Science.gov

Sample records for advective-dispersive solute transport

  1. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  2. Fractional Advective-Dispersive Equation as a Model of Solute Transport in Porous Media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. The common model is the advective-dispersive equation (ADE) describing the superposition of the advective transport and the Brownian motion in water-filled pore space. Deviations from...

  3. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...

  4. Analytical solution for the advection-dispersion transport equation in layered media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  5. TESTING THE FRACTIONAL ADVECTIVE-DISPERSIVE EQUATION FOR SOLUTE TRANSPORT IN SOIL WITH DATA FROM MISCIBLE DISPLACEMENT EXPERIMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. Contaminants from various industrial and agricultural sources can travel in soil and ground water and eventually affect human and animal health. The parabolic advective-dispersive equ...

  6. Modeling Solute Transport in Soil Columns Using Advective-Dispersive Equation with Fractional Spatial Derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been reported that this model cannot take into account several important features of solute movement through soil. Recently, a new model has been suggested that results in a solute transport equation with fractional spatial derivatives, or FADE. We have assembled a database on published solu...

  7. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation

    NASA Astrophysics Data System (ADS)

    Parker, Jack C.; Kim, Ungtae

    2015-11-01

    The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of

  8. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation.

    PubMed

    Parker, Jack C; Kim, Ungtae

    2015-11-01

    The mono-continuum advection-dispersion equation (mADE) is commonly regarded as unsuitable for application to media that exhibit rapid breakthrough and extended tailing associated with diffusion between high and low permeability regions. This paper demonstrates that the mADE can be successfully used to model such conditions if certain issues are addressed. First, since hydrodynamic dispersion, unlike molecular diffusion, cannot occur upstream of the contaminant source, models must be formulated to prevent "back-dispersion." Second, large variations in aquifer permeability will result in differences between volume-weighted average concentration (resident concentration) and flow-weighted average concentration (flux concentration). Water samples taken from wells may be regarded as flux concentrations, while soil samples may be analyzed to determine resident concentrations. While the mADE is usually derived in terms of resident concentration, it is known that a mADE of the same mathematical form may be written in terms of flux concentration. However, when solving the latter, the mathematical transformation of a flux boundary condition applied to the resident mADE becomes a concentration type boundary condition for the flux mADE. Initial conditions must also be consistent with the form of the mADE that is to be solved. Thus, careful attention must be given to the type of concentration data that is available, whether resident or flux concentrations are to be simulated, and to boundary and initial conditions. We present 3-D analytical solutions for resident and flux concentrations, discuss methods of solving numerical models to obtain resident and flux concentrations, and compare results for hypothetical problems. We also present an upscaling method for computing "effective" dispersivities and other mADE model parameters in terms of physically meaningful parameters in a diffusion-limited mobile-immobile model. Application of the latter to previously published studies of

  9. Solution of the advection-dispersion equation: Continuous load of finite duration

    USGS Publications Warehouse

    Runkel, R.L.

    1996-01-01

    Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.

  10. AN EXACT PEAK CAPTURING AND OSCILLATION-FREE SCHEME TO SOLVE ADVECTION-DISPERSION TRANSPORT EQUATIONS

    EPA Science Inventory

    An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...

  11. The advective-dispersive equation with spatial fractional derivatives as a model for tracer transport in structured soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The classical model to describe solute transport in soil is based on the advective-dispersive equation where Fick’s law is used to explain dispersion. From the microscopic point of view this is equivalent to consider that the motion of the particles of solute may be simulated by the Brownian motion....

  12. Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method

    PubMed Central

    İbiş, Birol

    2014-01-01

    This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662

  13. Approximate solution of time-fractional advection-dispersion equation via fractional variational iteration method.

    PubMed

    Ibiş, Birol; Bayram, Mustafa

    2014-01-01

    This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662

  14. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  15. THE INTERPLAY BETWEEN GEOCHEMICAL REACTIONS AND ADVECTION-DISPERSION IN CONTAMINANT TRANSPORT AT A URANIUM MILL TAILINGS SITE

    EPA Science Inventory

    It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...

  16. Solution of the advection-dispersion equation by a finite-volume eulerian-lagrangian local adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1992-01-01

    A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.

  17. Diffusion related isotopic fractionation effects with one-dimensional advective-dispersive transport.

    PubMed

    Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be

  18. Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1998-01-01

    We extend the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) for solution of the advection-dispersion equation to two dimensions. The method can conserve mass globally and is not limited by restrictions on the size of the grid Peclet or Courant number. Therefore, it is well suited for solution of advection-dominated ground-water solute transport problems. In test problem comparisons with standard finite differences, FVELLAM is able to attain accurate solutions on much coarser space and time grids. On fine grids, the accuracy of the two methods is comparable. A critical aspect of FVELLAM (and all other ELLAMs) is evaluation of the mass storage integral from the preceding time level. In FVELLAM this may be accomplished with either a forward or backtracking approach. The forward tracking approach conserves mass globally and is the preferred approach. The backtracking approach is less computationally intensive, but not globally mass conservative. Boundary terms are systematically represented as integrals in space and time which are evaluated by a common integration scheme in conjunction with forward tracking through time. Unlike the one-dimensional case, local mass conservation cannot be guaranteed, so slight oscillations in concentration can develop, particularly in the vicinity of inflow or outflow boundaries. Published by Elsevier Science Ltd.

  19. A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1993-01-01

    Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods for solute transport problems that are dominated by advection. FVELLAM systematically conserves mass globally with all types of boundary conditions. Integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking of characteristic lines intersecting inflow boundaries. FVELLAM extends previous results by obtaining mass conservation locally on Lagrangian space-time elements. -from Authors

  20. STATISTICAL METHODOLOGY FOR ESTIMATING TRANSPORT PARAMETERS: THEORY AND APPLICATIONS TO ONE-DOMENSIONAL ADVECTIVE-DISPERSIVE SYSTEMS.

    USGS Publications Warehouse

    Wagner, Brian J.; Gorelick, Steven M.

    1986-01-01

    A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference containment transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2-3 times more reliable than estimates based on temporal data for all parameters except velocity. (Estimated author abstract) Refs.

  1. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone

    PubMed Central

    Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.

    2015-01-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532

  2. MT3DMS: A MODULAR THREE-DIMENSIONAL MULTISPECIES TRANSPORT MODEL FOR SIMULATION OF ADVECTION, DISPERSION, AND CHEMICAL REACTIONS OF CONTAMINANTS IN GROUNDWATER SYSTEMS: DOCUMENTATION AND USER'S GUIDE

    EPA Science Inventory

    This manual describes the next generation of the modular three-dimensional transport model, MT3D, with significantly expanded capabilities, including the addition of (a) a third-order total-variation-diminishing (TVD) scheme for solving the advection term that is mass conservativ...

  3. Backward fractional advection dispersion model for contaminant source prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Meerschaert, Mark M.; Neupauer, Roseanna M.

    2016-04-01

    The forward Fractional Advection Dispersion Equation (FADE) provides a useful model for non-Fickian transport in heterogeneous porous media. The space FADE captures the long leading tail, skewness, and fast spreading typically seen in concentration profiles from field data. This paper develops the corresponding backward FADE model, to identify source location and release time. The backward method is developed from the theory of inverse problems, and then explained from a stochastic point of view. The resultant backward FADE differs significantly from the traditional backward Advection Dispersion Equation (ADE) because the fractional derivative is not self-adjoint and the probability density function for backward locations is highly skewed. Finally, the method is validated using tracer data from a well-known field experiment, where the peak of the backward FADE curve predicts source release time, while the median or a range of percentiles can be used to determine the most likely source location for the observed plume. The backward ADE cannot reliably identify the source in this application, since the forward ADE does not provide an adequate fit to the concentration data.

  4. Exact analytical solutions for contaminant transport in rivers 2. Transient storage and decay chain solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of t...

  5. FRACTIONAL SOLUTE TRANSPORT EQUATION EVALUATED WITH THE MISCIBLE DISPLACEMENT EXPERIMENTAL DATA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new solute transport model has been recently developed assuming that the movements of solute particles in hierarchically-structured porous media belongs to the family of Lévy motions rather than to the Brownian motion. The one-dimensional fractional advective-dispersive transport equation, or FADE...

  6. COMPARING THE FRACTIONAL AND THE CLASSICAL SOLUTE TRANSPORT EQUATIONS WITH DATA ON SOLUTE BREAKTHROUGH IN SOIL COLUMNS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solute transport in soils and sediments is commonly simulated with the parabolic advective-dispersive equation, or ADE. In the last decades, it has been reported that this model cannot take in account several important features of solute movement through soil. Recently, a new model base on the assu...

  7. A Lagrangian-Eulerian finite element method with adaptive gridding for advection-dispersion problems

    SciTech Connect

    Ijiri, Y.; Karasaki, K.

    1994-02-01

    In the present paper, a Lagrangian-Eulerian finite element method with adaptive gridding for solving advection-dispersion equations is described. The code creates new grid points in the vicinity of sharp fronts at every time step in order to reduce numerical dispersion. The code yields quite accurate solutions for a wide range of mesh Peclet numbers and for mesh Courant numbers well in excess of 1.

  8. Use of the time fractional advection dispersion equation for push-pull tests at the Macrodispersion Experiment (MADE) site

    NASA Astrophysics Data System (ADS)

    Dean, A. M.; Benson, D. A.; Major, E.

    2010-12-01

    By adding a fractional-in-time term to the traditional advection dispersion equation, a model is able to simulate a late-time heavy-tailed contaminant breakthrough curve. This heavy-tailed breakthrough curve is observed in data collected during a conservative tracer “push-pull” test at the Macrodispersion Experiment (MADE) site. A time fractional advection dispersion equation (fADE) is able to predict power law tailing of conservative solutes by accounting for solutes transferring between the mobile and relatively immobile phases. Solutes can become trapped in a low permeability zone where the transport is controlled by diffusion instead of advection. It has been observed that the late-time heavy-tailed breakthrough curve may follow a power law due to the movement into these low flow zones. By solving the time fADE in a particle tracking program (SLIM-FAST) the model accounts for mass transfer between various phases and produces the same power law tail as observed in field data. For the implementation of the time fADE, in SLIM-FAST, the particles move based on a random-walk motion but have the ability to transition into a relatively immobile phase after (exponentially) random mobile times. Following a period in the immobile phase, the particle re-enters the mobile phase to be moved by advection and Fickian dispersion. To test the fADE approach, a recent single-well push-pull tracer test at the MADE site is reproduced using a groundwater flow code (ParFlow) and a particle tracking code (SLIM-FAST) using various immobile residence-time distributions.

  9. Simulation of Field-Scale Non-Fickian Plumes With Spatiotemporal Fractional Advection- Dispersion Equations

    NASA Astrophysics Data System (ADS)

    Benson, D. A.; Zhang, Y.

    2006-12-01

    Conservative solute transport through natural media is typically "anomalous" or non-Fickian. The anomalous transport may be characterized by faster than linear growth of the centered second moment, or non-Gaussian leading or trailing edges of a plume emanating from a point source. These characteristics develop because of non-local dependence on either past (time) or far upstream (space) concentrations. Non-local equations developed to describe anomalous dispersion usually focus on constant transport parameters and/or independence of the transport on space dimension. These simplifications have been useful for fitting simple transport processes, such as laboratory column tests or 1-D projections of field data. However, they may be insufficient for real field settings, where direction-dependent depositional processes and nonstationary heterogeneity can occur. We develop a generalized, multi-dimensional, spatiotemporal fractional advection- dispersion equation (fADE) with variable parameters to characterize regional-scale anomalous dispersion processes including trapping in immobile zones and/or super-Fickian rapid transport. A Lagrangian numerical model of the space-time fractional transport equation is developed in which solute particles can disperse in both space and time, depending on the medium heterogeneity properties, such as the connectivity and statistical distributions of high versus low-permeability deposits. In the generalized fADE, the range of the order of fractional time derivative is (0 2], representing a wide range of possible trapping behavior. The extension of the order to the range (1 2] is novel to transport theory. We apply the numerical model in 1-D and 2-D to the MADE site tritium plumes, and results indicate that this method can capture the main behaviors of realistic plumes, including local variations of spreading, direction-dependent scaling rates, and arbitrary rapid transport along preferential flow paths. Since the governing equation

  10. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  11. Solute transport in solution conduits exhibiting multi-peaked breakthrough curves

    NASA Astrophysics Data System (ADS)

    Field, Malcolm S.; Leij, Feike J.

    2012-05-01

    SummarySolute transport in karst aquifers is primarily constrained to solution conduits where transport is rapid, turbulent, and relatively unrestrictive. Breakthrough curves generated from tracer tests are typically positively-skewed and may exhibit multiple peaks. In order to understand the circumstances under which multi-peaked positively skewed breakthrough curves occur, physical experiments utilizing single- and multiple-flow channels were conducted. Experiments also included waterfalls, short-term solute detention in pools, and flow obstructions. Results demonstrated that breakthrough curve skewness nearly always occurs to some degree but is magnified as immobile-flow regions are encountered. Multi-peaked breakthrough curves occurred when flow in the main channel became partially occluded from blockage in the main channel that forced divergence of solute into auxiliary channels and when waterfalls and detention in pools occurred. Currently, multi-peaked breakthrough curves are fitted by a multi-dispersion model in which a series of curves generated by the advection-dispersion equation are fitted to each measured peak by superimposing the measured breakthrough curve to obtain a combined model fit with a consequent set of estimated velocities and dispersions. In this paper, a dual-advection dispersion equation with first-order mass transfer between conduits was derived. The dual-advection dispersion equation was then applied to the multi-peaked breakthrough curves obtained from the physical experiments in order to obtain some insight into the operative solute-transport processes through the acquisition of a consequent set of velocities, dispersions, and related parameters. Successful application of the dual-advection, dispersion equation to a tracer test that exhibited dual peaks for a karst aquifer known to consist of two connected but mostly separate conduits confirmed the appropriateness of using a multi-dispersion type model when conditions warrant.

  12. BEHAVIOR OF SENSITIVITIES IN THE ONE-DIMENSIONAL ADVECTION-DISPERSION EQUATION: IMPLICATIONS FOR PARAMETER ESTIMATION AND SAMPLING DESIGN.

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases. (3) The frequency of sampling must be 'in phase' with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters.

  13. Nonuniform and Unsteady Solute Transport in Furrow Irrigation II. Description of Field Experiments and Calibration of Infiltration and Roughness Coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field tests were conducted to obtain irrigation evaluation and solute transport data that were used to calibrate and validate an advection-dispersion model for furrow irrigation. Empirical infiltration equation and roughness parameters were estimated from the field data. These estimates were used a...

  14. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    USGS Publications Warehouse

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  15. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  16. Purely Lagrangian Simulation of Advection, Dispersion, Precipitation, and Dissolution

    NASA Astrophysics Data System (ADS)

    Benson, D.; Zhang, Y.; Reeves, D. M.

    2008-05-01

    We extend the advantages of Lagrangian random walk particle tracking (RWPT) methods that have long been used to simulate advection and dispersion in highly heterogeneous media. By formulating dissolution as a random, independent decay process, the classical continuum rate law is recovered. Formulating the random precipitation process requires a consideration of the probability that two nearby particles will coincide in a given time period. This depends on local mixing (as by diffusion) and the total domain particle number density, which are fixed and therefore easy to calculate. The result is that the classical law of mass action for equilibrium reactions can be reproduced in an ensemble sense. The same number of parameters for A+B ⇌ C are needed in a probabilistic versus continuum reaction simulation-- —one each for forward and backward probabilities that correspond to rates. The random nature of the simulations allows for significant disequilibrium in any given region at any time that is independent of the numerical details such as time stepping or particle density. This is exemplified by nearby or intermingled groups of reactants and little or no product--—a result that is often noted in the field that is difficult to reconcile with continuum methods or coarse-grained Eulerian models. Our results support recent results of perturbed advection-dispersion-reaction continuum models (Luo et al., WRR 44, 2008), and suggest that many different kinds of reactions can be easily added to existing RWPT codes.

  17. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  18. Simulation models for conservative and nonconservative solute transport in streams

    USGS Publications Warehouse

    Runkel, R.L.

    1995-01-01

    Solute transport in streams is governed by a suite of hydrologic and chemical processes. Interactions between hydrologic processes and chemical reactions may be quantified through a combination of field-scale experimentation and simulation modeling. Two mathematical models that simulate conservative and nonconservative solute transport in streams are presented. A model for conservative solutes that considers One Dimensional Transport with Inflow and Storage (OTIS) may be used in conjunction with tracer-dilution methods to quantify hydrologic transport processes (advection, dispersion, lateral inflow and transient storage). For nonconservative solutes, a model known as OTEQ may be used to quantify chemical processes within the context of hydrologic transport. OTEQ combines the transport mechanisms in OTIS with a chemical equilibrium sub-model that considers complexation, precipitation/dissolution and sorption. OTEQ has been used to quantify processes affecting trace metals in two streams in the Rocky Mountains of Colorado, USA.

  19. Solute transport in dual-permeability porous media

    NASA Astrophysics Data System (ADS)

    Leij, Feike J.; Toride, Nobuo; Field, Malcolm S.; Sciortino, Antonella

    2012-04-01

    A dual-advection dispersion equation (DADE) is presented and solved to describe solute transport in structured or layered porous media with different nonzero flow rates in two distinct pore domains with linear solute transfer between them. This dual-permeability model constitutes a generalized version of the advection-dispersion equation (ADE) for transport in uniform porous media and the mobile-immobile model (MIM) for transport in media with a mobile and an immobile pore domain. Analytical tools for the DADE have mostly been lacking. An analytical solution has therefore been derived using Laplace transformation with time and modal decomposition based on matrix diagonalization, assuming the same dispersivity for both domains. Temporal moments are derived for the DADE and contrasted with those for the ADE and the MIM. The effective dispersion coefficient for the DADE approaches that of the ADE for a similar velocity in both pore domains and large values for the first-order transfer parameter, and approaches that of the MIM for the opposite conditions. The solution of the DADE is used to illustrate how differences in pore water velocity between the domains and low transfer rates will lead to double peaks in the volume- or flux-averaged concentration profiles versus time or position. The DADE is applied to optimize experimental breakthrough curves for an Andisol with a distinct intra- and interaggregate porosity. The DADE improved the description of the breakthrough data compared to the ADE and the MIM.

  20. Probabilistic exposure risk assessment with advective-dispersive well vulnerability criteria

    NASA Astrophysics Data System (ADS)

    Enzenhoefer, Rainer; Nowak, Wolfgang; Helmig, Rainer

    2012-02-01

    Time-related advection-based well-head protection zones are commonly used to manage the contamination risk of drinking water wells. According to current water safety plans advanced risk management schemes are needed to better control and monitor all possible hazards within catchments. The goal of this work is to cast the four advective-dispersive intrinsic well vulnerability criteria by Frind et al. [1] into a framework of probabilistic risk assessment framework. These criteria are: (i) arrival time, (ii) level of peak concentration, (iii) time until first arrival of critical concentrations and (iv) exposure time. Our probabilistic framework yields catchment-wide maps of probabilities to not comply with these criteria. This provides indispensable information for catchment managers to perform probabilistic exposure risk assessment and thus improves the basis for risk-informed well-head management. We resolve heterogeneity with high-resolution Monte Carlo simulations and use a new reverse formulation of temporal moment transport equations to keep computational costs low. Our method is independent of dimensionality and boundary conditions, and can account for arbitrary sources of uncertainty. It can be coupled with any method for conditioning on available data. For simplicity, we demonstrate the concept on a 2D example that includes conditioning on synthetic data.

  1. Passive advection-dispersion in networks of pipes: Effect of connectivity and relationship to permeability

    NASA Astrophysics Data System (ADS)

    Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.

    2016-02-01

    The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.

  2. Simulating water, solute, and heat transport in the subsurface with the VS2DI software package

    USGS Publications Warehouse

    Healy, R.W.

    2008-01-01

    The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.

  3. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow

    USGS Publications Warehouse

    Wexler, Eliezer J.

    1989-01-01

    Analytical solutions to the advective-dispersive solute transport equation are useful in predicting the fate of solutes in groundwater. Analytical solutions compiled from available literature or derived by the author are presented in this report for a variety of boundary condition types and solute-source configuration in one-, two-, and three-dimensional systems with uniform groundwater flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of select solutions, source codes for the computer programs, and samples of program input and output also are described. (USGS)

  4. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow

    USGS Publications Warehouse

    Wexler, Eliezer J.

    1992-01-01

    Analytical solutions to the advective-dispersive solute-transport equation are useful in predicting the fate of solutes in ground water. Analytical solutions compiled from available literature or derived by the author are presented for a variety of boundary condition types and solute-source configurations in one-, two-, and three-dimensional systems having uniform ground-water flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of selected solutions, source codes for the computer programs, and samples of program input and output also are included.

  5. Permeability generation and resetting of tracers during metamorphic fluid flow: implications for advection-dispersion models

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian

    Advection-dispersion fluid flow models implicitly assume that the infiltrating fluid flows through an already fluid-saturated medium. However, whether rocks contain a fluid depends on their reaction history, and whether any initial fluid escapes. The behaviour of different rocks may be illustrated using hypothetical marble compositions. Marbles with diverse chemistries (e.g. calcite + dolomite + quartz) are relatively reactive, and will generally produce a fluid during heating. By contrast, marbles with more restricted chemistries (e.g. calcite + quartz or calcite-only) may not. If the rock is not fluid bearing when fluid infiltration commences, mineralogical reactions may produce a reaction-enhanced permeability in calcite + dolomite + quartz or calcite + quartz, but not in calcite-only marbles. The permeability production controls the pattern of mineralogical, isotopic, and geochemical resetting during fluid flow. Tracers retarded behind the mineralogical fronts will probably be reset as predicted by the advection-dispersion models; however, tracers that are expected to be reset ahead of the mineralogical fronts cannot progress beyond the permeability generating reaction. In the case of very unreactive lithologies (e.g. pure calcite marbles, cherts, and quartzites), the first reaction to affect the rocks may be a metasomatic one ahead of which there is little pervasive resetting of any tracer. Centimetre-scale layering may lead to the formation of self-perpetuating fluid channels in rocks that are not fluid saturated due to the juxtaposition of reactants. Such layered rocks may show patterns of mineralogical resetting that are not predicted by advection-dispersion models. Patterns of mineralogical and isotopic resetting in marbles from a number of terrains, for example: Chillagoe, Marulan South, Reynolds Range (Australia); Adirondack Mountains, Old Woman Mountains, Notch Peak (USA); and Stephen Cross Quarry (Canada) vary as predicted by these models.

  6. Lattice Boltzmann simulation of solute transport in heterogeneous porous media with conduits to estimate macroscopic continuous time random walk model parameters

    SciTech Connect

    Anwar, S.; Cortis, A.; Sukop, M.

    2008-10-20

    Lattice Boltzmann models simulate solute transport in porous media traversed by conduits. Resulting solute breakthrough curves are fitted with Continuous Time Random Walk models. Porous media are simulated by damping flow inertia and, when the damping is large enough, a Darcy's Law solution instead of the Navier-Stokes solution normally provided by the lattice Boltzmann model is obtained. Anisotropic dispersion is incorporated using a direction-dependent relaxation time. Our particular interest is to simulate transport processes outside the applicability of the standard Advection-Dispersion Equation (ADE) including eddy mixing in conduits. The ADE fails to adequately fit any of these breakthrough curves.

  7. Semi-analytical Solution for the Contaminant Transport in Fractured Porous Media with Mobile-Immobile Method

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Zhan, H.

    2015-12-01

    With the consideration of advection, dispersion, adsorption and first order decay in the fracture and rock matrix in a single fracture model, a new semi-analytical solution is derived using the Mobile-Immobile Method. It can be used to estimate the concentration at any location at any time precisely within the fracture and rock matrix. Most fractures found underground are filled with the conglomerate, sand, clay and other kinds of possible porous media. The existence of those filling ingredients leads to the isolated pore space within the fracture, which is also called immobile zone. Certain assumptions have be made: the diffusion is the only way that the contamination travels from the fracture to the matrix as the large permeability difference between them; the diffusive transport is dominant in the rock matrix while the advective-dispersive transport plays the major role in the fracture. Experimental data have been collected from literatures to compare the performance of this semi-analytical solution from the classical analytical solution. The comparison shows that the semi-analytical solution simulates it better when the mobile zone percentage is limited. Also, the effects of matrix diffusion, dispersivity and Darcy velocity in the fracture, fracture aperture, first order mass transfer rate and mobile zone percentage on solute transport are demonstrated through the sensitivity analysis, concentration profiles and breakthrough curves. By modifying the boundary conditions and adding an advection term in the rock matrix governing equation, this model can be extended to a two-layer solute transport model.

  8. Analytically-derived sensitivities in one-dimensional models of solute transport in porous media

    USGS Publications Warehouse

    Knopman, D.S.

    1987-01-01

    Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)

  9. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Jang, Cheng-Shin; Cheng, Chung-Ting; Liu, Chen-Wuing

    2010-09-01

    SummaryThis study presents a novel mathematical model for describing the transport of the remedial reagent in a vertical circulation flow field in an anisotropic aquifer. To develop the mathematical model, the radial and vertical components of the pore water velocity are calculated first by using an analytical solution for steady-state drawdown distribution near a vertical circulation well. Next, the obtained radial and vertical components of the pore water velocity are then incorporated into a three-dimensional axisymmetrical advection-dispersion equation in cylindrical coordinates from which to build the reagent transport equation. The Laplace transform finite difference technique is applied to solve the three-dimensional axisymmetrical advection-dispersion equation with spatial variable-dependent coefficients. The developed mathematical model is used to investigate the effects of various parameters such as hydraulic conductivity anisotropy, longitudinal and transverse dispersivities, the placement of the extraction and injection screened intervals of the vertical circulation well and the injection modes on the transport regime of the remedial reagent. Results show that those parameters have different degrees of impacts on the distribution of the remedial reagent. The mathematical model provides an effective tool for designing and operating an enhanced groundwater remediation in an anisotropic aquifer using the vertical circulation well technology.

  10. Population densities and density-area relationships in a community with advective dispersal and variable mosaics of resource patches.

    PubMed

    Lancaster, Jill; Downes, Barbara J

    2014-12-01

    Many communities comprise species that select resources that are patchily distributed in an environment that is otherwise unsuitable or suboptimal. Effects of this patchiness can depend on the characteristics of patch arrays and animal movements, and produce non-intuitive outcomes in which population densities are unrelated to resource abundance. Resource mosaics are predicted to have only weak effects, however, where patches are ephemeral or organisms are transported advectively. The running waters of streams and benthic invertebrates epitomize such systems, but empirical tests of resource mosaics are scarce. We sampled 15 common macroinvertebrates inhabiting distinct detritus patches at four sites within a sand-bed stream, where detritus formed a major resource of food and living space. At each site, environmental variables were measured for 100 leaf packs; invertebrates were counted in 50 leaf packs. Sites differed in total abundance of detritus, leaf pack sizes and invertebrate densities. Multivariate analysis indicated that patch size was the dominant environmental variable, but invertebrate densities differed significantly between sites even after accounting for patch size. Leaf specialists showed positive and strong density-area relationships, except where the patch size range was small and patches were aggregated. In contrast, generalist species had weaker and variable responses to patch sizes. Population densities were not associated with total resource abundance, with the highest densities of leaf specialists in sites with the least detritus. Our results demonstrate that patchy resources can affect species even in communities where species are mobile, have advective dispersal, and patches are relatively ephemeral. PMID:25190216

  11. Application of the method of temporal moments to interpret solute transport with sorption and degradation

    NASA Astrophysics Data System (ADS)

    Pang, Liping; Goltz, Mark; Close, Murray

    2003-01-01

    In this note, we applied the temporal moment solutions of [Das and Kluitenberg, 1996. Soil Sci. Am. J. 60, 1724] for one-dimensional advective-dispersive solute transport with linear equilibrium sorption and first-order degradation for time pulse sources to analyse soil column experimental data. Unlike most other moment solutions, these solutions consider the interplay of degradation and sorption. This permits estimation of a first-order degradation rate constant using the zeroth moment of column breakthrough data, as well as estimation of the retardation factor or sorption distribution coefficient of a degrading solute using the first moment. The method of temporal moment (MOM) formulae was applied to analyse breakthrough data from a laboratory column study of atrazine, hexazinone and rhodamine WT transport in volcanic pumice sand, as well as experimental data from the literature. Transport and degradation parameters obtained using the MOM were compared to parameters obtained by fitting breakthrough data from an advective-dispersive transport model with equilibrium sorption and first-order degradation, using the nonlinear least-square curve-fitting program CXTFIT. The results derived from using the literature data were also compared with estimates reported in the literature using different equilibrium models. The good agreement suggests that the MOM could provide an additional useful means of parameter estimation for transport involving equilibrium sorption and first-order degradation. We found that the MOM fitted breakthrough curves with tailing better than curve fitting. However, the MOM analysis requires complete breakthrough curves and relatively frequent data collection to ensure the accuracy of the moments obtained from the breakthrough data.

  12. Application of the method of temporal moments to interpret solute transport with sorption and degradation.

    PubMed

    Pang, Liping; Goltz, Mark; Close, Murray

    2003-01-01

    In this note, we applied the temporal moment solutions of [Das and Kluitenberg, 1996. Soil Sci. Am. J. 60, 1724] for one-dimensional advective-dispersive solute transport with linear equilibrium sorption and first-order degradation for time pulse sources to analyse soil column experimental data. Unlike most other moment solutions, these solutions consider the interplay of degradation and sorption. This permits estimation of a first-order degradation rate constant using the zeroth moment of column breakthrough data, as well as estimation of the retardation factor or sorption distribution coefficient of a degrading solute using the first moment. The method of temporal moment (MOM) formulae was applied to analyse breakthrough data from a laboratory column study of atrazine, hexazinone and rhodamine WT transport in volcanic pumice sand, as well as experimental data from the literature. Transport and degradation parameters obtained using the MOM were compared to parameters obtained by fitting breakthrough data from an advective-dispersive transport model with equilibrium sorption and first-order degradation, using the nonlinear least-square curve-fitting program CXTFIT. The results derived from using the literature data were also compared with estimates reported in the literature using different equilibrium models. The good agreement suggests that the MOM could provide an additional useful means of parameter estimation for transport involving equilibrium sorption and first-order degradation. We found that the MOM fitted breakthrough curves with tailing better than curve fitting. However, the MOM analysis requires complete breakthrough curves and relatively frequent data collection to ensure the accuracy of the moments obtained from the breakthrough data. PMID:12498577

  13. Bad behavior of Godunov mixed methods for strongly anisotropic advection-dispersion equations

    NASA Astrophysics Data System (ADS)

    Mazzia, Annamaria; Manzini, Gianmarco; Putti, Mario

    2011-09-01

    We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection-dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.

  14. FRACVAL: Validation (nonlinear least squares method) of the solution of one-dimensional transport of decaying species in a discrete planar fracture with rock matrix diffusion

    SciTech Connect

    Gureghian, A.B.

    1990-08-01

    Analytical solutions based on the Laplace transforms are presented for the one-dimensional, transient, advective-dispersive transport of a reacting radionuclide through a discrete planar fracture with constant aperture subject to diffusion in the surrounding rock matrix where both regions of solute migration display residual concentrations. The dispersion-free solutions, which are of closed form, are also reported. The solution assumes that the ground-water flow regime is under steady-state and isothermal conditions and that the rock matrix is homogeneous, isotropic, and saturated with stagnant water. The verification of the solution was performed by means of related analytical solutions dealing with particular aspects of the transport problem under investigation on the one hand, and a numerical solution capable of handling the complete problem on the other. The integrals encountered in the general solution are evaluated by means of a composite Gauss-Legendre quadrature scheme. 9 refs., 8 figs., 32 tabs.

  15. Automated calibration of a stream solute transport model: Implications for interpretation of biogeochemical parameters

    USGS Publications Warehouse

    Scott, D.T.; Gooseff, M.N.; Bencala, K.E.; Runkel, R.L.

    2003-01-01

    The hydrologic processes of advection, dispersion, and transient storage are the primary physical mechanisms affecting solute transport in streams. The estimation of parameters for a conservative solute transport model is an essential step to characterize transient storage and other physical features that cannot be directly measured, and often is a preliminary step in the study of reactive solutes. Our study used inverse modeling to estimate parameters of the transient storage model OTIS (One dimensional Transport with Inflow and Storage). Observations from a tracer injection experiment performed on Uvas Creek, California, USA, are used to illustrate the application of automated solute transport model calibration to conservative and nonconservative stream solute transport. A computer code for universal inverse modeling (UCODE) is used for the calibrations. Results of this procedure are compared with a previous study that used a trial-and-error parameter estimation approach. The results demonstrated 1) importance of the proper estimation of discharge and lateral inflow within the stream system; 2) that although the fit of the observations is not much better when transient storage is invoked, a more randomly distributed set of residuals resulted (suggesting non-systematic error), indicating that transient storage is occurring; 3) that inclusion of transient storage for a reactive solute (Sr2+) provided a better fit to the observations, highlighting the importance of robust model parameterization; and 4) that applying an automated calibration inverse modeling estimation approach resulted in a comprehensive understanding of the model results and the limitation of input data.

  16. NONUNIFORM AND UNSTEADY SOLUTE TRANSPORT IN FURROW IRRRIGATION: I. MODEL DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model for solving a cross-section-averaged Advection-Dispersion Equation (ADE) was developed to simulate the transport of fertilizer in furrow irrigation. The advection and dispersion processes were solved separately at each time step by implementing a method of characteristics with cubic spline i...

  17. Reactive solute transport in streams. 1. Development of an equilibrium- based model

    USGS Publications Warehouse

    Runkel, R.L.; Bencala, K.E.; Broshears, R.E.; Chapra, S.C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  18. Modeling solute transport through saturated zone ground water at 10 km scale: Example from the Yucca Mountain license application

    NASA Astrophysics Data System (ADS)

    Kelkar, Sharad; Ding, Mei; Chu, Shaoping; Robinson, Bruce A.; Arnold, Bill; Meijer, Arend; Eddebbarh, Al-Aziz

    2010-09-01

    This paper presents a study of solute transport through ground water in the saturated zone and the resulting breakthrough curves (BTCs), using a field-scale numerical model that incorporates the processes of advection, dispersion, matrix diffusion in fractured volcanic formations, sorption, and colloid-facilitated transport. Such BTCs at compliance boundaries are often used as performance measures for a site. The example considered here is that of the saturated zone study prepared for the Yucca Mountain license application. The saturated zone at this site occurs partly in volcanic, fractured rock formations and partly in alluvial formations. This paper presents a description of the site and the ground water flow model, the development of the conceptual model of transport, model uncertainties, model validation, and the influence of uncertainty in input parameters on the downstream BTCs at the Yucca Mountain site.

  19. Curves to determine the relative importance of advection and dispersion for solute and vapor transport

    USGS Publications Warehouse

    Garges, J.A.; Baehr, A.L.

    1998-01-01

    The relative importance of advection and dispersion for both solute and vapor transport can be determined from type curves or concentration, flux, or cumulative flux. The dimensionless form of the type curves provides a means to directly evaluate the importance of mass transport by advection relative to that of mass transport by diffusion and dispersion. Type curves based on an analytical solution to the advection-dispersion equation are plotted in terms of dimensionless time and Peclet number. Flux and cumulative flux type curves provide additional rationale for transport regime determination in addition to the traditional concentration type curves. The extension of type curves to include vapor transport with phase partitioning in the unsaturated zone is a new development. Type curves for negative Peclet numbers also are presented. A negative Peclet number characterizes a problem in which one direction of flow is toward the contamination source, and thereby diffusion and advection can act in opposite directions. Examples are the diffusion of solutes away from the downgradient edge of a pump-and-treat capture zone, the upward diffusion of vapors through the unsaturated zone with recharge, and the diffusion of solutes through a low hydraulic conductivity cutoff wall with an inward advective gradient.

  20. Dynamic typology of hydrothermal systems: competing effects of advection, dispersion and reactivity

    NASA Astrophysics Data System (ADS)

    Dolejs, David

    2016-04-01

    Genetic interpretation hydrothermal systems relies on recognition of (i) hydrothermal fluid source, (ii) fluid migration pathways, and (iii) deposition site identified by hydrothermal alteration and/or mineralization. Frequently, only the last object is of interest or accessible to direct observation, but constraints on the fluid source (volume) and pathways can be obtained from evaluation of the time-integrated fluid flux during hydrothermal event. Successful interpretation of the petrological record, that is, progress of alteration reactions, relies on identification of individual contributions arising from solute advection (to the deposition site), its lateral dispersion, and reaction efficiency. Although these terms are all applicable in a mass-conservation relationship within the framework of the transport theory, they are rarely considered simultaneously and their relative magnitudes evaluated. These phenomena operate on variable length and time scales, and may in turn provide insight into the system dynamics such as flow, diffusion and reaction rates, or continuous vs. episodic behavior of hydrothermal events. In addition, here we demonstrate that they also affect estimate of the net fluid flux, frequently by several orders of magnitude. The extent of alteration and mineralization reactions between the hydrothermal fluid and the host environment is determined by: (i) temperature, pressure or any other gradients across the mineralization site, (ii) magnitude of disequilibrium at inflow to the mineralization site, which is related to physico-chemical gradient between the fluid source and the mineralization site, and (iii) chemical redistribution (dispersion) within the mineralization site. We introduce quantitative mass-transport descriptors - Péclet and Damköhler II numbers - to introduce division into dispersion-dominated, advection-dominated and reaction-constrained systems. Dispersive systems are characterized by lateral solute redistribution, driven by

  1. Mathematical and numerical filtration-advection-dispersion model of miscible grout propagation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Bouchelaghem, F.; Vulliet, L.

    2001-10-01

    The development of a predictive model of behaviour of porous media during injection of miscible grout, taking into account convection, dilution and filtration of grout solution with interstitial water, as well as consolidation aspects, is presented. Model assumptions are reviewed and discussed first. During the establishment of the model, we insist on surface terms and their physical relevance in expressing adsorption effects. Constitutive laws such as Fick's law for diffusive mass transport, hydrodynamic dispersion tensor dealing with miscibility, are modified by taking into account filtration effects. A new surface term appears in mass balance equations as a consequence of filtration. According to the filtration laws used, an initial filtration rate is estimated on the basis of a one-dimensional experimental campaign. The field equations are discretized by using Galerkin finite element and -scheme standard method. For transport equation, Streamline Upwind Petrov Galerkin method is employed to prevent numerical oscillations. Lastly, confrontation of numerical results with laboratory experiments constitutes a first step to validate the model on a realistic basis.

  2. Assessment of transient storage exchange and advection-dispersion mechanisms from concentration signatures along breakthrough curves

    NASA Astrophysics Data System (ADS)

    Zaramella, M.; Marion, A.; Lewandowski, J.; Nützmann, G.

    2016-07-01

    Solute transport in rivers is controlled by surface flow hydrodynamics and by transient storage in dead zones, pockets of vegetation and hyporheic sediments where mass exchange and retention are governed by complex mechanisms. The physics of these processes are generally investigated by optimization of transient storage models (TSMs) to experimental data often yielding inconsistent and equifinal parameter sets. Uncertainty on parameters estimation is found to depend not only on the rates of exchange between the stream and storage zones, the stream-water velocity and the stream reach length according to the experimental Damkohler number (DaI), but also on the relative significance between transient storage and longitudinal dispersion on breakthrough curves (BTCs). An optimization strategy was developed and applied to an experimental dataset obtained from tracer tests in a small lowland river, analyzing BTCs generated through tracer injections under different conditions. The method supplies a tool to estimate model parameters from observed data through the analysis of the relative parameter significance. To analyze model performance a double compartment TSM was optimized by a regular fit procedure based on simple root mean square error minimization and by a fit based on a relative significance analysis of mechanism signatures. As a result consistent longitudinal dispersion and transient storage parameters were obtained when the signature targeted optimization was used.

  3. Anomalous Solute Transport in Saturated Porous Media: Linking Transport Model Parameters to Electrical and Nuclear Magnetic Resonance Properties

    NASA Astrophysics Data System (ADS)

    Swanson, R. D.; Binley, A. M.; Keating, K.; France, S.; Osterman, G. K.; Day-Lewis, F. D.; Singha, K.

    2013-12-01

    The advection-dispersion equation fails to describe non-Fickian solute transport in saturated porous media, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with solute exchange between the domains; consequently, the DDMT model can produce a better fit to breakthrough curves (BTCs) in systems defined by more- and less-mobile components. However, direct experimental estimation of DDMT model parameters such as rate of exchange and the mobile and less-mobile porosities remains elusive. Consequently, model parameters are often calculated purely as a model fitting exercise. There is a clear need for material characterization techniques that can offer some insight into the pore space geometrical arrangement, particularly if such techniques can be extended to the field scale. Here, we interpret static direct-current (DC) resistivity, complex resistivity (CR) and nuclear magnetic resonance (NMR) geophysical measurements in the characterization of mass transfer parameters. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant intragranular porosity, along with glass beads as a control. We explore the relation between geophysical and DDMT parameters in conjunction with supporting material characterization methods. Our results reveal how these geophysical measurements can offer some insight into the pore structures controlling the observed anomalous transport behavior.

  4. The Mechanism of Field-Scale Solute Transport: An insight from Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Russo, David

    2014-05-01

    Field-scale transport of conservative (chloride) and reactive (nitrate) solutes was analyzed by means of two different model processes for the local description of the transport. The first is the classical, one-region advection dispersion equation (ADE) model, while the second is the two-region, mobile-immobile (MIM) model. The analyses were performed by means of detailed three-dimensional (3-D), numerical simulations of the flow and the transport considering realistic features of the soil-water-plant-atmosphere system, pertinent to a turf field located in the Glil Yam site, Israel, irrigated with treated waste water (TWW). Simulated water content and concentration profiles were compared with available measurements of their counterparts. Results of the analyses suggest that the behavior of both the conservative and the reactive solutes in the Glil Yam site is quantified better when the transport on the local scale is modeled as a two-region, MIM model, than when a single-region, ADE model is used. Reconstruction of the shape of the measured solute concentration profiles using the MIM transport model, required relatively large immobile water content fraction and relatively small mass transfer coefficient. These results suggest that in the case of initially non-zero solute concentration profile (e.g., chloride and nitrate), the 3-D ADE transport model may significantly overestimate the groundwater contamination hazard posed by the solutes moving through the vadose zone, as compared with the 3-D MIM transport model, while the opposite is true in the case of initially zero solute concentration profile (e.g., carbamazepine). These findings stem from the combination of relatively large immobile water content fraction and relatively small mass transfer coefficient taken into account in the MIM transport model. In the first case, this combination forces a considerable portion of the solute mass to remain in the immobile region of the water-filled pores, while the opposite

  5. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Cortis, A.; Birkholzer, J. T.

    2010-12-01

    Solute transport in fractured porous media is typically "non-Fickian"; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  6. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    SciTech Connect

    Geiger, S.; Cortis, A.; Birkholzer, J.T.

    2010-04-01

    Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  7. Final Technical Report - Investigation into the Relationship between Heterogeneity and Heavy-Tailed Solute Transport

    SciTech Connect

    Weissmann, Gary S

    2013-12-06

    The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.

  8. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 Theory Guide

    SciTech Connect

    Freedman, Vicky L.; Chen, Yousu; Gupta, Sumant K.

    2005-11-01

    This document presents the mathematical theory implemented in the CFEST (Coupled Flow, Energy, and Solute Transport) simulator. The simulator is a three-dimensional finite element model that can be used for evaluating flow and solute mass transport. Although the theory for thermal transport is presented in this guide, it has not yet been fully implemented in the simulator. The flow module is capable of simulating both confined and unconfined aquifer systems, as well as constant and variable density fluid flows. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentration of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. Mesh construction employs “collapsible”, hexahedral finite elements in a three-dimensional coordinate system. CFEST uses the Galerkin finite element method to convert the partial differential equations to algebraic form. To solve the coupled equations for momentum, solute and heat transport, either Picard or Newton-Raphson iterative schemes are used to treat nonlinearities. An upstream weighted residual finite-element method is used to solve the advective-dispersive transport and energy transfer equations, which circumvents problems of numerical oscillation problems. Matrix solutions of the flow and transport problems are performed using efficient iterative solvers available in ITPACK and PETSc, solvers that are available in the public domain. These solvers are based on the preconditioned conjugate gradient and ORTHOMIN methods for symmetric and a nonsymmetric matrices, respectively.

  9. Groundwater age, life expectancy and transit time distributions in advective dispersive systems; 2. Reservoir theory for sub-drainage basins

    NASA Astrophysics Data System (ADS)

    Cornaton, F.; Perrochet, P.

    2006-09-01

    Groundwater age and life expectancy probability density functions (pdf) have been defined, and solved in a general three-dimensional context by means of forward and backward advection-dispersion equations [Cornaton F, Perrochet P. Groundwater age, life expectancy and transit time distributions in advective-dispersive systems; 1. Generalized reservoir theory. Adv Water Res (xxxx)]. The discharge and recharge zones transit time pdfs were then derived by applying the reservoir theory (RT) to the global system, thus considering as ensemble the union of all inlet boundaries on one hand, and the union of all outlet boundaries on the other hand. The main advantages in using the RT to calculate the transit time pdf is that the outlet boundary geometry does not represent a computational limiting factor (e.g. outlets of small sizes), since the methodology is based on the integration over the entire domain of each age, or life expectancy, occurrence. In the present paper, we extend the applicability of the RT to sub-drainage basins of groundwater reservoirs by treating the reservoir flow systems as compartments which transfer the water fluxes to a particular discharge zone, and inside which mixing and dispersion processes can take place. Drainage basins are defined by the field of probability of exit at outlet. In this way, we make the RT applicable to each sub-drainage system of an aquifer of arbitrary complexity and configuration. The case of the well-head protection problem is taken as illustrative example, and sensitivity analysis of the effect of pore velocity variations on the simulated ages is carried out.

  10. A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2001-01-01

    Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.

