Science.gov

Sample records for adventitious bud formation

  1. Influences of polar auxin transport on polarity of adventitious bud formation in hybrid populas

    SciTech Connect

    Kim, Myung Won ); Hackett, W. )

    1989-04-01

    The role of auxin and cytokinin distribution of polar regeneration of adventitious bud has been investigated. Explants from leaf midvein were labelled with {sup 14}C-NAA and {sup 14}C-BA and the radioactivity in proximal, mid, and distal portions was counted after 24h and 48h. Explants showing polar regeneration of buds on the proximal end showed a clear polar distribution of {sup 14}CNAA. Auxin transport inhibitors (NPA, TIBA) eliminated polar distribution of auxin and reduced polarity of bud formation and the total number of buds formed, but did not reduce callus formation. Increased concentration of Ca(NO{sub 3}){sub 2} decreased polarity of bud formation and increased the number of buds formed but did not affect the distribution of auxin of cytokinin. Some factor in addition to polar distribution of auxin or cytokinin-auxin ratio appears to influence the polarity of adventitious bud formation.

  2. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  3. Molecular Analysis of Signals Controlling Dormancy and Growth in Underground Adventitious Buds of Leafy Spurge

    PubMed Central

    Horvath, David P.; Chao, Wun S.; Anderson, James V.

    2002-01-01

    Dormancy and subsequent regrowth of adventitious buds is a critical physiological process for many perennial plants. We have used the expression of hormone and cell cycle-responsive genes as markers to follow this process in leafy spurge (Euphorbia esula). In conjunction with earlier studies, we show that loss of mature leaves results in decreased sugar levels and increased gibberellin perception in underground adventitious buds. Gibberellin is sufficient for induction of S phase-specific but not M phase-specific gene expression. Loss of both apical and axillary buds or inhibition of polar auxin transport did not result in induction of S phase- or M phase-specific gene expression. Loss of polar auxin transport was necessary for continuation of the cell cycle and further bud development if the S phase was previously initiated. PMID:11950992

  4. Comparison of phytohormone levels and transcript profiles during seasonal dormancy transitions in underground adventitious buds of leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and eco...

  5. Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns

    USDA-ARS?s Scientific Manuscript database

    Long term control of leafy spurge with glyphosate requires multiple applications because the plant reproduces vegetatively from abundant underground adventitious buds (UABs). Determining the molecular mechanisms involved in controlling vegetative reproduction in leafy spurge following foliar glyphos...

  6. Improvement of adventitious root formation in flax using hydrogen peroxide.

    PubMed

    Takáč, Tomáš; Obert, Bohuš; Rolčík, Jakub; Šamaj, Jozef

    2016-09-25

    Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting.

  7. Adventitious Root Formation of Forest Trees and Horticultural Plants - From Genes to Applications

    USDA-ARS?s Scientific Manuscript database

    Adventitious root formation is a key step in the clonal propagation of forest trees and horticultural crops. Difficulties in forming adventitious roots (ARs) on stem cuttings and plants produced in vitro hinders the propagation of elite trees and efficient production of many horticultural plant spec...

  8. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato.

    PubMed

    Deng, Kexuan; Dong, Pan; Wang, Wanjing; Feng, Li; Xiong, Fangjie; Wang, Kai; Zhang, Shumin; Feng, Shun; Wang, Bangjun; Zhang, Jiankui; Ren, Maozhi

    2017-01-01

    In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis. The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 (ScFKBP12) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3, and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1. Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato.

  9. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato

    PubMed Central

    Deng, Kexuan; Dong, Pan; Wang, Wanjing; Feng, Li; Xiong, Fangjie; Wang, Kai; Zhang, Shumin; Feng, Shun; Wang, Bangjun; Zhang, Jiankui; Ren, Maozhi

    2017-01-01

    In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis. The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 (ScFKBP12) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3, and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1. Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato. PMID

  10. Jasmonates act positively in adventitious root formation in petunia cuttings.

    PubMed

    Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina

    2015-09-22

    Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.

  11. Micropropagation of Codiaeum variegatum (L.) Blume and regeneration induction via adventitious buds and somatic embryogenesis.

    PubMed

    Radice, Silvia

    2010-01-01

    Codiaeum variegatum (L) Blume cv. "Corazon de oro" and cv. "Norma" are successfully micropropagated when culture are initiated with explants taken from newly sprouted shoots. The establishment and multiplication steps are possible when 1 mg/L BA or 1 mg/L IAA and 3 mg/L 2iP are added to MS medium, according to the cultivar respectively selected.Adventive organogenesis and somatic embryogenesis are induced from leaf explants taken from in vitro buds of croton. On leaf-sectioned of "Corazon de oro" cultured in vitro, 1 mg/L BA stimulates continuous somatic embryos development and induces some shoots too. Replacing BA with 1 mg/L TDZ induces up to 100% bud regeneration in the same explants. On the other hand, leaf-sectioned of C. variegatum cv. Norma does not start somatic embryo differentiation if 1 mg/L TDZ is not added to the MS basal medium. Incipient callus is observed after 30 days of culture, and then, subculture to MS with 1 mg/L BA allows the same process to show on the "Corazon de oro" cultivar. Somatic embryos show growth arrest that is partially overcome by transfer to hormone-free basal medium with activated charcoal. Root induction is possible on basal medium plus 1 mg/L IBA. Plantlets in the greenhouse have variegated leaves true-to-type.

  12. CD14 Directs Adventitial Macrophage Precursor Recruitment: Role in Early Abdominal Aortic Aneurysm Formation

    PubMed Central

    Blomkalns, Andra L.; Gavrila, Daniel; Thomas, Manesh; Neltner, Bonnie S.; Blanco, Victor M.; Benjamin, Stephanie B.; McCormick, Michael L.; Stoll, Lynn L.; Denning, Gerene M.; Collins, Sean P.; Qin, Zhenyu; Daugherty, Alan; Cassis, Lisa A.; Thompson, Robert W.; Weiss, Robert M.; Lindower, Paul D.; Pinney, Susan M.; Chatterjee, Tapan; Weintraub, Neal L.

    2013-01-01

    Background Recruitment of macrophage precursors to the adventitia plays a key role in the pathogenesis of abdominal aortic aneurysms (AAAs), but molecular mechanisms remain undefined. The innate immune signaling molecule CD14 was reported to be upregulated in adventitial macrophages in a murine model of AAA and in monocytes cocultured with aortic adventitial fibroblasts (AoAf) in vitro, concurrent with increased interleukin‐6 (IL‐6) expression. We hypothesized that CD14 plays a crucial role in adventitial macrophage precursor recruitment early during AAA formation. Methods and Results CD14−/− mice were resistant to AAA formation induced by 2 different AAA induction models: aortic elastase infusion and systemic angiotensin II (AngII) infusion. CD14 gene deletion led to reduced aortic macrophage infiltration and diminished elastin degradation. Adventitial monocyte binding to AngII‐infused aorta in vitro was dependent on CD14, and incubation of human acute monocytic leukemia cell line‐1 (THP‐1) monocytes with IL‐6 or conditioned medium from perivascular adipose tissue (PVAT) upregulated CD14 expression. Conditioned medium from AoAf and PVAT induced CD14‐dependent monocyte chemotaxis, which was potentiated by IL‐6. CD14 expression in aorta and plasma CD14 levels were increased in AAA patients compared with controls. Conclusions These findings link CD14 innate immune signaling via a novel IL‐6 amplification loop to adventitial macrophage precursor recruitment in the pathogenesis of AAA. PMID:23537804

  13. Cortical Aerenchyma Formation in Hypocotyl and Adventitious Roots of Luffa cylindrica Subjected to Soil Flooding

    PubMed Central

    Shimamura, Satoshi; Yoshida, Satoshi; Mochizuki, Toshihiro

    2007-01-01

    Background and Aims Aerenchyma formation is thought to be one of the important morphological adaptations to hypoxic stress. Although sponge gourd is an annual vegetable upland crop, in response to flooding the hypocotyl and newly formed adventitious roots create aerenchyma that is neither schizogenous nor lysigenous, but is produced by radial elongation of cortical cells. The aim of this study is to characterize the morphological changes in flooded tissues and the pattern of cortical aerenchyma formation, and to analyse the relative amount of aerenchyma formed. Method Plants were harvested at 16 d after the flooding treatment was initiated. The root system was observed, and sections of fresh materials (hypocotyl, tap root and adventitious root) were viewed with a light or fluorescence microscope. Distributions of porosity along adventitious roots were estimated by a pycnometer method. Key Results Under flooded conditions, a considerable part of the root system consisted of new adventitious roots which soon emerged and grew quickly over the soil surface. The outer cortical cells of these roots and those of the hypocotyl elongated radially and contributed to the development of large intercellular spaces. The elongated cortical cells of adventitious roots were clearly T-shaped, and occurred regularly in mesh-like lacunate structures. In these positions, slits were formed in the epidermis. In the roots, the enlargement of the gas space system began close to the apex in the cortical cell layers immediately beneath the epidermis. The porosity along these roots was 11–45 %. In non-flooded plants, adventitious roots were not formed and no aerenchyma developed in the hypocotyl or tap root. Conclusions Sponge gourd aerenchyma is produced by the unique radial elongation of cells that make the expansigeny. These morphological changes seem to enhance flooding tolerance by promoting tissue gas exchange, and sponge gourd might thereby adapt to flooding stress. PMID:17921518

  14. Cortical Aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding.

    PubMed

    Shimamura, Satoshi; Yoshida, Satoshi; Mochizuki, Toshihiro

    2007-12-01

    Aerenchyma formation is thought to be one of the important morphological adaptations to hypoxic stress. Although sponge gourd is an annual vegetable upland crop, in response to flooding the hypocotyl and newly formed adventitious roots create aerenchyma that is neither schizogenous nor lysigenous, but is produced by radial elongation of cortical cells. The aim of this study is to characterize the morphological changes in flooded tissues and the pattern of cortical aerenchyma formation, and to analyse the relative amount of aerenchyma formed. Plants were harvested at 16 d after the flooding treatment was initiated. The root system was observed, and sections of fresh materials (hypocotyl, tap root and adventitious root) were viewed with a light or fluorescence microscope. Distributions of porosity along adventitious roots were estimated by a pycnometer method. Under flooded conditions, a considerable part of the root system consisted of new adventitious roots which soon emerged and grew quickly over the soil surface. The outer cortical cells of these roots and those of the hypocotyl elongated radially and contributed to the development of large intercellular spaces. The elongated cortical cells of adventitious roots were clearly T-shaped, and occurred regularly in mesh-like lacunate structures. In these positions, slits were formed in the epidermis. In the roots, the enlargement of the gas space system began close to the apex in the cortical cell layers immediately beneath the epidermis. The porosity along these roots was 11-45 %. In non-flooded plants, adventitious roots were not formed and no aerenchyma developed in the hypocotyl or tap root. Sponge gourd aerenchyma is produced by the unique radial elongation of cells that make the expansigeny. These morphological changes seem to enhance flooding tolerance by promoting tissue gas exchange, and sponge gourd might thereby adapt to flooding stress.

  15. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar.

    PubMed

    Rigal, Adeline; Yordanov, Yordan S; Perrone, Irene; Karlberg, Anna; Tisserant, Emilie; Bellini, Catherine; Busov, Victor B; Martin, Francis; Kohler, Annegret; Bhalerao, Rishi; Legué, Valérie

    2012-12-01

    Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to grow an increased number of adventitious roots, whereas RNA interference mediated the down-expression of PtAIL1 expression, which led to a delay in adventitious root formation. Microarray analysis showed that the expression of 15 genes, including the transcription factors AGAMOUS-Like6 and MYB36, was overexpressed in the stem tissues that generated root primordia in PtAIL1-overexpressing plants, whereas their expression was reduced in the RNA interference lines. These results demonstrate that PtAIL1 is a positive regulator of poplar rooting that acts early in the development of adventitious roots.

  16. [Cloning of cDNA fragments related to adventitious root formation from mango cotyledon section].

    PubMed

    Xiao, Jie-Ning; Huang, Xue-Lin; Zhang, Yi-Shun; Li, Yin; Li, Xiao-Ju

    2004-04-01

    Two cut surfaces of mango cotyledon (distal and proximal cut surfaces) showed different capability of adventitious root formation, only proximal cut surface could be induced to form the roots and the distal cut surface did not. cDNA fragments related to adventitious root formation from the cut sections were isolated with suppressive subtractive hybridization. The forward substracted cDNA library was constructed using the cDNAs of distal (non-rooting) cut surface as driver and the cDNAs of proximal (rooting) cut surface as tester. Six positive clones were obtained by Virtual Northern blots. In this study, the putative up-regulated genes showed by sequence analysis were reported in mango for the first time, the deduced proteins among the positive clones were homologous to transporters, transcriptional regulators and enzymes.

  17. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara

    PubMed Central

    Zhang, Qian; Visser, Eric J. W.; de Kroon, Hans; Huber, Heidrun

    2015-01-01

    Background and Aims Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Methods Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Key Results Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. Conclusions The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant’s life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow

  18. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    PubMed

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  19. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato.

