive fluid subsystems are reported that are compatible with closed-loop solar heating or combined heating and hot water systems. They are also compatible with both metallic and non-metallic plumbing systems. The performance testing of a number of fluids is described.

  11. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made in the development and delivery of noncorrosive fluid subsystems is discussed. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. The performance testing of a number of fluids is described.

  12. Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal.

    PubMed

    Richon, Patrick; Perrier, Frédéric; Koirala, Bharat Prasad; Girault, Frédéric; Bhattarai, Mukunda; Sapkota, Soma Nath

    2011-02-01

    Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m(-2) d(-1). Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO(2) concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m(-3), but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO(2) advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m(-3), remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S(1) and semi-diurnal S(2) periodic components. At the advection-dominated points, radon concentration did not exhibit S(1) or S(2) components. At the reference points, however, the S(2) component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S(1) component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the

  13. Development of the FMT chemical transport simulator: Advective transport sensitivity to aqueous density and mineral volume fraction coupled to phase compositions

    SciTech Connect

    Novak, C.F.

    1993-12-31

    The Fracture-Matrix Transport (FMT) code couples saturated porous media advection and diffusion with mechanistic chemical models for speciation and interphase reactions. FMT is being developed to support actinide solubility and retardation studies for the Waste Isolation Pilot Plant (WIPP), USDOE facility for demonstrating safe disposal of transuranic waste. Hydrologic studies of water-bearing units above the WIPP indicate double-porosity transport behavior in some locations, with groundwater concentrations ranging which potable to highly concentrated. Previously, FMT simulated such systems in two-dimensions on the continuum from advection- to diffusion-dominated, with a user-specified velocity field that allows double-porosity transport. However, aqueous density was assumed constant, and reactive minerals were assumed to occupy negligible volume. Both of these assumptions can be considered poor for evaporite systems, where large changes in porosity and aqueous density can result from high mineral solubilities. Therefore, further development of FMT has relaxed these restrictions, allowing aqueous density to vary with phase composition, and allowing void volume to change as minerals dissolve and precipitate. This paper describes the additional mathematical complexity required to simulate such systems. The sensitivity of advection-dominated transport to these variables is explored through an extended example.

  14. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made on the development and delivery of noncorrosive fluid subsystems is reported. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. At least 100 gallons of each type of fluid recommended by the contractor will be delivered under the contract. The performance testing of a number of fluids is described.

  15. Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport

    NASA Astrophysics Data System (ADS)

    Lester, D. R.; Trefry, M. G.; Metcalfe, G.

    2016-11-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.

  16. SEAWAT-based simulation of axisymmetric heat transport.

    PubMed

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only.

  17. SEAWAT-based simulation of axisymmetric heat transport.

    PubMed

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. PMID:24571415

  18. Advection dispersion mass transport associated with a non-aqueous-phase liquid pool

    NASA Astrophysics Data System (ADS)

    Fyrillas, Marios M.

    2000-06-01

    The two-dimensional problem of advection dispersion associated with a non-aqueous-phase liquid (NAPL) pool is addressed using the boundary element method. The problem is appropriately posed with an inhomogeneous boundary condition taking into consideration the presence of the pool and the impermeable layer. We derive a Fredholm integral equation of the first kind for the concentration gradient along the pool location and compute the average mass transfer coefficient numerically using the boundary-element method. Numerical results are in agreement with asymptotic analytical solutions obtained for the cases of small and large Péclet number (Pex). The asymptotic solution for small Pex, which is obtained by applying a novel perturbation technique to the integral equation, is used to de-singularize the integral equation. Results predicted by this analysis are in good agreement with experimentally determined overall mass transfer coefficients.

  19. Advective excess Ba transport as shown from sediment and trap geochemical signatures

    SciTech Connect

    Fagel, N.; Andre, L.; Dehairs, F.

    1999-08-01

    The authors report the results of a geochemical study of sediment and trap material. Major and trace elements (Zr, Ba, rare earth elements, and Th) were analyzed on bulk sedimentary material collected along the NE Atlantic margin. The aim is to test the widespread use of Ba-barite as a proxy for paleoproductivity in a continental margin area. This environment is of great interest because atmospheric-oceanic exchanges are important. In sediments, the geochemical signatures remain close to an upper crust reference, with flat shale-normalized rare earth elements patterns and constant elementary ratios. The calculated biogenic fraction of Ba or excess Ba (20--45%) remains lower than the excess Ba record in trap material (80--99%). The evolution of the geochemical signature along the margin reflects variable dilution of a detrital Post Archean Australian Shale-like component by a biogenic carbonaceous seawater-derived component. The trap material displays a wide range of variation in its trace element content (e.g., Ba {approximately}150--3,000 ppm, Zr {approximately}2--100 ppm), except for the abyssal site, which is characterized by constant signature. In the two other sites, all of the trace element contents increase with water depth and present pronounced seasonal changes at each sampled water depth. The amount of excess Ba also increases in the deepest traps, and its evolution throughout the year mimics the change of the other analyzed trace elements. In contrast, its relationships with particulate organic carbon are not obvious. In terms of fluxes, two periods of enhanced excess Ba fluxes are observed: (1) excess Ba flux increases with the detrital-like elements like Th especially during winter, and (2) excess Ba flux is enhanced without any change for the other trace elements during spring. To explain the first case, a supply through lateral advection is proposed. Such transient input of significant excess Ba flux will have a great impact on the yearly averaged

  20. Advective-diffusive/dispersive transport of chemically reacting species in hydrothermal systems. Final report, FY83-85

    SciTech Connect

    Lichtner, P.C.; Helgeson, H.C.

    1986-06-20

    A general formulation of multi-phase fluid flow coupled to chemical reactions was developed based on a continuum description of porous media. A preliminary version of the computer code MCCTM was constructed which implemented the general equations for a single phase fluid. The computer code MCCTM incorporates mass transport by advection-diffusion/dispersion in a one-dimensional porous medium coupled to reversible and irreversible, homogeneous and heterogeneous chemical reactions. These reactions include aqueous complexing, oxidation/reduction reactions, ion exchange, and hydrolysis reactions of stoichiometric minerals. The code MCCTM uses a fully implicit finite difference algorithm. The code was tested against analytical calculations. Applications of the code included investigation of the propagation of sharp chemical reaction fronts, metasomatic alteration of microcline at elevated temperatures and pressures, and ion-exchange in a porous column. Finally numerical calculations describing fluid flow in crystalline rock in the presence of a temperature gradient were compared with experimental results for quartzite.

  1. Modeling Three-Dimensional Groundwater Flow and Advective Contaminant Transport at a Heterogeneous Mountainous Site in Support of Remediation Strategy

    SciTech Connect

    Zhou, Quanlin; Birkholzer, Jens T.; Javandel, Iraj; Jordan, Preston D.

    2004-01-14

    A calibrated groundwater flow model for a contaminated site can provide substantial information for assessing and improving hydraulic measures implemented for remediation. A three-dimensional transient groundwater flow model was developed for a contaminated mountainous site, at which interim corrective measures were initiated to limit further spreading of contaminants. This flow model accounts for complex geologic units that vary considerably in thickness, slope, and hydrogeologic properties, as well as large seasonal fluctuations of the groundwater table and flow rates. Other significant factors are local recharge from leaking underground storm drains and recharge from steep uphill areas. The zonation method was employed to account for the clustering of high and low hydraulic conductivities measured in a geologic unit. A composite model was used to represent the bulk effect of thin layers of relatively high hydraulic conductivity found within bedrock of otherwise low conductivity. The inverse simulator ITOUGH2 was used to calibrate the model for the distribution of rock properties. The model was initially calibrated using data collected between 1994 and 1996. To check the validity of the model, it was subsequently applied to predicting groundwater level fluctuation and groundwater flux between 1996 and 1998. Comparison of simulated and measured data demonstrated that the model is capable of predicting the complex flow reasonably well. Advective transport was approximated using pathways of particles originating from source areas of the plumes. The advective transport approximation was in good agreement with the trend of contaminant plumes observed over the years. The validated model was then refined to focus on a subsection of the large system. The refined model was subsequently used to assess the efficiency of hydraulic measures implemented for remediation.

  2. Water, heat and salt transport through the Strait of Otranto

    NASA Astrophysics Data System (ADS)

    Yari, Sadegh; Gačić, Miroslav; Kovačević, Vedrana; Cardin, Vanessa

    2010-05-01

    The water, heat and salt transports through the Strait of Otranto are estimated applying direct method to historical current and hydrographical data (from December 94 through November 95). A variational inverse method based on a variational principle and a finite element solver is used to reconstruct the current, temperature and salinity fields across the Strait section from sparse measurements. The mean annual inflow and outflow water transport rates are estimated as 0.901±0.039 Sv and -0.939±0.315 Sv, respectively, and the net transport for the period of study is equal to -0.032±0.208 Sv. Thus, on a yearly time interval, the inflow and the outflow are practically compensated. The heat and salt transports due to advection process are estimated for five monthly periods, namely December 1994, February, May, August and November 1995. Considering these five periods representative of the seasonal cycle during the year, their average values show that there is a net heat advection into the Adriatic Sea on a yearly basis. The estimated value of advected heat and the corresponding error are 2.408±0.490 TW, which is equivalent to a heat gain of 17.37±3.53 W m-2 for the whole basin. This value is compared to the heat loss of -36±152 (std) W m-2 through the air-sea interface calculated by means of bulk formulas over the Adriatic Sea. The two values are expected to be balance each other in order to close the heat budget of the basin. The possible reasons for this difference to occur are discussed. On a yearly basis, the salt transport is estimated as an input of salt equal to 0.05×106 Kg s-1. The average annual fresh water budget is estimated as -0.002 Sv, equivalent to the mass of fresh water of 2.00×106Kg s-1 or to the level of 0.45 m yr-1 for the entire Adriatic Sea. The import of salt that is less than the gain of fresh water is in agreement with the fact that the Adriatic Sea is a dilution basin.

  3. User's guide to PHREEQC, a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, D.L.

    1995-01-01

    PHREEQC is a computer program written in the C pwgranuning language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria surface-complex-ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for composition differences between waters, within specified compositional uncertainties. PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox elements among their valence states in speciation calculations; to model ion-exchange and surface-compiexation reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of minerals present in the solid phases and determine antomaticaHy the thermodynamically stable phase assemblage; to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral names and standard chemical symbolism rather than index numbers. The use of (2 eliminates nearly all limitations on army sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character

  4. Clumped isotope constraints on fluid processes and heat advection during late Variscan brittle failure of carbonate rocks

    NASA Astrophysics Data System (ADS)

    Dennis, Paul; Myhill, Daniel; Allanach, Neil; Forman, Alexandra; Marca, Alina

    2015-04-01

    Clumped isotope temperatures (T(Δ47)) for macroscopic hydrothermal calcite veins from the Lower Carboniferous limestone of the Peak District, U.K. and the Clare Basin, Ireland indicate that late Variscan brittle failure is accompanied by high rates of fluid flow and heat advection along fault surfaces. Moreover, the veins are often zoned with regard to both temperature and oxygen isotope composition indicating that fluid movement is episodic and occurs in pulses. A striking feature of the data sets for both the Peak District and Clare Basin is that veins, including multiple samples from single veins, plot on well defined two end-member mixing lines in T-δ18Ofluid space. The data for veins in the Clare Basin indicate that they precipitated at a temperature between 100° and 160° C, and for the Peak District between 30° and 100° C. The veins precipitate from a mixed fluid comprised of: (i) a hot, isotopically evolved end member (T>160° C, δ18Ofluid > +12V SMOW) and; (ii) a cooler, isotopically depleted fluid more characteristic of meteoric groundwaters (T

  5. Improved rigorous upper bounds for transport due to passive advection described by simple models of bounded systems

    SciTech Connect

    Kim, Chang-Bae; Krommes, J.A.

    1988-08-01

    The work of Krommes and Smith on rigorous upper bounds for the turbulent transport of a passively advected scalar (/ital Ann. Phys./ 177:246 (1987)) is extended in two directions: (1) For their ''reference model,'' improved upper bounds are obtained by utilizing more sophisticated two-time constraints which include the effects of cross-correlations up to fourth order. Numerical solutions of the model stochastic differential equation are also obtained; they show that the new bounds compare quite favorably with the exact results, even at large Reynolds and Kubo numbers. (2) The theory is extended to take account of a finite spatial autocorrelation length L/sub c/. As a reasonably generic example, the problem of particle transport due to statistically specified stochastic magnetic fields in a collisionless turbulent plasma is revisited. A bound is obtained which reduces for small L/sub c/ to the quasilinear limit and for large L/sub c/ to the strong turbulence limit, and which provides a reasonable and rigorous interpolation for intermediate values of L/sub c/. 18 refs., 6 figs.

  6. ADVECTIVE TRANSPORT OF INTERSTELLAR PLASMA INTO THE HELIOSPHERE ACROSS THE RECONNECTING HELIOPAUSE

    SciTech Connect

    Strumik, M.; Grzedzielski, S.; Czechowski, A.; Macek, W. M.; Ratkiewicz, R.

    2014-02-10

    We discuss results of magnetohydrodynamical model simulations of plasma dynamics in the proximity of the heliopause (HP). The model is shown to fit details of the magnetic field variations observed by the Voyager 1 spacecraft during the transition from the heliosphere to the local interstellar medium (LISM). We propose an interpretation of magnetic field structures observed by Voyager 1 in terms of fine-scale physical processes. Our simulations reveal an effective transport mechanism of relatively dense LISM plasma across the reconnecting HP into the heliosphere. The mechanism is associated with annihilation of magnetic sectors in the heliospheric plasma near the HP.

  7. The effects of temperature and motility on the advective transport of a deep subsurface bacteria through saturated sediment

    SciTech Connect

    McCaulou, D.R.

    1993-10-01

    Replicate column experiments were done to quantify the effects of temperature and bacterial motility on advective transport through repacked, but otherwise unaltered, natural aquifer sediment. The bacteria used in this study, A0500, was a flagellated, spore-forming rod isolated from the deep subsurface at DOE`s Savannah River Laboratory. Motility was controlled by turning on flagellar metabolism at 18{degrees}C but off at 40{degrees}C. Microspheres were used to independently quantify the effects of temperature on the sticking efficiency ({alpha}), estimated using a steady-state filtration model. The observed greater microsphere removal at the higher temperature agreed with the physical-chemical model, but bacteria removal at 18{degrees}C was only half that at 4{degrees}C. The sticking efficiency for non-motile A0500 (4{degrees}C) was over three times that of the motile A0500 (18{degrees}C), 0.073 versus 0.022 respectively. Analysis of complete breakthrough curves using a non-steady, kinetically limited, transport model to estimate the time scales of attachment and detachment suggested that motile A 0500 bacteria traveled twice as far as non-motile A 0500 bacteria before becoming attached. Once attached, non-motile colloids detached on the time scale of 9 to 17 days. The time scale for detachment of motile A0500 bacteria was shorter, 4 to 5 days. Results indicate that bacterial attachment was reversible and detachment was enhanced by bacterial motifity. The kinetic energy of bacterial motility changed the attachment-detachment kinetics in favor of the detached state. The chemical factors responsible for the enhanced transport are not known. However, motility may have caused weakly held bacteria to detach from the secondary minimum, and possibly from the primary minimum, as described by DLVO theory.

  8. The role of atmospheric heat transport in the seasonal carbon dioxide cycle

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, R. M.; Murphy, James R.; Schaeffer, J.

    1993-01-01

    We have carried out numerical experiments with a general circulations model (GCM) and energy balance model of the martian atmosphere to define the importance of heat transported to the polar regions in determining the amount of CO2 condensed on the surface during the fall and winter seasons and the amount sublimated during the spring and summer seasons. In so doing, we performed both sensitivity experiments, in which the dust opacity was varied over the full range of its observed values, and annual simulations, in which the dust opacity varied continuously with seasonal data, in accord with measurements taken at the Viking landers. Dust opacity represents the key variable for determining the contribution of atmospheric heat advection to the energy budget in the polar regions. The amount of heat advected to the winter polar regions increases monotonically as the dust opacity at low and middle latitudes increases. However, the increase is sharpest between optical depths of 0 and 1 tends to level off at still higher optical depths. Heat advection is more important at times of CO2 condensation than CO2 sublimation, since the temperature gradients are much steeper in the winter hemisphere than in the summer hemisphere. Because dust opacity is much higher during northern winter than during southern winter, atmospheric heat advection reduces the amount of CO2 that condenses in the north by a much larger factor than it does in the south.

  9. Analysis of steady-state flow and advective transport in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Ackerman, D.J.

    1995-01-01

    Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails

  10. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  11. Simulating water, solute, and heat transport in the subsurface with the VS2DI software package

    USGS Publications Warehouse

    Healy, R.W.

    2008-01-01

    The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.

  12. MODFLOW-2000 : the U.S. Geological Survey modular ground-water model--documentation of the Advective-Transport Observation (ADV2) Package

    USGS Publications Warehouse

    Anderman, Evan R.; Hill, Mary Catherine

    2001-01-01

    Observations of the advective component of contaminant transport in steady-state flow fields can provide important information for the calibration of ground-water flow models. This report documents the Advective-Transport Observation (ADV2) Package, version 2, which allows advective-transport observations to be used in the three-dimensional ground-water flow parameter-estimation model MODFLOW-2000. The ADV2 Package is compatible with some of the features in the Layer-Property Flow and Hydrogeologic-Unit Flow Packages, but is not compatible with the Block-Centered Flow or Generalized Finite-Difference Packages. The particle-tracking routine used in the ADV2 Package duplicates the semi-analytical method of MODPATH, as shown in a sample problem. Particles can be tracked in a forward or backward direction, and effects such as retardation can be simulated through manipulation of the effective-porosity value used to calculate velocity. Particles can be discharged at cells that are considered to be weak sinks, in which the sink applied does not capture all the water flowing into the cell, using one of two criteria: (1) if there is any outflow to a boundary condition such as a well or surface-water feature, or (2) if the outflow exceeds a user specified fraction of the cell budget. Although effective porosity could be included as a parameter in the regression, this capability is not included in this package. The weighted sum-of-squares objective function, which is minimized in the Parameter-Estimation Process, was augmented to include the square of the weighted x-, y-, and z-components of the differences between the simulated and observed advective-front locations at defined times, thereby including the direction of travel as well as the overall travel distance in the calibration process. The sensitivities of the particle movement to the parameters needed to minimize the objective function are calculated for any particle location using the exact sensitivity

  13. Heat transport system, method and material

    DOEpatents

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  14. POCAHONTAS - Polar climate and heat transport

    NASA Astrophysics Data System (ADS)

    Falck, E.; Østerhus, S.

    2009-04-01

    POCAHONTAS (Polar climate and heat transport) is a Norwegian research project. The main objective of this project is to determine the mean and the variation of the combined oceanic and atmospheric heat transports toward Svalbard and the European Arctic and to identify and quantify the marine processes that regulate this transport and their possible feedback. An overview of the project and some preliminary results are presented.

  15. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection

    USGS Publications Warehouse

    Shapiro, A.M.; Renken, R.A.; Harvey, R.W.; Zygnerski, M.R.; Metge, D.W.

    2008-01-01

    A tracer experiment, using a nonreactive tracer, was conducted as part of an investigation of the potential for chemical and pathogen migration to public supply wells that draw groundwater from the highly transmissive karst limestone of the Biscayne aquifer in southeastern Florida. The tracer was injected into the formation over approximately 1 h, and its recovery was monitored at a pumping well approximately 100 m from the injection well. The first detection of the tracer occurred after approximately 5 h, and the peak concentration occurred at about 8 h after the injection. The tracer was still detected in the production well more than 6 days after injection, and only 42% of the tracer mass was recovered. It is hypothesized that a combination of chemical diffusion and slow advection resulted in significant retention of the tracer in the formation, despite the high transmissivity of the karst limestone. The tail of the breakthrough curve exhibited a straight-line behavior with a slope of -2 on a log-log plot of concentration versus time. The -2 slope is hypothesized to be a function of slow advection, where the velocities of flow paths are hypothesized to range over several orders of magnitude. The flow paths having the slowest velocities result in a response similar to chemical diffusion. Chemical diffusion, due to chemical gradients, is still ongoing during the declining limb of the breakthrough curve, but this process is dwarfed by the magnitude of the mass flux by slow advection.

  16. Charge fluctuations in nonlinear heat transport

    NASA Astrophysics Data System (ADS)

    Gergs, Niklas M.; Hörig, Christoph B. M.; Wegewijs, Maarten R.; Schuricht, Dirk

    2015-05-01

    We show that charge fluctuation processes are crucial for the nonlinear heat conductance through an interacting nanostructure, even far from a resonance. We illustrate this for an Anderson quantum dot accounting for the first two leading orders of the tunneling in a master equation. The often made assumption that off-resonant transport proceeds entirely by virtual occupation of charge states, underlying exchange-scattering models, can fail dramatically for heat transport. The identified energy-transport resonances in the Coulomb blockade regime provide qualitative information about relaxation processes, for instance, by a strong negative differential heat conductance relative to the heat current. These can go unnoticed in the charge current, making nonlinear heat-transport spectroscopy with energy-level control a promising experimental tool.

  17. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  18. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  19. Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada

    SciTech Connect

    Hill, M.C.; Ely, D.M.; Tiedeman, C.R.; O'Brien, G.M.; D'Agnese, F.A.; Faunt, C.C.

    2001-08-01

    When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system (DVRFS). The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 underground Test Area (UGTA) sites. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work.

  20. Heat transport system, method and material

    DOEpatents

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  1. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone

    PubMed Central

    Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.

    2015-01-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532

  2. Heat transport in the Red Lake Bog, Glacial Lake Agassiz Peatlands

    USGS Publications Warehouse

    McKenzie, J.M.; Siegel, D.I.; Rosenberry, D.O.; Glaser, P.H.; Voss, C.I.

    2007-01-01

    We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub-daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0.5 W m-1 ??C-1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore-water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero-curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non-linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright ?? 2006 John Wiley & Sons, Ltd.

  3. A dual-temperature-difference approach to estimate daytime sensible and latent heat fluxes under advective conditions during BEAREX08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dual-Temperature-Difference (DTD) approach uses continuous radiometric surface temperature measurements in a two-source (soil + vegetation) energy balance model to solve for the daytime evolution of the sensible and latent heat fluxes. By using the surface-air temperature difference at two time...

  4. Using Sea Level to Probe Linkages Between Heat Transport Convergence, Heat Storage Rate, and Air-Sea Heat Exchange in the Subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Thompson, L.; Kelly, K. A.; Booth, J. F.

    2014-12-01

    Annual mean surface heat fluxes from the ocean to the atmosphere in midlatitudes are maximum in the Gulf Stream and that surface flux is driven by geostrophic heat transport convergence. Evidence is mounting that on interannual times scales, the surface flux of heat in the Gulf Stream region is controlled by the amount of heat that is stored in the region and that the heat storage rate is in turn controlled by geostrophic heat transport convergence. In addition, variations in meridional heat transport have been linked to the meridional overturning circulation just to the south of the Gulf Stream at the RAPID/MOCHA array at 26.5N, suggesting that changes in the meridional overturning circulation might be linked to surface heat exchange in the Gulf Stream. The twenty-year record of satellite sea level (SSH) along with high quality surface heat fluxes allow a detailed evaluation of the interaction between stored oceanic heat in this region and surface heat fluxes on interannual times scales. Using gridded sea level from AVISO as a proxy for upper ocean heat content along with surface turbulent heat flux from OAFlux, we evaluate the lagged correlations between interannual surface turbulent heat fluxes and SSH variability. Previous work has shown that where advection is small lagged correlations between SST (sea surface temperature) and surface turbulent heat flux are generally antisymmetric about zero lag with negative correlations when SST leads and positive correlations when SST lags. This indicates that surface heat fluxes force SST anomalies that at later times are damped by surface fluxes. In contrast, the lagged correlation between SSH anomalies and the turbulent flux of heat in the Gulf Stream region show a distinctly asymmetric relationship about zero-lag. The correlations are negative when SSH leads but are not significant when SSH lags indicating the dominant role in heat transport convergence in driving heat content changes, and that the heat content

  5. Comment on "Advective transport in heterogeneous aquifers: Are proxy models predictive?" by A. Fiori, A. Zarlenga, H. Gotovac, I. Jankovic, E. Volpi, V. Cvetkovic, and G. Dagan

    NASA Astrophysics Data System (ADS)

    Neuman, Shlomo P.

    2016-07-01

    Fiori et al. (2015) examine the predictive capabilities of (among others) two "proxy" non-Fickian transport models, MRMT (Multi-Rate Mass Transfer) and CTRW (Continuous-Time Random Walk). In particular, they compare proxy model predictions of mean breakthrough curves (BTCs) at a sequence of control planes with near-ergodic BTCs generated through two- and three-dimensional simulations of nonreactive, mean-uniform advective transport in single realizations of stationary, randomly heterogeneous porous media. The authors find fitted proxy model parameters to be nonunique and devoid of clear physical meaning. This notwithstanding, they conclude optimistically that "i. Fitting the proxy models to match the BTC at [one control plane] automatically ensures prediction at downstream control planes [and thus] ii. … the measured BTC can be used directly for prediction, with no need to use models underlain by fitting." I show that (a) the authors' findings follow directly from (and thus confirm) theoretical considerations discussed earlier by Neuman and Tartakovsky (2009), which (b) additionally demonstrate that proxy models will lack similar predictive capabilities under more realistic, non-Markovian flow and transport conditions that prevail under flow through nonstationary (e.g., multiscale) media in the presence of boundaries and/or nonuniformly distributed sources, and/or when flow/transport are conditioned on measurements.

  6. Transport in Auxiliary Heated NSTX Discharges

    SciTech Connect

    B.P. LeBlanc; M.G. Bell; R.E. Bell; M.L. Bitte; C. Bourdelle; D.A. Gates; S.M. Kaye; R. Maingi; J.E. Menard; D. Mueller; M. Ono; S.F. Paul; M.H. Redi; A.L. Roquemore; A. Rosenberg; S.A. Sabbagh; D. Stutman; E.J. Synakowski; V.A. Soukhanovskii; J.R.Wilson

    2003-07-10

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses.

  7. Capillary heat transport and fluid management device

    NASA Technical Reports Server (NTRS)

    Owen, James W. (Inventor)

    1988-01-01

    A passive heat transporting and fluid management apparatus including a housing in the form of an extruded body member having flat upper and lower surfaces is disclosed. A main liquid channel and at least two vapor channels extend longitudinally through the housing from a heat input end to a heat output end. The vapor channels have sintered powdered metal fused about the peripheries to form a porous capillary wick structure. A substantial number of liquid arteries extend transversely through the wicks adjacent the respective upper and lower surfaces of the housing, the arteries extending through the wall of the housing between the vapor channels and the main liquid channel and open into the main liquid channel. Liquid from the main channel enters the artery at the heat input end, wets the wick and is vaporized. When the vapor is cooled at the heat output end, the condensed vapor refills the wick and the liquid reenters the main liquid channel.

  8. Heat transport experiments on the HSX stellarator

    NASA Astrophysics Data System (ADS)

    Weir, Gavin McCabe

    It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission line have been installed and tested to facilitate modulated heating experiments on HSX, and a multi-pass absorption model accurately predicts the total absorption and spatial extent of the electron cyclotron resonance heating during a modulation experiment. The electron cyclotron emission measured by an absolutely calibrated 16-channel radiometer is used to measure the local electron temperature and its response to the modulated heating. The amplitude and phase of the heat wave through the foot of the steep electron temperature gradient region of the plasma, 0.2It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission

  9. Vibrational Heat Transport in Molecular Junctions.

    PubMed

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-27

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules. PMID:27215814

  10. Vibrational Heat Transport in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  11. Increased ocean heat transports and warmer climate

    SciTech Connect

    Rind, D. ); Chandler, M. )

    1991-04-20

    The authors investigated the effect of increased ocean heat transports on climate in the Goddard Institute for Space Studies (GISS) general circulation model (GCM). The warming is driven by the decreased sea ice/planetary albedo, a feedback which would appear to be instrumental for producing extreme high-latitude amplification of temperature changes. Resulting hydrologic and wind stress changes suggest that qualitatively the increased transports might be self-sustaining. As such, they would represent a possible mechanism to help account for the high-latitude warmth of climates in the Mesozoic and Tertiary, and decadal-scale climate fluctuations during the Holocene, as well as a powerful feedback to amplify other climate forcings. It is estimated that ocean transport increases of 50-70% would have been necessary to reproduce the warmth of various Mesozoic (65-230 m.y. ago) climates without changes in atmospheric composition, while the 15% increase used in these experiments would have been sufficient to reproduce the general climatic conditions of the Eocene (40-55 Ma). A companion experiment indicates that increased topography during the Cenozoic (0-65 Ma) might have altered the surface wind stress in a manner that led to reduced heat transports; this effect would then need to be considered in understanding the beginning of ice ages. The large high-latitude amplification associated with ocean heat transport and sea ice changes differs significantly from that forecast for increased trace gases, for which water vapor increase is the primary feedback mechanism. The different signatures might allow for discrimination of these different forcings; e.g., the warming of the 1930s looks more like the altered ocean heat transport signal, while the warming of the 1980s is more like the trace gas effect.

  12. Enhancement of binding kinetics on affinity substrates by laser point heating induced transport.

    PubMed

    Wang, Bu; Cheng, Xuanhong

    2016-03-01

    Enhancing the time response and detection limit of affinity-binding based biosensors is an area of active research. For diffusion limited reactions, introducing active mass transport is an effective strategy to reduce the equilibration time and improve surface binding. Here, a laser is focused on the ceiling of a microchamber to generate point heating, which introduces natural advection and thermophoresis to promote mass transport to the reactive floor. We first used the COMSOL simulation to study how the kinetics of ligand binding is influenced by the optothermal effect. Afterwards, binding of biotinylated nanoparticles to NeutrAvidin-treated substrates is quantitatively measured with and without laser heating. It is discovered that laser induced point heating reduces the reaction half-life locally, and the reduction improves with the natural advection velocity. In addition, non-uniform ligand binding on the substrate is induced by the laser with predictable binding patterns. This optothermal strategy holds promise to improve the time-response and sensitivity of biosensors and microarrays. PMID:26898559

  13. Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada

    USGS Publications Warehouse

    Hill, Mary C.; Ely, D. Matthew; Tiedeman, Claire R.; O'Brien, Grady M.; D'Agnese, Frank A.; Faunt, Claudia C.

    2001-01-01

    When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system. The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 Underground Test Areas. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work. The methods presented in this report are used in three ways. (1) The ratings for individual observations are obtained by manipulating the measures of prediction uncertainty, and do not involve recalibrating the model. In this analysis, observation locations are each omitted individually and the resulting increase in uncertainty in the predictions is calculated. The uncertainty is quantified as standard deviations on the simulated advective transport. The increase in uncertainty is quantified as the percent increase in the standard deviations caused by omitting the one observation location from the calculation of standard deviations. In general, observation locations associated with larger increases are rated as more important. (2) Ratings for largely geographically based groups are obtained using a straightforward extension of the method used for

  14. Miniature Heat Transport System for Nanosatellite Technology

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M,

    1999-01-01

    The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an

  15. STATISTICAL METHODOLOGY FOR ESTIMATING TRANSPORT PARAMETERS: THEORY AND APPLICATIONS TO ONE-DOMENSIONAL ADVECTIVE-DISPERSIVE SYSTEMS.

    USGS Publications Warehouse

    Wagner, Brian J.; Gorelick, Steven M.

    1986-01-01

    A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference containment transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2-3 times more reliable than estimates based on temporal data for all parameters except velocity. (Estimated author abstract) Refs.

  16. Electron heat transport down steep temperature gradients

    SciTech Connect

    Matte, J.P.; Virmont, J.

    1982-12-27

    Electron heat transport is studied by numerically solving the Fokker-Planck equation, with a spherical harmonic representation of the distribution function. The first two terms (f/sub 0/, f/sub 1/) suffice, even in steep temperature gradients. Deviations from the Spitzer-Haerm law appear for lambda/L/sub T/ ((mean free path)/(temperature gradient length))> or approx. =0.01, as a result of non-Maxwellian f/sub 0/. For lambda/L/sub T/> or approx. =1, the heat flux is (1/3) of the free-streaming value. In intermediate cases, a harmonic law describes well the hottest part of the plasma.

  17. DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE

    EPA Science Inventory

    A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...

  18. Aspects of numerical and representational methods related to the finite-difference simulation of advective and dispersive transport of freshwater in a thin brackish aquifer

    USGS Publications Warehouse

    Merritt, M.L.

    1993-01-01

    The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.

  19. Increased ocean heat transports and warmer climate

    NASA Technical Reports Server (NTRS)

    Rind, D.; Chandler, M.

    1991-01-01

    The impact of an increased ocean heat transport on climate is investigated in the framework of the GISS GMC model described by Hansen et al. (1983), using two scenarios: one starting from warmer polar temperatures/no sea ice and the other from the current ocean conditions. A 20-percent increase in cross-equatorial heat transport was sufficient to melt all sea ice; it resulted in a climate that was 2 C warmer for the global average, with values some 20-deg warmer at high altitudes and 1-deg warmer near the equator. It is suggested that the hydrological and dynamical changes associated with this different climate regime may be self-sustaining and, as such, would account for the high-latitude warmth of climates in the Mesozoic and Tertiary periods and the decadenal-scale climate fluctuations during the Holocene.

  20. Modelling coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian Clay

    NASA Astrophysics Data System (ADS)

    Baechler, S.; Croisé, J.; Altmann, S.