  11. Impact of space-time mesh adaptation on solute transport modeling in porous media

    NASA Astrophysics Data System (ADS)

    Esfandiar, Bahman; Porta, Giovanni; Perotto, Simona; Guadagnini, Alberto

    2015-02-01

    We implement a space-time grid adaptation procedure to efficiently improve the accuracy of numerical simulations of solute transport in porous media in the context of model parameter estimation. We focus on the Advection Dispersion Equation (ADE) for the interpretation of nonreactive transport experiments in laboratory-scale heterogeneous porous media. When compared to a numerical approximation based on a fixed space-time discretization, our approach is grounded on a joint automatic selection of the spatial grid and the time step to capture the main (space-time) system dynamics. Spatial mesh adaptation is driven by an anisotropic recovery-based error estimator which enables us to properly select the size, shape, and orientation of the mesh elements. Adaptation of the time step is performed through an ad hoc local reconstruction of the temporal derivative of the solution via a recovery-based approach. The impact of the proposed adaptation strategy on the ability to provide reliable estimates of the key parameters of an ADE model is assessed on the basis of experimental solute breakthrough data measured following tracer injection in a nonuniform porous system. Model calibration is performed in a Maximum Likelihood (ML) framework upon relying on the representation of the ADE solution through a generalized Polynomial Chaos Expansion (gPCE). Our results show that the proposed anisotropic space-time grid adaptation leads to ML parameter estimates and to model results of markedly improved quality when compared to classical inversion approaches based on a uniform space-time discretization.

  12. StorAge Selection Functions: a tool for characterizing dispersion processes and catchment-scale solute transport

    NASA Astrophysics Data System (ADS)

    Botter, Gianluca; Benettin, Paolo; Rinaldo, Andrea

    2015-04-01

    Advection-dispersion equations have been extensively used to model flow and transport processes through heterogeneous media like hillslopes and groundwater systems. Therein, the spreading of solute plumes and the shape of the breakthrough curve is known to be controlled by the macrodispersion coefficient, which embeds the underlying heterogeneity of velocities and flowpaths. On a nearly parallel track, the use of travel time distributions (TTDs) has become increasingly widespread in catchment hydrology, to establish a formal linkage between input and output chemographs through suitable transfer functions. Recent theoretical advances and real-world applications have shown that the structure of travel time distributions in time variable flow systems like watersheds is strongly related to the time variability of the water storage and input/output fluxes. The dynamical structure of TTDs has been proved to be effectively parametrized through suitable StorAge Selection (SAS) functions, that express in a spatially integrated fashion how the set of ages available within a control volume are selected and removed by the output fluxes. In this contribution, we analyze the relationship between Advection-Dispersion Models and StorAge Selection Functions, with examples for one-dimensional transport in a finite domain with constant convection and dispersion coefficient. Our results show that when the dispersion is high (say, Pe < 10), the distribution of ages leaving the system through the control plane is similar to the distribution of ages available within the storage, thereby leading to uniform SAS functions (random sampling). Implications for the interpretation and the prediction of the chemical response of rivers are discussed through the application of the SAS functions to model solute circulation in highly monitored watersheds belonging to diverse regions of the world. We suggest that the use of Storage Selection functions in different fields of hydrology may bring

  13. Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution

    NASA Astrophysics Data System (ADS)

    Furbish, David Jon; Childs, Elise M.; Haff, Peter K.; Schmeeckle, Mark W.

    2009-09-01

    We formulate soil grain transport by rain splash as a stochastic advection-dispersion process. By taking into account the intermittency of grain motions activated by raindrop impacts, the formulation indicates that gradients in raindrop intensity, and thus grain activity (the volume of grains in motion per unit area) can be as important as gradients in grain concentration and surface slope in effecting transport. This idea is confirmed by rain splash experiments and manifest in topographic roughening via mound growth beneath desert shrubs. The formulation provides a framework for describing transport and dispersal of any soil material moveable by rain splash, including soil grains, soil-borne pathogens and nutrients, seeds, or debitage. As such it shows how classic models of topographic "diffusion" reflect effects of slope-dependent grain drift, not diffusion, and it highlights the role of rain splash in the ecological behavior of desert shrubs as "resource islands." Specifically, the growth of mounds beneath shrub canopies, where differential rain splash initially causes more grains to be splashed inward beneath the protective canopy than outward, involves the "harvesting" of nearby soil material, including nutrients. Mounds thus represent temporary storage of soil derived from areas surrounding the shrubs. As the inward grain flux associated with differential rain splash is sustained over the shrub lifetime, mound material is effectively sequestered from erosional processes that might otherwise move this material downslope. With shrub death and loss of the protective canopy, differential rain splash vanishes and the mound material is dispersed to the surrounding area, again subject to downslope movement.

  14. Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures

    SciTech Connect

    Webb, S.W.

    1996-05-01

    Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the Dusty- Gas Model (DGM). This model applies the kinetic theory of gases to the gaseous components and the porous media (or ``dust``) to develop an approach for combined transport due to ordinary and Knudsen diffusion and advection including porous medium effects. While these two models both consider advection and diffusion, the formulations are considerably different, especially for ordinary diffusion. The various components of flow (advection and diffusion) are compared for both models. Results from these two models are compared to isothermal experimental data for He-Ar gas diffusion in a low-permeability graphite. Air-water vapor comparisons have also been performed, although data are not available, for the low-permeability graphite system used for the helium-argon data. Radial and linear air-water heat pipes involving heat, advection, capillary transport, and diffusion under nonisothermal conditions have also been considered.

  15. Direct simulation of pore level Fickian dispersion scale for transport through dense cubic packed spheres with vortices

    NASA Astrophysics Data System (ADS)

    Cardenas, M. Bayani

    2009-12-01

    The transition from non-Fickian to Fickian macroscale transport is explicitly demonstrated for an increasing array of three-dimensional pores with vortices in between a lattice of cubic packed spheres by microscale finite element Navier-Stokes flow and transport simulations. Solute residence time distribution begins with a power law for one pore but gradually and eventually transforms to an exponential distribution typical of classic dispersive transport after about ten pores. Parameter fitting of an analytical solution to the 1-D advection-dispersion equation using the simulated breakthrough curves leads to fitted pore velocities within 1% of actual values and an asymptotic fitted dispersion coefficient after a few pores. Therefore, after dozens of pores, bulk transport can be described by the advection-dispersion equation. Persistent vortices in similarly structured porous media subjected to similar grain-scale Reynolds and Peclet numbers may have minimal contribution to anomalous transport observed at larger scales.

  16. Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column

    NASA Astrophysics Data System (ADS)

    Gao, Guangyao; Zhan, Hongbin; Feng, Shaoyuan; Huang, Guanhua; Mao, Xiaomin

    2009-10-01

    SummaryThis study compared five different models for evaluating solute transport in a 1250-cm long, saturated and highly heterogeneous soil column. The five models were: the convection-dispersion equation (CDE), the mobile-immobile model (MIM), the convective lognormal transfer function model (CLT), the spatial fractional advection-dispersion equation (FADE) and the continuous time random walk model (CTRW). Each of these models was used to fit the breakthrough curve (BTC) at each distance individually and was also used to fit the BTCs at different distances simultaneously. Dependence of estimated parameters on distance was investigated. The estimated parameters at 200 cm were used to make predictions at subsequent distances. Highly anomalous transport behavior was observed in the column as the BTCs demonstrated significantly irregular shape and long tailing. This study indicated that CDE, CLT and FADE were unable to describe the anomalous BTCs adequately and their parameters changed with transport distance significantly. Compared to CDE, CLT and FADE, MIM better captured the evolution of anomalous BTCs. However, MIM did not explain the distinct BTC tailing satisfactorily. In contrast to MIM, CTRW better simulated the long tails of BTCs. The spreading parameter ( β) of CTRW was close to one and remained approximately constant at different travel distances. To make the comparison of these five models more general beyond the specific transport condition in the soil column, a generic evaluation of the advantages and disadvantages of these five models was presented in terms of their theory framework and a priori knowledge of the model behaviors.

  17. Derivation of a Multiparameter Gamma Model for Analyzing the Residence-Time Distribution Function for Nonideal Flow Systems as an Alternative to the Advection-Dispersion Equation

    DOE PAGESBeta

    Embry, Irucka; Roland, Victor; Agbaje, Oluropo; Watson, Valetta; Martin, Marquan; Painter, Roger; Byl, Tom; Sharpe, Lonnie

    2013-01-01

    A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less

  18. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS

    USGS Publications Warehouse

    Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.

    2013-01-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.

  19. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.

    PubMed

    Morway, Eric D; Niswonger, Richard G; Langevin, Christian D; Bailey, Ryan T; Healy, Richard W

    2013-03-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship. PMID:22834908

  20. Influence of karst evolution on solute transport evaluated by process-based numerical modelling

    NASA Astrophysics Data System (ADS)

    Hubinger, Bernhard; Birk, Steffen

    2010-05-01

    Karst waters are of major interest in water resources management. Because of their inherent properties karst systems show great vulnerability with regard to contaminants. Karst systems include highly permeable solution conduit networks formed by chemical aggressive water embedded in a fissured matrix. Small initial voids are widened and thus act as preferential passages, where flow is rapid and often turbulent. Water discharging at karst spring originates from different pathways with different residence times. Contaminant transport through conduit pathways is very rapid, whereas flow through the fissured porous matrix is much slower. Thus, on the one hand, pollutants may be rapidly transported and reach high concentrations at the karst spring shortly after their release; on the other hand, the existence of slow flow components may cause the pollution to last for long times. In this work, solute transport properties of karst aquifers are investigated using generic conduit networks of hydraulically connected proto-conduits with initially log-normally distributed apertures in the millimetre range and below. Conduit evolution is modelled by coupling flow, transport, and dissolution processes, whereby single conduits are widened up to the metre range. Thus, different stages of karst evolution can be distinguished. The resulting flow systems provide the basis for modelling advective-dispersive transport of non-reactive solutes through the network of more or less widened (proto-)conduits. The general transport characteristics in karst systems as well as the influence of heterogeneities and structures on solute transport are illustrated for cases of direct injection into the conduit systems at different evolutionary stages. The resulting breakthrough curves typically show several distinct, chronologically shifted peaks with long tailings, which appears to be similar to data from field tracer experiments.

  1. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan D.; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-02-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  2. Simulation and analysis of solute transport in 2D fracture/pipe networks: The SOLFRAC program

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments

  3. Comparison of solution approaches for the two-domain model of nonequilibrium transport in porous media

    NASA Astrophysics Data System (ADS)

    Gallo, Claudio; Paniconi, Claudio; Gambolati, Giuseppe

    The two-domain concept is widely used in modelling transport in heterogeneous porous media and transport of rate-limited sorbing contaminants. When a first-order kinetic relationship is used to represent the transfer of mass between domains, the model can be expressed as a modified advection-dispersion equation describing general transport coupled to a first-order ordinary differential equation accounting for mass transfer. Different approaches can be used to solve the resulting system, including: simultaneously solving the coupled transport and kinetic equations; discretising and algebraically solving the mass transfer equation and substituting it into the transport equation; solving the mass transfer equation analytically and substituting the integral solution into the transport equation to obtain a single integro-differential equation; and solving the system in Laplace space and back-transforming the solution into the time domain. These four approaches — coupled, algebraic substitution, integro-differential, and finite element Laplace transform (FELT) — are evaluated on the basis of their general features and on their performance in two test cases. The results indicate that the algebraic substitution approach is robust and, on scalar computers, verr efficient. The FELT approach is easily parallelised and achieves good speed-up on supercomputers, but the method is restricted to time-invariant velocity and saturation fields, and is only useful for obtaining the solution at or not too far from the maximum simulation time. The integro-differential method is as efficient as but less robust than the algebraic substitution approach, requiring a small time step size when the mass transfer coefficient is very large. Finally, the coupled approach is robust and flexible, but requires the solution of a system of equations twice as large as the other methods. On balance, the algebraic substitution and, to a lesser extent, the integro-differential methods appear to be the

  4. Real-scale miscible grout injection experiment and performance of advection-dispersion-filtration model

    NASA Astrophysics Data System (ADS)

    Bouchelaghem, F.; Vulliet, L.; Leroy, D.; Laloui, L.; Descoeudres, F.

    2001-10-01

    A model was developed, to describe miscible grout propagation in a saturated deformable porous medium, based on Bear's statistical model with spatial volume averaging. In a previous paper, the model was first successfully confronted to one-dimensional laboratory experiments.In the present paper, the numerical model is used to simulate practical grouting operation in a cylindrical injection model. The cylindrical injection model lends itself to study main flow and propagation character istics for a dispersed suspension-type grout, under axisymmetric conditions close to real scale conditions.Comparison between numerical solutions and experimental results is essential to confirm the validity and accuracy of the proposed model from a phenomenological standpoint. The numerical model performances show that the underlying mathematical model constitutes a realistic predictive model reproducing most prominent features during injection of a suspension-type grout into a deformable porous medium. The basic mechanism by which injected miscible grout permeates a soil mass is discussed in detail. Such a tool leads to quality control criteria for grouting on a theoretical basis, which complements existing criteria acquired through engineering practice.

  5. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods

    USGS Publications Warehouse

    Cox, T.J.; Runkel, R.L.

    2008-01-01

    Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.

  6. Boundary effects on solute transport in finite soil columns

    NASA Astrophysics Data System (ADS)

    Schwartz, R. C.; McInnes, K. J.; Juo, A. S. R.; Wilding, L. P.; Reddell, D. L.

    1999-03-01

    This study investigates the influence of inlet and outlet disturbances and formulated boundary conditions on the estimation of the dispersion coefficient and retardation factor for short soil columns. Unsaturated miscible displacement experiments utilizing a Br- tracer were carried out on undisturbed columns of a fine-textured Ultisol. Solutions were applied using either a fritted plate or an array of dispensing tips that produced droplets at a prescribed flow rate. One- and two-layer analytical solutions of the advective-dispersive equation were fitted to effluent concentrations using nonlinear least squares parameter optimization. Comparison of two-layer simulations with experimental data indicated that the analytical solution with a semi-infinite interface boundary best approximated effluent concentrations under the conditions of this study. This solution corresponds to a continuous flux concentration and a macroscopically discontinuous resident concentration at the interface between the soil and porous plates. Parameter estimates were not significantly different with respect to the application method used at the inlet. This may be attributed to a less uniform distribution of solution onto the soil surface by the drip apparatus and/or by the presence of stagnant regions within the inlet reservoir and hence increased dispersion within the inlet platen apparatus. Two-layer simulations indicated that the dispersion coefficient was underestimated by 14-27% when the influence of the inlet and outlet apparatus were not included in the fitted solution of the advective-dispersive equation. In addition, use of one-layer analytical solutions caused the retardation factor to be overestimated by no more than the fractional increase in pore volume imparted by the platen apparatus.

  7. Continuous time random walks for non-local radial solute transport

    NASA Astrophysics Data System (ADS)

    Dentz, Marco; Kang, Peter K.; Le Borgne, Tanguy

    2015-08-01

    This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer

  8. Comparison of alternative models for simulating non-Fickian solute transport in a large heterogeneous soil column

    NASA Astrophysics Data System (ADS)

    Gao, G.; Zhan, H.; Feng, S.; Huang, G.; Mao, X.

    2008-12-01

    This study compared five different models for evaluating solute transport in a 1,250-cm long, saturated and highly heterogeneous soil column. The five models were: the convection-dispersion equation (CDE), the mobile-immobile model (MIM), the convective lognormal transfer function model (CLT), the spatial fractional advection-dispersion equation (FADE) and the continuous time random walk model (CTRW). These models were used to fit each breakthrough curve (BTC) and also fitted to the measured BTCs at different distances simultaneously. In addition, the estimated parameters at 200 cm were used to predict the BTCs at subsequent distances. Non-Fickian transport behavior was found to dominate as the measured BTCs demonstrated nonsigmoidal shape and distinct tailing, and solute transport underwent a transition from notable non-Fickian to Fickian behavior with the increase of transport scale in terms of the CTRW theory. The CDE, CLT and FADE were all unable to describe the measured non-Fickian BTCs adequately although the FADE provided better simulation results at the tailing parts of BTCs than CDE and CLT. Compared to the CDE, CLT and FADE, both the MIM and CTRW better captured the full evolution of the measured BTCs. However, the modeling results of MIM at the tails of BTCs were somewhat smaller than the measured results, while the modeling results of CTRW were over the measured results at the BTCs tails. A generic analysis of the advantages and disadvantages of these five models under various circumstances was also provided.

  9. Global sensitivity analysis and Bayesian parameter inference for solute transport in porous media colonized by biofilms.

    PubMed

    Younes, A; Delay, F; Fajraoui, N; Fahs, M; Mara, T A

    2016-08-01

    The concept of dual flowing continuum is a promising approach for modeling solute transport in porous media that includes biofilm phases. The highly dispersed transit time distributions often generated by these media are taken into consideration by simply stipulating that advection-dispersion transport occurs through both the porous and the biofilm phases. Both phases are coupled but assigned with contrasting hydrodynamic properties. However, the dual flowing continuum suffers from intrinsic equifinality in the sense that the outlet solute concentration can be the result of several parameter sets of the two flowing phases. To assess the applicability of the dual flowing continuum, we investigate how the model behaves with respect to its parameters. For the purpose of this study, a Global Sensitivity Analysis (GSA) and a Statistical Calibration (SC) of model parameters are performed for two transport scenarios that differ by the strength of interaction between the flowing phases. The GSA is shown to be a valuable tool to understand how the complex system behaves. The results indicate that the rate of mass transfer between the two phases is a key parameter of the model behavior and influences the identifiability of the other parameters. For weak mass exchanges, the output concentration is mainly controlled by the velocity in the porous medium and by the porosity of both flowing phases. In the case of large mass exchanges, the kinetics of this exchange also controls the output concentration. The SC results show that transport with large mass exchange between the flowing phases is more likely affected by equifinality than transport with weak exchange. The SC also indicates that weakly sensitive parameters, such as the dispersion in each phase, can be accurately identified. Removing them from calibration procedures is not recommended because it might result in biased estimations of the highly sensitive parameters. PMID:27182791

  10. Global sensitivity analysis and Bayesian parameter inference for solute transport in porous media colonized by biofilms

    NASA Astrophysics Data System (ADS)

    Younes, A.; Delay, F.; Fajraoui, N.; Fahs, M.; Mara, T. A.

    2016-08-01

    The concept of dual flowing continuum is a promising approach for modeling solute transport in porous media that includes biofilm phases. The highly dispersed transit time distributions often generated by these media are taken into consideration by simply stipulating that advection-dispersion transport occurs through both the porous and the biofilm phases. Both phases are coupled but assigned with contrasting hydrodynamic properties. However, the dual flowing continuum suffers from intrinsic equifinality in the sense that the outlet solute concentration can be the result of several parameter sets of the two flowing phases. To assess the applicability of the dual flowing continuum, we investigate how the model behaves with respect to its parameters. For the purpose of this study, a Global Sensitivity Analysis (GSA) and a Statistical Calibration (SC) of model parameters are performed for two transport scenarios that differ by the strength of interaction between the flowing phases. The GSA is shown to be a valuable tool to understand how the complex system behaves. The results indicate that the rate of mass transfer between the two phases is a key parameter of the model behavior and influences the identifiability of the other parameters. For weak mass exchanges, the output concentration is mainly controlled by the velocity in the porous medium and by the porosity of both flowing phases. In the case of large mass exchanges, the kinetics of this exchange also controls the output concentration. The SC results show that transport with large mass exchange between the flowing phases is more likely affected by equifinality than transport with weak exchange. The SC also indicates that weakly sensitive parameters, such as the dispersion in each phase, can be accurately identified. Removing them from calibration procedures is not recommended because it might result in biased estimations of the highly sensitive parameters.

  11. The response of complex and direct-current electrical measurements in the presence of multirate solute transport

    NASA Astrophysics Data System (ADS)

    Swanson, R. D.; Binley, A.; Keating, K.; Haggerty, R.; Day-Lewis, F. D.; Singha, K.

    2012-12-01

    The advection-dispersion equation cannot describe non-Fickian solute transport in saturated porous media and often fails to match breakthrough curve (BTC) history. The multirate mass transfer (MRMT) model partitions the total porosity into immobile and mobile domains with a distribution of exchange rates between the two domains; consequently, the MRMT model produces a better fit to BTCs. However, direct experimental support for the MRMT model parameters remains elusive and model parameters are often estimated a posteriori by an optimization procedure. Complex and direct-current electrical resistivity methods have been used to monitor non-Fickian solute transport in groundwater, but the electrical response has yet to be interpreted within a multirate framework. Here, we investigate electrical geophysical methods to improve our characterization of MRMT parameters. We explore the electrical response in two separate steps: (1) we simulate the direct current electrical response within a multirate framework in order to estimate, from temporal moments, an effective, single rate of mass transfer, and; (2) we develop an empirical link between length scales of multirate mass transfer and length scales of relaxation time distributions measured from complex resistivity at the laboratory scale for the zeolite clinoptilolite which has previously demonstrated MRMT behavior. We use nuclear magnetic resonance measurements of the zeolite to estimate the mobile and immobile porosity of the sample. This study demonstrates our approach at the laboratory scale and offers future perspectives for field investigations.

  12. Convergent radial tracing of viral and solute transport in gneiss saprolite.

    PubMed

    Taylor, Richard; Tindimugaya, Callist; Barker, John; Macdonald, David; Kulabako, Robinah

    2010-01-01

    Deeply weathered crystalline rock aquifer systems comprising unconsolidated saprolite and underlying fractured bedrock (saprock) underlie 40% of sub-Saharan Africa. The vulnerability of this aquifer system to contamination, particularly in rapidly urbanizing areas, remains poorly understood. In order to assess solute and viral transport in saprolite derived from Precambrian gneiss, forced-gradient tracer experiments using chloride and Escherichia coli phage PhiX174 were conducted in southeastern Uganda. The bacteriophage tracer was largely unrecovered; adsorption to the weathered crystalline rock matrix is inferred and enabled by the low pH (5.7) of site ground water and the bacteriophage's relatively high isoelectric point (pI = 6.6). Detection of the applied PhiX174 phage in the pumping well discharge at early times during the experiment traces showed, however, that average ground water flow velocities exceed that of the inert solute tracer, chloride. This latter finding is consistent with observations in other hydrogeological environments where statistically extreme sets of microscopic flow velocities are considered to transport low numbers of fecal pathogens and their proxies along a selected range of linked ground water pathways. Application of a radial advection-dispersion model with an exponentially decaying source term to the recovered chloride tracer estimates a dispersivity (alpha) of 0.8 +/- 0.1 m over a distance of 4.15 m. Specific yield (S(y)) is estimated to be 0.02 from volume balance calculations based on tracer experiments. As single-site observations, our estimates of saprolite S(y) and alpha are tentative but provide a starting point for assessing the vulnerability of saprolite aquifers in sub-Saharan Africa to contamination and estimating quantitatively the impact of climate and abstraction on ground water storage. PMID:19245374

  13. An analytical model for solute transport in an infiltration tracer test in soil with a shallow groundwater table

    NASA Astrophysics Data System (ADS)

    Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng

    2016-09-01

    It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our

  14. Transport solutions for cleaner air.

    PubMed

    Kelly, Frank J; Zhu, Tong

    2016-05-20

    In cities across the globe, road transport remains an important source of air pollutants that are linked with acute and chronic health effects. Decreasing vehicle emissions--while maintaining or increasing commuter journeys--remains a major challenge for city administrators. In London, congestion-charging and a citywide low-emission zone failed to bring nitrogen dioxide concentrations under control. In Beijing, controls on the purchase and use of cars have not decreased transport emissions to a sufficient extent. As cities continue to grow, not even zero-emission vehicles are the solution. Moving increasingly large numbers of people efficiently around a city can only be achieved by expanding mass transit systems. PMID:27199415

  15. Solute transport at fracture intersections

    NASA Astrophysics Data System (ADS)

    Mourzenko, V. V.; Yousefian, F.; Kolbah, B.; Thovert, J.-F.; Adler, P. M.

    2002-01-01

    A numerical study of three-dimensional solute transportat fracture intersections by using a particle tracking technique is presented.Two models of orthogonal fracture intersection are considered, namely, twoparallel-walled channels and two rough-walled Gaussian fractures. The fluidvelocity is calculated by solving the three-dimensional Stokes equation withno-slip boundary condition at the solid wall. Examples of individual trajectoriesof particles are first given in order to illustrate the main features of thephenomenon. Solute mass partitioning between outgoing fracture branches isconsidered for various transport regimes, characterized by the local Pécletnumber, and for various ratios of the flow rates in the intersecting channels.Generally speaking, it can be said that at dominant diffusion the influenceof the flow rates ratio is weak, while it is important in the opposite situation.Validity of the classical models of solute mixing, stream tube routing, andperfect mixing is analyzed by comparing their predictions with the numericaldata. Preliminary recommendations are made for the use of these results inlarge-scale modeling.

  16. Generic Procedure for Coupling the PHREEQC Geochemical Modeling Framework with Flow and Solute Transport Simulators

    NASA Astrophysics Data System (ADS)

    Wissmeier, L. C.; Barry, D. A.

    2009-12-01

    Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection/dispersion

  17. Coupled Fluid Energy Solute Transport

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  18. Numerical investigations of solute transport in bimodal porous media under dynamic boundary conditions

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan

    2016-04-01

    behavior depends on the magnitude of the flow rates and hydraulic conductivity curves of the materials. Based on the unsaturated hydraulic conductivity at the intersection point of conductivity curves, we are able to define an estimate of flow rates at which the dynamic of the upper boundary condition significantly alters preferential flow paths through the system. If flow rates are low, with regard to the materials hydraulic conductivity at the intersection point, the influence of dynamic boundary conditions is small. If flow rates are in the range of the unsaturated hydraulic conductivity at intersection, solute is trapped in the fine material during upwards transport, which results in a more pronounced tailing. For flow rates exceeding the intersection conductivity, a redistribution at the soil surface can occur. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Bechtold, M., J. Vanderborght, O. Ippisch and H. Vereecken. 2011b. Efficient random walk particle tracking algorithm for advective dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Resour. Res., 47, W10526, doi: 10.1029/2010WR010267. Ippisch O., H.-J. Vogel and P. Bastian. 2006. Validity limits fort he van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour., 29, 1780-1789, doi: 10.1016/j.advwateres.2005.12.011. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.

  19. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents.

    PubMed

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H; de Jonge, Lis W

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20cm in height and 20cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08kgkg(-1), respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤50μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass

  20. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    NASA Astrophysics Data System (ADS)

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H.; de Jonge, Lis W.

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20 cm in height and 20 cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08 kg kg- 1, respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer

  1. An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media

    SciTech Connect

    Lin, Guang; Tartakovsky, Alexandre M.

    2009-05-01

    In this study, a probabilistic collocation method (PCM) on sparse grids was used to solve stochastic equations describing flow and transport in three-dimensional in saturated, randomly heterogeneous porous media. Karhunen-Lo\\`{e}ve (KL) decomposition was used to represent the three-dimensional log hydraulic conductivity $Y=\\ln K_s$. The hydraulic head $h$ and average pore-velocity $\\bf v$ were obtained by solving the three-dimensional continuity equation coupled with Darcy's law with random hydraulic conductivity field. The concentration was computed by solving a three-dimensional stochastic advection-dispersion equation with stochastic average pore-velocity $\\bf v$ computed from Darcy's law. PCM is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using the sparse grid points, PCM can handle a random process with large number of random dimensions, with relatively lower computational cost, compared to full tensor products. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM. By comparing the MC and PCM results for mean and standard deviation of concentration, it is evident that the PCM approach is computational more efficient than Monte Carlo simulations. Unlike the conventional moment-equation approach, there is no limitation on the amplitude of random perturbation in PCM. Furthermore, PCM on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances.

  2. Solute transport by a volatile solvent

    NASA Astrophysics Data System (ADS)

    Brown, Glenn O.; McWhorter, David B.

    1990-05-01

    In relatively dry porous media, water is transported as both liquid and vapor. Exact knowledge of this two-phase transport, and the phase transfer of water associated with it, is required for the prediction of solute transport. Combined liquid and vapor transport is examined starting from basic principles. An analytic solution is presented for the case of isothermal, transient, one-dimensional sorption of water with constant liquid content boundaries. A relation is also obtained for the evaporation and condensation within the flow field. A numerical solution for the solute transport is obtained which takes maximum advantage of the analytical flow solution. Using the properties of Lurgi retorted oil shale, several special cases are examined which show the relative importance of the separate phases in the total transport of water, the effects on the phase transfer, and the solute transport. It is expected that these methods and results can be applied to other problems in multiple phase transport, such as hazardous waste disposal and pesticide transport.

  3. Eulerian Lagrangian Adaptive Fup Collocation Method for solving the conservative solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Srzic, Veljko

    2014-05-01

    Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large

  4. Mammalian ion-coupled solute transporters.

    PubMed Central

    Hediger, M A; Kanai, Y; You, G; Nussberger, S

    1995-01-01

    Active transport of solutes into and out of cells proceeds via specialized transporters that utilize diverse energy-coupling mechanisms. Ion-coupled transporters link uphill solute transport to downhill electrochemical ion gradients. In mammals, these transporters are coupled to the co-transport of H+, Na+, Cl- and/or to the countertransport of K+ or OH-. By contrast, ATP-dependent transporters are directly energized by the hydrolysis of ATP. The development of expression cloning approaches to select cDNA clones solely based on their capacity to induce transport function in Xenopus oocytes has led to the cloning of several ion-coupled transporter cDNAs and revealed new insights into structural designs, energy-coupling mechanisms and physiological relevance of the transporter proteins. Different types of mammalian ion-coupled transporters are illustrated by discussing transporters isolated in our own laboratory such as the Na+/glucose co-transporters SGLT1 and SGLT2, the H(+)-coupled oligopeptide transporters PepT1 and PepT2, and the Na(+)- and K(+)-dependent neuronal and epithelial high affinity glutamate transporter EAAC1. Most mammalian ion-coupled organic solute transporters studied so far can be grouped into the following transporter families: (1) the predominantly Na(+)-coupled transporter family which includes the Na+/glucose co-transporters SGLT1, SGLT2, SGLT3 (SAAT-pSGLT2) and the inositol transporter SMIT, (2) the Na(+)- and Cl(-)-coupled transporter family which includes the neurotransmitter transporters of gamma-amino-butyric acid (GABA), serotonin, dopamine, norepinephrine, glycine and proline as well as transporters of beta-amino acids, (3) the Na(+)- and K(+)-dependent glutamate/neurotransmitter family which includes the high affinity glutamate transporters EAAC1, GLT-1, GLAST, EAAT4 and the neutral amino acid transporters ASCT1 and SATT1 reminiscent of system ASC and (4) the H(+)-coupled oligopeptide transporter family which includes the intestinal H

  5. Characterization of solute transport properties of different types of constructed wetlands using multi-tracer data and transient storage modelling

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Lange, Jens; Weiler, Markus

    2010-05-01

    Constructed wetlands in agricultural headwater catchments may serve as simple treatment systems to improve retention and mitigation of agricultural non-point-source pollution. To calculate and predict retention capacities of 6 different constructed wetland systems concerning micro-pollutants, we used a one-dimensional solute transport model to compare the results of a series of multi-tracer experiments. The investigated wetland systems consisted of two surface flow wetlands with permanent through flow, two vegetated ditches, a forest buffer zone and a flood detention pond. Transport behaviour was investigated using different tracers: salt and two differently sorptive fluorescent dyes (Sulphorhodamine B and fluoresceine). The hypothesis that shallow and vegetated systems offer the highest sorption capacity for sorptive but mobile pollutants was tested applying a solute transport model to the observed tracer breakthrough. The transport model OTIS (Runkel, 1998) which includes advection, dispersion and lateral exchange to a transient storage was optimized to observed breakthrough of applied tracers at defined cross-sections along the wetlands. Optimized model parameters include dispersivity, cross-sectional areas of both stream and transient storage, as well as an exchange coefficient. Sorption was included based on the KD value, mass of accessible sediment and a sorption coefficient. We assumed that each measurable cross-section is a combination of dead zones and flowing parts. For three of the wetland systems we could exclude lateral in- and outflows. For the other systems, a quantification of lateral flows was possible. We used the set of conservative tracer data to calculate conservative transport characteristics and cross-sections. Then we applied the calibrated model on the sorptive tracer data only using sorption capacity in the storage zone as a calibration parameter and observed KD values and mass of accessible sediment. The results for the different tracer

  6. Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage

    USGS Publications Warehouse

    Bencala, K.E.; McKnight, Diane M.; Zellweger, G.W.

    1990-01-01

    Physical parameters characterizing solute transport in the Snake River were variable along a 5.2-km study reach. Stream cross-sectional area and volumetric inflow each varied by a factor of 3. Because of transient storage, the residence time of injected tracers in the Snake River was longer than would be calculated by consideration of convective travel time alone. Distributed inflows along the stream were a significant source of in-stream chemical variations. These transport characteristics of the Snake River were established on the basis of the assumption of lithium as an ideally conservative tracer and use of simulations of advection, dispersion, and transient storage. -from Authors

  7. Electrofuels: Versatile Transportation Energy Solutions

    SciTech Connect

    2010-07-01

    Electrofuels Project: ARPA-E’s Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

  8. Performance Analysis of Solution Transportation Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Kiani, Behdad; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Thermally activated advanced absorption cycles are considered promising candidates to replace CFCs, HCFCs and HFCs for residential and commercial applications. In such absorption systems, it is desirable to utilize the waste heat from industries for heating and cooling applications in commercial and residential sectors. For this purpose, it is necessary to transport energy over some distance because the waste heat source and demand are generally located apart from each other. Transportation of steam, hot water or chilled water requires high construction costs for insulation. There is an efficient method of energy transportation using absorption system called “ Solution Transportation Absorption System (STA)”. The solution is transported at an ambient temperature so that tube-insulations not required. This paper shows the simulation of the abovementioned system and the optimal result, using mathematical optimization. The optimum system with industry‧s waste heat utilization is obtained. At the end, the effect on the pollution emission and energy conservation is obtained.

  9. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    PubMed

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii

  10. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  11. Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loève-based moment equation approach

    USGS Publications Warehouse

    Liu, Gaisheng; Lu, Zhiming; Zhang, Dongxiao

    2007-01-01

    A new approach has been developed for solving solute transport problems in randomly heterogeneous media using the Karhunen-Loève-based moment equation (KLME) technique proposed by Zhang and Lu (2004). The KLME approach combines the Karhunen-Loève decomposition of the underlying random conductivity field and the perturbative and polynomial expansions of dependent variables including the hydraulic head, flow velocity, dispersion coefficient, and solute concentration. The equations obtained in this approach are sequential, and their structure is formulated in the same form as the original governing equations such that any existing simulator, such as Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems (MT3DMS), can be directly applied as the solver. Through a series of two-dimensional examples, the validity of the KLME approach is evaluated against the classical Monte Carlo simulations. Results indicate that under the flow and transport conditions examined in this work, the KLME approach provides an accurate representation of the mean concentration. For the concentration variance, the accuracy of the KLME approach is good when the conductivity variance is 0.5. As the conductivity variance increases up to 1.0, the mismatch on the concentration variance becomes large, although the mean concentration can still be accurately reproduced by the KLME approach. Our results also indicate that when the conductivity variance is relatively large, neglecting the effects of the cross terms between velocity fluctuations and local dispersivities, as done in some previous studies, can produce noticeable errors, and a rigorous treatment of the dispersion terms becomes more appropriate.

  12. Multilevel transport solution of LWR reactor cores

    SciTech Connect

    Jose Ignacio Marquez Damian; Cassiano R.E. de Oliveira; HyeonKae Park

    2008-09-01

    This work presents a multilevel approach for the solution of the transport equation in typical LWR assemblies and core configurations. It is based on the second-order, even-parity formulation of the transport equation, which is solved within the framework provided by the finite element-spherical harmonics code EVENT. The performance of the new solver has been compared with that of the standard conjugate gradient solver for diffusion and transport problems on structured and unstruc-tured grids. Numerical results demonstrate the potential of the multilevel scheme for realistic reactor calculations.

  13. Solute transport through a deforming porous medium

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Smith, David W.

    2002-06-01

    Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers.

  14. Linear transport models for adsorbing solutes

    NASA Astrophysics Data System (ADS)

    Roth, K.; Jury, W. A.

    1993-04-01

    A unified linear theory for the transport of adsorbing solutes through soils is presented and applied to analyze movement of napropamide through undisturbed soil columns. The transport characteristics of the soil are expressed in terms of the travel time distribution of the mobile phase which is then used to incorporate local interaction processes. This approach permits the analysis of all linear transport processes, not only the small subset for which a differential description is known. From a practical point of view, it allows the direct use of measured concentrations or fluxes of conservative solutes to characterize the mobile phase without first subjecting them to any model. For complicated flow regimes, this may vastly improve the identification of models and estimation of their parameters for the local adsorption processes.

  15. Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.

    2013-12-01

    The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater

  16. Solute transport in heterogeneous porous formations

    NASA Astrophysics Data System (ADS)

    Demmy, George Gary, Jr.

    1999-10-01

    This work quantifies relationships between the spatial, or Eulerian, distribution of the properties of a chemically and physically heterogeneous porous medium and those as observed along the natural, or Lagrangian, trajectories that a fluid particle traces in a steady and irrotational flow. From these relationships, expressions that relate the transport of solutes through the porous medium along the natural trajectories to the aforementioned Eulerian distributions are developed. The effects of injection mode upon global measures of transport as reflected by the temporal moments of breakthrough curves and spatial moments of a solute plume are developed. The coupled effects of correlation of a linear equilibrium sorption to the underlying log hydraulic conductivity field and injection mode on the evolving temporal moments of mass breakthrough curve and the coupled effects of correlation of a first-order decay coefficient and injection mode upon the spatial moments of a solute plume are examined.

  17. Probing Nanoscale Thermal Transport in Surfactant Solutions

    PubMed Central

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  18. Probing Nanoscale Thermal Transport in Surfactant Solutions

    NASA Astrophysics Data System (ADS)

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-11-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient.

  19. Probing Nanoscale Thermal Transport in Surfactant Solutions.

    PubMed

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  20. Coupling methodology and application of a fully integrated model for contaminant transport in the subsurface system

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Shi, Liangsheng; Yang, Jinzhong; Wu, Jingwei; Mao, Deqiang

    2013-09-01

    An efficient integrated modeling approach is developed to simulate the contaminant transport in the subsurface system. The unsaturated zone is divided into a number of horizontal sub-areas according to the atmospheric boundary conditions, land use types and hydrological conditions. Solute migration through the unsaturated zone of each sub-area is assumed to be vertical and can be represented by the one-dimensional advection-dispersion equation, which is then coupled to the three-dimensional advection-dispersion equation representing the subsequent groundwater transport. The finite element method is adopted to discretize the vertical solute equation, while the hybrid finite element and finite difference method is used to discretize the three-dimensional saturated solute transport equation, which is split into the horizontal and vertical equations based on the concept of the horizontal/vertical splitting. The unsaturated and saturated solute transport equations are combined into a unified matrix by the mass balance analysis for the adjacent nodes located at the one-dimensional soil column and at the water table. Two hypothetical cases and two field cases are simulated to test the validity of the model with the results compared with those from HYDRUS-1D, SWMS2D and the measured data. The limitations of the model are discussed as well. The analysis of the four cases demonstrates that the proposed model can calculate the water flow and solute transport reasonably even with complex boundary and variable topography conditions. It also shows that the model is efficient to simulate the water flow and solute transport in regional-scale areas with small computational costs. However, the model will lose accuracy when the lateral dispersion effect is dominant in the unsaturated zone.

  1. Lagrangian simulation of multidimensional anomalous transport at the MADE site

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Benson, David A.

    2008-04-01

    Contaminant transport through regional-scale natural geological formations typically exhibits several ``anomalous'' features, including direction-dependent spreading rates, channeling along preferential flow paths, trapping of solute in relatively immobile domains, and/or the local variation of transport speed. Simulating these plume characteristics can be computationally intensive using a traditional advection-dispersion equation (ADE) because anomalous features of transport generally depend on local-scale subsurface properties. Here we develop an alternative simulation approach that solves the full nonlocal, multidimensional, spatiotemporal fractional-order ADE with variable coefficients in a Lagrangian framework using a novel non-Markovian random walk method. This model allows us to simulate anomalous plumes without the need to explicitly define local-scale heterogeneity. The simple model accurately simulates the tritium plume measured at the extensively characterized MADE test site.

  2. Compositional transport in solidifying aqueous binary solution

    NASA Astrophysics Data System (ADS)

    Zhong, Jin-Qiang; Yin, Zuo-Chao; Xue, Qiwei; Wettlaufer, John

    2013-11-01

    We observe the formation of double-diffusive layers adjacent to mushy layers that form during the directional solidification of aqueous ammonium chloride. The plumes emerging from chimney's in the mushy layers continuously supply a buoyancy flux in the (finite) liquid region above, driving downward motion of double-diffusive layers. The downward velocity of the layers is found to be in good agreement with a filling box model that captures the crucial hydrodynamics of the entraining buoyant plumes and compositional transport. We demonstrate that the buoyancy flux through the system decays according to a similarity solution. We note that the experimental findings provide some insight into the brine transport in growing sea ice.

  3. Comparison of Dissolved and Suspended Matter Transport in the Mica Creek Experimental Watershed, Northern Idaho

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Saiers, J. E.; Gravelle, J. A.

    2006-12-01

    Transport of suspended particulate material (SPM) plays a fundamental role in biogeochemical cycling within forested watershed and is a primary water quality concern in managed forests. When present in excess, SPM can degrade aquatic habitat for fish communities and disrupt the connection between surface and ground water. Although monthly and annual suspended loads are often monitored, little is known about the hydrologic transport of these particles from suspension to monitoring location. The downstream transport of suspended particles can be influenced by transient storage mechanisms, such as settling and resuspension, stagnation in side pools, exchange with the streambed or hyporheic zone, and entrapment on stream vegetation and coarse woody debris. A tracer injection experiment was performed in order to compare transport and transient storage of suspended clay-sized particles, comprised of titanium dioxide (1 - 2 μm diameter), with that of a conservative solute, bromide, under baseflow conditions. The solute and particle tracers were applied to a second-order North Idaho stream for four hours and water samples were collected at four locations downstream before, during, and after the tracer injections for analysis of bromide and TiO2 concentrations. A one- dimensional numerical model was applied in inverse mode to the measured breakthrough curve data to quantify the processes that governed solute and particle transport. The results of this analysis indicate that transient- storage processes exerted only a minor influence on the advective-dispersive transport of bromide, while TiO2 transport was influenced by advection, dispersion, sedimentation (on the stream bed and on aquatic vegetation), and slow resuspension. Results of our analysis illustrate the mechanisms and timescale of SPM transport in this watershed and provide insight into the potential response of SPM concentrations to elevated sediment inputs.

  4. The Effects of Solute Breakthrough Curve Tail Truncation on Residence Time Estimates and Mass Recovery

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Covino, T. P.; Aubeneau, A. F.; Patil, S.; Leong, D. N.; Ran, L.; Packman, A. I.; Schumer, R.

    2010-12-01

    Solute transport and hydrologic retention strongly affect biogeochemical processes that are critical to stream ecosystems. Tracer injections are used to characterize solute transport and storage in stream reaches, but the range of processes accurately resolved using this approach is not clear. The solute residence time distribution (RTD) depends on both in-stream mixing and exchange with the hyporheic zone. For shorter residence times, in-stream breakthrough curves (BTCs) can be modeled well with the classical advection-dispersion equation, whereas longer RTDs produce highly skewed in-stream BTCs for which traditional solute models are inappropriate. Observed BTCs have most commonly been modeled with in-stream advection-dispersion plus an exponential RTD, but process-based models suggest that hyporheic retention extends to much longer times and a power-law RTD is more appropriate. We synthesized results from a variety of tracer-injection studies to investigate how experimental design and tracer sensitivity influence the interpretation of tailing behavior and RTDs. We found that BTC tails are often not well observed in stream tracer experiments. The two main reasons for this are: 1) experimental truncation, which occurs when sampling ends before all tracer mass reaches the sampling location, and 2) sensitivity truncation, when tracer concentrations in the tail are too low to be detected reliably above background levels. Continuous Time Random Walk (CTRW) theory was used to determine the effects of tail truncation on tracer mass recovery and tailing behavior. Tail truncation due to both experimental and sensitivity truncation decreased mass recovery and obscured assessment of BTC tailing. Failure to consider tail truncation leads to underestimation of the retention of solutes in the streambed and subsurface (i.e., transient storage). Based on these findings, we propose criteria for stream tracer experiments to minimize tail truncation and improve inverse modeling of

  5. Analytical solutions for anomalous dispersion transport

    NASA Astrophysics Data System (ADS)

    O'Malley, D.; Vesselinov, V. V.

    2014-06-01

    Groundwater flow and transport often occur in a highly heterogeneous environment (potentially heterogeneous at multiple spatial scales) and is impacted by geochemical reactions, advection, diffusion, and other pore scale processes. All these factors can give rise to large-scale anomalous dispersive behavior that can make complex model representation and prediction of plume concentrations challenging due to difficulties unraveling all the complexities associated with the governing processes, flow medium, and their parameters. An alternative is to use upscaled stochastic models of anomalous dispersion, and this is the approach used here. Within a probabilistic framework, we derive a number of analytical solutions for several anomalous dispersion models. The anomalous dispersion models are allowed to be either non-Gaussian (α-stable Lévy), correlated, or nonstationary from the Lagrangian perspective. A global sensitivity analysis is performed to gain a greater understanding of the extent to which uncertainty in the parameters associated with the anomalous behavior can be narrowed by examining concentration measurements from a network of monitoring wells and to demonstrate the computational speed of the solutions. The developed analytical solutions are encoded and available for use in the open source computational framework MADS (http://mads.lanl.gov).

  6. Percolation and transport in a sandy soil under a natural hydraulic gradient

    USGS Publications Warehouse

    Green, C.T.; Stonestrom, D.A.; Bekins, B.A.; Akstin, K.C.; Schulz, M.S.