    PubMed

    Negi, Sangeeta; Sukumar, Poornima; Liu, Xing; Cohen, Jerry D; Muday, Gloria K

    2010-01-01

    In this study we investigated the role of ethylene in the formation of lateral and adventitious roots in tomato (Solanum lycopersicum) using mutants isolated for altered ethylene signaling and fruit ripening. Mutations that block ethylene responses and delay ripening -Nr (Never ripe), gr (green ripe), nor (non ripening), and rin (ripening inhibitor) - have enhanced lateral root formation. In contrast, the epi (epinastic) mutant, which has elevated ethylene and constitutive ethylene signaling in some tissues, or treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC), reduces lateral root formation. Treatment with ACC inhibits the initiation and elongation of lateral roots, except in the Nr genotype. Root basipetal and acropetal indole-3-acetic acid (IAA) transport increase with ACC treatments or in the epi mutant, while in the Nr mutant there is less auxin transport than in the wild type and transport is insensitive to ACC. In contrast, the process of adventitious root formation shows the opposite response to ethylene, with ACC treatment and the epi mutation increasing adventitious root formation and the Nr mutation reducing the number of adventitious roots. In hypocotyls, ACC treatment negatively regulated IAA transport while the Nr mutant showed increased IAA transport in hypocotyls. Ethylene significantly reduces free IAA content in roots, but only subtly changes free IAA content in tomato hypocotyls. These results indicate a negative role for ethylene in lateral root formation and a positive role in adventitious root formation with modulation of auxin transport as a central point of ethylene-auxin crosstalk.

  20. Gene expression profiling during adventitious root formation in carnation stem cuttings.

    PubMed

    Villacorta-Martín, Carlos; Sánchez-García, Ana Belén; Villanova, Joan; Cano, Antonio; van de Rhee, Miranda; de Haan, Jorn; Acosta, Manuel; Passarinho, Paul; Pérez-Pérez, José Manuel

    2015-10-14

    Adventitious root (AR) formation is a critical step in vegetative propagation of most ornamental plants, such as carnation. AR formation from stem cuttings is usually divided into several stages according to physiological and metabolic markers. Auxin is often applied exogenously to promote the development of ARs on stem cuttings of difficult-to-root genotypes. By whole transcriptome sequencing, we identified the genes involved in AR formation in carnation cuttings and in response to exogenous auxin. Their expression profiles have been analysed through RNA-Seq during a time-course experiment in the stem cutting base of two cultivars with contrasting efficiencies of AR formation. We explored the kinetics of root primordia formation in these two cultivars and in response to exogenously-applied auxin through detailed histological and physiological analyses. Our results provide, for the first time, a number of molecular, histological and physiological markers that characterize the different stages of AR formation in this species and that could be used to monitor adventitious rooting on a wide collection of carnation germplasm with the aim to identify the best-rooting cultivars for breeding purposes.

  1. Studies on Cytokinin-Controlled Bud Formation in Moss Protonemata

    PubMed Central

    Brandes, H.; Kende, H.

    1968-01-01

    Application of cytokinins to moss protonemata of the proper physiological age causes bud formation on specific cells (caulonema). During the early stages of their development, buds revert to protonemal filaments if the cytokinin has been removed by washing the protonemata. This indicates that the hormone is not acting as a “trigger” but has to be present during a critical period of time until differentiation is stabilized. Autoradiographs of protonemata treated with a labeled cytokinin, benzyladenine-benzyl-7-14C, show a striking accumulation of the radioactivity in caulonema cells which are in the stage of bud formation, and in the buds themselves. Cells which did not react to the hormone contained very little radioactivity. The accumulation of benzyladenine in the “target cells” may be due to the presence of binding sites which, in turn, may distinguish responding cells from non-responding ones. Images PMID:16656847

  2. Transcriptome Analysis of Indole-3-Butyric Acid-Induced Adventitious Root Formation in Nodal Cuttings of Camellia sinensis (L.)

    PubMed Central

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties. PMID:25216187

  3. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).

    PubMed

    Wei, Kang; Wang, Li-Yuan; Wu, Li-Yun; Zhang, Cheng-Cai; Li, Hai-Lin; Tan, Li-Qiang; Cao, Hong-Li; Cheng, Hao

    2014-01-01

    Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties.

  4. Cloning and characterization of a type-A response regulator differentially expressed during adventitious shoot formation in Pinus pinea L.

    PubMed

    Cortizo, M; Alvarez, J M; Rodríguez, A; Fernández, B; Ordás, R J

    2010-08-15

    Type-A response regulators play an important role in cytokinin-induced adventitious shoot formation, acting as negative regulators of cytokinin signal transduction. In this work, we obtained the full-length cDNA clone of a type-A response regulator from the conifer Pinus pinea, designated PipiRR1. The derived peptide sequence showed all the characteristic motifs found in angiosperms. Gene expression analysis showed that the gene was differentially expressed during adventitious shoot formation in P. pinea cotyledons, suggesting that PipiRR1 may play a role in caulogenesis in conifers. This is the first type-A response regulator identified in gymnosperms.

  5. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments.

    PubMed

    Ludwig-Müller, Jutta; Vertocnik, Amy; Town, Christopher D

    2005-08-01

    Root induction by auxins is still not well understood at the molecular level. In this study a system has been devised which distinguishes between the two active auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA). IBA, but not IAA, efficiently induced adventitious rooting in Arabidopsis stem segments at a concentration of 10 microM. In wild-type plants, roots formed exclusively out of calli at the basal end of the segments. Root formation was inhibited by 10 microM 3,4,5-triiodobenzoic acid (TIBA), an inhibitor of polar auxin transport. At intermediate IBA concentrations (3-10 microM), root induction was less efficient in trp1, a tryptophan auxotroph of Arabidopsis with a bushy phenotype but no demonstrable reduction in IAA levels. By contrast, two mutants of Arabidopsis with measurably higher levels of IAA (trp2, amt1) show root induction characteristics very similar to the wild type. Using differential display, transcripts specific to the rooting process were identified by devising a protocol that distinguished between callus production only and callus production followed by root initiation. One fragment was identical to the sequence of a putative regulatory subunit B of protein phosphatase 2A. It is suggested that adventitious rooting in Arabidopsis stem segments is due to an interaction between endogenous IAA and exogenous IBA. In stem explants, residual endogenous IAA is transported to the basal end of each segment, thereby inducing root formation. In stem segments in which the polar auxin transport is inhibited by TIBA, root formation does not occur.

  6. Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation

    PubMed Central

    2013-01-01

    Background A lack of competence to form adventitious roots by cuttings of Chrysanthemum (Chrysanthemum morifolium) is an obstacle for the rapid fixation of elite genotypes. We performed a proteomic analysis of cutting bases of chrysanthemum cultivar ‘Jinba’ during adventitious root formation (ARF) in order to identify rooting ability associated protein and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Results The protein profiles during ARF were analyzed by comparing the 2-DE gels between 0-day-old (just severed from the stock plant) and 5-day-old cutting bases of chrysanthemum. A total of 69 differentially accumulated protein spots (two-fold change; t-test: 95% significance) were excised and analyzed using MALDI-TOF/TOF, among which 42 protein spots (assigned as 24 types of proteins and 7 unknown proteins) were confidently identified using the NCBI database. The results demonstrated that 19% proteins were related to carbohydrate and energy metabolism, 16% to photosynthesis, 10% to protein fate, 7% to plant defense, 6% to cell structure, 7% to hormone related, 3% to nitrate metabolism, 3% to lipid metabolism, 3% to ascorbate biosynthesis and 3% to RNA binding, 23% were unknown proteins. Twenty types of differentially accumulated proteins including ACC oxidase (CmACO) were further analyzed at the transcription level, most of which were in accordance with the results of 2-DE. Moreover, the protein abundance changes of CmACO are supported by western blot experiments. Ethylene evolution was higher during the ARF compared with day 0 after cutting, while silver nitrate, an inhibitor of ethylene synthesis, pretreatment delayed the ARF. It suggested that ACC oxidase plays an important role in ARF of chrysanthemum. Conclusions The proteomic analysis of cutting bases of chrysanthemum allowed us to identify proteins whose expression was related to ARF. We identified auxin-induced protein PCNT115 and ACC oxidase positively or

  7. Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation.

    PubMed

    Liu, Ruixia; Chen, Sumei; Jiang, Jiafu; Zhu, Lu; Zheng, Chen; Han, Shuang; Gu, Jing; Sun, Jing; Li, Huiyun; Wang, Haibin; Song, Aiping; Chen, Fadi

    2013-12-26

    A lack of competence to form adventitious roots by cuttings of Chrysanthemum (Chrysanthemum morifolium) is an obstacle for the rapid fixation of elite genotypes. We performed a proteomic analysis of cutting bases of chrysanthemum cultivar 'Jinba' during adventitious root formation (ARF) in order to identify rooting ability associated protein and/or to get further insight into the molecular mechanisms controlling adventitious rooting. The protein profiles during ARF were analyzed by comparing the 2-DE gels between 0-day-old (just severed from the stock plant) and 5-day-old cutting bases of chrysanthemum. A total of 69 differentially accumulated protein spots (two-fold change; t-test: 95% significance) were excised and analyzed using MALDI-TOF/TOF, among which 42 protein spots (assigned as 24 types of proteins and 7 unknown proteins) were confidently identified using the NCBI database. The results demonstrated that 19% proteins were related to carbohydrate and energy metabolism, 16% to photosynthesis, 10% to protein fate, 7% to plant defense, 6% to cell structure, 7% to hormone related, 3% to nitrate metabolism, 3% to lipid metabolism, 3% to ascorbate biosynthesis and 3% to RNA binding, 23% were unknown proteins. Twenty types of differentially accumulated proteins including ACC oxidase (CmACO) were further analyzed at the transcription level, most of which were in accordance with the results of 2-DE. Moreover, the protein abundance changes of CmACO are supported by western blot experiments. Ethylene evolution was higher during the ARF compared with day 0 after cutting, while silver nitrate, an inhibitor of ethylene synthesis, pretreatment delayed the ARF. It suggested that ACC oxidase plays an important role in ARF of chrysanthemum. The proteomic analysis of cutting bases of chrysanthemum allowed us to identify proteins whose expression was related to ARF. We identified auxin-induced protein PCNT115 and ACC oxidase positively or negatively correlated to ARF

  8. Occurrence of adventitious sprouting in short-lived monocarpic herbs: a field study of 22 weedy species.

    PubMed

    Malíková, Lenka; Smilauer, Petr; Klimesová, Jitka

    2010-06-01

    Adventitious sprouting from the hypocotyle and roots in monocarpic herbs has been confirmed in previous experimental studies as a means to avoid bud limitation after severe injury in annual and biennial plants. Data regarding the role of adventitious sprouting in natural populations, however, were lacking. The aim of the present study was to assess whether adventitious sprouting occurs in natural populations and how it is affected by plant size, plant injury, plant cover and environmental characteristics. Data were sampled from 14 037 individual plants from 389 populations belonging to 22 annual and biennial species. Growth parameters were measured in individual plants, species composition and plant cover in communities were evaluated, and environmental characteristics were estimated using Ellenberg indicator values. It was confirmed that adventitious sprouting occurs in natural populations of all but five species examined. Adventitious sprouting was positively affected by plant size and plant injury. Environmental factors including availability of soil nitrogen were not shown to affect adventitious sprouting. Annual and biennial plants did not differ in sprouting, but upright annuals had a lower number of and longer adventitious shoots than prostrate annuals. Adventitious bud formation is used to overcome meristem limitation when stem parts are lost due to injury, and thus resprouting in short-lived monocarps should not be overlooked.

  9. The effect of polar auxin transport on adventitious branches formation in Gracilaria lichenoides in vitro.

    PubMed

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Zhang, Fang; Fang, Baishan; Wang, Zhaokai

    2016-11-01

    Seaweed tissue culture (STC) is an important micropropagation tool that has been applied for strain improvement, micropropagation and genetic engineering. Because the mechanisms associated with STC are poorly understood, its application to these organisms lags far behind that of tissue culture propagation of higher plants. Auxin, calcium (Ca(2+) ) and hydrogen peroxide (H2 O2 ) fluxes all play key roles during plant growth and development. In this study, we therefore measured indole-3-acetic acid, Ca(2+) and H2 O2 fluxes of Gracilaria lichenoides explants during adventitious branches (ABs) formation for the first time using noninvasive micro-test technology. We confirmed that polar auxin transport (PAT) also occurs in the marine red alga G. lichenoides. We additionally found that N-1-naphthylphthalamic acid may suppress auxin efflux via ABCB1 transporters and then inhibit ABs formation from the apical region of G. lichenoides segments. The involvement of Ca(2+) and H2 O2 fluxes in PAT-mediated AB formation in G. lichenoides was also investigated. We propose that complex feedback among Ca(2+) , H2 O2 and auxin signaling and response systems may occur during ABs polar formation in G. lichenoides explants, similar to that in higher plants. Our results provide innovative insights that should aid future elucidation of mechanisms operative during STC.

  10. Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana.