    2012-12-01

    Chemico-osmosis is a recognized phenomenon taking place in clay mineral-rich sedimentary formations and a number of questions have been raised concerning its potential effects on pressure fields in and around underground radioactive waste repositories installed in such formations. Certain radioactive waste packages contain large quantities of nitrate salts whose release might result in the presence of highly concentrated salt solutions in the disposal cells, during their resaturation after closure of the facility. This would lead to large solute concentration gradients within the formation's porewater which could then potentially induce significant chemico-osmotic fluxes. In this paper, we assess the impact of chemico-osmotic fluxes on the water pressure during the post-closure period of a typical disposal cell for intermediate-level, long-lived bituminised radioactive waste in the Callovo-Oxfordian Clay formation. A numerical model of chemico-osmotic water flow and solute transport has been developed based on the work of Bader and Kooi (2005) [5], and including Bresler's dependence of osmotic efficiency on concentration and compaction state [9]. Model validity has been extended to highly concentrated solutions by incorporating a concentration-dependent activity coefficient, based on the Pitzer's equations. Results show that due to the strong dependence of the osmotic coefficient on concentration, the impact of chemico-osmosis on water flow and on the pressure field around the disposal cell is relatively low. A maximum overpressure of the order of 1 MPa was obtained. No difference in the simulation results were noticed for disposal cell solutions having concentrations higher than 1 M NaNO3. Differences between simulations were found to be almost entirely due to Bresler's relationship i.e., the model of the dependence between osmotic efficiency and concentration, and only slightly on the activity coefficient correction. Questions remain regarding the appropriate

  1. Numerical Modeling of Mantle Convection with Heat-pipe Melt Transport

    NASA Astrophysics Data System (ADS)

    Prinz, Sebastian; Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris

    2015-04-01

    During the early evolution of terrestrial bodies, a large amount of mantle melting is expected to affect significantly the energy budget of the interior through heat transport by volcanism. Partial melt, generated when the mantle temperature exceeds the solidus, can propagate to the surface through dikes, thereby advecting upwards a large amount of heat. This so-called heat-pipe mechanism is an effective way to transport thermal energy from the meltregion to the planetary surface. Indeed, recent studies suggest that this mechanism may have shaped the Earth's earliest evolution by controlling interior heat loss until the onset of plate tectonics [1]. Furthermore, heat-piping is likely the primary mechanism through which Jupiter's moon Io loses its tidally generated heat, leading to massive volcanism able to cause a present-day heat-flux about 40 times higher than the Earth's average heat-flux [2]. However, despite its obvious importance, heat-piping is often neglected in mantle convection models of terrestrial planets because of its additional complexity and vaguely defined parameterization. In this study, adopting the approach of [1] we model mantle convection in a generic stagnant lid planet and study heat-piping effects in a systematic way. Assuming that melt is instantaneously extracted to the surface and melting regions are refilled by downward advection of cold mantle material in order to ensure mass conservation, we investigate the influence of heat-pipes on the mantle temperature and stagnant lid thickness using the numerical code Gaia [3]. To this end, we run a large set of simulations in 2D Cartesian geometry spanning a wide parameter space. Our results are consistent with [1] and show that in systems with strongly temperature-dependent viscosity the heat-pipe mechanism sets in at a Rayleigh number Ra ~ 2 × 107. Upon increasing Ra up to ~ 6 × 107

  2. Radiative heat transport instability in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Bychenkov, V. Yu.

    2015-11-01

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation losses and radiative heat transfer supports ion acoustic wave instability. A linear dispersion relation is derived and instability is compared to the radiation cooling instability. This instability develops in the wide range of angles and wavenumbers with the typical growth rate on the order of cs/LT (cs is the sound speed, LT is the temperature scale length). In addition to radiation dominated systems, a similar thermal transport driven ion acoustic instability was found before in plasmas where the thermal transport coefficient depends on electron density. However, under conditions of indirect drive ICF experiments the driving term for the instability is the radiative heat flux and in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered corresponding to a thermal conductivity coefficient that is inversely proportional to the square of local particle density. In the nonlinear regime this instability may lead to plasma jet formation and anisotropic x-ray generation.

  3. Fast atomic transport without vibrational heating

    SciTech Connect

    Torrontegui, E.; Ibanez, S.; Chen Xi; Ruschhaupt, A.; Guery-Odelin, D.; Muga, J. G.

    2011-01-15

    We use the dynamical invariants associated with the Hamiltonian of an atom in a one dimensional moving trap to inverse engineer the trap motion and perform fast atomic transport without final vibrational heating. The atom is driven nonadiabatically through a shortcut to the result of adiabatic, slow trap motion. For harmonic potentials this only requires designing appropriate trap trajectories, whereas perfect transport in anharmonic traps may be achieved by applying an extra field to compensate the forces in the rest frame of the trap. The results can be extended to atom stopping or launching. The limitations due to geometrical constraints, energies, and accelerations involved are analyzed along with the relation to previous approaches based on classical trajectories or ''fast-forward'' and ''bang-bang'' methods, which can be integrated in the invariant-based framework.

  4. Screening for heat transport by groundwater in closed geothermal systems.

    PubMed

    Ferguson, Grant

    2015-01-01

    Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8)  m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed.

  5. Screening for heat transport by groundwater in closed geothermal systems.

    PubMed

    Ferguson, Grant

    2015-01-01

    Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8)  m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed. PMID:24438345

  6. Chaotic advection in 2D anisotropic porous media

    NASA Astrophysics Data System (ADS)

    Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico

    2015-11-01

    Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.

  7. Thermal Transport Model for Heat Sink Design

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Kelley, Richard L.; Brown, Ari D.; Smith, Stephen J.; Kilbourne, Caroline a.

    2009-01-01

    A document discusses the development of a finite element model for describing thermal transport through microcalorimeter arrays in order to assist in heat-sinking design. A fabricated multi-absorber transition edge sensor (PoST) was designed in order to reduce device wiring density by a factor of four. The finite element model consists of breaking the microcalorimeter array into separate elements, including the transition edge sensor (TES) and the silicon substrate on which the sensor is deposited. Each element is then broken up into subelements, whose surface area subtends 10 10 microns. The heat capacity per unit temperature, thermal conductance, and thermal diffusivity of each subelement are the model inputs, as are the temperatures of each subelement. Numerical integration using the Finite in Time Centered in Space algorithm of the thermal diffusion equation is then performed in order to obtain a temporal evolution of the subelement temperature. Thermal transport across interfaces is modeled using a thermal boundary resistance obtained using the acoustic mismatch model. The document concludes with a discussion of the PoST fabrication. PoSTs are novel because they enable incident x-ray position sensitivity with good energy resolution and low wiring density.

  8. 2-Phase Fluid Flow & Heat Transport

    1993-03-13

    GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less

  9. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.

    PubMed

    Mohanram, Arvind; Ray, Chittaranjan; Harvey, Ronald W; Metge, David W; Ryan, Joseph N; Chorover, Jon; Eberl, D D

    2010-10-01

    In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-μm microspheres, almost all (>99%) predictably would be recovered within ∼4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was

  10. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media

    USGS Publications Warehouse

    Mohanram, A.; Ray, C.; Harvey, R.W.; Metge, D.W.; Ryan, J.N.; Chorover, J.; Eberl, D.D.

    2010-01-01

    In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-??m microspheres, almost all (>99%) predictably would be recovered within ~4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was observed

  11. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.

    PubMed

    Mohanram, Arvind; Ray, Chittaranjan; Harvey, Ronald W; Metge, David W; Ryan, Joseph N; Chorover, Jon; Eberl, D D

    2010-10-01

    In order to gain more information about the fate of Cryptosporidium parvum oocysts in tropical volcanic soils, the transport and attachment behaviors of oocysts and oocyst-sized polystyrene microspheres were studied in the presence of two soils. These soils were chosen because of their differing chemical and physical properties, i.e., an organic-rich (43-46% by mass) volcanic ash-derived soil from the island of Hawaii, and a red, iron (22-29% by mass), aluminum (29-45% by mass), and clay-rich (68-76% by mass) volcanic soil from the island of Oahu. A third agricultural soil, an organic- (13% by mass) and quartz-rich (40% by mass) soil from Illinois, was included for reference. In 10-cm long flow-through columns, oocysts and microspheres advecting through the red volcanic soil were almost completely (98% and 99%) immobilized. The modest breakthrough resulted from preferential flow-path structure inadvertently created by soil-particle aggregation during the re-wetting process. Although a high (99%) removal of oocysts and microsphere within the volcanic ash soil occurred initially, further examination revealed that transport was merely retarded because of highly reversible interactions with grain surfaces. Judging from the slope of the substantive and protracted tail of the breakthrough curve for the 1.8-μm microspheres, almost all (>99%) predictably would be recovered within ∼4000 pore volumes. This suggests that once contaminated, the volcanic ash soil could serve as a reservoir for subsequent contamination of groundwater, at least for pathogens of similar size or smaller. Because of the highly reversible nature of organic colloid immobilization in this soil type, C. parvum could contaminate surface water should overland flow during heavy precipitation events pick up near-surface grains to which they are attached. Surprisingly, oocyst and microsphere attachment to the reference soil from Illinois appeared to be at least as sensitive to changes in pH as was

  12. Convective heat transport in geothermal systems

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.

    1986-08-01

    Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

  13. Apparatus for downward transport of heat

    DOEpatents

    Neeper, D.A.; Hedstrom, J.C.

    1985-08-05

    An apparatus for the downward transport of heat by vaporization of a working fluid, usually from a collector which can be powered by the sun to a condenser which drains the condensed working fluid to a lower reservoir, is controled by a control valve which is operationally dependent upon the level of working fluid in either the lower reservoir or an upper reservoir which feeds the collector. Condensed working fluid is driven from the lower to the upper reservoir by vaporized working fluid whose flow is controled by the controll valve. The upper reservoir is in constant communication with the condenser which prevents a buildup in temperature/pressure as the apparatus goes through successive pumping cycles.

  14. Functionalization mediates heat transport in graphene nanoflakes

    PubMed Central

    Han, Haoxue; Zhang, Yong; Wang, Nan; Samani, Majid Kabiri; Ni, Yuxiang; Mijbil, Zainelabideen Y.; Edwards, Michael; Xiong, Shiyun; Sääskilahti, Kimmo; Murugesan, Murali; Fu, Yifeng; Ye, Lilei; Sadeghi, Hatef; Bailey, Steven; Kosevich, Yuriy A.; Lambert, Colin J.; Liu, Johan; Volz, Sebastian

    2016-01-01

    The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ∼28 °C for a chip operating at 1,300 W cm−2. Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene–graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime. PMID:27125636

  15. Functionalization mediates heat transport in graphene nanoflakes.

    PubMed

    Han, Haoxue; Zhang, Yong; Wang, Nan; Samani, Majid Kabiri; Ni, Yuxiang; Mijbil, Zainelabideen Y; Edwards, Michael; Xiong, Shiyun; Sääskilahti, Kimmo; Murugesan, Murali; Fu, Yifeng; Ye, Lilei; Sadeghi, Hatef; Bailey, Steven; Kosevich, Yuriy A; Lambert, Colin J; Liu, Johan; Volz, Sebastian

    2016-01-01

    The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ∼28 °C for a chip operating at 1,300 W cm(-2). Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime. PMID:27125636

  16. Functionalization mediates heat transport in graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Han, Haoxue; Zhang, Yong; Wang, Nan; Samani, Majid Kabiri; Ni, Yuxiang; Mijbil, Zainelabideen Y.; Edwards, Michael; Xiong, Shiyun; Sääskilahti, Kimmo; Murugesan, Murali; Fu, Yifeng; Ye, Lilei; Sadeghi, Hatef; Bailey, Steven; Kosevich, Yuriy A.; Lambert, Colin J.; Liu, Johan; Volz, Sebastian

    2016-04-01

    The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ~28 °C for a chip operating at 1,300 W cm-2. Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.

  17. Heating and Cooling System Design for a Modern Transportable Container

    SciTech Connect

    Berger, Jason E.

    2015-06-01

    Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial system options, and mechanical integration with the container’s structure.

  18. 2-D numerical simulations of groundwater flow, heat transfer and 4He transport — implications for the He terrestrial budget and the mantle helium heat imbalance

    NASA Astrophysics Data System (ADS)

    Castro, Maria Clara; Patriarche, Delphine; Goblet, Patrick

    2005-09-01

    reflect the combined impact of air saturated water (ASW), advection, conduction, and diffusion when steady-state is reached for both tracers. We thus argue that the observed low mantle He / heat flux ratio in the oceans might be, at least partially, the result of processes occurring in the oceanic crust similar to those occurring in the continental crust, rather than deeper into the mantle. Our simulations also indicate that in order for both heat and He to be in steady-state in recently formed crust, the presence of an advective dominated regime is required ( k ≥ 10 - 16 m 2). Under these conditions, only in total absence of contact with ASW (e.g., an atmospheric component provided by freshwater or seawater) is the total 4He / heat flux ratio expected to equal the radiogenic production ratio. Lower 4He / heat fluxes in an advective dominated regime require the incorporation of an ASW component. We argue that the observed low ocean mantle 4He / heat flux results, at least partially, from sea water incorporation within mid-ocean ridge basalts. Our simulations also suggest that 4He transport is in transient state in recently formed crust for permeabilities ≤ 10 - 17 m 2. Under these conditions, low to very low mantle He excesses and thus total He / heat fluxes of up to several orders of magnitude lower than the radiogenic production ratios are expected.

  19. HEMP advection model

    SciTech Connect

    Sharp, R.W. Jr.; Barton, R.T.

    1981-01-21

    A continuous rezoning procedure has been implemented in the computational cycle of a version of the HEMP two-dimensional, Lagrange, fluid dynamics code. The rezoning problem is divided into two steps. The first step requires the solving of ordinary Lagrange equations of motion; the second step consists of adding equipotential grid relaxation along with an advective remapping scheme.

  20. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns

    NASA Astrophysics Data System (ADS)

    Massman, W. J.

    2012-10-01

    Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the coupled heat and moisture transport in soil during these extreme heating events. Furthermore, improved understanding and modeling of heat and mass transport during extreme conditions should provide insights into the associated transport mechanisms under more normal conditions. The present study describes a numerical model developed to simulate soil heat and moisture transport during fires where the surface heating often ranges between 10,000 and 100,000 W m-2 for several minutes to several hours. Basically, the model extends methods commonly used to model coupled heat flow and moisture evaporation at ambient conditions into regions of extreme dryness and heat. But it also incorporates some infrequently used formulations for temperature dependencies of the soil specific heat, thermal conductivity, and the water retention curve, as well as advective effects due to the large changes in volume that occur when liquid water is rapidly volatilized. Model performance is tested against laboratory measurements of soil temperature and moisture changes at several depths during controlled heating events. Qualitatively, the model agrees with the laboratory observations, namely, it simulates an increase in soil moisture ahead of the drying front (due to the condensation of evaporated soil water at the front) and a hiatus in the soil temperature rise during the strongly evaporative stage of the soil drying. Nevertheless, it is shown that the model is incapable of producing a physically realistic solution because it does not (and, in fact, cannot) represent the relationship between soil water potential and soil

  1. Possible role of oceanic heat transport in early Eocene climate.

    PubMed

    Sloan, L C; Walker, J C; Moore, T C

    1995-04-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  2. Electric heating for high-temperature heat transport fluids

    NASA Astrophysics Data System (ADS)

    Holmes, J. T.

    1985-12-01

    Recent experiences with electric resistance heaters at the solar Central Receiver Test Facility are described. These heaters are used to preheat or maintain equipment used with molten nitrate salt or liquid sodium heat transfer fluids. Results of extensive testing performed to improve the reliability of similar heating systems used in the development program for the sodium-cooled liquid metal fast breeder nuclear reactor are also reviewed. Recommendations are made for increasing the reliability of trace heating systems for high-melting-point heat transfer fluids including thermal design, heating element selection, installation, insulation, and controls.

  3. Magnetic method for stimulating transport in fluids

    DOEpatents

    Martin, James E.; Solis, Kyle J.

    2016-10-18

    A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.

  4. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  5. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect

    Budaev, Bair V. Bogy, David B.

    2014-02-10

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  6. Final Technical Report - Stochastic Analysis of Advection-Diffusion-reaction Systems with Applications to Reactive Transport in Porous Media - DE-FG02-07ER24818

    SciTech Connect

    Karniadakis, George Em

    2014-03-11

    The main objective of this project is to develop new computational tools for uncertainty quantifica- tion (UQ) of systems governed by stochastic partial differential equations (SPDEs) with applications to advection-diffusion-reaction systems. We pursue two complementary approaches: (1) generalized polynomial chaos and its extensions and (2) a new theory on deriving PDF equations for systems subject to color noise. The focus of the current work is on high-dimensional systems involving tens or hundreds of uncertain parameters.

  7. Advection-Dominated Accretion Disks: Geometrically Slim or Thick?

    NASA Astrophysics Data System (ADS)

    Gu, Wei-Min; Xue, Li; Liu, Tong; Lu, Ju-Fu

    2009-12-01

    We revisit the vertical structure of black-hole accretion disks in spherical coordinates. By comparing the advective cooling with the viscous heating, we show that advection-dominated disks are geometrically thick, i.e., with a half-opening angle of Δθ > 2π/5, rather than being slim, as supposed previously in the literature.

  8. Steady-state and transient models of groundwater flow and advective transport, Eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, Idaho

    USGS Publications Warehouse

    Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.

    2010-01-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters

  9. Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: Numerical model formulation

    NASA Astrophysics Data System (ADS)

    Adenekan, A. E.; Patzek, T. W.; Pruess, K.

    1993-11-01

    A numerical compositional simulator (Multiphase Multicomponent Nonisothermal Organics Transport Simulator (M2NOTS)) has been developed for modeling transient, three-dimensional, nonisothermal, and multiphase transport of multicomponent organic contaminants in the subsurface. The governing equations include (1) advection of all three phases in response to pressure, capillary, and gravity forces; (2) interphase mass transfer that allows every component to partition into each phase present; (3) diffusion; and (4) transport of sensible and latent heat energy. Two other features distinguish M2NOTS from other simulators reported in the groundwater literature: (1) the simulator allows for any number of chemical components and every component is allowed to partition into all fluid phases present, and (2) each phase is allowed to completely disappear from, or appear in, any region of the domain during a simulation. These features are required to model realistic field problems involving transport of mixtures of nonaqueous phase liquid contaminants, and to quantify performance of existing and emerging remediation methods such as vacuum extraction and steam injection.

  10. Experimental Study of Heat Transport in Fractured Network

    NASA Astrophysics Data System (ADS)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta M.; Redondo, Jose M.; Tarquis, Ana Maria

    2015-04-01

    Fractured rocks play an important role in transport of natural resources or contaminants transport through subsurface systems. In recent years, interest has grown in investigating heat transport by means of tracer tests, driven by the important current development of geothermal applications. In literature different methods are available for predicting thermal breakthrough in fractured reservoirs based on the information coming from tracer tests. Geothermal energy is one of the largest sources of renewable energies that are extracted from the earth. The growing interest in this new energy source has stimulated attempts to develop methods and technologies for extracting energy also from ground resource at low temperature. An example is the exploitation of low enthalpy geothermal energy that can be obtained at any place with the aid of ground-source heat pump system from the soil, rock and groundwater. In such geothermal systems the fluid movement and thermal behavior in the fractured porous media is very important and critical. Existing theory of fluid flow and heat transport through porous media is of limited usefulness when applied to fractured rocks. Many field and laboratory tracer tests in fractured media show that fracture -matrix exchange is more significant for heat than mass tracers, thus thermal breakthrough curves (BTCs) are strongly controlled by matrix thermal diffusivity. In this study the behaviour of heat transport in a fractured network at bench scale has been investigated. Heat tracer tests on an artificially created fractured rock sample have been carried out. The observed thermal BTCs obtained with six thermocouple probes located at different locations in the fractured medium have been modeled with the Explicit Network Model (ENM) based an adaptation of Tang's solution for solute transport in a semi-infinite single fracture embedded in a porous matrix. The ENM model is able to represent the behavior of observed heat transport except where the

  11. Geometric Phase Effect in Heat Transport

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Hanggi, Petter; Li, Baowen

    2011-03-01

    Nonlinear molecular heat-pumping devices, which operate via explicitly modulating at least two parameters, are crucial for energy control in low dimensional nano-scale systems. We have applied slow two-parameter modulations on such a molecular junctions and consequently uncovered an intrinsic heat flux contribution, additional to the known, usual dynamical heat flux (from hot to cold). This additional heat flux derives from a nontrivial geometric origin that relates to a non-vanishing, so termed finite Berry phase. It provides a free lunch for the pumped heat and even can direct heat flux against the temperature bias. In addition we are able to show that this so pumped energy exhibits a novel robust fractional quantization phenomenon. Interestingly, this additional geometric heat pump mechanism is also shown to cause a breakdown of the heat-flux fluctuation theorem, which holds true for the non-driving, stationary heat flux transfer. The validity of this theorem is guaranteed whenever (i) the geometric phase contribution vanishes and (ii) the cyclic protocol preserves the detailed balance symmetry.

  12. An Overview of Liquid Fluoride Salt Heat Transport Technology

    SciTech Connect

    Cetiner, Mustafa Sacit; Holcomb, David Eugene

    2010-01-01

    Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

  13. Heat generation and transport in the heart

    NASA Astrophysics Data System (ADS)

    van Beek, Johannes H. G. M.

    1996-05-01

    During contraction of the heart, a large part of the energy in energy metabolism is converted to heat. The article presents the results of measurements of mechanical stresses in the myocardium and blood vessels, temperatures and rate of heat generation. Experimental data correlate well with the numerical solutions of the biothermal problem.

  14. Meridional heat transport at the onset of winter stratospheric warming

    NASA Technical Reports Server (NTRS)

    Conte, M.

    1981-01-01

    A continuous vertical flow of energy toward high altitude was verified. This process produced a dynamic instability of the stratospheric polar vortex. A meridional heat transport ws primed toward the north, which generated a warming trend.

  15. Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures

    SciTech Connect

    Webb, S.W.

    1996-05-01

    Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the Dusty- Gas Model (DGM). This model applies the kinetic theory of gases to the gaseous components and the porous media (or ``dust``) to develop an approach for combined transport due to ordinary and Knudsen diffusion and advection including porous medium effects. While these two models both consider advection and diffusion, the formulations are considerably different, especially for ordinary diffusion. The various components of flow (advection and diffusion) are compared for both models. Results from these two models are compared to isothermal experimental data for He-Ar gas diffusion in a low-permeability graphite. Air-water vapor comparisons have also been performed, although data are not available, for the low-permeability graphite system used for the helium-argon data. Radial and linear air-water heat pipes involving heat, advection, capillary transport, and diffusion under nonisothermal conditions have also been considered.

  16. Thaw flow control for liquid heat transport systems

    DOEpatents

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  17. Modeling the adsorption of Cr(III) from aqueous solution onto Agave lechuguilla biomass: study of the advective and dispersive transport.

    PubMed

    Romero-González, J; Walton, J C; Peralta-Videa, J R; Rodríguez, E; Romero, J; Gardea-Torresdey, J L

    2009-01-15

    The biosorption of Cr(III) onto packed columns of Agave lechuguilla was analyzed using an advective-dispersive (AD) model and its analytical solution. Characteristic parameters such as axial dispersion coefficients, retardation factors, and distribution coefficients were predicted as functions of inlet ion metal concentration, time, flow rate, bed density, cross-sectional column area, and bed length. The root-mean-square-error (RMSE) values 0.122, 0.232, and 0.285 corresponding to the flow rates of 1, 2, and 3 (10(-3))dm3min(-1), respectively, indicated that the AD model provides an excellent approximation of the simulation of lumped breakthrough curves for the adsorption of Cr(III) by lechuguilla biomass. Therefore, the model can be used for design purposes to predict the effect of varying operational conditions. PMID:18462882

  18. An Overview of Liquid Fluoride Salt Heat Transport Systems

    SciTech Connect

    Holcomb, David Eugene; Cetiner, Sacit M

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and

  19. Advection in geologic media

    NASA Astrophysics Data System (ADS)

    Moltyaner, G. L.

    1993-10-01

    In situ sensing technology, used in a series of natural-gradient tracer tests at the Chalk River Laboratories in Ontario, leads to the introduction of a conceptually new approach to the study of groundwater motion in porous media. As opposed to the conventional approach, based on the consideration of a fictitious fluid continuum with fluid properties distributed over both voids and solids, in the new approach the actual groundwater motion in the void space of a porous medium is considered and described at the local scale by the statistical characterization of the propagation of gamma-radiation energy associated with the moving water as a tracer. The essential feature of the new approach is that the mean free path of a gamma-energy photon instead of the porosity is used as a scaling factor in transferring information associated with pore-scale fluid motion to the local scale. This scaling factor is employed for reintroducing the familiar particle model of fluid motion but at the local scale. It is shown that when the local-scale dispersion is neglected, the evolution of local-scale fluid particles making up the tracer plume can be described by the advection equation; its equation of characteristics describes trajectories of local-scale particles. A simple analytical solution to the advection equation is then used to produce three-dimensional images of the spatial distribution of local-scale particles observed in the Twin Lake test. It is also shown that the spatial averaging procedure with regard to the weighting function for a spherical averaging volume of one mean free path radius may be used to introduce the three-dimensional field of local-scale concentration. The averaging procedure is then used to illustrate that the concept of the three-dimensional field of plume-scale concentration does not make physical sense and only the one-dimensional plume-scale concentration field may be introduced in shallow aquifers.

  20. Bounds for the heat transport in turbulent convection

    NASA Astrophysics Data System (ADS)

    Otero, Jesse

    In this thesis, we present a method of establishing upper bounds for the convective heat transport in a convecting fluid, based on the background method of Constantin-Doering. Specifically, we obtain upper estimates on the optimal bound by appropriately constraining the sets over which the optimization takes place. The method is used to investigate the Nu - Ra power scaling laws for several different convection flows, including porous medium, infinite Prandtl number and 2D free-stress convection. In addition, we study the effect of different temperature boundary conditions on the heat transport. After appropriately defining the heat transport and forcing scales for convection with a fixed heat flux through the layer, we formulate a variational upper bound for the Nusselt number and provide estimates for the optimal bound from above.

  1. Passive vapor transport solar heating systems

    SciTech Connect

    Hedstrom, J.C.; Neeper, D.A.

    1985-01-01

    In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.

  2. The Importance of Planetary Rotation Period for Ocean Heat Transport

    PubMed Central

    Stevens, D.; Joshi, M.

    2014-01-01

    Abstract The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier—the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. Key Words: Exoplanet—Oceans—Rotation—Climate—Habitability. Astrobiology 14, 645–650. PMID:25041658

  3. The importance of planetary rotation period for ocean heat transport.

    PubMed

    Cullum, J; Stevens, D; Joshi, M

    2014-08-01

    The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. PMID:25041658

  4. The importance of planetary rotation period for ocean heat transport.

    PubMed

    Cullum, J; Stevens, D; Joshi, M

    2014-08-01

    The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.

  5. Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    SciTech Connect

    Ecke, Robert E; Liu, Yuanming

    2008-01-01

    We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

  6. Io Volcanism: Modeling Vapor And Heat Transport

    NASA Astrophysics Data System (ADS)

    Allen, Daniel R.; Howell, R. R.

    2010-10-01

    Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.

  7. LAYER DEPENDENT ADVECTION IN CMAQ

    EPA Science Inventory

    The advection methods used in CMAQ require that the Courant-Friedrichs-Lewy (CFL) condition be satisfied for numerical stability and accuracy. In CMAQ prior to version 4.3, the ADVSTEP algorithm established CFL-safe synchronization and advection timesteps that were uniform throu...

  8. Observations of Fire-Atmosphere Interactions and Near-Surface Heat Transport on a Slope

    NASA Astrophysics Data System (ADS)

    Clements, Craig B.; Seto, Daisuke

    2015-03-01

    A simple field experiment was conducted to measure and quantify fire-atmosphere interactions during a grass fire spreading up a hill under a moderate cross-slope wind. The observed fire intensity measured by passive radiometers and calculated sensible heat fluxes ranged between 90 and 120 kW m. Observations from this experiment showed that convective heat generated from the fire front was transported downwind in the lowest 2 m and the highest plume temperatures remained in this shallow layer, suggesting the fire spread was driven primarily by the advection of near-ignition temperature gases, rather than by radiation of the tilted flame. Fire-induced circulations were present with upslope flows occurring during the fire-front passage helping to transport heat up the slope and perpendicular to the fire front. A decrease in atmospheric pressure of 0.4 hPa occurred at the fire front and coincided with a strong updraft core of nearly 8 m s. These observations provide evidence that, even under moderately windy conditions, the pressure minimum in the fire remains rather close to the combustion zone and plume. The turbulence associated with the fire front was characterized by isotropic behaviour at 12.0 m above the ground, while less isotropic conditions were found closer to the ground due to higher horizontal variances associated with fire-induced flow at the fire front. From analysis of the turbulence kinetic energy budget terms, it was found that buoyancy production, rather than shear generation, had a larger contribution to the generation of turbulence kinetic energy, even during a highly sheared and moderate ambient wind.

  9. Heat transport in bubbling turbulent convection.

    PubMed

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  10. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  11. Freshwater and heat transports from global ocean synthesis

    NASA Astrophysics Data System (ADS)

    Valdivieso, M.; Haines, K.; Zuo, H.; Lea, D.

    2014-01-01

    An eddy-permitting ¼° global ocean reanalysis based on the Operational Met Office FOAM data assimilation system has been run for 1989-2010 forced by ERA-Interim meteorology. Freshwater and heat transports are compared with published estimates globally and in each basin, with special focus on the Atlantic. The meridional transports agree with observations within errors at most locations, but where eddies are active the transports by the mean flow are nearly always in better agreement than the total transports. Eddy transports are down gradient and are enhanced relative to a free run. They may oppose or reinforce mean transports and provide 40-50% of the total transport near midlatitude fronts, where eddies with time scales <1 month provide up to 15%. Basin-scale freshwater convergences are calculated with the Arctic/Atlantic, Indian, and Pacific oceans north of 32°S, all implying net evaporation of 0.33 ± 0.04 Sv, 0.65 ± 0.07 Sv, and 0.09 ± 0.04 Sv, respectively, within the uncertainty of observations in the Atlantic and Pacific. The Indian is more evaporative and the Southern Ocean has more precipitation (1.07 Sv). Air-sea fluxes are modified by assimilation influencing turbulent heat fluxes and evaporation. Generally, surface and assimilation fluxes together match the meridional transports, indicating that the reanalysis is close to a steady state. Atlantic overturning and gyre transports are assessed with overturning freshwater transports southward at all latitudes. At 26°N eddy transports are negligible, overturning transport is 0.67 ± 0.19 Sv southward and gyre transport is 0.44 ± 0.17 Sv northward, with divergence between 26°N and the Bering Strait of 0.13 ± 0.23 Sv over 2004-2010.

  12. High thermal-transport capacity heat pipes for space radiators

    NASA Technical Reports Server (NTRS)

    Carlson, Albert W.; Gustafson, Eric; Roukis, Susan L.

    1987-01-01

    This paper presents the results of performance tests of several dual-slot heat pipe test articles. The dual-slot configuration has a very high thermal transport capability and has been identified as a very promising candidate for the radiator system for the NASA Space Station solar dynamic power modules. Two six-foot long aluminum heat pipes were built and tested with ammonia and acetone. A 20-ft long heat pipe was also built and tested with ammonia. The test results have been compared with performance predictions. A thermal transport capacity of 2000 W at an adverse tilt of 1 in. and a 1000 W capacity at an adverse tilt of 2 in. were achieved on the 20-ft long heat pipe. These values are in close agreement with the predicted performance limits.

  13. On the tensorial nature of advective porosity

    NASA Astrophysics Data System (ADS)

    Neuman, Shlomo P.

    2005-02-01

    Field tracer tests indicate that advective porosity, the quantity relating advective velocity to Darcy flux, may exhibit directional dependence. Hydraulic anisotropy explains some but not all of the reported directional results. The present paper shows mathematically that directional variations in advective porosity may arise simply from incomplete mixing of an inert tracer between directional flow channels within a sampling (or support) volume ω of soil or rock that may be hydraulically isotropic or anisotropic. In the traditional fully homogenized case, our theory yields trivially a scalar advective porosity equal to the interconnected porosity ϕ, thus explaining neither the observed directional effects nor the widely reported experimental finding that advective porosity is generally smaller than ϕ. We consider incomplete mixing under conditions in which the characteristic time tD of longitudinal diffusion along channels across ω is much shorter than the characteristic time tH required for homogenization through transverse diffusion between channels. This may happen where flow takes place preferentially through relatively conductive channels and/or fractures of variable orientation separated by material that forms a partial barrier to diffusive transport. Our solution is valid for arbitrary channel Peclet numbers on a correspondingly wide range of time scales tD ⩽ t ≪ tH. It shows that the tracer center of mass is advected at a macroscopic velocity which is generally not collinear with the macroscopic Darcy flux and exceeds it in magnitude. These two vectors are related through a second-rank symmetric advective dispersivity tensor Φ. If the permeability k of ω is a symmetric positive-definite tensor, so is Φ. However, the principal directions and values of these two tensors are generally not the same; whereas those of k are a fixed property of the medium and the length-scale of ω, those of Φ depend additionally on the direction and magnitude of the

  14. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.

    2016-09-01

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.

  15. Miniature Heat Transport System for Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  16. Heat transport in the Hadean mantle: From heat pipes to plates

    NASA Astrophysics Data System (ADS)

    Kankanamge, Duminda G. J.; Moore, William B.

    2016-04-01

    Plate tectonics is a unique feature of Earth, and it plays a dominant role in transporting Earth's internally generated heat. It also governs the nature, shape, and the motion of the surface of Earth. The initiation of plate tectonics on Earth has been difficult to establish observationally, and modeling of the plate breaking process has not consistently accounted for the nature of the preplate tectonic Earth. We have performed numerical simulations of heat transport in the preplate tectonic Earth to understand the transition to plate tectonic behavior. This period of time is dominated by volcanic heat transport called the heat pipe mode of planetary cooling. These simulations of Earth's mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. We show that when heat pipes are active, the lithosphere thickens and lithospheric isotherms are kept flat by the solidus. Both of these effects act to suppress plate tectonics. As volcanism wanes, conduction begins to control lithospheric thickness, and large slopes arise at the base of the lithosphere. This produces large lithospheric stress and focuses it on the thinner regions of the lithosphere resulting in plate breaking events.

  17. Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1992-01-01

    Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.

  18. Phonon hydrodynamics and its applications in nanoscale heat transport

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Wang, Moran

    2015-09-01

    Phonon hydrodynamics is an effective macroscopic method to study heat transport in dielectric solid and semiconductor. It has a clear and intuitive physical picture, transforming the abstract and ambiguous heat transport process into a concrete and evident process of phonon gas flow. Furthermore, with the aid of the abundant models and methods developed in classical hydrodynamics, phonon hydrodynamics becomes much easier to implement in comparison to the current popular approaches based on the first-principle method and kinetic theories involving complicated computations. Therefore, it is a promising tool for studying micro- and nanoscale heat transport in rapidly developing micro and nano science and technology. However, there still lacks a comprehensive account of the theoretical foundations, development and implementation of this approach. This work represents such an attempt in providing a full landscape, from physical fundamental and kinetic theory of phonons to phonon hydrodynamics in view of descriptions of phonon systems at microscopic, mesoscopic and macroscopic levels. Thus a systematical kinetic framework, summing up so far scattered theoretical models and methods in phonon hydrodynamics as individual cases, is established through a frame of a Chapman-Enskog solution to phonon Boltzmann equation. Then the basic tenets and procedures in implementing phonon hydrodynamics in nanoscale heat transport are presented through a review of its recent wide applications in modeling thermal transport properties of nanostructures. Finally, we discuss some pending questions and perspectives highlighted by a novel concept of generalized phonon hydrodynamics and possible applications in micro/nano phononics, which will shed more light on more profound understanding and credible applications of this new approach in micro- and nanoscale heat transport science.

  19. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation.

    PubMed

    Parker, Jack C; Kim, Ungtae

    2015-11-01

    The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of

  20. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation.