    2005-01-01

    [1] Unsaturated flow and transport under a natural hydraulic gradient in a Mediterranean climate were investigated with a field tracer experiment combined with laboratory analyses and numerical modeling. Bromide was applied to the surface of a sandy soil during the dry season. During the subsequent rainy season, repeated sediment sampling tracked the movement of bromide through the profile. Analysis of data on moisture content, matric pressure, unsaturated hydraulic conductivity, bulk density, and soil texture and structure provides insights into parameterization and use of the advective-dispersive modeling approach. Capturing the gross features of tracer and moisture movement with model simulations required an order-of-magnitude increase in laboratory-measured hydraulic conductivity. Wetting curve characteristics better represented field results, calling into question the routine estimation of hydraulic characteristics based only on drying conditions. Measured increases in profile moisture exceeded cumulative precipitation in early winter, indicating that gains from dew drip can exceed losses from evapotranspiration during periods of heavy ("Tule") fog. A single-continuum advective-dispersive modeling approach could not reproduce a peak of bromide that was retained near the soil surface for over 3 years. Modeling of this feature required slow exchange of solute at a transfer rate of 0.5-1 ?? 10-4 d-1 with an immobile volume approaching the residual moisture content.

  7. Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium

    NASA Astrophysics Data System (ADS)

    Zhang, Mingkan; Zhang, Ye

    2015-03-01

    A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems

  8. An analytical model for predicting transport in a coupled vadose/phreatic system

    SciTech Connect

    Tomasko, D.

    1997-05-01

    A simple analytical model is presented for predicting the transport of a contaminant in both the unsaturated (vadose) and saturated (phreatic) zones following a surficial spill. The model incorporates advection, dispersion, adsorption, and first-order decay in both zones and couples the transport processes at the water table. The governing equation is solved by using the method of Laplace transforms, with numerical inversion of the Laplace space equation for concentration. Because of the complexity of the functional form for the Laplace space solution, a numerical methodology using the real and imaginary parts of a Fourier series was implemented. To reduce conservatism in the model, dilution at the water table was also included. Verification of the model is demonstrated by its ability to reproduce the source history at the surface and to replicate appropriate one-dimensional transport through either the vadose or phreatic zone. Because of its simplicity and lack of detailed input data requirements, the model is recommended for scoping calculations.

  9. Modeling flow and solute transport in irrigation furrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...

  10. Analytical Solutions for Sequentially Reactive Transport with Different Retardation Factors

    SciTech Connect

    Sun, Y; Buscheck, T A; Mansoor, K; Lu, X

    2001-08-01

    Integral transforms have been widely used for deriving analytical solutions for solute transport systems. Often, analytical solutions can only be written in closed form in frequency domains and numerical inverse-transforms have to be involved to obtain semi-analytical solutions in the time domain. For this reason, previously published closed form solutions are restricted either to a small number of species or to the same retardation assumption. In this paper, we applied the solution scheme proposed by Bauer et al. in the time domain. Using available analytical solutions of a single species transport with first-order decay without coupling with its parent species concentration as fundamental solutions, a daughter species concentration can be expressed as a linear function of those fundamental solutions. The implementation of the solution scheme is straight forward and exact analytical solutions are derived for one- and three-dimensional transport systems.

  11. Determination of till hydraulic properties for modelling flow and solute transport in a forested hillslope

    NASA Astrophysics Data System (ADS)

    Laine-Kaulio, H.; Karvonen, T.; Koivusalo, H.; Lauren, A.; Saastamoinen, S.

    2009-04-01

    ) with Guelph permeameter in the field, iii) and by means of inverse modelling. The inverse model application was based on calibration of a one-dimensional groundwater model against data on groundwater levels in the study slope. Conductivities of the different soil horizons were adjusted to reproduce the measured groundwater levels of a recession period after artificial irrigation. Conductivity results, together with soil physical and water retention data were applied to parameterise a three-dimensional flow and advection-dispersion model. The model was used to simulate the transport of a chloride tracer plume in the study slope during artificial irrigation. A line-type irrigation source was installed upslope from the study section of the slope. Changes in groundwater levels and chloride concentrations within the study section were observed through well screens. Chloride as a conservative tracer provided an indicator for subsurface flow in the study slope. Intensive irrigation rates were applied to initiate fast lateral preferential flow. Saturated hydraulic conductivities obtained with the three methods were remarkably different. Conductivities obtained with the Guelph permeameter and the groundwater model reduced clearly with soil depth. Higher conductivities near soil surface were due to loose soil structure and preferential flowpaths. Soil core samples yielded the lowest estimates for the saturated hydraulic conductivity, as they represented the small-scale conductivity of the soil texture and soil matrix. The hillslope-scale groundwater model produced the highest estimates that characterised the large-scale structural properties and their impact on lateral preferential flow. Average saturated hydraulic conductivities in the soil core samples were 6E-6 m/s in the eluvial horizon, transition zone and subsoil, and 1E-5 m/s in the illuvial horizon. The average conductivities based on the Guelph measurements varied from 2E-5 m/s in the subsoil to 5E-5 m/s in the eluvial

  12. DCPT v1.0 - New particle tracker for modeling transport in dual-continuum - User's Manual

    SciTech Connect

    Pan, Lehua; Liu, Hui Hai; Cushey, Mark; Bodvarsson, Gudmundur

    2001-04-01

    DCPT (Dual-Continuum Particle Tracker) V1.0 is a new software for simulating solute transport in the subsurface. It is based on the random-walk method for modeling transport processes such as advection, dispersion/diffusion, linear sorption, radioactive decay, and fracture-matrix mass exchange (in fractured porous media). The user shall provide flow-field and other parameters in the form of input files. In Comparison to several analytical and numerical solutions for a number of test cases, DCPT shows excellent performance in both accuracy and efficiency. This report serves as a user's manual of DCPT V1.0. It includes theoretical basis, numerical methods, software structure, input/output description, and examples.

  13. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  14. Coprecipitation in the barite isostructural family: 2. Numerical simulations of reactions and mass transport

    NASA Astrophysics Data System (ADS)

    Zhu, Chen

    2004-08-01

    Coprecipitation of barite with trace constituents was simulated with consideration of aqueous speciation and complexation, mixing properties for the binary solid solutions (Zhu, this issue), precipitation and dissolution kinetics, and advective-dispersive transport. Speciation-solubility modeling was used to reproduce BaSO 4-RaSO 4 coprecipitation experimental results, and to calculate CrO 42- aqueous concentrations in equilibrium with a Ba(SO 4,CrO 4) solid solution. Kinetic reaction path modeling was used to simulate the coprecipitation of barite with RaSO 4 to form an onion-like chemically zoned solid upon the cooling of oil field brine. A one-dimensional coupled reactive mass transport model shows a strikingly different transport pattern for the tracer Ra 2+, when the dominant attenuation reaction is with solid solution (Ba, Ra) SO 4 as compared to the case when it is controlled by pure RaSO 4 and barite solids under local equilibrium conditions. A self-enrichment of Ra 2+ in the groundwater and aquifer solid matrix—higher concentrations of Ra 2+ downstream from the reaction front—results from the coprecipitation reaction and advective-dispersive transport. This self-enrichment process generates a secondary tracer source, which has tracer concentrations higher than that of the original source. On the other hand, coprecipitation reactions can reduce Ra 2+ concentrations in groundwater to a much lower level (below ppb) than that of pure RaSO 4(c) solubility (near ppm), which has been used to establish the Ra 2+ concentration limits in groundwater, soil, and nuclear waste repositories.

  15. Modeling two-dimensional reactive transport using a Godunov-mixed finite element method

    NASA Astrophysics Data System (ADS)

    James, Andrew I.; Jawitz, James W.

    2007-05-01

    SummaryThe development of a model to simulate transport of materials in variable-depth flows is discussed. The model numerically approximates solutions to the advection-dispersion-reaction equation using a time-splitting technique where the advective, dispersive, and reactive parts of the equation are solved separately. An explicit finite-volume Godunov method is used to approximate the advective part while a hybridized mixed finite element method is used to solve for the dispersive step. A backward Euler method is used to solve the reactive component. Rather than solving each component once at each time step, the advective and reactive steps are fractionally and symmetrically split around the dispersive step, so that half of a reactive and advective step are solved before and after each dispersive step. Since the dispersive step is implicit, but computationally expensive, while the advective step is explicit but has time step constraints, this allows stable and more efficient schemes to be implemented in contrast to non-split or simple time-split algorithms. This technique allows problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, to be solved without oscillations in the solution and with virtually no artificial diffusion. By applying the technique to variable depth flows, a variety of applications to transport and reaction problems in surface water and unconfined aquifers can be undertaken. Numerical results for several non-reactive and reactive transport problems in one- and two-dimensions are presented. Observed convergence rates are up to second-order for these simulations.

  16. A quasilinear model for solute transport under unsaturated flow

    SciTech Connect

    Houseworth, J.E.; Leem, J.

    2009-05-15

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  17. Innovative Solutions to Challenges in Pupil Transportation.

    ERIC Educational Resources Information Center

    Ross, Jonathan; Burkybile, Sharon

    2000-01-01

    States have had to budget increasing amounts for mandated pupil-transportation services as their state transportation aid has been slashed dramatically. Among school districts, cooperation and coordination through shared services (consortia) have resulted in safer, more reliable, and more efficient transportation. Implementation advice is…

  18. Solute transporters in plant thylakoid membranes

    PubMed Central

    Schoefs, Benoît

    2010-01-01

    Plants utilize sunlight to drive photosynthetic energy conversion in the chloroplast thylakoid membrane. Here are located four major photosynthetic complexes, about which we have great knowledge in terms of structure and function. However, much less we know about auxiliary proteins, such as transporters, ensuring an optimum function and turnover of these complexes. The most prominent thylakoid transporter is the proton-translocating ATP-synthase. Recently, four additional transporters have been identified in the thylakoid membrane of Arabidopsis thaliana, namely one copper-transporting P-ATPase, one chloride channel, one phosphate transporter, and one ATP/ADP carrier. Here, we review the current knowledge on the function and physiological role of these transporters during photosynthesis and light stress in plants. Subsequently, we make a survey on the outlook of thylakoid activities awaiting identification of responsible proteins. Such knowledge is necessary to understand the thylakoid network of transporters, and to design strategies for bioengineering crop plants in the future. PMID:20585503

  19. CHROMIUM TRANSPORT, OXIDATION, AND ADSORPTION IN MANGANESE-COATED SAND

    EPA Science Inventory

    We examine how the processes of advection, dispersion, oxidation-reduction, and adsorption combine to affect the transport of chromium through columns packed with pyrolusite (P-MnO$-coated sand. We find that P-Mn02 effectively oxidizes Cr@I) to Cr(VI) and that the extent of oxida...

  20. Biological solutions to transport network design.

    PubMed

    Bebber, Daniel P; Hynes, Juliet; Darrah, Peter R; Boddy, Lynne; Fricker, Mark D

    2007-09-22

    Transport networks are vital components of multicellular organisms, distributing nutrients and removing waste products. Animal and plant transport systems are branching trees whose architecture is linked to universal scaling laws in these organisms. In contrast, many fungi form reticulated mycelia via the branching and fusion of thread-like hyphae that continuously adapt to the environment. Fungal networks have evolved to explore and exploit a patchy environment, rather than ramify through a three-dimensional organism. However, there has been no explicit analysis of the network structures formed, their dynamic behaviour nor how either impact on their ecological function. Using the woodland saprotroph Phanerochaete velutina, we show that fungal networks can display both high transport capacity and robustness to damage. These properties are enhanced as the network grows, while the relative cost of building the network decreases. Thus, mycelia achieve the seemingly competing goals of efficient transport and robustness, with decreasing relative investment, by selective reinforcement and recycling of transport pathways. Fungal networks demonstrate that indeterminate, decentralized systems can yield highly adaptive networks. Understanding how these relatively simple organisms have found effective transport networks through a process of natural selection may inform the design of man-made networks. PMID:17623638

  1. Solute Transport Across a Contact Interface in Deformable Porous Media

    PubMed Central

    Ateshian, Gerard A.; Maas, Steve; Weiss, Jeffrey A.

    2012-01-01

    A finite element formulation of neutral solute transport across a contact interface between deformable porous media is implemented and validated against analytical solutions. By reducing the integral statements of external virtual work on the two contacting surfaces into a single contact integral, the algorithm automatically enforces continuity of solute molar flux across the contact interface, whereas continuity of the effective solute concentration (a measure of the solute mechano-chemical potential) is achieved using a penalty method. This novel formulation facilitates the analysis of problems in biomechanics where the transport of metabolites across contact interfaces of deformable tissues may be of interest. This contact algorithm is the first to address solute transport across deformable interfaces, and is made available in the public domain, open-source finite element code FEBio (http://mrl.sci.utah.edu/software). PMID:22281406

  2. Solute transport across a contact interface in deformable porous media.

    PubMed

    Ateshian, Gerard A; Maas, Steve; Weiss, Jeffrey A

    2012-04-01

    A finite element formulation of neutral solute transport across a contact interface between deformable porous media is implemented and validated against analytical solutions. By reducing the integral statements of external virtual work on the two contacting surfaces into a single contact integral, the algorithm automatically enforces continuity of solute molar flux across the contact interface, whereas continuity of the effective solute concentration (a measure of the solute mechano-chemical potential) is achieved using a penalty method. This novel formulation facilitates the analysis of problems in biomechanics where the transport of metabolites across contact interfaces of deformable tissues may be of interest. This contact algorithm is the first to address solute transport across deformable interfaces, and is made available in the public domain, open-source finite element code FEBio (http://www.febio.org). PMID:22281406

  3. Electrokinetic induced solute dispersion in porous media; pore network modeling

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Schotting, Ruud; Raoof, Amir

    2013-04-01

    Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.

  4. Transport of Organic Solutes in Clay Formations

    EPA Science Inventory

    The research is a pilot investigation for the SERDP (Strategic Environmental Research and Development Program, DoD) founded project, Impact of Clay-DNAPL Interactions on Transport and Storage of Chlorinated Solvents in Low Permeability Zones, from 2010-2012. The report tries to s...

  5. Towards a transport approach that acknowledges mixing and dispersion.

    NASA Astrophysics Data System (ADS)

    Carrera, J.; soler Sagarra, J.; de Dreuzy, J. R.; Dentz, M.

    2014-12-01

    It is generally accepted that the Advection-Dispersion Equation (ADE) is a poor representation of transport for problems beyond assessing the extent of a solute plume. Specifically, mixing must be honored for proper assessment of chemical reactions. Therefore, it is necessary to develop a transport approach that acknowledges dispersion (for adequate representation of solute spreading) and mixing (for adequate representation of chemical reactions). Non-local in time solute transport formulations have been considered a hopeful alternative to the ADE because they overcome many of its limitations. We have computed the deviation from gaussian mixing obtained in transport through highly heterogeneous media and compared it with that of non-local in time formulations. We find that these underestimate such deviation. Therefore, they are not sufficient; more sophisticated approaches are needed. An appealing option is to extend non-locality also to space, but this opens a broad range of possibilities. We explore some non-local in space and time formulations, so as to define the constraints that these must meet in order to be valid representations (valid in the sense of reproducing the actual spreading and mixing rates) of solute transport through heterogeneous media.

  6. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    SciTech Connect

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  7. Future variability of solute transport in a macrotidal estuary

    NASA Astrophysics Data System (ADS)

    Robins, Peter E.; Lewis, Matt J.; Simpson, John H.; Howlett, Eleanor R.; Malham, Shelagh K.

    2014-12-01

    The physical controls on salt distribution and river-sourced conservative solutes, including the potential implications of climate change, are investigated referring to model simulations of a macrotidal estuary. In the UK, such estuaries typically react rapidly to rainfall events and, as such, are often in a state of non-equilibrium in terms of solute transport; hence are particularly sensitive to climate extremes. Sea levels are projected to rise over the 21st century, extending the salinity maximum upstream in estuaries, which will also affect downstream solute transport, promoting estuarine trapping and reducing offshore dispersal of material. Predicted 'drier summers' and 'wetter winters' in the UK will influence solute transport further still; we found that projected river flow climate changes were more influential than sea-level rise, especially for low flow conditions. Our simulations show that projected climate change for the UK is likely to increase variability in estuarine solute transport and, specifically, increase the likelihood of estuarine trapping during summer, mainly due to drier weather conditions. Future changes in solute transport were less certain during winter, since increased river flow will to some extent counter-act the effects of sea-level rise. Our results have important implications for non-conservative nutrient transport, water quality, coastal management and ecosystem resilience.

  8. DECAY OF DISSOLVED SUBSTANCES BY SECOND-ORDER REACTION: PROBLEM DESCRIPTION AND BATCH-REACTOR SOLUTIONS

    EPA Science Inventory

    The mass transport (advection-dispersion) equations allowing coupled second-order reaction (i.e. Omega sub 1, C sub 1) + (omega sub 2, C sub 2) (R sub 12) -> Re) between two constituents are derived and result in a set of coupled nonlinear partial differential equations. Neglecti...

  9. Modeling the adsorption of Cr(III) from aqueous solution onto Agave lechuguilla biomass: study of the advective and dispersive transport.

    PubMed

    Romero-González, J; Walton, J C; Peralta-Videa, J R; Rodríguez, E; Romero, J; Gardea-Torresdey, J L

    2009-01-15

    The biosorption of Cr(III) onto packed columns of Agave lechuguilla was analyzed using an advective-dispersive (AD) model and its analytical solution. Characteristic parameters such as axial dispersion coefficients, retardation factors, and distribution coefficients were predicted as functions of inlet ion metal concentration, time, flow rate, bed density, cross-sectional column area, and bed length. The root-mean-square-error (RMSE) values 0.122, 0.232, and 0.285 corresponding to the flow rates of 1, 2, and 3 (10(-3))dm3min(-1), respectively, indicated that the AD model provides an excellent approximation of the simulation of lumped breakthrough curves for the adsorption of Cr(III) by lechuguilla biomass. Therefore, the model can be used for design purposes to predict the effect of varying operational conditions. PMID:18462882

  10. Effects of Soil Behavior on Solute Transport in Groundwater

    NASA Astrophysics Data System (ADS)

    Jeng, Dong-Sheng; Zhang, Huijie

    2010-05-01

    The evaluation of solute transport in groundwater is particularly important for environmental engineers involved in the design of urban environments. In general, the simulation of solute transport in porous medium has been linked with fluid flow, which has commonly based on Darcy law. Unlike previous work, we use a more generalized fluid flow model with poro-elastic theory, in which Darcy model is one of its special cases. The new feature of the new model is the inclusion of soil characteristics and behavior in the prediction of solute transport in aquifers. Based on the new model, numerical example demonstrates significant influence of poro-elastic soil behavior on the movement of zone of peak concentration of solute in groundwater.

  11. Semianalytical solutions of radioactive or reactive transport invariably-fractured layered media: 1. Solutes

    SciTech Connect

    Moridis, George J.

    2001-10-10

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.

  12. Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

    SciTech Connect

    George J. Moridis

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.

  13. End-Member Formulation of Solid Solutions and Reactive Transport

    SciTech Connect

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  14. Insights into non-Fickian solute transport in carbonates

    PubMed Central

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J

    2013-01-01

    [1] We study and explain the origin of early breakthrough and long tailing plume behavior by simulating solute transport through 3-D X-ray images of six different carbonate rock samples, representing geological media with a high degree of pore-scale complexity. A Stokes solver is employed to compute the flow field, and the particles are then transported along streamlines to represent advection, while the random walk method is used to model diffusion. We compute the propagators (concentration versus displacement) for a range of Peclet numbers (Pe) and relate it to the velocity distribution obtained directly on the images. There is a very wide distribution of velocity that quantifies the impact of pore structure on transport. In samples with a relatively narrow spread of velocities, transport is characterized by a small immobile concentration peak, representing essentially stagnant portions of the pore space, and a dominant secondary peak of mobile solute moving at approximately the average flow speed. On the other hand, in carbonates with a wider velocity distribution, there is a significant immobile peak concentration and an elongated tail of moving fluid. An increase in Pe, decreasing the relative impact of diffusion, leads to the faster formation of secondary mobile peak(s). This behavior indicates highly anomalous transport. The implications for modeling field-scale transport are discussed. Citation: Bijeljic, B., P. Mostaghimi, and M. J. Blunt (2013), Insights into non-Fickian solute transport in carbonates, Water Resour. Res., 49, 2714–2728, doi:10.1002/wrcr.20238. PMID:24223444

  15. A KINETIC MODEL FOR CELL DENSITY DEPENDENT BACTERIAL TRANSPORT IN POROUS MEDIA

    EPA Science Inventory

    A kinetic transport model with the ability to account for variations in cell density of the aqueous and solid phases was developed for bacteria in porous media. Sorption kinetics in the advective-dispersive-sorptive equation was described by assuming that adsorption was proportio...

  16. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    PubMed Central

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2–4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241–251), computations predict that 60–80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model

  17. Molecular level water and solute transport in reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  18. Analytical model of solute transport by unsteady unsaturated gravitational infiltration.

    PubMed

    Lessoff, S C; Indelman, P

    2004-08-01

    Penetration of reactive solute into a soil during a cycle of water infiltration and redistribution is investigated by deriving analytical closed form solutions for fluid flux, moisture content and contaminant concentration. The solution is developed for gravitational flow and advective transport and is applied to two scenarios of solute applications encountered in the applications: a finite pulse of solute dissolved in irrigation water and an instantaneous pulse broadcasted onto the soil surface. Through comparison to simulations of Richards' flow, capillary suction is shown to have contrasting effects on the upper and lower boundaries of the fluid pulse, speeding penetration of the wetting front and reducing the rate of drying. This leads to agreement between the analytical and numerical solutions for typical field and experimental conditions. The analytical solution is further incorporated into a stochastic column model of flow and transport to compute mean solute concentration in a heterogeneous field. An unusual phenomenon of plume contraction is observed at long times of solute propagation during the drying stage. The mean concentration profiles match those of the Monte-Carlo simulations for capillary length scales typical of sandy soils. PMID:15240168

  19. Influence of surfactants on unsaturated water flow and solute transport

    NASA Astrophysics Data System (ADS)

    Karagunduz, Ahmet; Young, Michael H.; Pennell, Kurt D.

    2015-04-01

    Surfactants can reduce soil water retention by changing the surface tension of water and the contact angle between the liquid and solid phases. As a result, water flow and solute transport in unsaturated soil may be altered in the presence of surfactants. In this study, the effects of a representative nonionic surfactant, Triton X-100, on coupled water flow and nonreactive solute transport during unsaturated flow conditions were evaluated. Batch reactor experiments were conducted to measure the surfactant sorption characteristics, while unsaturated transport experiments were performed in columns packed with 40-270 mesh Ottawa sand at five initial water contents. Following the introduction of surfactant solution, the rate of water percolation through the sand increased; however, this period of rapid water drainage was followed by decreased water percolation due to the reduction in soil water content and the corresponding decrease in unsaturated hydraulic conductivity behind the surfactant front. The observed changes in water percolation occurred sequentially, and resulted in faster nonreactive solute transport than was observed in the absence of surfactant. A one-dimensional mathematical model accurately described coupled water flow, surfactant, and solute transport under most experimental conditions. Differences between model predictions and experimental data were observed in the column study performed at the lowest water content (0.115 cm3/cm3), which was attributed to surfactant adsorption at the air-water interface. These findings demonstrate the potential influence of surfactants additives on unsaturated water flow and solute transport in soils, and demonstrate a methodology to couple these processes in a predictive modeling tool.

  20. The secret to successful solute-transport modeling.

    PubMed

    Konikow, Leonard F

    2011-01-01

    Modeling subsurface solute transport is difficult-more so than modeling heads and flows. The classical governing equation does not always adequately represent what we see at the field scale. In such cases, commonly used numerical models are solving the wrong equation. Also, the transport equation is hyperbolic where advection is dominant, and parabolic where hydrodynamic dispersion is dominant. No single numerical method works well for all conditions, and for any given complex field problem, where seepage velocity is highly variable, no one method will be optimal everywhere. Although we normally expect a numerically accurate solution to the governing groundwater-flow equation, errors in concentrations from numerical dispersion and/or oscillations may be large in some cases. The accuracy and efficiency of the numerical solution to the solute-transport equation are more sensitive to the numerical method chosen than for typical groundwater-flow problems. However, numerical errors can be kept within acceptable limits if sufficient computational effort is expended. But impractically long simulation times may promote a tendency to ignore or accept numerical errors. One approach to effective solute-transport modeling is to keep the model relatively simple and use it to test and improve conceptual understanding of the system and the problem at hand. It should not be expected that all concentrations observed in the field can be reproduced. Given a knowledgeable analyst, a reasonable description of a hydrogeologic framework, and the availability of solute-concentration data, the secret to successful solute-transport modeling may simply be to lower expectations. PMID:21039449

  1. Transport in disordered media with spatially nonuniform fields.

    PubMed

    Scher, Harvey; Willbrand, Karen; Berkowitz, Brian

    2010-03-01

    The theoretical treatment of transport in a disordered system in the presence of a system-wide force field F(x) or spatially varying macroscopic velocity field v(x) is developed in the framework of continuous time random walk (CTRW). The physical basis of CTRW and related fractional derivative equations relies on a mapping of the aggregate of transition rates w(s,s'), between sites s and s', in the Master equation describing the system kinetics, onto a joint probability distribution function psi(s,t). This distribution is calculated from the ensemble average of a position-dependent functional of w(s,s'); the procedure is effective when the scale of heterogeneities is much smaller than the system size. However, statistical homogeneity does not hold in the presence of large heterogeneities, which control the macroscopic v(x), or in the case of an interaction of F(x) with the transition rates. The transport equation, incorporating large-scale heterogeneity, involves the use of a local ensemble average to obtain a position-dependent psi(s,t;x); this determines a memory function, M(t;x), which is convoluted with the advection-dispersion operator. A prototype transport equation for a system with statistical inhomogeneity is developed as an integrodifferential equation. It is solved numerically for particles migrating with a steady-state Darcy velocity v(x , determined for different permeability fields and boundary conditions. The nature of the solutions as a function of key transport parameters (e.g., a characteristic time tc) is explored, and solutions are also compared to those of the advection-dispersion equation for v(x) and to a laboratory experiment. This transport equation is in contrast to the fractional Fokker-Planck equation, which is based on a decoupling of F(x) or v(x) with the transition rates w(s,s'). Further, an analytic expression for the effect of a variance of the ensemble average on the solution of the CTRW transport equation is derived. PMID:20365692

  2. On diagonalization of coupled hydrologic transport and geochemical reaction equations

    SciTech Connect

    Yeh, Gour-Tsyh; Cheng, Hwai-Ping

    1996-12-31

    Two basic ingredients present in modeling the transport of reactive multi-components: the transport is described by a set of advection-dispersion-reactive partial differential equations (PDEs) based on the principle of mass balance; the chemical reactions, under the assumptions of local equilibrium, are described by a set of highly nonlinear algebraic equations (AEs) base on the principles of mole balance and mass action. For a typical application, the complete set of nonlinear PDEs and AEs consist of more than one hundred simultaneous equations. Thus, it is impractical to solve this set of equations simultaneously. General practice is to divide this set of equations into two subsets: one is the primary governing equations (PGEs) consisting of mainly the transport equations and the other one is the secondary governing equations consisting of mainly the geochemical reaction equations. The PGEs are solved for the chosen primary dependent variables (PDVs) and the SGEs are used to compute for the secondary dependent variables (SDVs). The major difficulties in simulating the reactive transport is the numerical solution of PGEs. From the computational point of view, the solution of the set of highly nonlinear PDEs are solved either with the direct substitution approach (DSA) or with the sequential iteration approach (SIA). For DSA, geochemical equilibrium reaction equations are substituted into the hydrologic transport equations to results in a set of nonlinear partial differential equations.

  3. A fracture network model for water flow and solute transport

    SciTech Connect

    Robinson, B.A.

    1989-01-01

    This paper summarizes code development work and sample calculations for FRACNET, a two-dimensional steady state simulator of fluid flow and solute transport in fractured porous media. The model analyzes flow and transport by generating a fracture network based on statistical characteristics of fractures obtained from well logs and other data. After a network is generated, flow and tracer transport are computed for appropriate boundary conditions and wellbore source/sink terms. In addition, for a given realization, the code can be used to indicate whether the medium can be treated as an equivalent porous medium. 18 refs., 7 figs.

  4. Solute transport along preferential flow paths in unsaturated fractures

    USGS Publications Warehouse

    Su, G.W.; Geller, J.T.; Pruess, K.; Hunt, J.R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock-replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors-in-series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  5. Dispersion of solutes in porous media

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.; Skinner, T. E.; Ewing, R. P.; Ghanbarian-Alavijeh, B.

    2011-04-01

    A recently introduced theory of solute transport in porous media is tested by comparison with experiment. The solute transport is predicted using an adaptation of the cluster statistics of percolation theory to critical path analysis together with knowledge of how the structure of such percolation clusters affects the time of transport across them. Only the effects of a single scale of medium heterogeneity are incorporated, and a minimal amount of information regarding the structure of the medium is required. This framework is used to find effectively the distributions of solute velocities and travel distances and thus generate arrival time distributions. The comparison with experiment focuses on the dispersivity (the ratio of the second to the first moment of the spatial solute distribution). The predictions of the theory in the absence of diffusion are verified by comparing with over 2200 experiments over length scales from a few microns to 100 km. At larger length scales (centimeters on up) about 95% of the data lie within our predicted bounds. At smaller length scales approximately 99.8% of the data lie where we predict. These comparisons are not trivial as the typical values of the dispersivity increase by ten orders of magnitude over ten orders of magnitude of length scale. Noteworthy is that the classical advection-dispersion (ADE) equation predicts that the dispersivity should be independent of length scale! This agreement with experiment requires rethinking of the relevance of diffusion and multi-scale heterogeneity and would also appear to signal the complete inappropriateness of using the classical ADE or any of its derivatives to model solute transport.

  6. Insights into non-Fickian solute transport in carbonates

    NASA Astrophysics Data System (ADS)

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J.

    2013-05-01

    We study and explain the origin of early breakthrough and long tailing plume behavior by simulating solute transport through 3-D X-ray images of six different carbonate rock samples, representing geological media with a high degree of pore-scale complexity. A Stokes solver is employed to compute the flow field, and the particles are then transported along streamlines to represent advection, while the random walk method is used to model diffusion. We compute the propagators (concentration versus displacement) for a range of Peclet numbers (Pe) and relate it to the velocity distribution obtained directly on the images. There is a very wide distribution of velocity that quantifies the impact of pore structure on transport. In samples with a relatively narrow spread of velocities, transport is characterized by a small immobile concentration peak, representing essentially stagnant portions of the pore space, and a dominant secondary peak of mobile solute moving at approximately the average flow speed. On the other hand, in carbonates with a wider velocity distribution, there is a significant immobile peak concentration and an elongated tail of moving fluid. An increase in Pe, decreasing the relative impact of diffusion, leads to the faster formation of secondary mobile peak(s). This behavior indicates highly anomalous transport. The implications for modeling field-scale transport are discussed.

  7. Effect of proteolytic enzymes on transepithelial solute transport

    SciTech Connect

    Niewoehner, D.E.; Sinha, A.A.; Rice, K.; Cadman, S.; Wangensteen, D.

    1986-10-01

    The effects of proteases on air-space clearance (AC) of small ((/sup 14/C)sucrose, 342 daltons) and large (/sup 125/I-neutral dextran, 70,000 daltons) solutes were studied in isolated, fluid-filled hamster lungs that were perfused in a nonrecirculating system. When instilled into the air spaces, porcine pancreatic elastase (0.1-0.4 mg/ml) and bovine pancreatic trypsin (BPT) (0.5-2.0 mg/ml), but neither Clostridium histolyticum collagenase (5.0 mg/ml) nor phenylmethylsulfonyl fluoride-inactivated BPT caused large increases in the AC of both tracer molecules. BPT-induced solute clearance was further characterized functionally and morphologically. The functional characteristics of solute AC under steady-state conditions did not indicate that transepithelial transport was diffusion-limited. Inhibition by millimolar concentrations of Zn/sup 2 +/ and by lung cooling, along with electron microscopic studies employing horseradish peroxidase as a macromolecule tracer, were consistent with epithelial solute transport by a vesicular mechanism (transcytosis). Solute transport from the interstitial compartment to the lung exterior was shown to occur via two pathways. By unknown mechanisms BPT caused small amounts of water to flow through an incompletely identified, extravascular pathway. In BPT-exposed lungs efflux of /sup 125/I-dextran 70 occurred almost exclusively through this pathway, whereas (/sup 14/C)sucrose was transported to the lung exterior partly through this same pathway and partly through the vasculature. The large differences in the diffusion coefficients of the two tracers may have accounted for these observed patterns of solute efflux from the lung. The possible significance of our findings to the pathogenesis of experimental emphysema are discussed.

  8. Simulation of transportation of low enriched uranium solutions

    SciTech Connect

    Hope, E.P.; Ades, M.J.

    1996-08-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes.

  9. Modeling reactive geochemical transport of concentrated aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2005-02-01

    Aqueous solutions with ionic strength larger than 1 M are usually considered concentrated aqueous solutions. These solutions can be found in some natural systems and are also industrially produced and released into accessible natural environments, and as such, they pose a big environmental problem. Concentrated aqueous solutions have unique thermodynamic and physical properties. They are usually strongly acidic or strongly alkaline, with the ionic strength possibly reaching 30 M or higher. Chemical components in such solutions are incompletely dissociated. The thermodynamic activities of both ionic and molecular species in these solutions are determined by the ionic interactions. In geological media the problem is further complicated by the interactions between the solutions and sediments and rocks. The chemical composition of concentrated aqueous solutions when migrating through the geological media may be drastically altered by these strong fluid-rock interactions. To effectively model reactive transport of concentrated aqueous solutions, we must take into account the ionic interactions. For this purpose we substantially extended an existing reactive transport code, BIO-CORE2D©, by incorporating a Pitzer ion interaction model to calculate the ionic activity. In the present paper, the model and two test cases of the model are briefly introduced. We also simulate a laboratory column experiment in which the leakage of highly alkaline waste fluid stored at Hanford (a U.S. Department of Energy site, located in Washington State) was studied. Our simulation captures the measured pH evolution and indicates that all the reactions controlling the pH evolution, including cation exchanges and mineral dissolution/precipitation, are coupled.

  10. Heterogeneous solute transport in a tile-drained field

    NASA Astrophysics Data System (ADS)

    Basile, A.; Comegna, A.; Coppola, A.; Hassan, S.; Haikal, M. A.; Kassab, M.; Lamaddalena, N.

    2009-04-01

    Preferential flow and its diverse attributes: i) macropore flow; ii) fingered flow; iii) funnel flow, cannot be described by a single process hypothesis and are unpredictable from a priori analysis of field characteristics due to the inability of sampling methods to capture minute features triggering such flows. Most solute transport techniques are expensive and require extensive soil disturbance. Moreover, solute transport in heterogeneous porous media cannot always be conceptualized as being either a convective-dispersive or a stochastic-convective process. One approach to predict subsurface leaching could be the coupling of near surface measurements with a generalized transport model. A steady state field tracer experiment was conducted on a tile-drained "Terra Rossa" plot located in Valenzano (Bari - Italy), to test whether TDR BTCs measured 1 m a part along a transect of 40 m can be used in such a way for accurate prediction of tile's BTC. A Generalized Transfer Function (GTF) (Zhang, 2000) was fitted to the observed concentration a three depths for each site along the transect to identify the transfer function parameters. To account for vertical transport in the unsaturated zone and lateral divergence near the tile, these parameters were used in a 2D model (Utermann, 1990) to predict earlier breakthrough of tile flux concentration. The 2D model predictions of the flux concentrations were similar to the observed values, nearly reproducing the channel-like nature of solute flow.

  11. Conservative and reactive solute transport in constructed wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.; McKnight, Diane M.; Wass, R.D.

    2004-01-01

    The transport of bromide, a conservative tracer, and rhodamine WT (RWT), a photodegrading tracer, was evaluated in three wastewater-dependent wetlands near Phoenix, Arizona, using a solute transport model with transient storage. Coupled sodium bromide and RWT tracer tests were performed to establish conservative transport and reactive parameters in constructed wetlands with water losses ranging from (1) relatively impermeable (15%), (2) moderately leaky (45%), and (3) significantly leaky (76%). RWT first-order photolysis rates and sorption coefficients were determined from independent field and laboratory experiments. Individual wetland hydraulic profiles influenced the extent of transient storage interaction in stagnant water areas and consequently RWT removal. Solute mixing and transient storage interaction occurred in the impermeable wetland, resulting in 21% RWT mass loss from main channel and storage zone photolysis (10%) and sorption (11%) reactions. Advection and dispersion governed solute transport in the leaky wetland, limiting RWT photolysis removal (1.2%) and favoring main channel sorption (3.6%). The moderately leaky wetland contained islands parallel to flow, producing channel flow and minimizing RWT losses (1.6%).

  12. Long-Term Transport of Cryptosporidium Parvum

    NASA Astrophysics Data System (ADS)

    Andrea, C.; Harter, T.; Hou, L.; Atwill, E. R.; Packman, A.; Woodrow-Mumford, K.; Maldonado, S.

    2005-12-01

    The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Subsurface transport and filtration in natural and artificial porous media are important components of the environmental pathway of this pathogen. It has been shown that the oocysts of C. parvum show distinct colloidal properties. We conducted a series of laboratory studies on sand columns (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). Breakthrough curves were measured over relatively long time-periods (hundreds to thousands of pore volumes). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough, but it is inadequate to explain the significant tailing observed in the breakthrough of C. parvum oocyst through sand columns. We discuss the application of the Continuous Time Random Walk approach to account for the strong tailing that was observed in our experiments. The CTRW is generalized transport modeling framework, which includes the classic advection-dispersion equation (ADE), the fractional ADE, and the multi-rate mass transfer model as special cases. Within this conceptual framework, it is possible to distinguish between the contributions of pore-scale geometrical (physical) disorder and of pore-scale physico-chemical heterogeneities (e.g., of the filtration, sorption, desorption processes) to the transport of C. parvum oocysts.

  13. Stochastic analysis of transport of conservative solutes in caisson experiments

    SciTech Connect

    Dagan, G.

    1995-02-01

    The Los Alamos National Laboratory has conducted in the past a series of experiments of transport of conservative and reactive solutes. The experimental setup and the experimental results are presented in a series of reports. The main aim of the experiments was to validate models of transport of solutes in unsaturated flow at the caisson intermediate scale, which is much larger than the one pertaining to laboratory columns. First attempts to analyze the experimental results were by one-dimensional convective-dispersion models. These models could not explain the observed solute breakthrough curves and particularly the large solute dispersion in the caisson effluent Since there were some question marks about the uniformity of water distribution at the caisson top, the transport experiments were repeated under conditions of saturated flow. In these experiments constant heads were applied at the top and the bottom of the caisson and the number of concentration monitoring stations was quadrupled. The analysis of the measurements by the same one-dimensional model indicated clearly that the fitted dispersivity is much larger than the pore-sole dispersivity and that it grows with the distance in an approximately linear fashion. This led to the conclusion, raised before, that transport in the caisson is dominated by heterogeneity effects, i.e. by spatial variability of the material Such effects cannot be captured by traditional one-dimensional models. In order to account for the effect of heterogeneity, the saturated flow experiments have been analyzed by using stochastic transport modeling. The apparent linear growth of dispersivity with distance suggested that the system behaves like a stratified one. Consequently, the model of Dagan and Bresier has been adopted in order to interpret concentration measurements. In this simple model the caisson is viewed as a bundle of columns of different permeabilities, which are characterized by a p.d.f. (probability denasity function).

  14. Generic transport coefficients of a confined electrolyte solution.

    PubMed

    Yoshida, Hiroaki; Mizuno, Hideyuki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-11-01

    Physical parameters characterizing electrokinetic transport in a confined electrolyte solution are reconstructed from the generic transport coefficients obtained within the classical nonequilibrium statistical thermodynamic framework. The electro-osmotic flow, the diffusio-osmotic flow, the osmotic current, as well as the pressure-driven Poiseuille-type flow, the electric conduction, and the ion diffusion are described by this set of transport coefficients. The reconstruction is demonstrated for an aqueous NaCl solution between two parallel charged surfaces with a nanoscale gap, by using the molecular dynamic (MD) simulations. A Green-Kubo approach is employed to evaluate the transport coefficients in the linear-response regime, and the fluxes induced by the pressure, electric, and chemical potential fields are compared with the results of nonequilibrium MD simulations. Using this numerical scheme, the influence of the salt concentration on the transport coefficients is investigated. Anomalous reversal of diffusio-osmotic current, as well as that of electro-osmotic flow, is observed at high surface charge densities and high added-salt concentrations. PMID:25493746

  15. Generic transport coefficients of a confined electrolyte solution

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Mizuno, Hideyuki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-11-01

    Physical parameters characterizing electrokinetic transport in a confined electrolyte solution are reconstructed from the generic transport coefficients obtained within the classical nonequilibrium statistical thermodynamic framework. The electro-osmotic flow, the diffusio-osmotic flow, the osmotic current, as well as the pressure-driven Poiseuille-type flow, the electric conduction, and the ion diffusion are described by this set of transport coefficients. The reconstruction is demonstrated for an aqueous NaCl solution between two parallel charged surfaces with a nanoscale gap, by using the molecular dynamic (MD) simulations. A Green-Kubo approach is employed to evaluate the transport coefficients in the linear-response regime, and the fluxes induced by the pressure, electric, and chemical potential fields are compared with the results of nonequilibrium MD simulations. Using this numerical scheme, the influence of the salt concentration on the transport coefficients is investigated. Anomalous reversal of diffusio-osmotic current, as well as that of electro-osmotic flow, is observed at high surface charge densities and high added-salt concentrations.

  16. Calculation of solute transport parameters from the breakthrough experimental data using solute transport models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, a two-parameter partial differential equation has been used to describe the one-dimensional convective-dispersive transport of chemicals in field soils. The parameters in this equation include the dispersion coefficient and a distribution coefficient, the latter accounting for interac...

  17. Scaling and predicting solute transport processes in riverine ecosystems

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinzon, R.; Haggerty, R.; Camacho Botero, L. A.

    2012-12-01

    In the last three decades, research on solute transport and nutrient processing has revealed complex interactions between landscapes and stream ecosystems, and numerous attempts to scale and predict these processes have been primarily limited by the difficulty of measuring and extrapolating hydrodynamic and geomorphic characteristics. We hypothesize that there should be predictable patterns in the way that streams interact with their landscapes, because those interactions are in the form of energy, mass and momentum, which are conservative and interrelated properties. Therefore, despite local hydrogeomorphic characteristics define the actual extent of solute transport processes in a given riverine ecosystem, the physical imprints marked-up in breakthrough curves (BTCs) should have scaling properties. To evaluate our hypothesis we created an extensive database that includes 133 BTCs from conservative tracer experiments conducted under different hydrologic conditions (1 lt/s to 1197 m3/s), different experimental conditions (10s of meters to 10s of kilometers), different geographic positions (South and North America, Europe, Australia, Antarctica), and different types of lotic environments, i.e., urban manmade channels, forested headwater streams, desert-like streams, hyporheic wells, and major rivers. We investigated the existence of patterns in conservative solute transport using a model-independent approach, i.e., temporal moments of the histories of tracer experiments. Our results show that the normalized first absolute moment is correlated with the second and third moments with R2>0.99 for all riverine ecosystems. Most importantly, the first central temporal moment of the distributions (mean travel time) is correlated with the second (variance) with an R2>0.93, and the correlation between the second central moment and the third central moment (skewness) takes the form of the coefficient of skewness (CSK) with an R2>0.98, defining a statistically averaged CSK= 1

  18. Radial reactive solute transport in an aquifer-aquitard system

    NASA Astrophysics Data System (ADS)

    Wang, Quanrong; Zhan, Hongbin

    2013-11-01

    Radial reactive transport is investigated in an aquifer-aquitard system considering the important processes such as advection, radial and vertical dispersions for the aquifer, vertical advection and dispersion for the aquitards, and first-order biodegradation or radioactive decay. We solved the coupled governing equations of transport in the aquifer and the aquitards by honoring the continuity of concentration and mass flux across the aquifer-aquitard interfaces and recognizing the concentration variation along the aquifer thickness. This effort improved the averaged-approximation (AA) model, which dealt with radial dispersion in an aquifer-aquitard system by excluding the aquitard advection. To compare with our new solution, we expanded the AA model by including the aquitard advection. The expanded AA model considerably overestimated the mass in the upper aquitard when an upward advection existed there. The rates of mass change in the upper aquitard from the new solution and the AA model solution increased with time following sub-linear fashions. The times corresponding to the peak values of the residence time distributions for the AA model, the expanded AA model, and the new model were almost the same. The residence time distributions seemed to follow the Maxwell-Boltzmann distribution closely when plotting the time in logarithmic scale. In addition, we developed a finite-element COMSOL Multiphysics simulation of the problem, and found that the COMSOL solution agreed with the new solution well.

  19. EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT

    SciTech Connect

    Flach, G.

    2012-02-27

    The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose of this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a lower (effective) porosity. Likewise, discarding the solid portion of the non-participating volume inherently leads to a lower or effective bulk density. In the author's experience, practitioners virtually never adjust bulk density when adopting the effective porosity approach.

  20. Some Exact Solutions in Energy Dependent Transport Theory

    NASA Astrophysics Data System (ADS)

    Williams, M. M. R.

    1980-01-01

    Some exact solutions are obtained for energy dependent slowing down problems with energy dependent cross sections. The transport equation is solved using the backward-forward model of Fermi. Also studied is the energy dependent diffusion equation. Using these models, and a novel technique involving difference equations, it has been possible to find explicit, and numerically useful, solutions for slowing down from a plane, monoenergetic source in an infinite medium. The slowing down density and the energy deposition function are obtained which are of value in reactor physics and radiation damage calculations.