    PubMed

    López-Bucio, José; Ortiz-Castro, Randy; Ruíz-Herrera, León Francisco; Juárez, Consuelo Vargas; Hernández-Madrigal, Fátima; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2015-04-01

    Morphological root plasticity optimizes nutrient and water uptake by plants and is a promising target to improve tolerance to metal toxicity. Exposure to sublethal chromate [Cr(VI)] concentrations inhibits root growth, decreases photosynthesis and compromises plant development and productivity. Despite the increasing environmental problem that Cr(VI) represents, to date, the Cr tolerance mechanisms of plants are not well understood, and it remains to be investigated whether root architecture remodelling is important for plant adaptation to Cr(VI) stress. In this report, we analysed the growth response of Arabidopsis thaliana seedlings to concentrations of Cr(VI) that strongly repress primary and lateral root growth. Interestingly, adventitious roots started developing, branched and allowed seedlings to grow under highly growth-repressing Cr(VI) concentrations. Cr(VI) negatively regulates auxin transport and response gene expression in the primary root tip, as evidenced by decreased expression of auxin-related reporters DR5::GFP, DR5::uidA and PIN1::PIN1::GFP, and then, another auxin maximum is established at the site of adventitious root initiation that drives adventitious root organogenesis. Both primary root growth inhibition and adventitious root formation induced by high Cr(VI) levels are blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. These data provide evidence that suggests a critical role for auxin transport and signalling via IAA14/SLR1 in the developmental program linking Cr(VI) to root architecture remodelling.

  11. Identification of an Amphipathic Helix Important for the Formation of Ectopic Septin Spirals and Axial Budding in Yeast Axial Landmark Protein Bud3p

    PubMed Central

    Guo, Jia; Gong, Ting; Gao, Xiang-Dong

    2011-01-01

    Correct positioning of polarity axis in response to internal or external cues is central to cellular morphogenesis and cell fate determination. In the budding yeast Saccharomyces cerevisiae, Bud3p plays a key role in the axial bud-site selection (axial budding) process in which cells assemble the new bud next to the preceding cell division site. Bud3p is thought to act as a component of a spatial landmark. However, it is not clear how Bud3p interacts with other components of the landmark, such as the septins, to control axial budding. Here, we report that overexpression of Bud3p causes the formation of small septin rings (∼1 µm in diameter) and arcs aside from previously reported spiral-like septin structures. Bud3p closely associates with the septins in vivo as Bud3p colocalizes with these aberrant septin structures and forms a complex with two septins, Cdc10p and Cdc11p. The interaction of Bud3p with the septins may involve multiple regions of Bud3p including 1–858, 850–1220, and 1221–1636 a.a. since they all target to the bud neck but exhibit different effects on septin organization when overexpressed. In addition, our study reveals that the axial budding function of Bud3p is mediated by the N-terminal region 1–858. This region shares an amphipathic helix (850–858) crucial for bud neck targeting with the middle portion 850–1103 involved in the formation of ectopic septin spirals and rings. Interestingly, the Dbl-homology domain located in 1–858 is dispensable for axial bud-site selection. Our findings suggest that multiple regions of Bud3p ensure efficient targeting of Bud3p to the bud neck in the assembly of the axial landmark and distinct domains of Bud3p are involved in axial bud-site selection and other cellular processes. PMID:21408200

  12. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    DOE PAGES

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; ...

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals andmore » progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of

  13. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    SciTech Connect

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; Novaes, Evandro; Novaes, Carolina R. D. B.; Dervinis, Christopher; Kirst, Matias

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals and progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp

  14. In vitro regeneration of Salix nigra from adventitious shoots.

    PubMed

    Lyyra, Satu; Lima, Amparo; Merkle, Scott A

    2006-07-01

    Black willow (Salix nigra Marsh.) is the largest and only commercially important willow species in North America. It is a candidate for phytoremediation of polluted soils because it is fast-growing and thrives on floodplains throughout eastern USA. Our objective was to develop a protocol for the in vitro regeneration of black willow plants that could serve as target material for gene transformation. Unexpanded inflorescence explants were excised from dormant buds collected from three source trees and cultured on woody plant medium (WPM) supplemented with one of: (1) 0.1 mg l(-1) thidiazuron (TDZ); (2) 0.5 mg l(-1) 6-benzoaminopurine (BAP); or (3) 1 mg l(-1) BAP. All plant growth regulator (PGR) treatments induced direct adventitious bud formation from the genotypes. The percentage of explants producing buds ranged from 20 to 92%, depending on genotype and treatment. Although most of the TDZ-treated inflorescences produced buds, these buds failed to elongate into shoots. Buds on explants treated with BAP elongated into shoots that were easily rooted in vitro and further established in potting mix in high humidity. The PGR treatments significantly affected shoot regeneration frequency (P < 0.01). The highest shoot regeneration frequency (36%) was achieved with Genotype 3 cultured on 0.5 mg l(-1) BAP. Mean number of shoots per explant varied from one to five. The ability of black willow inflorescences to produce adventitious shoots makes them potential targets for Agrobacterium-mediated transformation with heavy-metal-resistant genes for phytoremediation.

  15. The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation.

    PubMed

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Lakehal, Abdellah; Pacurar, Andrea Mariana; Ranjan, Alok; Bellini, Catherine

    2017-04-04

    The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.

  16. Molecular events of apical bud formation in white spruce, Picea glauca.

    PubMed

    El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K

    2011-03-01

    Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce.

  17. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  18. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  19. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Wang, Meng; Niu, Lijuan; Xu, Qingqing; Jin, Xin

    2016-05-20

    Hydrogen gas (H2) is involved in plant development and stress responses. Cucumber explants were used to study whether nitric oxide (NO) is involved in H2-induced adventitious root development. The results revealed that 50% and 100% hydrogen-rich water (HRW) apparently promoted the development of adventitious root in cucumber. While, the responses of HRW-induced adventitious rooting were blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), NO synthase (NOS) enzyme inhibitor N(G)-nitro-l-arginine methylester hydrochloride (l-NAME) and nitrate reductase (NR) inhibitor NaN3. HRW also increased NO content and NOS and NR activity both in a dose- and time-dependent fashion. Moreover, molecular evidence showed that HRW up-regulated NR genes expression in explants. The results indicate the importance of NOS and NR enzymes, which might be responsible for NO production in explants during H2-induced root organogenesis. Additionally, peroxidase (POD) and indoleacetic acid oxidase (IAAO) activity was significantly decreased in the explants treated with HRW, while HRW treatment significantly increased polyphenol oxidase (PPO) activity. In addition, cPTIO, l-NAME and NaN3 inhibited the actions of HRW on the activity of these enzymes. Together, NO may be involved in H2-induced adventitious rooting, and NO may be acting downstream in plant H2 signaling cascade.

  20. The formation of premuscle masses during chick wing bud development.

    PubMed

    Schramm, C; Solursh, M

    1990-01-01

    The skeletal musculature of chick limb buds is derived from somitic cells that migrate into the somatopleure of the future limb regions. These cells become organized into the earliest muscle primordia, the dorsal and ventral premuscle masses, prior to myogenic differentiation. Therefore, skeletal-muscle specific markers cannot be used to observe myogenic cells during the process of premuscle mass formation. In this study, an alternative marking method was used to determine the specific stages during which this process occurs. Quail somite strips were fluorescently labeled and implanted into chick hosts. Paraffin sections of the resulting chimeric wing buds were stained with the monoclonal antibody QH1 in order to identify graft-derived endothelium. Non-endothelial graft-derived cells present in the wing mesenchyme were assumed to be myogenic. At Hamburger and Hamilton stage 20, myogenic cells were distributed throughout the central region of the limb, including the future dorsal and ventral premuscle mass regions and the prechondrogenic core region. By stage 21, the myogenic cells were present at greater density in dorsal and ventral regions than in the core. By stage 23, nearly all myogenic cells were located in the dorsal and ventral premuscle masses. Therefore, the two premuscle masses become established by stage 21 and premuscle mass formation is not complete until stage 23 or later. Premuscle mass formation occurs concurrently with early chondrogenic events, as observed with the marker peanut agglutinin. To facilitate the investigation of possible underlying mechanisms of premuscle mass formation, the micromass culture system was evaluated, to determine whether or not it can serve as an accurate in vitro model system. The initially randomly distributed myogenic cells were observed to segregate from prechondrogenic regions prior to myogenic differentiation. This is similar to myogenic patterning in vivo.

  1. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation.

  2. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  3. Hormonal Regulation of Lateral Bud (Tiller) Release in Oats (Avena sativa L.) 1

    PubMed Central

    Harrison, Marcia A.; Kaufman, Peter B.

    1980-01-01

    Stem segments containing a single node and quiescent lateral bud (tiller) were excised from the bases of oat shoots (cv. `Victory') and used to study the effects of plant hormones on release of lateral buds and development of adventitious root primordia. Kinetin (10−5 and 10−6 molar) stimulates development of tillers and inhibits development of root primordia, whereas indoleacetic acid (IAA) (10−5 and 10−6 molar) causes the reverse effects. Abscisic acid strongly inhibits kinetin-induced tiller bud release and elon-gation and IAA-induced adventitious root development. IAA, in combination with kinetin, also inhibits kinetin-induced bud prophyll (outermost leaf of the axillary bud) elongation. The IAA oxidase cofactor p-coumaric acid stimulates lateral bud release; the auxin transport inhibitor 2,3,5-triiodo-benzoic acid and the antiauxin α (p-chlorophenoxy)-isobutyric acid inhibit IAA-induced adventitious root formation. Gibberellic acid is synergistic with kinetin in the elongation of the bud prophyll. In intact oat plants, tiller release is induced by shoot decapitation, geostimulation, or the emergence of the inflorescence. Results shown support the apical dominance theory, namely, that the cytokinin to auxin ratio plays a decisive role in determining whether tillers are released or adventitious roots develop. They also indicate that abscisic acid and possibly gibberellin may act as modulator hormones in this system. PMID:16661589

  4. Inhibition of Deoxyribonucleic Acid Synthesis and Bud Formation by Nalidixic Acid in Hyphomicrobium neptunium

    PubMed Central

    Weiner, Ronald M.; Blackman, Marcia A.

    1973-01-01

    The relationship between chromosome replication and morphogenesis in the budding bacterium Hyphomicrobium neptunium has been investigated. Nalidixic acid was found to completely inhibit deoxyribonucleic acid synthesis, but not ribonucleic acid synthesis. The antibiotic was bacteriostatic to the organism for the initial 5 h of exposure; thereafter it was bacteriocidal. Observation of inhibited cultures revealed cells that had produced abnormally long stalks, but no buds. These results indicate that bud formation is coupled to chromosome replication in H. neptunium. They do not exclude the possibilities that cross wall formation and bud separation may also be coupled to chromosome replication. Images PMID:4127631

  5. Fgf16 is essential for pectoral fin bud formation in zebrafish

    SciTech Connect

    Nomura, Ryohei; Kamei, Eriko; Hotta, Yuuhei; Konishi, Morichika; Miyake, Ayumi; Itoh, Nobuyuki . E-mail: itohnobu@pharm.kyoto-u.ac.jp

    2006-08-18

    Zebrafish pectoral fin bud formation is an excellent model for studying morphogenesis. Fibroblast growth factors (Fgfs) and sonic hedgehog (shh) are essential for pectoral fin bud formation. We found that Fgf16 was expressed in the apical ectodermal ridge (AER) of fin buds. A knockdown of Fgf16 function resulted in no fin bud outgrowth. Fgf16 is required for cell proliferation and differentiation in the mesenchyme and the AER of the fin buds, respectively. Fgf16 functions downstream of Fgf10, a mesenchymal factor, signaling to induce the expression of Fgf4 and Fgf8 in the AER. Fgf16 in the AER and shh in the zone of polarizing activity (ZPA) interact to induce and/or maintain each other's expression. These findings have revealed that Fgf16, a newly identified AER factor, plays a crucial role in pectoral fin bud outgrowth by mediating the interactions of AER-mesenchyme and AER-ZPA.

  6. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

    PubMed Central

    Xu, Xiaozhao; Li, Xu; Hu, Xingwang; Wu, Ting; Wang, Yi; Xu, Xuefeng; Zhang, Xinzhong; Han, Zhenhai

    2017-01-01

    Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings. PMID:28674551

  7. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  8. Gravity-induced buds formation from protonemata apical cells in the mosses

    NASA Astrophysics Data System (ADS)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is

  9. [Investigation on formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica].

    PubMed

    Guo, Ai-Li; Gao, Hui-Min; Chen, Liang-Mian; Zhang, Qi-Wei; Wang, Zhi-Min

    2014-05-01

    To investigate formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica, secologanic acid was enriched and purified from the sun-dried buds of L. japonica by various column chromatography on macroporus resin HPD-100, silica gel and ODS. The stimulation experiments of sulfur-fumigation process were carried out using secologanic acid reacted with SO2 in the aqueous solution. The reaction mechanism could be involved in the esterification or addition reaction. The present investigation provides substantial evidences for interpreting formation pathway of secologanic acid sulfonates in sulfur-fumigated buds of L. japonica.