    PubMed

    Parker, Jack C; Kim, Ungtae

    2015-11-01

    The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of

  1. Advection around ventilated U-shaped burrows: A model study

    NASA Astrophysics Data System (ADS)

    Brand, Andreas; Lewandowski, JöRg; Hamann, Enrico; Nützmann, Gunnar

    2013-05-01

    Advective transport in the porous matrix of sediments surrounding burrows formed by fauna such as Chironomus plumosus has been generally neglected. A positron emission tomography study recently revealed that the pumping activity of the midge larvae can indeed induce fluid flow in the sediment. We present a numerical model study which explores the conditions at which advective transport in the sediment becomes relevant. A 0.15 m deep U-shaped burrow with a diameter of 0.002 m within the sediment was represented in a 3-D domain. Fluid flow in the burrow was calculated using the Navier-Stokes equation for incompressible laminar flow in the burrow, and flow in the sediment was described by Darcy's law. Nonreactive and reactive transport scenarios were simulated considering diffusion and advection. The pumping activity of the model larva results in considerable advective flow in the sediment at reasonable high permeabilities with flow velocities of up to 7.0 × 10-6 m s-1 close to the larva for a permeability of 3 × 10-12 m2. At permeabilities below 7 × 10-13 m2 advection is negligible compared to diffusion. Reactive transport simulations using first-order kinetics for oxygen revealed that advective flux into the sediment downstream of the pumping larva enhances sedimentary uptake, while the advective flux into the burrow upstream of the larvae inhibits diffusive sedimentary uptake. Despite the fact that both effects cancel each other with respect to total solute uptake, the advection-induced asymmetry in concentration distribution can lead to a heterogeneous solute and redox distribution in the sediment relevant to complex reaction networks.

  2. Heat and momentum transport scalings in horizontal convection

    NASA Astrophysics Data System (ADS)

    Shishkina, Olga; Grossmann, Siegfried; Lohse, Detlef

    2016-02-01

    In a horizontal convection (HC) system heat is supplied and removed exclusively through a single, top, or bottom, surface of a fluid layer. It is commonly agreed that in the studied Rayleigh number (Ra) range, the convective heat transport, measured by the Nusselt number, follows the Rossby (1965) scaling, which is based on the assumptions that the HC flows are laminar and determined by their boundary layers. However, the universality of this scaling is questionable, as these flows are observed to become more turbulent with increasing Ra. Here we propose a theoretical model for heat and momentum transport scalings with Ra, which is based on the Grossmann and Lohse (2000) ideas, applied to HC flows. The obtained multiple scaling regimes include in particular the Rossby scaling and the ultimate scaling by Siggers et al. (2004). Our results have bearing on the understanding of the convective processes in many geophysical systems and engineering applications.

  3. Coupling of volatile transport and internal heat flow on Triton

    NASA Astrophysics Data System (ADS)

    Brown, Robert H.; Kirk, Randolph L.

    1994-01-01

    Recently Brown et al. (1991) showed that Triton's internal heat source could amount to 5-20% of the absorbed insolation on Triton, thus significantly affecting volatile transport and atmospheric pressure. Subsequently, Kirk and Brown (1991a) used simple analytical models of the effect of internal heat on the distribution of volatiles on Triton's surface, confirming the speculation of Brown et al. that Triton's internal heat flow could strongly couple to the surface volatile distribution. To further explore this idea, we present numerical models of the permanent distribution of nitrogen ice on Triton that include the effects of sunlight, the two-dimensional distribution of internal heat flow, the coupling of internal heat flow to the surface distribution of nitrogen ice, and the finite viscosity of nitrogen ice. From these models we conclude that: (1) The strong vertical thermal gradient induced in Triton's polar caps by internal heat-flow facilitates viscous spreading to lower latitudes, thus opposing the poleward transport of volatiles by sunlight, and, for plausible viscosities and nitrogen inventories, producing permanent caps of considerable latitudinal extent; (2) It is probable that there is a strong coupling between the surface distribution of nitrogen ice on Triton and internal heat flow; (3) Asymmetries in the spatial distribution of Triton's heat flow, possibly driven by large-scale, volcanic activity or convection in Triton's interior, can result in permanent polar caps of unequal latitudinal extent, including the case of only one permanent polar cap; (4) Melting at the base of a permanent polar cap on Triton caused by internal heat flow can significantly enhance viscous spreading, and, as an alternative to the solid-state greenhouse mechanism proposed by Brown et al. (1990), could provide the necessary energy, fluids, and/or gases to drive Triton's geyser-like plumes; (5) The atmospheric collapse predicted to occur on Triton in the next 20 years

  4. Effects of nonlocal heat transport on laser implosion

    SciTech Connect

    Mima, K.; Honda, M.; Miyamoto, S.; Kato, S.

    1996-05-01

    A numerical simulation code describing the spherically symmetric implosion hydrodynamics has been developed to investigate the nonlocal heat transport effects on stable high velocity implosion and fast ignition. In the implosion simulation code HIMICO, the Fokker Planck equation for electron transport is solved to describe the nonlocal effects. For high ablation pressure implosion with a pressure higher than 200 Mbar, the isentrope is found higher by a factor 2 in the nonlocal transport model than in the Spitzer Harm model. As for the fast ignition simulation, the neutron yield for the high density compression with 10 KJ laser increases to be 20 times by injecting an additional heating pulse of 10 KJ with 1 psec. {copyright} {ital 1996 American Institute of Physics.}

  5. Mechanisms of the meridional heat transport in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Volkov, Denis L.; Fu, Lee-Lueng; Lee, Tong

    2010-08-01

    The Southern Ocean (SO) transports heat towards Antarctica and plays an important role in determining the heat budget of the Antarctic climate system. A global ocean data synthesis product at eddy-permitting resolution from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project is used to estimate the meridional heat transport (MHT) in the SO and to analyze its mechanisms. Despite the intense eddy activity, we demonstrate that most of the poleward MHT in the SO is due to the time-mean fields of the meridional velocity, V, and potential temperature, θ. This is because the mean circulation in the SO is not strictly zonal. The Antarctic Circumpolar Current carries warm waters from the region south of the Agulhas Retroflection to the lower latitudes of the Drake Passage and the Malvinas Current carries cold waters northward along the Argentinian shelf. Correlations between the time-varying fields of V and θ (defined as transient processes) significantly contribute to the horizontal-gyre heat transport, but not the overturning heat transport. In the highly energetic regions of the Agulhas Retroflection and the Brazil-Malvinas Confluence the contribution of the horizontal transient processes to the total MHT exceeds the contribution of the mean horizontal flow. We show that the southward total MHT is mainly maintained by the meridional excursion of the mean geostrophic horizontal shear flow (i.e., deviation from the zonal average) associated with the Antarctic Circumpolar Current that balances the equatorward MHT due to the Ekman transport and provides a net poleward MHT in the SO. The Indian sector of the SO serves as the main pathway for the poleward MHT.

  6. Nonlocal theory for heat transport at high frequencies

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan; Cahill, David G.; Sun, Bo

    2014-11-01

    We develop a nonlocal theory for heat conduction under high-frequency temperature fields and apply the theory to explain reductions of the apparent thermal conductivity observed in recent experiments. Our nonlocal theory is an analytical solution of the Boltzmann transport equation for phonons in a semi-infinite solid, similar to a prior nonlocal theory for heat conduction under a high-temperature gradient but subjected to periodic heating at the surface. The boundary condition of periodic heating, as opposed to prior calculations of heating by a single laser pulse, better mimics time-domain thermoreflectance (TDTR) and broadband frequency-domain thermoreflectance (BB-FDTR) measurements. We find that, except for pure crystals at high frequencies, the effective thermal conductivity derived using the nonlocal theory compares well with calculations of a modified Callaway model that includes an upper limit on the phonon mean-free path at twice the thermal penetration depth. For pure crystals, however, the effective thermal conductivity derived from the out-of-phase calculations are independent of frequency, in agreement with prior TDTR measurements, due to the countereffect of reduced heat flux and diminished relative phase between the heat flux and temperature oscillations at high frequencies. Our results suggest that empirical interpretation of ballistic phonons not contributing to heat conduction is not general and can only be applied to measurements on alloys and not pure crystals, even when a large laser spot size is used in the experiments and the interfacial thermal resistance is negligible.

  7. On mobile element transport in heated Abee. [chondrite thermal metamorphism

    NASA Technical Reports Server (NTRS)

    Ikramuddin, M.; Lipschutz, M. E.; Gibson, E. K., Jr.

    1979-01-01

    Abee chondrite samples were heated at 700 C for one week at 0.00001 to 0.001 atm Ne or at 0.00001 atm H2. Samples heated in Ne showed greater loss of Bi and Se and greater retention of Zn than those heated in H2. An inverse relationship between Zn retention and ambient Ne pressure was found. Seven trace elements (Ag, Co, Cs, Ga, In, Te, and Tl) were retained or lost to the same extent regardless of the heating conditions. Variations in the apparent activation energy for C above and below 700 C suggest that diffusive loss from different hosts and/or different mobile transport processes over the temperature range may have been in effect.

  8. Particle model for nonlocal heat transport in fusion plasmas.

    PubMed

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  9. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    SciTech Connect

    Maassen, Jesse Lundstrom, Mark

    2015-04-07

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.

  10. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-01-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  11. Radiation Transport through cylindrical foams with heated walls

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; MacLaren, Steve; Kallman, Joshua; Heinz, Ken; Hsing, Warren

    2012-10-01

    Radiation transport through low density SiO2 foams has been experimentally studied on the Omega laser. In particular these experiments examined the effects on radiation transport when the boundaries of the SiO2 foam are heated such that energy loss to the boundaries is minimized. The initial density of the SiO2 foams was determined by taking an x-ray radiograph of the foams using a monochromatic Henke source at multiple x-ray energies. The radiation drive used to both study the transport in the SiO2 foam as well as to heat the higher density CRF wall was generated in a laser-heated gold hohlraum using ˜7.5 kJ of the laser energy. The time-dependent spatial profile of the heat wave breaking out of the SiO2 foam was detected with an x-ray streak camera coupled with a soft x-ray transmission grating. The Omega DANTE diagnostic measured the radiation drive in the hohlraum and the Omega VISAR diagnostic monitored the spatial temperature gradient in the foam section of the hohlraum.

  12. Optimal heat transport solutions for Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Sondak, David; Smith, Leslie M.; Waleffe, Fabian

    2015-12-01

    Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-B\\'enard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Ra\\sim 10^9$. Power law scalings of $Nu\\sim Ra^{\\gamma}$ are observed with $\\gamma\\approx 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr \\lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a single updraft absent significant horizontal structure, and characterized by the larger maximal wavenumber.

  13. HEAT AND WATER TRANSPORT IN A POLYMER ELECTROLYTE FUEL CELL

    SciTech Connect

    Mukherjee, Partha P

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  14. How to Find a Bug in Ten Thousand Lines Transport Solver? Outline of Experiences from AN Advection-Diffusion Code Verification

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F.

    2011-12-01

    Almost all natural phenomena on Earth are highly nonlinear. Even simplifications to the equations describing nature usually end up being nonlinear partial differential equations. Transport (ADR) equation is a pivotal equation in atmospheric sciences and water quality. This nonlinear equation needs to be solved numerically for practical purposes so academicians and engineers thoroughly rely on the assistance of numerical codes. Thus, numerical codes require verification before they are utilized for multiple applications in science and engineering. Model verification is a mathematical procedure whereby a numerical code is checked to assure the governing equation is properly solved as it is described in the design document. CFD verification is not a straightforward and well-defined course. Only a complete test suite can uncover all the limitations and bugs. Results are needed to be assessed to make a distinction between bug-induced-defect and innate limitation of a numerical scheme. As Roache (2009) said, numerical verification is a state-of-the-art procedure. Sometimes novel tricks work out. This study conveys the synopsis of the experiences we gained during a comprehensive verification process which was done for a transport solver. A test suite was designed including unit tests and algorithmic tests. Tests were layered in complexity in several dimensions from simple to complex. Acceptance criteria defined for the desirable capabilities of the transport code such as order of accuracy, mass conservation, handling stiff source term, spurious oscillation, and initial shape preservation. At the begining, mesh convergence study which is the main craft of the verification is performed. To that end, analytical solution of ADR equation gathered. Also a new solution was derived. In the more general cases, lack of analytical solution could be overcome through Richardson Extrapolation and Manufactured Solution. Then, two bugs which were concealed during the mesh convergence

  15. Local and nonlocal parallel heat transport in general magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  16. Radiant heat test of Perforated Metal Air Transportable Package (PMATP).

    SciTech Connect

    Gronewald, Patrick James; Oneto, Robert; Mould, John; Pierce, Jim Dwight

    2003-08-01

    A conceptual design for a plutonium air transport package capable of surviving a 'worst case' airplane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A full-scale prototype, designated as the Perforated Metal Air Transport Package (PMATP) was thermally tested in the SNL Radiant Heat Test Facility. This testing, conducted on an undamaged package, simulated a regulation one-hour aviation fuel pool fire test. Finite element thermal predictions compared well with the test results. The package performed as designed, with peak containment package temperatures less than 80 C after exposure to a one-hour test in a 1000 C environment.

  17. Non-local heat transport in static solar coronal loops

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Peres, G.; Serio, S.

    1991-04-01

    The limits of applicability of the Spitzer-Harm thermal conductivity in solar coronal loops is investigated, and it is shown that the ratio of electron mean-free path to temperature scale height in large-scale structures can approach the limits of the Spitzer-Harm theory. A nonlocal formulation of heat transport is used to compute a grid of loop models: the effects of nonlocal transport on the distribution of differential emission measure are particularly important in the coronal part of loops longer than the pressure scale height.

  18. Advection and diffusion in shoreline change prediction

    NASA Astrophysics Data System (ADS)

    Anderson, T. R.; Frazer, L. N.

    2010-12-01

    We added longshore advection and diffusion to the simple cross-shore rate calculation method, as used widely by the USGS and others, to model historic shorelines and to predict future shoreline positions; and applied this to Hawaiian Island beach data. Aerial photographs, sporadically taken throughout the past century, yield usable, albeit limited, historic shoreline data. These photographs provide excellent spatial coverage, but poor temporal resolution, of the shoreline. Due to the sparse historic shoreline data, and the many natural and anthropogenic events influencing coastlines, we constructed a simplistic shoreline change model that can identify long-term behavior of a beach. Our new, two-dimensional model combines the simple rate method to accommodate for cross-shore sediment transport with the classic Pelnard-Considère model for diffusion, as well as a longshore advection speed term. Inverse methods identify cross-shore rate, longshore advection speed, and longshore diffusivity down a sandy coastline. A spatial averaging technique then identifies shoreline segments where one parameter can reasonably account for the cross-shore and longshore transport rates in that area. This produces model results with spatial resolution more appropriate to the temporal spacing of the data. Because changes in historic data can be accounted for by varying degrees of cross-shore and longshore sediment transport - for example, beach erosion can equally be explained by sand moving either off-shore or laterally - we tested several different model scenarios on the data: allowing only cross-shore sediment movement, only longshore movement, and a combination of the two. We used statistical information criteria to determine both the optimal spatial resolution and best-fitting scenario. Finally, we employed a voting method predicting the relaxed shoreline position over time.

  19. Molecular-dynamics calculation of the vacancy heat of transport

    SciTech Connect

    Schelling, Patrick K.; Ernotte, Jacques; Shokeen, Lalit; Tucker, William C.; Woods Halley, J.

    2014-07-14

    We apply the recently developed constrained-dynamics method to elucidate the thermodiffusion of vacancies in a single-component material. The derivation and assumptions used in the method are clearly explained. Next, the method is applied to compute the reduced heat of transport Q{sub v}{sup *}−h{sub fv} for vacancies in a single-component material. Results from simulations using three different Morse potentials, with one providing an approximate description of Au, and an embedded-atom model potential for Ni are presented. It is found that the reduced heat of transport Q{sub v}{sup *}−h{sub fv} may take either positive or negative values depending on the potential parameters and exhibits some dependence on temperature. It is also found that Q{sub v}{sup *}−h{sub fv} may be correlated with the activation entropy. The results are discussed in comparison with experimental and previous simulation results.

  20. Solar coronal loop heating by cross-field wave transport

    NASA Technical Reports Server (NTRS)

    Amendt, Peter; Benford, Gregory

    1989-01-01

    Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.

  1. Climate in the Absence of Ocean Heat Transport

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2015-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.

  2. Heat transport modelling in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2009-02-01

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

  3. Transport phenomena of crystal growth—heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Rudolph, Peter

    2010-07-01

    Selected fundamentals of transport processes and their importance for crystal growth are given. First, principal parameters and equations of heat and mass transfer, like thermal flux, radiation and diffusion are introduced. The heat- and mass- balanced melt-solid and solution-solid interface velocities are derived, respectively. The today's significance of global numeric simulation for analysis of thermo-mechanical stress and related dislocation dynamics within the growing crystal is shown. The relation between diffusion and kinetic regime is discussed. Then, thermal and solutal buoyancy-driven and Marangoni convections are introduced. Their important interplay with the diffusion boundary layer, component and particle incorporation as well as morphological interface stability is demonstrated. Non-steady crystallization phenomena (striations) caused by convective fluctuations are considered. Selected results of global 3D numeric modeling are shown. Finally, advanced methods to control heat and mass transfer by external forces, such as accelerated container rotation, ultrasonic vibration and magnetic fields are discussed.

  4. Finite element analysis of heat transport in a hydrothermal zone

    SciTech Connect

    Bixler, N.E.; Carrigan, C.R.

    1987-01-01

    Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).

  5. Effects of chemical bonding on heat transport across interfaces.

    PubMed

    Losego, Mark D; Grady, Martha E; Sottos, Nancy R; Cahill, David G; Braun, Paul V

    2012-04-22

    Interfaces often dictate heat flow in micro- and nanostructured systems. However, despite the growing importance of thermal management in micro- and nanoscale devices, a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump-probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold-SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.

  6. Understanding heat facilitated drug transport across human epidermis.

    PubMed

    Wood, D G; Brown, M B; Jones, S A

    2012-08-01

    The application of moderate heat is a safe and effective means to increase drug transport across human skin. However, the cascade of events that follows the exposure of a topical skin formulation to a heating source is not well understood. The aim of this study was to elucidate how three potential rate limiting stages in the drug transport process; formulation release, drug partitioning and epidermal diffusion, responded to changes in local temperature using the model drug lidocaine. Release from the formulation measured using regenerated cellulose membrane was shown to be driven by drug diffusion in the vehicle; it responded linearly when the local temperature was changed (21.6 μg/cm(2)/h for every 1 °C rise) and displayed no measurable partitioning of lidocaine into RCM. Once the drug was within the human epidermis, the structural changes of the barrier controlled its transport. The apparent lidocaine diffusion coefficient through silicone membrane increased from 6.52 to 8.43 × 10(-4) over the 32-45 °C temperature range, but it increased from 7.74 × 10(-5)cm(2)h(-1) to 4.8 × 10(-4)cm(2)h(-1) in the human epidermis. In the absence of large increases in drug partitioning, fluidisation of the lipids in the upper layers of the epidermis at 37-45 °C was shown to facilitate lidocaine diffusion which for human skin transport was the rate limiting process.

  7. Why convective heat transport in the solar nebula was inefficient

    NASA Technical Reports Server (NTRS)

    Cassen, P.

    1993-01-01

    The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.

  8. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    NASA Astrophysics Data System (ADS)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  9. Heat transport dynamics at a sandy intertidal zone

    NASA Astrophysics Data System (ADS)

    Befus, Kevin M.; Cardenas, M. Bayani; Erler, Dirk V.; Santos, Isaac R.; Eyre, Bradley D.

    2013-06-01

    Intertidal zones are spatially complex and temporally dynamic environments. Coastal groundwater discharge, including submarine groundwater discharge, may provide stabilizing conditions for intertidal zone permeable sediments. In this study, we integrated detailed time series temperature observations, porewater pressure measurements, and two-dimensional electrical resistivity tomography profiles to understand the coupled hydraulic-thermal regime of a tropical sandy intertidal zone in a fringing coral reef lagoon (Rarotonga, Cook Islands). We found three heating patterns across the 15 m study transect over tidal and diel periods: (1) a highly variable thermal regime dominated by swash infiltration and changes in saturation state in the upper foreshore with net heat import into the sediment, (2) a groundwater-supported underground stable, cool region just seaward of the intertidal slope break also importing heat into the subsurface, and (3) a zone of seawater recirculation that sustained consistently warm subsurface temperatures that exported heat across the sediment-water interface. Simple calculations suggested thermal conduction as the main heat transport mechanism for the shallow intertidal sediment, but deeper and/or multidimensional groundwater flow was required to explain temperature patterns beyond 20 cm depth. Temperature differences between the distinct hydrodynamic zones of the foreshore site resulted in significant thermal gradients that persisted beyond tidal and diel periods. The thermal buffering of intertidal zones by coastal groundwater systems, both at surface seeps and in the shallow subsurface, can be responsible for thermal refugia for some coastal organisms and hotspots for biogeochemical reactions.

  10. On the mechanisms of heat transport across vacuum gaps

    NASA Astrophysics Data System (ADS)

    Budaev, Bair V.; Bogy, David B.

    2011-12-01

    Heat exchange between closely positioned bodies has become an important issue for many areas of modern technology including, but not limited to, integrated circuits, atomic force microscopy, and high-density magnetic recording, which deal with bodies separated by gaps as narrow as a few nanometers. It is now recognized that heat transport across a gap of sub-micron width does not follow the Stefan-Boltzmann law, which is based on a conventional theory developed for sufficiently wide gaps. This paper describes the structure of thermally excited electromagnetic fields in arbitrarily narrow gaps, and it also shows that heat can be carried across narrow vacuum gaps by acoustic waves. The structure of the acoustic wave fields is also described, and it is shown that they become the dominant heat carriers in gaps narrower than a certain critical width, which is estimated to be a few nanometers. For example, consider a vacuum gap between silicon half-spaces. When the gap's width is below a critical value, which is about 7.5 nm, the contribution of acoustic waves must be taken into account. Assuming that the wavelength of thermally excited acoustic waves is of order 1 nm, it may be possible to estimate the contribution of acoustic waves to heat transport across gaps with 4 nm < h < 7.5 nm by the kinetic theory, but for narrower gaps with h < 4 nm, this approximation is not valid, and then the full wave theory must be used. Also for gaps narrower than about 2.5 nm, there is no need to take into account electromagnetic radiation because its contribution is negligible compared to that of acoustic waves.

  11. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths.

    PubMed

    Sääskilahti, K; Oksanen, J; Tulkki, J

    2013-07-01

    Modeling of thermal transport in practical nanostructures requires making tradeoffs between the size of the system and the completeness of the model. We study quantum heat transfer in a self-consistent thermal bath setup consisting of two lead regions connected by a center region. Atoms both in the leads and in the center region are coupled to quantum Langevin heat baths that mimic the damping and dephasing of phonon waves by anharmonic scattering. This approach treats the leads and the center region on the same footing and thereby allows for a simple and physically transparent thermalization of the system, enabling also perfect acoustic matching between the leads and the center region. Increasing the strength of the coupling reduces the mean-free path of phonons and gradually shifts phonon transport from ballistic regime to diffusive regime. In the center region, the bath temperatures are determined self-consistently from the requirement of zero net energy exchange between the local heat bath and each atom. By solving the stochastic equations of motion in frequency space and averaging over noise using the general fluctuation-dissipation relation derived by Dhar and Roy [J. Stat. Phys. 125, 801 (2006)], we derive the formula for thermal current, which contains the Caroli formula for phonon transmission function and reduces to the Landauer-Büttiker formula in the limit of vanishing coupling to local heat baths. We prove that the bath temperatures measure local kinetic energy and can, therefore, be interpreted as true atomic temperatures. In a setup where phonon reflections are eliminated, the Boltzmann transport equation under gray approximation with full phonon dispersion is shown to be equivalent to the self-consistent heat bath model. We also study thermal transport through two-dimensional constrictions in square lattice and graphene and discuss the differences between the exact solution and linear approximations. PMID:23944435

  12. Heat and salt transport throughout the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.

  13. Heat and salt transport throughout the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.

  14. Concentration polarization, surface currents, and bulk advection in a microchannel

    NASA Astrophysics Data System (ADS)

    Nielsen, Christoffer P.; Bruus, Henrik

    2014-10-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction.

  15. Concentration polarization, surface currents, and bulk advection in a microchannel.

    PubMed

    Nielsen, Christoffer P; Bruus, Henrik

    2014-10-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction. PMID:25375606

  16. The Influence of the Sensible Heat of Rain and Subsurface Heat Transport on the Energy Balance at the Land Surface

    NASA Astrophysics Data System (ADS)

    Kollet, S.; Cvijanovic, I.; Schüttemeyer, D.; Maxwell, R. M.; Moene, A. F.; Bayer, P.

    2009-04-01

    In land many surface models, which account for the energy balance at the land surface, subsurface heat transport is an important component that reciprocally influences ground, sensible and latent heat fluxes, and net radiation. The applied subsurface heat transport parameterizations are commonly simplified for computational efficiency. A major simplification is the disregard of the sensible heat of rain and convective subsurface heat flow, i.e. the transport of heat through moisture redistribution, which basically decouples heat transport from moisture transport at the land surface and in the subsurface. In the presented analysis, the influence of sensible heat of rain and convection on the energy balance is studied using a coupled model that integrates a subsurface moisture and energy transport model with a land surface model. It is shown that all components of the land surface energy balance depend on the sensible heat of rain. The strength of the dependence is related to the rain rate, and the temperature difference between the rain water and the soil surface. The rain water temperature is a parameter rarely measured in the field that introduces uncertainty in the calculations and is approximated using the either the air or wet bulb temperatures in different simulations. In addition it is shown that the lower boundary condition for closing the problem of subsurface heat transport has strong implications on the energy balance under dynamic equilibrium conditions. Comparison with measured data from the Meteostation Haarweg, Wageningen, The Netherlands, shows good agreement and suggests the usefulness of the proposed approach.

  17. Electron heat transport in a steep temperature gradient

    SciTech Connect

    Rogers, J.H.; De Groot, J.S.; Abou-Assaleh, Z.; Matte, J.P.; Johnston, T.W.; Rosen, M.D.

    1989-04-01

    Temporal and spatial measurements of electron heat transport are made in the University of California Davis AURORA device (J. H. Rogers, Ph.D. dissertation, University of California, Davis, 1987). In AURORA, a microwave pulse heats a region of underdense, collisional, plasma (n/n/sub cr/ approx. <1, where n/sub cr/ = 1.8 x 10/sup 10/ cm/sup -3/ is the critical density, T/sub e//sub 0/ approx. =0.15 eV, and the electron scattering mean free path lambda/sub perpendicular/approx. >2 cm). In this region, strong thermal heating (T/sub c/ approx. <0.7 eV) as well as suprathermal heating (T/sub h/approx. =3 eV) is observed. The strong heating results in a steep temperature gradient that violates the approximations of classical heat diffusion theory (L/sub T//lambda/sub perpendicular/approx. >3 for thermal electrons, where L/sub T/ = T/sub c/(partialT/sub c//partialz)/sup -1/ is the cold electron temperature scale length. The time evolution of the electron temperature profile is measured using Langmuir probes. The measured relaxation of the temperature gradient after the microwave pulse is compared to calculations using the Fokker--Planck International code (Phys. Rev. Lett. 49, 1936 (1982)) and the multigroup, flux-limited, target design code LASNEX (Comm. Plasma Phys. 2, 51 (1975)). The electron distribution function at the end of the microwave pulse is used as initial conditions for both codes. The Fokker--Planck calculations are found to agree very well with the measurements.

  18. An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean

    SciTech Connect

    Boening, C.W.; Holland, W.R.; Bryan, F.O.; Danabasoglu, G.; Mcwilliams, J.C. |

    1995-03-01

    Many models of the large-scale thermohaline circulation in the ocean exhibit strong zonally integrated upwelling in the midlatitude North Atlantic that significantly decreases the amount of deep water that is carried from the formation regions in the subpolar North Atlantic toward low latitudes and across the equator. In an analysis of results from the Community Modeling Effort using a suite of models with different horizontal resolution, wind and thermohaline forcing, and mixing parameters, it is shown that the upwelling is always concentrated in the western boundary layer between roughly 30 deg and 40 deg N. The vertical transport across 1000 m appears to be controlled by local dynamics and strongly depends on the horizontal resolution and mixing parameters of the model. It is suggested that in models with a realistic deep-water formation rate in the subpolar North Atlantic, the excessive upwelling can be considered as the prime reason for the typically too low meridional overturning rates and northward heat transports in the subtropical North Atlantic. A new isopycnal advection and mixing parameterization of tracer transports by mesoscale eddies yield substantial improvements in these integral measures of the circulation.

  19. Electron heat transport from stochastic fields in gyrokinetic simulations

    SciTech Connect

    Wang, E.; Nevins, W. M.; Candy, J.; Hatch, D.; Terry, P.; Guttenfelder, W.

    2011-05-15

    GYRO is used to examine the perturbed magnetic field structure generated by electromagnetic gyrokinetic simulations of the CYCLONE base case as {beta}{sub e} is varied from 0.1% to 0.7%, as investigated by J. Candy [Phys. Plasmas 12, 072307 (2005)]. Poincare surface of section plots obtained from integrating the self-consistent magnetic field demonstrates widespread stochasticity for all nonzero values of {beta}{sub e}. Despite widespread stochasticity of the perturbed magnetic fields, no significant increase in electron transport is observed. The magnetic diffusion, d{sub m}[A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett 40, 38 (1978)], is used to quantify the degree of stochasticity and related to the electron heat transport for hundreds of time slices in each simulation.

  20. Electron heat transport from stochastic fields in gyrokinetic simulationsa)

    NASA Astrophysics Data System (ADS)

    Wang, E.; Nevins, W. M.; Candy, J.; Hatch, D.; Terry, P.; Guttenfelder, W.

    2011-05-01

    GYRO is used to examine the perturbed magnetic field structure generated by electromagnetic gyrokinetic simulations of the CYCLONE base case as βe is varied from 0.1% to 0.7%, as investigated by J. Candy [Phys. Plasmas 12, 072307 (2005)]. Poincare surface of section plots obtained from integrating the self-consistent magnetic field demonstrates widespread stochasticity for all nonzero values of βe. Despite widespread stochasticity of the perturbed magnetic fields, no significant increase in electron transport is observed. The magnetic diffusion, dm [A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett 40, 38 (1978)], is used to quantify the degree of stochasticity and related to the electron heat transport for hundreds of time slices in each simulation.

  1. Transport in nanoscale systems: hydrodynamics, turbulence, and local electron heating

    NASA Astrophysics Data System (ADS)

    di Ventra, Massimiliano

    2007-03-01

    Transport in nanoscale systems is usually described as an open-boundary scattering problem. This picture, however, says nothing about the dynamical onset of steady states, their microscopic nature, or their dependence on initial conditions [1]. In order to address these issues, I will first describe the dynamical many-particle state via an effective quantum hydrodynamic theory [2]. This approach allows us to predict a series of novel phenomena like turbulence of the electron liquid [2], local electron heating in nanostructures [3], and the effect of electron viscosity on resistance [4]. I will provide both analytical results and numerical examples of first-principles electron dynamics in nanostructures using the above approach. I will also discuss possible experimental tests of our predictions. Work supported in part by NSF and DOE. [1] N. Bushong, N. Sai and M. Di Ventra, ``Approach to steady-state transport in nanoscale systems'' Nano Letters, 5 2569 (2005); M. Di Ventra and T.N. Todorov, ``Transport in nanoscale systems: the microcanonical versus grand-canonical picture,'' J. Phys. Cond. Matt. 16, 8025 (2004). [2] R. D'Agosta and M. Di Ventra, ``Hydrodynamic approach to transport and turbulence in nanoscale conductors,'' cond-mat/05123326; J. Phys. Cond. Matt., in press. [3] R. D'Agosta, N. Sai and M. Di Ventra, ``Local electron heating in nanoscale conductors,'' cond-mat/0605312; Nano Letters, in press. [4] N. Sai, M. Zwolak, G. Vignale and M. Di Ventra, ``Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems,'' Phys. Rev. Lett. 94, 186810 (2005).

  2. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    USGS Publications Warehouse

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  3. Simulation of fluid, heat transport to estimate desert stream infiltration

    USGS Publications Warehouse

    Kulongoski, J.T.; Izbicki, J.A.

    2008-01-01

    In semiarid regions, the contribution of infiltration from intermittent streamflow to ground water recharge may be quantified by comparing simulations of fluid and heat transport beneath stream channels to observed ground temperatures. In addition to quantifying natural recharge, streamflow infiltration estimates provide a means to characterize the physical properties of stream channel sediments and to identify suitable locations for artificial recharge sites. Rates of winter streamflow infiltration along stream channels are estimated based on the cooling effect of infiltrated water on streambed sediments, combined with the simulation of two-dimensional fluid and heat transport using the computer program VS2DH. The cooling effect of ground water is determined by measuring ground temperatures at regular intervals beneath stream channels and nearby channel banks in order to calculate temperature-depth profiles. Additional data inputs included the physical, hydraulic, and thermal properties of unsaturated alluvium, and monthly ground temperatures measurements over an annual cycle. Observed temperatures and simulation results can provide estimates of the minimum threshold for deep infiltration, the variability of infiltration along stream channels, and also the frequency of infiltration events.

  4. Transport simulations of ITER with empirical heat diffusivity scaling

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1998-02-01

    Radiative mantle scenarios of the ignited ITER Engineering Design Activity (EDA) with argon and neon influxing are explored by computer experiments using special versions of the 1.5 dimensional (1.5-D) BALDUR predictive transport code. An empirical scaling law for the effective heat diffusivity, compatible with the ITERH92-P ELMy H mode scaling and validated against experiments, is applied. The prescribed flat density profiles, conductive heat loss across the separatrix of 200 MW and ratio τ*He/ τE,r of 10 are reached in the simulations. Self-sustained thermonuclear burn is achieved for at least 485 s. The helium ash concentrations of up to 9.5% are found to cause significant fuel dilution. Owing to the high electron density, only small argon and neon fractions of 0.07 and 0.27%, respectively, are needed. In the argon scenario, the required radiation corrected thermal energy confinement time τE,r is 4.8 s. The confinement time predicted by the local scaling law is 1.4 times longer and agrees with the global scaling prediction. With argon, the design parameters are reached by radiating 128 MW within the separatrix, thus reducing the energy flow to the divertor to 73 MW. In the neon case with its more peripheral radiation, the radiative loss within the separatrix has to be diminished. Owing to the flat profile of the fuel ion density, the neoclassical drift velocities of argon and neon are directed outwards in the whole plasma. In the argon scenario, the sensitivity of transport to the density profile shape is studied. It is found that τE,r remains almost unchanged, varying between 4.5 and 4.8 s, which is explained by an analytic expression for the thermal energy. Peaking of the electron and impurity densities does not alter the required argon concentration but causes a peaking of the radiation profiles and reduction in the temperatures. Sufficiently narrow fuel ion density profiles are shown to cause inward directed neoclassical drift velocities of argon in the

  5. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Jou, David; Wang, Moran

    2016-01-01

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  6. Heat transport by phonons in crystalline materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan

    This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal

  7. Mechanisms of Ocean Heat Uptake

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi

    An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical

  8. A positive finite-difference advection scheme

    SciTech Connect

    Hundsdorfer, W.; Koren, B.; Loon, M. van

    1995-03-01

    This paper examines a class of explicit finite-difference advection schemes derived along the method of lines. An important application field is large-scale atmospheric transport. The paper therefore focuses on the demand of positivity. For the spatial discretization, attention is confined to conservative schemes using five points per direction. The fourth-order central scheme and the family of {kappa}-schemes, comprising the second-order central, the second-order upwind, and the third-order upwind biased, are studied. Positivity is enforced through flux limiting. It is concluded that the limited third-order upwind discretization is the best candidate from the four examined. For the time integration attention is confined to a number of explicit Runge-Kutta methods of orders two to four. With regard to the demand of positivity, these integration methods turn out to behave almost equally and no best method could be identified. 16 refs., 4 figs., 4 tabs.