  1. Upscaling transport with mass transfer models: Mean behavior and propagation of uncertainty

    NASA Astrophysics Data System (ADS)

    Fernã Ndez-Garcia, D.; Llerar-Meza, G.; Gómez-HernáNdez, J. Jaime

    2009-10-01

    The choice of an adequate large-scale conceptual transport model constitutes a major challenge associated with the upscaling of solute transport. Among the different alternatives to the classical advection-dispersion model, the (multirate) mass transfer model has been proposed as a valuable and convenient alternative to model the large-scale behavior of solute transport. This paper evaluates the use of mass transfer models as a constitutive equation for upscaling solute transport. To achieve this, we compare Monte Carlo simulations of solute transport at two different support scales. Transport simulations performed at the smallest scale represent a set of reference transport solutions described at a high resolution, which are contrasted against transport simulations obtained using an upscaled model (low resolution). Several formulations of the multirate mass transfer model, which differ in the type of memory function (single rate, double rate, and truncated power law), are used as a constitutive transport equation. The large-scale scenario represents a simplified model obtained by partially homogenizing the reference solution. Results show that the double-rate and the truncated power law mass transfer models are capable of properly describing the ensemble average behavior of the main features associated with the integrated breakthrough curves. However, the uncertainty associated with the upscaled mass transfer models was substantially smaller than that attributed to the reference solution. Importantly, the cumulative distribution function of concentrations associated with the upscaled model follows a distribution similar to the reference solution but with smaller statistical dispersion. The reason is that while appropriate memory functions can be used to preserve the residence time distribution of mass particles during upscaling, the lack of memory in space prevents the model from reproducing mass fluxes in all directions. Specifically, the reproduction of mass

  2. Water and chloride transport in a fine-textured soil in a feedlot pen

    NASA Astrophysics Data System (ADS)

    Veizaga, E. A.; Rodríguez, L.; Ocampo, C. J.

    2015-11-01

    Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation.

  3. Water and chloride transport in a fine-textured soil in a feedlot pen.

    PubMed

    Veizaga, E A; Rodríguez, L; Ocampo, C J

    2015-11-01

    Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation. PMID:26348833

  4. Numerical error in groundwater flow and solute transport simulation

    NASA Astrophysics Data System (ADS)

    Woods, Juliette A.; Teubner, Michael D.; Simmons, Craig T.; Narayan, Kumar A.

    2003-06-01

    Models of groundwater flow and solute transport may be affected by numerical error, leading to quantitative and qualitative changes in behavior. In this paper we compare and combine three methods of assessing the extent of numerical error: grid refinement, mathematical analysis, and benchmark test problems. In particular, we assess the popular solute transport code SUTRA [Voss, 1984] as being a typical finite element code. Our numerical analysis suggests that SUTRA incorporates a numerical dispersion error and that its mass-lumped numerical scheme increases the numerical error. This is confirmed using a Gaussian test problem. A modified SUTRA code, in which the numerical dispersion is calculated and subtracted, produces better results. The much more challenging Elder problem [Elder, 1967; Voss and Souza, 1987] is then considered. Calculation of its numerical dispersion coefficients and numerical stability show that the Elder problem is prone to error. We confirm that Elder problem results are extremely sensitive to the simulation method used.

  5. Long-term tritium transport through field-scale compacted soil liner

    USGS Publications Warehouse

    Toupiol, C.; Willingham, T.W.; Valocchi, A.J.; Werth, C.J.; Krapac, I.G.; Stark, T.D.; Daniel, D.E.

    2002-01-01

    A 13-year study of tritium transport through a field-scale earthen liner was conducted by the Illinois State Geological Survey to determine the long-term performance of compacted soil liners in limiting chemical transport. Two field-sampling procedures (pressure-vacuum lysimeter and core sampling) were used to determine the vertical tritium concentration profiles at different times and locations within the liner. Profiles determined by the two methods were similar and consistent. Analyses of the concentration profiles showed that the tritium concentration was relatively uniformly distributed horizontally at each sampling depth within the liner and thus there was no apparent preferential transport. A simple one-dimensional analytical solution to the advective-dispersive solute transport equation was used to model tritium transport through the liner. Modeling results showed that diffusion was the dominant contaminant transport mechanism. The measured tritium concentration profiles were accurately modeled with an effective diffusion coefficient of 6 ?? 10-4 mm2/s, which is in the middle of the range of values reported in the literature.

  6. Model prediction uncertainty of bromide and pesticides transport in laboratory column

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Dohnal, Michal; Snehota, Michal; Sobotkova, Martina; Ray, Chittaranjan; Vogel, Tomas

    2016-04-01

    Knowledge of transport parameters of reactive solutes such as pesticides is a prerequisite for reliable predictions of their fate and transport in soil porous systems. Water flow and transport of bromide tracer and five pesticides (atrazine, imazaquin, sulfometuron methyl, S-metolachlor, and imidacloprid) through an undisturbed soil column of tropical Oxisol were analyzed using a one-dimensional numerical model. Laboratory column leaching experiment with three flow interruptions was conducted. The applied numerical model is based on Richards' equation for solving water flow and the advection-dispersion equation for solving solute transport. A global optimization method was used to evaluate the model's sensitivity to transport parameters and the uncertainty of model predictions. Within the Monte Carlo modeling framework, multiple forward simulations searching through the parametric space, were executed to describe the observed breakthrough curves. All pesticides were found to be relatively mobile. Experimental data indicated significant non-conservative behavior of bromide tracer. All pesticides, with the exception of imidacloprid, were found less persistent. Three of the five pesticides (atrazine, sulfometuron methyl, and S-metolachlor) were better described by the linear kinetic sorption model, while the breakthrough curves of imazaquin and imidacloprid were more appropriately approximated using nonlinear instantaneous sorption. Sensitivity analysis suggested that the model is most sensitive to sorption distribution coefficient. The prediction limits contained most of the measured points of the experimental breakthrough curves, indicating adequate model concept and model structure for the description of transport processes in the soil column under study.

  7. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.

    PubMed

    Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K

    2011-11-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. PMID:22181492

  8. Scaling of geochemical reaction rates via advective solute transport.

    PubMed

    Hunt, A G; Ghanbarian, B; Skinner, T E; Ewing, R P

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture. PMID:26232976

  9. Scaling of geochemical reaction rates via advective solute transport

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.; Ghanbarian, B.; Skinner, T. E.; Ewing, R. P.

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture.

  10. APPROXIMATE AND ANALYTICAL SOLUTIONS FOR SOLUTE TRANSPORT FROM AN INJECTION WELL INTO A SINGLE FRACTURE

    EPA Science Inventory

    In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. t has been reported that by treating the radioactive de...

  11. SOLUTIONS APPROXIMATING SOLUTE TRANSPORT IN A LEAKY AQUIFER RECEIVING WASTEWATER INJECTION

    EPA Science Inventory

    A mathematical model amenable to analytical solution techniques is developed for the investigation of contaminant transport from an injection well into a leaky aquifer system, which comprises a pumped and an unpumped aquifer connected to each other by an aquitard. A steady state ...

  12. SOLUTIONS APPROXIMATING SOLUTE TRANSPORT IN A LEAKY AQUIFER RECEIVING WASTEWATER INJECTION

    EPA Science Inventory

    A mathematical model amenable to analytical solution techniques is developed for the investigation of contaminant transport from an injection well into a leaky aquifer system, which comprises a pumped and an unpumped aquifer connected to each other by an aquitard. teady state gro...

  13. Modeling Multi-process Transport of Pathogens in Porous Media

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Brusseau, M. L.

    2004-12-01

    The transport behavior of microorganisms in porous media is of interest with regard to the fate of pathogens associated with wastewater recharge, riverbank filtration, and land application of biosolids. This interest has fomented research on the transport of pathogens in the subsurface environment. The factors influencing pathogen transport within the subsurface environment include advection, dispersion, filtration, and inactivation. The filtration process, which mediates the magnitude and rate of pathogen retention, comprises several mechanisms such as attachment to porous-medium surfaces, straining, and sedimentation. We present a mathematical model wherein individual filtration mechanisms are explicitly incorporated along with advection, dispersion, and inactivation. The performance of the model is evaluated by applying it to several data sets obtained from miscible-displacement experiments conducted using various pathogens. Input parameters are obtained to the extent possible from independent means.

  14. Hydrophilic solute transport across the rat blood-brain barrier

    SciTech Connect

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.

  15. Ground-water solute transport with hydrogeochemical reactions

    SciTech Connect

    Garcia-Delgado, R.A.; Koussis, A.D.

    1997-03-01

    Chemical contamination of ground water is typically associated with multicomponent solutions of reactive substances, the mobility of which is affected by their reactivity. In predicting geochemical transport, it is therefore important that the liquid and solid phase reactions be modeled, along with the flow-controlled processes. This demanding task is typically carried out on powerful computers. Frequently, however, field data are available for a limited number of species, or, a small number of species suffices to characterize ground-water quality. In such cases it is desirable to be able to model the transport on a widely available class of inexpensive computers. The authors report on the development of a 2-D model for the transport of reactive species that runs efficiently on PCs. The model follows a modified one-step procedure that adopts total (aqueous and adsorbed) concentrations and aqueous concentrations of components, and accounts for aqueous complexation and for competitive sorption via isotherms or selectivity coefficients. The use of principal directions of transport coordinates, dimensional splitting, and a specialized algorithm for handling advection-dominated transport render it compact and efficient. Mass conservation is satisfied with high accuracy.

  16. Biotic controls on solute distribution and transport in headwater catchments

    NASA Astrophysics Data System (ADS)

    Herndon, E. M.; Dere, A. L.; Sullivan, P. L.; Norris, D.; Reynolds, B.; Brantley, S. L.

    2015-01-01

    Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of headwater catchments underlain by shale in Pennsylvania, USA (Shale Hills) and Wales, UK (Plynlimon), dissimilar concentration-discharge behaviors are best explained by contrasting landscape distributions of soil solution chemistry - especially dissolved organic carbon (DOC) - that have been established by patterns of vegetation. Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic "bioactive" behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where soil organic matter (SOM) is dominantly in lowlands (e.g., Shale Hills), bioactive elements are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), bioactive elements are released later during rainfall events. The distribution of vegetation and SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments.

  17. Analytical solution of two-dimensional solute transport in an aquifer-aquitard system.

    PubMed

    Zhan, Hongbin; Wen, Zhang; Huang, Guanhua; Sun, Dongmin

    2009-07-21

    This study deals with two-dimensional solute transport in an aquifer-aquitard system by maintaining rigorous mass conservation at the aquifer-aquitard interface. Advection, longitudinal dispersion, and transverse vertical dispersion are considered in the aquifer. Vertical advection and diffusion are considered in the aquitards. The first-type and the third-type boundary conditions are considered in the aquifer. This study differs from the commonly used averaged approximation (AA) method that treats the mass flux between the aquifer and aquitard as an averaged volumetric source/sink term in the governing equation of transport in the aquifer. Analytical solutions of concentrations in the aquitards and aquifer and mass transported between the aquifer and upper or lower aquitard are obtained in the Laplace domain, and are subsequently inverted numerically to yield results in the real time domain (the Zhan method). The breakthrough curves (BTCs) and distribution profiles in the aquifer obtained in this study are drastically different from those obtained using the AA method. Comparison of the numerical simulation using the model MT3DMS and the Zhan method indicates that the numerical result differs from that of the Zhan method for an asymmetric case when aquitard advections are at the same direction. The AA method overestimates the mass transported into the upper aquitard when an upward advection exists in the upper aquitard. The mass transported between the aquifer and the aquitard is sensitive to the aquitard Peclet number, but less sensitive to the aquitard diffusion coefficient. PMID:19477033

  18. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    SciTech Connect

    Zhang Xi; Shia Runlie; Yung, Yuk L.

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  19. Use of boundary fluxes when simulating solute transport with the MODFLOW ground-water transport process

    USGS Publications Warehouse

    Konikow, L.F.; Hornberger, G.Z.

    2003-01-01

    This report describes modifications to a U.S. Geological Survey (USGS) threedimensional solute-transport model (MODFLOWGWT), which is incorporated into the USGS MODFLOW ground-water model as the Ground- Water Transport (GWT) Process. The modifications improve the capability of MODFLOW-GWT to accurately simulate solute transport in simulations that represent a nonzero flux across an aquifer boundary. In such situations, the new Boundary Flux Package (BFLX) will allow the user flexibility to assign the flux to specific cell faces, although that flexibility is limited for certain types of fluxes (such as recharge and evapotranspiration, which can only be assigned to the top face if either is to be represented as a boundary flux). The approach is consistent with that used in the MODPATH model. The application of the BFLX Package was illustrated using a test case in which the Lake Package was active. The results using the BFLX Package showed noticeably higher magnitudes of velocity in the cells adjacent to the lake than previous results without the BFLX Package. Consequently, solute was transported slightly faster through the lake-aquifer system when the BFLX Package is active. However, the overall solute distributions did not differ greatly from simulations made without using the BFLX Package.

  20. Development and Implementation of a Transport Method for the Transport and Reaction Simulation Engine (TaRSE) based on the Godunov-Mixed Finite Element Method

    USGS Publications Warehouse

    James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael

    2009-01-01

    A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.

  1. Reactive transport in porous media: a comparison of model prediction with laboratory visualization.

    PubMed

    Gramling, Carolyn M; Harvey, Charles F; Meigs, Lucy C

    2002-06-01

    Groundwater transport models that accurately describe spreading of nonreactive solutes in an aquifer can poorly predict concentrations of reactive solutes. The dispersive term in the advection-dispersion equation can overpredict pore-scale mixing, and thereby overpredict homogeneous chemical reaction. We quantified this experimentally by imaging instantaneous colorimetric reactions between solutions of aqueous CuSO4 and EDTA4- within a 30-cm long translucent chamber packed with cryolite sand that closely matched the optical index of refraction of water. A charge-coupled device camera was used to quantify concentrations of blue CuEDTA2- within the chamber as it was produced by mixing of the two reactants at different flow rates. We compared these experimental results with a new analytic solution for instantaneous bimolecular reaction coupled with advection and dispersion of the product and reactants. For all flow rates, the concentrations of CuEDTA2- recorded in the experiments were about 20% less than predicted by the analytic solution, thereby demonstrating that models assuming complete mixing at the pore scale can overpredict reaction during transport. PMID:12075812

  2. Groundwater flow and solute transport modelling from within R: Development of the RMODFLOW and RMT3DMS packages.

    NASA Astrophysics Data System (ADS)

    Rogiers, Bart

    2015-04-01

    Since a few years, an increasing number of contributed R packages is becoming available, in the field of hydrology. Hydrological time series analysis packages, lumped conceptual rainfall-runoff models, distributed hydrological models, weather generators, and different calibration and uncertainty estimation methods are all available. Also a few packages are available for solving partial differential equations. Subsurface hydrological modelling is however still seldomly performed in R, or with codes interfaced with R, despite the fact that excellent geostatistical packages, model calibration/inversion options and state-of-the-art visualization libraries are available. Moreover, other popular scientific programming languages like matlab and python have packages for pre- and post-processing files of MODFLOW (Harbaugh 2005) and MT3DMS (Zheng 2010) models. To fill this gap, we present here the development versions of the RMODFLOW and RMT3DMS packages, which allow pre- and post-processing MODFLOW and MT3DMS input and output files from within R. File reading and writing functions are currently available for different packages, and plotting functions are foreseen making use of the ggplot2 package (plotting system based on the grammar of graphics; Wickham 2009). The S3 generic-function object oriented programming style is used for this. An example is provided, making modifications to an existing model, and visualization of the model output. References Harbaugh, A. (2005). MODFLOW-2005: The US Geological Survey Modular Ground-water Model--the Ground-water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16 (p. 253). Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York, 2009. Zheng, C. (2010). MT3DMS v5.3, a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Supplemental User's Guide. (p. 56).

  3. TRANSPORT OF REACTING SOLUTES SUBJECT TO A MOVING DISSOLUTION BOUNDARY: NUMERICAL METHODS AND SOLUTIONS.

    USGS Publications Warehouse

    Willis, Catherine; Rubin, Jacob

    1987-01-01

    In this paper we consider examples of chemistry-affected transport processes in porous media. A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters.

  4. Phononic heat transport in the transient regime: An analytic solution

    NASA Astrophysics Data System (ADS)

    Tuovinen, Riku; Säkkinen, Niko; Karlsson, Daniel; Stefanucci, Gianluca; van Leeuwen, Robert

    2016-06-01

    We investigate the time-resolved quantum transport properties of phonons in arbitrary harmonic systems connected to phonon baths at different temperatures. We obtain a closed analytic expression of the time-dependent one-particle reduced density matrix by explicitly solving the equations of motion for the nonequilibrium Green's function. This is achieved through a well-controlled approximation of the frequency-dependent bath self-energy. Our result allows for exploring transient oscillations and relaxation times of local heat currents, and correctly reduces to an earlier known result in the steady-state limit. We apply the formalism to atomic chains, and benchmark the validity of the approximation against full numerical solutions of the bosonic Kadanoff-Baym equations for the Green's function. We find good agreement between the analytic and numerical solutions for weak contacts and baths with a wide energy dispersion. We further analyze relaxation times from low to high temperature gradients.

  5. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  6. Modeling solute transport by DLA in soils of northeastern Egypt.

    PubMed

    Hamed, Yasser Ahmed; Yasuda, Hiroshi; Persson, Magnus; Berndtsson, Ronny; Wang, Xin-ping

    2015-01-01

    Arid soils in Egypt display large variability in solute transport properties, causing problems in soil management. To characterize this variability, dye infiltration experiments were conducted on four plots representing three main soil types in northeastern Egypt. The plots represented both cultivated and uncultivated land use. The observed dye patterns displayed a large variability and especially the clay soils indicated a high degree of preferential flow. The loamy sand and sandy soils displayed a more uniform dye distribution indicating more homogeneous soil properties. The observed dye patterns were modeled using a diffusion limited aggregation (DLA) model. The DLA is a random walk model where model parameters can be optimized using genetic algorithms (GA). The DLA model reproduced the observed dye patterns for all soils in an excellent way. The best fit was obtained with a specific combination of directional random walk probabilities Pu, Pd, Pr, and Pl for each plot (correlation 0.97-0.99). To account for soil layers with different hydraulic properties a two layer DLA model was developed. For all plots the Pu (upward random walk probability) was higher for the upper more homogeneous soil layer. The overall results showed that spatial variability resulting from solute transport for the investigated soils can be modeled using a DLA approach. PMID:25790463

  7. Modeling Solute Transport by DLA in Soils of Northeastern Egypt

    PubMed Central

    Hamed, Yasser Ahmed; Yasuda, Hiroshi; Persson, Magnus; Berndtsson, Ronny; Wang, Xin-ping

    2015-01-01

    Arid soils in Egypt display large variability in solute transport properties, causing problems in soil management. To characterize this variability, dye infiltration experiments were conducted on four plots representing three main soil types in northeastern Egypt. The plots represented both cultivated and uncultivated land use. The observed dye patterns displayed a large variability and especially the clay soils indicated a high degree of preferential flow. The loamy sand and sandy soils displayed a more uniform dye distribution indicating more homogeneous soil properties. The observed dye patterns were modeled using a diffusion limited aggregation (DLA) model. The DLA is a random walk model where model parameters can be optimized using genetic algorithms (GA). The DLA model reproduced the observed dye patterns for all soils in an excellent way. The best fit was obtained with a specific combination of directional random walk probabilities Pu, Pd, Pr, and Pl for each plot (correlation 0.97–0.99). To account for soil layers with different hydraulic properties a two layer DLA model was developed. For all plots the Pu (upward random walk probability) was higher for the upper more homogeneous soil layer. The overall results showed that spatial variability resulting from solute transport for the investigated soils can be modeled using a DLA approach. PMID:25790463

  8. Record setting during dispersive transport in porous media

    NASA Astrophysics Data System (ADS)

    Edery, Yaniv; Kostinski, Alex; Berkowitz, Brian

    2011-08-01

    How often does a contaminant ‘particle’ migrating in a porous medium set a distance record, i.e., advance farther from the origin than at all previous time steps? This question is of fundamental importance in characterizing the nature of the leading edge of a contaminant plume as it is transported through an aquifer. It was proven theoretically by Majumdar and Ziff (2008) that, in the 1d case for pure diffusion, record setting of a random walker scales with n1/2, where n is the number of steps, regardless of the length and time distribution of steps. Here, we use numerical simulations, benchmarked against the 1d analytical solution, to extend this result also for pure diffusion in 2d and 3d domains. We then consider transport in the presence of a drift (i.e., advective-dispersive transport), and show that the record-setting pace of random walkers changes abruptly from $\\propto$ n1/2 to $\\propto$ n1. We explore the dependence of the prefactor on the distribution of step length and number of spatial dimensions. The key implication is that when, after a brief transitional period, the scaling regime commences, the maximum distance reached by the leading edge of a migrating contaminant plume scales linearly with n, regardless of the drift magnitude.

  9. Soil properties and preferential solute transport at the field scale

    NASA Astrophysics Data System (ADS)

    Koestel, J. K.; Luong, N. M.; Nørgaard, T.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.

    2012-04-01

    An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land management practices (e.g. Beven, K., 1991, Modeling preferential flow - an uncertain future, Preferential Flow, 1-11). In our study, we present evidence that disproves this notion. We evaluated breakthrough curve experiments under a constant irrigation rate of 1 cm/h conducted on 65 soil columns (20 cm diameter and 20 height) which had been sampled from an approximately 1 ha large loamy field-site in Silstrup, Denmark. We show that the holdback factor, which is an indicator for the strength of preferential transport, is strongly correlated to the bulk density, which in turn is correlated to the organic matter content. By applying multiple linear regression in a bootstrapping framework, we could estimate the holdback factor from the bulk density and the very fine sand fraction with a coefficient of determination of 0.65. Our results raise hopes that it is indeed possible to establish pedotransfer functions for soil susceptibility to preferential flow and transport.

  10. Polymer Dynamics Effects on Solute Transport in Hairy Nanoparticle Membranes

    NASA Astrophysics Data System (ADS)

    Buenning, Eileen; Bilchak, Connor; Durning, Christopher; Benicewicz, Brian; Sokolov, Alexei; Kumar, Sanat

    Molecular transport measurements in matrix-free grafted nanoparticle (MFGNP) films have shown remarkable enhancement of permeability and ideal selectivity of small condensable molecules and simple gases over the neat polymer melts and conventional, dispersed nanoparticle composites. Films comprised of covalently-attached poly(methyl acrylate) PMA chains to the surface of 14nm silica particles self-assemble into ordered arrays, and we postulate this structure plays an important role in regulating solute transport. This self-assembly creates interstitial spaces between the nanoparticle cores, which the polymer chains can only fill by stretching. Here we use small-angle neutron scattering (SANS), broadband dielectric spectroscopy (BDS), rheology and temperature-modulated differential scanning calorimetry (TMDSC) to probe polymer chain and segmental dynamics and investigate this hypothesis of chain stretching in MFGNP materials. We found that grafting slows both chain and segmental relaxation, and increases fragility, indicating that the chains are more ``frustrated'' in the grafted systems. We propose that the effects of the chain/surface interactions on chain dynamics leads to an increase in available free volume and thus enhances transport properties in MFGNP systems. Special thanks to the NSF GRFP and the DOE SCGSR programs.

  11. Stable water isotopes in pore water of Jurassic argillaceous rocks as tracers for solute transport over large spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Gimmi, T.; Waber, H. N.; Gautschi, A.; Rübel, A.

    2007-04-01

    In order to characterize the large-scale transport properties of the Opalinus Clay formation, the pore water isotope composition (δ18O and δ2H) was determined on samples from the deep borehole Benken (northeastern Switzerland) across Jurassic argillaceous rocks. The sequence of claystones and marls, delimited by two aquifers, is located at depth from about 400 to 700 m and exhibits very low hydraulic conductivities (below 10-13 m s-1). The isotope data of the pore water were obtained from core samples by diffusive vapor equilibration, vacuum distillation, and squeezing. Compared with the other methods, vacuum distillation led to too low values. To evaluate the large-scale transport properties of the formation, we performed a series of advective-dispersive model calculations and compared them with the experimental data. In accordance with the hydrogeological history, we varied initial and boundary conditions as well as model parameters. The main results can be summarized as follows: (1) Molecular diffusion to the underlying aquifer can explain the general features of the isotope profiles, (2) no signatures of advective flow could be detected, (3) the evolution time is of the order of 0.5-1 Ma (relying on laboratory diffusion coefficients) with a possible range of about 0.2-2 Ma, which is geologically plausible, and (4) parameters measured on small scales (centimeters or meters and months) are also plausible at the formation scale (tens of meters and millions of years) for the sediments investigated.

  12. Stochastic analysis of a field-scale unsaturated transport experiment

    NASA Astrophysics Data System (ADS)

    Severino, G.; Comegna, A.; Coppola, A.; Sommella, A.; Santini, A.

    2010-10-01

    Modelling of field-scale transport of chemicals is of deep interest to public as well as private sectors, and it represents an area of active theoretical research in many environmentally-based disciplines. However, the experimental data needed to validate field-scale transport models are very limited due to the numerous logistic difficulties that one faces out. In the present paper, the migration of a tracer (Cl -) was monitored during its movement in the unsaturated zone beneath the surface of 8 m × 50 m sandy soil. Under flux-controlled, steady-state water flow ( Jw = 10 mm/day) was achieved by bidaily sprinkler irrigation. A pulse of 105 g/m 2 KCl was applied uniformly to the surface, and subsequently leached downward by the same (chloride-free) flux Jw over the successive two months. Chloride concentration monitoring was carried out in seven measurement campaigns (each one corresponding to a given time) along seven (parallel) transects. The mass recovery was near 100%, therefore underlining the very good-quality of the concentration data-set. The chloride concentrations are used to test two field-scale models of unsaturated transport: (i) the Advection-Dispersion Equation (ADE), which models transport far from the zone of solute entry, and (ii) the Stochastic- Convective Log- normal (CLT) transfer function model, which instead accounts for transport near the release zone. Both the models provided an excellent representation of the solute spreading at z > 0.45 m (being z = 0.45 m the calibration depth). As a consequence, by the depth z ≈ 50 cm one can regard transport as Fickian. The ADE model dramatically underestimates solute spreading at shallow depths. This is due to the boundary effects which are not captured by the ADE. The CLT model appears to be a more robust tool to mimic transport at every depth.

  13. Interactions of solutes and streambed sediment. 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport.

    USGS Publications Warehouse

    Bencala, K.E.

    1984-01-01

    Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solute-streambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. -from Author

  14. Laboratory transport experiments with antibiotic sulfadiazine: Experimental results and parameter uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Sittig, S.; Vrugt, J. A.; Kasteel, R.; Groeneweg, J.; Vereecken, H.

    2011-12-01

    Persistent antibiotics in the soil potentially contaminate the groundwater and affect the quality of drinking water. To improve our understanding of antibiotic transport in soils, we performed laboratory transport experiments in soil columns under constant irrigation conditions with repeated applications of chloride and radio-labeled SDZ. The tracers were incorporated in the first centimeter, either with pig manure or with solution. Breakthrough curves and concentration profiles of the parent compound and the main transformation products were measured. The goal is to describe the observed nonlinear and kinetic transport behavior of SDZ. Our analysis starts with synthetic transport data for the given laboratory flow conditions for tracers which exhibit increasingly complex interactions with the solid phase. This first step is necessary to benchmark our inverse modeling approach for ideal situations. Then we analyze the transport behavior using the column experiments in the laboratory. Our analysis uses a Markov chain Monte Carlo sampler (Differential Evolution Adaptive Metropolis algorithm, DREAM) to efficiently search the parameter space of an advective-dispersion model. Sorption of the antibiotics to the soil was described using a model regarding reversible as well as irreversible sorption. This presentation will discuss our initial findings. We will present the data of our laboratory experiments along with an analysis of parameter uncertainty.

  15. A comparison of solute-transport solution techniques based on inverse modelling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2000-01-01

    Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly

  16. Coupling of solute transport and cell expansion in pea stems

    NASA Technical Reports Server (NTRS)

    Schmalstig, J. G.; Cosgrove, D. J.

    1990-01-01

    As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C] sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.

  17. Effects of isotope selection on solution convergence in HZE transport

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Kiefer, Richard L.; Thibeault, Sheila A.

    1994-01-01

    A fragmenting iron ion produces hundreds of isotopes during nuclear reactions. These isotopes are represented in the solution of the transport problem. A reduced set of isotopes is selected to minimize the computational burden but introduces error in the final result. A minimum list of 122 isotopes is required for adequate representation of the mass and charge distributions of the secondary radiation fields. A reduced set of 80 isotopes is sufficient to represent the charge distribution alone and represents reasonably well the linear energy transfer properties of the iron beam. Because iron fragmentation produces nearly every isotope lighter than iron, the resulting 122-isotope list should be adequate for ion beams with charges equal to or less than 26.

  18. Uncertainty and Sensitivity Analyses of Model Predictions of Solute Transport

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Suarez, D. L.; Goldberg, S. R.

    2012-12-01

    Soil salinity reduces crop production on about 50% of irrigated lands worldwide. One roadblock to increased use of advanced computer simulation tools for better managing irrigation water and soil salinity is that the models usually do not provide an estimate of the uncertainty in model predictions, which can be substantial. In this work, we investigate methods for putting confidence bounds on HYDRUS-1D simulations of solute leaching in soils. Uncertainties in model parameters estimated with pedotransfer functions are propagated through simulation model predictions using Monte Carlo simulation. Generalized sensitivity analyses indicate which parameters are most significant for quantifying uncertainty. The simulation results are compared with experimentally observed transport variability in a number of large, replicated lysimeters.

  19. An exact solution of solute transport by one-dimensional random velocity fields

    USGS Publications Warehouse

    Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.

    1991-01-01

    The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.

  20. Hierarchical Adaptive Solution of Radiation Transport Problems on Unstructured Grids

    SciTech Connect

    Dr. Cassiano R. E de Oliveira

    2008-06-30

    Computational radiation transport has steadily gained acceptance in the last decade as a viable modeling tool due to the rapid advancements in computer software and hardware technologies. It can be applied for the analysis of a wide range of problems which arise in nuclear reactor physics, medical physics, atmospheric physics, astrophysics and other areas of engineering physics. However, radiation transport is an extremely chanllenging computational problem since the governing equation is seven-deimensional (3 in space, 2 in direction, 1 in energy, and 1 in time) with a high degree of coupleing betwen these variables. If not careful, this relatively large number of independent variables when discretized can potentially lead to sets of linear equations of intractable size. Though parallel computing has allowed the solution of very large problems, avaliable computational resources will always be finite due to the fact that every more sophisticated multiphysics models are being demanded by industry. There is thus the pressing requirement to optimize the discretizations so as to minimize the effort and maximize the accuracy.

  1. Advances in colloid and biocolloid transport in porous media: particle size-dependent dispersivity and gravity effects

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, Constantinos V.; Manariotis, Ioannis D.; Syngouna, Vasiliki I.

    2014-05-01

    Accurate prediction of colloid and biocolloid transport in porous media relies heavily on usage of suitable dispersion coefficients. The widespread procedure for dispersion coefficient determination consists of conducting conservative tracer experiments and subsequently fitting the collected breakthrough data with a selected advection-dispersion transport model. The fitted dispersion coefficient is assumed to characterize the porous medium and is often used thereafter to analyze experimental results obtained from the same porous medium with other solutes, colloids, and biocolloids. The classical advection-dispersion equation implies that Fick's first law of diffusion adequately describes the dispersion process, or that the dispersive flux is proportional to the concentration gradient. Therefore, the above-described procedure inherently assumes that the dispersive flux of all solutes, colloids and biocolloids under the same flow field conditions is exactly the same. Furthermore, the available mathematical models for colloid and biocoloid transport in porous media do not adequately account for gravity effects. Here an extensive laboratory study was undertaken in order to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size, interstitial velocity and length scale. The breakthrough curves were successfully simulated with a mathematical model describing colloid and biocolloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity increases very slowly with increasing interstitial velocity, and increases with column length. Furthermore, contrary to earlier results, which were based either on just a few experimental observations or experimental conditions leading to low mass recoveries, dispersivity was positively correlated with colloid particle size. Also, transport experiments were performed with biocolloids (bacteriophages:

  2. Improved parallel solution techniques for the integral transport matrix method

    SciTech Connect

    Zerr, Robert J; Azmy, Yousry Y

    2010-11-23

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution by up to {approx}50% when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing case are opticaUy thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block preconditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient preconditioner.

  3. Incorporating Super-Diffusion due to Sub-Grid Heterogeneity to Capture Non-Fickian Transport.

    PubMed

    Baeumer, Boris; Zhang, Yong; Schumer, Rina

    2015-01-01

    Numerical transport models based on the advection-dispersion equation (ADE) are built on the assumption that sub-grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super-diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub-grid super-diffusion in a multidimensional regional-scale transport model by using a recent mathematical model allowing super-diffusion along the flow direction given by the regional model. Here, the time randomizing procedure known as subordination is applied to flow field output from MODFLOW simulations. Numerical tests check the applicability of the novel method in mapping regional-scale super-diffusive transport conditioned on local properties of multidimensional heterogeneous media. PMID:25214174

  4. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    NASA Astrophysics Data System (ADS)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  5. The effects of a perturbed source on contaminant transport near the Weldon Spring quarry

    SciTech Connect

    Tomasko, D.

    1989-03-01

    The effects of a perturbed contamination source at the Weldon Spring quarry in St. Charles County, Missouri, on downstream solute concentrations were investigated using one-dimensional analytical solutions to an advection-dispersion equation developed for both constant-strength and multiple-stepped source functions. A sensitivity study using parameter base-case values and ranges consistent with the geologic conceptualization of the quarry area indicates that the parameters having the greatest effect on predicted concentrations are the distance from the quarry to the point of interest, the average linear groundwater velocity, the contaminant retardation coefficient, and the amplitude and duration of the source perturbation caused by response action activities. Use of base-case parameter value and realistic values for the amplitude and duration of the source perturbation produced a small effect on solute concentrations near the western extremity of the nearby municipal well field, as well as small uncertainties in the predicted results for the assumed model. The effect of simplifying assumptions made in deriving the analytic solution is unknown: use of a multidimensional flow and transport model and additional field work are needed to validate the model. 13 refs., 18 figs.

  6. Modeling colloid and microorganism transport and release with transients in solution ionic strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport and fate of colloids, microorganisms, and nanoparticles in subsurface environments is strongly influenced by transients in solution ionic strength (IS). A sophisticated dual-permeability transport model that is capable of simulating exponential, hyperexponential, uniform, and nonmonot...

  7. Product Lifecycle Management and the Quest for Sustainable Space Transportation Solutions

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.

    2009-01-01

    This viewgraph presentation reviews NASA Marshall's effort to sustain space transportation solutions through product lines that include: 1) Propulsion and Transportation Systems; 2) Life Support Systems; and 3) and Earth and Space Science Spacecraft Systems, and Operations.

  8. Effects of solute breakthrough curve tail truncation on residence time estimates: A synthesis of solute tracer injection studies

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Covino, T. P.; Aubeneau, A. F.; Leong, D.; Patil, S.; Schumer, R.; Packman, A. I.

    2012-09-01

    Hydrologic transport and retention strongly affect biogeochemical processes that are critical to stream ecosystems. Tracer injection studies are often used to characterize solute transport and retention in stream reaches, but the range of processes accurately resolved with this approach is not clear. Solute residence time distributions depend on both in-stream mixing and exchange with the hyporheic zone and the larger groundwater system. Observed in-stream breakthrough curves have most commonly been modeled with in-stream advection-dispersion plus an exponential residence time distribution, but process-based models suggest that hyporheic exchange is a fractal process, and that hyporheic residence time distributions are more appropriately characterized by power law tailing. We synthesized results from a variety of tracer-injection studies to investigate the information content of tracer breakthrough curves. We found that breakthrough curve tails are often not well characterized in stream tracer experiments. The two main reasons for this are: 1) experimental truncation of breakthrough curves, which occurs when sampling ends before all tracer mass reaches the sampling location, and 2) sensitivity truncation of breakthrough curves, when tracer concentrations in the tail are too low to be detected reliably above background levels. Tail truncation reduces observed mass recovery and obscures assessment of breakthrough curve tailing and solute residence time. Failure to consider tail truncation leads to underestimation of hyporheic exchange and solute retention and to corresponding overestimation of hyporheic biogeochemical transformation rates. Based on these findings, we propose criteria for improved design of in-stream tracer injection experiments to improve assessment of solute tailing behavior.

  9. Long range transport of colloids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Florea, Daniel; Musa, Sami; Huyghe, Jacques M. R. J.; Wyss, Hans M.

    2013-03-01

    Colloids in aqueous suspensions can experience strong, extremely long range repulsive forces near interfaces such as biological tissues, gels, ion exchange resins or metals. As a result exclusion zones extending over several millimeters can be formed. While this phenomenon has been previously described, a physical understanding of this process is still lacking. This exclusion zone formation is puzzling because the typical forces acting on colloidal particles are limited to much shorter distances and external fields that could drive the particles are absent. Here we study the exclusion zone formation in detail by following the time and distance-dependent forces acting on the particles. We present a simple model that accounts for our experimental data and directly links the exclusion zone formation to an already known physical transport phenomenon. We show that the effect can be tuned by changing the zeta potential of the particles or by varying the species present in the aqueous solution. We thus provide a direct physical explanation for the intriguing exclusion zone formation and we illustrate how this effect can be exploited in a range of industrial applications.

  10. Semianalytical Solutions of Radioactive or Reactive Tracer Transport in Layered Fractured Media

    SciTech Connect

    G.J. Moridis; G. S. Bodvarsson

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  11. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    SciTech Connect

    Moridis, G.J.; Bodvarsson, G.S.

    2001-10-10

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  12. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters

    PubMed Central

    Saier, Milton H.

    2000-01-01

    A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional

  13. Solute transport in eroded and rehabilitated prairie landforms. 1. Nonreactive solute.

    PubMed

    Papiernik, Sharon K; Koskinen, William C; Yates, Scott R

    2009-08-26

    Information regarding solute and water transport as affected by soil properties, topography, and climatic conditions is required to improve and validate transport models. This study evaluated the dissipation of bromide applied to the soil surface in the fall and spring to undisturbed (eroded) and rehabilitated landforms, in which topsoil was moved from depositional areas to the eroded upper slope. Despite large changes in soil properties, the amount and center of mass of bromide remaining in the top 1 m of soil was the same in undisturbed and rehabilitated plots. Approximately 60% of the fall-applied bromide was lost during the winter and early spring, presumably due to leaching and runoff. The center of mass of spring-applied bromide remained at depths of <30 cm. At the end of the experiment, 33% of the spring-applied bromide was detected in soil and 56% in corn plants. These results suggest that little bromide was leached out of the root zone in the spring and that plant uptake was a major route of bromide dissipation during the growing season. PMID:19653694

  14. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients.

    PubMed

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2016-01-01

    During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21-87) years; median time on PD 19 (3-100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters--rather than solute transport parameters--are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432

  15. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    PubMed Central

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2016-01-01

    During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (αu), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432

  16. Numerical Modeling of Coupled Variably-Saturated Fluid Flow and Reactive Transport with Fast and Slow Chemical Reactions

    SciTech Connect

    LI, MING-HSU; SIEGEL, MALCOLM D.; YEH, GOUR-TSYH

    1999-09-20

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically-based numerical model for simulation of coupled fluid flow and reactive chemical transport including both fast and slow reactions invariably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation-dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  17. Hydrogeochemistry and simulated solute transport, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Robson, S.G.; Saulnier, G.J., Jr.

    1981-01-01

    Oil-shale mining activities in Piceance basin in northwestern Colorado could adversely affect the ground- and surface-water quality in the basin. This study of the hydrology and geochemistry of the area used ground-water solute-transport-modeling techniques to investigate the possible impact of the mines on water quality. Maps of the extent and structure of the aquifer were prepared and show that a saturated thickness of 2,000 feet occurs in the northeast part of the basin. Ground-water recharge in the upland areas in the east, south, and west parts of the basin moves down into deeper zones in the aquifer and laterally to the discharge areas along Piceance and Yellow Creeks. The saline zone and the unsaturated zone provide the majority of the dissolved solids found in the ground water. Precipitation, ion-exchange, and oxidation-reduction reactions are also occuring in the aquifer. Model simulations of ground-water pumpage in tracts C-a and C-b indicate that the altered direction of ground-water movement near the pumped mines will cause an improvement in ground-water quality near the mines and a degradation of water quality downgradient from the tracts. Model simulations of mine leaching in tract C-a and C-b indicate that equal rates of mine leaching in the tracts will produce much different effects on the water quality in the basin. Tract C-a, by virtue of its remote location from perennial streams, will primarily degrade the ground-water quality over a large area to the northeast of the tract. Tract C-b, by contrast, will primarily degrade the surface-water quality in Piceance Creek, with only localized effects on the ground-water quality. (USGS)

  18. Hydrogeochemistry and simulated solute transport, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Robson, Stanley G.; Saulnier, George J.

    1980-01-01

    Oil-shale mining activities in Piceance basin in northwestern Colorado could adversely affect the ground- and surface-water quality in the basin. This study of the hydrology and geochemistry of the area used groundwater solute-transport-modeling techniques to investigate the possible impact of the mines on water quality. Maps of the extent and structure of the aquifer were prepared and show that a saturated thickness of 2,000 feet occurs in the northeast part of the basin. Ground-water recharge in the upland areas in the east, south, and west parts of the basin moves down into deeper zones in the aquifer and laterally to the discharge areas along Piceance and Yellow Creeks. The saline zone and the unsaturated zone provide the majority of the dissolved solids found in the ground water. Precipitation, ion-exchange, and oxidation-reduction reactions are also occurring in the aquifer. Model simulations of groundwater pumpage in tracts C-a and C-b indicate that the altered direction of groundwater movement near the pumped mines will cause an improvement in groundwater quality near the mines and a degradation of water quality downgradient from the tracts. Model simulations of mine leaching in tract C-a and C-b indicate that equal rates of mine leaching in the tracts will produce much different effects on the water quality in the basin. Tract C-a, by virtue of its remote location from perennial streams, will primarily degrade the groundwater quality over a large area to the northeast of the tract. Tract C-b, by contrast, will primarily degrade the surface-water quality in Piceance Creek, with only localized effects on the groundwater quality. (USGS)

  19. A Semi-Analytical Model to Describe the Effect of Biofilm Development on Solute Diffusion in Low Permeability Rock

    NASA Astrophysics Data System (ADS)

    Charbonneau, A. M.; Novakowski, K. S.; Ross, N.

    2004-05-01

    In fractured rock environments, the process of matrix diffusion strongly influences the persistence of groundwater contamination. Biofilm growth, which occurs naturally in fractured rock, can have a significant effect on the solute transport properties of the matrix, and thus the mobility of contaminants in the system. A semi-analytical model that accounts for the presence of a biofilm has been developed from a solution of the advection-dispersion equation for solute transport in radial coordinates. The model is intended to aid in simulating radial diffusion experiments. It describes solute transport by diffusion from a cylindrical reservoir into a layered medium of finite diameter. The model accounts for linear adsorption and decay in each layer, as well as the periodic addition and/or removal of fluid of known solute concentration from the reservoir. The boundary value problem is solved using the Laplace transform method and Crout's method of LU Decomposition, and numerically inverted using the De Hoog algorithm. According to a sensitivity analysis, compared to the no-biofilm case, diffusion of conservative tracers is most sensitive to the depth of penetration of the biofilm into the matrix, as well as the effective porosity and diffusion coefficient of that penetrated zone. The model developed in this study has been used to interpret the results of diffusion experiments undertaken to investigate mass transport into intact rock samples in the presence of a biofilm and to assign average mass transport parameters to the system. Laboratory data demonstrates that the presence of a biofilm acts to limit diffusive transfer between a discrete fracture and the matrix.

  20. Demonstrations in Solute Transport Using Dyes: Part II. Modeling.

    ERIC Educational Resources Information Center

    Butters, Greg; Bandaranayake, Wije

    1993-01-01

    A solution of the convection-dispersion equation is used to describe the solute breakthrough curves generated in the demonstrations in the companion paper. Estimation of the best fit model parameters (solute velocity, dispersion, and retardation) is illustrated using the method of moments for an example data set. (Author/MDH)

  1. An exploration of coupled surface-subsurface solute transport in a fully integrated catchment model

    NASA Astrophysics Data System (ADS)

    Liggett, Jessica E.; Partington, Daniel; Frei, Sven; Werner, Adrian D.; Simmons, Craig T.; Fleckenstein, Jan H.

    2015-10-01

    Coupling surface and subsurface water flow in fully integrated hydrological codes is becoming common in hydrological research; however, the coupling of surface-subsurface solute transport has received much less attention. Previous studies on fully integrated solute transport focus on small scales, simple geometric domains, and have not utilised many different field data sources. The objective of this study is to demonstrate the inclusion of both flow and solute transport in a 3D, fully integrated catchment model, utilising high resolution observations of dissolved organic carbon (DOC) export from a wetland complex during a rainfall event. A sensitivity analysis is performed to span a range of transport conditions for the surface-subsurface boundary (e.g. advective exchange only, advection plus diffusion, advection plus full mechanical dispersion) and subsurface dispersivities. The catchment model captures some aspects of observed catchment behaviour (e.g. solute discharge at the catchment outlet, increasing discharge from wetlands with increased stream discharge, and counter-clockwise concentration-discharge relationships), although other known behaviours are not well represented in the model (e.g. slope of concentration-discharge plots). Including surface-subsurface solute transport aids in evaluating internal model processes, however there are challenges related to the influence of dispersion across the surface-subsurface interface, and non-uniqueness of the solute transport solution. This highlights that obtaining solute field data is especially important for constraining integrated models of solute transport.

  2. Water flow and solute transport in floating fen root mats

    NASA Astrophysics Data System (ADS)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.

  3. An Analytical Model for Solute Transport in Unsaturated Flowthrough a Single Fracture and Porous Rock Matrix

    SciTech Connect

    Houseworth, J.E.

    2004-09-16

    Exact analytical solutions are presented for solute transport in an unsaturated fracture and porous rock matrix. The problem includes advective transport in the fracture and rock matrix as well as advective and diffusive fracture-matrix exchange. Linear sorption in the fracture and matrix and radioactive decay are also treated. The solution is for steady, uniform transport velocities within the fracture and matrix, but allows for independent specification of each of the velocities. The problem is first solved in terms of the solute concentrations that result from an instantaneous point source. Superposition integrals are then used to derive the solute mass flux at a fixed downstream position from an instantaneous point source and for the solute concentrations that result from a continuous point source. Solutions are derived for cases with the solute source in the fracture and the solute source in the matrix. The analytical solutions are closed-form and are expressed in terms of algebraic functions, exponentials, and error functions. Comparisons between the analytical solutions and numerical simulations, as well as sensitivity studies, are presented. Increased sensitivity to cross-flow and solute source location is found for increasing Peclet number. The numerical solutions are found to compare well with the analytical solutions at lower Peclet numbers ,but show greater deviation at higher Peclet numbers.