  10. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  11. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR.

    PubMed

    Alonso, Pablo; Cortizo, Millán; Cantón, Francisco R; Fernández, Belén; Rodríguez, Ana; Centeno, Maria L; Cánovas, Francisco M; Ordás, Ricardo J

    2007-12-01

    As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.

  12. Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

    PubMed Central

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694

  13. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    PubMed

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  14. Plant regeneration and floral bud formation from intact floral parts of African violet (Saintpaulia ionantha H. Wendl.) cultured in vitro.

    PubMed

    Daud, N; Taha, R M

    2008-04-01

    Intact immature flower buds of African violet (Saintpaulia ionantha H. Wendl.) were used as explant sources for in vitro studies. The effect of exogenous hormones, NAA and BAP on the indirect organogenesis of this species was observed. Callus was formed on the cut end (base) of pedicels of floral buds where they were in contact with the medium. When maintained on the same medium, callus was differentiated into adventitious shoots after 10 weeks in culture. MS media supplemented with 2.0 mg L(-1) NAA and 1.0 mg L(-1) BAP gave the highest number of sterile or vegetative floral buds from the surface of callus of the explants, but these buds failed to develop further. The floral buds were expanded as abnormal flowers. The floral structures were smaller in size compared to intact flowers. Petals (corolla) were white to purple in colour but did not form any reproductive organs, i.e., stamens or pistils. All sterile or vegetative floral buds and abnormal flowers survived for 3 months in culture but failed to reach anthesis.

  15. Ultrastructural and physiological analysis of cytokinin-induced bud formation in the moss Funaria hygrometrica

    SciTech Connect

    Conrad, P.A.

    1987-01-01

    The author proposes that the morphological events associated with Fumaria budding are due to cytokinin activating the Ca/sup 2 +/-CAM branch of the Ca/sup 2 +/ messenger system to initiate the response, and the protein kinase C branch to maintain the response. Several lines of evidence support this hypothesis. (1) 1,4-dihydropyridine (DHP) ligands, which alter Ca/sup 2 +/ flux through voltage-operated channels, vary the budding response. The DHP antagonists, (-) 202-791 and nifedipine, block cytokinin-induced bud formation, while the agonists, (+)202-791 and CGP 28392, in the absence of hormone, stimulate initial formation of every cell. These initials rarely develop further, suggesting that increasing Ca/sup 2 +/ flux can initiate the response but is inadequate to maintain the response. (2) The amount of /sup 3/-H label incorporated into inositol phosphates increases with cytokinin treatment, suggesting that cytokinin stimulates the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP/sub 2/), and event that triggers both branches of the Ca/sup 2 +/ messenger system. (3) TPA activates protein kinase C and works synergistically with the Ca/sup 2 +/ ionophore A23187 to bypass the hormone-receptor mediated events and directly activate both arms of the Ca/sup 2 +/ messenger system. In Funaria these agents, when used separately, cause a slight increase in the number of buds; when used simultaneously they stimulate budding 9 fold. (4) 5-hydroxytryptamine, a stimulator of PIP/sub 2/ hydrolysis, increases the number of caulonemata. When used in conjunction with (+) 202-791, the early stages of budding are enhanced. Neomycin, used in concentrations that block PIP/sub 2/ hydrolysis (blocks IP/sub 3/ but not DG formation) increases the number of cytokinin-induced buds. These data suggest that protein kinase C activation is operating during sustained bud formation.

  16. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  17. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  18. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  19. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.

  20. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control.

  1. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.

    PubMed

    Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2010-05-01

    The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.

  2. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation.

    PubMed

    Li, Mei-Yue; Cao, Ze-Yu; Shen, Wen-Biao; Cui, Jin

    2011-10-15

    Our previous work showed that in cucumber (Cucumis sativus), auxin rapidly induces heme oxygenase (HO) activity and the product of HO action, carbon monoxide (CO), then triggers the signal transduction events leading to adventitious root formation. In this study, the cucumber HO-1 gene (named as CsHO1) was isolated and sequenced. It contains four exons and three introns and encodes a polypeptide of 291 amino acids. Further results show that CsHO1 shares a high homology with plant HO-1 proteins and codes a 33.3 kDa protein with a 65-amino transit peptide, predicting a mature protein of 26.1 kDa. The mature CsHO1 was expressed in Escherichia coli to produce a fusion protein, which exhibits HO activity. The CsHO1:GFP fusion protein was localized in the chloroplast. Related biochemical analyses of mature CsHO1, including Vmax, Km, Topt and pHopt, were also investigated. CsHO1 mRNA was found in germinating seeds, roots, stem, and especially in leaf tissues. Several well-known adventitious root inducers, including auxin, ABA, hemin, nitric oxide donor sodium nitroprusside (SNP), CaCl(2), and sodium hydrosulfide (NaHS), differentially up-regulate CsHO1 transcripts and corresponding protein levels. These results suggest that CsHO1 may be involved in cucumber adventitious rooting.

  3. Transverse Septum Formation in Budding Cells of the Yeastlike Fungus Candida albicans

    PubMed Central

    Shannon, James L.; Rothman, Alvin H.

    1971-01-01

    Septum formation is initiated in Candida albicans by an electron transparent primary septum, which is then thickened on both sides to form secondary septa. Primary and secondary septa are incorporated into the bud scar, and secondary septum material only is incorporated into the birth scar. Images PMID:4104236

  4. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  5. Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro

    PubMed Central

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Yang, Shanjun; Wang, Zhaokai; Fang, Baishan

    2015-01-01

    Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed. PMID:26657019

  6. Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro.

    PubMed

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Yang, Shanjun; Wang, Zhaokai; Fang, Baishan

    2015-12-11

    Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed.

  7. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    PubMed

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  8. Synchronisms between bud and cambium phenology in black spruce: early-flushing provenances exhibit early xylem formation.

    PubMed

    Perrin, Magali; Rossi, Sergio; Isabel, Nathalie

    2017-03-03

    Bud and cambial phenology represent the adaptation of species to the local environment that allows the growing season to be maximized while minimizing the risk of frost for the developing tissues. The temporal relationship between the apical and radial meristems can help in the understanding of tree growth as a whole process. The aim of this study was to compare cambial phenology in black spruce (Picea mariana (Mill.) B.S.P.) provenances classified as early and late bud flushing. The different phases of cambial phenology were assessed on wood microcores sampled weekly from April to October in 2014 and 2015 from 61 trees growing in a provenance trial in Quebec, Canada. Trees showing an early bud flush also exhibited early reactivation of xylem differentiation, although an average difference of 12 days for buds corresponded to small although significant differences of 4 days for xylem. Provenances with early bud flush had an early bud set and completed xylem formation earlier than late bud flush provenances. No significant difference in the period of xylem formation and total growth was observed between the flushing classes. Our results demonstrate that the ecotype differentiation of black spruce provenances represented by the phenological adaptation of buds to the local climate corresponds to specific growth dynamics of the xylem.

  9. Changes in well-defined phases of bud dormancy associated with shifts in carbohydrate metabolism may involve beta-amylases

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge is a noxious perennial weed that infests range lands in the Northern Great Plains. It is being used as a model to investigate dormancy in underground adventitious buds, i.e., root and crown buds. Underground adventitious buds of leafy spurge (Euphorbia esula) are 1) maintained in a quie...

  10. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile–adult transition

    PubMed Central

    Díaz-Sala, Carmen

    2014-01-01

    Cellular plasticity refers, among others, to the capability of differentiated cells to switch the differentiation process and acquire new fates. One way by which plant cell plasticity is manifested is through de novo regeneration of organs from somatic differentiated cells in an ectopic location. However, switching the developmental program of adult cells prior to organ regeneration is difficult in many plant species, especially in forest tree species. In these species, a decline in the capacity to regenerate shoots, roots, or embryos from somatic differentiated cells is associated with tree age and maturation. The decline in the ability to form adventitious roots from stem cuttings is one of the most dramatic effects of maturation, and has been the subject of investigations on the basic nature of the process. Cell fate switches, both in plants and animals, are characterized by remarkable changes in the pattern of gene expression, as cells switch from the characteristic expression pattern of a somatic cell to a new one directing a new developmental pathway. Therefore, determining the way by which cells reset their gene expression pattern is crucial to understand cellular plasticity. The presence of specific cellular signaling pathways or tissue-specific factors underlying the establishment, maintenance, and redirection of gene expression patterns in the tissues involved in adventitious root formation could be crucial for cell fate switch and for the control of age-dependent cellular plasticity. PMID:25071793

  11. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.

    PubMed

    Kurakado, Sanae; Takatori, Kazuhiko; Sugita, Takashi

    2017-09-25

    Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.

  12. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco

    PubMed Central

    Toscano-Morales, Roberto; Xoconostle-Cázares, Beatriz; Martínez-Navarro, Angélica Concepción; Ruiz-Medrano, Roberto

    2016-01-01

    The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since Arabidopsis AtTCTP1 can rescue a Drosophila mutant, and vice versa. It has become clear, however, that these proteins may have “taxon-specific” functions. In the case of plants, mRNA and/or proteins have been found in the phloem translocation stream of different species, suggesting a role in long-distance signaling. We have found that a second Arabidopsis TCTP gene, AtTCTP2, codes for a protein that moves long-distance through a graft union in tobacco. Interestingly, the mRNA is also transported long-distance. Both mRNA and protein move long-distance; interestingly, the movement, while more efficient from source to sink tissues, also occurs in the opposite direction. The protein reaches the nuclei of parenchyma cells and adventitious roots. Furthermore, it is clear that the long-distance delivery of AtTCTP2 protein and mRNA is required for the induction of adventitious roots. A model is presented that accounts for these observations. PMID:26237533

  13. Gravity-dependent regulation of red light induced moss protonemata branching and gametophore bud formation

    NASA Astrophysics Data System (ADS)

    Ripetskyj, R. T.; Kit, N. A.

    Isolated leafy shoots of the moss Pottia intermedia positioned horizontally on the agar surface in vertically oriented petri dishes regenerate unbranching negatively gravitropic protonemata on upper side of the regenerant. Gravity determines the site of regeneration not the process itself. White light of low intensity unsufficient to induce positive phototropism of dark-grown protonemata can, however, provoke their branching and gametophore bud formation (Ripetskyj et al., 1998; 1999). The presented experiments have been carried out with red light in Biological Research in Canisters/Light Emitting Diode (BRIC/LED) hardware developed at Kennedy Space Center, USA. Seven-day-old dark-grown negatively gravitropic secondary P. intermedia protonemata were positioned differently with respect to gravity vector and to the source of red light of low, 1 or 2 μ mol\\cdot m-2\\cdot s-1, intensities. The light induced intensive branching of the protonemata and gametophore bud formation initiation site of both processes as well as the direction of growth of branches and buds being depent on the position of protonemata with respect to gravity and light vectors. Vertically positioned, i.e. ungravistimulated, dark grown protonemata illuminated from one side with red light of 2 μ mol\\cdot m-2\\cdot s-1 intensity produced 96,9 ± 2,2% of side branches and buds growing directly towards the light source from the lit protonema side. Horizontally disposed protonemata irradiated from below with red light of the same intensity regenerate 31,7 ± 3,9% of branches and buds on the upper, i.e. shaded protonemata side, the upward growth of which should undoubtedly be determined by gravity. In vertically disposed protonemata illuminated with red light of 1 μ mol\\cdot m-2\\cdot s-1 intensity from aside 31,9 ± 5,5% of side branches and buds arised on shaded protonema side and grew away from the light. Illumination of the protonemata in horizontal position from below increased the number of

  14. Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light.

    PubMed

    Druege, U; Zerche, S; Kadner, R

    2004-12-01

    The aim of this study was to determine the role of nitrogen- and storage-affected carbohydrate availability in rooting of pelargonium cuttings, focusing on the environmental conditions of stock plant cultivation at low latitudes, transport of cuttings, and rooting under the low light that prevails during the winter rooting period in Central European greenhouses. Carbohydrate partitioning in high-light-adapted cuttings of the cultivar 'Isabell' was studied in relation to survival and adventitious root formation under low light. Effects of a graduated supply of mineral nitrogen to stock plants and of cutting storage were examined. Nitrogen deficiency raised starch levels in excised cuttings, whereas the concentrations of glucose and total sugars in leaves and the basal stem were positively correlated with internal total nitrogen (Nt). Storage reduced starch to trace levels in all leaves, but sugar levels were only reduced in tissues of non-nitrogen deficient cuttings. Sugars accumulated in the leaf lamina of stored cuttings during the rooting period, whereas carbohydrates were simultaneously exhausted in all other cutting parts including the petioles, thereby promoting leaf senescence. The positive correlation between initial Nt and root number disappeared after storage. Irrespectively of storage, higher pre-rooting leaf glucose promoted subsequent sugar accumulation in the basal stem and final root number. The positive relationships between initial sugar levels in the stems with cutting survival and in leaves with root formation under low light were confirmed in a sample survey with 21 cultivars provided from different sources at low latitudes. The results indicate that adventitious rooting of pelargonium cuttings can be limited by the initial amount of nitrogen reserves. However, this relationship reveals only small plasticity and is superimposed by a predominant effect of carbohydrate availability that depends on the initial leaf sugar levels, when high

  15. Nitrogen- and Storage-affected Carbohydrate Partitioning in High-light-adapted Pelargonium Cuttings in Relation to Survival and Adventitious Root Formation under Low Light

    PubMed Central

    DRUEGE, U.; ZERCHE, S.; KADNER, R.