  9. Advection, diffusion, and delivery over a network

    NASA Astrophysics Data System (ADS)

    Heaton, Luke L. M.; López, Eduardo; Maini, Philip K.; Fricker, Mark D.; Jones, Nick S.

    2012-08-01

    Many biological, geophysical, and technological systems involve the transport of a resource over a network. In this paper, we present an efficient method for calculating the exact quantity of the resource in each part of an arbitrary network, where the resource is lost or delivered out of the network at a given rate, while being subject to advection and diffusion. The key conceptual step is to partition the resource into material that does or does not reach a node over a given time step. As an example application, we consider resource allocation within fungal networks, and analyze the spatial distribution of the resource that emerges as such networks grow over time. Fungal growth involves the expansion of fluid filled vessels, and such growth necessarily involves the movement of fluid. We develop a model of delivery in growing fungal networks, and find good empirical agreement between our model and experimental data gathered using radio-labeled tracers. Our results lead us to suggest that in foraging fungi, growth-induced mass flow is sufficient to account for long-distance transport, if the system is well insulated. We conclude that active transport mechanisms may only be required at the very end of the transport pathway, near the growing tips.

  10. Impact of slowdown of Atlantic overturning circulation on heat and freshwater transports

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Drushka, Kyla; Thompson, LuAnne; Le Bars, Dewi; McDonagh, Elaine L.

    2016-07-01

    Recent measurements of the strength of the Atlantic overturning circulation at 26°N show a 1 year drop and partial recovery amid a gradual weakening. To examine the extent and impact of the slowdown on basin wide heat and freshwater transports for 2004-2012, a box model that assimilates hydrographic and satellite observations is used to estimate heat transport and freshwater convergence as residuals of the heat and freshwater budgets. Using an independent transport estimate, convergences are converted to transports, which show a high level of spatial coherence. The similarity between Atlantic heat transport and the Agulhas Leakage suggests that it is the source of the surface heat transport anomalies. The freshwater budget in the North Atlantic is dominated by a decrease in freshwater flux. The increasing salinity during the slowdown supports modeling studies that show that heat, not freshwater, drives trends in the overturning circulation in a warming climate.

  11. Phononic heat transport in the transient regime: An analytic solution

    NASA Astrophysics Data System (ADS)

    Tuovinen, Riku; Säkkinen, Niko; Karlsson, Daniel; Stefanucci, Gianluca; van Leeuwen, Robert

    2016-06-01

    We investigate the time-resolved quantum transport properties of phonons in arbitrary harmonic systems connected to phonon baths at different temperatures. We obtain a closed analytic expression of the time-dependent one-particle reduced density matrix by explicitly solving the equations of motion for the nonequilibrium Green's function. This is achieved through a well-controlled approximation of the frequency-dependent bath self-energy. Our result allows for exploring transient oscillations and relaxation times of local heat currents, and correctly reduces to an earlier known result in the steady-state limit. We apply the formalism to atomic chains, and benchmark the validity of the approximation against full numerical solutions of the bosonic Kadanoff-Baym equations for the Green's function. We find good agreement between the analytic and numerical solutions for weak contacts and baths with a wide energy dispersion. We further analyze relaxation times from low to high temperature gradients.

  12. Nuclear reactor heat transport system component low friction support system

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  13. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    SciTech Connect

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  14. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    NASA Astrophysics Data System (ADS)

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  15. Photothermal heating in metal-embedded microtools for material transport

    NASA Astrophysics Data System (ADS)

    Villangca, Mark; Palima, Darwin; Bañas, Andrew; Glückstad, Jesper

    2016-03-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an optically fabricated and actuated microtool. As proof of concept, we demonstrate loading and unloading of beads. This can be extended to controlled transport and release of genetic material, bio-molecules, fluorescent dyes. We envisioned these microtools to be an important addition to the portfolio of structure-mediated contemporary biophotonics.

  16. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  17. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    NASA Astrophysics Data System (ADS)

    Massman, William

    2016-04-01

    The increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change requires an improved modeling capability of extreme heating of soils during fires. This study describes a new model of soil evaporation and transport of heat, soil moisture, and water vapor, for use during fires. The model is based on conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10,000 and 50,000 Wm2. In general, the model simulates the observed temperature dynamics quite well, but is less precise (but still good) at capturing the moisture dynamics. The model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50-90 C), and can provide quite accurate predictions of the total amount of soil moisture evaporated during the laboratory experiments. Overall, this new model provides a much more physically realistic simulation over all previous models developed for the same purpose.

  18. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics. PMID:24067709

  19. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  20. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    EPA Science Inventory

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  1. Macroscale lattice-Boltzmann methods for low Peclet number solute and heat transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Walsh, S. D. C.; Saar, M. O.

    2010-07-01

    This paper introduces new methods for simulating subsurface solute and heat transport in heterogeneous media using large-scale lattice-Boltzmann models capable of representing both macroscopically averaged porous media and open channel flows. Previous examples of macroscopically averaged lattice-Boltzmann models for solute and heat transport are only applicable to homogeneous media. Here, we extend these models to properly account for heterogeneous pore-space distributions. For simplicity, in the majority of this paper we assume low Peclet number flows with an isotropic dispersion tensor. Nevertheless, this approach may also be extended to include anisotropic-dispersion by using multiple relaxation time lattice-Boltzmann methods. We describe two methods for introducing heterogeneity into macroscopically averaged lattice-Boltzmann models. The first model delivers the desired behavior by introducing an additional time-derivative term to the collision rule; the second model by separately weighting symmetric and anti-symmetric components of the fluid packet densities. Chapman-Enskog expansions are conducted on the governing equations of the two models, demonstrating that the correct constitutive behavior is obtained in both cases. In addition, methods for improving model stability at low porosities are also discussed: (1) an implicit formulation of the model; and (2) a local transformation that normalizes the lattice-Boltzmann model by the local porosity. The model performances are evaluated through comparisons of simulated results with analytical solutions for one- and two-dimensional flows, and by comparing model predictions to finite element simulations of advection isotropic-dispersion in heterogeneous porous media. We conclude by presenting an example application, demonstrating the ability of the new models to couple with simulations of reactive flow and changing flow geometry: a simulation of groundwater flow through a carbonate system.

  2. Advective coalescence in chaotic flows.

    PubMed

    Nishikawa, T; Toroczkai, Z; Grebogi, C

    2001-07-16

    We investigate the reaction kinetics of small spherical particles with inertia, obeying coalescence type of reaction, B+B-->B, and being advected by hydrodynamical flows with time-periodic forcing. In contrast to passive tracers, the particle dynamics is governed by the strongly nonlinear Maxey-Riley equations, which typically create chaos in the spatial component of the particle dynamics, appearing as filamental structures in the distribution of the reactants. Defining a stochastic description supported on the natural measure of the attractor, we show that, in the limit of slow reaction, the reaction kinetics assumes a universal behavior exhibiting a t(-1) decay in the amount of reagents, which become distributed on a subset of dimension D2, where D2 is the correlation dimension of the chaotic flow. PMID:11461595

  3. Chaotic advection of immiscible fluids

    NASA Astrophysics Data System (ADS)

    Vollmayr-Lee, Benjamin; Beller, Daniel; Yasuda, Sohei

    2012-02-01

    We consider a system of two immiscible fluids advected by a chaotic flow field. A nonequilibrium steady state arises from the competition between the coarsening of the immiscible fluids and the domain bursting caused by the chaotic flow. It has been established that the average domain size in this steady state scales as a inverse power of the Lyapunov exponent. We examine the issue of local structure and look for correlations between the local domain size and the finite-time Lyapunov exponent (FTLE) field. For a variety of chaotic flows, we consistently find the domains to be smallest in regions where the FTLE field is maximal. This raises the possibility of making universal predictions of steady-state characteristics based on Lyapunov analysis of the flow field.

  4. DOS-HEATING6: A general conduction code with nuclear heat generation derived from DOT-IV transport calculations

    SciTech Connect

    Williams, M.L.; Yuecel, A.; Nadkarny, S.

    1988-05-01

    The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.

  5. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-02-01

    Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Diffusion originating in the Kelvin effect between snow structures dominates and is the main transport process in isothermal snow packs.

  6. Effect of water and heat transport processes on methane emissions from paddy soils: a process-based model analysis

    NASA Astrophysics Data System (ADS)

    Rizzo, Anacleto; Boano, Fulvio; Revelli, Roberto; Ridolfi, Luca

    2013-04-01

    High CH4 fluxes are emitted from paddy fields worldwide and represent a considerable issue for the rice production eco-sustainability. Water and heat transport fluxes are known to strongly influence biogeochemical cycles in wetland environments, and therefore also CH4 emissions from paddy soils. Water percolation affects the dynamics of many compounds (e.g. DOC, O2) influencing CH4 fate. On the other hand, heat fluxes strongly influence CH4 production in submerged rice crops, and lowering ponding water temperature (LPWT) can reduce microbial activities and consequently decrease CH4 emissions. Moreover, as long as the optimal temperature range for rice growth is maintained, LPWT can lower CH4 emissions without rice yield limitation. Hence, a process-based model is proposed and applied to investigate the role of water flow on CH4 emissions, and to analyse the efficiency of LPWT as mitigation strategy for CH4 production and release. The process-based model relies on a system of partial differential mass balance equations to describe the vertical dynamics of the chemical compounds leading to CH4 production. Many physico-chemical processes and features characteristic of paddy soil are included: paddy soil stratigraphy; spatio-temporal variations of plant-root compartment; water and heat transport; SOC decomposition; heterotrophic reactions in both aerobic and anaerobic conditions; root radial oxygen loss; root solute uptake; DOC root exudation; plant-mediated, ebullition, and diffusion gas exchange pathways. LPWT is included as a temperature shift subtracted directly to the ponding water temperature. Model results confirm the importance of water flow on CH4 emission, since simulations that do not include water fluxes show a considerable overestimation of CH4 emissions due to a different DOC spatio-temporal dynamics. Particularly, when water fluxes are not modeled the overestimation can reach 67 % of the total CH4 emission over the whole growing season. Moreover, model

  7. Nonlinear heat transport between the stack and the heat-exchangers of standing-wave thermoacoustic refrigerators

    NASA Astrophysics Data System (ADS)

    Blanc-Benon, Ph.; Berson, A.

    2008-06-01

    The development of high performance thermoacoustic refrigerators requires an efficient heat transport between the stack and the heat exchangers. A 1D nonlinear model for the thermal coupling of these two components is proposed in the case of a standing-wave thermaocoustic refrigerator. It shows the generation of temperature harmonics close to the edges of the plates that affects heat transport. In order to validate the model, the nonlinear temperature field close to the stack edges is measured using cold-wire anemometry.

  8. Interface Exchange as an Indicator for Eddy Heat Transport

    SciTech Connect

    Petersen, Mark R.; Williams, Sean J.; Hecht, Matthew W.; Maltrud, Mathew E.; Hamann, Bernd; Patchett, John M.; Ahrens, James P.

    2012-06-12

    The ocean contains many large-scale, long-lived vortices, called mesoscale eddies, that are believed to have a role in the transport and redistribution of salt, heat, and nutrients throughout the ocean. Determining this role, however, has proven to be a challenge, since the mechanics of eddies are only partly understood; a standard definition for these ocean eddies does not exist and, therefore, scientifically meaningful, robust methods for eddy extraction, characterization, tracking and visualization remain a challenge. In order to shed light on the nature and potential roles of eddies, we have combined our previous research on eddy identification and tracking, and have used those approaches as the basis for analysis-driven computational experiments on the nature of eddies. Based on the resulting visualizations of eddy behavior, we have devised a new metric to characterize the transfer of water into and out of eddies across their boundary, and have developed visualization methods for this new metric to provide clues about the role eddies play in the global ocean and, potentially, climate change.

  9. Prediction of transport properties related to heat transfer

    NASA Astrophysics Data System (ADS)

    Kestin, J.

    The lecture defines the problems which are encountered in the creation of data banks for use in computer-aided design in modern industry. In addition to the obvious requirements of accuracy, the lecture discusses the problem of internal and external consistency and places great emphasis on the less quantifiable characteristics which good data must possess, notably reliability. The lecture briefly characterizes the degree of accuracy with which it is necessary to know the transport properties of fluids in order to design heat-transfer equipment with success. The second part of the lecture describes the extended law of corresponding states for gases, emphasizing its roots in statistical thermodynamics. Taking low-density noble gases and their mixtures as one extreme, the lecture analyzes the progress that has been made during the last twenty-five years from the point of view of calculation. Extensions of the extended law of corresponding states to higher densities and more complex molecules are mentioned at the end.

  10. SOLAR WIND MODELING WITH TURBULENCE TRANSPORT AND HEATING

    SciTech Connect

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.; Breech, Benjamin A.

    2011-02-01

    We have developed an axisymmetric steady-state solar wind model that describes properties of the large-scale solar wind, interplanetary magnetic field, and turbulence throughout the heliosphere from 0.3 AU to 100 AU. The model is based on numerical solutions of large-scale Reynolds-averaged magnetohydrodynamic equations coupled with a set of small-scale transport equations for the turbulence energy, normalized cross helicity, and correlation scale. The combined set of time-dependent equations is solved in the frame of reference corotating with the Sun using a time-relaxation method. We use the model to study the self-consistent interaction between the large-scale solar wind and smaller-scale turbulence and the role of the turbulence in the large-scale structure and temperature distribution in the solar wind. To illuminate the roles of the turbulent cascade and the pickup protons in heating the solar wind depending on the heliocentric distance, we compare the model results with and without turbulence/pickup protons. The variations of plasma temperature in the outer heliosphere are compared with Ulysses and Voyager 2 observations.

  11. Generalized parallel heat transport equations in collisional to weakly collisional plasmas

    NASA Astrophysics Data System (ADS)

    Zawaideh, Emad; Kim, N. S.; Najmabadi, Farrokh

    1988-11-01

    A new set of two-fluid heat-transport equations for heat conduction in collisional to weakly collisional plasmas was derived on the basis of gyrokinetic equations in flux coordinates. In these equations, no restrictions on the anisotropy of the ion distribution function or the collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation of Spitzer and Haerm (1953), while in the weakly collisional limit, they describe a saturated heat flux. Numerical examples comparing these equations with conventional heat transport equations are presented.

  12. Numerical modeling for energy transport and isochoric heating in ultra-fast heated high Z target

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Sentoku, Yasuhiko; Hakel, Peter; Mancini, Roberto C.

    2010-11-01

    Collisional Particle-in-Cell (PIC) code is an effective tool to study extreme energy density conditions achieved in intense laser-solid interactions. In the continuous process of developing PIC code, we have recently implemented models to incorporate dynamic ionizations, namely Saha and Thomas Fermi, and radiation cooling (due to Bremsstrahlung and line emissions). We have also revised the existing collision model to take into account bounded electrons in dynamically ionizing target (partially ionized target). One-dimensional PIC simulation of a gold target with new collision model shows strong local heating in a micron distance due to shorter stopping range of fast electrons, which reflects the increased collision frequency due to bound electrons. The peak temperature in the heated region drops significantly due to the radiation cooling to a level of a few hundred eV from keV. We also discuss the target Z dependence on radiation loss and two-dimensional effects such as the resistive magnetic fields in the hot electron transport in metal targets.

  13. Spin-dependent heat transport and thermal boundary resistance

    NASA Astrophysics Data System (ADS)

    Jeong, Taehee

    In this thesis, thermal conductivity change depending on the magnetic configurations has been studied. In order to make different magnetic configurations, we developed a spin valve structure, which has high MR ratio and low saturation field. The high MR ratio was achieved using Co/Cu multilayer and 21A or 34A thick Cu layer. The low saturation field was obtained by implementing different coercivities of the successive ferromagnetic layers. For this purpose, Co/Cu/Cu tri-layered structure was used with the thicknesses of the Co layers; 15 A and 30 A. For the thermal conductivity measurement, a three-omega method was employed with a thermally isolated microscale rod. We fabricated the microscale rod using optical lithography and MEMS process. Then the rod was wire-bonded to a chip-carver for further electrical measurement. For the thermal conductivity measurement, we built the three-omega measurement system using two lock-in amplifiers and two differential amplifiers. A custom-made electromagnet was added to the system to investigate the impact of magnetic field. We observed titanic thermal conductivity change depending on the magnetic configurations of the Co/Cu/Co multilayer. The thermal conductivity change was closely correlated with that of the electric conductivity in terms of the spin orientation, but the thermal conductivity was much more sensitive than that of the electric conductivity. The relative thermal conductivity change was 50% meanwhile that of electric resistivity change was 8.0%. The difference between the two ratios suggests that the scattering mechanism for charge and heat transport in the Co/Cu/Co multilayer is different. The Lorentz number in Weidemann-Franz law is also spin-dependent. Thermal boundary resistance between metal and dielectrics was also studied in this thesis. The thermal boundary resistance becomes critical for heat transport in a nanoscale because the thermal boundary resistance can potentially determine overall heat transport

  14. Strong eddy compensation for the Gulf Stream heat transport

    NASA Astrophysics Data System (ADS)

    Saenko, Oleg A.

    2015-12-01

    Using a high-resolution ocean model forced with high-resolution atmospheric fields, a 5 year mean heat budget of the upper ocean in the Gulf Stream (GS) region is analyzed. The heat brought to the region with the mean flows along the GS path is 2-3 times larger than the heat loss to the atmosphere, with the difference being balanced by a strong cooling effect due to lateral eddy heat fluxes. However, over a broad area off the Grand Banks, the eddies warm the uppermost ocean layers, partly compensating for the loss of heat to the atmosphere. The upward eddy heat flux, which brings heat from the deeper ocean to the upper layers, is 30-80% of the surface heat loss.

  15. Numerical experiments for advection equation

    SciTech Connect

    Sun, Wen-Yih )

    1993-10-01

    We propose to combine the Crowley fourth-order scheme and the Gadd scheme for solving the linear advection equation. Two new schemes will be presented: the first is to integrate the Crowley scheme and the Gadd scheme alternately (referred to as New1); the second is to integrate the Crowley scheme twice before we apply the Gadd scheme once (referred to as New2). The new schemes are designed such that no additional restriction is placed on the CFL criterion in an integration. The performance of the new schemes is better than that of the original Crowley or Gadd schemes. It is noted that the amplitude obtained from New2 is more accurate than that from New1 for long waves, but less accurate for short waves. The phase speed calculated from New2 is very close to the real phase speed in most cases tested here, but the phase speed of New 1 is faster than the real phase speed. Hence, New2 is a better choice, especially for a model that includes horizontal smoothing to dampen the short waves. 9 refs., 5 figs., 8 tabs.

  16. Anomalous heat transport and condensation in convection of cryogenic helium

    PubMed Central

    Urban, Pavel; Schmoranzer, David; Hanzelka, Pavel; Sreenivasan, Katepalli R.; Skrbek, Ladislav

    2013-01-01

    When a hot body A is thermally connected to a cold body B, the textbook knowledge is that heat flows from A to B. Here, we describe the opposite case in which heat flows from a colder but constantly heated body B to a hotter but constantly cooled body A through a two-phase liquid–vapor system. Specifically, we provide experimental evidence that heat flows through liquid and vapor phases of cryogenic helium from the constantly heated, but cooler, bottom plate of a Rayleigh–Bénard convection cell to its hotter, but constantly cooled, top plate. The bottom plate is heated uniformly, and the top plate is cooled by heat exchange with liquid helium maintained at 4.2 K. Additionally, for certain experimental conditions, a rain of helium droplets is detected by small sensors placed in the cell at about one-half of its height. PMID:23576759

  17. Hydraulic and solute-transport properties and simulated advective transport of contaminated ground water in a fractured rock aquifer at the Naval Air Warfare Center, West Trenton, New Jersey, 2003

    USGS Publications Warehouse

    Lewis-Brown, Jean C.; Carleton, Glen B.; Imbrigiotta, Thomas E.

    2006-01-01

    Volatile organic compounds, predominantly trichloroethylene and its degradation products, have been detected in ground water at the Naval Air Warfare Center (NAWC), West Trenton, New Jersey. An air-stripping pump-and-treat system has been in operation at the NAWC since 1998. An existing ground-water-flow model was used to evaluate the effect of a change in the configuration of the network of recovery wells in the pump-and-treat system on flow paths of contaminated ground water. The NAWC is underlain by a fractured-rock aquifer composed of dipping layers of sedimentary rocks of the Lockatong and Stockton Formations. Hydraulic and solute-transport properties of the part of the aquifer composed of the Lockatong Formation were measured using aquifer tests and tracer tests. The heterogeneity of the rocks causes a wide range of values of each parameter measured. Transmissivity ranges from 95 to 1,300 feet squared per day; the storage coefficient ranges from 9 x 10-5 to 5 x 10-3; and the effective porosity ranges from 0.0003 to 0.002. The average linear velocity of contaminated ground water was determined for ambient conditions (when no wells at the site are pumped) using an existing ground-water-flow model, particle-tracking techniques, and the porosity values determined in this study. The average linear velocity of flow paths beginning at each contaminated well and ending at the streams where the flow paths terminate ranges from 0.08 to 130 feet per day. As a result of a change in the pump-and-treat system (adding a 165-foot-deep well pumped at 5 gallons per minute and reducing the pumping rate at a nearby 41-foot-deep well by the same amount), water in the vicinity of three 100- to 165-foot-deep wells flows to the deep well rather than the shallower well.

  18. Lattice Boltzmann method for the fractional advection-diffusion equation.

    PubMed

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  19. Lattice Boltzmann method for the fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  20. Lattice Boltzmann method for the fractional advection-diffusion equation.

    PubMed

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering. PMID:27176431

  1. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE PAGES

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay

  2. Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots.

    PubMed

    Feser, Joseph P; Cahill, David G

    2012-10-01

    An analytic solution is derived for the time-domain thermoreflectance signal that occurs using non-concentric pump and probe beams on multilayer anisotropic materials. When in-plane heat transport is negligible, the experimental signal is the same as for the concentric case. However, for samples where in-plane heat diffusion distances are comparable to the spot size, the signal is sensitive to in-plane heat transport. This sensitivity to in-plane transport can be exploited to measure the in-plane thermal conductivity. Examples with experimental data are given for thin-film Al and the in-plane thermal conductivity of pyrolytic graphite.

  3. An operator splitting algorithm for the three-dimensional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Khan, Liaqat Ali; Liu, Philip L.-F.

    1998-09-01

    Operator splitting algorithms are frequently used for solving the advection-diffusion equation, especially to deal with advection dominated transport problems. In this paper an operator splitting algorithm for the three-dimensional advection-diffusion equation is presented. The algorithm represents a second-order-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The governing equation is split into an advection equation and a diffusion equation, and they are solved by a backward method of characteristics and a finite element method, respectively. The Hermite interpolation function is used for interpolation of concentration in the advection step. The spatial gradients of concentration in the Hermite interpolation are obtained by solving equations for concentration gradients in the advection step. To make the composite algorithm efficient, only three equations for first-order concentration derivatives are solved in the diffusion step of computation. The higher-order spatial concentration gradients, necessary to advance the solution in a computational cycle, are obtained by numerical differentiations based on the available information. The simulation characteristics and accuracy of the proposed algorithm are demonstrated by several advection dominated transport problems.

  4. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.

    1987-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.

  5. Investigation of ion and electron heat transport of high-T e ECH heated discharges in the large helical device

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Satake, S.; Yokoyama, M.; Gates, D. A.; Bitter, M.; Bertelli, N.; Delgado-Aparicio, L.; Dinklage, A.; Goto, M.; Hill, K. W.; Igamai, S.; Kubo, S.; Lazerson, S.; Matsuoka, S.; Mikkelsen, D. R.; Morita, S.; Oishi, T.; Seki, R.; Shimozuma, T.; Suzuki, C.; Suzuki, Y.; Takahashi, H.; Yamada, H.; Yoshimura, Y.; the LHD Experiment Group

    2016-04-01

    An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-{{T}\\text{e}} electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ({{T}\\text{eo}}=9 keV) at moderately low densities ({{n}\\text{eo}}=1.5× {{10}19} m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ({{E}\\text{r}} ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. This provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.

  6. Investigation of ion and electron heat transport of high-Te ECH heated discharges in the large helical device

    DOE PAGES

    Pablant, N. A.; Satake, S.; Yokoyama, M.; Gates, D. A.; Bitter, M.; Bertelli, N.; Delgado-Aparicio, L.; Dinklage, A.; Goto, M.; Hill, K. W.; et al

    2016-01-28

    An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-more » $${{T}_{\\text{e}}}$$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ($${{T}_{\\text{eo}}}=9$$ keV) at moderately low densities ($${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ($${{E}_{\\text{r}}}$$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.« less

  7. Preliminary model for heat transport within a tongue-and-reservoir liquid diode for passive solar heating

    SciTech Connect

    Jones, G.F.

    1984-01-01

    A preliminary model is presented for heat transport within a tongue-and-reservoir liquid diode for passive solar heating. The diode consists of a rectangular vertical slot (tongue) extending from the bottom of a rectangular-shaped reservoir at the reservoir's front face. Water is used as the working fluid in the tongue and reservoir. Solar radiation is incident on the front face of the tongue, which also loses heat to the outside, while radiation and convection transport heat from the back of the reservoir to the building. Convection transports heat when the tongue is irradiated; however, when convection ceases and the temperature of the tongue cools below that of the reservoir (from exposure to the outside temperature), the reservoir stratifies, and the primary heat loss mechanism is conduction through the tongue and its fluid. The result is a passive solar component that may outperform most others. Flow in the tongue is treated as boundary layer flow; the integral forms of the governing equations are combined to form a single equation governing the local boundary layer thickness. The results are shown to depend upon the Grashof, Prandtl, and heat-loss Biot numbers. Results from this model agree well with those from our flow visualization experiments. A model is also proposed for diode heat transport processes during cool-down. In this model, and empirical coefficient accounts for the weak convective mixing that occurs in the reservoir during this phase. Preliminary results indicate the coefficient to be spatially dependent but independent of time and reservoir temperature. More experiments are planned to further validate both of the models described above.

  8. Utilizing Kernelized Advection Schemes in Ocean Models

    NASA Astrophysics Data System (ADS)

    Zadeh, N.; Balaji, V.

    2008-12-01

    There has been a recent effort in the ocean model community to use a set of generic FORTRAN library routines for advection of scalar tracers in the ocean. In a collaborative project called Hybrid Ocean Model Environement (HOME), vastly different advection schemes (space-differencing schemes for advection equation) become available to modelers in the form of subroutine calls (kernels). In this talk we explore the possibility of utilizing ESMF data structures in wrapping these kernels so that they can be readily used in ESMF gridded components.

  9. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  10. Is the Standard Definition of Poleward Heat Transport Appropriate in Climate Research?

    NASA Astrophysics Data System (ADS)

    Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi

    2016-04-01

    In this paper, a problem with the standard definition of poleward heat transport is highlighted. This, we argue, arises because of the dependence of the standard definition on an arbitrary reference state for moist static energy. This dependence may result in large uncertainty in the estimates of ocean-atmosphere coupling, the signature in heat transport of the atmospheric storm track and annular modes of variability. A new definition is proposed to address the problem, which removes unrealistically large fluctuations (4PW) found when using the standard definition. A practical way to implement the new formulation is also discussed. The new heat transport definition is shown to lead to better correlations with climate indices compared to the traditional definition. In particular a clear relationship between the AO, El Niño and heat transport emerges in our analysis. In addition, it also produces different time sequence of event with large/weak poleward heat transport. It is hoped that the new heat transport definition may shed light on studies exploring the link between energy transport and climate variability.

  11. Changes in Tropical Precipitation at the Mid-Holocene: Role of the Oceanic Heat Transport

    NASA Astrophysics Data System (ADS)

    Liu, X.; Battisti, D. S.; Donohoe, A.

    2015-12-01

    There is ample geological and geochemical evidence that precipitation in the tropics is largely different from today at the mid-Holocene, an era roughly 6,000 years ago when the Northern Hemisphere summer (winter) insolation was stronger (weaker) than today. These insolation differences are caused mainly by the precession of the earth's rotational axis, or called "precessional forcing". Using the mid-Holocene experiments of PMIP3, we studied changes in the zonal mean tropical precipitation, and its associated change in cross-equatorial energy transport. A northward movement of the zonal mean precipitation in the mid-Holocene is seen in 10 out of 13 PMIP3 models, with a correspondingly anomalous southward atmospheric heat transport across the equator. The slope is 3.0º per PW, close to the estimate given by Donohoe et al. (2013). The changes in cross-equatorial atmospheric heat transport are dictated by changes in the hemispheric asymmetry of heating from the surface, which in turn are associated with changes in the cross-equatorial oceanic heat transport: an anomalous northward oceanic heat transport at the equator is seen in all of the PMIP3 models. Analysis on this anomalous oceanic heat transport reveals that changes in the wind-driven gyre in the Pacific Ocean are primarily responsible for the changes in cross-equatorial ocean heat transport. Specifically, stronger easterly anomalies north of the equator in the western Pacific drives an anomalous northward mass transport, and therefore accomplishes an anomalous northward heat transport across the equator by acting on the asymmetric mean-state zonal temperature. The wind anomalies responsible for this anomalous ocean heat transport are seen in every PMIP3 model, as well as an ECHAM4-slab ocean model, indicating that it is atmospherically driven and independent of the changes in ocean heat transport. It also explains the consistency of ocean heat transport change, and eventually the relative consistency of zonal

  12. Numerical Modeling of Deep Mantle Convection: Advection and Diffusion Schemes for Marker Methods

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard

    2013-04-01

    Thermal and chemical evolution of Earth's deep mantle can be studied by modeling vigorous convection in a chemically heterogeneous fluid. Numerical modeling of such a system poses several computational challenges. Dominance of heat advection over the diffusive heat transport, and a negligible amount of chemical diffusion results in sharp gradients of thermal and chemical fields. The exponential dependence of the viscosity of mantle materials on temperature also leads to high gradients of the velocity field. The accuracy of many numerical advection schemes degrades quickly with increasing gradient of the solution, while the computational effort, in terms of the scheme complexity and required resolution, grows. Additional numerical challenges arise due to a large range of length-scales characteristic of a thermochemical convection system with highly variable viscosity. To examplify, the thickness of the stem of a rising thermal plume may be a few percent of the mantle thickness. An even thinner filament of an anomalous material that is entrained by that plume may consitute less than a tenth of a percent of the mantle thickness. We have developed a two-dimensional FEM code to model thermochemical convection in a hollow cylinder domain, with a depth- and temperature-dependent viscosity representative of the mantle (Steinberger and Calderwood, 2006). We use marker-in-cell method for advection of chemical and thermal fields. The main advantage of perfoming advection using markers is absence of numerical diffusion during the advection step, as opposed to the more diffusive field-methods. However, in the common implementation of the marker-methods, the solution of the momentum and energy equations takes place on a computational grid, and nodes do not generally coincide with the positions of the markers. Transferring velocity-, temperature-, and chemistry- information between nodes and markers introduces errors inherent to inter- and extrapolation. In the numerical scheme

  13. Evaluating Importance of Heat Transport Mechanisms Neglected in Design of Low Temperature Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Langevin, C. D.; Sukop, M. C.

    2009-12-01

    Design calculations for geothermal heating and cooling systems usually simplify or neglect many of the heat transport processes occurring in the subsurface. This is despite the fact that system efficiency, sustainability, and environmental impact all depend on heat transport in the subsurface. Design standards for the most popular systems, which use borehole heat exchangers, usually assume purely conductive heat transport in an infinite homogeneous domain. In reality, heat transport is affected by groundwater flow, buoyancy, thermal convection, temperature effects on viscosity, and possibly thermal dispersion and thermal non-equilibrium conditions between fluid and solid. Simulations using the SEAWAT computer program show the potential impact of these processes on the performance of ground energy systems. All simulations were based on a generic sand aquifer with 100 W/m borehole heat source/sink strength. Simulation results are in excellent agreement with the analytical solution for purely conductive heat transport from a vertical infinite line source. Adding thermal buoyancy effects to this simulation caused temperature to vary by more than 6 °C along a borehole that fully penetrated the 25-m thick aquifer. Fixing the temperature for the top boundary at the initial temperature value destabilized the density profile, leading to free thermal convection. Compared to the simulation including only buoyancy (and a no heat flux upper boundary), there was not as much temperature variation in the vertical direction, indicating that free thermal convection is an efficient mechanism for transporting heat. Including the effect of viscosity variations resulted in only a minor increase in flow velocity. Heat transport with regional groundwater flow driven by a head gradient was then represented with SEAWAT and compared with an analytical model. SEAWAT was used to simulate a hypothetical ground energy system with 64 wells spaced at a 10-m interval on a triangular mesh. When

  14. Intestinal transport of hexoses in the rat following chronic heat exposure

    NASA Technical Reports Server (NTRS)

    Carpenter, M.; Musacchia, X. J.

    1979-01-01

    The study examines intestinal transport of sugars (D-glucose and D-galactose) in vitro and assesses organ maintenance in chronically heat-exposed rats. The results suggest that the response of intestinal absorption to heat exposure in the rat involves changes in intestinal weight and in glucose utilization. Despite the reduction in total intestinal weight, the ability of intestinal tissue to transport hexose per unit weight remains stable. Differences in intestinal weight and glucose utilization between pair-fed and heat-exposed animals suggest that the intestinal response to chronic heat exposure is not solely a function of the amount of food consumed. Alterations of hexose transport appear to be related to altered glucose metabolism and not altered transport capacity.

  15. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  16. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.; ,

    1985-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximative boundary generation. This error evaluation can be used to develop highly accurate CVBEM models of the heat transport process, and the resulting model can be used as a test case for evaluating the precision of domain models based on finite elements or finite differences.