  4. VERIFICATION OF TRANSPORT CODES BY THE METHOD OF MANUFACTURED SOLUTIONS: THE ATTILA EXPERIENCE

    SciTech Connect

    S. D. PAUTZ

    2001-03-19

    We extend the Method of Manufactured Solutions (MMS) to the verification of transport codes. We derive analytic fixed sources required by the MMS procedure for several types of transport problems and apply the method to the Attila transport code. By means of this method we discover and correct several coding mistakes in Attila and ultimately verify its correct implementation for the problems studied. Our studies reveal that the MMS procedure is a useful tool for transport code development.

  5. Fate and Transport of Graphene Oxide in Granular Porous Media: Experimental Results and Modeling

    NASA Astrophysics Data System (ADS)

    Gao, Bin

    2014-05-01

    Although graphene oxide (GO) has been used in many applications to improve human life quality, its environmental fate and behavior are still largely unknown. In this work, a range of laboratory experiments were conducted to explore the aggregation, deposition, and transport mechanisms of GO nano-sheets in porous media under various conditions. Stability experimental data showed that both cation valence and pH showed significant effect on the aggregation of GO sheets. The measured critical coagulation concentrations were in good agreement with the predictions of the extended Schulze-Hardy rule. Sand column experimental results indicated that deposition and transport of GO in porous media were strongly dependent on solution ionic strength. Particularly, GO showed high mobility under low ionic strength conditions in both saturated and unsaturated columns. Increasing ionic strength dramatically increased the retention of GO in porous media, mainly through secondary-minimum deposition. Recovery rates of GO in unsaturated sand columns were lower than that in saturated columns under the same ionic strength conditions, suggesting moisture content also played an important role in the retention of GO in porous media. Findings from the bubble column experiments showed that the GO did not attach to the air-water interface, which is consistent with the XDLVO predictions. Additional retention mechanisms, such as film straining, thus could be responsible to the reduced mobility of GO in unsaturated porous media. The breakthrough curves of GO in saturated and unsaturated columns could be accurately simulated by an advection-dispersion-reaction model.

  6. Smoothed Particle Hydrodynamics Stochastic Model for Flow and Transport in Porous Media

    SciTech Connect

    Tartakovsky, Alexandre M.; Tartakovsky, Daniel M.; Meakin, Paul

    2008-11-03

    A meso-scale stochastic Lagrangian particle model was developed and used to simulate conservative and reactive transport in porous media. In the stochastic model, the fluid flow in a porous continuum is governed by a combination of a Langevin equation and continuity equation. Pore-scale velocity fluctuations, the source of hydrodynamic dispersion, are represented by the white noise. A smoothed particle hydrodynamics method was used to solve the governing equations. Changes in the properties of the fluid particles (e.g., the solute concentration) are governed by the advection-diffusion equation. The separate treatment of advective and diffusive mixing in the stochastic transport model is more realistic than the classical advection-dispersion theory, which uses a single effective diffusion coefficient (the dispersion coefficient) to describe both types of mixing leading to over-prediction of mixing induced effective reaction rates. The stochastic model predicts much lower reaction product concentrations in mixing induced reactions. In addition, the dispersion theory predicts more stable fronts (with a higher effective fractal dimension) than the stochastic model during the growth of Rayleigh-Taylor instabilities.

  7. Numerical solution of the radiation transport equation in disk geometry

    NASA Technical Reports Server (NTRS)

    Spagna, George F., Jr.; Leung, Chun Ming

    1987-01-01

    An efficient numerical method for solving the problem of radiation transport in a dusty medium with two dimensional (2-D) disk geometry is described. It is a generalization of the one-dimensional quasi-diffusion method in which the transport equation is cast in diffusion form and then solved as a boundary value problem. The method should be applicable to a variety of astronomical sources, the dynamics of which are angular-momentum dominated and hence not accurately treated by spherical geometry, e.g., protoplanetary nebulae, circumstellar disks, interstellar molecular clouds, accretion disks, and disk galaxies. The computational procedure and practical considerations for implementing the method are described in detail. To illustrate the effects of 2-D radiation transport, some model results (dust temperature distributions and IR flux spectra) for externally heated, interstellar dust clouds with spherically symmetric and disk geometry are compared.

  8. Light-driven solute transport in Halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1979-01-01

    The cell membrane of Halobacterium halobium exhibits differential regions which contain crystalline arrays of a single kind of protein, termed bacteriorhodopsin. This bacterial retinal-protein complex resembles the visual pigment and, after the absorption of protons, translocates H(+) across the cell membrane, leading to an electrochemical gradient for protons between the inside and the outside of the cell. Thus, light is an alternate source of energy in these bacteria, in addition to terminal oxidation. The paper deals with work on light-driven transport in H. halobium with cell envelope vesicles. The discussion covers light-driven movements of H(+), Na(+), and K(+); light-driven amino acid transport; and apparent allosteric control of amino acid transport. The scheme of energy coupling in H. halobium vesicles appears simple, its quantitative details are quite complex and reveal regulatory phenomena. More knowledge is required of the way the coupling components are regulated by the ion gradients present.

  9. A dual-porosity model for simulating solute transport in oil shale

    USGS Publications Warehouse

    Glover, K.C.

    1987-01-01

    A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)

  10. Influence of spatial and temporal flow variability on solute transport in catchments

    NASA Astrophysics Data System (ADS)

    Selroos, Jan-Olof; Destouni, Georgia

    2015-04-01

    The present study quantifies the separate and combined effects of spatial and temporal variability of waterborne solute transport through catchments. The questions addressed are whether, when and why different types of variability may dominate catchment-scale transport. We utilize a versatile numerical solute transport code with a particle-based Monte Carlo time domain random walk method to simulate waterborne transport through a generic catchment. The methodology is exemplified by performing simulations using data on spatiotemporal flow and transport variability from direct stream discharge observations and independently calculated advective solute travel time distributions for catchments within the water management district Northern Baltic Proper (NBP) in Mid-Eastern Sweden. A main conclusion of the study is that projections of catchment mass loading based on spatial variability alone are robust estimates of long-term average solute transport development. This is especially true when annually aggregated mass load rather than finer temporal resolution of mass flux is considered. Temporal variability yields short-term fluctuations around the long-term average solute breakthrough development, and earlier or later arrival than the latter, depending on the timing and duration of solute input relative to the temporal flow variability. The exact temporal characteristics of future solute breakthroughs are thus fundamentally uncertain but their statistical expectation may be well quantified by only spatial variability account.

  11. Transport of solutes through unsaturated fractured media: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect

    Dykhuizen, R.C.

    1988-03-01

    A numerical model is presented to represent the transport of solutes through a highly fractured unsaturated, porous medium. To accomplish this, the solute is tracked separately in two flow systems a matrix pore flow system and a fracture network, with interaction terms. Compatible hydraulic equations for such a dual system are also presented to enable solution of the solute trasport. The hydraulic equations chosen use the equivlaent porous media concept. These equations can also be applied to a saturated medium without modification. However, many of the transport terms will be negligible for such an application. A brief sample calculation illustates the method. 11 refs., 4 figs.

  12. KINEMATIC MODELING OF MULTIPHASE SOLUTE TRANSPORT IN THE VADOSE ZONE

    EPA Science Inventory

    The goal of this research was the development of a computationally efficient simulation model for multiphase flow of organic hazardous waste constituents in the shallow soil environment. Such a model is appropriate for investigation of fate and transport of organic chemicals intr...

  13. CHANGING GEARS: A SUSTAINABLE TRANSPORTATION SOLUTION FOR UCSC

    EPA Science Inventory

    The University of California, Santa Cruz campus sees traffic in/out of campus that averages 22,576 vehicle trips per day. When examining the costs of automobile usage to the UC, students, and the environment it is clear that the primary mode of transportation of students and f...

  14. Impact of thin aquitards on two-dimensional solute transport in an aquifer

    NASA Astrophysics Data System (ADS)

    Rezaei, Abolfazl; Zhan, Hongbin; Zare, Mohammad

    2013-09-01

    The influence of aquitards on solute transport in an aquifer is an important and often overlooked process for subsurface contaminant transport. In particular, slow advection (leakage) into an aquitard is often neglected in previous analytical treatment of solute transport, making such analytical solutions unsuitable for benchmarking numerical simulations of transport when aquitard leakage exists. In this study, a semi-analytical solution to the two-dimensional conservative solute transport in an aquifer bounded by thin aquitards is derived in the Laplace domain. The governing equation in the aquifer (not aquitard) incorporates terms accounting for advection, longitudinal dispersion, and transverse vertical dispersion. Both one-dimensional vertical advection and molecular diffusion are considered for aquitard transport. The solutions are derived under conditions of steady-state flow and the first- and third-type transport boundary conditions in the aquifer along with assuming the continuity of concentration and vertical mass flux at aquifer and aquitard interfaces. The solutions in the real time domain are obtained by numerically inverting the solutions in the Laplace domain using the Stehfest (1970) algorithm. The semi-analytical solutions are compared with those from Zhan et al. (2009b), which considered aquitard leakage in infinitively thick aquitards. The concentration profiles, breakthrough curves and distribution profiles in the aquifer are different from those of Zhan et al. (2009b) at small ratios of the aquitard/aquifer thickness; whereas, the results of both are consistent for thick bounding aquitards. This study reveals that the residence time distribution (RTD) in the main aquifer is related to the aquitard/aquifer thickness ratios, Peclet numbers and porosities of adjacent aquitards. The results also suggest that MT3DMS (a commonly applied transport code) cannot successfully simulate solute transport at the aquifer-aquitard interfaces. The presented

  15. Impact of thin aquitards on two-dimensional solute transport in an aquifer.

    PubMed

    Rezaei, Abolfazl; Zhan, Hongbin; Zare, Mohammad

    2013-09-01

    The influence of aquitards on solute transport in an aquifer is an important and often overlooked process for subsurface contaminant transport. In particular, slow advection (leakage) into an aquitard is often neglected in previous analytical treatment of solute transport, making such analytical solutions unsuitable for benchmarking numerical simulations of transport when aquitard leakage exists. In this study, a semi-analytical solution to the two-dimensional conservative solute transport in an aquifer bounded by thin aquitards is derived in the Laplace domain. The governing equation in the aquifer (not aquitard) incorporates terms accounting for advection, longitudinal dispersion, and transverse vertical dispersion. Both one-dimensional vertical advection and molecular diffusion are considered for aquitard transport. The solutions are derived under conditions of steady-state flow and the first- and third-type transport boundary conditions in the aquifer along with assuming the continuity of concentration and vertical mass flux at aquifer and aquitard interfaces. The solutions in the real time domain are obtained by numerically inverting the solutions in the Laplace domain using the Stehfest (1970) algorithm. The semi-analytical solutions are compared with those from Zhan et al. (2009b), which considered aquitard leakage in infinitively thick aquitards. The concentration profiles, breakthrough curves and distribution profiles in the aquifer are different from those of Zhan et al. (2009b) at small ratios of the aquitard/aquifer thickness; whereas, the results of both are consistent for thick bounding aquitards. This study reveals that the residence time distribution (RTD) in the main aquifer is related to the aquitard/aquifer thickness ratios, Peclet numbers and porosities of adjacent aquitards. The results also suggest that MT3DMS (a commonly applied transport code) cannot successfully simulate solute transport at the aquifer-aquitard interfaces. The presented

  16. Modeling solute transport in distribution networks with variable demand and time step sizes.

    SciTech Connect

    Peyton, Chad E.; Bilisoly, Roger Lee; Buchberger, Steven G.; McKenna, Sean Andrew; Yarrington, Lane

    2004-06-01

    The effect of variable demands at short time scales on the transport of a solute through a water distribution network has not previously been studied. We simulate flow and transport in a small water distribution network using EPANET to explore the effect of variable demand on solute transport across a range of hydraulic time step scales from 1 minute to 2 hours. We show that variable demands at short time scales can have the following effects: smoothing of a pulse of tracer injected into a distribution network and increasing the variability of both the transport pathway and transport timing through the network. Variable demands are simulated for these different time step sizes using a previously developed Poisson rectangular pulse (PRP) demand generator that considers demand at a node to be a combination of exponentially distributed arrival times with log-normally distributed intensities and durations. Solute is introduced at a tank and at three different network nodes and concentrations are modeled through the system using the Lagrangian transport scheme within EPANET. The transport equations within EPANET assume perfect mixing of the solute within a parcel of water and therefore physical dispersion cannot occur. However, variation in demands along the solute transport path contribute to both removal and distortion of the injected pulse. The model performance measures examined are the distribution of the Reynolds number, the variation in the center of mass of the solute across time, and the transport path and timing of the solute through the network. Variation in all three performance measures is greatest at the shortest time step sizes. As the scale of the time step increases, the variability in these performance measures decreases. The largest time steps produce results that are inconsistent with the results produced by the smaller time steps.

  17. A transportronic solution to the problem of interorbital transportation

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1992-01-01

    An all-electronic transportation system described by the term 'transportronics' is examined as a means of solving the current problem of the high cost of transporting material from low-Earth orbit (LEO) to geostationary orbit (GEO). In this transportation system, low cost electric energy at the surface of the Earth is efficiently converted into microwave power which is then efficiently formed into a narrow beam which is kept incident upon the orbital transfer vehicles (OTV's) by electronic tracking. The incident beam is efficiently captured and converted into DC power by a device which has a very high ratio of DC power output to its mass. Because the mass of the electric thruster is also low, the resulting acceleration is unprecedented for electric-propelled vehicles. However, the performance of the system in terms of transit times from LEO to GEO is penalized by the short time of contact between the beam and the vehicle in low-Earth orbits. This makes it necessary to place the Earth based transmitters and the vehicles in the equatorial plane thus introducing many geopolitical factors. Technically, however, such a system as described in the report may out-perform any other approach to transportation in the LEO to GEO regime. The report describes and analyzes all portions of the beamed microwave power transmission system in considerable detail. An economic analysis of the operating and capital costs is made with the aid of a reference system capable of placing about 130,000 kilograms of payload into GEO each year. More mature states of the system are then examined, to a level in which 60,000 metric tons per year could be placed into GEO.

  18. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  19. Solute transport and retention in three-dimensional fracture networks

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir; Frampton, Andrew

    2012-02-01

    Resolving the hydrodynamic control of retention is an important step in predictive modeling of transport of sorbing tracers in fractured rock. The statistics of the transport resistance parameter β [T/L] and the related effective active specific surface area sf [1/L] are studied in a crystalline rock volume on a 100 m scale. Groundwater flow and advective transport are based on generic boundary conditions and realistic discrete fracture networks inferred from the Laxemar site, southeast Sweden. The overall statistics of β are consistent with statistics of the water residence time τ; the moments of β vary linearly with distance, at least up to 100 m. The correlation between log τ and log β is predominantly linear, however, there is significant dispersion; the parameter sf strongly depends on the assumed hydraulic law (theoretical cubic or empirical quadratic). Fast and slow trajectories/segments in the network determine the shape of the β distribution that cannot be reproduced by infinitely divisible model over the entire range; the low value range and median can be reproduced reasonably well with the tempered one-sided stable density using the exponent in the range 0.35-0.7. The low percentiles of the β distribution seems to converge to a Fickian type of behavior from a 50 to 100 m scale.

  20. Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: Simulation methodology and applications

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, J.

    1987-01-01

    Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.

  1. Predictions of dynamic changes in reaction rates as a consequence of incomplete mixing using pore scale reactive transport modeling on images of porous media.

    PubMed

    Alhashmi, Z; Blunt, M J; Bijeljic, B

    2015-08-01

    We present a pore scale model capable of simulating fluid/fluid reactive transport on images of porous media from first principles. We use a streamline-based particle tracking method for simulating flow and transport, while for reaction to occur, both reactants must be within a diffusive distance of each other during a time-step. We assign a probability of reaction (Pr), as a function of the reaction rate constant (kr) and the diffusion length. Firstly, we validate our model for reaction against analytical solutions for the bimolecular reaction (A+B→C) in a free fluid. Then, we simulate transport and reaction in a beadpack to validate the model through predicting the fluid/fluid reaction experimental results provided by Gramling et al. (2002). Our model accurately predicts the experimental data, as it takes into account the degree of incomplete mixing present at the sub-pore (image voxel) level, in contrast to advection-dispersion-reaction equation (ADRE) model that over-predicts pore scale mixing. Finally, we show how our model can predict dynamic changes in the reaction rate accurately accounting for the local geometry, topology and flow field at the pore scale. We demonstrate the substantial difference between the predicted early-time reaction rate in comparison to the ADRE model. PMID:26142546

  2. Combined physical and chemical nonequilibrium transport model: Analytical solution, moments, and application to colloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport of solutes and colloids in porous media is influenced by a variety of physical and chemical nonequilibrium processes. A combined physical–chemical nonequilibrium (PCNE) model was therefore used to describe general mass transport. The model partitions the pore space into “mobile” and “i...

  3. The Governor's Challenge: "Building a Stronger Virginia Today": Transportation Visions and Solutions

    NASA Technical Reports Server (NTRS)

    Baker, Susan

    2008-01-01

    Using STM(Science, Technology, Engineering, Math) education, this emerging workforce will have the chance to creatively solve one of Virginia's biggest challenges: TRANSPORTATION. - Students will be asked to develop alternative transportation systems for the state. This competition will enable teams to work with business mentors to design creative solutions for regional gridlocks and develop other transportation systems to more easily and expediently reach all parts of the Commonwealth.

  4. Analytical solutions of solute transport in a fracture-matrix system with different reaction rates for fracture and matrix

    NASA Astrophysics Data System (ADS)

    Zhu, Yonghui; Zhan, Hongbin; Jin, Menggui

    2016-08-01

    This study deals with the problem of reactive solute transport in a fracture-matrix system using both analytical and numerical modeling methods. The groundwater flow velocity in the fracture is assumed to be high enough (no less than 0.1 m/day) to ensure the advection-dominant transport in the fracture. The problem includes advection along the fracture, transverse diffusion in the matrix, with linear sorption as well as first-order reactions operative in both the fracture and the matrix. A constant-concentration boundary condition and a decay source boundary condition in the fracture are considered. With a constant-concentration source, we obtain closed-form analytical solutions that account for the transport without reaction as well as steady-state solutions with different first-order reactions in the two media. With a decay source, a semi-analytical solution is obtained. The analytical and semi-analytical solutions are in excellent agreement with the numerical simulation results obtained using COMSOL Multiphysics. Sensitivity analysis is conducted to assess the relative importance of matrix diffusion coefficient, fracture aperture, and matrix porosity. We conclude that the first-order reaction as well as the matrix diffusion in the fractured rock would decrease the solute peak concentration and shorten the penetration distance into the fracture. The solutions can be applied to assess the spatial-temporal distribution of concentrations in the fracture and the matrix as well as to assess the contaminant mass stored in the rock matrix. All of these are useful for designing remediation plans for contaminated fractured rocks or for risk assessment of contaminated fracture-matrix systems.

  5. General solution of a fractional diffusion-advection equation for solar cosmic-ray transport

    NASA Astrophysics Data System (ADS)

    Rocca, M. C.; Plastino, A. R.; Plastino, A.; Ferri, G. L.; de Paoli, A.

    2016-04-01

    In this effort we exactly solve the fractional diffusion-advection equation for solar cosmic-ray transport and give its general solution in terms of hypergeometric distributions. Numerical analysis of this equation shows that its solutions resemble power-laws.

  6. Solute transport through a pine-bark based substrate under saturated and unsaturated conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of how dissolved mineral nutrient ions (solutes) move through pine bark substrates during the application of irrigation water is vital to better understand nutrient transport and leaching from containerized crops during an irrigation event. However, current theories on solute transp...

  7. Derivation of the macroscopic solute transport equation for homogeneous, saturated, porous media

    SciTech Connect

    Chu, S.Y.; Sposito, G.

    1980-06-01

    The macroscopic transport equation for a conservative solute in a homogeneous, water-saturated porous medium is derived on the basis of a rigorous cumulant expansion applied to the equation of mass balance. The essential physical conept underlying the derivation is that of a local volume-averaged solute velocity which fluctuates on a time scale that is orders of magnitude smaller than its autocorrelation time scale, which, in turn, is much smaller than the time scale of interest in a typical solute transport experiment. This clear separation of the scales is illustrated with representative data on solute transport in homogeneous, water-saturated soils and is employed to justify the truncation of an exact cumulant expansion of the divergence of the volume-averaged solute mass flux density. With the cumulant expansion terminated at first order in the ratio of the solute velocity autocorrelation time to the macroscopic solute transport time interval, an expression for the macroscopic solute mass flux density is produced which is the same as Fick's law extended to porous media. 26 references.

  8. A conceptual framework for ground-water solute-transport studies with emphasis on physical mechanisms of solute movement

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Buxton, Herbert T.; Bennett, Gordon D.

    1987-01-01

    Analysis of solute transport in groundwater systems involves a complex, multi-discipline study that requires intensive and costly investigation. Groundwater contamination, particularly from point sources, has been growing in importance in recent years. This report examines the physical mechanisms of solute transport, advection and dispersion, and explains how they relate to one another and the scale of study. The approach uses a preliminary analysis prior to collection of new data to focus on the technical problems to be addressed and to direct the initial collection of new data if warranted. The field investigation (collection of new data) progresses in stages that use the new knowledge and understanding gained from the preceding data collection to aid in further data collection as the study proceeds. A major premise of the approach is that the foundation of any analysis is a detailed quantitative definition of: (1) the groundwater flow field in three dimensions, and (2) the distribution of solutes in the contaminant plume in three dimensions at one point in time, or preferably at more than features of the groundwater flow field, and is an important tool for analysis. However, the scale of analysis for solute transport studies is usually much finer than the scale of analysis for groundwater flow alone. Therefore, an increase in detail of the velocity field is needed to provide for accurate calculations of pathlines in three-dimensional heterogeneous groundwater systems. (Lantz-PTT)

  9. An Evaluation of Conditioning Data for Solute Transport Prediction

    SciTech Connect

    Scheibe, Timothy D.; Chien, Yi-Ju

    2003-03-01

    The large and diverse body of subsurface characterization data generated at a field research site near Oyster, Virginia provides a unique opportunity to test the impact of conditioning data of various types on predictions of flow and transport. Bromide breakthrough curves (BTCs) were measured during a forced-gradient local-scale injection experiment conducted in 1999. Observed BTCs are available at 140 sampling points in a three dimensional array within the transport domain. A detailed three-dimensional numerical model is used to simulate breakthrough curves at the same locations as the observed BTCs under varying assumptions regarding the character of hydraulic conductivity spatial distributions, and variable amounts and types of conditioning data. We present comparative results of six different cases ranging from simple (deterministic homogeneous models) to complex (stochastic indicator simulation conditioned to cross-borehole geophysical observations). Quantitative measures of model goodness-of-fit are presented. The results show that conditioning to a large number of small-scale measurements does not significantly improve model predictions, and may lead to biased or overly confident predictions. However, conditioning to geophysical interpretations with larger spatial support significantly improves the accuracy and precision of model predictions. In all cases, the effects of model error appear to be significant in relation to parameter uncertainty.

  10. Implicitly causality enforced solution of multidimensional transient photon transport equation.

    PubMed

    Handapangoda, Chintha C; Premaratne, Malin

    2009-12-21

    A novel method for solving the multidimensional transient photon transport equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. Owing to the intrinsic causal nature of Laguerre functions, our technique automatically always preserve the causality constrains of the transient signal. This expansion of the radiance using a Laguerre basis transforms the transient photon transport equation to the steady state version. The resulting equations are solved using the discrete ordinates method, using a finite volume approach. Therefore, our method enables one to handle general anisotropic, inhomogeneous media using a single formulation but with an added degree of flexibility owing to the ability to invoke higher-order approximations of discrete ordinate quadrature sets. Therefore, compared with existing strategies, this method offers the advantage of representing the intensity with a high accuracy thus minimizing numerical dispersion and false propagation errors. The application of the method to one, two and three dimensional geometries is provided. PMID:20052050

  11. Determination of bacterial and viral transport parameters in a gravel aquifer assuming linear kinetic sorption and desorption

    NASA Astrophysics Data System (ADS)

    Mallén, G.; Maloszewski, P.; Flynn, R.; Rossi, P.; Engel, M.; Seiler, K.-P.

    2005-05-01

    The bacteria Escherichia coli and Pseudomonas putida, and the bacteriophage virus H40/1 are examined both for their transport behaviour relative to inert solute tracers and for their modelability under natural flow conditions in a gravel aquifer. The microbes are attenuated in the following sequence: H40/1≥ P. putida≫ E. coli. The latter is desorbed almost completely within a few days. Breakthrough and recovery curves of the simultaneously injected non-reactive tracers are simulated with the 2D and 1D dispersion equation, in order to ascertain longitudinal dispersivity ( αL) and mean flow time ( T0). Mathematical modelling is difficult due to the aquifer heterogeneity, which results in preferential flow paths between injection and observation wells. Therefore, any attempt of fitting the dispersion model (DM) to the entire inert-tracer breakthrough curve (BTC) fails. Adequate fitting of the model to measured data only succeeds using a DM consisting of a superposition of several BTCs, each representing another set of flow paths. This gives rise to a multimodal, rather than a Gaussian groundwater velocity distribution. Only hydraulic parameters derived from the fastest partial curve, which is fitted to the rising part of the Uranine BTC, are suitable to model microbial breakthroughs. The hydraulic parameters found using 2D and 1D models were nearly identical. Their values were put into an analytical solution of 1D advective-dispersive transport combined with two-site reaction model introduced by Cameron and Klute [Cameron, D.R., Klute, A., 1977. Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resour. Res. 13, 183-189], in order to identify reactive transport parameters (sorption/desorption) and attenuation mechanisms for the microbes migration. This shows that the microbes are almost entirely transported through preferential flow paths, which are represented by the first partial curve. Inert tracers, however

  12. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed

    NASA Astrophysics Data System (ADS)

    Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.

    2015-04-01

    A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.

  13. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and

  14. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  15. Role of ABC and Solute Carrier Transporters in the Placental Transport of Lamivudine.

    PubMed

    Ceckova, Martina; Reznicek, Josef; Ptackova, Zuzana; Cerveny, Lukas; Müller, Fabian; Kacerovsky, Marian; Fromm, Martin F; Glazier, Jocelyn D; Staud, Frantisek

    2016-09-01

    Lamivudine is one of the antiretroviral drugs of choice for the prevention of mother-to-child transmission (MTCT) in HIV-positive women. In this study, we investigated the relevance of drug efflux transporters P-glycoprotein (P-gp) (MDR1 [ABCB1]), BCRP (ABCG2), MRP2 (ABCC2), and MATE1 (SLC47A1) for the transmembrane transport and transplacental transfer of lamivudine. We employed in vitro accumulation and transport experiments on MDCK cells overexpressing drug efflux transporters, in situ-perfused rat term placenta, and vesicular uptake in microvillous plasma membrane (MVM) vesicles isolated from human term placenta. MATE1 significantly accelerated lamivudine transport in MATE1-expressing MDCK cells, whereas no transporter-driven efflux of lamivudine was observed in MDCK-MDR1, MDCK-MRP2, and MDCK-BCRP monolayers. MATE1-mediated efflux of lamivudine appeared to be a low-affinity process (apparent Km of 4.21 mM and Vmax of 5.18 nmol/mg protein/min in MDCK-MATE1 cells). Consistent with in vitro transport studies, the transplacental clearance of lamivudine was not affected by P-gp, BCRP, or MRP2. However, lamivudine transfer across dually perfused rat placenta and the uptake of lamivudine into human placental MVM vesicles revealed pH dependency, indicating possible involvement of MATE1 in the fetal-to-maternal efflux of the drug. To conclude, placental transport of lamivudine does not seem to be affected by P-gp, MRP2, or BCRP, but a pH-dependent mechanism mediates transport of lamivudine in the fetal-to-maternal direction. We suggest that MATE1 might be, at least partly, responsible for this transport. PMID:27401571

  16. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gao, Bin; Li, Hui; Ma, Lena Q.

    2011-09-01

    Many antibiotics regarded as emerging contaminants have been frequently detected in soils and groundwater; however, their transport behaviors in soils remain largely unknown. This study examined the transport of two antibiotics, sulfamethoxazole (SMZ) and ciprofloxacin (CIP), in saturated porous media. Laboratory columns packed with quartz sand was used to test the effects of solution pH and ionic strength (IS) on their retention and transport. The results showed that these two antibiotics behaved differently in the saturated sand columns. In general, SMZ manifested a much higher mobility than CIP for all experimental conditions tested. Almost all SMZ transported through the columns within one pore volume in deionized water (i.e., pH = 5.6, IS = 0), but no CIP was detected in the effluents under the same condition after extended column flushing. Perturbations in solution pH (5.6 and 9.5) and IS (0 and 0.1 M) showed no effect on SMZ transport in the saturated columns. When pH increased to 9.5, however, ~ 93% of CIP was eluted from the sand columns. Increase of IS from 0 to 0.1 M also slightly changed the distribution of adsorbed CIP within the sand column at pH 5.6, but still no CIP was detected in the effluents. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions successfully simulated the transport of the antibiotics in water-saturated porous media with R2 = 0.99.

  17. D4Z - a new renumbering for iterative solution of ground-water flow and solute- transport equations

    USGS Publications Warehouse

    Kipp, K.L.; Russell, T.F.; Otto, J.S.

    1992-01-01

    D4 zig-zag (D4Z) is a new renumbering scheme for producing a reduced matrix to be solved by an incomplete LU preconditioned, restarted conjugate-gradient iterative solver. By renumbering alternate diagonals in a zig-zag fashion, a very low sensitivity of convergence rate to renumbering direction is obtained. For two demonstration problems involving groundwater flow and solute transport, iteration counts are related to condition numbers and spectra of the reduced matrices.

  18. Flow dynamics and solute transport in unsaturated rock fractures

    SciTech Connect

    Su, G. W.

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  19. Molecular cell biology and physiology of solute transport

    PubMed Central

    Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li

    2010-01-01

    Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392

  20. Stochastic models of solute transport in highly heterogeneous geologic media

    SciTech Connect

    Semenov, V.N.; Korotkin, I.A.; Pruess, K.; Goloviznin, V.M.; Sorokovikova, O.S.

    2009-09-15

    A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy {alpha}-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multiscaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented.

  1. Solute Transport in Eroded and Rehabilitated Prairie Landforms. 2. Reactive Solute

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information regarding the impact of varying soil, landscape, and climate conditions on the off-site transport of pesticides is critical to the development of improved pesticide management practices. We quantified the rate of S-metolachlor dissipation after fall and spring application in eroded and r...

  2. Automodel solutions for Lévy flight-based transport on a uniform background

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Sdvizhenskii, P. A.

    2016-06-01

    A wide class of non-stationary superdiffusive transport on a uniform background with a power-law decay at large distances of the step-length probability distribution function (PDF) is shown to possess an approximate automodel solution. The solution for the Green’s function is constructed using the scaling laws for the propagation front (relevant-to-superdiffusion average displacement) and asymptotic solutions far beyond and far in advance of the propagation front. These scaling laws are determined essentially by the long-free-path carriers (Lévy flights). The validity of the suggested automodel solution is proved by its comparison with numerical solutions in the one-dimensional (1D) case of the transport equation with a simple long-tailed PDF with various power-law exponents and in the 3D case of the Biberman–Holstein equation of the resonance radiation transfer for various (Doppler, Lorentz, Voigt and Holtsmark) spectral line shapes.

  3. Antitubercular Agent Delamanid and Metabolites as Substrates and Inhibitors of ABC and Solute Carrier Transporters.

    PubMed

    Sasabe, Hiroyuki; Shimokawa, Yoshihiko; Shibata, Masakazu; Hashizume, Kenta; Hamasako, Yusuke; Ohzone, Yoshihiro; Kashiyama, Eiji; Umehara, Ken

    2016-06-01

    Delamanid (Deltyba, OPC-67683) is the first approved drug in a novel class of nitro-dihydro-imidazooxazoles developed for the treatment of multidrug-resistant tuberculosis. Patients with tuberculosis require treatment with multiple drugs, several of which have known drug-drug interactions. Transporters regulate drug absorption, distribution, and excretion; therefore, the inhibition of transport by one agent may alter the pharmacokinetics of another, leading to unexpected adverse events. Therefore, it is important to understand how delamanid affects transport activity. In the present study, the potencies of delamanid and its main metabolites as the substrates and inhibitors of various transporters were evaluated in vitro Delamanid was not transported by the efflux ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), solute carrier (SLC) transporters, organic anion-transporting polypeptides, or organic cation transporter 1. Similarly, metabolite 1 (M1) was not a substrate for any of these transporters except P-gp. Delamanid showed no inhibitory effect on ABC transporters MDR1, BCRP, and bile salt export pump (BSEP; ABCB11), SLC transporters, or organic anion transporters. M1 and M2 inhibited P-gp- and BCRP-mediated transport but did so only at the 50% inhibitory concentrations (M1, 4.65 and 5.71 μmol/liter, respectively; M2, 7.80 and 6.02 μmol/liter, respectively), well above the corresponding maximum concentration in plasma values observed following the administration of multiple doses in clinical trials. M3 and M4 did not affect the activities of any of the transporters tested. These in vitro data suggest that delamanid is unlikely to have clinically relevant interactions with drugs for which absorption and disposition are mediated by this group of transporters. PMID:27021329

  4. An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model

    USGS Publications Warehouse

    Kipp, K.L., Jr.; Konikow, L.F.; Hornberger, G.Z.

    1998-01-01

    This report documents an extension to the U.S. Geological Survey MOC3D transport model that incorporates an implicit-in-time difference approximation for the dispersive transport equation, including source/sink terms. The original MOC3D transport model (Version 1) uses the method of characteristics to solve the transport equation on the basis of the velocity field. The original MOC3D solution algorithm incorporates particle tracking to represent advective processes and an explicit finite-difference formulation to calculate dispersive fluxes. The new implicit procedure eliminates several stability criteria required for the previous explicit formulation. This allows much larger transport time increments to be used in dispersion-dominated problems. The decoupling of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit extension, the MOC3D model is upgraded to Version 2. A description of the numerical method of the implicit dispersion calculation, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. Version 2 of MOC3D was evaluated for the same set of problems used for verification of Version 1. These test results indicate that the implicit calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the explicit calculation for transport problems that are characterized by a grid Peclet number less than about 1.0.

  5. Solute Transport in Cyclically Deformed Porous Tissue Scaffolds with Controlled Pore Cross-Sectional Geometries

    PubMed Central

    Op Den Buijs, Jorn; Lu, Lichun; Jorgensen, Steven M.; Dragomir-Daescu, Dan; Yaszemski, Michael J.

    2009-01-01

    The objective of this study was to investigate the influence of pore geometry on the transport rate and depth after repetitive mechanical deformation of porous scaffolds for tissue engineering applications. Flexible cubic imaging phantoms with pores in the shape of a circular cylinder, elliptic cylinder, and spheroid were fabricated from a biodegradable polymer blend using a combined 3D printing and injection molding technique. The specimens were immersed in fluid and loaded with a solution of a radiopaque solute. The solute distribution was quantified by recording 20 μm pixel-resolution images in an X-ray microimaging scanner at selected time points after intervals of dynamic straining with a mean strain of 8.6 ± 1.6% at 1.0 Hz. The results show that application of cyclic strain significantly increases the rate and depth of solute transport, as compared to diffusive transport alone, for all pore shapes. In addition, pore shape, pore size, and the orientation of the pore cross-sectional asymmetry with respect to the direction of strain greatly influence solute transport. Thus, pore geometry can be tailored to increase transport rates and depths in cyclically deformed scaffolds, which is of utmost importance when thick, metabolically functional tissues are to be engineered. PMID:19196145

  6. Elements of fractal generalization of dual-porosity model for solute transport in unsaturated fractured rocks

    SciTech Connect

    Bolshov, L.; Kondratenko, P.; Matveev, L.; Pruess, K.

    2008-09-01

    In this study, new elements were developed to generalize the dual-porosity model for moisture infiltration on and solute transport in unsaturated rocks, taking into account fractal aspects of the percolation process. Random advection was considered as a basic mechanism of solute transport in self-similar fracture systems. In addition to spatial variations in the infiltration velocity field, temporal fluctuations were also taken into account. The rock matrix, a low-permeability component of the heterogeneous geologic medium, acts as a trap for solute particles and moisture. Scaling relations were derived for the moisture infiltration flux, the velocity correlation length, the average velocity of infiltration, and the velocity correlation function. The effect of temporal variations in precipitation intensity on the infiltration processes was analyzed. It showed that the mode of solute transport is determined by the power exponent in the advection velocity correlation function and the dimensionality of the trapping system, both of which may change with time. Therefore, depending on time, various transport regimes may be realized: superdiffusion, subdiffusion, or classical diffusion. The complex structure of breakthrough curves from changes in the transport regimes was also examined. A renormalization of the solute source strength due to characteristic fluctuations of highly disordered media was established.

  7. A finite-volume ELLAM for three-dimensional solute-transport modeling

    USGS Publications Warehouse

    Russell, T.F.; Heberton, C.I.; Konikow, L.F.; Hornberger, G.Z.

    2003-01-01

    A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.

  8. Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.

    2007-05-01

    . Independent multi-element analyses of three samples by ICP-MS show decreasing uranium concentration with depth as well. The transport of the radionuclides is evaluated using STANMOD, a Windows-based software package for evaluating solute transport in porous media using analytical solutions of the advection-dispersion solute transport equation. The package allows various one-dimensional, advection-dispersion parameters to be determined by fitting mathematical solutions of theoretical transport models to observed data. The results are promising for future work on the release rate of radionuclides from the boulder, the dominant mode of transport (e.g., particulate or dissolution), and the movement of radionuclides through porous media. The measured subsurface transport rates provide modelers with a model validation dataset.

  9. Continuous time random walk analysis of solute transport in fractured porous media

    SciTech Connect

    Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

    2008-06-01

    The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

  10. Pore connectivity effects on solute transport in rocks

    SciTech Connect

    Hu, Qinhong; Ewing, Robert P.

    2001-11-30

    Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time{sup 0.26}, while tuff and Berea sandstone showed the more classical scaling with time{sup 0.5}; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuff; and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of

  11. Kinetically influenced terms for solute transport affected by heterogeneous and homogeneous classical reactions

    USGS Publications Warehouse

    Bahr, J.M.

    1990-01-01

    This paper extends a four-step derivation procedure, previously presented for cases of transport affected by surface reactions, to transport problems involving homogeneous reactions. Derivations for these classes of reactions are used to illustrate the manner in which mathematical differences between reaction classes are reflected in the mathematical derivation procedures required to identify kinetically influenced terms. Simulation results for a case of transport affected by a single solution phase complexation reaction and for a case of transport affected by a precipitation-dissolution reaction are used to demonstrate the nature of departures from equilibrium-controlled transport as well as the use of kinetically influenced terms in determining criteria for the applicability of the local equilibrium assumption. A final derivation for a multireaction problem demonstrates the application of the generalized procedure to a case of transport affected by reactions of several classes. -from Author

  12. Stochastic modeling analysis of sequential first-order degradation reactions and non-Fickian transport in steady state plumes

    NASA Astrophysics Data System (ADS)

    Burnell, Daniel K.; Mercer, James W.; Faust, Charles R.

    2014-02-01

    Stochastic analyses were performed to examine sequential first-order monomolecular reactions at the microscopic scale and both Fickian and non-Fickian plume reactive transport at the macroscopic scale. An analytical solution was derived for the chemical master equation (CME) for a closed system of irreversible first-order monomolecular reactions. Taking a Lagrangian reference frame of particles migrating from a source, analyses show that the relative concentration of each species in the deterministic analytical solution for 1-D steady state plug flow with first-order sequential degradation is mathematically equivalent to the mean of a multinomial distribution of plume particles moving at constant velocity with sequential transformations described by transition probabilities of a discrete state, continuous-time Markov chain. In order to examine the coupling of reaction and transport terms in subdiffusive-reactive transport equations, a closed-form multispecies analytical solution also was derived for steady state advection, dispersion, and sequential first-order reaction. Using a 1-D continuous-time random walk (CTRW) embedded in Markov chains, computationally efficient Monte Carlo simulations of particle movement were performed to more fully examine effects of subdiffusive-reactive transport with an application to steady state, sequentially degrading multispecies plumes at a site in Palm, Bay, FL. The simulation results indicated that non-Fickian steady state plumes can resemble Fickian plumes because linear reactions truncate the waiting time between particle jumps, which removes lower velocity particles from the broad spectrum of velocities in highly heterogeneous media. Results show that fitting of Fickian models to plume concentration data can lead to inaccurate estimates of rate constants because of the wide distribution of travel times in highly heterogeneous media.

  13. Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.

    2015-06-01

    Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.

  14. Explicit solutions of the radiative transport equation in the P{sub 3} approximation

    SciTech Connect

    Liemert, André Kienle, Alwin

    2014-11-01

    Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiative transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.

  15. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    SciTech Connect

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  16. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGESBeta

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  17. Analytical Solutions of a Fractional Diffusion-advection Equation for Solar Cosmic-Ray Transport

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  18. The Vacuole System Is a Significant Intracellular Pathway for Longitudinal Solute Transport in Basidiomycete Fungi†

    PubMed Central

    Darrah, P. R.; Tlalka, M.; Ashford, A.; Watkinson, S. C.; Fricker, M. D.

    2006-01-01

    Mycelial fungi have a growth form which is unique among multicellular organisms. The data presented here suggest that they have developed a unique solution to internal solute translocation involving a complex, extended vacuole. In all filamentous fungi examined, this extended vacuole forms an interconnected network, dynamically linked by tubules, which has been hypothesized to act as an internal distribution system. We have tested this hypothesis directly by quantifying solute movement within the organelle by photobleaching a fluorescent vacuolar marker. Predictive simulation models were then used to determine the transport characteristics over extended length scales. This modeling showed that the vacuolar organelle forms a functionally important, bidirectional diffusive transport pathway over distances of millimeters to centimeters. Flux through the pathway is regulated by the dynamic tubular connections involving homotypic fusion and fission. There is also a strongly predicted interaction among vacuolar organization, predicted diffusion transport distances, and the architecture of the branching colony margin. PMID:16835455

  19. Analytical Solution for Multi-Species Contaminant Transport Subject to Sequential First-Order Decay Reactions in Finite Media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transport equations governing the movement of multiple solutes undergoing sequential first-order decay reactions have relevance in analyzing a variety of subsurface contaminant transport problems. In this study, a one-dimensional analytical solution for multi-species transport is obtained for finite...

  20. Nutrition of the intervertebral disc: effect of fluid flow on solute transport

    SciTech Connect

    Urban, J.P.; Holm, S.; Maroudas, A.; Nachemson, A.

    1982-10-01

    Adult dogs were injected intravenously with /sup 35/S-sulphate, and moderately exercised for one to six hours to measure isotope concentrations and profiles throughout the intervertebral discs. The isotope profiles were also observed in control animals that had been under anesthesia between injections and death. In both sets of animals, the profiles were in agreement with those expected for isotope transport by diffusion. This agreement indicates that fluid pumping during movement has an insignificant effect on transport of nutrients into the disc. Small solutes, e.g., O/sub 2/, glucose, and sulphate, are transported into the disc chiefly by diffusion. However, calculations show that because of their low diffusivities, pumping may increase the rate of transport of large solutes into the disc, as it does in articular cartilage.

  1. Simulation of unsaturated flow and nonreactive solute transport in a heterogeneous soil at the field scale

    SciTech Connect

    Rockhold, M L

    1993-02-01

    A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration.

  2. Lateral subsurface stormflow and solute transport in a forested hillslope: A combined measurement and modeling approach

    NASA Astrophysics Data System (ADS)

    Laine-Kaulio, Hanne; Backnäs, Soile; Karvonen, Tuomo; Koivusalo, Harri; McDonnell, Jeffrey J.

    2014-10-01

    Preferential flow dominates water movement and solute transport in boreal forest hillslopes. However, only a few model applications to date have accounted for preferential flow at forest sites. Here we present a parallel and coupled simulation of flow and transport processes in the preferential flow domain and soil matrix of a forested hillslope section in Kangaslampi, Finland, using a new, three-dimensional, physically based dual-permeability model. Our aim is to simulate lateral subsurface stormflow and solute transport at the slope during a chloride tracer experiment, and to investigate the role of preferential flow in the tracer transport. The model was able to mimic the observed tracer transport during tracer irrigation, but overestimated the dilution velocity of the tracer plume in the highly conductive soil horizons near the soil surface after changing the irrigation to tracer-free water. According to the model, 140 times more chloride was transported downslope in the preferential flow domain than in the soil matrix during the tracer irrigation. The simulations showed, together with reference simulations with a traditional one pore domain model, that a two pore domain approach was required to simulate the observed flow and transport event. The event was characterized by the transmissivity feedback phenomenon and controlled by preferential flow mechanisms, in particular by lateral by-pass flow. According to our results, accounting for the slow-flow and fast-flow domains of soil, as well as the water and solute exchange between the domains, is essential for a successful simulation of flow and solute transport in preferential flow dominated hillslopes.

  3. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    SciTech Connect

    Sheng, F.; Wang, K.; Zhang, R.; Liu, H.H.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.

  4. Iterative solution of the multistream electron transport equation. I - Comparison with laboratory beam injection experiments

    NASA Technical Reports Server (NTRS)

    Porter, H. S.; Varosi, F.; Mayr, H. G.

    1987-01-01

    The Neumann iteration method presently used for solving the electron transport equation in which energy, attitude, and pitch angle are independent variables is fast, and can compute numerical point-response-function solutions of the electron transport equation. Because both the inelastic cross sections and angular elastic cross sections of the model are empirically based, the solutions obtained represent a test of compatibility between various sets of cross sections and energy deposition measurements. The use of a numerical quadrature based on analytic phase function forms yields accurate phase function integrals at low computational cost.