    2004-01-01

    • Background and Aims The aim of this study was to determine the role of nitrogen- and storage-affected carbohydrate availability in rooting of pelargonium cuttings, focusing on the environmental conditions of stock plant cultivation at low latitudes, transport of cuttings, and rooting under the low light that prevails during the winter rooting period in Central European greenhouses. • Methods Carbohydrate partitioning in high-light-adapted cuttings of the cultivar ‘Isabell’ was studied in relation to survival and adventitious root formation under low light. Effects of a graduated supply of mineral nitrogen to stock plants and of cutting storage were examined. • Key Results Nitrogen deficiency raised starch levels in excised cuttings, whereas the concentrations of glucose and total sugars in leaves and the basal stem were positively correlated with internal total nitrogen (Nt). Storage reduced starch to trace levels in all leaves, but sugar levels were only reduced in tissues of non-nitrogen deficient cuttings. Sugars accumulated in the leaf lamina of stored cuttings during the rooting period, whereas carbohydrates were simultaneously exhausted in all other cutting parts including the petioles, thereby promoting leaf senescence. The positive correlation between initial Nt and root number disappeared after storage. Irrespectively of storage, higher pre-rooting leaf glucose promoted subsequent sugar accumulation in the basal stem and final root number. The positive relationships between initial sugar levels in the stems with cutting survival and in leaves with root formation under low light were confirmed in a sample survey with 21 cultivars provided from different sources at low latitudes. • Conclusions The results indicate that adventitious rooting of pelargonium cuttings can be limited by the initial amount of nitrogen reserves. However, this relationship reveals only small plasticity and is superimposed by a predominant effect of carbohydrate

  16. Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of Eucalyptus grandis, which correlated with increased nitric oxide production and adventitious root formation.

    PubMed

    Abu-Abied, Mohamad; Szwerdszarf, David; Mordehaev, Inna; Levy, Aviv; Stelmakh, Oksana Rogovoy; Belausov, Eduard; Yaniv, Yossi; Uliel, Shai; Katzenellenbogen, Mark; Riov, Joseph; Ophir, Ron; Sadot, Einat

    2012-09-01

    The loss of rooting capability following the transition from the juvenile to the mature phase is a known phenomenon in woody plant development. Eucalyptus grandis was used here as a model system to study the differences in gene expression between juvenile and mature cuttings. RNA was prepared from the base of the two types of cuttings before root induction and hybridized to a DNA microarray of E. grandis. In juvenile cuttings, 363 transcripts were specifically upregulated, enriched in enzymes of oxidation/reduction processes. In mature cuttings, 245 transcripts were specifically upregulated, enriched in transcription factors involved in the regulation of secondary metabolites. A gene encoding for nitrate reductase (NIA), which is involved in nitric oxide (NO) production, was among the genes that were upregulated in juvenile cuttings. Concomitantly, a transient burst of NO was observed upon excision, which was higher in juvenile cuttings than in mature ones. Treatment with an NO donor improved rooting of both juvenile and mature cuttings. A single NIA gene was found in the newly released E. grandis genome sequence, the cDNA of which was isolated, overexpressed in Arabidopsis plants and shown to increase NO production in intact plants. Therefore, higher levels of NIA in E. grandis juvenile cuttings might lead to increased ability to produce NO and to form adventitious roots. Arabidopsis transgenic plants constantly expressing EgNIA did not exhibit a significantly higher lateral or adventitious root formation, suggesting that spatial and temporal rather than a constitutive increase in NO is favorable for root differentiation. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  17. Investigating Filamentous Growth and Biofilm/Mat Formation in Budding Yeast

    PubMed Central

    Cullen, Paul J.

    2015-01-01

    In response to nutrient limitation, budding yeast can undergo filamentous growth by differentiating into elongated chains of interconnected cells. Filamentous growth is regulated by signal transduction pathways that oversee the reorganization of cell polarity, changes to the cell cycle, and an increase in cell adhesion that occur in response to nutrient limitation. Each of these changes can be easily measured. Yeast can also grow colonially atop surfaces in a biofilm or mat of connected cells. Filamentous growth and biofilm/mat formation require cooperation among individuals; therefore, studying these responses can shed light on the origin and genetic basis of multicellular behaviors. The assays introduced here can be used to study analogous behaviors in fungal pathogens, which require filamentous growth and biofilm/mat formation for virulence. PMID:25734073

  18. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    PubMed

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. LACK OF EXPRESSION OF EGF AND TGF-ALPHA IN THE FETAL MOUSE ALTERS FORMATION OF PROSTATIC EPITHELIAL BUDS AND INFLUENCES THE RESPONSE TO TCDD

    EPA Science Inventory

    Lack of Expression of EGF and TGF in the Fetal Mouse Alters Formation of Prostatic Epithelial Buds and Responsiveness to TCDD-Induced Impairment of Prostatic Bud Formation.

    Barbara D. Abbott, Tien-Min Lin, Nathan T. Rasmussen, Robert W. Moore,
    Ralph M. Albrecht, Judi...

  20. LACK OF EXPRESSION OF EGF AND TGF-ALPHA IN THE FETAL MOUSE ALTERS FORMATION OF PROSTATIC EPITHELIAL BUDS AND INFLUENCES THE RESPONSE TO TCDD

    EPA Science Inventory

    Lack of Expression of EGF and TGF in the Fetal Mouse Alters Formation of Prostatic Epithelial Buds and Responsiveness to TCDD-Induced Impairment of Prostatic Bud Formation.

    Barbara D. Abbott, Tien-Min Lin, Nathan T. Rasmussen, Robert W. Moore,
    Ralph M. Albrecht, Judi...

  1. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber.

    PubMed

    Lanteri, María Luciana; Pagnussat, Gabriela Carolina; Lamattina, Lorenzo

    2006-01-01

    A few years ago it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during adventitious root (AR) formation in cucumber (Cucumis sativus). More recently, a mitogen-activated protein kinase cascade was shown to be induced by IAA in a NO-dependent, but cGMP-independent, pathway. In the present study, the involvement of Ca2+ and the regulation of Ca2+-dependent protein kinase (CDPK) activity during IAA- and NO-induced AR formation was evaluated in cucumber explants. The effectiveness of several broad-spectrum Ca2+ channel inhibitors and Ca2+ chelators in affecting AR formation induced by IAA or NO was also examined. Results indicate that the explants response to IAA and NO depends on the availability of both intracellular and extracellular Ca2+ pools. Protein extracts from cucumber hypocotyls were assayed for CDPK activity by using histone IIIS or syntide 2 as substrates for in-gel or in vitro assays, respectively. The activity of a 50 kDa CDPK was detected after 1 d of either NO or IAA treatments and it extended up to the third day of treatment. This CDPK activity was affected in both extracts from NO- and IAA-treated explants in the presence of the specific NO-scavenger cPTIO, suggesting that NO is required for its maximal and sustained activity. The in-gel and the in vitro CDPK activity, as well as the NO- or IAA-induced AR formation, were inhibited by calmodulin antagonists. Furthermore, the induction of CDPK activity by NO and IAA was shown to be reliant on the activity of the enzyme guanylate cyclase.

  2. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    PubMed

    Ahkami, Amir H; Melzer, Michael; Ghaffari, Mohammad R; Pollmann, Stephan; Ghorbani Javid, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R; Druege, Uwe

    2013-09-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also investigated. Analysis of initial spatial IAA distribution in the cuttings revealed that approximately 40 and 10 % of the total IAA pool was present in the leaves and the stem base as rooting zone, respectively. A negative correlation existed between leaf size and IAA concentration. After excision of cuttings, IAA showed an early increase in the stem base with two peaks at 2 and 24 h post excision and, thereafter, a decline to low levels. This was mirrored by the expression pattern of the auxin-responsive GH3 gene. NPA treatment completely suppressed the 24-h peak of IAA and severely inhibited root formation. It also reduced activities of cell wall and vacuolar invertases in the early phase of AR formation and inhibited the rise of activities of glucose-6-phosphate dehydrogenase and phosphofructokinase during later stages. We propose a model in which spontaneous AR formation in Petunia cuttings is dependent on PAT and on the resulting 24-h peak of IAA in the rooting zone, where it induces early cellular events and also stimulates sink establishment. Subsequent root development stimulates glycolysis and the pentose phosphate pathway.

  3. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    PubMed

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation.

  4. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    PubMed

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-02-27

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype.

  5. Gene expression profiling in juvenile and mature cuttings of Eucalyptus grandis reveals the importance of microtubule remodeling during adventitious root formation.

    PubMed

    Abu-Abied, Mohamad; Szwerdszarf, David; Mordehaev, Inna; Yaniv, Yossi; Levinkron, Saar; Rubinstein, Mor; Riov, Joseph; Ophir, Ron; Sadot, Einat

    2014-09-30

    The ability to form adventitious roots (AR) is an economically important trait that is lost during the juvenile-to-mature phase change in woody plants. Auxin treatment, which generally promotes rooting in juvenile cuttings, is often ineffective when applied to mature cuttings. The molecular basis for this phenomenon in Eucalyptus grandis was addressed here. A comprehensive microarray analysis was performed in order to compare gene-expression profiles in juvenile and mature cuttings of E. grandis, with or without auxin treatment on days, 0, 1, 3, 6, 9 and 12 post AR induction. Under these conditions AR primordia were formed only in auxin-treated juvenile cuttings. However, clustering the expression profiles revealed that the time after induction contributed more significantly to the differences in expression than the developmental phase of the cuttings or auxin treatment. Most detected differences which were related to the developmental phase and auxin treatment occurred on day 6, which correlated with the kinetics of AR-primordia formation. Among the functional groups of transcripts that differed between juvenile and mature cuttings was that of microtubules (MT). The expression of 42 transcripts annotated as coding for tubulin, MT-associated proteins and kinesin motor proteins was validated in the same RNA samples. The results suggest a coordinated developmental and auxin dependent regulation of several MT-related transcripts in these cuttings. To determine the relevance of MT remodeling to AR formation, MTs were subjected to subtle perturbations by trifluralin, a MT disrupting drug, applied during auxin induction. Juvenile cuttings were not affected by the treatment, but rooting of mature cuttings increased from 10 to more than 40 percent. The data suggest that juvenile-specific MT remodeling is involved in AR formation in E. grandis.

  6. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes.

    PubMed Central

    Holopainen, J M; Angelova, M I; Kinnunen, P K

    2000-01-01

    Sphingomyelin is an abundant component of eukaryotic membranes. A specific enzyme, sphingomyelinase can convert this lipid to ceramide, a central second messenger in cellular signaling for apoptosis (programmed cell death), differentiation, and senescence. We used microinjection and either Hoffman modulation contrast or fluorescence microscopy of giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), N-palmitoyl-sphingomyelin (C16:0-SM), and Bodipy-sphingomyelin as a fluorescent tracer (molar ratio 0.75:0.20:0.05, respectively) to observe changes in lipid lateral distribution and membrane morphology upon formation of ceramide. Notably, in addition to rapid domain formation (capping), vectorial budding of vesicles, i.e., endocytosis and shedding, can be induced by the asymmetrical sphingomyelinase-catalyzed generation of ceramide in either the outer or the inner leaflet, respectively, of giant phosphatidylcholine/sphingomyelin liposomes. These results are readily explained by 1) the lateral phase separation of ceramide enriched domains, 2) the area difference between the adjacent monolayers, 3) the negative spontaneous curvature, and 4) the augmented bending rigidity of the ceramide-containing domains, leading to membrane invagination and vesiculation of the bilayer. PMID:10653795

  7. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants

    PubMed Central

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M.; Cornelissen, Johannes H. C.

    2016-01-01

    Background and Aims Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. Methods Taking Alternanthera philoxeroides (Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Key Results Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. Conclusions The adventitious roots of A. philoxeroides formed upon submergence can absorb oxygen from

  8. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants.

    PubMed

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M; Cornelissen, Johannes H C

    2016-04-10

    Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. TakingAlternanthera philoxeroides(Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. The adventitious roots ofA. philoxeroidesformed upon submergence can absorb oxygen from ambient water, thereby alleviating the adverse effects of

  9. In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other.

    PubMed

    Schmidt, Martin; Bowers, Blair; Varma, Archana; Roh, Dong-Hyun; Cabib, Enrico

    2002-01-15

    Saccharomyces cerevisiae chs2 mutants are unable to synthesize primary septum chitin, and myo1 mutants cannot construct a functional contractile ring. The morphology of the two mutants, as observed by electron microscopy, is very similar. In both cases, neither an invagination of the plasma membrane, which normally results from contraction of the actomyosin ring, nor generation of a chitin disc, the primary septum, is observed. Rather, both mutants are able to complete cytokinesis by an abnormal process in which lateral walls thicken gradually and finally meet over an extended region, giving rise to a thick septum lacking the normal trilaminar structure and often enclosing lacunae. Defects in chs2 or myo1 strains were not aggravated in a double mutant, an indication that the corresponding proteins participate in a common process. In contrast, in a chs3 background the chs2 mutation is lethal and the myo1 defect is greatly worsened, suggesting that the synthesis of chitin catalyzed by chitin synthase III is necessary for the functionality of the remedial septa. Both chs2 and myo1 mutants show abnormalities in budding pattern and a decrease in the level of certain proteins associated with budding, such as Bud3p, Bud4p and Spa2p. The possible reasons for these phenotypes and for the interdependence between actomyosin ring contraction and primary septum formation are discussed.