  17. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  18. Eddy heat and salt transports in the South China Sea and their seasonal modulations

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Gan, Jianping; Xie, Qiang; Chu, Xiaoqing; Wang, Dongxiao; Hou, Yijun

    2012-05-01

    This study describes characteristics of eddy (turbulent) heat and salt transports, in the basin-scale circulation as well as in the embedded mesoscale eddy found in the South China Sea (SCS). We first showed the features of turbulent heat and salt transports in mesoscale eddies using sea level anomaly (SLA) data, in situ hydrographic data, and 375 Argo profiles. We found that the transports were horizontally variable due to asymmetric distributions of temperature and salinity anomalies and that they were vertically correlated with the thermocline and halocline depths in the eddies. An existing barrier layer caused the halocline and eddy salt transport to be relatively shallow. We then analyzed the transports in the basin-scale circulation using an eddy diffusivity method and the sea surface height data, the Argo profiles, and the climatological hydrographic data. We found that relatively large poleward eddy heat transports occurred to the east of Vietnam (EOV) in summer and to the west of the Luzon Islands (WOL) in winter, while a large equatorward heat transport was located to the west of the Luzon Strait (WLS) in winter. The eddy salt transports were mostly similar to the heat transports but in the equatorward direction due to the fact that the mean salinity in the upper layer in the SCS tended to decrease toward the equator. Using a 21/2-layer reduced-gravity model, we conducted a baroclinic instability study and showed that the baroclinic instability was critical to the seasonal variation of eddy kinetic energy (EKE) and thus the eddy transports. EOV, WLS, and WOL were regions with strong baroclinic instability, and, thus, with intensified eddy transports in the SCS. The combined effects of vertical velocity shear, latitude, and stratification determined the intensity of the baroclinic instability, which intensified the eddy transports EOV during summer and WLS and WOL during winter.

  19. Nonlocal heat transport by non-Maxwellian electrons

    SciTech Connect

    Swartz, K.; Short, R.W.

    1984-03-30

    The generalization of the Spitzer-Harm solution to steep density and temperature gradients requires the computation of the appropriate non-Maxwellian isotropic part of the electron distribution. We develop analytic solutions for a steady state, high-Z plasma, employing the diffusion approximation. Applications of our solution include computation of the resulting heat flux, thermal smoothing of transverse temperature perturbations, and modification of linear heat flow instabilities.

  20. Development of a Two-Phase Capillary Pumped Heat Transport for Spacecraft Central Thermal Bus

    NASA Astrophysics Data System (ADS)

    Hoang, Triem; Brown, Michael; Baldauff, Robert; Cummings, Sheila

    2003-01-01

    Thermal requirements of future spacecraft and satellites will certainly outgrow the capability of conventional heat pipes in terms of heat transport, heat density, and temperature control. Emerging passive heat transport technologies such as Capillary Pumped Loop (CPL) and Loop Heat Pipe (LHP) have demonstrated in both ground testing and micro-gravity flight experiments that they have the potential to replace heat pipes as primary heat transport devices in next generation thermal control technology. Like heat pipes, CPLs and LHPs are completely passive systems which have no mechanical moving part to wear out or to introduce unwanted vibration to the spacecraft. However, the heat transport capabilities of CPLs and LHPs are at least one order of magnitude higher than those of heat pipes. Despite sharing many operational characteristics. CPLs and LHPs do have differences. CPLs require a lengthy and tedious start-up procedure to prime the wicks before heat is applied to the evaporator plate. Even with the start-up procedure, start-ups are not always successful. LHPs, on the other hand, do not require a wick pre-conditioning process. But the LHP effective thermal conductance is not as high as that of a CPL. Temperature control of a LHP is not easily achieved. A novel concept, which combined a CPL and a LHP into one loop, was proposed to take advantage of selective features of each system without inheriting their shortcomings. The resultant loop was called Advanced Loop Heat Pipe (A-LHP). A proof-of-concept testbed was put together and tested at the Naval Research Laboratory. Test results showed that the A-LHP performed like a CPL without start-up problems associated with CPLs.

  1. DYNAMICS OF WATER TRANSPORT AND STORAGE IN CONIFERS STUDIED WITH DEUTERIUM AND HEAT TRACING TECHNIQUES

    EPA Science Inventory

    The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...

  2. Transports and budgets of volume, heat, and salt from a global eddy-resolving ocean model

    SciTech Connect

    McCann, M.P.; Semtner, A.J. Jr.; Chervin, R.M.

    1994-07-01

    The results from an integration of a global ocean circulation model have been condensed into an analysis of the volume, heat, and salt transports among the major ocean basins. Transports are also broken down between the model`s Ekman, thermocline, and deep layers. Overall, the model does well. Horizontal exchanges of mass, heat, and salt between ocean basins have reasonable values: and the volume of North Atlantic Deep Water (NADW) transport is in general agreement with what limited observations exist. On a global basis the zonally integrated meridional heat transport is poleward at all latitudes except for the latitude band 30{degrees}S to 45{degrees}S. This anomalous transport is most likely a signature of the model`s inability to form Antarctic Intermediate (AAIW) and Antarctic bottom water (AABW) properly. Eddy heat transport is strong at the equator where its convergence heats the equatorial Pacific about twice as much as it heats the equatorial Atlantic. The greater heating in the Pacific suggests that mesoscale eddies may be a vital mechanism for warming and maintaining an upwelling portion of the global conveyor-belt circulation. The model`s fresh water transport compares well with observations. However, in the Atlantic there is an excessive southward transport of fresh water due to the absence of the Mediterranean outflow and weak northward flow of AAIW. Perhaps the model`s greatest weakness is the lack of strong AAIW and AABW circulation cells. Accurate thermohaline forcing in the North Atlantic (based on numerous hydrographic observations) helps the model adequately produce NADW. In contrast, the southern ocean is an area of sparse observation. Better thermohaline observations in this area may be needed if models such as this are to produce the deep convection that will achieve more accurate simulations of the global 3-dimensional circulation. 41 refs., 18 figs., 1 tab.

  3. A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes

    SciTech Connect

    Tokunaga, S.; Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-09-15

    We present a statistical analysis of heat transport in stationary enhanced confinement regimes obtained from flux-driven gyrofluid simulations. The probability density functions of heat flux in improved confinement regimes, characterized by the Nusselt number, show significant deviation from Gaussian, with a markedly fat tail, implying the existence of heat avalanches. Two types of avalanching transport are found to be relevant to stationary states, depending on the degree of turbulence suppression. In the weakly suppressed regime, heat avalanches occur in the form of quasi-periodic (QP) heat pulses. Collisional relaxation of zonal flow is likely to be the origin of these QP heat pulses. This phenomenon is similar to transient limit cycle oscillations observed prior to edge pedestal formation in recent experiments. On the other hand, a spectral analysis of heat flux in the strongly suppressed regime shows the emergence of a 1/f (f is the frequency) band, suggesting the presence of self-organized criticality (SOC)-like episodic heat avalanches. This episodic 1/f heat avalanches have a long temporal correlation and constitute the dominant transport process in this regime.

  4. Seasonal Cycles of Meridional Overturning and Heat Transport of the Indian Ocean

    NASA Technical Reports Server (NTRS)

    Lee, Tong; Marotzke, Jochem

    1998-01-01

    A general circulation model of the Indian Ocean is fitted to monthly averaged climatological temperatures, salinities, and surface fluxes using the adjoint method. Interannual variability is minimized by penalizing the temporal drift from one seasonal cycle to another during a two-year integration. The resultant meridional overturning and heat transport display large seasonal variations, with maximum amplitudes of 18 and 22 (x 10(exp 6) cubic m/s) for the overturning and 1.8 and 1.4 (x 10(exp 15) W) for heat transport near 10 S and 10 N, respectively. A dynamical decomposition of the overturning and heat transport shows that the time-varying Ekman How plus its barotropic compensation can explain a large part of the seasonal variations in overturning and heat transport. The maximum variations at 10 deg N and 10 deg S are associated with monsoon reversal over the northern Indian Ocean and changes of the easterlies over the southern Indian Ocean. An external mode with variable topography has a moderate contribution where the Somali Current and the corresponding gyre reverse direction seasonally. Contribution front vertical shear (thermal wind and ageostrophic shear) is dominant near the southern boundary and large near the Somali Current latitudes. The dominant balance in the zonally integrated heat budget is between heat storage change and heat transport convergence except south of 15 S. Optimization with seasonal forcings improves estimates of sea surface temperatures, but the annual average overturning and heat transport are very similar to previous results with annual mean forcings. The annual average heat transport consists of roughly equal contributions from time-mean and time-varying fields of meridional velocities and temperatures in the northern Indian Ocean. indicating a significant rectification to the heat transport due to the time-varying fields. The time-mean and time-varying contributions are primarily due to the overturning and horizontal gyre

  5. Heat Transport between Antiferromagnetic Insulators and Normal Metals

    NASA Astrophysics Data System (ADS)

    Fjaerbu, Eirik Lohaugen; Skarsvaag, Hans; Tveten, Erlend G.; Brataas, Arne

    Antiferromagnetic insulators can become active spintronics components by controlling and detecting their dynamics via spin currents in adjacent metals. This cross-talk occurs via spin-transfer and spin-pumping, phenomena that have been predicted to be as strong in antiferromagnets as in ferromagnets. In a recent article, we demonstrate that a temperature gradient drives a significant heat flow from magnons in antiferromagnetic insulators to electrons in adjacent normal metals. The same coefficients as in the spin-transfer and spin-pumping processes also determine the thermal conductance. However, in contrast to ferromagnets, the heat is not transferred via a spin Seebeck effect which is absent in antiferromagnetic insulator-normal metal systems. Instead, the heat is proportional to a large staggered spin Seebeck effect.

  6. Heat transport between antiferromagnetic insulators and normal metals

    NASA Astrophysics Data System (ADS)

    Brataas, Arne; Skarsvâg, Hans; Tveten, Erlend G.; Løhaugen Fjærbu, Eirik

    2015-11-01

    Antiferromagnetic insulators can become active spintronics components by controlling and detecting their dynamics via spin currents in adjacent metals. This cross talk occurs via spin transfer and spin pumping, phenomena that have been predicted to be as strong in antiferromagnets as in ferromagnets. Here, we demonstrate that a temperature gradient drives a significant heat flow from magnons in antiferromagnetic insulators to electrons in adjacent normal metals. The same coefficients as in the spin-transfer and spin-pumping processes also determine the thermal conductance. However, in contrast to ferromagnets, the heat is not transferred via a spin Seebeck effect which is absent in antiferromagnetic insulator-normal metal systems. Instead, the heat is proportional to a large staggered spin Seebeck effect.

  7. Operational demonstration of a field of high performance flat plate collectors with isothermal heat transport

    NASA Astrophysics Data System (ADS)

    Merges, V.; Klippel, E.

    1983-12-01

    A solar plant with 21 sq m of highly efficient flat plate collectors and which requires no electricity is described. Heat transport is provided by saturated steam that condenses in a four cubic meter storage tank. The operation temperature is set by the buffer gas pressure between 100 and 140 C, and an absorption chiller is simulated as a heat consumer. The solar collectors were observed to exhibit high performance. Heat transport and temperature control offered high reliability and the thermal stratification in the tank was satisfactory. The positive result permits the design and construction of larger solar plants following the same technical principles.

  8. Drift by drift: effective population size is limited by advection

    PubMed Central

    2008-01-01

    Background Genetic estimates of effective population size often generate surprising results, including dramatically low ratios of effective population size to census size. This is particularly true for many marine species, and this effect has been associated with hypotheses of "sweepstakes" reproduction and selective hitchhiking. Results Here we show that in advective environments such as oceans and rivers, the mean asymmetric transport of passively dispersed reproductive propagules will act to limit the effective population size in species with a drifting developmental stage. As advection increases, effective population size becomes decoupled from census size as the persistence of novel genetic lineages is restricted to those that arise in a small upstream portion of the species domain. Conclusion This result leads to predictions about the maintenance of diversity in advective systems, and complements the "sweepstakes" hypothesis and other hypotheses proposed to explain cases of low allelic diversity in species with high fecundity. We describe the spatial extent of the species domain in which novel allelic diversity will be retained, thus determining how large an appropriately placed marine reserve must be to allow the persistence of endemic allelic diversity. PMID:18710549

  9. Laser speckle contrast imaging is sensitive to advective flux

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Unlike laser Doppler flowmetry, there has yet to be presented a clear description of the physical variables that laser speckle contrast imaging (LSCI) is sensitive to. Herein, we present a theoretical basis for demonstrating that LSCI is sensitive to total flux and, in particular, the summation of diffusive flux and advective flux. We view LSCI from the perspective of mass transport and briefly derive the diffusion with drift equation in terms of an LSCI experiment. This equation reveals the relative sensitivity of LSCI to both diffusive flux and advective flux and, thereby, to both concentration and the ordered velocity of the scattering particles. We demonstrate this dependence through a short series of flow experiments that yield relationships between the calculated speckle contrast and the concentration of the scatterers (manifesting as changes in scattering coefficient), between speckle contrast and the velocity of the scattering fluid, and ultimately between speckle contrast and advective flux. Finally, we argue that the diffusion with drift equation can be used to support both Lorentzian and Gaussian correlation models that relate observed contrast to the movement of the scattering particles and that a weighted linear combination of these two models is likely the most appropriate model for relating speckle contrast to particle motion.

  10. The impact of advection on stratification and chlorophyll variability in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Dave, Apurva C.; Lozier, M. Susan

    2015-06-01

    Previously reported global-scale correlations between interannual variability in upper ocean stratification and chlorophyll a (a proxy for phytoplankton biomass) have been shown to be driven by strong associations between the two properties in the central and western equatorial Pacific. Herein, we present evidence that these correlations are not causal but instead result from the advection of heat, salt, and nutrients in the region. Specifically, we demonstrate that stratification and chlorophyll are simultaneously influenced by shifts in the horizontal advective inputs of cold/saline/nutrient-rich waters from upwelling regions to the east and warm/fresh/nutrient-poor waters to the west. We find that horizontal advection contributes substantially to the annual surface layer nutrient budget and, together with vertical advection, significantly impacts interannual variability in chlorophyll. These results highlight the importance of a three-dimensional framework for examining nutrient supply in the upper ocean—a crucial requirement for assessing future marine ecosystem responses to a changing climate.

  11. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    PubMed

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  12. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars

    PubMed Central

    Hu, Yongyun; Yang, Jun

    2014-01-01

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  13. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    PubMed

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  14. Size effects in long-term quasistatic heat transport.

    PubMed

    Panasyuk, George Y; Yerkes, Kirk L

    2013-06-01

    We consider finite-size effects on heat transfer between thermal reservoirs mediated by a quantum system, where the number of modes in each reservoir is finite. Our approach is based on the generalized quantum Langevin equation and the thermal reservoirs are described as ensembles of oscillators within the Drude-Ullersma model. A general expression for the heat current between the thermal reservoirs in the long-time quasistatic regime, when an observation time is of the order of Δ(-1) and Δ is the mode spacing constant of a thermal reservoir, is obtained. The resulting equations that govern the long-time relaxation for the mode temperatures and the average temperatures of the reservoirs are derived and approximate analytical solutions are found. The obtained time dependencies of the temperatures and the resulting heat current reveal peculiarities at t=2πm/Δ with non-negative integers m and the heat current vanishes nonmonotonically when t→∞. The validity of Fourier's law for a chain of finite-size macroscopic subsystems is considered. As is shown, for characteristic times of the order of Δ(-1) the temperatures of subsystems' modes deviate from each other and the validity of Fourier's law cannot be established. In a case when deviations of initial temperatures of the subsystems from their average value are small, t→∞ asymptotic values for the mode temperatures do not depend on a mode's number and are the same as if Fourier's law were valid for all times.

  15. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Takenaga, H.; Ida, K.; Isayama, A.; Tamura, N.; Takizuka, T.; Shimozuma, T.; Kamada, Y.; Kubo, S.; Miura, Y.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; LHD Experimental Group; JT-60 Team

    2006-01-01

    Transient transport experiments are performed in plasmas with and without internal transport barriers (ITB) on LHD and JT-60U. The dependence of χe on the electron temperature, Te, and on the electron temperature gradient, ∇Te, is analysed with an empirical non-linear heat transport model. In plasmas without an ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation: the χe depends on Te and ∇Te in JT-60U, while the ∇Te dependence is weak in LHD. Inside the ITB region, there is none or weak ∇Te dependence both in LHD and JT-60U. Growth of the cold pulse driven by the negative Te dependence of χe is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U).

  16. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    SciTech Connect

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  17. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOEpatents

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  18. Stochastic data assimilation methods for estimating ocean eddy heat transport using satellite altimetry

    NASA Astrophysics Data System (ADS)

    Keating, S. R.; Majda, A.; Smith, K.

    2011-12-01

    The role of ocean eddies in redistributing heat from the tropics to the poles remains a poorly constrained feature of the global energy balance. Attempts to monitor eddy transport are strongly limited by the sparseness of available observations, the strong nonlinearity of the underlying dynamics, and the fact that heat transport is a quadratic, sign-indefinite quantity that is particularly sensitive to unresolved scales. In this study, a suite of stochastic data assimilation methods for estimating eddy heat transport are tested in idealized two-layer simulations of mesoscale oceanic turbulence at high and low latitudes under a range of observation scenarios. A novel feature of these strategies is the use of computationally inexpensive stochastic models to forecast the underlying nonlinear, non-Gaussian dynamics. The stochastic model parameters can be estimated by regression fitting to climatological energy spectra and correlation times or by adaptively learning these parameters ``on-the-fly'' from the observations themselves. It is shown that, by extracting high-wavenumber information that has been aliased into the low wavenumber band, one can derive ``stochastically superresolved'' velocity fields with a nominal resolution increase of a factor of two or more. Observations of the upper layer streamfunction are projected onto an empirical orthogonal function basis for the vertical structure to produce filtered estimates for both upper and lower layer streamfunctions and hence net heat transport. The resulting time-mean poleward eddy heat transport is significantly closer to the true value when compared with standard estimates based upon optimal interpolation. By contrast, the temporal variability of the heat transport is underestimated due to poor temporal resolution. Implications for estimating poleward eddy heat transport using current and next-generation altimeters are discussed.

  19. Creation and tidal advection of a cold salinity front in Storfjorden: 2. Supercooling induced by turbulent mixing of cold water

    NASA Astrophysics Data System (ADS)

    McPhee, Miles G.; Skogseth, Ragnheid; Nilsen, Frank; Smedsrud, Lars H.

    2013-08-01

    Measurements near the edge of fast ice in Freemansundet, Svalbard, reveal mixing processes associated with tidal advection of a sharp front in salinity, including possible supercooling induced by double diffusion in a fully turbulent water column. The front translated back and forth with the semidiurnal tide between an area of mobile (drifting) ice in Storfjorden proper, and the narrow sound covered by fast ice. Water on each side of the front was near its salinity-determined freezing temperature. Instruments deployed about 400 m into the sound from the fast ice edge measured current, temperature, conductivity, and turbulence quantities through several tidal cycles. Turbulence data illustrate that as the steep horizontal salinity (density) gradient advected past the measurement site, vertical shear near the fast-ice base induced marked flood/ebb asymmetry in turbulent mixing. As fresher water entered the sound on the flood phase, inward transport of denser water near the upper boundary was retarded, leading to statically unstable conditions and enhanced turbulence. The opposite occurred during ebb tide, as denser water underran lighter. Transient episodes of supercooling accompanied frontal passage on both flood and ebb phases. The most likely explanation for a zone of supercooled water within the strongly mixed frontal region is that during mixing of fresher, slightly warmer (but still at freezing) water from outside with saltier, colder water in the sound, the former constituent lost heat faster than gaining salt. This interpretation (differing turbulent diffusivities for heat and salt) challenges strict application of Reynolds analogy for highly turbulent shear flow.

  20. Distinguishing resuspension and advection signals in a hypertidal estuary

    NASA Astrophysics Data System (ADS)

    Todd, David; Souza, Alex; Jago, Colin

    2015-04-01

    Terrestrial material is supplied to an estuary system by the river, while marine material is supplied by the sea. Whether the estuary acts as a trap or a bypass zone for SPM (suspended particulate matter) depends upon the properties and dynamics of both the estuary, including the tidal and residual behaviour of the currents, and the SPM, including particle sizes and settling velocities and concentration gradients, which together control the dynamics, such as the trapping efficiency, of the estuary. Whether an SPM signal is regarded as being one of resuspension or advection depends upon the area of interest, and therefore distinguishing between resuspension and advection can be complex. Material that is resuspended within the area of study is regarded as resuspension, while that which is resuspended outside, but passes through, the area of interest, is regarded as advection. The results of a measurement campaign undertaken in a hypertidal UK estuary during the pre-spring bloom February-March and post-spring bloom May-June are presented utilising a combination of acoustic and optical instruments, moorings, and CTD stations. A characteristic asymmetric "twin peak" signal is present during both time periods, implying the presence of both resuspension and advection. This is confirmed through the use of harmonic analysis. A seasonal variation in the relative importance of the resuspension and advection components is seen between the two observation periods, with the small (<122µm) and large (>122µm) particles displaying different behaviours and providing a strong indication of the presence of flocculation. Approximate point flux calculations showed a reduction in the horizontal gradient of concentration, and subsequently the flood dominance of sediment transport, between May-June and February-March. This has been attributed to changes in biological activity and atmospheric forcing between the two observational periods. Ebb-dominant concentrations brought about by the

  1. The contiguous domains of Arctic Ocean advection: Trails of life and death

    NASA Astrophysics Data System (ADS)

    Wassmann, P.; Kosobokova, K. N.; Slagstad, D.; Drinkwater, K. F.; Hopcroft, R. R.; Moore, S. E.; Ellingsen, I.; Nelson, R. J.; Carmack, E.; Popova, E.; Berge, J.

    2015-12-01

    The central Arctic Ocean is not isolated, but tightly connected to the northern Pacific and Atlantic Oceans. Advection of nutrient-, detritus- and plankton-rich waters into the Arctic Ocean forms lengthy contiguous domains that connect subarctic with the arctic biota, supporting both primary production and higher trophic level consumers. In turn, the Arctic influences the physical, chemical and biological oceanography of adjacent subarctic waters through southward fluxes. However, exports of biomass out of the Arctic Ocean into both the Pacific and Atlantic Oceans are thought to be far smaller than the northward influx. Thus, Arctic Ocean ecosystems are net biomass beneficiaries through advection. The biotic impact of Atlantic- and Pacific-origin taxa in arctic waters depends on the total supply of allochthonously-produced biomass, their ability to survive as adults and their (unsuccessful) reproduction in the new environment. Thus, advective transport can be thought of as trails of life and death in the Arctic Ocean. Through direct and indirect (mammal stomachs, models) observations this overview presents information about the advection and fate of zooplankton in the Arctic Ocean, now and in the future. The main zooplankton organisms subjected to advection into and inside the Arctic Ocean are (a) oceanic expatriates of boreal Atlantic and Pacific origin, (b) oceanic Arctic residents and (c) neritic Arctic expatriates. As compared to the Pacific gateway the advective supply of zooplankton biomass through the Atlantic gateways is 2-3 times higher. Advection characterises how the main planktonic organisms interact along the contiguous domains and shows how the subarctic production regimes fuel life in the Arctic Ocean. The main differences in the advective regimes through the Pacific and Atlantic gateways are presented. The Arctic Ocean is, at least in some regions, a net heterotrophic ocean that - during the foreseeable global warming trend - will more and more rely

  2. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1998-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  3. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1997-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  4. Surfzone alongshore advective accelerations: observations and modeling

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.

  5. Effect of wind forcing on the meridional heat transport in a coupled climate model: equilibrium response

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Dai, Haijin

    2015-09-01

    The effect of the ocean surface winds on the meridional heat transports is studied in a coupled model. Shutting down the global surface winds causes significant reductions in both wind-driven and thermohaline ocean circulations, resulting in a remarkable decrease in the poleward oceanic heat transport (OHT). The sea surface temperature responds with significant warming in the equator and cooling off the equator, causing an enhancement and equatorward shift in the Hadley cell. This increases the poleward atmospheric heat transport (AHT), which in turn compensates the decrease in the OHT. This compensation implies a fundamental constraint in changes of ocean-atmosphere energy transports. Several other compensation changes are also identified. For the OHT components, the changes in the Eulerian mean and bolus OHT are compensated with each other in the Southern Ocean, since a stronger wind driven Ekman transport is associated with a stronger meridional density gradient (stronger bolus circulation) and vice versa. For the AHT components, the changes in the dry static energy (DSE) and latent energy transports are compensated within the tropics (30°N/S), because a stronger Hadley cell causes a stronger equatorward convergence of moisture. In the extratropics, the changes in the mean and eddy DSE transports show perfect compensation, as a result of the equatorward shift of the Ferrell Cell and enhancement of atmospheric baroclinicity in mid-high latitudes, particularly over the North Atlantic. This work also shows how the Earth's climate is trying to maintain the balance between two hemispheres: the ocean in the Northern Hemisphere is colder than that in the Southern Hemisphere due to much reduced northward heat transports cross the Equator in the Atlantic, therefore, the atmosphere responds to the ocean with temperature colder in the Southern Hemisphere than in the Northern Hemisphere by transporting more heat northward cross the equator over the Pacific, in association

  6. Mass and heat transport in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ismail, A.; Kamarudin, S. K.; Daud, W. R. W.; Masdar, S.; Yosfiah, M. R.

    The direct methanol fuel cell (DMFC) is a better alternative to the conventional battery. The DMFC offers several advantages, namely, faster building of potential and longer-lasting fuel, however, there are still several issues that need to be addressed to design a better DMFC system. This article is a wide-ranging review of the most up-to-date studies on mass and heat transfer in the DMFC. The discussion will be focused on the critical problems limiting the performance of DMFCs. In addition, a technique for upgrading the DMFC with an integrated system will be presented, along with existing numerical models for modeling mass and heat transfer as well as cell performance.

  7. The general circulation and meridional heat transport of the subtropical South Atlantic determined by inverse methods

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.

    1981-01-01

    The circulation and meridional heat transport of the subtropical South Atlantic Ocean are determined through the application of the inverse method of Wunsch (1978) to hydrographic data from the IGY and METEOR expeditions. Meridional circulation results of the two data sets agree on a northward mass transport of about 20 million metric tons/sec for waters above the North Atlantic Deep Water (NADW), and a comparable southward transport of deep waters. Additional gross features held in common are the Benguela, South Equatorial and North Brazilian Coastal currents' northward transport of the Surface Water, and the deflection of the southward-flowing NADW from the South American Coast into the mid ocean by a seamount chain near 20 deg S. Total heat transport is equatorward, with a magnitude of 0.8 X 10 to the 15th W near 30 deg S and indistinguishable from zero near 8 deg S.

  8. Update on Advection-Diffusion Purge Flow Model

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.

  9. Subsurface barrier design alternatives for confinement and controlled advection flow

    SciTech Connect

    Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.

    1994-02-01

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described.

  10. Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations

    NASA Astrophysics Data System (ADS)

    Gorthala, R.; Harris, K. T.; Roux, J. A.; McCarty, T. A.

    1994-01-01

    A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite difference method was used to solve the energy equation and the species equations. The method of discrete ordinates was used in solving the radiative transport equation. For H2O transport, both diffusion of vapor H2O and bound H2O and moisture adsorption/desorption within the insulation binder are included in the model. The experimental data measured at an occupied North Mississippi residence for R19STD (standard R19 fiberglass insulation batt without a foil radiant barrier) were used to validate the model which predicted heat fluxes for summer, spring, winter, and fall seasonal conditions. These predictions were compared with the measured heat flux data and the predictions from the dry model (without the moisture transport). Various profiles such as temperature-time histories, relative humidity time histories, spatial H2O concentrations, spatial temperatures, and spatial heat fluxes are presented to explain the overall heat transfer behavior.

  11. Water and heat transport in boreal soils: Implications for soil response to climate change

    USGS Publications Warehouse

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  12. Water and heat transport in boreal soils: implications for soil response to climate change.

    PubMed

    Fan, Zhaosheng; Neff, Jason C; Harden, Jennifer W; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, Claudia I; Winston, Gregory C; O'Donnell, Jonathan A

    2011-04-15

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4°C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. PMID:21356544

  13. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    NASA Technical Reports Server (NTRS)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  14. Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods and Numerical Advection Schemes

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.

  15. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.

  16. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    PubMed

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  17. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    PubMed

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers. PMID:26726687

  18. Analysis of heat transfer and contaminant transport in fume hoods

    SciTech Connect

    Pathanjali, C.; Rahman, M.M.

    1996-12-31

    The paper presents the analysis of three-dimensional flow patterns and the associated heat and mass transfer mechanisms in a fume hood enclosure. The flow enters the hood through the front window opening (positive x-direction) and leaves the cupboard through an opening on the top of the hood (positive z-direction). The flow was assumed to be fully turbulent. The flow pattern for different sash openings were studied. The flow pattern around an object located at the bottom of the hood was studied for different locations of the object. It was found that air entering the hood proceeds directly to the back wall, impinges it and turns upward toward the top wall and exits through the outlet. The flow finds its way around any object forming a recirculating region at its training surface. With an increase in the sash opening, the velocity becomes higher and the fluid traces the path to the outlet more quickly. The volume occupied by recirculating flow decreases with increase in sash opening. Both temperature and concentration were found to be maximum near the source and gradually decreased as the heated air or gaseous contaminant entrained with incoming air. The local concentration decreased with increase in sash opening area. The results will be very useful to design experiments with optimum sash opening providing adequate disposal of contaminants with minimum use of conditioned air inside the room.

  19. Use of MT3DMS for heat transport simulation of shallow geothermal systems

    NASA Astrophysics Data System (ADS)

    Molina Giraldo, N. A.; Hecht Méndez, J.; Blum, P.; Bayer, P.

    2009-12-01

    Due to the mathematical similarities between heat and mass transport, the multi-species solute transport model MT3DMS, is applied to simulate heat transport for ground source heat pump (GSHP) systems. Although in several studies solute transport models were successfully applied for simulating heat transport, they lack of providing any rigorous verification of this approach. We present a comprehensive verification of applying MT3DMS (Version 5.2) for two-dimensional (2D) and three-dimensional (3D) heat transport simulations of shallow geothermal systems. Closed systems are considered for three scenarios that are distinguished by their Péclet number (Pe): scenario 1, representing a pure conduction situation (Pe=0, no groundwater flow), scenario 2, as an intermediate case (Pe=1) and scenario 3, as a convection dominated case (Pe=10). Two verification approaches are employed: First, numerical results are compared with analytical solutions. For 2D scenarios, line-source analytical solutions for heat transport simulation are applied. For 3D scenarios, planar-source analytical solutions based on classical solute transport equations are considered. Second, MT3DMS results are compared with simulations by the established finite element code FEFLOW and the variable density code SEAWAT. The computed results are compared based on residual errors using the method of efficiencies. All results are obtained from observation points located in a straight line starting at the source and extending to the eastwards (x-axys). The overall agreements of MT3DMS with the analytical solutions for the three scenarios are satisfactory. Only slight differences are observed close to the source. This is mostly due to the impossibility to represent in a numerical model the boundary conditions of the analytical solutions (infinitesimal line source). Concerning the second verification approach, the overall agreement of MT3DMS and SEAWAT is very good. With respect to FEFLOW results, moderated to very

  20. Dynamical transition of heat transport in a physical gel near the sol-gel transition

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei

    2015-12-01

    We experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective. Subsequently, during later stages, we observe that the transport dynamics are much more complex than conventional thermal convections. At the sample’s surface we observe the formation of stagnant domains, which lack fluid flow. Their formation is not due to the effects of local cooling. We determine that it is the dynamics of these stagnant domains that induce convective-conductive-convective transitions.

  1. Numerical simulation of the transport phenomena due to sudden heating in porous media

    SciTech Connect

    Lei, S.Y.; Zheng, G.Y.; Wang, B.X.; Yang, R.G.; Xia, C.M.

    1997-07-01

    Such process as wet porous media suddenly heated by hot fluids frequently occurs in nature and in industrial applications. The three-variable simulation model was developed to predict violent transport phenomena due to sudden heating in porous media. Two sets of independent variables were applied to different regions in porous media in the simulation. For the wet zone, temperature, wet saturation and air pressure were used as the independent variables. For the dry zone, the independent variables were temperature, vapor pressure and air pressure. The model simulated two complicated transport processes in wet unsaturated porous media which is suddenly heated by melting metal or boiling water. The effect of the gas pressure is also investigated on the overall transport phenomena.

  2. Experimental investigations of heat transport dynamics in a 1D porous medium column

    NASA Astrophysics Data System (ADS)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta M.

    2016-04-01

    A laboratory physical model has been set up to analyse the forced convective flow and the related heat transport dynamics through a 1d porous medium column. In particular, the experiments regard the observation of thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouple positioned uniformly along a thermally isolated column of porous medium. The experiment has been conducted for different flow rates in order to investigate the critical issues regarding heat transport phenomena such as the influence of non-linear flow regime, the relationship between the thermal dispersion with the flow velocity and the validity of the local thermal equilibrium assumption between the fluid and solid phase. The results emphasize the magnitude of the errors of the commonly used assumptions in the numerical modelling of heat transport.

  3. Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon

    NASA Astrophysics Data System (ADS)

    Resplandy, L.; Keeling, R. F.; Stephens, B. B.; Bent, J. D.; Jacobson, A.; Rödenbeck, C.; Khatiwala, S.

    2016-02-01

    Despite its importance to the climate system, the ocean meridional heat transport is still poorly quantified. We identify a strong link between the northern hemisphere deficit in atmospheric potential oxygen (APO = O_2 + 1.1 × CO_2 ) and the asymmetry in meridional heat transport between northern and southern hemispheres. The recent aircraft observations from the HIPPO campaign reveal a northern APO deficit in the tropospheric column of - 10.4 ± 1.0 per meg, double the value at the surface and more representative of large-scale air-sea fluxes. The global northward ocean heat transport asymmetry necessary to explain the observed APO deficit is about 0.7-1.1 PW, which corresponds to the upper range of estimates from hydrographic sections and atmospheric reanalyses.

  4. Dynamical transition of heat transport in a physical gel near the sol-gel transition

    PubMed Central

    Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei

    2015-01-01

    We experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective. Subsequently, during later stages, we observe that the transport dynamics are much more complex than conventional thermal convections. At the sample’s surface we observe the formation of stagnant domains, which lack fluid flow. Their formation is not due to the effects of local cooling. We determine that it is the dynamics of these stagnant domains that induce convective-conductive-convective transitions. PMID:26690696

  5. Unified model of tectonics and heat transport in a frigid Enceladus.

    PubMed

    Gioia, Gustavo; Chakraborty, Pinaki; Marshak, Stephen; Kieffer, Susan W

    2007-08-21

    Recent data from the Cassini spacecraft have revealed that Enceladus, the 500-km-diameter moon of Saturn, has a southern hemisphere with a distinct arrangement of tectonic features, intense heat flux, and geyser-like plumes. How did the tectonic features form? How is the heat transported from depth? To address these questions, we formulate a simple model that couples the mechanics and thermodynamics of Enceladus and gives a unified explanation of the salient tectonic features, the plumes, and the transport of heat from a source at a depth of tens of kilometers to the surface. Our findings imply that tiny, icy moons can develop complex surficial geomorphologies, high heat fluxes, and geyser-like activity even if they do not have hot, liquid, and/or convecting interiors.