  5. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    USGS Publications Warehouse

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Of the models tested, RZWQM, HYDRUS2D, VS2DT, GLEAMS and PRZM had graphical user interfaces. Extensive documentation was available for RZWQM, HYDRUS2D, and VS2DT. RZWQM can explicitly simulate water and solute flux in macropores, and both HYDRUS2D and VS2DT can simulate water and solute flux in two dimensions. The version of RZWQM tested had a maximum simulation depth of 3 meters. The complex models simulate the formation, transport, and fate of degradates of up to three to five compounds including the parent, with the exception of VS2DT, which simulates the transport and fate of a single compound.

  6. Spectroscopic and transport measurements of single molecules in solution using an electrokinetic trap

    NASA Astrophysics Data System (ADS)

    Wang, Quan; Moerner, W. E.

    2014-03-01

    In aqueous solution, diffusion generally limits the observation window of a nano-meter sized single molecule to milliseconds and prevents quantitative determination of spectroscopic and transport properties molecule-by-molecule. The anti-Brownian electrokinetic (ABEL) trap is a feedback-based microfluidic device that enables prolonged (multiseconds) observation of single molecules in solution. The amount of information that can be extracted from each molecule in solution is thus boosted by three orders of magnitude. We describe recent advances in extending the ABEL trap to conduct both spectroscopic and transport measurements of single trapped molecules. First, by combining the trap with multi-parameter fluorescence detection, synchronized dynamics in different observables can be visualized in solution. We use single molecules of Atto 633 as an example and show that this popular label switches between different emissive states under common imaging conditions. Next, we show how transport properties of trapped single molecules can be extracted in addition to spectroscopic readouts. Due to their direct sensitivity to molecular size and charge, measured transport coefficients can be used to distinguish different molecular species and trace biomolecular interactions in solution. We demonstrate this new paradigm by monitoring DNA hybridization/melting in real-time.

  7. Analytic solutions of tracer transport in fractured rock associated with precipitation-dissolution reactions

    SciTech Connect

    Liu, H.H.; Mukhopadhyay, S.; Spycher, N.; Kennedy, B.

    2011-03-15

    Precipitation-dissolution reactions are important for a number of applications such as isotopic tracer transport in the subsurface. Analytical solutions have been developed for tracer transport in both single-fracture and multiple-fracture systems associated with these reactions under transient and steady-state transport conditions. These solutions also take into account advective transport in fractures and molecular diffusion in the rock matrix. For studying distributions of disturbed tracer concentration (the difference between actual concentration and its equilibrium value), effects of precipitation-dissolution reactions are mathematically equivalent to a 'decay' process with a decay constant proportional to the corresponding bulk reaction rate. This important feature significantly simplifies the derivation procedure by taking advantage of the existence of analytical solutions for tracer transport associated with radioactive decay in fractured rock. It is also useful for interpreting tracer breakthrough curves, because the impact of a decay process is relatively easy to analyze. Several illustrative examples are presented, which show that the results are sensitive to fracture spacing, matrix diffusion coefficient (fracture surface area), and bulk reaction rate (or 'decay' constant), indicating that the relevant flow and transport parameters may be estimated by analyzing tracer signals.

  8. Strategic network design of Java Island fuel supply with production-transportation solution

    NASA Astrophysics Data System (ADS)

    Dianawati, Fauzia; Farizal, -; Surjandari, Isti; Marzuli, Rully

    2011-10-01

    This study aims to find more efficient supply network, from refineries / imports to fuel terminal, which still uses the Tanker, Tank Trucks or Rail Tank Wagon with an alternative pipeline that are considered more efficient than other transport modes, as well as gaining pipeline transportation network optimization analysis tailored to the capabilities/ capacity of refinery production and capacity of the pipe mode. With the complexity of the number of 3 point sources of supply, 19 destination of terminal, 4 kinds of products and 4 types of transport modes, transport-production model modified by adding multi-modal transport and investment costs of new pipeline. Then coded in Lingo program which adopts Branch & Bound technique and input the processed data in order to obtain an optimal distribution pattern produced the lowest distribution costs. This B&B solution was also compared with SCO solution which is a metaheuristic method. The results of this study lead to the development of new modes of pipeline connections in amount of 4 alternatives, generated from the optimal solution, but still potentially earned savings of about IDR 1 Trillion per year from cost-efficiency of product procurement and transportation costs.

  9. Solutions and reductions for radiative energy transport in laser-heated plasma

    SciTech Connect

    Broadbridge, P.; Ivanova, N. M.

    2015-01-15

    A full symmetry classification is given for models of energy transport in radiant plasma when the mass density is spatially variable and the diffusivity is nonlinear. A systematic search for conservation laws also leads to some potential symmetries and to an integrable nonlinear model. Classical point symmetries, potential symmetries, and nonclassical symmetries are used to effect variable reductions and exact solutions. The simplest time-dependent solution is shown to be stable and relevant to a closed system.

  10. Transport solutions of the Lamé equations and shock elastic waves

    NASA Astrophysics Data System (ADS)

    Alexeyeva, L. A.; Kaishybaeva, G. K.

    2016-07-01

    The Lamé system describing the dynamics of an isotropic elastic medium affected by a steady transport load moving at subsonic, transonic, or supersonic speed is considered. Its fundamental and generalized solutions in a moving frame of reference tied to the transport load are analyzed. Shock waves arising in the medium at supersonic speeds are studied. Conditions on the jump in the stress, displacement rate, and energy across the shock front are obtained using distribution theory. Numerical results concerning the dynamics of an elastic medium influenced by concentrated transport loads moving at sub-, tran- and supersonic speeds are presented.

  11. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.

    PubMed

    Hammel, H T; Schlegel, Whitney M

    2005-01-01

    , (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure. PMID:15976460

  12. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns.

    PubMed

    Szenknect, Stéphanie; Ardois, Christophe; Dewière, Lionel; Gaudet, Jean-Paul

    2008-08-20

    It is known that under unsaturated conditions, the transport of solutes can deviate from ideal advective-dispersive behaviour even for macroscopically homogeneous porous materials. Causes may include physical non-equilibrium, sorption kinetics, non-linear sorption, and the irregular distribution of sorption sites. We have performed laboratory experiments designed to identify the processes responsible for the non-ideality of radioactive Sr transport observed under unsaturated flow conditions in an Aeolian sandy deposit from the Chernobyl exclusion zone. Miscible displacement experiments were carried out at various water contents and corresponding flow rates in a laboratory model system. Results of our experiments have shown that breakthrough curves of a conservative tracer exhibit a higher degree of asymmetry when the water content decreases than at saturated water content and same Darcy velocity. It is possible that velocity variations caused by heterogeneities at the macroscopic scale are responsible for this situation. Another explanation is that molecular diffusion drives the solute mass transfer between mobile and immobile water regions, but the surface of contact between these water regions is small. At very low concentrations, representative of a radioactive Sr contamination of the pore water, sorption and physical disequilibrium dominate the radioactive Sr transport under unsaturated flow conditions. A sorption reaction is described by a cation exchange mechanism calibrated under fully saturated conditions. The sorption capacity, as well as the exchange coefficients are not affected by desaturation. The number of accessible exchange sites was calculated on the basis that the solid remained in contact with water and that the fraction of solid phase in contact with mobile water is numerically equal to the proportion of mobile water to total water content. That means that for this type of sandy soil, the nature of mineral phases is the same in advective and non

  13. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns

    NASA Astrophysics Data System (ADS)

    Szenknect, Stéphanie; Ardois, Christophe; Dewière, Lionel; Gaudet, Jean-Paul

    2008-08-01

    It is known that under unsaturated conditions, the transport of solutes can deviate from ideal advective-dispersive behaviour even for macroscopically homogeneous porous materials. Causes may include physical non-equilibrium, sorption kinetics, non-linear sorption, and the irregular distribution of sorption sites. We have performed laboratory experiments designed to identify the processes responsible for the non-ideality of radioactive Sr transport observed under unsaturated flow conditions in an Aeolian sandy deposit from the Chernobyl exclusion zone. Miscible displacement experiments were carried out at various water contents and corresponding flow rates in a laboratory model system. Results of our experiments have shown that breakthrough curves of a conservative tracer exhibit a higher degree of asymmetry when the water content decreases than at saturated water content and same Darcy velocity. It is possible that velocity variations caused by heterogeneities at the macroscopic scale are responsible for this situation. Another explanation is that molecular diffusion drives the solute mass transfer between mobile and immobile water regions, but the surface of contact between these water regions is small. At very low concentrations, representative of a radioactive Sr contamination of the pore water, sorption and physical disequilibrium dominate the radioactive Sr transport under unsaturated flow conditions. A sorption reaction is described by a cation exchange mechanism calibrated under fully saturated conditions. The sorption capacity, as well as the exchange coefficients are not affected by desaturation. The number of accessible exchange sites was calculated on the basis that the solid remained in contact with water and that the fraction of solid phase in contact with mobile water is numerically equal to the proportion of mobile water to total water content. That means that for this type of sandy soil, the nature of mineral phases is the same in advective and non

  14. Solutions to bi-Maxwellian transport equations for the polar wind

    NASA Technical Reports Server (NTRS)

    Demars, H. G.; Schunk, R. W.

    1989-01-01

    In this study, polar wind solutions are obtained for a broad range of O(+) density, H(+) drift velocity, electron temperature and H(+) temperature boundary conditions. The bi-Maxwellian-based 16-moment set of transport equations is used, since this set is expected to be superior to Maxwellian-based equations in describing large temperature anisotropies and heat flows. The present solutions corroborate earlier results when similar boundary conditions are used. Also, for previously unexplored combinations of boundary conditions, the present solutions are often qualitatively different from any obtained before.

  15. Testing and benchmarking of a three-dimensional groundwater flow and solute transport model

    SciTech Connect

    Sims, P.N.; Andersen, P.F.; Faust, C.R.; Stephenson, D.E.

    1988-12-31

    A three-dimensional finite-difference model was developed to simulate groundwater flow and solute transport. The model is intended for application to a variety of groundwater resource and solute migration evaluations, including several complex sites at the Savannah River Plant (SRP). Because the model, FTWORK, is relatively new, there is a need to provide confidence in the model results. Methodologies that test models include comparisons with analytical solutions, comparisons with empirical data, and checking that conservation properties hold. Another level of testing is the comparison of one code against another. This paper describes the testing and benchmarking procedure used to verify the validate FTWORK.

  16. Solute transport in eroded and rehabilitated prairie landforms. 2. Reactive solute.

    PubMed

    Papiernik, Sharon K; Koskinen, William C; Yates, Scott R

    2009-08-26

    The impact of varying soil, landscape, and climate conditions on the off-site transport of pesticides must be determined to develop improved pesticide management practices. This study quantified the rate of S-metolachlor dissipation after fall and spring application in eroded and rehabilitated landforms in which topsoil was moved from the lower slope to the upper slope. Fall-applied metolachlor provided no control of annual grasses because approximately 80% was removed from the root zone during the winter and early spring, presumably by leaching and runoff. S-Metolachlor dissipated in the spring with a DT(50) of 24-29 days. These results suggest that fall-applied metolachlor may not provide economic weed control and presents an increased risk of water contamination. Although landscape position and bulk soil movement within the landform had a large impact on soil properties, no significant differences in metolachlor dissipation between different landscape positions and between eroded and rehabilitated landforms were observed. PMID:19653695

  17. CTSPAC: MATHEMATICAL MODEL FOR COUPLED TRANSPORT OF WATER, SOLUTES, AND HEAT IN THE SOIL-PLANT-ATMOSPHERE CONTINUUM. VOLUME 1. MATHEMATICAL THEORY AND TRANSPORT CONCEPTS

    EPA Science Inventory

    The mathematical structure of the model consists of the coupling of a model for the transport through soils to a model for transport through plants. The coupled model describes uptake of water and solutes by plants from the soil solution. The rate of uptake is a function of the e...

  18. Proton-associated sucrose transport of mammalian solute carrier family 45: an analysis in Saccharomyces cerevisiae.

    PubMed

    Bartölke, Rabea; Heinisch, Jürgen J; Wieczorek, Helmut; Vitavska, Olga

    2014-12-01

    The members of the solute carrier 45 (SLC45) family have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). However, apart from SLC45A1, a proton-associated glucose transporter, the function of these proteins is still largely unknown, although sequence similarities to plant sucrose transporters mark them as a putative sucrose transporter family. Heterologous expression of the three members SLC45A2, SLC45A3 and SLC45A4 in Saccharomyces cerevisiae confirmed that they are indeed sucrose transporters. [(14)C]Sucrose-uptake measurements revealed intermediate transport affinities with Km values of approximately 5 mM. Transport activities were best under slightly acidic conditions and were inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone, demonstrating an H(+)-coupled transport mechanism. Na(+), on the other hand, had no effect on sucrose transport. Competitive inhibition assays indicated a possible transport also of glucose and fructose. Real-time PCR of mouse tissues confirmed mRNA expression of SLC45A2 in eyes and skin and of SLC45A3 primarily in the prostate, but also in other tissues, whereas SLC45A4 showed a predominantly ubiquitous expression. Altogether the results provide new insights into the physiological significance of SLC45 family members and challenge existing concepts of mammalian sugar transport, as they (i) transport a disaccharide, and (ii) perform secondary active transport in a proton-dependent manner. PMID:25164149

  19. PERSiST: the precipitation, evapotranspiration and runoff simulator for solute transport

    NASA Astrophysics Data System (ADS)

    Futter, M. N.; Erlandsson, M. A.; Butterfield, D.; Whitehead, P. G.; Oni, S. K.; Wade, A. J.

    2013-07-01

    While runoff is often a first-order control on water quality, runoff generation processes and pathways can vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate representations of perceptual models of the runoff generation process. With a few exceptions, models used in solute transport simulations enforce a single, potentially inappropriate representation of the runoff generation process. Here, we present a flexible, semi-distributed landscape scale rainfall-runoff model suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST, the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport; is designed for simulating present day conditions and projecting possible future effects of climate or land use change on runoff, catchment water storage and solute transport. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we present a first application of the model to the Thames River in the UK and describe a Monte Carlo tool for parameter optimization and sensitivity analysis.

  20. MaSTiS, microorganism and solute transport in streams, model documentation and user manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-stream fate and transport of solutes and microorganisms need to be understood to evaluate suitability of waters for agricultural, recreational, and household uses and eventually minimize surface water contamination. Concerns over safety of this water resulted in development of predictive models f...

  1. Destabilization of the thermohaline circulation by atmospheric transports: An analytic solution

    SciTech Connect

    Krasovskiy, Y.P.; Stone, P.H.

    1998-07-01

    The four-box coupled atmosphere-ocean model of Marotzke is solved analytically, by introducing the approximation that the effect of oceanic heat advection on ocean temperatures is small (but not negligible) compared to the effect of surface heat fluxes. The solutions are written in a form that displays how the stability of the thermohaline circulation depends on the relationship between atmospheric meridional transports of heat and moisture and the meridional temperature gradient. In the model, these relationships are assumed to be power laws with different exponents allowed for the dependence of the transports of heat and moisture on the gradient. The approximate analytic solutions are in good agreement with Marotzke`s exact numerical solutions, but show more generally how the destabilization of the thermohaline circulation depends on the sensitivity of the atmospheric transports to the meridional temperature gradient. The solutions are also used to calculate how the stability of the thermohaline circulation is changed if model errors are corrected by using conventional flux adjustments. Errors like those common in GCMs destabilize the model`s thermohaline circulation, even if conventional flux adjustments are used. However, the resulting errors in the magnitude of the critical perturbations necessary to destabilize the thermohaline circulation can be corrected by modifying transport efficiencies instead.

  2. Transport and fate of microorganisms in soils with preferential flow under different solution chemistry conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    [1] Laboratory and numerical studies were conducted to investigate the transport and fate of Escherichia coli D21g and coliphage f174 in saturated soils with preferential flow under different solution ionic strength (IS'='1, 5, 20, and 100 mM) conditions. Preferential flow systems were created by em...

  3. Benchmark solutions for the galactic ion transport equations with spatial and energy coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.

    1988-01-01

    In order to anticipate future space shielding requirements, NASA has initiated an effort to formulate computational methods to simulate radiation effects in space. As part of the program, numerical transport algorithms have been developed for the deterministic Boltzman equation describing galactic cosmic ray (GCR) interactions with matter. It thus becomes necessary to assess the accuracy of proposed deterministic algorithms. For this reason, analytical benchmark solutions to mathematically tractable galactic cosmic ray equations have recently been obtained. Even though these problems involve simplifying assumptions of the associated physics, they still contain the essential features of the basic transport processes. The solutions obtained are features of the basic transport processes. The solutions obtained are compared to results from numerical algorithms in order to ensure proper coding and to provide a measure of the accuracy of the numerical methods used in the algorithm. For the first time, mathematical methods have been applied to the galactic ion transport (GIT) equations in the straight ahead approximation with constant nuclear properties. The approach utilizes a Laplace transforms inversion yielding a closed form benchmark solution which is also computationally efficient.

  4. Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System

    EPA Science Inventory

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...

  5. Analytical Solutions for Transport in Aquifer and Fractured Clay Matrix System

    EPA Science Inventory

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...

  6. Field monitoring of water flow and solute transport under different manure amendments.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter (OM) affects water flow and solute transport in the vadose zone. The main objective of this work was to study the effects of different OM types (dairy and chicken manure), rates (O, 168, 336, and 672 kg/ha total equivalent Nitrogen), and levels (one and two time applications) on water...

  7. Analytical solutions for reactive transport of N-member radionuclide chains in a single fracture.

    PubMed

    Sun, Yunwei; Buscheck, Thomas A

    2003-01-01

    Several numerical codes have been used to simulate radionuclide transport in fractured rock systems. The validation of such numerical codes can be accomplished by comparison of numerical simulations against appropriate analytical solutions. In this paper, we present analytical solutions for the reactive transport of N-member radionuclide chains (i.e., multiple species of radionuclides and their daughter species) through a discrete fracture in a porous rock matrix applying a system decomposition approach. We consider the transport of N-member radionuclide chains in a single-fracture-matrix system as a starting point to simulate more realistic and complex systems. The processes considered are advection along the fracture, lateral diffusion in the matrix, radioactive decay of multiple radionuclides, and adsorption in both the fracture and matrix. Different retardation factors can be specified for the fracture and matrix. However, all species are assumed to share the same retardation factors for the fracture and matrix, respectively. Although a daughter species may penetrate farther along the fracture than its parent species when a constant-concentration boundary condition is applied, our results indicate that all species retain the same transport speed in the fracture if a pulse of the first species is released into the fracture. This solution scheme provides a way to validate numerical computer codes of radionuclide transport in fractured rock, such as those being used to assess the performance of a potential nuclear-waste repository at Yucca Mountain. PMID:12714317

  8. Examining the influence of heterogeneous porosity fields on conservative solute transport

    USGS Publications Warehouse

    Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong

    2009-01-01

    It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.

  9. Transport of graphene oxide in saturated porous media: effect of cation composition in mixed Na-Ca electrolyte systems.

    PubMed

    Fan, W; Jiang, X H; Yang, W; Geng, Z; Huo, M X; Liu, Z M; Zhou, H

    2015-04-01

    The influence of cation composition in mixed Na-Ca electrolyte systems on the transport of graphene oxide particles in saturated porous media was studied. Column experiments were conducted to elucidate the transport behavior of GO by varied molar ratios of Ca2+/Na+ but of constant ionic strength (IS). The results show that retention of GO in sand column is strongly dependent on IS in the presence of Ca2+, featuring serious deposition rates (Rd) at the higher IS of 10 mM. The maximum Rd was 48.22% at 1 mM and 98.53% at 10 mM. However, there was no obvious difference in GO retention in solutions that only contained Na+ when the IS increased from 1 to 10 mM, and the Rd was 35.17% and 38.21% respectively. The molar ratio of Ca2+/Na+ in solution was much more influential in altering the particle retention behavior at the higher IS of 10 mM, compared with little influence at 1 mM. It was supposed that compression of diffuse double layers mainly controlled GO deposition under lower IS, while charge neutrality and metal (Ca2+) bridging played a significant role at the higher IS. A numerical advection-dispersion-retention model considering the combined processes of Langmuirian dynamics blocking and depth-dependent straining was successfully developed to simulate the transport process of GO through the sand column. Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy calculations were also performed to better understand the mechanisms of GO mobility. Coupling analysis of breakthrough experiments, DLVO theory and numerical modeling in this work provides insight into the mechanisms of GO transport in saturated porous media and is useful for reliable prediction of nanoparticle penetration through the vadose zone. PMID:25577737

  10. Analytical solution of equations describing slow axonal transport based on the stop-and-go hypothesis

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey

    2011-06-01

    This paper presents an analytical solution for slow axonal transport in an axon. The governing equations for slow axonal transport are based on the stop-and-go hypothesis which assumes that organelles alternate between short periods of rapid movement on microtubules (MTs), short on-track pauses, and prolonged off-track pauses, when they temporarily disengage from MTs. The model includes six kinetic states for organelles: two for off-track organelles (anterograde and retrograde), two for running organelles, and two for pausing organelles. An analytical solution is obtained for a steady-state situation. To obtain the analytical solution, the governing equations are uncoupled by using a perturbation method. The solution is validated by comparing it with a high-accuracy numerical solution. Results are presented for neurofilaments (NFs), which are characterized by small diffusivity, and for tubulin oligomers, which are characterized by large diffusivity. The difference in transport modes between these two types of organelles in a short axon is discussed. A comparison between zero-order and first-order approximations makes it possible to obtain a physical insight into the effects of organelle reversals (when organelles change the type of a molecular motor they are attached to, an anterograde versus retrograde motor).

  11. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.

    PubMed

    Liu, Xiaoyang; Abbott, Nicholas L

    2011-04-15

    We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (<1 V) that are sufficiently small to avoid electrolysis of water, can be performed in solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. PMID:21446653

  12. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  13. Temperature and solute-transport simulation in streamflow using a Lagrangian reference frame

    USGS Publications Warehouse

    Jobson, Harvey E.

    1980-01-01

    A computer program for simulating one-dimensional, unsteady temperature and solute transport in a river has been developed and documented for general use. The solution approach to the convective-diffusion equation uses a moving reference frame (Lagrangian) which greatly simplifies the mathematics of the solution procedure and dramatically reduces errors caused by numerical dispersion. The model documentation is presented as a series of four programs of increasing complexity. The conservative transport model can be used to route a single conservative substance. The simplified temperature model is used to predict water temperature in rivers when only temperature and windspeed data are available. The complete temperature model is highly accurate but requires rather complete meteorological data. Finally, the 10-parameter model can be used to route as many as 10 interacting constituents through a river reach. (USGS)

  14. Microbial Growth, Water Flow, and Solute Transport in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Yarwood, R. R.; Rockhold, M. L.; Niemet, M. R.; Bottomley, P. J.; Selker, J. S.

    2004-05-01

    We present an investigation that studied interactions between microbial growth, water flow, and solute transport in variably saturated porous media. The experimental system provided for continuous, noninvasive observation of microbial activity, while simultaneously monitoring water content and solute flow paths in a two-dimensional porous matrix. The spatial and temporal development of microbial colonization by a Pseudomonas fluorescens bacterium was monitored by induction of a bioluminescent phenotype. A model was developed that allowed quantification of population density from bioluminescence measurements. Liquid saturation was quantified from the transmission of light through the system, and solute flow paths were determined with a dye tracer. Dramatic changes in microbial colonization were observed, including upward migration against flow. This migration was particularly interesting because it cannot be explained by passive transport. Bacterial growth and accumulation significantly impacted the hydrologic properties of the media, including apparent desaturation within the colonized region, diversion of flow around the colonized region, and lowering of the capillary fringe height.

  15. A mathematical model for the transport of a solute through a porous-walled tube

    NASA Astrophysics Data System (ADS)

    Griffiths, Ian; Shipley, Rebecca

    2012-02-01

    Predicting the distribution of solutes or particles in flows within porous-walled tubes is essential to inform the design of cross-flow filtration devices. Here we use Taylor-dispersion theory to derive a radially averaged model for solute transport in a tube with porous walls, where the wall Darcy permeability may vary both spatially and in time. Crucially, this model includes solute advection via both radial and axial flow components, as well as diffusion, and the advection, diffusion and uptake coefficients in the averaged equation are explicitly derived. The model is used to explore the specific example of a hollow-fibre membrane bioreactor for tissue engineering applications - here membrane fouling and cell population expansion mean that the effective membrane permeability is intrinsically coupled to both fluid flow and nutrient transport. We conclude by presenting design considerations that promote spatially uniform cell population growth.

  16. A Review of Darcy's Law: Limitations and Alternatives for Predicting Solute Transport

    NASA Astrophysics Data System (ADS)

    Steenhuis, Tammo; Kung, K.-J. Sam; Jaynes, Dan; Helling, Charles S.; Gish, Tim; Kladivko, Eileen

    2016-04-01

    Darcy's Law that was derived originally empirically 160 years ago, has been used successfully in calculating the (Darcy) flux in porous media throughout the world. However, field and laboratory experiments have demonstrated that the Darcy flux employed in the convective disperse equation could only successfully predict solute transport under two conditions: (1) uniformly or densely packed porous media; and (2) field soils under relatively dry condition. Employing the Darcy flux for solute transport in porous media with preferential flow pathways was problematic. In this paper we examine the theoretical background behind these field and laboratory observations and then provide an alternative to predict solute movement. By examining the characteristics of the momentum conservation principles on which Darcy's law is based, we show under what conditions Darcy flux can predict solute transport in porous media of various complexity. We find that, based on several case studies with capillary pores, Darcy's Law inherently merges momentum and in that way erases information on pore-scale velocities. For that reason the Darcy flux cannot predict flow in media with preferential flow conduits where individual pore velocities are essential in predicting the shape of the breakthrough curve and especially "the early arrival" of solutes. To overcome the limitations of the assumption in Darcy's law, we use Jury's conceptualization and employ the measured chemical breakthrough curve as input to characterize the impact of individual preferential flow pathways on chemical transport. Specifically, we discuss how best to take advantage of Jury's conceptualization to extract the pore-scale flow velocity to accurately predict chemical transport through soils with preferential flow pathways.

  17. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGESBeta

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; et al

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for

  18. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    SciTech Connect

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li -Shi; Tartakovsky, Alexandre M.; Yang, Xiaofan; Scheibe, Timothy D.; Trask, Nathaniel

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence

  19. Geoelectrical evidence of bicontinuum transport in groundwater

    USGS Publications Warehouse

    Singha, K.; Day-Lewis, F. D.; Lane, J.W.

    2007-01-01

    Bicontinuum models and rate-limited mass transfer (RLMT) explain complex transport behavior (e.g., long tailing and rebound) in heterogeneous geologic media, but experimental verification is problematic because geochemical samples represent the mobile component of the pore space. Here, we present geophysical evidence of RLMT at the field scale during an aquifer-storage and recovery experiment in a fractured limestone aquifer in Charleston, South Carolina. We observe a hysteretic relation between measurements of porefluid conductivity and bulk electrical conductivity; this hysteresis contradicts advective-dispersive transport and the standard petrophysical model relating pore-fluid and bulk conductivity, but can be explained by considering bicontinuum transport models that include first-order RLMT. Using a simple numerical model, we demonstrate that geoelectrical measurements are sensitive to bicontinuum transport and RLMT parameters, which are otherwise difficult to infer from direct, hydrologic measurements. Copyright 2007 by the American Geophysical Union.

  20. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  1. Exact solutions to the interfacial surfactant transport equation on a droplet in a Stokes flow regime

    NASA Astrophysics Data System (ADS)

    Kallendorf, Christina; Fath, Anja; Oberlack, Martin; Wang, Yongqi

    2015-08-01

    In the research literature there exist very rare analytical solutions of the surfactant transport equation on an interface. In the present article, we derive sets of exact solutions to interfacial convection-diffusion equations which describe the interfacial transport of insoluble surfactants in a two-phase flow. The investigated model is based on a Stokes flow setting where a spherical shaped inner phase is dispersed in an outer phase. Under the assumption of the small capillary number, the deformation of the spherical phase interface is not taken into account. Neglecting the dependence of the surface tension on the interfacial surfactant concentration, hence neglecting the Marangoni effect, general exact solutions to the surfactant conservation law on the spherical surface with both convective and diffusive terms are provided by means of Heun's confluent function. For the steady case, it is shown that these solutions collapse to a simple exponential form. Furthermore, for the purely diffusive problem, exact solutions are constructed using Legendre polynomials. Such analytical solutions are very valuable as benchmark problems in numerical investigations.

  2. Control and optimization of solute transport in a thin porous tube

    NASA Astrophysics Data System (ADS)

    Griffiths, I. M.; Howell, P. D.; Shipley, R. J.

    2013-03-01

    Predicting the distribution of solutes or particles in flows within porous-walled tubes is essential to inform the design of devices that rely on cross-flow filtration, such as those used in water purification, irrigation devices, field-flow fractionation, and hollow-fibre bioreactors for tissue-engineering applications. Motivated by these applications, a radially averaged model for fluid and solute transport in a tube with thin porous walls is derived by developing the classical ideas of Taylor dispersion. The model includes solute diffusion and advection via both radial and axial flow components, and the advection, diffusion, and uptake coefficients in the averaged equation are explicitly derived. The effect of wall permeability, slip, and pressure differentials upon the dispersive solute behaviour are investigated. The model is used to explore the control of solute transport across the membrane walls via the membrane permeability, and a parametric expression for the permeability required to generate a given solute distribution is derived. The theory is applied to the specific example of a hollow-fibre membrane bioreactor, where a uniform delivery of nutrient across the membrane walls to the extra-capillary space is required to promote spatially uniform cell growth.

  3. DIRECT COMPARISON OF KINETIC AND LOCAL EQUILIBRIUM FORMULATIONS FOR SOLUTE TRANSPORT AFFECTED BY SURFACE REACTIONS.

    USGS Publications Warehouse

    Bahr, Jean M.; Rubin, Jacob

    1987-01-01

    Modeling transport of reacting solutes in porous media often requires a choice between models based on the local equilibrium assumption (LEA) and models involving reaction kinetics. Direct comparison of the mathematical formulations for these two types of transport models can aid in this choice. For cases of transport affected by surface reaction, such a comparison is made possible by a new derivation procedure. This procedure yields a kinetics-based formulation that is the sum of the LEA formulation and one or more kinetically influenced terms. The dimensionless form of the new kinetics-based formulation facilitates identification of critical parameter groupings which control the approach to transport behavior consistent with LEA model predictions. Results of numerical experiments demonstrate that criteria for LEA applicability can be expressed conveniently in terms of these parameter groupings. The derivation procedure is demonstrated for examples of surface reactions including first-order reversible sorption, Langmuir-type kinetics and binary, homovalent ion exchange.

  4. Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Zhan, Hongbin; Zhou, Renjie

    2016-07-01

    Solutions with one-, two-, and three-dimensional arbitrary shape source geometries will be very helpful tools for investigating a variety of contaminant transport problems in the geological media. This study proposed a general method to develop new solutions for solute transport in a saturated, homogeneous aquifer (confined or unconfined) with a constant, unilateral groundwater flow velocity. Several typical source geometries, such as arbitrary line sources, vertical and horizontal patch sources, circular and volumetric sources, were considered. The sources can sit on the upper or lower aquifer boundary to simulate light non-aqueous-phase-liquids (LNAPLs) or dense non-aqueous-phase-liquids (DNAPLs), respectively, or can be located anywhere inside the aquifer. The developed new solutions were tested against previous benchmark solutions under special circumstances and were shown to be robust and accurate. Such solutions can also be used as a starting point for the inverse problem of source zone and source geometry identification in the future. The following findings can be obtained from analyzing the solutions. The source geometry, including shape and orientation, generally played an important role for the concentration profile through the entire transport process. When comparing the inclined line sources with the horizontal line sources, the concentration contours expanded considerably along the vertical direction, and shrank considerably along the groundwater flow direction. A planar source sitting on the upper aquifer boundary (such as a LNAPL pool) would lead to significantly different concentration profiles compared to a planar source positioned in a vertical plane perpendicular to the flow direction. For a volumetric source, its dimension along the groundwater flow direction became less important compared to its other two dimensions.

  5. Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources.

    PubMed

    Chen, Kewei; Zhan, Hongbin; Zhou, Renjie

    2016-07-01

    Solutions with one-, two-, and three-dimensional arbitrary shape source geometries will be very helpful tools for investigating a variety of contaminant transport problems in the geological media. This study proposed a general method to develop new solutions for solute transport in a saturated, homogeneous aquifer (confined or unconfined) with a constant, unilateral groundwater flow velocity. Several typical source geometries, such as arbitrary line sources, vertical and horizontal patch sources, circular and volumetric sources, were considered. The sources can sit on the upper or lower aquifer boundary to simulate light non-aqueous-phase-liquids (LNAPLs) or dense non-aqueous-phase-liquids (DNAPLs), respectively, or can be located anywhere inside the aquifer. The developed new solutions were tested against previous benchmark solutions under special circumstances and were shown to be robust and accurate. Such solutions can also be used as a starting point for the inverse problem of source zone and source geometry identification in the future. The following findings can be obtained from analyzing the solutions. The source geometry, including shape and orientation, generally played an important role for the concentration profile through the entire transport process. When comparing the inclined line sources with the horizontal line sources, the concentration contours expanded considerably along the vertical direction, and shrank considerably along the groundwater flow direction. A planar source sitting on the upper aquifer boundary (such as a LNAPL pool) would lead to significantly different concentration profiles compared to a planar source positioned in a vertical plane perpendicular to the flow direction. For a volumetric source, its dimension along the groundwater flow direction became less important compared to its other two dimensions. PMID:27153362

  6. Transport of bromide and pesticides through an undisturbed soil column: a modeling study with global optimization analysis.

    PubMed

    Dusek, Jaromir; Dohnal, Michal; Snehota, Michal; Sobotkova, Martina; Ray, Chittaranjan; Vogel, Tomas

    2015-01-01

    The fate of pesticides in tropical soils is still not understood as well as it is for soils in temperate regions. In this study, water flow and transport of bromide tracer and five pesticides (atrazine, imazaquin, sulfometuron methyl, S-metolachlor, and imidacloprid) through an undisturbed soil column of tropical Oxisol were analyzed using a one-dimensional numerical model. The numerical model is based on Richards' equation for solving water flow, and the advection-dispersion equation for solving solute transport. Data from a laboratory column leaching experiment were used in the uncertainty analysis using a global optimization methodology to evaluate the model's sensitivity to transport parameters. All pesticides were found to be relatively mobile (sorption distribution coefficients lower than 2 cm(3) g(-1)). Experimental data indicated significant non-conservative behavior of bromide tracer. All pesticides, with the exception of imidacloprid, were found less persistent (degradation half-lives smaller than 45 days). Three of the five pesticides (atrazine, sulfometuron methyl, and S-metolachlor) were better described by the linear kinetic sorption model, while the breakthrough curves of imazaquin and imidacloprid were more appropriately approximated using nonlinear instantaneous sorption. Sensitivity analysis suggested that the model is most sensitive to sorption distribution coefficient. The prediction limits contained most of the measured points of the experimental breakthrough curves, indicating adequate model concept and model structure for the description of transport processes in the soil column under study. Uncertainty analysis using a physically-based Monte Carlo modeling of pesticide fate and transport provides useful information for the evaluation of chemical leaching in Hawaii soils. PMID:25703186

  7. Transport of bromide and pesticides through an undisturbed soil column: A modeling study with global optimization analysis

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Dohnal, Michal; Snehota, Michal; Sobotkova, Martina; Ray, Chittaranjan; Vogel, Tomas

    2015-04-01

    The fate of pesticides in tropical soils is still not understood as well as it is for soils in temperate regions. In this study, water flow and transport of bromide tracer and five pesticides (atrazine, imazaquin, sulfometuron methyl, S-metolachlor, and imidacloprid) through an undisturbed soil column of tropical Oxisol were analyzed using a one-dimensional numerical model. The numerical model is based on Richards' equation for solving water flow, and the advection-dispersion equation for solving solute transport. Data from a laboratory column leaching experiment were used in the uncertainty analysis using a global optimization methodology to evaluate the model's sensitivity to transport parameters. All pesticides were found to be relatively mobile (sorption distribution coefficients lower than 2 cm3 g- 1). Experimental data indicated significant non-conservative behavior of bromide tracer. All pesticides, with the exception of imidacloprid, were found less persistent (degradation half-lives smaller than 45 days). Three of the five pesticides (atrazine, sulfometuron methyl, and S-metolachlor) were better described by the linear kinetic sorption model, while the breakthrough curves of imazaquin and imidacloprid were more appropriately approximated using nonlinear instantaneous sorption. Sensitivity analysis suggested that the model is most sensitive to sorption distribution coefficient. The prediction limits contained most of the measured points of the experimental breakthrough curves, indicating adequate model concept and model structure for the description of transport processes in the soil column under study. Uncertainty analysis using a physically-based Monte Carlo modeling of pesticide fate and transport provides useful information for the evaluation of chemical leaching in Hawaii soils.

  8. Laboratory experiments on solute transport in bimodal porous media under cyclic precipitation-evaporation boundary conditions

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa

    2016-04-01

    Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and

  9. Sediment and solute transport in a mountainous watershed in Valle del Cauca, Colombia

    NASA Astrophysics Data System (ADS)

    Guzman, C. D.; Castro, A.; Morales, A.; Hoyos, F.; Moreno, P.; Steenhuis, T. S.

    2014-12-01

    A main goal of this study was to improve prediction of sediment and solute transport using soil surface and soil nutrient changes, based on field measurements, within small watersheds receiving conservation measures. Sediment samples and solute concentrations were measured from two streams in the southwestern region of the Colombian Andes. Two modeling approaches for stream discharge and sediment transport predicted were used with one of these being used for nutrient transport prediction. These streams are a part of a recent initiative from a water fund established by Asobolo, Asocaña, and Cenicaña in collaboration with the Natural Capital Project to improve conservation efforts and monitor their effects. On-site soil depth changes, groundwater depth measurements, and soil nutrient concentrations were also monitored to provide more information about changes within this mountainous watershed during one part of the yearly rainy season. This information is being coupled closely with the outlet sediment concentration and solute concentration patterns to discern correlations. Lateral transects in the upper, middle, and lower part of the hillsides in the Aguaclara watershed of the Rio Bolo watershed network showed differences in soil nutrient status and soil surface depth changes. The model based on semi-distributed hydrology was able to reproduce discharge and sediment transport rates as well as the initially used model indicating available options for comparison of conservation changes in the future.

  10. Interpretation and nonuniqueness of CTRW transition distributions: Insights from an alternative solute transport formulation

    NASA Astrophysics Data System (ADS)

    Hansen, Scott K.; Berkowitz, Brian

    2014-12-01

    The continuous time random walk (CTRW) has both an elegant mathematical theory and a successful record at modeling solute transport in the subsurface. However, there are some interpretation ambiguities relating to the relationship between the discrete CTRW transition distributions and the underlying continuous movement of solute that have not been addressed in existing literature. These include the exact definition of "transition", and the extent to which transition probability distributions are unique/quantifiable from data. Here, we present some theoretical results which address these uncertainties in systems with an advective bias. Simultaneously, we present an alternative, reduced parameter CTRW formulation for general advective transport in heterogeneous porous media, which models early- and late-time transport by use of random transition times between sparse, imaginary planes normal to flow. We show that even in the context of this reduced-parameter formulation there is nonuniqueness in the definitions of both transition lengths and waiting time distributions, and that neither may be uniquely determined from experimental data. For practical use of this formulation, we suggest Pareto transition time distributions, leading to a two-degree-of-freedom modeling approach. We then demonstrate the power of this approach in fitting two sets of existing experimental data. While the primary focus is the presentation of new results, the discussion is designed to be pedagogical and to provide a good entry point into practical modeling of solute transport with the CTRW.

  11. Transport of carbon, nitrogen, phosphorus, and major solutes in the Gambia River, West Africa

    SciTech Connect

    Lesack, L.F.W.; Hecky, R.E.; Melack, J.M.

    1984-07-01

    Transport of solutes and particulate materials and their variation with discharge were studied for 1 year (July 1980-June 1981) in the Gambia River in the tropical savanna of West Africa. The water is a dilute solution of SiO/sub 2/ and HCO/sub 3//sup -/. Na/sup +/, K/sup +/, Cl/sup -/, and total dissolved nitrogen showed no significant relation with discharge. Ca/sup 2 +/, Mg/sup 2 +/, HCO/sub 3//sup -/, conductivity, and SO/sub 4//sup 2 -/ decreased as discharge increased, while total dissolved phosphorus increased with discharge. After an initial increase SiO/sub 2/ was independent of discharge. Dissolved organic carbon displayed counterclockwise hysteresis with rising and falling discharge. Particulate phosphorus and total particulate materials displayed clockwise hysteresis. Total transport amounted to 9.66 t x km/sup -2/ x yr/sup -1/. The transport rates of both dissolved and particulate organic C are among the lowest ever reported. The low transport of total particulates and solutes is attributed to lack of relief and the lithology of the catchment.

  12. Hydrodynamics of steady state phloem transport with radial leakage of solute

    PubMed Central

    Cabrita, Paulo; Thorpe, Michael; Huber, Gregor

    2013-01-01

    Long-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously. Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly, membrane reflection coefficient) influenced model results strongly, and had to lie in the bottom range of the values reported for plant cells for the results to be realistic. This smaller permeability reflects the efficient specialization of sieve tube elements, minimizing any diffusive solute loss favored by the large concentration difference across the sieve tube membrane. We also found there can be a specific reflection coefficient for which pressure profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille equation for a completely impermeable tube. PMID:24409189

  13. Generalization of one-dimensional solute transport. A stochastic-convective flow conceptualization

    SciTech Connect

    Simmons, C.S.

    1986-04-01

    A stochastic-convective representation of one-dimensional solute transport is derived. It is shown to conceptually encompass solutions of the conventional convection-dispersion equation. This stochastic approach, however, does not rely on the assumption that dispersive flux satisfies Fick's diffusion law. Observable values of solute concentration and flux, which together satisfy a conservation equation, are expressed as expectations over a flow velocity ensemble, representing the inherent random processess that govern dispersion. Solute concentration is determined by a Lagrangian pdf for random spatial displacements, while flux is determined by an equivalent Eulerian pdf for random travel times. A condition for such equivalence is derived for steady nonuniform flow, and it is proven that both Lagrangian and Eulerian pdfs are required to account for specified initial and boundary conditions on a global scale. Furthermore, simplified modeling of transport is justified by proving that an ensemble of effectively constant velocities always exists that constitutes an equivalent representation. An example of how a two-dimensional transport problems can be reduced to a single-dimensional stochastic viewpoint is also presented to further clarify concepts.

  14. Generalization of one-dimensional solute transport: A stochastic-convective flow conceptualization

    NASA Astrophysics Data System (ADS)

    Simmons, C. S.

    1986-04-01

    A stochastic-convective representation of one-dimensional solute transport is derived. It is shown to conceptually encompass solutions of the conventional convection-dispersion equation. This stochastic approach, however, does not rely on the assumption that dispersive flux satisfies Fick's diffusion law. Observable values of solute concentration and flux, which together satisfy a conservation equation, are expressed as expectations over a flow velocity ensemble, representing the inherent random processess that govern dispersion. Solute concentration is determined by a Lagrangian pdf for random spatial displacements, while flux is determined by an equivalent Eulerian pdf for random travel times. A condition for such equivalence is derived for steady nonuniform flow, and it is proven that both Lagrangian and Eulerian pdfs are required to account for specified initial and boundary conditions on a global scale. Furthermore, simplified modeling of transport is justified by proving that an ensemble of effectively constant velocities always exists that constitutes an equivalent representation. An example of how a two-dimensional transport problem can be reduced to a single-dimensional stochastic viewpoint is also presented to further clarify concepts.

  15. Unsteady solute-transport simulation in streamflow using a finite-difference model

    USGS Publications Warehouse

    Land, Larry F.

    1978-01-01

    This report documents a rather simple, general purpose, one-dimensional, one-parameter, mass-transport model for field use. The model assumes a well-mixed conservative solute that may be coming from an unsteady source and is moving in unsteady streamflow. The quantity of solute being transported is in the units of concentration. Results are reported as such. An implicit finite-difference technique is used to solve the mass transport equation. It consists of creating a tridiagonal matrix and using the Thomas algorithm to solve the matrix for the unknown concentrations at the new time step. The computer program pesented is designed to compute the concentration of a water-quality constituent at any point and at any preselected time in a one-dimensional stream. The model is driven by the inflowing concentration of solute at the upstream boundary and is influenced by the solute entering the stream from tributaries and lateral ground-water inflow and from a source or sink. (Woodard-USGS)

  16. Numerical study of solute transport in shallow beach aquifers subjected to waves and tides

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Boufadel, Michel C.

    2015-02-01

    A numerical study was conducted to investigate the fate of solute in a laboratory beach in response to waves and tides. A new temporal upscaling approach labeled "net inflow" was introduced to address impacts of waves on solute transport within beaches. Numerical simulations using a computational fluid dynamic model were used as boundary conditions for the two-dimensional variably saturated flow and solute transport model MARUN. The modeling approach was validated against experimental data of solute transport due to waves and tides. Exchange fluxes across the beach face and subsurface solute transport (e.g., trajectory, movement speed, and residence time) were quantified. Simulation results revealed that waves increased the exchange fluxes, and engendered a wider exchange flux zone along the beach surface. Compared to tide-only forcing, waves superimposed on tide caused the plume to be deeper into the beach, and to migrate more seaward. The infiltration into the beach was found to be directly proportional to the general hydraulic gradient in the beach and inversely proportional to the matrix retention (or capillary) capacity. The simulations showed that a higher inland water table would attenuate wave-caused seawater infiltration, which might impact beach geochemical processes (e.g., nutrient recycle and redox condition), especially at low tide zone. The concept of biochemical residence time maps (BRTM) was introduced to account for the net effect of limiting concentration of chemicals on biochemical reactions. It was found that waves shifted the BRTMs downward and seaward in the beach, and subsequently they engendered different biochemical conditions within the beach.