  10. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells.

    PubMed

    Arung, Enos Tangke; Matsubara, Eri; Kusuma, Irawan Wijaya; Sukaton, Edi; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-03-01

    In the course to find a new whitening agent, we evaluated the methanol extract from bud of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Eugenol and eugenol acetate were isolated as the active compounds and showed melanin inhibition of 60% and 40% in B16 melanoma cell with less cytotoxicity at the concentration of 100 and 200 μg/mL, respectively. Furthermore, an essential oil prepared from the bud of clove, which contain eugenol and eugenol acetate as dominant components, showed melanin inhibition of 50% and 80% in B16 melanoma cells at the concentration of 100 and 200 μg/mL, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).

    PubMed

    Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio

    2012-09-01

    Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.

  12. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    PubMed

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments.

  13. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  14. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation

    SciTech Connect

    Rajeevan, M.S.; Lang, A. )

    1993-05-15

    The capacity to form flower buds in thin-layer explants was studied in Nicotiana of several species, cultivars, and lines of differing in their response to photoperiod. This capacity was found in all biotypes examined and could extend into sepals and corolla. It varied depending on genotype, source tissue and its developmental state, and composition of the culture medium, particularly the levels of glucose, auxin, and cytokinin. It was greatest in the two day-neutral plants examined, Samsun tobacco and Nicotiana rustica, where it extended from the inflorescence region down the vegetative stem, in a basipetally decreasing gradient; it was least in the two qualitative photoperiodic plants studied, the long-day plant Nicotiana silvestris and the short-day plant Maryland Mammoth tobacco, the quantitative long-day plant Nicotiana alata and the quantitative short-day plant Nicotiana otophora line 38-G-81, where it was limited to the pedicels (and, in some cases, the sepals). Regardless of the photoperiodic response of the source plants, the response was the same in explants cultured under long and short days. The capacity to form flow buds in explants is present in all Nicotiana biotypes studied supports the idea that it is regulated by the same mechanism(s), regardless of the plant's photoperiodic character. However, flower formation in the explants is not identical with de novo flower formation in a hitherto vegetative plant: it is rather the expression of a floral state already established in the plant, although it can vary widely in extent and spatial distribution. Culture conditions that permit flower-bud formation in an explant are conditions that maintain the floral state and encourage its expression; conditions under which no flower buds are formed reduce this state and/or prevent its expression. 14 refs., 5 figs., 3 tabs.

  15. Benzyladenine metabolism and temporal competence of Pinus pinea cotyledons to form buds in vitro.

    PubMed

    Cortizo, Millán; Cuesta, Candela; Centeno, María Luz; Rodríguez, Ana; Fernández, Belén; Ordás, Ricardo

    2009-07-01

    Germination negatively affects adventitious shoot formation induced by cytokinins in pine cotyledons. To investigate the causes of this decrease in the organogenic response, uptake and metabolism of benzyladenine (BA) were studied in stone pine cotyledons (Pinus pinea) isolated from in vitro germinating embryos and cultured in bud induction medium. As embryos grew, cotyledons showed a progressive decrease in the amount of BA taken up from the medium. BA was barely metabolized; however, a BA metabolite previously undescribed in conifers was found. It was identified as a glucoside of the BA riboside, a type of metabolite recently described in other gymnosperms. Data revealed that differences in the organogenic capacity of P. pinea cotyledons associated with embryo germination are related primarily to their ability to absorb BA from the bud induction medium.

  16. Studies on the medicinal properties of Solanum chrysotrichum in tissue culture: I. Callus formation and plant induction from axillary buds.

    PubMed

    Villarreal, M L; Muñoz, J

    1991-01-01

    A tissue culture method is described for micropropagation and callus formation from Solanum chrysotricum axillary bud explants in Murashige and Skoog's (MS) medium, supplemented with various growth regulators. Induction of rooted plants were initiated only when indol-3 acetic acid (IAA) was present as an auxin in combination with either of two cytokinins: kinetin (KN) or benzyladenine (BA); however, the combination of IAA (0.1 mg.lt.-1) + BA (0.2 mg.lt.-1) was found to be best suited for morphogenesis purposes. Alternatively, callus tissue formation was influenced in presence of naphthalene acetic acid; which in combination with kinetin (NAA 0.1 mg.lt.-1 + KN 0.2 mg.lt.-1) exhibit the best response studied. The plant material obtained by this procedure is proposed for pharmacological and chemical studies of this important antimycotic plant remedy.

  17. N-3-Oxo-Decanoyl-l-Homoserine-Lactone Activates Auxin-Induced Adventitious Root Formation via Hydrogen Peroxide- and Nitric Oxide-Dependent Cyclic GMP Signaling in Mung Bean1[C][W][OA

    PubMed Central

    Bai, Xuegui; Todd, Christopher D.; Desikan, Radhika; Yang, Yongping; Hu, Xiangyang

    2012-01-01

    N-Acyl-homoserine-lactones (AHLs) are bacterial quorum-sensing signaling molecules that regulate population density. Recent evidence demonstrates their roles in plant defense responses and root development. Hydrogen peroxide (H2O2), nitric oxide (NO), and cyclic GMP (cGMP) are essential messengers that participate in various plant physiological processes, but how these messengers modulate the plant response to N-acyl-homoserine-lactone signals remains poorly understood. Here, we show that the N-3-oxo-decanoyl-homoserine-lactone (3-O-C10-HL), in contrast to its analog with an unsubstituted branch chain at the C3 position, efficiently stimulated the formation of adventitious roots and the expression of auxin-response genes in explants of mung bean (Vigna radiata) seedlings. This response was mimicked by the exogenous application of auxin, H2O2, NO, or cGMP homologs but suppressed by treatment with scavengers or inhibitors of H2O2, NO, or cGMP metabolism. The 3-O-C10-HL treatment enhanced auxin basipetal transport; this effect could be reversed by treatment with H2O2 or NO scavengers but not by inhibitors of cGMP synthesis. Inhibiting 3-O-C10-HL-induced H2O2 or NO accumulation impaired auxin- or 3-O-C10-HL-induced cGMP synthesis; however, blocking cGMP synthesis did not affect auxin- or 3-O-C10-HL-induced H2O2 or NO generation. Additionally, cGMP partially rescued the inhibitory effect of H2O2 or NO scavengers on 3-O-C10-HL-induced adventitious root development and auxin-response gene expression. These results suggest that 3-O-C10-HL, unlike its analog with an unmodified branch chain at the C3 position, can accelerate auxin-dependent adventitious root formation, possibly via H2O2- and NO-dependent cGMP signaling in mung bean seedlings. PMID:22138973

  18. In Vitro Culture Conditions and OeARF and OeH3 Expressions Modulate Adventitious Root Formation from Oleaster (Olea europaea L. subsp. europaea var. sylvestris) Cuttings

    PubMed Central

    Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency. PMID:24587768

  19. In vitro culture conditions and OeARF and OeH3 expressions modulate adventitious root formation from oleaster (Olea europaea L. subsp. europaea var. sylvestris) cuttings.

    PubMed

    Chiappetta, Adriana; Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency.

  20. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings

    PubMed Central

    Nordström, Ann-Caroline; Jacobs, Fernando Alvarado; Eliasson, Lennart

    1991-01-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by 1H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  1. Differential expression of carbohydrate metabolism genes during bud dormancy changes in leafy spurge (Euphorbia esula)

    USDA-ARS?s Scientific Manuscript database

    Underground adventitious buds of leafy spurge undergo three well-defined phases of dormancy, para-, endo-, and ecodormancy, throughout the year. In this study, relationships between carbohydrate metabolism and bud dormancy were examined and real-time PCR was used to determine if shifts in carbohydra...

  2. Differential Expression of Carbohydrate Metabolism Genes Associated with Bud Dormancy Changes in Leafy Spurge (Euphorbia esula)

    USDA-ARS?s Scientific Manuscript database

    Underground adventitious buds of leafy spurge undergo three well-defined phases of dormancy, para-, endo-, and ecodormancy, throughout the year. In this study, relationships between carbohydrate metabolism and bud dormancy were examined and real-time PCR was used to determine if shifts in carbohydra...

  3. Heteromer formation of a long-chain prenyl diphosphate synthase from fission yeast Dps1 and budding yeast Coq1.

    PubMed

    Zhang, Mei; Luo, Jun; Ogiyama, Yuki; Saiki, Ryoichi; Kawamukai, Makoto

    2008-07-01

    Ubiquinone is an essential factor for the electron transfer system and is also a known lipid antioxidant. The length of the ubiquinone isoprenoid side-chain differs amongst living organisms, with six isoprene units in the budding yeast Saccharomyces cerevisiae, eight units in Escherichia coli and 10 units in the fission yeast Schizosaccharomyces pombe and in humans. The length of the ubiquinone isoprenoid is determined by the product generated by polyprenyl diphosphate synthases (poly-PDSs), which are classified into homodimer (i.e. octa-PDS IspB in E. coli) and heterotetramer [i.e. deca-PDSs Dps1 and D-less polyprenyl diphosphate synthase (Dlp1) in Sc. pombe and in humans] types. In this study, we characterized the hexa-PDS (Coq1) of S. cerevisiae to identify whether this enzyme was a homodimer (as in bacteria) or a heteromer (as in fission yeast). When COQ1 was expressed in an E. coli ispB disruptant, only hexa-PDS activity and ubiquinone-6 were detected, indicating that the expression of Coq1 alone results in bacterial enzyme-like functionality. However, when expressed in fission yeast Deltadps1 and Deltadlp1 strains, COQ1 restored growth on minimal medium in the Deltadlp1 but not Deltadps1 strain. Intriguingly, ubiquinone-9 and ubiquinone-10, but not ubiquinone-6, were identified and deca-PDS activity was detected in the COQ1-expressing Deltadlp1 strain. No enzymatic activity or ubiquinone was detected in the COQ1-expressing Deltadps1 strain. These results indicate that Coq1 partners with Dps1, but not with Dlp1, to be functional in fission yeast. Binding of Coq1 and Dps1 was demonstrated by coimmunoprecipitation, and the formation of a tetramer consisting of Coq1 and Dps1 was detected in Sc. pombe. Thus, Coq1 is functional when expressed alone in E. coli and in budding yeast, but is only functional as a partner with Dps1 in fission yeast. This unusual observation indicates that different folding processes or protein modifications in budding yeast/E. coli

  4. ALTERED SENSITIVITY OF THE MOUSE FETUS TO IMPAIRED PROSTATIC BUD FORMATION BY DIOXIN: INFLUENCE OF GENETIC BACKGROUND AND NULL EXPRESSION OF TGF-ALFA AND EGF

    EPA Science Inventory

    Altered sensitivity of the mouse fetus to impaired prostatic bud formation by dioxin: Influence of genetic background and null expression of TGF and EGF.
    Rasmussen, N.T., Lin T-M., Fenton, S.E., Abbott, B.D. and R.E. Peterson.
    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)...

  5. ALTERED SENSITIVITY OF THE MOUSE FETUS TO IMPAIRED PROSTATIC BUD FORMATION BY DIOXIN: INFLUENCE OF GENETIC BACKGROUND AND NULL EXPRESSION OF TGF-ALFA AND EGF

    EPA Science Inventory

    Altered sensitivity of the mouse fetus to impaired prostatic bud formation by dioxin: Influence of genetic background and null expression of TGF and EGF.
    Rasmussen, N.T., Lin T-M., Fenton, S.E., Abbott, B.D. and R.E. Peterson.
    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)...

  6. Arenavirus Budding

    PubMed Central

    Urata, Shuzo; de la Torre, Juan Carlos

    2011-01-01

    Several arenaviruses cause hemorrhagic fever disease in humans and pose a significant public health concern in their endemic regions. On the other hand, the prototypic arenavirus LCMV is a superb workhorse for the investigation of virus-host interactions and associated disease. The arenavirus small RING finger protein called Z has been shown to be the main driving force of virus budding. The budding activity of Z is mediated by late (L) domain motifs, PT/SAP, and PPXY, located at the C-terminus of Z. This paper will present the current knowledge on arenavirus budding including the diversity of L domain motifs used by different arenaviruses. We will also discuss how improved knowledge of arenavirus budding may facilitate the development of novel antiviral strategies to combat human pathogenic arenaviruses. PMID:22312335

  7. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding.