  6. Unified model of tectonics and heat transport in a frigid Enceladus.

    PubMed

    Gioia, Gustavo; Chakraborty, Pinaki; Marshak, Stephen; Kieffer, Susan W

    2007-08-21

    Recent data from the Cassini spacecraft have revealed that Enceladus, the 500-km-diameter moon of Saturn, has a southern hemisphere with a distinct arrangement of tectonic features, intense heat flux, and geyser-like plumes. How did the tectonic features form? How is the heat transported from depth? To address these questions, we formulate a simple model that couples the mechanics and thermodynamics of Enceladus and gives a unified explanation of the salient tectonic features, the plumes, and the transport of heat from a source at a depth of tens of kilometers to the surface. Our findings imply that tiny, icy moons can develop complex surficial geomorphologies, high heat fluxes, and geyser-like activity even if they do not have hot, liquid, and/or convecting interiors. PMID:17699628

  7. Toward enhanced subsurface intervention methods using chaotic advection

    NASA Astrophysics Data System (ADS)

    Trefry, Michael G.; Lester, Daniel R.; Metcalfe, Guy; Ord, Alison; Regenauer-Lieb, Klaus

    2012-01-01

    Many intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media. These scalars can be targeted by pump-and-treat methods or by amendment technologies. Application examples include in-situ leaching for metals, recovery of dissolved contaminant plumes, or utilizing heat energy in geothermal reservoirs. While conventional pumping methods work reasonably well, costs associated with maintaining pumping schedules are high and improvements in efficiency would be welcome. In this paper we discuss how transient switching of the pressure at different wells can intimately control subsurface flow, generating a range of "programmed" flows with various beneficial characteristics. Some programs produce chaotic flows which accelerate mixing, while others create encapsulating flows which can isolate fluid zones for lengthy periods. In a simplified model of an aquifer subject to balanced pumping, chaotic flow topologies have been predicted theoretically and verified experimentally using Hele-Shaw cells. Here, a survey of the key characteristics of chaotic advection is presented. Mathematical methods are used to show how these characteristics may translate into practical situations involving regional flows and heterogeneity. The results are robust to perturbations, and withstand significant aquifer heterogeneity. It is proposed that chaotic advection may form the basis of new efficient technologies for groundwater interventions.

  8. Toward enhanced subsurface intervention methods using chaotic advection.

    PubMed

    Trefry, Michael G; Lester, Daniel R; Metcalfe, Guy; Ord, Alison; Regenauer-Lieb, Klaus

    2012-01-01

    Many intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media. These scalars can be targeted by pump-and-treat methods or by amendment technologies. Application examples include in-situ leaching for metals, recovery of dissolved contaminant plumes, or utilizing heat energy in geothermal reservoirs. While conventional pumping methods work reasonably well, costs associated with maintaining pumping schedules are high and improvements in efficiency would be welcome. In this paper we discuss how transient switching of the pressure at different wells can intimately control subsurface flow, generating a range of "programmed" flows with various beneficial characteristics. Some programs produce chaotic flows which accelerate mixing, while others create encapsulating flows which can isolate fluid zones for lengthy periods. In a simplified model of an aquifer subject to balanced pumping, chaotic flow topologies have been predicted theoretically and verified experimentally using Hele-Shaw cells. Here, a survey of the key characteristics of chaotic advection is presented. Mathematical methods are used to show how these characteristics may translate into practical situations involving regional flows and heterogeneity. The results are robust to perturbations, and withstand significant aquifer heterogeneity. It is proposed that chaotic advection may form the basis of new efficient technologies for groundwater interventions.

  9. Toward enhanced subsurface intervention methods using chaotic advection.

    PubMed

    Trefry, Michael G; Lester, Daniel R; Metcalfe, Guy; Ord, Alison; Regenauer-Lieb, Klaus

    2012-01-01

    Many intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media. These scalars can be targeted by pump-and-treat methods or by amendment technologies. Application examples include in-situ leaching for metals, recovery of dissolved contaminant plumes, or utilizing heat energy in geothermal reservoirs. While conventional pumping methods work reasonably well, costs associated with maintaining pumping schedules are high and improvements in efficiency would be welcome. In this paper we discuss how transient switching of the pressure at different wells can intimately control subsurface flow, generating a range of "programmed" flows with various beneficial characteristics. Some programs produce chaotic flows which accelerate mixing, while others create encapsulating flows which can isolate fluid zones for lengthy periods. In a simplified model of an aquifer subject to balanced pumping, chaotic flow topologies have been predicted theoretically and verified experimentally using Hele-Shaw cells. Here, a survey of the key characteristics of chaotic advection is presented. Mathematical methods are used to show how these characteristics may translate into practical situations involving regional flows and heterogeneity. The results are robust to perturbations, and withstand significant aquifer heterogeneity. It is proposed that chaotic advection may form the basis of new efficient technologies for groundwater interventions. PMID:21600670

  10. Evaluating MT3DMS for heat transport simulation of closed geothermal systems.

    PubMed

    Hecht-Méndez, Jozsef; Molina-Giraldo, Nelson; Blum, Philipp; Bayer, Peter

    2010-01-01

    Owing to the mathematical similarities between heat and mass transport, the multi-species transport model MT3DMS should be able to simulate heat transport if the effects of buoyancy and changes in viscosity are small. Although in several studies solute models have been successfully applied to simulate heat transport, these studies failed to provide any rigorous test of this approach. In the current study, we carefully evaluate simulations of a single borehole ground source heat pump (GSHP) system in three scenarios: a pure conduction situation, an intermediate case, and a convection-dominated case. Two evaluation approaches are employed: first, MT3DMS heat transport results are compared with analytical solutions. Second, simulations by MT3DMS, which is finite difference, are compared with those by the finite element code FEFLOW and the finite difference code SEAWAT. Both FEFLOW and SEAWAT are designed to simulate heat flow. For each comparison, the computed results are examined based on residual errors. MT3DMS and the analytical solutions compare satisfactorily. MT3DMS and SEAWAT results show very good agreement for all cases. MT3DMS and FEFLOW two-dimensional (2D) and three-dimensional (3D) results show good to very good agreement, except that in 3D there is somewhat deteriorated agreement close to the heat source where the difference in numerical methods is thought to influence the solution. The results suggest that MT3DMS can be successfully applied to simulate GSHP systems, and likely other systems with similar temperature ranges and gradients in saturated porous media. PMID:20132325

  11. Momentum and heat transport scalings in laminar vertical convection.

    PubMed

    Shishkina, Olga

    2016-05-01

    We derive the dependence of the Reynolds number Re and the Nusselt number Nu on the Rayleigh number Ra and the Prandtl number Pr in laminar vertical convection (VC), where a fluid is confined between two differently heated isothermal vertical walls. The boundary layer equations in laminar VC yield two limiting scaling regimes: Nu∼Pr^{1/4}Ra^{1/4}, Re∼Pr^{-1/2}Ra^{1/2} for Pr≪1 and Nu∼Pr^{0}Ra^{1/4}, Re∼Pr^{-1}Ra^{1/2} for Pr≫1. These theoretical results are in excellent agreement with direct numerical simulations for Ra from 10^{5} to 10^{10} and Pr from 10^{-2} to 30. The transition between the regimes takes place for Pr around 10^{-1}. PMID:27300823

  12. Heat transport in laminar flow of erythrocyte suspensions.

    PubMed

    Ahuja, A S

    1975-07-01

    Measurements of thermal conductivity were made in laminar flow of dog and turkey erythrocyte suspensions in a stainless stell tube of about 1 mm ID. These measurements were independent of the shear rate, showing that the red cell motion relative to plasma in flowing blood had no effect on the heat transfer. Measurements of thermal conductivity were further made in suspensions of polystyrene spheres of 100 mum and were found to be dependent upon the shear rate. The Graetz solution corresponding to uniform wall temperature was used for determining the value of thermal conductivity in an apparatus calibrated with tap water. The overall accuracy of the results is within 10%. A model based on the particle rotation with the entrained fluid is proposed. It is pointed out that the diffusion of platelets, red cells, and possibly plasma proteins (such as fibrinogen) will be augmented if they happen to be in the hydrodynamic field of rotating erythrocytes. PMID:1150598

  13. Momentum and heat transport scalings in laminar vertical convection

    NASA Astrophysics Data System (ADS)

    Shishkina, Olga

    2016-05-01

    We derive the dependence of the Reynolds number Re and the Nusselt number Nu on the Rayleigh number Ra and the Prandtl number Pr in laminar vertical convection (VC), where a fluid is confined between two differently heated isothermal vertical walls. The boundary layer equations in laminar VC yield two limiting scaling regimes: Nu˜Pr1/4Ra1/4 , Re˜Pr-1/2Ra1/2 for Pr≪1 and Nu˜Pr0Ra1/4 , Re˜Pr-1Ra1/2 for Pr≫1 . These theoretical results are in excellent agreement with direct numerical simulations for Ra from 105 to 1010 and Pr from 10-2 to 30. The transition between the regimes takes place for Pr around 10-1.

  14. Ballistic heat transport in laser generated nano-bubbles.

    PubMed

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. PMID:27461058

  15. Heat-driven spin transport in a ferromagnetic metal

    SciTech Connect

    Xu, Yadong; Yang, Bowen; Tang, Chi; Jiang, Zilong; Shi, Jing; Schneider, Michael; Whig, Renu

    2014-12-15

    As a non-magnetic heavy metal is attached to a ferromagnet, a vertically flowing heat-driven spin current is converted to a transverse electric voltage, which is known as the longitudinal spin Seebeck effect (SSE). If the ferromagnet is a metal, this voltage is also accompanied by voltages from two other sources, i.e., the anomalous Nernst effect in both the ferromagnet and the proximity-induced ferromagnetic boundary layer. By properly identifying and carefully separating those different effects, we find that in this pure spin current circuit the additional spin current drawn by the heavy metal generates another significant voltage by the ferromagnetic metal itself which should be present in all relevant experiments.

  16. Ballistic heat transport in laser generated nano-bubbles.

    PubMed

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.

  17. Particle transport and heat loads in NIO1.

    PubMed

    Fonnesu, N; Cavenago, M; Serianni, G; Veltri, P

    2016-02-01

    NIO1 is a compact radio frequency ion source designed to generate a 60 kV-135 mA hydrogen negative ion beam and it aims at continuous operation, which implies a detailed thermo-mechanical analysis of the beam-facing components, in particular, the accelerator grids. A 3D analysis of the entire NIO1 beam has been performed for the first time with a fully 3D version of EAMCC, a relativistic particle tracking code for the calculation of the grid power deposition induced by particle impacts. According to the results presented in this paper, secondary and co-extracted electrons cause a non-negligible heat load on the grids, where different high-power density regions, within reasonable sustainable standard limits, are calculated.

  18. Heat transport in laminar flow of erythrocyte suspensions.

    PubMed

    Ahuja, A S

    1975-07-01

    Measurements of thermal conductivity were made in laminar flow of dog and turkey erythrocyte suspensions in a stainless stell tube of about 1 mm ID. These measurements were independent of the shear rate, showing that the red cell motion relative to plasma in flowing blood had no effect on the heat transfer. Measurements of thermal conductivity were further made in suspensions of polystyrene spheres of 100 mum and were found to be dependent upon the shear rate. The Graetz solution corresponding to uniform wall temperature was used for determining the value of thermal conductivity in an apparatus calibrated with tap water. The overall accuracy of the results is within 10%. A model based on the particle rotation with the entrained fluid is proposed. It is pointed out that the diffusion of platelets, red cells, and possibly plasma proteins (such as fibrinogen) will be augmented if they happen to be in the hydrodynamic field of rotating erythrocytes.

  19. Particle transport and heat loads in NIO1.

    PubMed

    Fonnesu, N; Cavenago, M; Serianni, G; Veltri, P

    2016-02-01

    NIO1 is a compact radio frequency ion source designed to generate a 60 kV-135 mA hydrogen negative ion beam and it aims at continuous operation, which implies a detailed thermo-mechanical analysis of the beam-facing components, in particular, the accelerator grids. A 3D analysis of the entire NIO1 beam has been performed for the first time with a fully 3D version of EAMCC, a relativistic particle tracking code for the calculation of the grid power deposition induced by particle impacts. According to the results presented in this paper, secondary and co-extracted electrons cause a non-negligible heat load on the grids, where different high-power density regions, within reasonable sustainable standard limits, are calculated. PMID:26932077

  20. A predictive transport modeling code for ICRF-heated tokamaks

    SciTech Connect

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.; Attenberger, S.; Tolliver, J.; Hively, L.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3. Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.

  1. Ballistic heat transport in laser generated nano-bubbles

    NASA Astrophysics Data System (ADS)

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02144A

  2. The impact of fault zones on the 3D coupled fluid and heat transport for the area of Brandenburg (NE German Basin)

    NASA Astrophysics Data System (ADS)

    Yvonne, Cherubini; Mauro, Cacace; Scheck-Wenderoth, Magdalena

    2013-04-01

    Faults can provide permeable pathways for fluids at a variety of scales, from great depth in the crust to flow through fractured aquifers, geothermal fields, and hydrocarbon reservoirs (Barton et al. 1995). In terms of geothermal energy exploration, it is essential to understand the role of faults and their impact on the thermal field and fluid system. 3D numerical simulations provide a useful tool for investigating the active physical processes in the subsurface. To assess the influence of major fault zones on the thermal field and fluid system, 3D coupled fluid and heat transport simulations are carried out. The study is based on a recently published structural model of the Brandenburg area, which is located in the south-eastern part of the Northeast German Basin (NEGB) (Noack et al. 2010). Two major fault zones of the Elbe Fault System (Gardelegen and Lausitz Escarpments) vertically offset the pre-Permian basement against the Permian to Cenozoic basin fill at the southern margin by several km (Scheck et al. 2002). Within the numerical models, these two major fault zones are represented as equivalent porous media and vertical discrete elements. The coupled system of equations describing fluid flow and heat transport in saturated porous media are numerically solved by the Finite Element software FEFLOW® (Diersch, 2002). Different possible geological scenarios are modelled and compared to a simulation in which no faults are considered. In one scenario the fault zones are set as impermeable. In this case, the thermal field is similar to the no fault model. Fluid flow is redirected because the fault zones act as hydraulic barriers that prevent a lateral fluid advection into the fault zones. By contrast, modelled permeable fault zones induce a pronounced thermal signature with distinctly cooler temperatures than in the no fault model. Fluid motion within the fault is initially triggered by advection due to hydraulic head gradients, but may be even enhanced by

  3. Solar-energy heats a transportation test center--Pueblo, Colorado

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  4. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  5. Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone

    NASA Astrophysics Data System (ADS)

    Jiang, Jianmei; Zhao, Lin; Zhai, Zhe

    2016-09-01

    The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continuously measures temperature and water content of soil profiles to simulate heat transport based on the Philip and de Vries (PDV) model. Three experiments were conducted to measure soil properties at depths of 5 cm, 10 cm, 20 cm, and 30 cm when groundwater tables reached 10 cm, 30 cm, and 60 cm (Experiments I, II, and III). Results show that both the soil temperature near shallow groundwater and the soil water content were effectively simulated by the PDV model. The root mean square errors of the temperature at depths of 5 cm, 10 cm, and 20 cm were 1.018°C, 0.909°C, and 0.255°C, respectively. The total heat flux generated the convergent and divergent planes in space-time fields with valley values of-161.5W•m-2 at 7:30 and-234.6W•m-2 at 11:10 in Experiments II and III, respectively. The diurnal heat transport of the saturated soil occurred in five stages, while that of saturated-unsaturated and unsaturated soil profiles occurred in four stages because high moisture content led to high thermal conductivity, which hastened the heat transport.

  6. Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous aquifer

    NASA Astrophysics Data System (ADS)

    Seibert, Simone; Prommer, Henning; Siade, Adam; Harris, Brett; Trefry, Mike; Martin, Michael

    2014-12-01

    Changes in subsurface temperature distribution resulting from the injection of fluids into aquifers may impact physiochemical and microbial processes as well as basin resource management strategies. We have completed a 2 year field trial in a hydrogeologically and geochemically heterogeneous aquifer below Perth, Western Australia in which highly treated wastewater was injected for large-scale groundwater replenishment. During the trial, chloride and temperature data were collected from conventional monitoring wells and by time-lapse temperature logging. We used a joint inversion of these solute tracer and temperature data to parameterize a numerical flow and multispecies transport model and to analyze the solute and heat propagation characteristics that prevailed during the trial. The simulation results illustrate that while solute transport is largely confined to the most permeable lithological units, heat transport was also affected by heat exchange with lithological units that have a much lower hydraulic conductivity. Heat transfer by heat conduction was found to significantly influence the complex temporal and spatial temperature distribution, especially with growing radial distance and in aquifer sequences with a heterogeneous hydraulic conductivity distribution. We attempted to estimate spatially varying thermal transport parameters during the data inversion to illustrate the anticipated correlations of these parameters with lithological heterogeneities, but estimates could not be uniquely determined on the basis of the collected data.

  7. Evidences for and the Models of Fast Nonlocal Transport of Heat in Magnetic Fusion Devices

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Cherepanov, K. V.

    2009-07-01

    The paper gives a short survey of (i) recent evidences for fast nonlocal transport of the heat in magnetically confined plasmas (above all, the "cold/heat pulse" experiments), (ii) interpretations of such phenomena in terms of nonlocal transport formalisms, based on the dominance of long mean-free-path energy carriers, including the interpretations of "cold pulse" experiments, and gives (iii) quantitative evidence for the domination of nonlocality in the spatial profile of electron cyclotron net radiated power in fusion reactor-grade tokamak (strong toroidal magnetic field, BT>5 T, highly reflecting walls, Rwall>0.5, and hot electron plasma, >10 keV).

  8. On the optimum fields and bounds for heat and mass transport in two turbulent flows

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay

    2011-12-01

    The optimum theory of turbulence is one of the few tools for obtaining analytical results for transport of heat, mass or momentum by turbulent flows. This is achieved by asymptotic theory which is valid for large values of the characteristic numbers of the investigated fluid system. For small and intermediate values of the Reynolds, Rayleigh or Taylor numbers we have to solve numerically the Euler-Lagrange equations of the corresponding variational problems. Below we discuss numerical results from the application of the Howard-Busse method of the optimum theory of turbulence to two problems: convective heat transport in non-rotating and rotating fluid layer and mass transport in pipe flow. We obtain profiles of the optimum fields and discuss the evolution of the thickness of the boundary layers as well as present our first results about the lower bound on the mass transport in a pipe flow.

  9. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  10. How Hydrate Saturation Anomalies are Diffusively Constructed and Advectively Smoothed

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.; Irizarry, J. T.; VanderBeek, B. P.; Handwerger, A. L.

    2015-12-01

    The physical processes that control the bulk characteristics of hydrate reservoirs are captured reasonably well by long-established model formulations that are rooted in laboratory-verified phase equilibrium parameterizations and field-based estimates of in situ conditions. More detailed assessments of hydrate distribution, especially involving the occurrence of high-saturation hydrate anomalies have been more difficult to obtain. Spatial variations in sediment properties are of central importance for modifying the phase behavior and promoting focussed fluid flow. However, quantitative predictions of hydrate anomaly development cannot be made rigorously without also addressing the changes in phase behavior and mechanical balances that accompany changes in hydrate saturation level. We demonstrate how pore-scale geometrical controls on hydrate phase stability can be parameterized for incorporation in simulations of hydrate anomaly development along dipping coarse-grained layers embedded in a more fine-grained background that is less amenable to fluid transport. Model simulations demonstrate how hydrate anomaly growth along coarse-layer boundaries is promoted by diffusive gas transport from the adjacent fine-grained matrix, while advective transport favors more distributed growth within the coarse-grained material and so effectively limits the difference between saturation peaks and background levels. Further analysis demonstrates how sediment contacts are unloaded once hydrate saturation reaches sufficient levels to form a load-bearing skeleton that can evolve to produce segregated nodules and lenses. Decomposition of such growth forms poses a significant geohazard that is expected to be particularly sensitive to perturbations induced by gas extraction. The figure illustrates the predicted evolution of hydrate saturation Sh in a coarse-grained dipping layer showing how prominent bounding hydrate anomalies (spikes) supplied by diffusive gas transport at early times

  11. Heat transport through lattices of quantum harmonic oscillators in arbitrary dimensions.

    PubMed

    Asadian, A; Manzano, D; Tiersch, M; Briegel, H J

    2013-01-01

    In d-dimensional lattices of coupled quantum harmonic oscillators, we analyze the heat current caused by two thermal baths of different temperatures, which are coupled to opposite ends of the lattice, with a focus on the validity of Fourier's law of heat conduction. We provide analytical solutions of the heat current through the quantum system in the nonequilibrium steady state using the rotating-wave approximation and bath interactions described by a master equation of Lindblad form. The influence of local dephasing in the transition of ballistic to diffusive transport is investigated.

  12. Atomistic long-term simulation of heat and mass transport

    NASA Astrophysics Data System (ADS)

    Venturini, G.; Wang, K.; Romero, I.; Ariza, M. P.; Ortiz, M.

    2014-12-01

    We formulate a theory of non-equilibrium statistical thermodynamics for ensembles of atoms or molecules. The theory is an application of Jaynes' maximum entropy principle, which allows the statistical treatment of systems away from equilibrium. In particular, neither temperature nor atomic fractions are required to be uniform but instead are allowed to take different values from particle to particle. In addition, following the Coleman-Noll method of continuum thermodynamics we derive a dissipation inequality expressed in terms of discrete thermodynamic fluxes and forces. This discrete dissipation inequality effectively sets the structure for discrete kinetic potentials that couple the microscopic field rates to the corresponding driving forces, thus resulting in a closed set of equations governing the evolution of the system. We complement the general theory with a variational meanfield theory that provides a basis for the formulation of computationally tractable approximations. We present several validation cases, concerned with equilibrium properties of alloys, heat conduction in silicon nanowires and hydrogen desorption from palladium thin films, that demonstrate the range and scope of the method and assess its fidelity and predictiveness. These validation cases are characterized by the need or desirability to account for atomic-level properties while simultaneously entailing time scales much longer than those accessible to direct molecular dynamics. The ability of simple meanfield models and discrete kinetic laws to reproduce equilibrium properties and long-term behavior of complex systems is remarkable.

  13. Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.

    2015-09-01

    The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intense of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21st century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport has made it difficult to establish whether there are trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv = 106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW = 1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall increase over the 2 decades of observation was 9 ± 8 % for volume transport and 18 ± 9 % for heat transport (95 % confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the

  14. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  15. Anharmonic effects and heat transport in complex systems (Invited)

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, R. M.

    2013-12-01

    We have recently developed a hybrid strategy combining first principles molecular dynamics (MD) with vibrational normal mode analysis to obtain anharmonic frequency shifts and lifetimes of phonon quasi-particles. This approach is effective irrespective of crystal structure complexity and has been used to investigate anharmonicity in MgSiO3-perpovskite (MgPv) and cubic CaSiO3-perovskite (CaPv). The first is weakly anharmonic but has well identified temperature induced anharmonic Raman frequency shifts, while the second is strongly anharmonic. This method displays fine predictive capability by reproducing subtle measured effects in MgPv and proves to be robust and capable of handling soft phonon anharmonicity in CaPv. This strategy also facilitates calculation of anharmonic phonon dispersions throughout the Brillouin zone. Combination of analytical treatments of anharmonic free energy based on the phonon gas model (PGM) with thoroughly sampled anharmonic dispersions should improve considerably the accuracy of first-principles free energy calculations in crystalline solids at very high temperatures. This method also enables calculations of thermal conductivity, κ, using Boltzman transport equation with lifetimes calculated by MD. This is essential to predict thermodynamics properties and κ by first principles at very high temperatures. Research in collaboration with Tao Sun and Dong-Bo Zhang and supported by NSF award EAR-1019853.

  16. Tomography-based characterization of ice-air interface dynamics of temperature gradient snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Andreoli, Christian; Schneebeli, Martin; Steinfeld, Aldo

    2015-12-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. A functional understanding of this process is essential for many disciplines, from modeling the effects of snow on regional and global climate to assessing avalanche formation. Time-lapse X-ray microtomography was applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Experiments specifically analyzed sublimation and deposition of water vapor on the ice structure. In addition, an analysis of the ice-air interface dynamics was carried out using a macroscopic equivalent model of heat and water vapor transport through a snow layer. The results indicate that sublimation of the ice matrix dominated for flow rates < 10-6 m3 s-1 while during increased mass flow rates the water vapor deposition supplied by the advective flow counteracted sublimation. A flow rate dependence of water vapor deposition at the ice interface was observed, asymptotically approaching an average estimated maximum deposition rate on the whole sample of 1.05 · 10-4 kg m-3 s-1. The growth of microsized whisker-like crystals on larger ice crystals was detected on microscope photographs, leading to an increase of the specific surface area and thus suggest a change of the physical and optical properties of the snow. The estimated values of the curvature effect of the ice crystals and the interface kinetic coefficient are in good agreement with previously published values.

  17. Competing orders in LSCO probed by heat transport

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Hawthorn, D. G.; Taillefer, Louis; Yamada, K.

    2006-03-01

    We elucidate the nature of the thermal metal-to-insulator transition in La2-xSrxCuO4 (LSCO) [1] through measurements of the thermal conductivity κ performed very close to the transition, down to temperatures as low as 50 mK and in magnetic fields H up to 17 T. For a single crystal with x = 0.15, a monotonic increase in the residual linear term κ0/T is observed up to 17 T, as expected for a d-wave superconductor. For a crystal with x = 0.144, however, we observe an initial increase in κ0/T at low field, followed by a decrease when H exceeds a critical field H^*. This result is consistent with recent neutron scattering measurements on a similar sample [2], which show that static spin-density-wave (SDW) order is not present in zero field, but sets in at a critical magnetic field H^*, and then co-exists/competes with superconductivity (SC) for H > H^*. Taken together, these two measurements reveal that the SC phase gives way to a phase which is both magnetic and insulating, whether by increasing magnetic field or by decreasing doping. Using low-energy quasiparticle transport, we map out the T = 0 field-doping (H-x) phase diagram of LSCO. [1] D.G. Hawthorn et al., Phys. Rev. Lett. 90, 197004 (2003); X.F. Sun et al., Phys. Rev. Lett. 90, 117004 (2003). [2] B. Khaykovich et al., Phys. Rev. B 71, 220508(R) (2005).

  18. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    USGS Publications Warehouse

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  19. Electron heat transport in improved confinement discharges in DIII-D

    SciTech Connect

    Stallard, B.W.; Greenfield, C.M.; Staebler, G.M.

    1999-01-01

    In DIII-D tokamak plasmas with an internal transport barrier (ITB), the comparison of gyrokinetic linear stability (GKS) predictions with experiments in both low and strong negative magnetic shear plasmas provide improved understanding for electron thermal transport within the plasma. Within a limited region just inside the ITB, the electron temperature gradient (ETG) modes appear to control the electron temperature gradient and, consequently, the electron thermal transport. The increase in the electron temperature gradient with more strongly negative magnetic shear is consistent with the increase in the ETG mode marginal gradient. Closer to the magnetic axis the T{sub e} profile flattens and the ETG modes are predicted to be stable. With additional core electron heating, FIR scattering measurements near the axis show the presence of high k fluctuations (12 cm{sup {minus}1}), rotating in the electron diamagnetic drift direction. This turbulence could impact electron transport and possibly also ion transport. Thermal diffusivities for electrons, and to a lesser degree ions, increase. The ETG mode can exist at this wavenumber, but it is computed to be robustly stable near the axis. Consequently, in the plasmas the authors have examined, calculations of drift wave linear stability do not explain the observed transport near the axis in plasmas with or without additional electron heating, and there are probably other processes controlling transport in this region.

  20. Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the pliocene

    USGS Publications Warehouse

    Dowsett, H.J.; Cronin, T. M.; Poore, R.Z.; Thompson, R.S.; Whatley, R.C.; Wood, A.M.

    1992-01-01

    The Middle Pliocene (???3 million years ago) has been identified as the last time the Earth was significantly warmer than it was during the Last Interglacial and Holocene. A quantitative micropaleontological paleotemperature transect from equator to high latitudes in the North Atlantic indicates that Middle Pliocene warmth involved increased meridional oceanic heat transport.

  1. Measurements of Combined Axial Mass and Heat Transport in He II.

    ERIC Educational Resources Information Center

    Johnson, Warren W.; Jones, Michael C.

    An experiment was performed that allowed measurements of both axial mass and heat transport of He-II (the superfluid phase of helium 4) in a long tube. The apparatus allowed the pressure difference and the temperature difference across the flow tube to each be independently adjusted, and the resulting steady-state values of net fluid velocity and…

  2. Development of enhanced heat transfer/transport/storage slurries for thermal-system improvement

    SciTech Connect

    Kasza, K.E.; Chen, M.M.

    1983-01-01

    This paper presents a formulation of a new concept for improving thermal-system performance by utilizing the combined mechanisms of enhanced heat transfer, transport, and thermal-energy storage associated with a phase-change slurry as the working fluid.

  3. 3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...

  4. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2013-09-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  5. Performance and heat transfer characteristics of the laser-heated rocket - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.; Larson, V. R.

    1976-01-01

    The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.

  6. Analysis of simulation methodology for calculation of the heat of transport for vacancy thermodiffusion

    NASA Astrophysics Data System (ADS)

    Tucker, William C.; Schelling, Patrick K.

    2014-07-01

    Computation of the heat of transport Q a * in monatomic crystalline solids is investigated using the methodology first developed by Gillan [J. Phys. C: Solid State Phys. 11, 4469 (1978)] and further developed by Grout and coworkers [Philos. Mag. Lett. 74, 217 (1996)], referred to as the Grout-Gillan method. In the case of pair potentials, the hopping of a vacancy results in a heat wave that persists for up to 10 ps, consistent with previous studies. This leads to generally positive values for Q a * which can be quite large and are strongly dependent on the specific details of the pair potential. By contrast, when the interactions are described using the embedded atom model, there is no evidence of a heat wave, and Q a * is found to be negative. This demonstrates that the dynamics of vacancy hopping depends strongly on the details of the empirical potential. However, the results obtained here are in strong disagreement with experiment. Arguments are presented which demonstrate that there is a fundamental error made in the Grout-Gillan method due to the fact that the ensemble of states only includes successful atom hops and hence does not represent an equilibrium ensemble. This places the interpretation of the quantity computed in the Grout-Gillan method as the heat of transport in doubt. It is demonstrated that trajectories which do not yield hopping events are nevertheless relevant to computation of the heat of transport Q a *.

  7. Phonon and magnon heat transport and drag effects

    NASA Astrophysics Data System (ADS)

    Heremans, Joseph P.

    2014-03-01

    Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable

  8. Heat transport in the quasi-single-helicity islands of EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Brunsell, P. R.; Drake, J.

    2009-03-01

    The heat transport inside the magnetic island generated in a quasi-single-helicity regime of a reversed-field pinch device is studied by using a numerical code that simulates the electron temperature and the soft x-ray emissivity. The heat diffusivity χe inside the island is determined by matching the simulated signals with the experimental ones. Inside the island, χe turns out to be from one to two orders of magnitude lower than the diffusivity in the surrounding plasma, where the magnetic field is stochastic. Furthermore, the heat transport properties inside the island are studied in correlation with the plasma current and with the amplitude of the magnetic fluctuations.

  9. [The design of heat dissipation of the field low temperature box for storage and transportation].

    PubMed

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design. PMID:23488142

  10. Gyrokinetic simulations of momentum transport and fluctuation spectra for ICRF-heated L-Mode plasmas

    NASA Astrophysics Data System (ADS)

    Sierchio, J. M.; White, A. E.; Howard, N. T.; Sung, C.; Ennever, P.; Porkolab, M.; Candy, J.

    2014-10-01

    We examine ICRF-heated L-mode plasmas in Alcator C-Mod, with differing momentum transport (hollow vs. peaked radial profiles of intrinsic toroidal rotation) but similar heat and particle transport. Nonlinear gyrokinetic simulations of heat and particle transport with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] have previously been compared with these experiments [White et al., Phys. Plasmas 20, 056106 (2013); Howard et al. PPCF submitted (2014)] as part of an effort to validate the gyrokinetic model for core turbulent transport in C-Mod plasmas. To further test the model for these plasmas, predicted core turbulence characteristics such as fluctuation spectra will be compared with experiment. Using synthetic diagnostics for the CECE, reflectometry, and PCI systems at C-Mod, synthetic spectra and, when applicable, fluctuation amplitudes, are generated. We compare these generated results with fluctuation measurements from the experiment. We also report the momentum transport results from simulations of these plasmas and compare them to experiment. Supported by USDoE award DE-FC02-99ER54512.

  11. Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles

    NASA Astrophysics Data System (ADS)

    Pusztai, István; Wilkie, George J.; Kazakov, Yevgen O.; Fülöp, Tünde

    2016-11-01

    We study the turbulent transport of an ion cyclotron resonance heated (ICRH), MeV range minority ion species in tokamak plasmas. Such highly energetic minorities, which can be produced in the three ion minority heating scheme (Kazakov et al (2015) Nucl. Fusion 55 032001), have been proposed to be used to experimentally study the confinement properties of fast ions without the generation of fusion alphas. We compare the turbulent transport properties of ICRH ions with that of fusion born alpha particles. Our theoretical predictions indicate that care must be taken when conclusions are drawn from experimental results: while the effect of turbulence on these particles is similar in terms of transport coefficients, differences in their distribution functions—ultimately their generation processes—make the resulting turbulent fluxes different.

  12. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  13. Estimating uncertainty caused by ocean heat transport to the North Sea: experiments downscaling EC-Earth

    NASA Astrophysics Data System (ADS)

    Tian, T.; Su, J.; Boberg, F.; Yang, S.; Schmith, T.

    2016-01-01

    The heat content of the North Sea is determined by the surface heat flux and the ocean heat transport into the region. The uncertainty in the projected warming in the North Sea caused by ocean heat transport has rarely been quantified. The difference in the estimates using regional ocean models is known to arise from the poorly prescribed temperature boundary forcing, either provided by global models at coarse grid resolutions, or from anomaly correction (using difference of the simulation from observed climatology) without interannual variation. In this study, two marine downscaling experiments were performed using boundary temperature forcings prepared with the two above mentioned strategies: one interpolated from a global model simulation (MI: model incl. interannual variation), and the other from observed climatology with warming trends in the future ocean derived from the global model simulation (OT: observed climatol. plus trend). The comparative experiments allowed us to estimate the uncertainty caused by ocean heat transport to the North Sea. The global climate model EC-Earth CMIP5 simulations of historical and future scenarios were used to provide lateral boundary forcing for regional models. The OT boundary was found to affect deep water temperatures (below 50 m) in the North Sea because of reduced interannual variability. The difference of mean temperature changes by 2100 (MI - OT) was up to 0.5 °C near the bottom across 58°N. While the deep water temperature in the North Sea did not directly link to the large-scale atmospheric circulation, the Norwegian outflow was highly correlated with the NAO index and heat transport of the Atlantic inflow provided by EC-Earth. It was found that model uncertainty due to the choice of lateral boundary forcing could be significant in the interannual variation of thermal stratification in the northern North Sea in a long-term simulation.

  14. Generalized parallel heat transport equations in collisional to weakly collisional plasmas

    SciTech Connect

    Zawaideh, E.; Kim, N.S.; Najmabadi, F.