  17. Investigation of flow and solute transport at the field scale through heterogeneous deformable porous media

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2016-09-01

    This work describes an investigation of the spatial statistical structure of specific discharge field and solute transport process of a nonreactive solute at the field scale through a heterogeneous deformable porous medium. The flow field is driven by a vertical gradient in the excess pore water pressure induced by a step increase in load applied on the upper part of a finite-thickness aquifer. The non-stationary spectral representation is adopted to characterize the spatial covariance of the specific discharge field necessary for the development of the solute particle trajectory statistics using the Lagrangian formalism. We show that the statistics of the specific discharge and particle trajectory derived herein are non-stationary and functions of the coefficient of soil compressibility, μ. The effect of μ on the relative variation of specific discharge and the solute particle trajectory statistics are analyzed upon evaluating our expressions.

  18. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 User’s Guide

    SciTech Connect

    Freedman, Vicky L.; Chen, Yousu; Gilca, Alex; Cole, Charles R.; Gupta, Sumant K.

    2006-07-20

    The CFEST (Coupled Flow, Energy, and Solute Transport) simulator described in this User’s Guide is a three-dimensional finite-element model used to evaluate groundwater flow and solute mass transport. Confined and unconfined aquifer systems, as well as constant and variable density fluid flows can be represented with CFEST. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentra¬tion of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Although several thermal parameters described in this User’s Guide are required inputs, thermal transport has not yet been fully implemented in the simulator. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. The CFEST simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards. Execution of the CFEST simulator is controlled through three required text input files. These input file use a structured format of associated groups of input data. Example input data lines are presented for each file type, as well as a description of the structured FORTRAN data format. Detailed descriptions of all input requirements, output options, and program structure and execution are provided in this User’s Guide. Required inputs for auxillary CFEST utilities that aide in post-processing data are also described. Global variables are defined for those with access to the source code. Although CFEST is a proprietary code (CFEST, Inc., Irvine, CA), the Pacific Northwest National Laboratory retains permission to maintain its own source, and to distribute executables to Hanford subcontractors.

  19. Ground-water flow and solute transport at a municipal landfill site on Long Island, New York; Part 3, Simulation of solute transport

    USGS Publications Warehouse

    Wexler, E.J.

    1988-01-01

    A solute transport model representing a 2.3-sq mi area surrounding and downgradient from a municipal landfill site in the Town of Brookhaven, N.Y. was used to simulate migration of a conservative solute (chloride) in the upper glacial aquifer. Aquifer values used in the model were: hydraulic conductivity, 200 ft/day; effective porosity, 0.30; longitudinal dispersivity, 100 ft; transverse dispersivity, 20 ft. Average concentration of chloride was set at 875.0 mg/L in leachate and 10 mg/L in recharge and in ambient groundwater. Entry of leachate into the aquifer was assumed to have begun in 1977. Chloride concentrations in the simulated plume after 6 years of travel matched reasonably well the chloride data collected in October-December 1982. After 12 years of travel, the simulated plume extended 6,200 ft and was 2,600 ft wide. Maximum predicted concentration at the site boundary was 160 mg/L. Additional simulations were made to test the model 's ability to predict the effect of several remedial strategies on the movement of solutes. These included capping the landfill with an impermeable surface, removal of contaminated groundwater through four recovery wells, and a combination of the first two actions. (USGS)

  20. A transport phase diagram for pore-level correlated porous media

    NASA Astrophysics Data System (ADS)

    Babaei, M.; Joekar-Niasar, V.

    2016-06-01

    Transport in porous media is often characterized by the advection-dispersion equation, with the dispersion coefficient as the most important parameter that links the hydrodynamics to the transport processes. Morphological properties of any porous medium, such as pore size distribution, network topology, and correlation length control transport. In this study we explore the impact of correlation length on transport regime using pore-network modelling. Earlier direct simulation studies of dispersion in carbonate and sandstone rocks showed larger dispersion compared to granular homogenous sandpacks. However, in these studies, isolation of the impact of correlation length on transport regime was not possible due to the fundamentally different pore morphologies and pore-size distributions. Against this limitation, we simulate advection-dispersion transport for a wide range of Péclet numbers in unstructured irregular networks with "different" correlation lengths but "identical" pore size distributions and pore morphologies. Our simulation results show an increase in the magnitudes of the estimated dispersion coefficients in correlated networks compared to uncorrelated ones in the advection-controlled regime. The range of the Péclet numbers which dictate mixed advection-diffusion regime considerably reduces in the correlated networks. The findings emphasize the critical role of correlation length which is depicted in a conceptual transport phase diagram and the importance of accounting for the micro-scale correlation lengths into predictive stochastic pore-scale modelling.

  1. Techniques for Increasing the Reliability of Estimates of Surface Water Transport Models

    NASA Astrophysics Data System (ADS)

    Boufadel, M. C.; Toran, L.; Gabriel, M.

    2002-05-01

    The Transient Storage Model (TSM) is widely used to simulate solute transport in stream settings. Within the TSM framework, solute transport is simulated using the advection dispersion equation in the main channel with additional mass transfer terms that represent the transverse exchange with surface water storage zones (dead zones) and the hyporheic zone (subsurface surrounding the stream). The TSM parameters are commonly treated as reach-averages, and they are estimated by fitting a theoretical to an experimental breakthrough curve. The parameters? values suffer from the problem of non-uniqueness whereby many combinations of parameters? values provide essentially the same fit. We explore various techniques for alleviating the problem of non-uniqueness. We use for this purpose stream-tracer studies that we conducted in a 190-m reach of Indian Creek, Philadelphia, Pennsylvania USA, where two stream-tracer studies were conducted and the concentration is monitored at two transects. We also conducted measurements of the cross section area at various transects and incorporated them into the objective function in a Bayesian parameter estimation framework. We found that using multiple stream tracer studies under various hydraulic conditions and/or the Bayesian framework alleviate the problem of non-uniqueness. We fitted the model to the data when the cross section area was treated as a distributed parameter while the other parameters were treated as reach-averages. While the fit was good, many reach-averaged parameters (exchange coefficient, dispersion coefficient) had to take to extreme values. This indicates that additional but incomplete geomorphic information does not necessarily improve the understanding of a particular stream system. The variation of the parameters with scale was also explored.

  2. Intragranular Diffusion: An Important Mechanism Influencing Solute Transport in Clastic Aquifers?

    NASA Astrophysics Data System (ADS)

    Wood, Warren W.; Kraemer, Thomas F.; Hearn, Paul P., Jr.

    1990-03-01

    Quantification of intragranular porosity in sand-size material from an aquifer on Cape Cod, Massachusetts, by scanning electron microscopy, mercury injection, and epifluorescence techniques shows that there are more reaction sites and that porosity is greater than indicated by standard short-term laboratory tests and measurement techniques. Results from laboratory and field tracer tests show solute nonequilibrium for a reacting ion consistent with a model of diffusion into, and exchange within, grain interiors. These data indicate that a diffusion expression needs to be included in transport codes, particularly for simulation of the transport of radioactive and toxic wastes.

  3. Intragranular diffusion: An important mechanism influencing solute transport in clastic aquifers?

    USGS Publications Warehouse

    Wood, W.W.; Kraemer, T.F.; Hearn, P.P., Jr.

    1990-01-01

    Quantification of intragranular porosity in sand-size material from an aquifer on Cape Cod, Massachusetts, by scanning electron microscopy, mercury injection, and epifluorescence techniques shows that there are more reaction sites and that porosity is greater that indicated by standard short-term laboratory tests and measurement techniques. Results from laboratory and field tracer tests show solute nonequilibrium for a reacting ion consistent with a model of diffusion into, and exchange within, grain interiors. These data indicate that a diffusion expression needs to be included in transport codes, particularly for simulation of the transport of radioactive and toxic wastes.

  4. Coupled effects of hydrodynamic and solution chemistry conditions on long-term nanoparticle transport and deposition in saturated porous media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to systematically explore the coupled effects of hydrodynamic and solution chemistry conditions on the long-term transport and deposition kinetics of nanoparticles (NPs) in saturated porous media. Column transport experiments were carried out at various solution ionic strengths (IS),...

  5. Flux-Averaged and Volume-Averaged Concentrations in Continuum Approaches to Solute Transport

    NASA Astrophysics Data System (ADS)

    Parker, J. C.; van Genuchten, M. Th.

    1984-07-01

    Transformations between volume-averaged pore fluid concentrations and flux-averaged concentrations are presented which show that both modes of concentration obey convective-dispersive transport equations of identical mathematical form for nonreactive solutes. The pertinent boundary conditions for the two modes, however, do not transform identically. Solutions of the convection-dispersion equation for a semi-infinite system during steady flow subject to a first-type inlet boundary condition is shown to yield flux concentrations, while solutions subject to a third-type boundary condition yield volume-averaged concentrations. These solutions may be applied with reasonable impunity to finite as well as semi-infinite media if back mixing at the exit is precluded. Implications of the distinction between resident and flux concentrations to laboratory and field studies of solute transport are discussed. It is suggested that perceived limitations of the convection-dispersion model for media with large variations in pore water velocities may in certain cases be attributable to a failure to distinguish between volume-averaged and flux-averaged concentrations.

  6. A new algorithm for generating highly accurate benchmark solutions to transport test problems

    SciTech Connect

    Azmy, Y.Y.

    1997-06-01

    We present a new algorithm for solving the neutron transport equation in its discrete-variable form. The new algorithm is based on computing the full matrix relating the scalar flux spatial moments in all cells to the fixed neutron source spatial moments, foregoing the need to compute the angular flux spatial moments, and thereby eliminating the need for sweeping the spatial mesh in each discrete-angular direction. The matrix equation is solved exactly in test cases, producing a solution vector that is free from iteration convergence error, and subject only to truncation and roundoff errors. Our algorithm is designed to provide method developers with a quick and simple solution scheme to test their new methods on difficult test problems without the need to develop sophisticated solution techniques, e.g. acceleration, before establishing the worthiness of their innovation. We demonstrate the utility of the new algorithm by applying it to the Arbitrarily High Order Transport Nodal (AHOT-N) method, and using it to solve two of Burre`s Suite of Test Problems (BSTP). Our results provide highly accurate benchmark solutions, that can be distributed electronically and used to verify the pointwise accuracy of other solution methods and algorithms.

  7. Electroosmotic fluid motion and late-time solute transport at non-negligible zeta potentials

    SciTech Connect

    S. K. Griffiths; R. H. Nilson

    1999-12-01

    Analytical and numerical methods are employed to determine the electric potential, fluid velocity and late-time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is not small. The electric potential and fluid velocity are in general obtained by numerical means. In addition, new analytical solutions are presented for the velocity in a tube and channel in the extremes of large and small Debye layer thickness. The electroosmotic fluid velocity is used to analyze late-time transport of a neutral non-reacting solute. Zeroth and first-order solutions describing axial variation of the solute concentration are determined analytically. The resulting expressions contain eigenvalues representing the dispersion and skewness of the axial concentration profiles. These eigenvalues and the functions describing transverse variation of the concentration field are determined numerically using a shooting technique. Results are presented for both tube and channel geometries over a wide range of the normalized Debye layer thickness and zeta potential. Simple analytical approximations to the eigenvalues are also provided for the limiting cases of large and small values of the Debye layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor problem of late-time transport and dispersion in pressure-driven flows.

  8. Measurement of effect of chemical reactions on the hydrologic properties of fractured glass media using a tri-axial flow and transport apparatus

    NASA Astrophysics Data System (ADS)

    Saripalli, K. Prasad; Lindberg, Michael J.; Meyer, Philip D.

    2006-09-01

    SummaryUnderstanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using vapor hydration testing (VHT) at 200 °C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D advection dispersion equation (ADE) solution revealed that a different fractured media transport model, which accurately accounts for the heterogeneous transport behavior in 3D, may be necessary for such interpretation. It was found that glass reactions could have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are useful to better understand the effect of chemical reactions on

  9. A contaminant transport model for wetlands accounting for distinct residence time bimodality

    NASA Astrophysics Data System (ADS)

    Musner, T.; Bottacin-Busolin, A.; Zaramella, M.; Marion, A.

    2014-07-01

    Vegetation plays a major role in controlling the fate of contaminants in natural and constructed wetlands. Estimating the efficiency of contaminant removal of a wetland requires separate knowledge of the residence time statistics in the main flow channels, where the flow velocity is relatively higher, and in the more densely vegetated zones, where the velocity is smaller and most of the biochemical transformations occur. A conceptual wetland characterized by a main flow channel (MFC) and lateral vegetated zones (LVZs) is modeled here using a two-dimensional depth-averaged hydrodynamic and advection-dispersion model. The effect of vegetation is described as a flow resistance represented in the hydrodynamic model as a function of the stem density. Simulations are performed for a given flow discharge and for increasing values of the ratio between the vegetation density in the LVZs and in the MFC. Residence time distributions (RTDs) of a nonreactive tracer are derived from numerical simulations of the solute breakthrough curves (BTCs) resulting from a continuous concentration input. Results show that increasing vegetation densities produce an increasingly pronounced bimodality of the RTDs. At longer times, the RTDs decrease exponentially, with different timescales depending on the stem density ratio and other system parameters. The overall residence time distribution can be decomposed into a first component associated with the relatively fast transport in the MFC, and a second component associated with the slower transport in the LVZs. The weight of each temporal component is related to the exchange flux at the MFC-LVZ interface. A one-dimensional transport model is proposed that is capable to reproduce the RTDs predicted by the depth-averaged model, and the relationship between model and system parameters is investigated using a combination of direct and inverse modeling approaches.

  10. Influence of a Rhamnolipid Biosurfactant on the Transport of Bacteria through a Sandy Soil

    PubMed Central

    Bai, G.; Brusseau, M. L.; Miller, R. M.

    1997-01-01

    The objective of this study was to investigate the influence of an anionic rhamnolipid biosurfactant on the transport of bacterial cells through soil under saturated conditions. Three cell types with various hydrophobicities, i.e., Pseudomonas aeruginosa ATCC 9027, ATCC 27853, and ATCC 15442, were used in this study. In a series of experiments, columns packed with sterile sand were saturated with sterile artificial groundwater for 15 h, and then 3 pore volumes of (sup3)H-labeled bacterial suspensions with various rhamnolipid concentrations was pumped through the column. This was followed by 4 pore volumes of the rhamnolipid solution alone. The measured bacterial cell breakthrough curves were optimized by using an advection-dispersion transport model incorporating two-domain reversible sorption (instantaneous and rate limited) and with two first-order sink terms for irreversible adsorption. The influence of the rhamnolipid on the surface charge densities of the bacteria and the porous medium was also investigated. The results show that the rhamnolipid enhanced the transport of all cell types tested. For example, the rhamnolipid increased the recovery of the most hydrophilic strain, ATCC 9027, from 22.5 to 56.3%. Similarly, the recovery of ATCC 27853 increased from 36.8 to 49.4%, and the recovery of ATCC 15442, the most hydrophobic strain, increased from 17.7 to 40.5% in the presence of the rhamnolipid. The negative surface charge density of the porous medium was increased, while the surface charge density of the bacteria was not changed in the presence of the rhamnolipid. The model results suggest that the rhamnolipid predominantly affected irreversible adsorption of cells. PMID:16535601

  11. Domain Decomposition PN Solutions to the 3D Transport Benchmark over a Range in Parameter Space

    NASA Astrophysics Data System (ADS)

    Van Criekingen, S.

    2014-06-01

    The objectives of this contribution are twofold. First, the Domain Decomposition (DD) method used in the parafish parallel transport solver is re-interpreted as a Generalized Schwarz Splitting as defined by Tang [SIAM J Sci Stat Comput, vol.13 (2), pp. 573-595, 1992]. Second, parafish provides spherical harmonic (i.e., PN) solutions to the NEA benchmark suite for 3D transport methods and codes over a range in parameter space. To the best of the author's knowledge, these are the first spherical harmonic solutions provided for this demanding benchmark suite. They have been obtained using 512 CPU cores of the JuRoPa machine installed at the Jülich Computing Center (Germany).

  12. Solution of stochastic media transport problems using a numerical quadrature-based method

    SciTech Connect

    Pautz, S. D.; Franke, B. C.; Prinja, A. K.; Olson, A. J.

    2013-07-01

    We present a new conceptual framework for analyzing transport problems in random media. We decompose such problems into stratified subproblems according to the number of material pseudo-interfaces within realizations. For a given subproblem we assign pseudo-interface locations in each realization according to product quadrature rules, which allows us to deterministically generate a fixed number of realizations. Quadrature integration of the solutions of these realizations thus approximately solves each subproblem; the weighted superposition of solutions of the subproblems approximately solves the general stochastic media transport problem. We revisit some benchmark problems to determine the accuracy and efficiency of this approach in comparison to randomly generated realizations. We find that this method is very accurate and fast when the number of pseudo-interfaces in a problem is generally low, but that these advantages quickly degrade as the number of pseudo-interfaces increases. (authors)

  13. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Astrophysics Data System (ADS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-03-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  14. Use of percolation theory and Latin hypercube sampling in field-scale solute transport investigations

    SciTech Connect

    Luxmoore, R.J.; Jardine, P.M.; Gardner, R.H. ); Wilson, G.V. . Dept. of Plant and Soil Science)

    1990-01-01

    Investigations of rain-fed solute transport have been conducted at a forested hillslope site by using an in situ soil pedon and a subsurface hydrologic monitoring facility. Complementary solute transport studies on undisturbed soil columns taken from the field site have not provided data that can be directly applied to the field situation. Scaling up from columns to pedons and from pedons to hillslopes is being evaluated with percolation theory and Latin hypercube sampling methods. Percolation theory provides a means of identifying mobile zones and stagnant zones for given soil structural attributes which can be compared with column dye tracing results. The generation of frequency distributions of backwater and backbone porosities for a range of total soil porosities and pore arrangements may provide a stochastic representation of soil systems suitable for scaling up from the column scale to the pedon using the Latin hypercube sampling method. 9 refs.

  15. A two-constituent solute-transport model for ground water having variable density

    USGS Publications Warehouse

    Sanford, W.E.; Konikow, L.F.

    1985-01-01

    A numerical model has been developed to simulate solute transport and dispersion of either one or two constituents in groundwater where there is two-dimensional, density-dependent flow. The model is a modified version of the one documented by Konikow and Bredehoeft (1978), which uses finite-difference methods and the method of characteristics to solve the flow and transport equations. The model was tested on an idealized seawater intrusion problem for which an analytical solution has been developed. The results were nearly identical to those of other numerical models tested on the same problem. A description of the formats for the input data, a sample of input and output for a two-constituent example problem, and a listing of the Fortran program are presented. (Author 's abstract)

  16. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  17. Impact of degrading permafrost on subsurface solute transport pathways and travel times

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew; Destouni, Georgia

    2015-09-01

    Subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in the subsurface water and inert solute pathways and travel times are analyzed for different modeled geological configurations. For all simulated cases, the minimum and mean travel times increase nonlinearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. The travel time changes depend on combined warming effects of: i) increase in pathway length due to deepening of the active layer, ii) reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and iii) pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles.

  18. Size-dependent control of colloid transport via solute gradients in dead-end channels

    PubMed Central

    Shin, Sangwoo; Um, Eujin; Sabass, Benedikt; Ault, Jesse T.; Rahimi, Mohammad; Warren, Patrick B.; Stone, Howard A.

    2016-01-01

    Transport of colloids in dead-end channels is involved in widespread applications including drug delivery and underground oil and gas recovery. In such geometries, Brownian motion may be considered as the sole mechanism that enables transport of colloidal particles into or out of the channels, but it is, unfortunately, an extremely inefficient transport mechanism for microscale particles. Here, we explore the possibility of diffusiophoresis as a means to control the colloid transport in dead-end channels by introducing a solute gradient. We demonstrate that the transport of colloidal particles into the dead-end channels can be either enhanced or completely prevented via diffusiophoresis. In addition, we show that size-dependent diffusiophoretic transport of particles can be achieved by considering a finite Debye layer thickness effect, which is commonly ignored. A combination of diffusiophoresis and Brownian motion leads to a strong size-dependent focusing effect such that the larger particles tend to concentrate more and reside deeper in the channel. Our findings have implications for all manners of controlled release processes, especially for site-specific delivery systems where localized targeting of particles with minimal dispersion to the nontarget area is essential. PMID:26715753

  19. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  20. Helical Groundwater Flow in Braided-River Sediments and its Effects on Solute Mixing

    NASA Astrophysics Data System (ADS)

    Arie Cirpka, Olaf; Bennett, Jeremy Paul; Haslauer, Claus; Ye, Yu; Rolle, Massimo; Chiogna, Gabriele

    2016-04-01

    Spatially variable orientation of anisotropy can cause helical flow in porous media. In previous studies (Chiogna et al., 2015; Cirpka et al., 2015; see also Figure 1), we analyzed hydraulic conductivity fields with blockwise constant anisotropic correlation structure showing that macroscopically helical flow evolves, and leads to enhanced solute dilution in steady-state advective-dispersive transport. While these studies demonstrated the potential importance of helical flow in heterogeneous porous media, the likelihood of its occurrence remained unclear. In particular, natural sediments do not exhibit extended stripes of materials with diagonally oriented internal anisotropy. In the present study, we generated realistic looking sedimentary structures mimicking scour fills that may be created in braided-river sediments. The individual geobodies are filled with anisotropic porous material. Cross-sections show typical cross-bedding. In particular we analyzed how the variability in bulk hydraulic conductivity between the geobodies and the differences in the orientation of anisotropy affect flow and transverse solute mixing. While the variance of log-hydraulic conductivity controls longitudinal spreading, the variability in the orientation of anisotropy is decisive for folding and mixing perpendicular to the mean flow direction. The importance of non-stationary anisotropy for transverse mixing poses a challenge for the hydraulic characterization of sediments when predicting lengths of mixing-controlled quasi steady-state plumes. References [1] O.A. Cirpka, G. Chiogna, M. Rolle, A. Bellin: Transverse mixing in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resour. Res. 51(1): 241-260 (2015). [2] G. Chiogna, O.A. Cirpka, M. Rolle, A. Bellin: Helical flow in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resour. Res. 51(1): 261-280 (2015).

  1. Dual radiotracer measurement of zoobenthos-mediated solute and particle transport in freshwater sediments

    SciTech Connect

    Krezoski, J.R.; Robbins, J.A.; White, D.S.

    1984-09-01

    ..gamma.. spectroscopy methods have been applied to determine the effects of two freshwater benthic macroinvertebrates, on reworking of sediments and the transfer of solutes across the sediment-water interface. Natural lake sediments and overlying water were contained in temperature-regulated rectangular plastic cells. After addition of Stylodrilus (oligochaete worms) and Pontoporeia (crustacean amphipods) to these microcosms, the vertical distribution of Cs-137 (a tracer of particle transport) and Na-22 (a tracer of solute transport) were determined. In cells with Stylodrilus, the Cs-137 layer moved downward at a rate that decreased exponentially with time. In cells with Pontoporeia, Cs-137 activity was smeared downward in time owing to eddy diffusive mixing of sediments over a small range (1-2 cm). In cells without worms, the veneer of Cs active material remained at the interface while the penetration of Na-22 into sediments was consistent with diffusion in free solution with small corrections for sediment porosity and sorption. In cells with live Stylodrilus, penetration of Na-22 within the feeding zone was considerably more rapid. Advective transport arises from the incorporation of Na-22 into pore fluids moved downward as a result of conveyor-belt feeding. In cells with Pontoporeia, De is approximately twice that in control cells. In these cells, Na-22 profiles may be treated theoretically without advection. 47 references, 6 figures, 2 tables.

  2. Transport of nanoparticulate material in self-assembled block copolymer micelle solutions and crystals.

    PubMed

    Cheng, Vicki A; Walker, Lynn M

    2016-04-12

    Water soluble poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) [PEO-PPO-PEO] triblock copolymers self-assemble into thermoreversible micellar crystals comprised of periodically spaced micelles. The micelles have PPO cores surrounded by hydrated PEO coronas and the dimensions of the unit cell of the organized micelles is on the order of several to tens of nanometers. Fluorescence recovery after photobleaching (FRAP) is used to quantify nanoparticle transport in these nanostructured polymer micelle systems. Diffusivity of bovine serum albumin (BSA, Dh ∼ 7 nm) is quantified across a wide range of polymer, or micelle, concentrations covering both the disordered fluid as well as the structured micellar crystal to understand the effects of nanoscale structure on particle transport. Measured particle diffusivity in these micellar systems is reduced by as much as four orders of magnitude when compared to diffusivity in free solution. Diffusivity in the disordered micellar fluid is best understood in terms of diffusion through a polymeric solution, while transport in the structured micellar phase is possibly due to hopping between interstitial sites. These results not only show that the nanoscale structures of the micelles have a measureable impact on particle diffusivity, but also demonstrate the ability to tune nanoscale transport in self-assembled materials. PMID:26796632

  3. The Method of Manufactured Solutions for RattleSnake A SN Radiation Transport Solver Inside the MOOSE Framework

    SciTech Connect

    Yaqi Wang

    2012-06-01

    The Method of Manufactured Solutions (MMS) is an accepted technique to verify that a numerical discretization for the radiation transport equation has been implemented correctly. This technique offers a few advantages over other methods such as benchmark problems or analytical solutions. The solution can be manufactured such that properties for the angular flux are either stressed or preserved. For radiation transport, these properties can include desired smoothness, positiveness and arbitrary order of anisotropy in angle. Another advantage is that the angular flux solution can be manufactured for multidimensional problems where analytical solutions are difficult to obtain in general.

  4. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics.

    PubMed

    Gheribi, Aïmen E; Salanne, Mathieu; Chartrand, Patrice

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail. PMID:25833567

  5. Catchment travel and residence time distributions: a theoretical framework for solute transport modeling

    NASA Astrophysics Data System (ADS)

    Botter, G.; Bertuzzo, E.; Rinaldo, A.

    2011-12-01

    The probability density functions (pdf's) of travel and residence times are key descriptors of the mechanisms through which catchments retain and release old and event water, transporting solutes to receiving water bodies. In this contribution we derive a general stochastic framework applicable to arbitrary catchment control volumes, where time-variable precipitation, evapotranspiration and discharge are assumed to be the major hydrological drivers for water and solutes. A master equation for the residence time pdf is derived and solved analytically, providing expressions for travel and residence time pdf's as a function of input/output fluxes and of the relevant mixing processes occurring along streamflow production and plant upatke. Our solutions suggest intrinsically time variant travel and residence time pdf's through a direct dependence on the underlying hydrological forcings and soil vegetation dynamics. The proposed framework highlights the dependence of water/solute travel times on eco-hydrological processes (especially transpiration and uptake), and integrates age-dating and tracer hydrology techniques by providing a coherent framework for catchment transport models. An application to the release of pesticides from an agricultural watershead is also discussed.

  6. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics

    SciTech Connect

    Gheribi, Aïmen E. Chartrand, Patrice; Salanne, Mathieu

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  7. EVALUATION OF DMSO TRANSPORT IN HUMAN ARTICULAR CARTILAGE: VEHICLE SOLUTIONS AND EFFECTS ON CELL FUNCTION.

    PubMed

    Kay, A G; Rooney, P; Kearney, J; Pegg, D E

    2015-01-01

    Osteochondral allografting techniques are limited by the availability of suitable donor tissue; there is an urgent need for effective cryopreservation. A fundamental requirement is the need to establish initial conditions of exposure to cryoprotectant that the chondrocytes will tolerate and that load the tissue with an adequate concentration of cryoprotectant. Three vehicle solutions to transport DMSO into the tissue were studied. Knee joints were obtained from deceased donors with appropriate consent. Whole condyles were treated with 20% w/w DMSO in each of three vehicle solutions and chondrocyte function and tissue CPA content measured. The results showed that exposure to 20% DMSO in each vehicle solution for 2 hours at 0 degrees C was tolerated without loss of GAG synthetic activity. It was observed that penetration of DMSO increased little after 1 hour of CPA exposure at 0 degrees C but the final tissue concentration of CPA was markedly lower than that in the medium. PMID:26510337

  8. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport.

    PubMed

    Leung, Juliana Y; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  9. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    NASA Astrophysics Data System (ADS)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  10. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport

    USGS Publications Warehouse

    Langevin, Christian D.; Thorne, Daniel T., Jr.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing

    2008-01-01

    The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant

  11. A dual-permeability approach to preferential water flow and solute transport in shrinking soils

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; dragonetti, giovanna; Comegna, Alessandro; Gerke, Horst H.; Basile, Angelo

    2016-04-01

    The pore systems in most natural soils is dynamically changing due to alternating swelling and shrinkage processes, which induces changes in pore volume and pore size distribution including deformations in pore geometry. This is a serious difficulty for modeling flow and transport in dual permeability approaches, as it will also require that the geometrical deformation of both the soil matrix and the fracture porous systems be taken into account, as well as the dynamics of soil hydraulic properties in response to the domain deformations. This study follows up a previous work by the same authors extending the classical rigid (RGD) approach formerly proposed by Gerke and van Genuchten, to account for shrinking effects (SHR) in modeling water flow and solute transport in dual-permeability porous media. In this study we considered three SHR scenarios, assuming that aggregate shrinkage may change either: (i) the hydraulic properties of the two pore domains, (ii) their relative fractions, and (iii) both, hydraulic properties and fractions of the two domains. The objective was to compare simulation results obtained under the RGD and the SHR assumptions to illustrate the impact of matrix volume changes on water storage, water fluxes and solute concentrations during: 1) An infiltration process bringing an initially dry soil to saturation, 2) A drainage process starting from an initially saturated soil. For an infiltration process, the simulated wetting front and the solute concentration propagation velocity, as well as the water fluxes, water and solute exchange rates, for the three SHR scenarios significantly deviated from the RGD. By contrast, relatively similar water content profiles evolved under all scenarios during drying. Overall, compared to the RGD approach, the effect of changing the hydraulic properties and the weight of the two domains according to the shrinkage behavior of the soil aggregates induced a much more rapid response in terms of water fluxes and

  12. TRANSPORT OF NEUTRAL SOLUTE IN ARTICULAR CARTILAGE: EFFECT OF MICROSTRUCTURE ANISOTROPY

    PubMed Central

    Zhang, Le; Szeri, Andras Z.

    2008-01-01

    Due to the avascular nature of articular cartilage, solute transport through its extracellular matrix is critical for the maintenance and the functioning of the tissue. What’s more, diffusion of macromolecules may be affected by the microstructure of the extracellular matrix in both undeformed and deformed cartilage and experiments demonstrate diffusion anisotropy in the case of large solute. However, these phenomena have not received sufficient theoretical attention to date. We hypothesize here that the diffusion anisotropy of macromolecules is brought about by the particular microstructure of the cartilage network. Based on this hypothesis, we then propose a mathematical model that correlates the diffusion coefficient tensor with the structural orientation tensor of the network. This model is shown to be successful in describing anisotropic diffusion of macromolecules in undeformed tissue and is capable of clarifying the effects of network reorientation as the tissue deforms under mechanical load. Additionally, our model explains the anomaly that at large strain, in a cylindrical plug under unconfined compression, solute diffusion in the radial direction increases with strain. Our results indicate that in cartilage the degree of diffusion anisotropy is site specific but depends also on the size of the diffusing molecule. Mechanical loading initiates and/or further exacerbates this anisotropy. At small deformation, solute diffusion is near isotropic in a tissue that is isotropic in its unstressed state, becoming anisotropic as loading progresses. Mechanical loading leads to an attenuation of solute diffusion in all directions when deformation is small. However, loading, if it is high enough, enhances solute transport in the direction perpendicular to the load line, instead of inhibiting it. PMID:17889882

  13. Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: three-year study and analysis.

    PubMed

    Yakirevich, A; Pachepsky, Y A; Guber, A K; Gish, T J; Shelton, D R; Cho, K H

    2013-05-15

    Escherichia coli is the leading indicator of microbial contamination of natural waters, and so its in-stream fate and transport needs to be understood to eventually minimize surface water contamination by microorganisms. To better understand mechanisms of E. coli release and transport from soil sediment in a creek the artificial high-water flow events were created by releasing 60-80 m(3) of city water on a tarp-covered stream bank in four equal allotments in July 2008, 2009 and 2010. A conservative tracer difluorobenzoic acid (DFBA) was added to the released water in 2009 and 2010. Water flow rate, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at three in-stream weirs. A one-dimensional model was applied to simulate water flow, and E. coli and DFBA transport during these experiments. The Saint-Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for release of bacteria by shear stress from bottom sediments, advection-dispersion, and exchange with transient storage (TS). Reach-specific model parameters were estimated by evaluating observed time series of flow rates and concentrations of DFBA and E. coli at all three weir stations. Observed DFBA and E. coli breakthrough curves (BTC) exhibited long tails after the water pulse and tracer peaks had passed indicating that transient storage (TS) might be an important element of the in-stream transport process. Comparison of simulated and measured E. coli concentrations indicated that significant release of E. coli continued when water flow returned to the base level after the water pulse passed and bottom shear stress was small. The mechanism of bacteria continuing release from sediment could be the erosive boundary layer exchange enhanced by changes in biofilm properties by erosion and sloughing detachment. PMID:23521976

  14. Control of colloid transport via solute gradients in dead-end channels

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Um, Eujin; Warren, Patrick; Stone, Howard

    2015-11-01

    Transport of colloids in dead-end channels is involved in widespread applications ranging from drug delivery to geophysical flows. In such geometries, Brownian motion may be considered as the sole mechanism that enables transport of colloidal particles into or out of the channels, which is, unfortunately, an extremely inefficient transport mechanism for microscale particles. Here, we explore the possibility of diffusiophoresis as a means to control the colloid transport by introducing a solute gradient along the dead-end channels. We demonstrate that the transport of colloidal particles into the dead-end channels can be either enhanced or completely prevented via diffusiophoresis. We also observe a size-dependent focusing of the particles where, as the particle size increases, the particles tend to concentrate more, and they tend to reside deeper in the channel. Our findings have implications for all manners of controlled release processes, especially for site-specific drug delivery systems where localized targeting of drugs with minimal dispersion to the non-target is essential.

  15. Transport of conservative solutes in simulated fracture networks: 1. Synthetic data generation

    NASA Astrophysics Data System (ADS)

    Reeves, Donald M.; Benson, David A.; Meerschaert, Mark M.

    2008-05-01

    This paper investigates whether particle ensembles in a fractured rock domain may be adequately modeled as an operator-stable plume. If this statistical model applies to transport in fractured media, then an ensemble plume in a fractured rock domain may be modeled using the novel Fokker-Planck evolution equation of the operator-stable plume. These plumes (which include the classical multi-Gaussian as a subset) are typically characterized by power law leading-edge concentration profiles and super-Fickian growth rates. To investigate the possible correspondence of ensemble plumes to operator-stable densities, we use numerical simulations of fluid flow and solute transport through large-scale (2.5 km by 2.5 km), randomly generated fracture networks. These two-dimensional networks are generated according to fracture statistics obtained from field studies that describe fracture length, transmissivity, density, and orientation. A fracture continuum approach using MODFLOW is developed for the solution of fluid flow within the fracture network and low-permeability rock matrix, while a particle-tracking code, random walk particle method for simulating transport in heterogeneous permeable media (RWHet), is used to simulate the advective motion of conservative solutes through the model domain. By deterministically mapping individual fractures onto a highly discretized finite difference grid (1 m × 1 m × 1 m here), the MODFLOW "continuum" simulations can faithfully preserve details of the generated network and can approximate fluid flow in a discrete fracture network model. An advantage of the MODFLOW approach is that matrix permeability can be made nonzero to account for any degree of matrix flow and/or transport.

  16. Effects of alongshore morphology on groundwater flow and solute transport in a nearshore aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Ling; Erler, Dirk V.; Santos, Isaac; Lockington, David

    2016-02-01

    Variations of beach morphology in both the cross-shore and alongshore directions, associated with tidal creeks, are common at natural coasts, as observed at a field site on the east coast of Rarotonga, Cook Islands. Field investigations and three-dimensional (3-D) numerical simulations were conducted to study the nearshore groundwater flow and solute transport in such a system. The results show that the beach morphology, combined with tides, induced a significant alongshore flow and modified local pore water circulation and salt transport in the intertidal zone substantially. The bathymetry and hydraulic head of the creek enabled further and more rapid landward intrusion of seawater along the creek than in the aquifer, which created alongshore hydraulic gradient and solute concentration gradient to drive pore water flow and salt transport in the alongshore direction within the aquifer. The effects of the creek led to the formation of a saltwater plume in groundwater at an intermediate depth between fresher water zones on a cross-shore transect. The 3-D pore water flow in the nearshore zone was also complicated by the landward hydraulic head condition, resulting in freshwater drainage across the inland section of the creek while seawater infiltrating the seaward section. These results provided new insights into the complexity, intensity, and time scales of mixing among fresh groundwater, recirculating seawater and creek water in three dimensions. The 3-D characteristics of nearshore pore water flow and solute transport have important implications for studies of submarine groundwater discharge and associated chemical input to the coastal sea, and for evaluation of the beach habitat conditions.

  17. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    NASA Astrophysics Data System (ADS)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  18. Impact of 3D root uptake on solute transport: a numerical study

    NASA Astrophysics Data System (ADS)

    Schröder, N.; Javaux, M.; Vanderborght, J.; Steffen, B.; Vereecken, H.

    2011-12-01

    Plant transpiration is an important component of the hydrological cycle. Through root water uptake, plants do not only affect the 3D soil water flow velocity distribution, but also solute movement in soil. This numerical study aims at investigating how solute fate is impacted by root uptake using the 3D biophysical model R-SWMS (Javaux et al., 2008). This model solves the Richards equation in 3D in the soil and the flow equation within the plant root xylem vessels. Furthermore, for solute transport simulations, the 3D particle tracker PARTRACE (Bechtold et al., 2011) was used. . We generated 3D virtual steady-state breakthrough curves (BTC) experiments in soils with transpiring plants. The averaged BTCs were then fitted with a 1D numerical flow model under steady-state conditions to obtain apparent CDE parameters. Two types of root architecture, a fibrous and a taprooted structure, were compared in virtual 3D experiments. The solute uptake type or the transpiration rate were also modified and we analyzed how these parameters affected apparent disperisivity and velocity profiles. Our simulation results show, that both, apparent velocity and dispersivity length are affected by water and solute root uptake. In addition, under high exclusion processes (slight or no active uptake), solute accumulates around roots and generates a long tailing to the breakthrough curves, which cannot be reproduced by 1D models that simulate root water uptake with solute exclusion. This observation may have an important impact on how to model pollutant mass transfer to groundwater at larger scales. Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7:1079-1088.doi: 10.2136/vzj2007.0115. Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, P.A. Ferre, and H. Vereecken. 2011. Near-surface solute redistribution during evaporation. Submitted to Geophys. Res. Lett

  19. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    USGS Publications Warehouse

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  20. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D.

    PubMed

    Bailey, Ryan T; Morway, Eric D; Niswonger, Richard G; Gates, Timothy K

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems. PMID:23131109

  1. Role of turgor pressure and solute transport in plant cell growth: Progress report

    SciTech Connect

    Cosgrove, D.J.

    1987-10-15

    Plant cell expansion requires coordinationion of three distinct processes: wall relaxation and synthesis, water uptake, and solute uptake. Wall relaxation reduces cell turgor pressure and thereby generates the reduced water for water potential needed uptake. Our studies with pea (Pisum sativum L.) and soybean (Glycine max Merr.) seedlings have shown that water uptake is rapid and is not a major control point for growth. Our current focus is on the processes of wall relaxation and solute transport, and how they are influenced by water stress. One major goal of this project is to examine in detail the dependence of wall yielding on turgor pressure. This is being done by detailed measurements of wall relaxation in living cells, using a computer-assisted pressure microprobe and the new pressure-block technique. Our pressure-block results indicate that wall relaxation is more dynamic than expected. Rapid changes in wall yielding appear to compensate for minor fluctuations in cell turgor pressure, thus maintaining stable growth rates. A second major goal of this project is to determine the interrelationship between cell expansion and solute transport into expanding cells. We will selectively block either cell expansion or solute transport, and measure the effect of such blockage on the unblocked process. A third goal is to examine the basis for reduced cell expansion when plants are water stressed. Our results indicate that growth is retarded in part because of reduced turgor pressure, and in part because of reduced cell wall relaxation. The alteration in wall relaxation will be examined by in-vivo relaxation methods. Thus studies will provide insight into the basic cellular and physical processes controlling plant growth, and how they are perturbed by water stress. 8 refs., 1 fig.

  2. Nature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media - Carbonates

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Mostaghimi, P.; Blunt, M. J.

    2011-12-01

    Despite the range of significant practical applications of solute transport, including the long-term fate of nuclear waste repositories, secure storage of CO2 and improved oil recovery, even the qualitative behavior of most rocks is uncertain: vast carbonate sedimentary basins contain more than half the world's current oil reserves yet experimental data on transport in carbonates is scant. The relationship between pore structure, velocity field and transport remains unknown, particularly for heterogeneous carbonates. We simulate solute transport through 3D μ-CT images of different rock samples, representing geological media of increasing pore-scale complexity: a sandpack, a Berea sandstone and a Portland limestone. A finite-difference Stokes solver is employed to compute the flow field and transport particles semi-analytically along streamlines to represent advection with a random motion to model diffusion. We predict the propagators measured on similar cores in Nuclear Magnetic Resonance (NMR) experiments. Dispersion coefficient dependence on Peclet number is shown to have different scaling for complex carbonates. The behavior is explained using continuous time random walks with a truncated power-law distribution of travel times: transport is qualitatively different for the complex limestone compared to the sandstone or sandpack, with long tailing, an almost immobile peak concentration and a very slow approach to asymptotic dispersion. We demonstrate the different nature of non-Fickian transport in carbonates by analyzing the transit time probabilities ψ(τ) of traveling between two neighboring voxels for Portland carbonate that show an approximately power-law dependence of travel times ψ(τ) ~ τ -1-β with a slope corresponding to β = 0.7, as shown in Fig.1. The comparison with ψ(τ) of the sandpack and Berea sandstone for Pe = ∝ indicates quantitatively different generic behavior, as the sandpack and sandstone have slope corresponding to β = 1.8 (two

  3. Generic reactive transport codes as flexible tools to integrate soil organic matter degradation models with water, transport and geochemistry in soils

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand

    2016-04-01

    A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter

  4. Reactive transport in a partially molten system with binary solid solution

    NASA Astrophysics Data System (ADS)

    Jordan, Jacob S.; Hesse, Marc A.

    2015-12-01

    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface between the heterogeneity and the ambient mantle. Here we present a chromatographic analysis of reactive melt transport across lithological boundaries, using the theory of hyperbolic conservation laws. This is an extension of linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the nonlinear feedbacks that arise in reactive melt transport due to changes in porosity. This study considers the special case of a partially molten porous medium with binary solid solution. As melt traverses a lithological contact, binary solid solution leads to the formation of a reacted zone between an advancing reaction front and the initial contact. The analysis also shows that the behavior of a fertile heterogeneity depends on its absolute concentration, in addition to compositional differences between itself and the refractory background. We present a regime diagram that predicts if melt emanating from a fertile heterogeneity localizes into high-porosity channels or develops a zero porosity shell. The theoretical framework presented here provides a useful tool for understanding nonlinear feedbacks in reactive melt transport, because it can be extended to more complex and realistic phase behaviors.

  5. Hierarchical simulation of aquifer heterogeneity: implications of different simulation settings on solute-transport modeling

    NASA Astrophysics Data System (ADS)

    Comunian, Alessandro; De Micheli, Leonardo; Lazzati, Claudio; Felletti, Fabrizio; Giacobbo, Francesca; Giudici, Mauro; Bersezio, Riccardo

    2016-03-01

    The fine-scale heterogeneity of porous media affects the large-scale transport of solutes and contaminants in groundwater and it can be reproduced by means of several geostatistical simulation tools. However, including the available geological information in these tools is often cumbersome. A hierarchical simulation procedure based on a binary tree is proposed and tested on two real-world blocks of alluvial sediments, of a few cubic meters volume, that represent small-scale aquifer analogs. The procedure is implemented using the sequential indicator simulation, but it is so general that it can be adapted to various geostatistical simulation tools, improving their capability to incorporate geological information, i.e., the sedimentological and architectural characterization of heterogeneity. When compared with a standard sequential indicator approach on bi-dimensional simulations, in terms of proportions and connectivity indicators, the proposed procedure yields reliable results, closer to the reference observations. Different ensembles of three-dimensional simulations based on different hierarchical sequences are used to perform numerical experiments of conservative solute transport and to obtain ensembles of equivalent pore velocity and dispersion coefficient at the scale length of the blocks (meter). Their statistics are used to estimate the impact of the variability of the transport properties of the simulated blocks on contaminant transport modeled on bigger domains (hectometer). This is investigated with a one-dimensional transport modeling based on the Kolmogorov-Dmitriev theory of branching stochastic processes. Applying the proposed approach with diverse binary trees and different simulation settings provides a great flexibility, which is revealed by the differences in the breakthrough curves.

  6. Modeling watershed-scale solute transport using an integrated, process-based hydrologic model with applications to bacterial fate and transport

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Phanikumar, Mantha S.

    2015-10-01

    Distributed hydrologic models that simulate fate and transport processes at sub-daily timescales are useful tools for estimating pollutant loads exported from watersheds to lakes and oceans downstream. There has been considerable interest in the application of integrated process-based hydrologic models in recent years. While the models have been applied to address questions of water quantity and to better understand linkages between hydrology and land surface processes, routine applications of these models to address water quality issues are currently limited. In this paper, we first describe a general process-based watershed-scale solute transport modeling framework, based on an operator splitting strategy and a Lagrangian particle transport method combined with dispersion and reactions. The transport and the hydrologic modules are tightly coupled and the interactions among different hydrologic components are explicitly modeled. We test transport modules using data from plot-scale experiments and available analytical solutions for different hydrologic domains. The numerical solutions are also compared with an analytical solution for groundwater transit times with interactions between surface and subsurface flows. Finally, we demonstrate the application of the model to simulate bacterial fate and transport in the Red Cedar River watershed in Michigan and test hypotheses about sources and transport pathways. The watershed bacterial fate and transport model is expected to be useful for making near real-time predictions at marine and freshwater beaches.