    PubMed

    Liu, Yang; Betts, Matthew J; Lei, Janet; Wei, Guochao; Bao, Qiuying; Kehl, Timo; Russell, Robert B; Löchelt, Martin

    2016-08-22

    Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag

  8. Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain

    PubMed Central

    Shnyrova, Anna V.; Ayllon, Juan; Mikhalyov, Ilya I.; Villar, Enrique; Zimmerberg, Joshua; Frolov, Vadim A.

    2007-01-01

    The shape of enveloped viruses depends critically on an internal protein matrix, yet it remains unclear how the matrix proteins control the geometry of the envelope membrane. We found that matrix proteins purified from Newcastle disease virus adsorb on a phospholipid bilayer and condense into fluidlike domains that cause membrane deformation and budding of spherical vesicles, as seen by fluorescent and electron microscopy. Measurements of the electrical admittance of the membrane resolved the gradual growth and rapid closure of a bud followed by its separation to form a free vesicle. The vesicle size distribution, confined by intrinsic curvature of budding domains, but broadened by their merger, matched the virus size distribution. Thus, matrix proteins implement domain-driven mechanism of budding, which suffices to control the shape of these proteolipid vesicles. PMID:18025300

  9. Changes in the Expression of Carbohydrate Metabolism Genes during Three Phases of Bud Dormancy in Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    Underground adventitious buds of leafy spurge (Euphorbia esula) undergo three well-defined phases of dormancy, para-, endo-, and ecodormancy. In this study, relationships among genes involved in carbohydrate metabolism and bud dormancy were examined after paradormancy release (growth induction) by d...

  10. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    SciTech Connect

    Xu Fang; Ji Jian; Li Li; Chen Rong; Hu Weicheng . E-mail: huweicheng@sdu.edu.cn

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.

  11. The role of replication bypass pathways in dicentric chromosome formation in budding yeast.

    PubMed

    Paek, Andrew L; Jones, Hope; Kaochar, Salma; Weinert, Ted

    2010-12-01

    Gross chromosomal rearrangements (GCRs) are large scale changes to chromosome structure and can lead to human disease. We previously showed in Saccharomyces cerevisiae that nearby inverted repeat sequences (∼20-200 bp of homology, separated by ∼1-5 kb) frequently fuse to form unstable dicentric and acentric chromosomes. Here we analyzed inverted repeat fusion in mutants of three sets of genes. First, we show that genes in the error-free postreplication repair (PRR) pathway prevent fusion of inverted repeats, while genes in the translesion branch have no detectable role. Second, we found that siz1 mutants, which are defective for Srs2 recruitment to replication forks, and srs2 mutants had opposite effects on instability. This may reflect separate roles for Srs2 in different phases of the cell cycle. Third, we provide evidence for a faulty template switch model by studying mutants of DNA polymerases; defects in DNA pol delta (lagging strand polymerase) and Mgs1 (a pol delta interacting protein) lead to a defect in fusion events as well as allelic recombination. Pol delta and Mgs1 may collaborate either in strand annealing and/or DNA replication involved in fusion and allelic recombination events. Fourth, by studying genes implicated in suppression of GCRs in other studies, we found that inverted repeat fusion has a profile of genetic regulation distinct from these other major forms of GCR formation.

  12. Genetic Analysis of the Saccharomyces Cerevisiae Rho3 Gene, Encoding a Rho-Type Small Gtpase, Provides Evidence for a Role in Bud Formation

    PubMed Central

    Imai, J.; Toh-e, A.; Matsui, Y.

    1996-01-01

    RHO3 encodes a Rho-type small GTPase of the yeast Saccharomyces cerevisiae. We isolated temperature-sensitive alleles and a dominant active allele of RHO3. Ts(-) rho3 cells lost cell polarity during bud formation and grew more isotropically than wild-type cells at nonpermissive temperatures. In contrast, cells carrying a dominant active mutant RHO3 displayed cold sensitivity, and the cells became elongated and bent, often at the position where actin patches were concentrated. These phenotypes of the rho3 mutants strongly suggest that RHO3 is involved in directing the growing points during bud formation. In addition, we found that SRO6, previously isolated as a multicopy suppressor of rho3, is the same as SEC4. The sec4-2 mutation was synthetic lethal with temperature-sensitive rho3 mutations and suppressed the cold sensitivity caused by a dominant active mutant RHO3. The genetic interactions between RHO3 and SEC4, taken together with the fact that the Rab-type GTPase Sec4p is required to fuse secretory vesicles together with plasma membrane for exocytosis, support a model in which the Rho3p pathway modulates morphogenesis during bud growth via directing organization of the actin cytoskeleton and the position of the secretory machinery for exocytosis. PMID:8852836

  13. Analysis of miRNAs and Their Targets during Adventitious Shoot Organogenesis of Acacia crassicarpa

    PubMed Central

    Hou, Lingyu; Wang, Xiaoyu; Zheng, Fei; Wang, Weixuan; Liang, Di; Yang, Hailun; Jin, Yi; Xie, Xiangming

    2014-01-01

    Organogenesis is an important process for plant regeneration by tissue or cell mass differentiation to regenerate a complete plant. MicroRNAs (miRNAs) play an essential role in regulating plant development by mediating target genes at transcriptional and post-transcriptional levels, but the diversity of miRNAs and their potential roles in organogenesis of Acacia crassicarpa have rarely been investigated. In this study, approximately 10 million sequence reads were obtained from a small RNA library, from which 189 conserved miRNAs from 57 miRNA families, and 7 novel miRNAs from 5 families, were identified from A. crassicarpa organogenetic tissues. Target prediction for these miRNAs yielded 237 potentially unique genes, of which 207 received target Gene Ontology annotations. On the basis of a bioinformatic analysis, one novel and 13 conserved miRNAs were selected to investigate their possible roles in A. crassicarpa organogenesis by qRT-PCR. The stage-specific expression patterns of the miRNAs provided information on their possible regulatory functions, including shoot bud formation, modulated function after transfer of the culture to light, and regulatory roles during induction of organogenesis. This study is the first to investigate miRNAs associated with A. crassicarpa organogenesis. The results provide a foundation for further characterization of miRNA expression profiles and roles in the regulation of diverse physiological pathways during adventitious shoot organogenesis of A. crassicarpa. PMID:24718555

  14. The Amphipathic Helix of Influenza A Virus M2 Protein Is Required for Filamentous Bud Formation and Scission of Filamentous and Spherical Particles

    PubMed Central

    Roberts, Kari L.; Leser, George P.; Ma, Chunlong

    2013-01-01

    Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a “beads-on-a-string” morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission. PMID:23843641

  15. The amphipathic helix of influenza A virus M2 protein is required for filamentous bud formation and scission of filamentous and spherical particles.

    PubMed

    Roberts, Kari L; Leser, George P; Ma, Chunlong; Lamb, Robert A

    2013-09-01

    Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a "beads-on-a-string" morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission.

  16. Fine-structure evidence for cell membrane partitioning of the nucleoid and cytoplasm during bud formation in Hyphomonas species.

    PubMed Central

    Zerfas, P M; Kessel, M; Quintero, E J; Weiner, R M

    1997-01-01

    Hyphomonas spp. reproduce by budding from the tip of the prosthecum, distal to the main body of the reproductive cell; thus, the chromosome must travel through the prosthecum to enter the progeny, the swarm cell. When viewed by electron microscopy, negatively stained whole cells, ultrathin-sectioned cells, and freeze-etched and frozen hydrated cells all had marked swellings of the cytoplasmic membrane (CM) in the prosthecum which are termed pseudovesicles (PV). PV were separated by constrictions in the contiguous CM. In replicating cells, PV housed ribosomes and DNA, which was identified by its fibrillar appearance and by lactoferrin-gold labeling. The micrographs also revealed that the CM bifurcates at the origin of the prosthecum so that one branch partitions the main body of the reproductive cell from the prosthecum and swarm cell. The results of this fine-structure analysis suggest models explaining DNA segregation and the marked asymmetric polarity of the budding reproductive cell. PMID:8981992

  17. Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Background: Leafy spurge (Euphorbia esula L.) is an herbaceous weed that maintains a perennial growth habit through seasonal production of abundant underground adventitious buds (UABs) on the crown and lateral roots. During the normal growing season, differentiation of bud to shoot growth is inhibit...

  18. In vitro food production for isolated closed environments: formation of ripe tomato fruits from excised flower buds.

    PubMed

    Applewhite, P B; K-Sawhney, R; Galston, A W

    1997-01-01

    Excised preanthesis flower buds of young Pixie Hybrid tomato plants develop into red ripe fruits in aseptic culture on a modified Murashige-Skoog medium with 3% sucrose at pH 5.8. The addition of certain synthetic auxins (IAA, NAA, IBA), auxin precursors (ISA), or cytokinins (KIN, IPA, ZEA, BAP) to the medium improved the percentage of buds developing into fruits, the weight of the ripe fruits, or both. The best results were obtained by an auxin-cytokinin combination of 10 microM IBA with 1 microM BAP. Storage of the excised buds at low temperature (6 degrees C) for up to 4 weeks before transfer to 27 degrees C caused only minimal deterioration in size and number of the fruit crop. Extension of low-temperature storage to 8 weeks produced smaller fruits that took longer to develop. This system could produce fresh, ripe small tomatoes on a sustained basis for up to 2 months for an isolated environment such as a space vehicle or submarine.

  19. Influenza Virus Assembly and Budding

    PubMed Central

    Rossman, Jeremy S.; Lamb, Robert A.

    2011-01-01

    Influenza A virus causes seasonal epidemics, sporadic pandemics and is a significant global heath burden. Influenza virus is an enveloped virus that contains a segmented negative strand RNA genome. Assembly and budding of progeny influenza virions is a complex, multistep process that occurs in lipid raft domains on the apical membrane of infected cells. The viral proteins hemagglutinin (HA) and neuraminidase (NA) are targeted to lipid rafts, causing the coalescence and enlargement of the raft domains. This clustering of HA and NA may cause a deformation of the membrane and the initiation of the virus budding event. M1 is then thought to bind to the cytoplasmic tails of HA and NA where it can then polymerize and form the interior structure of the emerging virion. M1, bound to the cytoplasmic tails of HA and NA, additionally serves as a docking site for the recruitment of the viral RNPs and may mediate the recruitment of M2 to the site of virus budding. M2 initially stabilizes the site of budding, possibly enabling the polymerization of the matrix protein and the formation of filamentous virions. Subsequently, M2 is able to alter membrane curvature at the neck of the budding virus, causing membrane scission and the release of the progeny virion. This review investigates the latest research on influenza virus budding in an attempt to provide a step-by-step analysis of the assembly and budding processes for influenza viruses. PMID:21237476

  20. The Energy of COPI for Budding Membranes.

    PubMed

    Thiam, Abdou Rachid; Pincet, Frédéric

    2015-01-01

    As a major actor of cellular trafficking, COPI coat proteins assemble on membranes and locally bend them to bud 60 nm-size coated particles. Budding requires the energy of the coat assembly to overcome the one necessary to deform the membrane which primarily depends on the bending modulus and surface tension, γ. Using a COPI-induced oil nanodroplet formation approach, we modulated the budding of nanodroplets using various amounts and types of surfactant. We found a Heaviside-like dependence between the budding efficiency and γ: budding was only dependent on γ and occurred beneath 1.3 mN/m. With the sole contribution of γ to the membrane deformation energy, we assessed that COPI supplies ~1500 kBT for budding particles from membranes, which is consistent with common membrane deformation energies. Our results highlight how a simple remodeling of the composition of membranes could mechanically modulate budding in cells.

  1. The Energy of COPI for Budding Membranes

    PubMed Central

    Thiam, Abdou Rachid; Pincet, Frédéric

    2015-01-01

    As a major actor of cellular trafficking, COPI coat proteins assemble on membranes and locally bend them to bud 60 nm-size coated particles. Budding requires the energy of the coat assembly to overcome the one necessary to deform the membrane which primarily depends on the bending modulus and surface tension, γ. Using a COPI-induced oil nanodroplet formation approach, we modulated the budding of nanodroplets using various amounts and types of surfactant. We found a Heaviside-like dependence between the budding efficiency and γ: budding was only dependent on γ and occurred beneath 1.3 mN/m. With the sole contribution of γ to the membrane deformation energy, we assessed that COPI supplies ~1500 kBT for budding particles from membranes, which is consistent with common membrane deformation energies. Our results highlight how a simple remodeling of the composition of membranes could mechanically modulate budding in cells. PMID:26218078

  2. Meta-analysis identifies potential molecular markers for endodormancy in crown buds of leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Vegetative shoot growth originating from underground adventitious buds (UABs) of herbaceous perennials such as leafy spurge (Euphorbia esula L.) is critical for survival after episodes of severe abiotic stress. Although leafy spurge is considered an invasive weed in North American ecosystems, it ha...

  3. Dehydration and vernalization treatments identify overlapping molecular networks impacting endodormancy maintenance in leafy spurge crown buds

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds (UABs), which undergo well-defined phases of seasonal dormancy (para-, endo- and eco-dormancy). In this study, the effects of dehydration-stress on vegeta...