    1988-11-01

    A new set of two-fluid heat transport equations that is valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates, a set of moment equations describing plasma energy transport along the field lines of a space- and time-dependent magnetic field is derived. No restrictions on the anisotropy of the ion distribution function or collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation (e.g., Spitzer and Haerm or Braginskii), while in the weakly collisional limit, they describe a saturated heat flux (flux limited). Numerical examples comparing these equations with conventional heat transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the temperature gradient L/sub T/ approaches zero, there is no significant difference between the solutions of the new and conventional heat transport equations. As lambda/L/sub T/..-->..1, the conventional heat conduction equation contains a significantly larger error than (lambda/L/sub T/)/sup 2/. The error is found to be O(lambda/L)/sup 2/, where L is the smallest of the scale lengths of the gradient in the magnetic field, or the macroscopic plasma parameters (e.g., velocity scale length, temperature scale length, and density scale length). The accuracy of the flux-limited model depends significantly on the value of the flux limit parameter which, in general, is not known. The new set of equations shows that the flux-limited parameter is a function of the magnetic field and plasma parameter profiles.

  15. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect

    La Lone, B. M. Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-15

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  16. Thermal transport in shock wave-compressed solids using pulsed laser heating.

    PubMed

    La Lone, B M; Capelle, G; Stevens, G D; Turley, W D; Veeser, L R

    2014-07-01

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ~25 GPa and ~1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  17. Transition from IVR limited vibrational energy transport to bulk heat transport

    NASA Astrophysics Data System (ADS)

    Schade, Marco; Hamm, Peter

    2012-01-01

    In a previous paper [M. Schade, P. Hamm, Vibrational energy transport in the presence of intrasite vibrational energy redistribution, J. Chem. Phys. 131 (2009) 044511], it has been shown that on ultrashort length and time scales, the speed of vibrational energy transport along a molecular chain is limited by intrasite vibrational relaxation rather than the actual intersite propagation. However, since intrasite vibrational relaxation is length independent, the intersite propagation rate is expected to become rate-limiting at some length scale, where propagation approaches the bulk limit. In the present paper, we investigate the transition between both regimes. The response of different types of modes may be very different at early times, depending on how much they contribute directly to energy transport. Surprisingly though, when averaging the energy content over all vibrational modes of the various chain sites, the complexity of the intrasite vibrational relaxation process is completely hidden so that energy transport on the nanoscale can be described by an effective propagation rate, that equals the bulk value, even at short times.

  18. Topics in quantum transport of charge and heat in solid state systems

    NASA Astrophysics Data System (ADS)

    Choi, Yunjin

    In the thesis, we present a series of investigations for quantum transport of charge and heat in solid state systems. The first topic of the thesis focuses on the fundamental quantum problems which can be studied with electron transport along with the correlations of detectors to measure physical properties. We theoretically describe a generalized ``which-path'' measurement using a pair of coupled electronic Mach-Zehnder Interferometers. In the second topic of thesis, we investigate an operational approach to measure the tunneling time based on the Larmor clock. To handle the cases of indirect measurement from the first and second topics, we introduce the contextual values formalism. The form of the contextual values provides direct physical insight into the measurement being performed, providing information about the correlation strength between system and detector, the measurement inefficiency, the proper background removal, and the conditioned average value of the system operator. Additionally, the weak interaction limit of these conditioned averages produces weak values of the system operator and an additional detector dependent disturbance term for both cases. In our treatment of the third topic of the thesis, we propose a three terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window to allow electron transport. We find that this device delivers a large amount of power, nearly twice that produced by the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk

  19. Dense-gas dispersion advection-diffusion model

    SciTech Connect

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments.

  20. Distributed Parallel Particle Advection using Work Requesting

    SciTech Connect

    Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph

    2013-09-30

    Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.

  1. Large-eddy Advection in Evapotranspiration Estimates from an Array of Eddy Covariance Towers

    NASA Astrophysics Data System (ADS)

    Lin, X.; Evett, S. R.; Gowda, P. H.; Colaizzi, P. D.; Aiken, R.

    2014-12-01

    Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a sorghum in Bushland, Texas in 2014. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms were integrated from the depth of soil heat flux plate to the height of eddy covariance measurement. Therefore, a comparison between the eddy covariance system and large weighing lysimeter was conducted on hourly and daily basis. The results for the discrepancy between eddy covariance towers and the lysimeter will be discussed in terms of advection and storage contributions in time domain and frequency domain.

  2. High Order Semi-Lagrangian Advection Scheme

    NASA Astrophysics Data System (ADS)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  3. Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Brodeau, Laurent

    2014-06-01

    The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice

  4. Heat transport in confined strongly coupled two-dimensional dust clusters

    SciTech Connect

    Kudelis, Giedrius; Thomsen, Hauke; Bonitz, Michael

    2013-07-15

    Dusty plasmas are a model system for studying strong correlation. The dust grains’ size of a few micro-meters and their characteristic oscillation frequency of a few hertz allow for an investigation of many-particle effects on an “atomic” level. In this article, we model the heat transport through an axially confined 2D dust cluster from the center to the outside. The system behaves particularly interesting since heat is not only conducted within the dust component but also transferred to the neutral gas. Fitting the analytical solution to the radial temperature profiles obtained in molecular dynamics simulations allows to determine the heat conductivity k. The heat conductivity is found to be constant over a wide range of coupling strengths even including the phase transition from solid to liquid here, as it was also found in extended systems by Nosenko et al.[Phys. Rev. Lett. 100, 025003 (2008)].

  5. Numerical modeling of DNA-chip hybridization with chaotic advection

    PubMed Central

    Raynal, Florence; Beuf, Aurélien; Carrière, Philippe

    2013-01-01

    We present numerical simulations of DNA-chip hybridization, both in the “static” and “dynamical” cases. In the static case, transport of free targets is limited by molecular diffusion; in the dynamical case, an efficient mixing is achieved by chaotic advection, with a periodic protocol using pumps in a rectangular chamber. This protocol has been shown to achieve rapid and homogeneous mixing. We suppose in our model that all free targets are identical; the chip has different spots on which the probes are fixed, also all identical, and complementary to the targets. The reaction model is an infinite sink potential of width dh, i.e., a target is captured as soon as it comes close enough to a probe, at a distance lower than dh. Our results prove that mixing with chaotic advection enables much more rapid hybridization than the static case. We show and explain why the potential width dh does not play an important role in the final results, and we discuss the role of molecular diffusion. We also recover realistic reaction rates in the static case. PMID:24404027

  6. Backward fractional advection dispersion model for contaminant source prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Meerschaert, Mark M.; Neupauer, Roseanna M.

    2016-04-01

    The forward Fractional Advection Dispersion Equation (FADE) provides a useful model for non-Fickian transport in heterogeneous porous media. The space FADE captures the long leading tail, skewness, and fast spreading typically seen in concentration profiles from field data. This paper develops the corresponding backward FADE model, to identify source location and release time. The backward method is developed from the theory of inverse problems, and then explained from a stochastic point of view. The resultant backward FADE differs significantly from the traditional backward Advection Dispersion Equation (ADE) because the fractional derivative is not self-adjoint and the probability density function for backward locations is highly skewed. Finally, the method is validated using tracer data from a well-known field experiment, where the peak of the backward FADE curve predicts source release time, while the median or a range of percentiles can be used to determine the most likely source location for the observed plume. The backward ADE cannot reliably identify the source in this application, since the forward ADE does not provide an adequate fit to the concentration data.

  7. Perturbative electron heat transport experiments in a quasi-helically symmetric stellarator

    NASA Astrophysics Data System (ADS)

    Weir, G. M.; Likin, K. M.; Faber, B. J.; Talmadge, J. N.; Anderson, F. S. B.; Anderson, D. T.

    2013-10-01

    Results from perturbative heat transport experiments on the Helically Symmetric eXperiment (HSX) will be presented and compared to linear gyrokinetic predictions from the GENE code made in collaboration with the PPPL. A gyrotron capable of modulating 200 kW at frequencies up to 6 kHZ was installed to perform these experiments. The electron temperature response to 6% ECRH modulation is monitored with a 16 channel ECE system. The measured stiffness in the electron heat flux, 1 <=χeHP /χePB <= 4 , is higher than the gyrokinetic prediction for the quasi-helically symmetric configuration of HSX. The measured stiffness decreases and comes into better agreement with gyrokinetic results with increasing ECRH power per particle. This reduction of stiffness is accompanied by decreased broadband density fluctuations measured through reflectometry. These results will be compared to perturbative heat transport experiments in which the quasi-helical symmetry is intentionally degraded to test the effect of neoclassical transport on stiffness in the electron heat flux.

  8. Low-temperature heat transport of spin-gapped quantum magnets

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Zhao, ZhiYing; Liu, XuGuang; Sun, XueFeng

    2016-11-01

    This article reviews low-temperature heat transport studies of spin-gapped quantum magnets in the last few decades. Quantum magnets with small spins and low dimensionality exhibit a variety of novel phenomena. Among them, some systems are characteristic of having quantum-mechanism spin gap in their magnetic excitation spectra, including spin-Peierls systems, S=1 Haldane chains, S= 1/2 spin ladders, and spin dimmers. In some particular spin-gapped systems, the XY-type antiferromagnetic state induced by magnetic field that closes the spin gap can be described as a magnon Bose-Einstein condensation (BEC). Heat transport is effective in probing the magnetic excitations and magnetic phase transitions, and has been extensively studied for the spin-gapped systems. A large and ballistic spin thermal conductivity was observed in the two-leg Heisenberg S=1/2 ladder compounds. The characteristic of magnetic thermal transport of the Haldane chain systems is quite controversial on both the theoretical and experimental results. For the spin-Peierls system, the spin excitations can also act as heat carriers. In spin-dimer compounds, the magnetic excitations mainly play a role of scattering phonons. The magnetic excitations in the magnon BEC systems displayed dual roles, carrying heat or scattering phonons, in different materials.

  9. Carbon transport in a bimetallic sodium loop simulating the intermediate heat transport system of a liquid metal fast breeder reactor

    SciTech Connect

    Hampton, L.V.; Spalaris, C.N.; Roy, P.

    1980-04-01

    Carbon transport data from a bimetallic sodium loop simulating the intermediate heat transport system of a Liquid Metal Fast Breeder Reactor are discussed. The results of bulk carbon analyses after 15,000 hours' exposure indicate a pattern of carburization of Type 304 stainless steel foils which is independent of loop sodium temperature. A model based on carbon activity gradients accounting for this behavior is proposed. Data also indicate that carburization of Type 304 stainless steel is a diffusion-controlled process; however, decarburization of the ferritic 2 1/4 Cr-1Mo steel is not. It is proposed that the decarburization of the ferritic steel is controlled by the dissolution of carbides in the steel matrix. The differences in the sodium decarburization behavior of electroslag remelted and vacuum-arc remelted 2 1/4 Cr-1Mo steel are also highlighted.

  10. Effects of Pr on Optimal Heat Transport in Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Sondak, David; Budišić, Marko; Waleffe, Fabian; Smith, Leslie

    2015-11-01

    Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Bénard convection with no-slip horizontal walls for a variety of Prandtl numbers Pr and Rayleigh number up to Ra ~109 . The presence of two local maxima of Nu with different horizontal wavenumbers at the same Ra leads to the emergence of two different flow structures as candidates for optimizing the heat transport where the Nusselt number Nu is a non-dimensional measure of the vertical heat transport. For Pr <= 7 , optimal transport is achieved at the smaller maximal wavenumber whereas for Pr > 7 at high-enough Ra the optimal structure occurs at the larger maximal wavenumber. Three regions are observed in the optimal mean temperature profiles, T y : 1.) d T / dy < 0 in the boundary layers, 2.) d T / dy > 0 (Pr <= 7) or d T / dy < 0 (Pr > 7) in the central region, and 3.) d T / dy > 0 between the boundary layers and central region. We also search for a signature of these optimal structures in a fully-developed turbulent flow by employing modal decompositions such as the proper orthogonal decomposition and the Koopman mode decomposition. Partial support from NSF-DMS grant 1147523 is gratefully acknowledged.

  11. Gravity Wave and Turbulence Transport of Heat and Na in the Mesopause Region over the Andes

    NASA Astrophysics Data System (ADS)

    Guo, Yafang; Liu, Alan Z.

    2016-07-01

    The vertical heat and Na fluxes induced by gravity waves and turbulence are derived based on over 600 hours of observations from the Na wind/temperature lidar located at Andes lidar Observatory (ALO), Cerro Pachón, Chile. In the 85-100 km region, the annual mean vertical fluxes by gravity waves show downward heat transport with a maximum of 0.78K m/s at 90 km, and downward Na transport with a maximum of 210 m/s/cm3 at 94km. The maximum cooing rate reaches -24 K/d at 94km. The vertical fluxes have strong seasonal variations, with large differences in magnitudes and altitudes of maximum fluxes between winter and summer. The vertical fluxes due to turbulence eddies are also derived with a novel method that relates turbulence fluctuations of temperature and vertical wind with photon count fluctuations at very high resolution (25 m, 6 s). The results show that the vertical transports are comparable to those by gravity waves and they both play significant roles in the atmospheric thermal structure and constituent distribution. This direct measure of turbulence transport also enables estimate of the eddy diffusivity for heat and constituent in the mesopause region.

  12. Heat and water transport in a polymer electrolyte fuel cell electrode

    SciTech Connect

    Mukherjee, Partha P; Mukundan, Rangachary; Borup, Rod L; Ranjan, Devesh

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  13. Influence of porewater advection on denitrification in carbonate sands: Evidence from repacked sediment column experiments

    NASA Astrophysics Data System (ADS)

    Santos, Isaac R.; Eyre, Bradley D.; Glud, Ronnie N.

    2012-11-01

    Porewater flow enhances mineralization rates in organic-poor permeable sands. Here, a series of sediment column experiments were undertaken to assess the potential effect of advective porewater transport on denitrification in permeable carbonate sands collected from Heron Island (Great Barrier Reef). Experimental conditions (flow path length, advection rate, and temperature) were manipulated to represent conditions similar to near shore tropical environments. HgCl2-poisoned controls were used to assess whether reactions were microbially mediated. Overall, significant correlations were found between oxygen consumption and N2 production. The N:O2 slope of 0.114 implied that about 75% of all the nitrogen mineralized was denitrified. A 4-fold increase in sediment column length (from 10 to 40 cm) resulted in an overall increase in oxygen consumption (1.6-fold), TCO2 production (1.8-fold), and denitrification (1.9-fold). Oxic respiration increased quickly until advection reached 80 L m-2 h-1 and then plateaued at higher advection rates. Interestingly, denitrification peaked (up to 336 μmol N2 m-2 h-1) at intermediate advection rates (30-80 L m-2 h-1). We speculate that intermediate advection rates enhance the development of microniches (i.e., steep oxygen gradients) within porous carbonate sands, perhaps providing optimum conditions for denitrification. The denitrification peak fell within the broad range of advection rates (often on scales of 1-100 L m-2 h-1) typically found on continental shelves implying that carbonate sands may play a major, but as yet unquantified, role in oceanic nitrogen budgets.

  14. Graphene transport properties upon exposure to PMMA processing and heat treatments

    NASA Astrophysics Data System (ADS)

    Gammelgaard, Lene; Caridad, José M.; Cagliani, Alberto; Mackenzie, David M. A.; Petersen, Dirch H.; Booth, Timothy J.; Bøggild, Peter

    2014-12-01

    The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties of graphene while PMMA residues are found to be surprisingly benign. In accordance with this picture, graphene devices with initially high carrier mobility tend to suffer a decrease in carrier mobility, while in contrast an improvement is observed for low carrier mobility devices. We explain this by noting that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200 °C.

  15. Underlying mechanisms for normal heat transport in one-dimensional anharmonic oscillator systems with a double-well interparticle interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing

    2016-04-01

    Previous studies have suggested a crossover from superdiffusive to normal heat transport in one-dimensional (1D) anharmonic oscillator systems with a double-well type interatomic interaction like V(ξ )=-{ξ2}/2+{ξ4}/4 , when the system temperature is varied. In order to better understand this unusual manner of thermal transport, here we perform a direct dynamics simulation to examine how the spreading processes of the three physical quantities, i.e. the heat, the total energy and the momentum, would depend on temperature. We find three main points that are worth noting. (i) The crossover from superdiffusive to normal heat transport is well verified from a new perspective of heat spread. (ii) The spreading of the total energy is found to be very distinct from heat diffusion, especially under some temperature regimes, energy is strongly localized, while heat can be superdiffusive. So one should take care to derive a general connection between the heat conduction and energy diffusion. (iii) In a narrow range of temperatures, the spreading of momentum implies clear unusual non-ballistic behaviors; however, such unusual transport of momentum cannot be directly related to the normal transport of heat. An analysis of phonon spectra suggests that one should also take the effects of phonon softening into account. All of these results may provide insights into establishing the connection between the macroscopic heat transport and the underlying dynamics in 1D systems.

  16. Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Xidong; Wang, Chunzai; Han, Guijun; Li, Wei; Wu, Xinrong

    2014-12-01

    In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000-2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.

  17. Working fluid selection for space-based two-phase heat transport systems

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1988-01-01

    The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.

  18. Steady-state heat transport: Ballistic-to-diffusive with Fourier's law

    SciTech Connect

    Maassen, Jesse Lundstrom, Mark

    2015-01-21

    It is generally understood that Fourier's law does not describe ballistic phonon transport, which is important when the length of a material is similar to the phonon mean-free-path. Using an approach adapted from electron transport, we demonstrate that Fourier's law and the heat equation do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key to including the non-equilibrium nature of the phonon population is to apply the proper boundary conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magnitude of the temperature jumps is simply related to the material properties and (ii) the observation of reduced apparent thermal conductivity physically stems from a reduction in the temperature gradient and not from a reduction in actual thermal conductivity. We demonstrate how our approach, equivalent to Fourier's law, easily reproduces results of the Boltzmann transport equation, in all transport regimes, even when using a full phonon dispersion and mean-free-path distribution.

  19. Steady-state heat transport: Ballistic-to-diffusive with Fourier's law

    NASA Astrophysics Data System (ADS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    It is generally understood that Fourier's law does not describe ballistic phonon transport, which is important when the length of a material is similar to the phonon mean-free-path. Using an approach adapted from electron transport, we demonstrate that Fourier's law and the heat equation do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key to including the non-equilibrium nature of the phonon population is to apply the proper boundary conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magnitude of the temperature jumps is simply related to the material properties and (ii) the observation of reduced apparent thermal conductivity physically stems from a reduction in the temperature gradient and not from a reduction in actual thermal conductivity. We demonstrate how our approach, equivalent to Fourier's law, easily reproduces results of the Boltzmann transport equation, in all transport regimes, even when using a full phonon dispersion and mean-free-path distribution.

  20. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-07-01

    Time-lapse X-ray microtomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. The effect of diffusion and advection across the snow pores on the snow microstructure were analysed in controlled laboratory experiments and possible effects on natural snowpacks discussed. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective permeability. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Isothermal snow metamorphism is driven by sublimation deposition caused by the Kelvin effect and is the limiting factor independently of the transport regime in the pores.

  1. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  2. The effects of size, configuration and distribution of continents on the efficiency of heat transport

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Moresi, L. N.; Lenardic, A.

    2011-12-01

    The addition of continents to the surface of a planet alters its interior dynamics; understanding this alteration is critical to understanding the thermal evolution of the Earth. Specifically, the increase in temperature induced by continental insulation can be compensated by an increase in the heat loss through the overturn of the oceanic lithosphere, thus contradicting the predicted reduction of global heat loss due to presence of continents (e.g., Lenardic et al, 2005; Cooper et al, 2006; Lenardic et al, 2011). We reconfirm this counterintuitive result with three-dimensional simulations. In addition, we explore variations in the configuration of continents on the surface. Within simulations with equivalent continental coverage, but varying configuration, there is a competition between the lateral size of the blocks and the natural horizontal scale of the convection pattern which influences the stability of the models over time, and the efficiency of heat transport. Smaller continental blocks tend to induce a stable planform with upwellings permanently avoiding the blocks. However, in cases with larger continental blocks, the imposed scale is larger than the preferred scale of the convection pattern and upwellings are unable to avoid the blocks altogether. The dependency on stability and efficiency of heat transport within the Earth on continental coverage and configuration suggests continents can play a significant role in the Earth's heat budget and thermal history. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006; Lenardic, A., C.M. Cooper, and L.-N. Moresi "A note on continents and the Earth's Urey ratio", Physics of the Earth and Planetary Interiors, 2011; Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci

  3. An asymptotic-preserving Lagrangian algorithm for the time-dependent anisotropic heat transport equation

    SciTech Connect

    Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.

    2014-09-01

    We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while the second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X /X becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L2/X1L2 → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.

  4. Confinement and transport in EC heated RI-mode discharges in TEXTOR

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Dumortier, P.; Van Eester, D.; Hoekzema, F. A.; Jaspers, R. J. E.; Kalupin, D.; Koslowski, H. R.; Messiaen, A.; Polman, R. W.; Schüller, F. C.; Unterberg, B.; Vervier, M.; Van Wassenhove, G.; Westerhof, E.

    2004-04-01

    This paper reports on experiments in TEXTOR with electron cyclotron resonance heating (ECRH) of radiatively improved (RI) mode discharges. With ECRH the energy content of RI-mode discharges can be increased without the normally observed power degradation in confinement time. The experiments are described and the effects of ECRH on global confinement and local plasma parameters of RI-mode discharges are discussed; the favourable scaling of energy content is due to a zone of low electron thermal transport just outside the sawtooth inversion radius. Moreover, the heating effect of ECRH in the RI-mode is compared with the effect in L-mode; this comparison sheds some light on the physics of electron thermal transport in RI-mode discharges.

  5. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport

    USGS Publications Warehouse

    Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing

    2008-01-01

    The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant

  6. On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-11-01

    The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an

  7. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)

    2002-01-01

    This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.

  8. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    SciTech Connect

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe`s spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab.

  9. Turbulence-induced pressure fluctuations in snow and their effect on heat and moisture transport

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Higgins, C. W.; Drake, S.; Nolin, A. W.; Parlange, M. B.

    2010-12-01

    Accurate measurement of the heat and moisture flux components of the energy budget of a snow pack is difficult, and to date no generally satisfying solutions exist. In particular, little quantitative knowledge exists on heat and water vapor exchange associated to dynamically driven air movement in the snow pack as a consequence of atmospheric turbulence. This so-called wind-pumping constitutes a mechanism for forced release of saturated air form the snow pack and thus determines evaporation or sublimation rates from the snow and consequently affects the turbulent latent heat flux. A unique experiment and measurement system has been developed and deployed in the field to investigate and quantify the influence of atmospheric turbulence on heat and moisture transport across the snow-air interface. To this end, high-frequency measurements of 3-dimensional wind components, air temperature, and water vapor fluctuations above the snow surface were taken simultaneously together with differential air pressure fluctuations at several depths in the snow pack. The analysis addresses changes in frequency, amplitude, and penetration depth of the pressure fluctuations with depth, and the relationship of turbulence intensity to attenuation characteristics of the pressure within the snow pack. Finally, the study aims at understanding how turbulence-induced air pressure dynamics within the snow pack impacts on the heat budget of the snow pack and the turbulent sensible and latent heat flux above the snow surface.

  10. The development of a high-capacity instrument module heat transport system, appendixes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.

  11. Hyperbolic waveguide for long-distance transport of near-field heat flux

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Ben-Abdallah, Philippe; Guizal, Brahim; Antezza, Mauro; Biehs, Svend-Age

    2016-09-01

    Heat flux exchanged between two hot bodies at subwavelength separation distances can exceed the limit predicted by the blackbody theory. However, this super-Planckian transfer is restricted to these separation distances. Here we demonstrate the possible existence of a super-Planckian transfer at arbitrary large separation distances if the interacting bodies are connected in the near field with weakly dissipating hyperbolic waveguides. This result opens the way to long-distance transport of near-field thermal energy.

  12. The development of a high-capacity instrument module heat transport system, appendixes

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.

  13. Modelling of Thermal Advective Reactive Flow in Hydrothermal Mineral Systems Using an Implicit Time-stepped Finite Element Method.

    NASA Astrophysics Data System (ADS)

    Hornby, P. G.

    2005-12-01

    Understanding chemical and thermal processes taking place in hydrothermal mineral deposition systems could well be a key to unlocking new mineral reserves through improved targeting of exploration efforts. To aid in this understanding it is very helpful to be able to model such processes with sufficient fidelity to test process hypotheses. To gain understanding, it is often sufficient to obtain semi-quantitative results that model the broad aspects of the complex set of thermal and chemical effects taking place in hydrothermal systems. For example, it is often sufficient to gain an understanding of where thermal, geometric and chemical factors converge to precipitate gold (say) without being perfectly precise about how much gold is precipitated. The traditional approach is to use incompressible Darcy flow together with the Boussinesq approximation. From the flow field, the heat equation is used to advect-conduct the heat. The flow field is also used to transport solutes by solving an advection-dispersion-diffusion equation. The reactions in the fluid and between fluid and rock act as source terms for these advection-dispersion equations. Many existing modelling systems that are used for simulating such systems use explicit time marching schemes and finite differences. The disadvantage of this approach is the need to work on rectilinear grids and the number of time steps required by the Courant condition in the solute transport step. The second factor can be particularly significant if the chemical system is complex, requiring (at a minimum) an equilibrium calculation at each grid point at each time step. In the approach we describe, we use finite elements rather than finite differences, and the pressure, heat and advection-dispersion equations are solved implicitly. The general idea is to put unconditional numerical stability of the time integration first, and let accuracy assume a secondary role. It is in this sense that the method is semi-quantiative. However

  14. Analysis of simulation methodology for calculation of the heat of transport for vacancy thermodiffusion

    SciTech Connect

    Tucker, William C.; Schelling, Patrick K.

    2014-07-14

    Computation of the heat of transport Q{sub a}{sup *} in monatomic crystalline solids is investigated using the methodology first developed by Gillan [J. Phys. C: Solid State Phys. 11, 4469 (1978)] and further developed by Grout and coworkers [Philos. Mag. Lett. 74, 217 (1996)], referred to as the Grout-Gillan method. In the case of pair potentials, the hopping of a vacancy results in a heat wave that persists for up to 10 ps, consistent with previous studies. This leads to generally positive values for Q{sub a}{sup *} which can be quite large and are strongly dependent on the specific details of the pair potential. By contrast, when the interactions are described using the embedded atom model, there is no evidence of a heat wave, and Q{sub a}{sup *} is found to be negative. This demonstrates that the dynamics of vacancy hopping depends strongly on the details of the empirical potential. However, the results obtained here are in strong disagreement with experiment. Arguments are presented which demonstrate that there is a fundamental error made in the Grout-Gillan method due to the fact that the ensemble of states only includes successful atom hops and hence does not represent an equilibrium ensemble. This places the interpretation of the quantity computed in the Grout-Gillan method as the heat of transport in doubt. It is demonstrated that trajectories which do not yield hopping events are nevertheless relevant to computation of the heat of transport Q{sub a}{sup *}.

  15. Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors

    SciTech Connect

    Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

    2005-11-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various

  16. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived

  17. Experiments in Advective and Turbulent Hyporheic Pumping

    NASA Astrophysics Data System (ADS)

    Mccluskey, A. H.; Grant, S.; Stewardson, M. J.

    2014-12-01

    Hyporheic exchange (HE) is the mixing of stream and subsurface waters beneath the sediment-water interface (SWI). At the patch and reach scales, HE is dominated by periodic upwelling and downwelling zones, induced by pressure variation and processes within the turbulent boundary layer (TBL). This can be caused by (1) the geometry of the stream, imposing a stationary wave at the SWI or (2) by a travelling wave associated with the propagation of turbulent pressure waves generated from the TBL. Case (1) has generally been the favoured model of hyporheic exchange and has been referred to as hyporheic 'pumping' by Elliott and Brooks, and subsequently others. Case (2) can be termed turbulent pumping, and has been proposed as a mechanism to model the combined effects of turbulent dispersion alongside steady-state advection. While this has been represented numerically and analytically, conjecture remains about the physical representation of these combined processes. We present initial results from experiments undertaken to classify the spatial and temporal characteristics of pressure variation at and beneath the SWI, with a periodic sinusoidal geometry of wavelength 0.28m and height 0.02m. As an initial characterisation, the advective flow profile has been examined using time-lapse photography of dyes released across the span of a periodic downwelling zone. These tracer tests confirmed delineation of isolated upwelling and downwelling cells as noted by previous authors in modelling studies. However, their distribution deviates from the typical pumping pattern with increased discharge and stream gradient. Empirical orthogonal function (EOF) analysis of high frequency (250Hz) pressure measurements, sampled at an array along the centroid of the flume underneath one wavelength gave further insight into the spatial distribution of turbulent signatures arising from roughness-generated turbulence. A turbulent frequency of 6-10Hz dominates, however the penetration depth appears to

  18. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    SciTech Connect

    Colvin, Jeffrey; Shestakov, Aleksei; Stolken, James; Vignes, Ryan

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  19. A one-dimensional heat-transport model for conduit flow in karst aquifers

    USGS Publications Warehouse

    Long, A.J.; Gilcrease, P.C.

    2009-01-01

    A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.

  20. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  1. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2014-09-01

    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc = 0.233 ± 0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.

  2. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene.

    PubMed

    Hegele, P R; Mumford, K G

    2014-09-01

    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc=0.233±0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development. PMID:25084057

  3. Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation

    NASA Astrophysics Data System (ADS)

    Olsrud, Johan Karl Otto

    1998-12-01

    Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was

  4. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  5. The effect of anisotropic heat transport on magnetic islands in 3-D configurations

    SciTech Connect

    Schlutt, M. G.; Hegna, C. C.

    2012-08-15

    An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlueter current effects. Implications for finite pressure-induced island healing are discussed.

  6. Fingerprint of topological Andreev bound states in phase-dependent heat transport

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Hankiewicz, Ewelina M.

    2016-08-01

    We demonstrate that phase-dependent heat currents through superconductor-topological insulator Josephson junctions provide a useful tool to probe the existence of topological Andreev bound states, even for multichannel surface states. We predict that in the tunneling regime topological Andreev bound states lead to a minimum of the thermal conductance for a phase difference ϕ =π , in clear contrast to a maximum of the thermal conductance at ϕ =π that occurs for trivial Andreev bound states in superconductor-normal-metal tunnel junctions. This opens up the possibility that phase-dependent heat transport can distinguish between topologically trivial and nontrivial 4 π modes. Furthermore, we propose a superconducting quantum interference device geometry where phase-dependent heat currents can be measured using available experimental technology.

  7. Aerosol advection and sea salt events in Genoa, Italy, during the second half of 2005.

    PubMed

    Marenco, Franco; Mazzei, Federico; Prati, Paolo; Gatti, Massimiliano

    2007-05-15

    Atmospheric aerosols in the PM(10) fraction have been simultaneously sampled at three sites in the Genoa urban and suburban area during the second half of 2005, and information on the elemental composition has been gathered through energy dispersive X-ray fluorescence. Thanks to the simultaneous measurements and wind information, a few aerosol transport and transformation processes originated from the nearby sea and in the neighbouring Po Valley have been described. Sea salt concentrations at the three sites were well correlated and often related to Southern sector winds; moreover, by examining the Cl/Na ratio at two sites the time scale for Cl depletion in particulate matter has been estimated as 1-1.5 h for the Genoa atmosphere. During a Northerly gale, excess elemental Si concentrations (peaking more than 4 mug m(-3)) were found at two sites, and were ascribed to an unknown local source. Finally, during an 11-day long 'heat wave' large concentrations for total PM(10), dust and secondary compounds have been found; these large concentrations lead to a number of exceedances of air quality standards, and have been ascribed to advection from the Po Valley.

  8. Solute and heat transport model of the Henry and hilleke laboratory experiment.

    PubMed

    Langevin, Christian D; Dausman, Alyssa M; Sukop, Michael C

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. PMID:19563419

  9. Solute and heat transport model of the Henry and Hilleke laboratory experiment

    USGS Publications Warehouse

    Langevin, C.D.; Dausman, A.M.; Sukop, M.C.

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.

  10. Turbulent transport regimes and the scrape-off layer heat flux width

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-15

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  11. The study of latent heat transport characteristics by solid particles and saccharide solution mixtures

    NASA Astrophysics Data System (ADS)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Inaba, Hideo

    2011-06-01

    The purpose of this study is the development of latent heat transport system by using the mixture of the minute latent heat storage materials and the saccharine solution as medium. The experimental studies are carried out by the evaluation of viscosity and pressure loss in a pipe. Polyethylene (P.E.) is selected as the dispersed minute material that has closeness density (920kg/m3) of ice (917kg/m3). D-sorbitol and D-xylose solutions are picked as continuum phase of the test mixture. The concentration of D-sorbitol solution is set 48mass% from measured results of saturation solubility and the melting point. 40mass% solution of D-xylose is selected as the other test continuum phase. The non-ion surfactant, EA157 Dai-ichiseiyaku CO. Ltd, is used in order to prevent of dispersed P.E. powder cohere. The pressure loss of test mixture is measured by the straight circular pipe that has smooth inner surface. The measuring length for pressure loss is 1000 mm, and the inner diameter of pipe is 15mm. The accuracy of experiment apparatus for measuring pressure loss is within ±5%. The pressure loss data is estimated by the relationship between the heat transport ratio and the required pump power. It is clarified that the optimum range of mixing ratio exists over 10mass% of latent heat storage material.

  12. Transport of groundwater, heat, and radiogenic He in topography-driven basins.

    PubMed

    Han, Weon Shik; Kim, Kue-Young; Jung, Na-Hyun; Park, Eungyu; Solomon, D K

    2015-04-01

    The goal of the study is to assess the feasibility of characterizing the caprock integrity by utilizing sampled helium (He) concentration in fluids and temperature measurement prior to CO2 injection. A series of simulations representing pre-CO2 injection phase was conducted to reveal the spatial distribution of groundwater, temperature, and He concentration under various geologic conditions of topographically driven basin. Then, their profiles in preinjection conditions were compared with dynamic signatures of both injection-induced pressure and leaked brine concentration at post-CO2 injection conditions. In the topographic basin, He and heat transports generally show analogous transport except the low-permeability basin where the conductive heat and diffusive solute transports are the primary transport mechanisms. The transition occurred at permeabilities between 10(-15) and 10(-14) m2. Inclusion of low-k layer (low-k layer: 10(-16) m2 and surrounding basin: 10(-13) m2) segregates shallow and deep groundwater system and creates a 3-km single large free convection of groundwater driven by unevenly distributed thermal profile of basin. Finally, He and temperature profiles with high-k pathways at pre-CO2 injection scenarios and NaCl mass fractions at post-CO2 injection showed systematic trends and relationships, suggesting that proper understanding of these trends will aid to identify the seal integrity.