  7. Indirect estimation of the Convective Lognormal Transfer function model parameters for describing solute transport in unsaturated and undisturbed soil

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad Hossein; Vanclooster, Marnik

    2012-05-01

    Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μt, increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ2t first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μt estimated from the conceptual model performed much better as compared to predictions with μt and σ2t estimated from calibration of solute transport at shallow soil depths. The use of μt estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales.

  8. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    USGS Publications Warehouse

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  9. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida

    NASA Astrophysics Data System (ADS)

    Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.

    2005-05-01

    Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant-rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open-ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one-dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the ``main flow zone''). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h-1, respectively. Storage processes decreased the depth-averaged velocity of surface water by 50% relative to the water velocity in the open part of the water column. As a

  10. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida

    NASA Astrophysics Data System (ADS)

    Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.

    2005-05-01

    Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant-rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open-ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one-dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the "main flow zone"). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h-1, respectively. Storage processes decreased the depth-averaged velocity of surface water by 50% relative to the water velocity in the open part of the water column. As a

  11. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    USGS Publications Warehouse

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  12. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range

  13. Characterization of Water and Solute Transport in the Unsaturated Zone of a Hypersaline Environment

    NASA Astrophysics Data System (ADS)

    Ronen, Daniel; Yechieli, Yoseph; Shatkay, Michal

    1996-11-01

    We present a methodology for the analysis of chemical profiles from the unsaturated zone where ions from the sediment are extracted by two methods:centrifugation and water addition. The methodology enables one to (1) assess the ion amounts present in two different phases, pore water and minerals; (2) determine the depth in the unsaturated profile where the degree of saturation of each mineral is reached; (3) establish the principal direction of water flow; and (4) differentiate between upward transport of water either as vapor or as a saline solution. The methodology was applied to the unsaturated zone of the Dead Sea coastal area where the original salinity of interstitial water in these sediments was >300 g/L. Our analysis of the field data suggests that reduction of interstitial water salinity is the result of vertical upward transport of fresh water from a confined aquifer at a depth of 7 m. Flushing, up to the potentiometric surface (depth of 3.5 m), is due to the positive pressure head of the aquifer. Above the potentiometric surface, upward water transport is due to capillary forces, and flow is maintained by evaporation at the soil surface. Evaporation leads to an increase in the salinity of the rising interstitial solution and to the sequential deposition of salts such as NaCl and KMgCl3 · 6H2O.

  14. Effects of Pisha sandstone content on solute transport in a sandy soil.

    PubMed

    Zhen, Qing; Zheng, Jiyong; He, Honghua; Han, Fengpeng; Zhang, Xingchang

    2016-02-01

    In sandy soil, water, nutrients and even pollutants are easily leaching to deeper layers. The objective of this study was to assess the effects of Pisha sandstone on soil solute transport in a sandy soil. The miscible displacement technique was used to obtain breakthrough curves (BTCs) of Br(-) as an inert non-adsorbed tracer and Na(+) as an adsorbed tracer. The incorporation of Pisha sandstone into sandy soil was able to prevent the early breakthrough of both tracers by decreasing the saturated hydraulic conductivity compared to the controlled sandy soil column, and the impeding effects increased with Pisha sandstone content. The BTCs of Br(-) were accurately described by both the convection-dispersion equation (CDE) and the two-region model (T-R), and the T-R model fitted the experimental data slightly better than the CDE. The two-site nonequilibrium model (T-S) accurately fit the Na(+) transport data. Pisha sandstone impeded the breakthrough of Na(+) not only by decreasing the saturated hydraulic conductivity but also by increasing the adsorption capacity of the soil. The measured CEC values of Pisha sandstone were up to 11 times larger than those of the sandy soil. The retardation factors (R) determined by the T-S model increased with increasing Pisha sandstone content, and the partition coefficient (K(d)) showed a similar trend to R. According to the results of this study, Pisha sandstone can successfully impede solute transport in a sandy soil column. PMID:26598989

  15. Reactive Transport from Path3D: A Stream Tube Approach for Heterogeneous Aquifers

    NASA Astrophysics Data System (ADS)

    LI, L.

    2001-05-01

    Path3D (Zheng, 1991) is a popular computer program run in series with MODFLOW. Remediation engineers and hydrogeologist use it to track contaminant paths and to estimate solute travel time at heterogeneous sites. In order to predict fate and transport of multiple species at heterogeneous sites, numerical modeling packages, such as MT3D (Zheng,1990) or RT3D (Clement 1997) are often employed. These packages also are based on pre-processing with MODFLOW. However, for complex cases with aquifer heterogeneity, MT3D and RT3D often require very long computer run times. This paper addresses a new, stream-tube, approach that is both highly efficient and accurate to predict multi-species reactive transport at heterogeneous sites with steady flow. Our application of the stream tube approach is different from other stream tube approaches that apply the advection-dispersion-reaction equation in each stream tube (such as Ginn, 2000, Yabusaki, 1998, Charbeneau, 2000). In this work, the authors make use of properties of a linear system,working with decoupled reaction and sorption processes and mixing processes described by residence time distributions (RTDs). RTDs are abstracted from Path3D particle-tracking results and additional temporal and spatial dispersion (not caused by aquifer heterogeneity) is ignored. Reactions, including first order reactions and linear, reversible sorption, are applied through analytical transfer functions (called kinetic response functions). Convolution can then be applied to determine contaminant concentrations at monitoring points, using the RTDs determined from Path3D, kinetic transfer functions (expressed analytically), and expected trends of the source concentration. We are currently testing the approach and noting significant computational advantages for problems in three-dimensions, with first order reaction pathways and different retardation factors. We will demonstrate the method with several examples and compare the performance with MT3D and

  16. On Developing a Conceptual Modeling Framework for Nitrate Transport in the Subsurface

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Mohanty, B. P.

    2012-12-01

    Nitrate is the most ubiquitous contaminant in groundwater. Once nitrate enters the subsurface environment, it is subjected to a variety of coupled hydrological, geochemical, and biological processes. There is significant uncertainty associated with geochemical and microbiological processes due to a lack of easily available data and reactive heterogeneity of the subsurface systems. Since most hydrologic analyses focus exclusively on the optimization of model parameters and ignore inadequate model structure (structural uncertainty), we present a conceptual framework that incorporates different model structures for complex biogeochemical processes. We simulate nitrate transport using a conceptual modeling framework where physical processes (e.g., advection, dispersion) are modeled as deterministic partial differential equations, while bio-chemical processes (e.g., nitrification) are modeled as stochastic differential equations. We focus here on capturing the influence of bio-chemical processes under deterministic hydrological feedbacks on nitrate transport in a 1-D soil column. We also provide an understanding of the nitrate dynamics under perturbed conditions of soil temperature and pH. Results demonstrate that the predictions of ammonium, nitrite, and nitrate by the conceptual modeling framework are in agreement with the analytical solution. Moreover, the conceptual model provides a broader view of the integrated system behavior as it simulates bio-chemical processes in a stochastic framework. Uncertainty analysis shows that there is higher uncertainty in predicting ammonium concentrations in the soil column as compared to nitrate and nitrite concentrations. Soil temperature variations cause nitrification rates to vary along the soil profile and consecutively, nitrate concentrations arrive earlier at greater depths, and ammonium concentrations are smaller along the soil profile. In addition, soil pH variations cause ammonium concentrations reach deeper in the column.

  17. Modeling bimolecular reactions and transport in porous media via particle tracking

    NASA Astrophysics Data System (ADS)

    Ding, Dong; Benson, David A.; Paster, Amir; Bolster, Diogo

    2013-03-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In our numerical scheme, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing interface between dissimilar waters, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO and EDTA) and product (CuEDTA) were quantified by snapshots of light transmitted through a column packed with cryolite sand. These snapshots allow us to estimate concentration statistics and calculate the required number of particles. The experiments differ significantly due to a ˜107 difference in thermodynamic rate coefficients, making the latter experiment effectively instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20-40% less overall product, which is attributed to poor mixing

  18. Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking

    SciTech Connect

    Dong Ding; David Benson; Amir Paster; Diogo Bolster

    2012-01-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle

  19. Application of block-scale effective dispersion to reactive transport simulations in groundwater

    NASA Astrophysics Data System (ADS)

    Herrera, Paulo; Cortinez, Joaquin; Valocchi, Albert

    2015-04-01

    In the groundwater literature, macrodispersion has traditionally been derived and applied to account for plume spreading -i.e. deformation of the water volume that contains solute mass- due to the overall heterogeneity of aquifers. Several experimental and numerical studies have verified that the use of a macrodispersion coefficient within an advection-dispersion equation can reproduce plume spreading in mildly heterogeneous aquifers. More recently, there have been new extensions to the macrodispersion theory to separately account for block-scale filtering effects due to the use of finite-size numerical grids, and for deriving effective macrodispersion coefficients to account for solute mixing and dilution. We combine the concepts of block-scale dependent and effective dispersion to account for the effect of unresolved subgrid-scale heterogeneity on synthetic numerical simulations of a mixing controlled bimolecular reaction. We demonstrate that by using a time-dependent effective block-scale dispersion coefficient we are able to reproduce overall reaction rates for different scenarios defined according to parameters such as: grid size, Peclet number, aquifer heterogeneity, etc. Moreover, we verify that for long-times the block-scale effective dispersion coefficient that reproduces mixing is equal to the previously derived block-scale dispersion coefficient that reproduces spreading. Given that the block-scale dispersion coefficient is similar to the traditional macrodispersion coefficient in the limit of infinitely large block-sizes, we conclude that the block-scale time-dependent dispersion coefficient constitutes a natural extension of the macrodispersion theory that provides a unified framework for numerical simulations of reactive transport in heterogeneous aquifers.

  20. Dual radiotracer measurement of zoobenthos-mediated solute and particle transport in freshwater sediments

    NASA Astrophysics Data System (ADS)

    Krezoski, John R.; Robbins, John A.; White, David S.

    1984-09-01

    Gamma spectroscopy methods have been applied to determine the effects of Stylodrilus heringianus and Pontoporeia hoyi, two freshwater benthic macroinvertebrates, on the reworking of sediments and the transfer of solutes across the sediment-water interface. Natural lake sediments (sieved to remove organisms) and overlying water were contained in temperature-regulated rectangular plastic cells. A submillimeter layer of sediment solids labeled with 137Cs was deposited on the sediment interface while overlying water was spiked with 22Na. After addition of Stylodrilus (oligochaete worms) and Pontoporeia (crustacean amphipods) to these microcosms, the vertical distributions of 137Cs (a tracer of particle transport) and 22Na (a tracer of solute transport) were determined at daily to weekly intervals for 3 months by scanning the length of the cells with a well-collimated NaI detector. In cells with Stylodrilus, the 137Cs layer moved downward at a rate that decreased exponentially with time. The displacement of the layer is the result of the conveyor-belt feeding mode of this organism. The rate of marked layer burial is consistent with that of other freshwater annelids (0.18×10-5 cm d-1 individual-1 m-2; 11.6°C). The exponential decrease in burial rate is ascribed to uniformly distributed feeding of Stylodrilus within the feeding zone of 4.4 cm. In cells with Pontoporeia, 137Cs activity was smeared downward in time owing to eddy diffusive mixing of sediments over a small range (1-2 cm). In cells without worms, the veneer of Cs active material remained at the interface while the penetration of 22Na into sediments was consistent with diffusion in free solution with small corrections for sediment porosity and sorption (KD = 0.17). The effective diffusion coefficient De for 22Na in this cell (8.2×10-6 cm2 s-1) was essentially the same as that for a cell that had been inhabited by worms for 3 weeks and then poisoned with formalin just before addition of 22Na. Thus the

  1. Identification of Inhibitor Concentrations to Efficiently Screen and Measure Inhibition Ki Values against Solute Carrier Transporters

    PubMed Central

    Zheng, Xiaowan; Polli, James

    2010-01-01

    The objective was to identify inhibitor concentrations to efficiently screen and measure inhibition Ki values of solute carrier (SLC) transporters. The intestinal bile acid transporter and its native substrate taurocholate were used as a model system. Inhibition experiments were conducted using 27 compounds. For each compound, the inhibition constant Ki was obtained from the comprehensive inhibition profile, and referred as the reference Ki. Ki values were also estimated from various partial profiles and were compared to the reference Ki. A screening Ki was estimated from one data point and also compared to the reference Ki. Results indicate that Ki can be accurately measured using an inhibitor concentration range of only 0-Ki via five different inhibitor concentrations. Additionally, a screening concentration of 10-fold the substrate affinity Kt for potent inhibitors (Ki < 20Kt) and 100-fold Kt for nonpotent inhibitors (Ki > 20Kt) provided an accurate Ki estimation. Results were validated through inhibition studies of two other SLC transporters. In conclusion, experimental conditions to screen and measure accurate transporter inhibition constant Ki are suggested where a low range of inhibitor concentrations can be used. This approach is advantageous in that minimal compound is needed to perform studies and accommodates compounds with low aqueous solubility. PMID:20553862

  2. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

    NASA Astrophysics Data System (ADS)

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang (Michael); Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  3. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers.

    PubMed

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang Michael; Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%. PMID:26457966

  4. A lithofacies approach for modeling non-Fickian solute transport in a heterogeneous alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Bianchi, Marco; Zheng, Chunmiao

    2016-01-01

    Stochastic realizations of lithofacies assemblage based on lithological data from a relatively small number of boreholes were used to simulate solute transport at the well-known Macrodispersion Experiment (MADE) site in Mississippi (USA). With sharp vertical contrasts and lateral connectivity explicitly accounted for in the corresponding hydraulic conductivity fields, experimental results from a large-scale tracer experiment were adequately reproduced with a relatively simple model based on advection and local dispersion. The geologically based model of physical heterogeneity shows that one well-interconnected lithofacies, with a significantly higher hydraulic conductivity and accounting for 12% of the total aquifer volume, may be responsible for the observed non-Fickian transport behavior indicated by the asymmetric shape of the plumes and by variations of the dispersion rate in both space and time. This analysis provides a lithological basis to the hypothesis that transport at MADE site is controlled by a network of high-conductivity sediments embedded in a less permeable matrix. It also explains the calibrated value of the ratio of mobile to total porosities used in previous modeling studies based on the dual-domain mass transfer approach. The results of this study underscore the importance of geologically plausible conceptualizations of the subsurface for making accurate predictions of the fate and transport of contaminants in highly heterogeneous aquifers. These conceptualizations may be developed through integration of raw geological data with expert knowledge, interpretation, and appropriate geostatistical methods.

  5. Signature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J.

    2011-11-01

    We simulate transport of a solute through three-dimensional images of different rock samples, with resolutions of a few microns, representing geological media of increasing pore-scale complexity: a sandpack, a Berea sandstone, and a Portland limestone. We predict the propagators (concentration as a function of distance) measured on similar cores in nuclear magnetic resonance experiments and the dispersion coefficient as a function of Péclet number and time. The behavior is explained using continuous time random walks with a truncated power-law distribution of travel times: transport is qualitatively different for the complex limestone compared to the sandstone or sandpack, with long tailing, an almost immobile peak concentration, and a very slow approach to asymptotic dispersion.

  6. Modeling study of solute transport in the unsaturated zone: Workshop proceedings

    SciTech Connect

    Springer, E.P.; Fuentes, H.R.

    1987-04-01

    Issues addressed were the adequacy of the data for the various models, effectiveness of the models to represent the data, particular information provided by the models, the role of caisson experiments in providing fundamental knowledge of porous-media water flow and solute transport, and the importance of geochemistry to the transport of nonconservative tracers. These proceedings include the presentations made by each of the modelers; the summary document written by the panel; and a transcript of the discussions, both the discussions that followed individual presentations and the general discussion held on the second day. This publication completes the series on the workshop. Volume I in the series (NUREG/CR-4615, Vol. I) contains background information and the data sets provided each modeler.

  7. A modified two-state empirical valence bond model for proton transport in aqueous solutions

    SciTech Connect

    Mabuchi, Takuya; Fukushima, Akinori; Tokumasu, Takashi

    2015-07-07

    A detailed analysis of the proton solvation structure and transport properties in aqueous solutions is performed using classical molecular dynamics simulations. A refined two-state empirical valence bond (aTS-EVB) method, which is based on the EVB model of Walbran and Kornyshev and the anharmonic water force field, is developed in order to describe efficiently excess proton transport via the Grotthuss mechanism. The new aTS-EVB model clearly satisfies the requirement for simpler and faster calculation, because of the simplicity of the two-state EVB algorithm, while providing a better description of diffusive dynamics of the excess proton and water in comparison with the previous two-state EVB models, which significantly improves agreement with the available experimental data. The results of activation energies for the excess proton and water calculated between 300 and 340 K (the temperature range used in this study) are also found to be in good agreement with the corresponding experimental data.

  8. Signature of non-Fickian solute transport in complex heterogeneous porous media.

    PubMed

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J

    2011-11-11

    We simulate transport of a solute through three-dimensional images of different rock samples, with resolutions of a few microns, representing geological media of increasing pore-scale complexity: a sandpack, a Berea sandstone, and a Portland limestone. We predict the propagators (concentration as a function of distance) measured on similar cores in nuclear magnetic resonance experiments and the dispersion coefficient as a function of Péclet number and time. The behavior is explained using continuous time random walks with a truncated power-law distribution of travel times: transport is qualitatively different for the complex limestone compared to the sandstone or sandpack, with long tailing, an almost immobile peak concentration, and a very slow approach to asymptotic dispersion. PMID:22181735

  9. A modified two-state empirical valence bond model for proton transport in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mabuchi, Takuya; Fukushima, Akinori; Tokumasu, Takashi

    2015-07-01

    A detailed analysis of the proton solvation structure and transport properties in aqueous solutions is performed using classical molecular dynamics simulations. A refined two-state empirical valence bond (aTS-EVB) method, which is based on the EVB model of Walbran and Kornyshev and the anharmonic water force field, is developed in order to describe efficiently excess proton transport via the Grotthuss mechanism. The new aTS-EVB model clearly satisfies the requirement for simpler and faster calculation, because of the simplicity of the two-state EVB algorithm, while providing a better description of diffusive dynamics of the excess proton and water in comparison with the previous two-state EVB models, which significantly improves agreement with the available experimental data. The results of activation energies for the excess proton and water calculated between 300 and 340 K (the temperature range used in this study) are also found to be in good agreement with the corresponding experimental data.

  10. Benchmark Study of 3D Pore-scale Flow and Solute Transport Simulation Methods

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Yang, X.; Mehmani, Y.; Perkins, W. A.; Pasquali, A.; Schoenherr, M.; Kim, K.; Perego, M.; Parks, M. L.; Trask, N.; Balhoff, M.; Richmond, M. C.; Geier, M.; Krafczyk, M.; Luo, L. S.; Tartakovsky, A. M.

    2015-12-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that benchmark study to include additional models of the first type based on the immersed-boundary method (IMB), lattice Boltzmann method (LBM), and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries in the manner of PNMs has not been fully determined. We apply all five approaches (FVM-based CFD, IMB, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The benchmark study was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods, and motivates further development and application of pore-scale simulation methods.

  11. Numerical simulation of fracture permeability evolution due to reactive transport and pressure solution processes

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Sun, Y.; Taron, J.; Shao, H.; Kolditz, O.

    2013-12-01

    Modeling fracture permeability evolution is of great interest in various geotechnical applications including underground waste repositories, carbon capture and storage, and engineered geothermal systems where fractures dominate transport behaviors. In this study, a numerical model is presented to simulate fracture permeability evolution due to reactive transport and pressure solution processes in single fractures. The model was developed within the international benchmarking project for radioactive waste disposals, DECOVALEX 2015 (Task C1). The model combines bulk behavior in pore spaces with intergranular process at asperity contacts. Hydraulic flow and reactive transport including mineral dissolution and precipitation in fracture pore space are simulated using the Galerkin finite element method. A pressure solution model developed by Taron and Elsworth (2010 JGR) is applied to simulating stress-enhanced dissolution, solute exchange with pore space, and volume removal at grain contacts. Fracture aperture and contact area ratio are updated as a result of the pore-space reaction and intergranular dissolution. In order to increase robustness and time step size, relevant processes are monolithically coupled with the simulations. The model is implemented in a scientific open-source project OpenGeoSys (www.opengeosys.org) for numerical simulation of thermo-hydro-mechanical/chemical processes in porous and fractured media. Numerical results are compared to previous experiment performed by Yasuhara et al. (2006) on flow through fractures in the Arkansas novaculite sample. The novaculite is approximated as pure quartz aggregates. Only with fitted quartz dissolution rate constants and solubility is the current model capable of reproducing observed hydraulic aperture reduction and aqueous silicate concentrations. Future work will examine reaction parameters and further validate the model against experimental results.

  12. Physical Controls of Solute Transport and Storage in Indian Creek, an Urban Stream

    NASA Astrophysics Data System (ADS)

    Ryan, R. J.; Boufadel, M. C.

    2005-12-01

    Conservative solute tracer experiments are commonly used to estimate transient storage characteristics of relatively pristine streams. However, when combined with field-based data on stream morphology and sediment characteristics, one can reasonably determine not just the transport and storage characteristics, but also which processes control transport and storage in a given stream. This additional information is useful in urban streams undergoing relatively fast geomorphic and hydrologic changes. We conducted a conservative solute tracer experiment in Indian Creek, a small urban stream located in Philadelphia, Pennsylvania. As part of the experiment, we first surveyed the stream topography at a 1m resolution. During the tracer experiment, in addition to monitoring the surface water, we sampled bankside wells and small diameter wells installed in the wetted channel and in a large gravel bar. Post-experiment, we measured in situ streambed hydraulic conductivity using a portable permeameter. From our results we were able to determine that the hyporheic zone extends vertically more than 7.5 cm below the streambed and laterally as much as 8 m from the wetted channel. In addition, we found that our data from the in-channel wells yielded a strong linear relationship between the surface-subsurface tracer flux (mgL-1min-1) and hydraulic conductivity (cms-1). Finally, the observed tracer concentration in the bankside wells appeared to be related to stream curvature with higher concentrations found along the outside and lower concentrations found along the inside of stream bends. Based on our data, we conclude that 1) hyporheic exchange was a significant component of solute transport and storage in the urbanized Indian Creek and 2) hyporheic exchange was controlled by a combination of hydraulic conductivity and stream morphology.

  13. A cellular automaton model adapted to sandboxes to simulate the transport of solutes

    NASA Astrophysics Data System (ADS)

    Lora, Boris; Donado, Leonardo; Castro, Eduardo; Bayuelo, Alfredo

    2016-04-01

    The increasingly use of groundwater sources for human consumption and the growth of the levels of these hydric sources contamination make imperative to reach a deeper understanding how the contaminants are transported by the water, in particular through a heterogeneous porous medium. Accordingly, the present research aims to design a model, which simulates the transport of solutes through a heterogeneous porous medium, using cellular automata. Cellular automata (CA) are a class of spatially (pixels) and temporally discrete mathematical systems characterized by local interaction (neighborhoods). The pixel size and the CA neighborhood were determined in order to reproduce accurately the solute behavior (Ilachinski, 2001). For the design and corresponding validation of the CA model were developed different conservative tracer tests using a sandbox packed heterogeneously with a coarse sand (size # 20 grain diameter 0,85 to 0,6 mm) and clay. We use Uranine and a saline solution with NaCl as a tracer which were measured taking snapshots each 20 seconds. A calibration curve (pixel intensity Vs Concentration) was used to obtain concentration maps. The sandbox was constructed of acrylic (caliber 0,8 cms) with 70 x 45 x 4 cms of dimensions. The "sandbox" had a grid of 35 transversal holes with a diameter of 4 mm each and an uniform separation from one to another of 10 cms. To validate the CA-model it was used a metric consisting in rating the number of correctly predicted pixels over the total per image throughout the entire test run. The CA-model shows that calibrations of pixels and neighborhoods allow reaching results over the 60 % of correctly predictions usually. This makes possible to think that the application of the CA- model could be useful in further researches regarding the transport of contaminants in hydrogeology.

  14. Generalized Local Cubic Law for inertial fluid flow and solute transport through tortuous and rough fractures

    NASA Astrophysics Data System (ADS)

    Wang, L.; Cardenas, M.; Slottke, D. T.; Ketcham, R. A.; Sharp, J. M.

    2013-12-01

    Fundamental understanding of flow and transport processes through single rough-walled fractures remains a challenge to gain insight for interpreting hydrological phenomena at continuum scale. The Generalized Local Cubic Law (GLCL) developed here is based on (1) modifying the aperture field by orienting it with the flow direction accounting for tortuosity, and (2) correcting for roughness changes associated with flow expansion/contraction and inertial effects. We compared its performance in estimating flow rate to results of direct numerical simulations with the Navier-Stokes equations (NSE) and physical flow experiments for real and synthetic three-dimensional rough-walled fractures. We also evaluated the performance of the Local Cubic Law (LCL). The LCL consistently overestimates flow rate with relative error δ ranging from 20% to 100% with arithmetic mean of |δ| (<|δ|>) equal to 45.4% depending on the degree of tortuosity and roughness. However, the GLCL performs well and improves the performance of the LCL, where δ in flow rate range from -3.1% to 11.4% with <|δ|>=4.7%. Furthermore, we generated breakthrough curves (BTCs) through direct numerical simulations based on the advection-diffusion equation with flow field resulting from solving the NSE (which are considered to the true or experimental BTCs). We revisited the applicability of random walk particle tracking (RWPT) to simulate solute transport dynamics through real fractures, where flow fields resulted from the GLCL and LCL, respectively. We found persistent early arrival and heavy tailing in the BTCs from both direct numerical simulations and RWPT, which are the salient characteristics of non-Fickian behavior. The LCL consistently overestimates mean flow velocity; whereas the GLCL improves estimating flow field, and markedly improves fits to the BTCs relative to those fitted with LCL solutions. Therefore, PWPT with flow field resulting from the GLCL is robust in predicting solute transport through

  15. Phase-space finite elements in a least-squares solution of the transport equation

    SciTech Connect

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshing tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)

  16. Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio

    2014-08-01

    Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration.

  17. Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer.

    PubMed

    Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio

    2014-08-01

    Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration. PMID:25035936

  18. Hydration and proton transport in solid solutions based on Ba2CaWO6

    NASA Astrophysics Data System (ADS)

    Animitsa, I. E.; Kochetova, N. A.; Denisova, T. A.; Zhuravlev, N. A.; Baklanova, I. V.

    2009-02-01

    Hydrated alkaline-earth metal tungstates Ba4Ca2 + x W2 - x O12 - 2 x with perovskite structure were studied by the thermogravimetry, 1H NMR, IR, and Raman spectroscopy methods. Electrical conductivity and transfer numbers were measured with varying T, p_{O_2 } and p_{H_2 O} . The solid solutions are capable of reversibly intercalating water and can exhibit high-temperature proton transport. The localization of protons on oxygen results in the appearance of energetically nonequivalent OH groups; a small fraction of protons are present in the form of H2O and H3O+.

  19. Periodic solutions for a 1D-model with nonlocal velocity via mass transport

    NASA Astrophysics Data System (ADS)

    Ferreira, Lucas C. F.; Valencia-Guevara, Julio C.

    2016-05-01

    This paper concerns periodic solutions for a 1D-model with nonlocal velocity given by the periodic Hilbert transform. There is a rich literature showing, via numerics and rigorous analysis, that this model presents singular behavior of solutions. For instance, they can blow up by forming mass-concentration. We develop a global well-posedness theory for periodic measure initial data that allows, in particular, to analyze how the model evolves from those singularities. Our results are based on periodic mass transport theory and the abstract gradient flow theory in metric spaces developed by Ambrosio et al. (2005). A viscous version of the model is also analyzed and inviscid limit properties are obtained.

  20. Active solute transport across frog skin and epithelial cell systems according to the association-induction hypothesis.

    PubMed

    Ling, G N

    1981-01-01

    The phenomenon of transport of ions, sugars, amino acids, etc. across frog skin and other epithelial systems has been commonly interpreted on the basis of the membrane-pump theory, according to which asymmetry in solute distribution as well as transport into and out of all living cells results from the permeability properties and "pump" activities of the membrane. In the present review, certain findings in the field of transepithelial transport of solutes are given new interpretation on the basis of molecular mechanisms introduced in the association-induction hypothesis, according to which "active transport" of solutes occurs only across bifacial cell systems like frog skin and intestinal epithelium but not in the maintenance of steady levels of solutes in unifacial cell systems such as muscle, nerve, and red blood cells. PMID:7330099

  1. A conservative, positivity preserving scheme for reactive solute transport problems in moving domains

    NASA Astrophysics Data System (ADS)

    Mabuza, Sibusiso; Kuzmin, Dmitri; Čanić, Sunčica; Bukač, Martina

    2014-11-01

    We study the mathematical models and numerical schemes for reactive transport of a soluble substance in deformable media. The medium is a channel with compliant adsorbing walls. The solutes are dissolved in the fluid flowing through the channel. The fluid, which carries the solutes, is viscous and incompressible. The reactive process is described as a general physico-chemical process taking place on the compliant channel wall. The problem is modeled by a convection-diffusion adsorption-desorption equation in moving domains. We present a conservative, positivity preserving, high resolution ALE-FCT scheme for this problem in the presence of dominant transport processes and wall reactions on the moving wall. A Patankar type time discretization is presented, which provides conservative treatment of nonlinear reactive terms. We establish CFL-type constraints on the time step, and show the mass conservation of the time discretization scheme. Numerical simulations are performed to show validity of the schemes against effective models under various scenarios including linear adsorption-desorption, irreversible wall reaction, infinite adsorption kinetics, and nonlinear Langmuir kinetics. The grid convergence of the numerical scheme is studied for the case of fixed meshes and moving meshes in fixed domains. Finally, we simulate reactive transport in moving domains under linear and nonlinear chemical reactions at the wall, and show that the motion of the compliant channel wall enhances adsorption of the solute from the fluid to the channel wall. Consequences of this result are significant in the area of, e.g., nano-particle cancer drug delivery. Our result shows that periodic excitation of the cancerous tissue using, e.g., ultrasound, may enhance adsorption of cancer drugs carried by nano-particles via the human vasculature. For Taylor dispersion and for other convection dominated flows, numerical schemes for solute transport may lead to undesirable numerical artefacts. These

  2. Demonstrating benthic control of anomalous solute transport: biofilm growth interacts with substrate size.

    NASA Astrophysics Data System (ADS)

    Aubeneau, A. F.; Tank, J. L.; Bolster, D.; Hanrahan, B.

    2014-12-01

    In fluvial systems, biofilms are the main driver of biogeochemical transformations. Biofilms grow on most surfaces in the benthic and hyporheic regions, where they process waterborne solutes. These solutes are transported in the regional flow and their fluxes near the biofilms are controlled by local physical properties, such as head gradients and hydraulic conductivity. These properties are in turn influenced by the growth of the biofilm itself, which can clog porous media and/or develop its own network of porous space. Therefore, the residence time of a solute in proximity to biofilm surfaces, where it can be processed, should be influenced by the properties not only of the physical environment, but by that of the biofilm itself. We hypothesized that the presence of biofilms would increase residence times in the benthic and shallow subsurface regions of the stream bed. We performed controlled experiments in 4 experimental streams at Notre Dame's Linked Experimental Ecosystem Facility (ND-LEEF) to quantify the interaction between substrate and biofilm in controlling anomalous solute transport. Each stream at ND-LEEF had a different substrate configuration: 2 with homogeneous substrate but with different sizes (pea gravel vs. coarse gravel) and 2 with heterogeneous substrate (alternating sections vs. well-mixed reaches). We measured the evolution of the residence time distributions in the streams by injecting rhodamine tracer (RWT) multiple times over the course of a 5 month colonization gradient. Analysis of breakthrough curves demonstrated that in addition to the influence of substrate, biofilm colonization and growth significantly influenced the residence time in the system. Specifically, as biofilms grew, the power-law exponent of the RTD decreased, i.e. the tails of the distributions became heavier, suggesting prolonged retention due to the presence of the biofilms. Although the substrate signature persisted over time, with the coarser gravel bed washing out

  3. Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients

    NASA Astrophysics Data System (ADS)

    Suk, Heejun

    2016-08-01

    This paper presents a semi-analytical procedure for solving coupled the multispecies reactive solute transport equations, with a sequential first-order reaction network on spatially or temporally varying flow velocities and dispersion coefficients involving distinct retardation factors. This proposed approach was developed to overcome the limitation reported by Suk (2013) regarding the identical retardation values for all reactive species, while maintaining the extensive capability of the previous Suk method involving spatially variable or temporally variable coefficients of transport, general initial conditions, and arbitrary temporal variable inlet concentration. The proposed approach sequentially calculates the concentration distributions of each species by employing only the generalized integral transform technique (GITT). Because the proposed solutions for each species' concentration distributions have separable forms in space and time, the solution for subsequent species (daughter species) can be obtained using only the GITT without the decomposition by change-of-variables method imposing the limitation of identical retardation values for all the reactive species by directly substituting solutions for the preceding species (parent species) into the transport equation of subsequent species (daughter species). The proposed solutions were compared with previously published analytical solutions or numerical solutions of the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) in three verification examples. In these examples, the proposed solutions were well matched with previous analytical solutions and the numerical solutions obtained by 2DFATMIC model. A hypothetical single-well push-pull test example and a scale-dependent dispersion example were designed to demonstrate the practical application of the proposed solution to a real field problem.

  4. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions.

    PubMed

    Sharma, K; Kim, Y-H; Gabitto, J; Mayes, R T; Yiacoumi, S; Bilheux, H Z; Walker, L M H; Dai, S; Tsouris, C

    2015-01-27

    Desalination of high-salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization (CDI) for water desalination. Experiments were conducted with a flow-through CDI cell designed for neutron imaging and with lithium-6 chloride ((6)LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of (6)LiCl solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the CDI process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why CDI is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of CDI devices, which can improve the process for high ionic-strength solutions. PMID:25533167

  5. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    PubMed

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value. PMID:20087768

  6. Water, solute and heat transport in the soil: the Australian connection

    NASA Astrophysics Data System (ADS)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  7. Characterization of Anomalous Contaminant Transport via Push-Pull Tracer Tests

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Vesselinov, V. V.; Berkowitz, B.

    2015-12-01

    Push-pull (single-well-injection-withdrawal) tracer tests are widely used as an economical means of characterizing field-scale solute transport properties such as sorption and dispersion. Typically, these are analyzed by means of analytic solutions that assume transport obeys the radial advection-dispersion equation. We revisit this approach as: (1) Recognition of the ubiquity of anomalous transport and its impact on contaminant remediation necessitates the use of new methods to characterize it, and (2) Improved computational power and numerical methods have rendered reliance on analytical solutions obsolete. Here, we present a technique for characterizing diffusion-driven anomalous transport (i.e., anomalous transport driven by a "trapping" process whose trapping and release statistics are independent of the groundwater flow velocity). Examples include diffusion into low permeability zones, kinetic sorption, and matrix diffusion. Using field observations, we simultaneously calibrate an exponential probability distribution for time spent on a single sojourn in the mobile domain and a truncated power law probability distribution for time spent on a single sojourn in the immobile domain via a stochastic global optimization technique. The calibrated distributions, being independent of the flow regime, are applicable to the same domain under any flow conditions, including linear flow. In the context of the continuous time random walk (CTRW), one may simply define a transition to represent a single trap-and-release cycle, and directly compute the spatiotemporal transition distribution that defines the CTRW from the two calibrated distributions and the local seepage velocity (so that existing CTRW transport theory applies). A test of our methodology against a push-pull test from the MADE site demonstrated fitting performance comparable to that of a 3-D MODFLOW/MT3DMS model with a variety of hydraulic conductivity zones and explicit treatment of mobile-immobile mass

  8. Electron transport and energy degradation in the ionosphere: Evaluation of the numerical solution, comparison with laboratory experiments and auroral observations

    NASA Technical Reports Server (NTRS)

    Lummerzheim, D.; Lilensten, J.

    1994-01-01

    Auroral electron transport calculations are a critical part of auroral models. We evaluate a numerical solution to the transport and energy degradation problem. The numerical solution is verified by reproducing simplified problems to which analytic solutions exist, internal self-consistency tests, comparison with laboratory experiments of electron beams penetrating a collision chamber, and by comparison with auroral observations, particularly the emission ratio of the N2 second positive to N2(+) first negative emissions. Our numerical solutions agree with range measurements in collision chambers. The calculated N(2)2P to N2(+)1N emission ratio is independent of the spectral characteristics of the incident electrons, and agrees with the value observed in aurora. Using different sets of energy loss cross sections and different functions to describe the energy distribution of secondary electrons that emerge from ionization collisions, we discuss the uncertainties of the solutions to the electron transport equation resulting from the uncertainties of these input parameters.

  9. Computer model of two-dimensional solute transport and dispersion in ground water

    USGS Publications Warehouse

    Konikow, Leonard F.; Bredehoeft, J.D.

    1978-01-01

    This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the

  10. Solution of the within-group multidimensional discrete ordinates transport equations on massively parallel architectures

    NASA Astrophysics Data System (ADS)

    Zerr, Robert Joseph

    2011-12-01

    The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of

  11. The Major Facilitative Folate Transporters Solute Carrier 19A1 and Solute Carrier 46A1: Biology and Role in Antifolate Chemotherapy of Cancer

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun

    2014-01-01

    This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases. PMID:24396145

  12. Using groundwater age distributions to estimate the effective parameters of Fickian and non-Fickian models of solute transport

    PubMed Central

    Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.

    2015-01-01

    Groundwater age distributions are used to estimate the parameters of Fickian, and non-Fickian, effective models of solute transport. Based on the similarities between the transport and age equations, we develop a deconvolution based approach that describes transport between two monitoring wells. We show that the proposed method gives exact estimates of the travel time distribution between two wells when the domain is stationary and that the method still provides useful information on transport when the domain is non-stationary. The method is demonstrated using idealized uniform and layered 2-D aquifers. Homogeneous transport is determined exactly and non-Fickian transport in a layered aquifer was also approximated very well, even though this example problem is shown to be scale-dependent. This work introduces a method that addresses a significant limitation of tracer tests and non-Fickian transport modeling which is the difficulty in determining the effective parameters of the transport model. PMID:25821342

  13. A laboratory study of colloid and solute transport in surface runoff on saturated soil

    NASA Astrophysics Data System (ADS)

    Yu, Congrong; Gao, Bin; Muñoz-Carpena, Rafael; Tian, Yuan; Wu, Lei; Perez-Ovilla, Oscar

    2011-05-01

    SummaryColloids in surface runoff may pose risks to the ecosystems not only because some of them (e.g., pathogens) are toxic, but also because they may facilitate the transport of other contaminants. Although many studies have been conducted to explore colloid fate and transport in the environment, current understanding of colloids in surface runoff is still limited. In this study, we conducted a range of laboratory experiments to examine the transport behavior of colloids in a surface runoff system, made of a soil box packed with quartz sand with four soil drainage outlets and one surface flow outlet. A natural clay colloid (kaolinite) and a conservative chemical tracer (bromide) were applied to the system under a simulated rainfall event (64 mm/h). Effluent soil drainage and surface flow samples were collected to determine the breakthrough concentrations of bromide and kaolinite. Under the experimental conditions tested, our results showed that surface runoff dominated the transport processes. As a result, kaolinite and bromide were found more in surface flow than in soil drainage. Comparisons between the breakthrough concentrations of bromide and kaolinite showed that kaolinite had lower mobility than bromide in the subsurface flow (i.e., soil drainage), but behaved almost identical to bromide in the surface runoff. Student's t-test confirmed the difference between kaolinite and bromide in subsurface flow ( p = 0.02). Spearman's test and linear regression analysis, however, showed a strong 1:1 correlation between kaolinite and bromide in surface runoff ( p < 0.0001). Our result indicate that colloids and chemical solutes may behave similarly in overland flow on bare soils with limited drainage when surface runoff dominates the transport processes.

  14. Transportation Problems in Special Education Programs in Rural Areas - A Specific Solution and Some Suggestions for Delivery System Development.

    ERIC Educational Resources Information Center

    Brody, Z. H.

    The paper describes transportation problems encountered and solutions employed in delivering systems of comprehensive services to handicapped children in Anderson County, Tennessee, a predominantly rural area with considerable mountain area. Detailed are methods of transportation utilized in the four different program areas of the county special…

  15. Specific transport and storage solutions : waste management facing current and future stakes of the nuclear fuel cycle

    SciTech Connect

    Choho, T.; Blachet, L.; Deniau, H.; Gagner, L.; Gendreau, F.; Presta, A.

    2007-07-01

    With major projects ongoing or being planned, and also with the daily management of radioactive waste from nuclear facilities, the role of transport and/or storage packaging has been often overlooked. Indeed, the packaging development process and transport solutions implemented are a key part of the waste management challenge : protection of people and of the environment. During over four decades, the AREVA Group has developed a complete and coherent system for the transport of waste produced by nuclear industries. The transport solutions integrate the factors to consider, as industrial transportation needs, various waste forms, associated hazards and current regulations. Thus, TN International has designed, licensed and manufactured a large number of different transport, storage and dual purpose cask models for residues and all kinds of radioactive wastes. The present paper proposes to illustrate how a company acting both as a cask designer and a carrier is key to the waste management issue and how it can support the waste management policy of nuclear waste producers through their operational choices. We will focus on the TN International technical solutions implemented to guarantee safe and secure transportation and storage solutions. We will describe different aspects of the cask design process, insisting on how it enables to fulfil both customer needs and regulation requirements. We will also mention the associated services developed by the AREVA Business Unit Logistics (TN International, TRANSNUCLEAR, MAINCO, and LMC) in order to manage transportation of liquid and solid waste towards interim or final storage sites. (authors)

  16. CALIBRATION OF RICHARDS' AND CONVECTION--DISPERSION EQUATIONS TO FIELD-SCALE WATER FLOW AND SOLUTE TRANSPORT UNDER RAINFALL CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of flow and transport processes under natural boundary conditions in field soils is a complex task since most model parameters are not measurable at that scale. However, combining a numerical solution method of the governing flow and transport equations with an inverse optimization al...

  17. Modeling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many or most subsurface pollution problems at the field scale involve such simultaneous processes as water flow, multicomponent solute transport, heat transport and biogeochemical processes and reactions. Process-based models that integrate these various processes can be valuable tools for investiga...

  18. Solute and heat transport model of the Henry and Hilleke laboratory experiment

    USGS Publications Warehouse

    Langevin, C.D.; Dausman, A.M.; Sukop, M.C.

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.

  19. Sediment and solute transport in a mountainous watershed in Valle del Cauca, Colombia

    NASA Astrophysics Data System (ADS)

    Guzman, Christian; Hoyos Villada, Fanny; Morales Vargas, Amalia; Rivera, Baudelino; Da Silva, Mayesse; Moreno Padilla, Pedro; Steenhuis, Tammo

    2015-04-01

    Sediment samples and solute concentrations were measured from the La Vega micro watershed in the southwestern region of the Colombian Andes. A main goal of this study was to improve prediction of soil surface and soil nutrient changes, based on field measurements, within small basin of the Aguaclara watershed network receiving different types of conservation measures. Two modeling approaches for stream discharge and sediment transport predictions were used with one of these based on infiltration-excess and the other on saturation-excess runoff. These streams are a part of a recent initiative from a water fund established by Asobolo, Asocaña, and Cenicaña in collaboration with the Natural Capital Project to improve conservation efforts and monitor their effects. On-site soil depth changes, groundwater depth measurements, and soil nutrient concentrations were also monitored to provide more information about changes within this mountainous watershed during one part of the yearly rainy season. This information is being coupled closely with the outlet sediment concentration and solute concentration patterns to discern correlations between scales. Lateral transects in the upper, middle, and lower part of the hillsides in the La Vega micro watershed showed differences in soil nutrient status and soil surface depth changes. The model based on saturation-excess, semi-distributed hydrology was able to reproduce discharge and sediment transport rates as well as the initially used infiltration excess model indicating available options for comparison of conservation changes in the future.

  20. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    SciTech Connect

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-07-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S{sub N} equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS{sub N} method, which consists in the application of the Laplace transform to the set of nodal S{sub N} equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S{sub N} up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S{sub N} equations for N up to 16 and we begin the convergence of the S{sub N} nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  1. An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area

    NASA Astrophysics Data System (ADS)

    Alias, N. A.; Mohd Sidek, L.

    2016-03-01

    The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.

  2. Solute and heat transport model of the Henry and hilleke laboratory experiment.

    PubMed

    Langevin, Christian D; Dausman, Alyssa M; Sukop, Michael C

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. PMID:19563419

  3. Pseudospectral Methods of Solution of the Linear and Linearized Boltzmann Equations; Transport and Relaxation

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2011-05-01

    The study of the solution of the linearized Boltzmann equation has a very long history arising from the classic work by Chapman and Cowling. For small departures from a Maxwellian, the nonlinear Boltzmann equation can be linearized and the transport coefficients calculated with the Chapman-Enskog approach. This procedure leads to a set of linear integral equations which are generally solved with the expansion of the departure from Maxwellian in Sonine polynomials. The method has been used successfully for many decades to compare experimental transport data in atomic gases with theory generally carried out for realistic atom-atom differential cross sections. There are alternate pseudospectral methods which involve the discretization of the distribution function on a discrete grid. This paper considers a pseudospectral method of solution of the linearized hard sphere Boltzmann equation for the viscosity in a simple gas. The relaxation of a small departure from a Maxwellian is also considered for the linear test particle problem with unit mass ratio which is compared with the relaxation for the linearized one component Boltzmann equation.

  4. Ensemble solute transport in two-dimensional operator-scaling random fields

    NASA Astrophysics Data System (ADS)

    Monnig, Nathan D.; Benson, David A.; Meerschaert, Mark M.

    2008-02-01

    Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these two-dimensional "operator-scaling" fractional Brownian motion ln(K) fields. Both the longitudinal and transverse Hurst coefficients, as well as the "radius of isotropy" are important to both plume growth rates and the timing and duration of breakthrough. It is possible to create operator-scaling fractional Brownian motion fields that have more "continuity" or stratification in the direction of transport. The effects on a conservative solute plume are continually faster-than-Fickian growth rates, highly non-Gaussian shapes, and a heavier tail early in the breakthrough curve. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed A. Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent superstratified growt