  13. Modelling subglacial discharge and its influence on ocean heat transport in Arctic fjords

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2015-11-01

    Tidewater outlet glaciers are directly connected to the ocean via ice walls or floating shelves. Melting and freezing of ice, runoff, englacial, and subglacial discharge of freshwater and ocean heat transport are therefore potential feedback processes between glacial ice flow and ocean circulation. Subglacial discharge occurs at the base of tidewater glacier outlets where out-flowing freshwater forms a convective buoyant plume ascending close to the glacier face and, due to entrainment, transports relatively warm and saline ambient bottom water up towards the surface. Plume dynamics, typically occurring at sub-grid scales in regional ocean models, therefore has to be parameterized in areas where ice-ocean interactions occur, as for example in Arctic fjords. Here, we develop and analyze a new simple boundary condition of subglacial discharge where entrainment-induced transport between the subsurface and surface layer is described. A sensitivity study showed that subglacial discharge increased ocean heat transport near the glacier whereas the impact from plume-entrainment became relatively small further from the glacier. Subglacial discharge was shown to have a significant influence on surface concentrations. The impact from subglacial discharge was demonstrated in a regional model of Godthåbsfjord (64°N), located at the west coast of Greenland, where surface concentrations near the glacier were shown to be sensitive to subglacial discharge in accordance with observations.

  14. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  15. Parameterization of eddy sensible heat transports in a zonally averaged dynamic model of the atmosphere

    NASA Technical Reports Server (NTRS)

    Genthon, Christophe; Le Treut, Herve; Sadourny, Robert; Jouzel, Jean

    1990-01-01

    A Charney-Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a zonally averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a zonally averaged version of a general circulation model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same zonally averaged boundary conditions in both models. The Charney-Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear appoximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled zonal-mean climate and the parameterized meridional eddy transport is identified.

  16. Waves, advection, and cloud patterns on Venus

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.; Gierasch, Peter J.; Leroy, Stephen S.; Smith, Michael D.

    1990-01-01

    The stable layers adjacent to the nearly neutral layer within the Venus clouds are found to be capable of supporting vertically trapped, horizontally propagating waves with horizontal wavelengths of about 10 km and speeds of a few meters per second relative to the mean wind in the neutral layer. These waves may possibly be excited by turbulence within the neutral layer. Here, the properties of the waves, and the patterns which they might produce within the visible clouds if excited near the subsolar point are examined. The patterns can be in agreement with many features in images. The waves are capable of transferring momentum latitudinally to help maintain the general atmospheric spin, but at present we are not able to evaluate wave amplitudes. We also examine an alternative possibility that the cloud patterns are produced by advection and shearing by the mean zonal and meridional flow of blobs formed near the equator. It is concluded that advection and shearing by the mean flow is the most likely explanation for the general pattern of small scale striations.

  17. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2004-01-01

    Quantitative estimates of increased heat transfer by atmospheric H 2O vapor during the Albian greenhouse warming suggest that the intensified hydrologic cycle played a greater role in warming high latitudes than at present and thus represents a viable alternative to oceanic heat transport. Sphaerosiderite ??18O values in paleosols of the North American Cretaceous Western Interior Basin are a proxy for meteoric ??18O values, and mass-balance modeling results suggest that Albian precipitation rates exceeded modern rates at both mid and high latitudes. Comparison of modeled Albian and modern precipitation minus evaporation values suggests amplification of the Albian moisture deficit in the tropics and moisture surplus in the mid to high latitudes. The tropical moisture deficit represents an average heat loss of ???75 W/m2 at 10??N paleolatitude (at present, 21 W/m2). The increased precipitation at higher latitudes implies an average heat gain of ???83 W/m2 at 45??N (at present, 23 W/m2) and of 19 W/m2 at 75??N (at present, 4 W/m2). These estimates of increased poleward heat transfer by H2O vapor during the Albian may help to explain the reduced equator-to-pole temperature gradients. ?? 2004 Geological Society of America.

  18. Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.

    PubMed

    Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T

    2012-07-01

    Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors.

  19. Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores

    PubMed Central

    2016-01-01

    The integration of local heat sources with solid-state nanopores offers new means for controlling the transmembrane transport of charged biomacromolecules. In the case of electrophoretic transport of DNA, recent experimental studies revealed unexpected temperature dependences of the DNA capture rate, the DNA translocation velocity, and the ionic current blockades produced by the presence of DNA in the nanopore. Here, we report the results of all-atom molecular dynamics simulations that elucidated the effect of temperature on the key microscopic processes governing electric field-driven transport of DNA through nanopores. Mimicking the experimental setup, we simulated the capture and subsequent translocation of short DNA duplexes through a locally heated nanopore at several temperatures and electrolyte conditions. The temperature dependence of ion mobility at the DNA surface was found to cause the dependence of the relative conductance blockades on temperature. To the first order, the effective force on DNA in the nanopore was found to be independent of temperature, despite a considerable reduction of solution viscosity. The temperature dependence of the solution viscosity was found to make DNA translocations faster for a uniformly heated system but not in the case of local heating that does not affect viscosity of solution surrounding the untranslocated part of the molecule. Increasing solution temperature was also found to reduce the lifetime of bonds formed between cations and DNA. Using a flow suppression algorithm, we were able to separate the effects of electro-osmotic flow and direct ion binding, finding the reduced durations of DNA–ion bonds to increase, albeit weakly, the effective force experienced by DNA in an electric field. Unexpectedly, our simulations revealed a considerable temperature dependence of solvent velocity at the DNA surface—slip velocity, an effect that can alter hydrodynamic coupling between the motion of DNA and the surrounding fluid

  20. Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores.

    PubMed

    Belkin, Maxim; Aksimentiev, Aleksei

    2016-05-25

    The integration of local heat sources with solid-state nanopores offers new means for controlling the transmembrane transport of charged biomacromolecules. In the case of electrophoretic transport of DNA, recent experimental studies revealed unexpected temperature dependences of the DNA capture rate, the DNA translocation velocity, and the ionic current blockades produced by the presence of DNA in the nanopore. Here, we report the results of all-atom molecular dynamics simulations that elucidated the effect of temperature on the key microscopic processes governing electric field-driven transport of DNA through nanopores. Mimicking the experimental setup, we simulated the capture and subsequent translocation of short DNA duplexes through a locally heated nanopore at several temperatures and electrolyte conditions. The temperature dependence of ion mobility at the DNA surface was found to cause the dependence of the relative conductance blockades on temperature. To the first order, the effective force on DNA in the nanopore was found to be independent of temperature, despite a considerable reduction of solution viscosity. The temperature dependence of the solution viscosity was found to make DNA translocations faster for a uniformly heated system but not in the case of local heating that does not affect viscosity of solution surrounding the untranslocated part of the molecule. Increasing solution temperature was also found to reduce the lifetime of bonds formed between cations and DNA. Using a flow suppression algorithm, we were able to separate the effects of electro-osmotic flow and direct ion binding, finding the reduced durations of DNA-ion bonds to increase, albeit weakly, the effective force experienced by DNA in an electric field. Unexpectedly, our simulations revealed a considerable temperature dependence of solvent velocity at the DNA surface-slip velocity, an effect that can alter hydrodynamic coupling between the motion of DNA and the surrounding fluid

  1. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  2. The Role of Greenland on Heat and Moisture Transports Into the Arctic.

    NASA Astrophysics Data System (ADS)

    Kindig, D.; Tsukernik, M.; Serreze, M. C.

    2006-12-01

    The region between Greenland and northern Scandinavia is a primary gateway for the transport of moist static energy into the Arctic. Much of this transport is via eddies, namely synoptic scale cyclones associated with the North Atlantic storm track and Icelandic Low. The orography of Greenland strongly influences the evolution, track and behavior of cyclones in the region. Here we examine how Greenland helps to control moist static energy transports into the Arctic through experiments with the Polar MM5 regional model (MM5), forced at the boundaries by NCEP/NCAR Reanalysis data. The focus is on the winter season. Sensitivity studies are run comparing transports under control simulations (CONTROL) with those for which the orography of Greenland is removed (NO_GREEN). Monthly climatologies are built comparing CONTROL and NO_GREEN simulations for positive, negative and neutral phases of the North Atlantic Oscillation. In most NO_GREEN simulations, there are substantial changes in the longitude of peak pole-ward transports of latent and sensible heat, which can in turn be related to shifts in storm tracks and the location/intensity of the Icelandic Low. In global climate simulations with no Greenland orography, the Icelandic Low tends to shift eastward. By contrast, the MM5 NO_GREEN simulations show a westward shift in the storm track.

  3. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  4. Heat transport analysis of the improved confinement discharge with LHW in the HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, X. M.; Shen, X.; Wan, B. N.; Wu, Z. W.; Fu, J.; Fu

    2010-04-01

    In the HT-7 tokamak, heat transport analysis is carried out for the lower hybrid current drive (LHCD) experiments. Electrons and ions are coupled and good confinement can be obtained by properly optimizating LHCD and plasma parameters. Under the conditions that the plasma current is about 220 kA, the lower hybrid wave (LHW) power is about 300 kW and the central line-averaged density is about 1.5×1013 cm-3, lower hybrid wave power deposition is off-axis. Local transport analysis illustrated that both electron and ion thermal diffusivities are decreased during the LHW phase, and the electron internal transport barriers (eITBs) are formed while been accompanied by the ion internal transport barriers (iITBs) during LHW phase. Ions are heated by electron-ion collision in the region of the barriers although the ohmic power and the LHW power were absorbed by the electrons. Both electron temperature and ion temperature are increased during the LHW phase, and in the confinement region, the electron-to-ion temperature ratio, Te/Ti varies from 2.0 ~ 2.5 during OH phase to 1.3 ~ 1.6 during LHW injected into the plasma, which shows that electron confinement is not degraded by the electron-ion collisions meanwhile ions are also confined. The energy confinement is increased from 13 ms to 25 ms due to the formation of electron and ion internal transport barries after the LHW is injected into the plasma. LHW driven current and bootstrap current contribute to 60% of the total current.

  5. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur

    2015-12-01

    While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells.

  6. Impact of the background toroidal rotation on particle and heat turbulent transport in tokamak plasmas

    SciTech Connect

    Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Angioni, C.; Strintzi, D.

    2009-01-15

    Recent developments in the gyrokinetic theory have shown that, in a toroidal device, the Coriolis drift associated with the background plasma rotation significantly affects the small scale instabilities [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. The later study, which focuses on the effect of the Coriolis drift on toroidal momentum transport is extended in the present paper to heat and particle transport. It is shown numerically using the gyrokinetic flux-tube code GKW[A. G. Peeters and D. Strintzi, Phys. Plasmas 11, 3748 (2004)], and supported analytically, that the Coriolis drift and the parallel dynamics play a similar role in the coupling of density, temperature, and velocity perturbations. The effect on particle and heat fluxes increases with the toroidal rotation (directly) and with the toroidal rotation gradient (through the parallel mode structure), depends on the direction of propagation of the perturbation, increases with the impurity charge number and with the impurity mass to charge number ratio. The case of very high toroidal rotation, relevant to spherical tokamaks, is investigated by including the effect of the centrifugal force in a fluid model. The main effect of the centrifugal force is to decrease the local density gradient at the low field side midplane and to add an extra contribution to the fluxes. The conditions for which the inertial terms significantly affect the heat and particle fluxes are evidenced.

  7. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    NASA Astrophysics Data System (ADS)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  8. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    NASA Astrophysics Data System (ADS)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  9. Heat Transport in the Precursor of Carbon and Metallic Wire Arrays

    NASA Astrophysics Data System (ADS)

    Hare, Jack; Lebedev, Sergey; Bennett, Matthew; Bland, Simon; Burdiak, Guy; Suttle, Lee; Suzuki-Vidal, Francisco; Swadling, George; Velikovich, Alexander

    2014-10-01

    The complex interplay between the transport of heat and magnetic fields in high- β, magnetised plasmas is crucial to the feasibility of Magnetised Liner Inertial Fusion (MagLIF). We consider using the precursor plasma in a cylindrical wire array to reach the relevant dimensionless parameters for the initial state of the MagLIF plasma. The precursor is a hot, dense, stable plasma formed on the axis by the collision of material ablated from the wires. Simple models show that an axial magnetic field of ~ 5 T could magnetise the precursor (ωeτe ~ 10) at high-beta (β ~ 10). In this regime, the Nernst term may dominate the transport of the magnetic field, affecting the heat transport. The experiments are conducted on MAGPIE (1.4 MA, 250 ns rise time). Metallic wire arrays are standard, but to reduce radiative losses and the electron-ion thermalisation time, we will also consider carbon in the form of 0.3 mm diameter graphite rods. The axial magnetic field can either be provided by external coils or by the drive current. We study the evolution of the plasma density and temperature using laser interferometry and Schlieren imaging, an optical streak camera and Thomson scattering. The magnetic field can be studied using fibre-based polarimetry.

  10. Heat transport in steep temperature gradients. I - Small flaring solar loops

    NASA Technical Reports Server (NTRS)

    Smith, D. F.

    1986-01-01

    Results on nonlocal heat transport which properly takes into account the presence of fast electrons with mean free paths much longer than the temperature scale height L are reviewed. In terms of the mean free path for the slow bulk electrons, lambda(s), the nonlocal effects are important whenever lambda(s)/L greater than 0.001, with the following consequences. The heat flux in the hot part of the gradient is reduced relative to the Spitzer-Haerm value q(SH) which does not take into account the heat carried away by the fast electrons. The heat flux in the cold part of the gradient is enhanced relative to the value q(SH) which does not take into account the heat deposited by the fast electrons. These quite general results, which should have several applications in astrophysics, are applied to the problem of thermal hard X-ray burst models. It is shown that heat is not bottled up as effectively as in some past models, and temperatures achieved for realistic energy input rates are consequently not as high. As a result such sources can be effective only in the soft part (10-30 keV) of the hard X-ray range for energy input rates up to 6,400 ergs/cu cm s. The analysis is based on a fluid model and does not consider the X-ray signature of fast electrons which escape to distances far beyond the conduction fronts formed. It is shown that such electrons could at most be effective in the soft part of the hard X-ray range.

  11. Exposure of Campylobacter jejuni to 6 degrees C: effects on heat resistance and electron transport activity.

    PubMed

    Hughes, Rebecca-Ayme; Cogan, Tristan; Humphrey, Tom

    2010-04-01

    Human infection with Campylobacter jejuni is frequently associated with the consumption of foods, especially chicken meat, which have been exposed to a range of temperatures during processing, storage, and cooking. Despite the public health importance of C. jejuni, little is known about the effects of cold exposure (refrigeration) on the subsequent ability of this pathogen to survive heat challenge. This work examined the effect of rapid exposure to 6 degrees C for 24 h on the heat resistance at 52 degrees C of 19 C. jejuni strains originally isolated from various sources. The resulting death curves were analyzed with the Weibull model. Unlike cold-exposed cells of Escherichia coli and Salmonella, which have been reported to show significant increased sensitivity to heat, such exposure had only a marginal effect on heat resistance of the C. jejuni strains in this study. A possible explanation for this effect is that rapid chilling renders C. jejuni cells unable to adapt to reduced temperatures in an active manner. This hypothesis is supported by the observation that exposure to 6 degrees C for 24 h resulted in a significant and marked reduction in electron transport system activity when compared with controls at 37 degrees C.

  12. Exact solution of a Lévy walk model for anomalous heat transport.

    PubMed

    Dhar, Abhishek; Saito, Keiji; Derrida, Bernard

    2013-01-01

    The Lévy walk model is studied in the context of the anomalous heat conduction of one-dimensional systems. In this model, the heat carriers execute Lévy walks instead of normal diffusion as expected in systems where Fourier's law holds. Here we calculate exactly the average heat current, the large deviation function of its fluctuations, and the temperature profile of the Lévy walk model maintained in a steady state by contact with two heat baths (the open geometry). We find that the current is nonlocally connected to the temperature gradient. As observed in recent simulations of mechanical models, all the cumulants of the current fluctuations have the same system-size dependence in the open geometry. For the ring geometry, we argue that a size-dependent cutoff time is necessary for the Lévy walk model to behave like mechanical models. This modification does not affect the results on transport in the open geometry for large enough system sizes. PMID:23410270

  13. Nanoscale phase engineering of thermal transport with a Josephson heat modulator.

    PubMed

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines. PMID:26641530

  14. Nanoscale phase engineering of thermal transport with a Josephson heat modulator.

    PubMed

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  15. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  16. Heating and sterilization technology for long-duration space missions: transport processes in a reusable package.

    PubMed

    Sastry, Sudhir K; Jun, Soojin; Somavat, Romel; Samaranayake, Chaminda; Yousef, Ahmed; Pandit, Ram B

    2009-04-01

    Long-duration space missions require a high-quality, shelf-stable food supply but must also contend with packaging waste after use. We have developed a package, adapted from a military pouch, that enables heating of foods to serving temperature. After the food is consumed, the package may be reused for containment and sterilization of waste, and, potentially, for packaging and sterilizing foods grown on a Mars base. Packages are equipped with electrodes to permit ohmic heating of internal constituents. Heat transfer within the package was modeled using the energy transport equation, coupled with the Laplace equation for electric field strength distribution. The model was verified by temperature measurements during a sample experimental run, and it was used to optimize the package design. Waste sterilization within the package was also studied and confirmed. Mass transfer (electrode component migration) was studied by inductively coupled plasma mass spectrometry; the findings have shown concentrations within products to be well below current daily dietary exposure levels. Microbiological studies for sterilization indicated the need for package redesign to ensure parallel electrode configuration, as well as the use of supplemental external heaters along the nonelectrode walls of the package. Temperature profiles during heating of these packages have been determined.

  17. Study of mass and heat transport of the tropical Atlantic Ocean using models and altimeter data

    NASA Technical Reports Server (NTRS)

    Merle, Jacques; Arnault, S.; Morliere, A.; Verstraete, J. M.; Menard, Yves; Gourdeau, L.

    1991-01-01

    The specific objectives of this proposal are: (1) to assess the quality of the TOPEX/POSEIDON surface altimeter data in regard to its use for a large, low-frequency monitoring of the surface topography of the tropical Atlantic Ocean; (2) to develop a method, on a demonstration basis, to derive from the tropical Atlantic the depth of the thermocline and the heat content changes from the surface altimeter data field; (3) to develop a method of assimilation of altimeter data into Oceanic General Circulation Models (OGCM's) for the purpose of preparing an operational, permanent, three-dimensional now casting of the tropical Atlantic Ocean (a TOGA objective); and (4) to derive from these models global circulation fields and a time series of mass and meridional heat transports across the tropical Atlantic region (a WOCE objective).

  18. Scaling of high-field transport and localized heating in graphene transistors.

    PubMed

    Bae, Myung-Ho; Islam, Sharnali; Dorgan, Vincent E; Pop, Eric

    2011-10-25

    We use infrared thermal imaging and electrothermal simulations to find that localized Joule heating in graphene field-effect transistors on SiO(2) is primarily governed by device electrostatics. Hot spots become more localized (i.e., sharper) as the underlying oxide thickness is reduced, such that the average and peak device temperatures scale differently, with significant long-term reliability implications. The average temperature is proportional to oxide thickness, but the peak temperature is minimized at an oxide thickness of ∼90 nm due to competing electrostatic and thermal effects. We also find that careful comparison of high-field transport models with thermal imaging can be used to shed light on velocity saturation effects. The results shed light on optimizing heat dissipation and reliability of graphene devices and interconnects. PMID:21913673

  19. Remote plasmon-induced heat transfer probed by the electronic transport of a gold nanowire

    NASA Astrophysics Data System (ADS)

    Mennemanteuil, M.-M.; Buret, M.; Cazier, N.; Colas-Des-Francs, G.; Bouhelier, A.; Besbes, M.; Ben-Abdallah, P.

    2016-07-01

    We show in this paper that the heat generated by the optical excitation of resonant plasmonic antennas and diffusing along a simple glass/air interface disturbs the electron transport of a nearby conductive element. By probing the temperature-dependent resistance of a gold nanowire Rnw(T ) , we quantitatively analyze the impact of a resonant absorption of the laser by the antennas. We find that the temperature rise at the nanowire induced by the laser absorption of a distant nanoparticle may exceed that of a direct illumination of the nanowire itself. We also find that a global calibration of the temperature-dependent resistance underestimates the heat generated locally by the laser. The local temperatures deduced from resistance variations are verified by numerical simulations with a very satisfactory agreement.

  20. Metal Transport and Heating in the Core of the Antlia Cluster

    NASA Astrophysics Data System (ADS)

    Machacek, Marie

    2008-10-01

    Understanding the transport of energy and metals from central dominant galaxies in clusters into the intracluster medium (ICM) is vital to any model for the evolution of structure in the Universe. We propose to use a 50ks EPIC MOS+pn observation of the core (inner 12') of the Antlia Cluster to study the role of gas motions and turbulent diffusion in the chemical enrichment and heating of the ICM in a cluster with a sharply rising abundance profile, but without a cool core. We will map temperature, density and abundances throughout the Antlia cluster core, construct pressure and entropy maps to track gas motions and heat flows, and test models of metal enrichment due to turbulent motions powered by episodic outbursts from the central galaxy's AGN.

  1. Waste heat recovery fluids for heavy-duty transportation bottoming cycle systems: a summary report

    SciTech Connect

    Krazinski, J.L.; Uherka, K.L.; Holtz, R.E.; Ash, J.E.

    1984-07-01

    Working fluids used in Rankine bottoming cycle systems for heat recovery from long-haul trucks, marine vessels, and railroad locomotives are examined. Rankine bottoming cycle systems improve fuel economy by converting the exhaust heat from the prime mover into useful power. The report assesses fluid property requirements on the basis of previous experience with bottoming cycle systems. Also, the exhaust gas characteristics for the transportation modes of interest are summarized and compared. Candidate working fluids are discussed with respect to their potential for use in Rankine bottoming cycle systems. Analytical techniques are presented for calculating the thermodynamic properties of single-component working fluids. The resulting equations have been incorporated into a computer code for predicting the performance of Rankine bottoming cycle systems. In evaluating candidate working fluids, the code requires the user to input only a minimal amount of fluid property data.

  2. Characterization of heat transport and radiation hydrodynamics in collisional laser plasmas using collective Thomson scattering

    SciTech Connect

    Cameron, S.M.

    1993-10-01

    The author proposes using the collective Thomson scattering lineshape from ion acoustic waves to measure the spatial structure of local heat transport parameters and collisionality. Ion acoustic peak height asymmetry is used in conjunction with a recently developed model describing the effects of collisional and Landau damping contributions on the low-frequency electron density fluctuation spectrum to extract the relative electron drift. The local heat flux q{sub e} (proportional to drift) and the electron thermal conductivity {kappa}{sub e}{minus}q{sub e}/{gradient}T{sub e} would be inferred from experimentally determined temperature gradients {gradient}T{sub e}. Damping of the entropy wave component at zero mode frequency is shown to be an estimate of the ion thermal conductivity {kappa}{sub i}, and its visibility is a direct measure of the ion-ion mean free path {lambda}{sub ii}.

  3. A possible closure relation for heat transport in the solar wind

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1979-01-01

    The objective of the present paper is to search for an empirical closure relation for solar wind heat transport that applies to a microscopic scale. This task is approached by using the quasi-linear wave-particle formalism proposed by Perkins (1973) as a guide to derive an equation relating the relative drift speed between core-electron and proton populations to local bulk flow conditions. The resulting relationship, containing one free parameter, is found to provide a good characterization of Los Alamos Imp electron data measuring during the period from March 1971 through August 1974. An empirical closure relation is implied by this result because of the observed proportionality between heat flux and relative drift speed.

  4. Understanding the Atmospheric Response to Ocean Heat Transport: a Model Inter-Comparison

    NASA Astrophysics Data System (ADS)

    Rose, B.

    2012-12-01

    The oceans' contribution to poleward heat transport (1 to 2 PW) is dwarfed by the atmosphere, and yet ocean heat transport (OHT) exerts a powerful climatic influence by exciting various atmospheric feedbacks. OHT drives polar-amplified greenhouse warming through a dynamical redistribution of tropospheric water vapor, and helps set the strength and position of the ITCZ. These complex responses explicitly couple tropical and extra-tropical processes, and depend on interactions between large-scale dynamics and moist physics. Considerable insights have been drawn from recent idealized experiments with aquaplanet GCMs coupled to slab oceans with prescribed OHT convergence (q-flux). However sensitivity to uncertain model parameterizations pose a barrier to deeper understanding. I will introduce a new multi-institution collaboration called the Q-flux / Aquaplanet Model Inter-comparison Project (QAquMIP), designed to test the robustness of the climatic impact of OHT and its relationship to traditional climate sensitivity. A standardized set of GCM experiments, repeated across a broad range of models, are forced by a few simple analytical q-fluxes. Experimental controls include the meridional scale of poleward OHT, strength of inter-hemispheric OHT, and zonally asymmetric equatorial heating. I will compare robust spatial patterns of temperature and precipitation changes associated with OHT forcing to those driven by CO2, and discuss the underlying spatial pattern of atmospheric feedbacks. A recurring theme is the key role of moist convection in communicating sea surface heating signals throughout the atmosphere, with consequences for clouds, water vapor, radiation, and hydrology. QAquMIP will better constrain the possible role of the oceans in past warm climates, provide a standard framework for testing new parameterizations, and advance our fundamental understanding of the moist processes contributing to present-day climate sensitivity.

  5. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  6. Fast electron transport and heating in ultraintense laser pulse interaction with solid targets

    NASA Astrophysics Data System (ADS)

    Koenig, Michel; Amiranoff, Francois; Baton, Sophie; Gremillet, Laurent; Martinolli, Emanuele; Batani, Dimitri; Bernardinello, Andrea; Greison, Gabriella; Hall, Tom; Rabec Le Gloahec, Marc; Rousseaux, Christophe; Santos, Joao

    2000-10-01

    In the context of the fast electron transport in solid matter and the fast ignitor scheme, we report on results from ultraintense laser pulse interaction with thick targets. Experiments have been performed at LULI with the 100 TW CPA Nd:glass laser, at intensities up to a few 10^19 W/cm^2. Images obtained from classical and chirped-pulse time-resolved reflectometry diagnostics of the back-side target give evidence of the rear surface heating; the geometry and the dynamics of the energy deposition of the relativistic electrons flux into matter are also inferred.

  7. Permutation entropy analysis of temperature fluctuations from a basic electron heat transport experiment

    NASA Astrophysics Data System (ADS)

    Maggs, J. E.; Morales, G. J.

    2013-08-01

    The permutation entropy concept of Bandt and Pompe (2002 Phys. Rev. Lett. 88 174102) is used to analyze the fluctuations in ion saturation current that spontaneously arise in a basic experimental study (Pace et al 2008 Phys. Plasmas 15 122304) of electron heat transport in a magnetized plasma. From the behavior of the Shannon entropy and the Jensen-Shannon complexity it is found that the underlying dynamics are chaotic rather than stochastic. A partitioning and scrambling technique is used to demonstrate that the exponential character of the associated power spectrum arises from individual Lorentzian pulses observed in the time series.

  8. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    SciTech Connect

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-03-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered.

  9. The effect of transportation suit induced heat stress on helicopter underwater escape preparation and task performance.

    PubMed

    Taber, Michael J; Dies, Natalie F; Cheung, Stephen S

    2011-11-01

    Although essential in an emergency such as a helicopter ditching, mandatory survival suits worn by civilian personnel may lead to heat strain during a normal flight. To explore the possibility that wearing a helicopter transportation suit impairs emergency performance, 11 individuals completed underwater escape procedures immediately following a pre-recorded emergency announcement (randomly played between 50 and 90 min) in two ambient temperature conditions (Thermoneutral = 21 °C and Hot = 34 °C). Mean skin and rectal temperatures were recorded throughout the trials, while situation awareness and thermal sensation/comfort were recorded on completion of trials. Results indicate that although mean skin and rectal temperatures were significantly higher at the end of both trials, escape procedures were not impaired. It can therefore be concluded that although conditions inside an offshore transport helicopter are perceived as being hot and uncomfortable, no deficits in escape performance should be expected in the first 90 min of flight.

  10. Basin-scale transport of heat and fluid induced by earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Wang, Lee-Ping; Manga, Michael; Wang, Chung-Ho; Chen, Chieh-Hung

    2013-08-01

    Large earthquakes are known to cause widespread changes in groundwater flow, yet their relation to subsurface transport is unknown. Here we report systematic changes in groundwater temperature after the 1999 Mw7.6 Chi-Chi earthquake in central Taiwan, documented by a dense network of monitoring wells over a large (17,000 km2) alluvial fan near the epicenter. Analysis of the data reveals a hitherto unknown system of earthquake-triggered basin-wide groundwater flow, which scavenges geothermal heat from depths, changing groundwater temperature across the basin. The newly identified earthquake-triggered groundwater flow may have significant implications on postseismic groundwater supply and quality, contaminant transport, underground repository safety, and hydrocarbon production.

  11. Heat and mass transport resistances in vacuum membrane distillation per drop

    SciTech Connect

    Bandini, S.; Sarti, G.C.

    1999-07-01

    Vacuum membrane distillation (VMD) is a separation process based on the use of microporous hydrophobic membranes. The membrane is located between an aqueous phase and a permeate, which is kept under vacuum at pressure values below the equilibrium vapor pressure of the feed. The liquid stream vaporizes at one side of the membrane, and the vapors diffuse through the gas phase inside the membrane pores. The process rate and performance are affected highly by the transport phenomena both in the liquid phase and through the membrane. Heat- and mass-transfer resistance in the liquid phase, as well as mass-transfer resistance through the membrane, play an important role in determining the process performance. Based on VMD experimental data for several binary aqueous mixtures containing volatile organic compounds, a simple criterion to investigate the role of each transport resistance on the separation efficiency is discussed.

  12. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  13. Numerical Analysis of coupled liquid water, water vapor and heat transport in a sandy loam soil

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Deb, S.; Sharma, P.

    2009-12-01

    Water vapor transport could be significant in arid areas such as southern New Mexico. Temporal soil moisture variations in unsaturated soils due to temperature gradients are characterized by the water vapor transport in the surface soil layer as liquid water movement could be very small especially when surface soil moisture is low. Numerical model Hydrus-1D was applied to investigate non-isothermal liquid and vapor flow closely coupled with the heat transport in a furrow-irrigated onion field located at Leyendecker Plant Science Research Center, Las Cruces. TDR and temperature sensors were installed to continuously monitor diurnal soil moisture and temperature variations in sandy loam onion beds at 5, 10, 20, and 50 cm depths during the entire growing season. Meteorological data were obtained from PSRC weather station. Hydrus-1D simulated soil moisture and temperature favorably contrasted against measured data at different depths. Simulations indicated that both liquid and vapor fluxes contributed to the water transport near surface. Liquid flux dominated the water movement during an irrigation event, while contribution of vapor flux increased with increasing soil drying. Vapor flux decreased from 5 cm to 25 cm depth, indicating that water vapor flux is much higher in the layer near soil surface. Both diffusive and dispersive transports are responsible for the vapor flux in the near-surface dry zone, while convective liquid flux was the main transport mechanism in the near-surface wet lower zone. In near-surface wet zone, diffusive flux decreased and changed from upward to downward flux.

  14. Analysis of moisture advection during explosive cyclogenesis over North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ordóñez, Paulina; Liberato, Margarida L. R.; Pinto, Joaquim G.; Trigo, Ricardo M.

    2013-04-01

    The development of a mid-latitude cyclone may strongly be amplified by the presence of a very warm and moist air mass within its warm sector through enhanced latent heat release. In this work, a lagrangian approach is applied to examine the contribution of moisture advection to the deepening of cyclones over the North Atlantic Ocean. The warm sector is represented by a 5°x5° longitude/latitude moving box comprising the centre of the cyclone and its south-eastern area is defined for the tracks of different cyclones computed at 6-hourly intervals. Using the lagrangian particle model FLEXPART we evaluated the fresh water flux (E - P) along 2-days back-trajectories of the particles residing on the total column over the defined boxes for case studies occurring during winter months from 1980 to 2000. FLEXPART simulations were performed using one degree resolution and 60 model vertical levels available in ERA40 Reanalyses at 00, 06, 12, 18 UTC for each case. Sensitivity studies on the dimensions of the target area - chosen boxes representing the warm sector -, and on its relative position to the center, were performed. We have applied this methodology to several case studies of independent North Atlantic cyclones with notorious characteristics (e.g. deepening rate, wind speed, surface damages). Results indicate that the moisture transport is particularly relevant in what concerns the fast/explosive development stage of these extratropical cyclones. In particular, the advection of moist air from the subtropics towards the cyclone core is clearly associated with the warm conveyor belt of the cyclone. This methodology can be generalized to a much larger number of mid-latitude cyclones, providing a unique opportunity to analyze the moisture behavior associated with the explosive development. Acknowledgments: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade

  15. Transmission line model for strained quantum well lasers including carrier transport and carrier heating effects.

    PubMed

    Xia, Mingjun; Ghafouri-Shiraz, H

    2016-03-01

    This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers. PMID:26974607

  16. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  17. Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.

    PubMed

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal

    2012-05-15

    Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point.

  18. The prediction of sea-surface temperature variations by means of an advective mixed-layer ocean model

    NASA Technical Reports Server (NTRS)

    Atlas, R. M.

    1976-01-01

    An advective mixed layer ocean model was developed by eliminating the assumption of horizontal homogeneity in an already existing mixed layer model, and then superimposing a mean and anomalous wind driven current field. This model is based on the principle of conservation of heat and mechanical energy and utilizes a box grid for the advective part of the calculation. Three phases of experiments were conducted: evaluation of the model's ability to account for climatological sea surface temperature (SST) variations in the cooling and heating seasons, sensitivity tests in which the effect of hypothetical anomalous winds was evaluated, and a thirty-day synoptic calculation using the model. For the case studied, the accuracy of the predictions was improved by the inclusion of advection, although nonadvective effects appear to have dominated.

  19. Nonlinear Advection Algorithms Applied to Inter-related Tracers: Errors and Implications for Modeling Aerosol-Cloud Interactions

    SciTech Connect

    Ovtchinnikov, Mikhail; Easter, Richard C.

    2009-02-01

    Monotonicity constraints and gradient preserving flux corrections employed by many advection algorithms used in atmospheric models make these algorithms non-linear. Consequently, any relations among model variables transported separately are not necessarily preserved in such models. These errors cannot be revealed by traditional algorithm testing based on advection of a single tracer. New type of tests are developed and conducted to evaluate the preservation of a sum of several number mixing ratios advected independently of each other, as is the case, for example, in models using bin or sectional representation of aerosol or cloud particle size distribution. The tests show that when three tracers are advected in 1D uniform constant velocity flow, local errors in the sum can be on the order of 10%. When cloud-like interactions are allowed among the tracers, errors in total sum of three mixing ratios can reach up to 30%. Several approaches to eliminate the error are suggested, all based on advecting the sum as a separate variable and then normalizing mixing ratios for individual tracers to match the total sum. A simple scalar normalization preserves the total number mixing ratio and positive definiteness of the variables but the monotonicity constraint for individual tracers is no longer maintained. More involved flux normalization procedures are developed for the flux based advection algorithms to maintain the monotonicity for individual scalars and their sum.