  4. Increase in ACC oxidase levels and activities during paradormancy release of leafy spurge (Euphorbia esula) buds

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene is known to affect various developmental processes including dormancy and growth. Yet, little information is available about ethylene’s role during paradormancy break in adventitious buds of leafy spurge. In this study, we examined changes in ethylene evolution and the eth...

  5. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

    PubMed Central

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-01-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue’s auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. PMID:25540438

  6. ESCRT requirements for EIAV budding.

    PubMed

    Sandrin, Virginie; Sundquist, Wesley I

    2013-10-09

    Retroviruses and many other enveloped viruses usurp the cellular ESCRT pathway to bud from cells. However, the stepwise process of ESCRT-mediated virus budding can be challenging to analyze in retroviruses like HIV-1 that recruit multiple different ESCRT factors to initiate budding. In this study, we characterized the ESCRT factor requirements for budding of Equine Infectious Anemia Virus (EIAV), whose only known direct ESCRT protein interaction is with ALIX. siRNA depletion of endogenous ESCRT proteins and "rescue" experiments with exogenous siRNA-resistant wild type and mutant constructs revealed budding requirements for the following ESCRT proteins: ALIX, CHMP4B, CHMP2A and VPS4A or VPS4B. EIAV budding was inhibited by point mutations that abrogate the direct interactions between ALIX:CHMP4B, CHMP4B:CHMP2A, and CHMP2A:VPS4A/B, indicating that each of these interactions is required for EIAV budding. Unexpectedly, CHMP4B depletion led to formation of multi-lobed and long tubular EIAV virions. We conclude that EIAV budding requires an ESCRT protein network that comprises EIAV Gag-ALIX-CHMP4B-CHMP2A-VPS4 interactions. Our experiments also suggest that CHMP4B recruitment/polymerization helps control Gag polymerization and/or processing to ensure that ESCRT factor assembly and membrane fission occur at the proper stage of virion assembly. These studies help establish EIAV as a streamlined model system for dissecting the stepwise processes of lentivirus assembly and ESCRT-mediated budding.

  7. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development1[W

    PubMed Central

    Sorin, Céline; Negroni, Luc; Balliau, Thierry; Corti, Hélène; Jacquemot, Marie-Pierre; Davanture, Marlène; Sandberg, Göran; Zivy, Michel; Bellini, Catherine

    2006-01-01

    A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities. PMID:16377752

  8. Colon Cryptogenesis: Asymmetric Budding

    PubMed Central

    Tan, Chin Wee; Hirokawa, Yumiko; Gardiner, Bruce S.; Smith, David W.; Burgess, Antony W.

    2013-01-01

    The process of crypt formation and the roles of Wnt and cell-cell adhesion signaling in cryptogenesis are not well described; but are important to the understanding of both normal and cancer colon crypt biology. A quantitative 3D-microscopy and image analysis technique is used to study the frequency, morphology and molecular topography associated with crypt formation. Measurements along the colon reveal the details of crypt formation and some key underlying biochemical signals regulating normal colon biology. Our measurements revealed an asymmetrical crypt budding process, contrary to the previously reported symmetrical fission of crypts. 3D immunofluorescence analyses reveals heterogeneity in the subcellular distribution of E-cadherin and β-catenin in distinct crypt populations. This heterogeneity was also found in asymmetrical budding crypts. Singular crypt formation (i.e. no multiple new crypts forming from one parent crypt) were observed in crypts isolated from the normal colon mucosa, suggestive of a singular constraint mechanism to prevent aberrant crypt production. The technique presented improves our understanding of cryptogenesis and suggests that excess colon crypt formation occurs when Wnt signaling is perturbed (e.g. by truncation of adenomatous polyposis coli, APC protein) in most colon cancers. PMID:24205248

  9. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to

  10. Multiple bud cultures of 'Barhee' date palm (Phoenix dactylifera) and physiological status of regenerated plants.

    PubMed

    Fki, Lotfi; Bouaziz, Neila; Kriaa, Walid; Benjemaa-Masmoudi, Raja; Gargouri-Bouzid, Radhia; Rival, Alain; Drira, Noureddine

    2011-09-15

    Adventitious bud clusters of date palm 'Barhee' were successfully established from juvenile leaves (<1cm) using reduced amounts of 2,4-D (0.2mgL(-1)) to limit the risk of somaclonal variation. An average of 8.4 adventitious buds per explant were obtained. Histological examination showed that the superficial cell layers of leaves had the highest caulogenic capacity. High sucrose concentration (70gL(-1)) was used for the conversion of initial buds to multiple bud clusters. The promoting effect of temporary immersion on shoot proliferation was found to be significant when compared to cultivation on solid media. Elongation of shoots was also better using a thin film of PGR-free liquid medium instead of a solid medium. Anatomical observations indicated that roots from vitroplants were potentially functional at various developmental stages. However, only 12-month-old vitroplants were found to be physiologically able to control transpirational vapor loss. Additionally, the photochemical activity of photosystem II in these vitroplants was close to that measured in plants that were already acclimatized. As a result, 83.3% of regenerated plants were successfully acclimatized. No phenotypic variation was observed among more than 500 adventitious bud-derived plants. All regenerants survived after field transplantation. We found that the production of adventitious bud clusters in small bioreactors was able to provide an efficient micropropagation system for date palm cv. 'Barhee'. An in vitro hardening step was a prerequisite for the successful transfer of vitroplants in soil. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Regeneration of dentin-pulp complex with cementum and periodontal ligament formation using dental bud cells in gelatin-chondroitin-hyaluronan tri-copolymer scaffold in swine.

    PubMed

    Kuo, Tzong-Fu; Huang, An-Ting; Chang, Hao-Hueng; Lin, Feng-Huei; Chen, San-Tai; Chen, Rung-Shu; Chou, Cheng-Hung; Lin, Hsin-Chi; Chiang, Han; Chen, Min-Huey

    2008-09-15

    The purpose of this study is to use a tissue engineering approach for tooth regeneration. The swine dental bud cells (DBCs) were isolated from the developing mandibular teeth, expanded in vitro, and cultured onto cylinder scaffold gelatin-chrondroitin-hyaluronan-tri-copolymer (GCHT). After culturing in vitro, the DBCs/GCHT scaffold was autografted back into the original alveolar socket. Hematoxylin and eosin (H&E) staining combined with immunohistochemical staining were applied for identification of regenerated tooth structure. After 36-week post-transplantation, tooth-like structures, including well-organized dentin-pulp complex, cementum, and periodontal ligament, were evident in situ in two of six experimental animals. The size of the tooth structure (1 x 0.5 x 0.5 cm(3) and 0.5 x 0.5 x 0.5 cm(3) size) appeared to be dictated by the size of the GCHT scaffold (1 x 1 x 1.5 cm(3)). The third swine was demonstrated with irregular dentin-bony like calcified tissue about 1 cm in diameter without organized tooth or periodontal ligament formation. The other three swine in the experimental group showed normal bone formation and no tooth regeneration in the transplantation sites. The successful rate of tooth regeneration from DBCs/GCHT scaffolds' was about 33.3%. In the control group, three swine's molar teeth buds were removed without DBCs/GCHT implantation, the other three swine received GCHT scaffold implants without DBCs. After evaluation, no regenerated tooth was found in the transplantation site of the control group. The current results using DBSs/GCHT scaffold autotransplantation suggest a technical breakthrough for tooth regeneration.

  12. Potential bud bank responses to apical meristem damage and environmental variables: matching or complementing axillary meristems?

    PubMed

    Klimešová, Jitka; Malíková, Lenka; Rosenthal, Jonathan; Šmilauer, Petr

    2014-01-01

    Soil nutrients, dormant axillary meristem availability, and competition can influence plant tolerance to damage. However, the role of potential bud banks (adventitious meristems initiated only after injury) is not known. Examining Central European field populations of 22 species of short-lived monocarpic herbs exposed to various sources of damage, we hypothesized that: (1) with increasing injury severity, the number of axillary branches would decrease, due to axillary meristem limitation, whereas the number of adventitious shoots (typically induced by severe injury) would increase; (2) favorable environmental conditions would allow intact plants to branch more, resulting in stronger axillary meristem limitation than in unfavorable conditions; and (3) consequently, adventitious sprouting would be better enabled in favorable than unfavorable conditions. We found strong support for the first hypothesis, only limited support for the second, and none for the third. Our results imply that whereas soil nutrients and competition marginally influence plant tolerance to damage, potential bud banks enable plants to overcome meristem limitation from severe damage, and therefore better tolerate it. All the significant effects were found in intraspecific comparisons, whereas interspecific differences were not found. Monocarpic plants with potential bud banks therefore represent a distinct strategy occupying a narrow environmental niche. The disturbance regime typical for this niche remains to be examined, as do the costs associated with the banks of adventitious and axillary reserve meristems.

  13. Congenitally Blind Counselor, Adventitiously Blind Client.

    ERIC Educational Resources Information Center

    Roberts, A. H.

    1994-01-01

    A counselor blind from birth describes personal difficulties in fully understanding the experience of clients who are adventitiously blind. Congenitally blind counselors are urged to recognize that adaptive methods cannot compensate for the panoramic view of the environment provided by vision and that recently blinded individuals need to deal with…

  14. Extended Low Temperature Impacts Dormancy Status, Flowering Competence, and Transcript Profiles in Crown Buds of Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula) is an herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds. In this study we report the effects of different growth conditions on vegetative reproduction and flowering competence, and determine molecular mechanisms a...

  15. What Are Taste Buds?

    MedlinePlus

    ... taste buds all the credit for your favorite flavors, it's important to thank your nose . Olfactory (say: ... with your taste buds to create the true flavor of that yummy slice of pizza by telling ...

  16. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

    PubMed

    Agulló-Antón, María Ángeles; Ferrández-Ayela, Almudena; Fernández-García, Nieves; Nicolás, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sánchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel

    2014-03-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting.

  17. Ipl1/Aurora B kinase coordinates synaptonemal complex disassembly with cell cycle progression and crossover formation in budding yeast meiosis

    PubMed Central

    Jordan, Philip; Copsey, Alice; Newnham, Louise; Kolar, Elizabeth; Lichten, Michael; Hoffmann, Eva

    2009-01-01

    Several protein kinases collaborate to orchestrate and integrate cellular and chromosomal events at the G2/M transition in both mitotic and meiotic cells. During the G2/M transition in meiosis, this includes the completion of crossover recombination, spindle formation, and synaptonemal complex (SC) breakdown. We identified Ipl1/Aurora B kinase as the main regulator of SC disassembly. Mutants lacking Ipl1 or its kinase activity assemble SCs with normal timing, but fail to dissociate the central element component Zip1, as well as its binding partner, Smt3/SUMO, from chromosomes in a timely fashion. Moreover, lack of Ipl1 activity causes delayed SC disassembly in a cdc5 as well as a CDC5-inducible ndt80 mutant. Crossover levels in the ipl1 mutant are similar to those observed in wild type, indicating that full SC disassembly is not a prerequisite for joint molecule resolution and subsequent crossover formation. Moreover, expression of meiosis I and meiosis II-specific B-type cyclins occur normally in ipl1 mutants, despite delayed formation of anaphase I spindles. These observations suggest that Ipl1 coordinates changes to meiotic chromosome structure with resolution of crossovers and cell cycle progression at the end of meiotic prophase. PMID:19759266

  18. Autographa californica multiple nucleopolyhedrovirus odv-e25 (Ac94) is required for budded virus infectivity and occlusion-derived virus formation.

    PubMed

    Chen, Lin; Hu, Xiaolong; Xiang, Xingwei; Yu, Shaofang; Yang, Rui; Wu, Xiaofeng

    2012-04-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) odv-e25 is a core gene found in all lepidopteran baculoviruses, but its function is unknown. In this study, we generated an odv-e25-knockout AcMNPV and investigated the roles of ODV-E25 in the baculovirus life cycle. The odv-e25 knockout was subsequently rescued by reinserting the odv-e25 gene into the same virus genome. Fluorescence microscopy showed that transfection with the odv-e25-null bacmid vAcBac(KO) was insufficient for propagation in cell culture, whereas the 'repair' virus vAcBac(RE) was able to function in a manner similar to that of the control vAcBac. We found that odv-e25 was not essential for the release of budded viruses (BVs) into culture medium, although the absence of odv-e25 resulted in a 100-fold lower viral titer at 24 h post-transfection (p.t.). Analysis of viral DNA replication in the absence of odv-e25 showed that viral DNA replication was unaffected in the first 24 h p.t. Furthermore, electron microscopy revealed that polyhedra were found in the nucleus, while mature occlusion-derived viruses (ODVs) were not found in the nucleus or polyhedra in odv-e25 null transfected cells, which indicated that ODV-E25 was required for the formation of ODV.

  19. Autophosphorylation affects protein complex formation and activity of CDK-activating kinase (Ee;CDKF;1) in leafy spurge (Euphorbia esula)

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge is a deep rooted perennial weed that propagates both by seeds and underground adventitious buds located on the crown and roots (crown and root buds). As buds develop during the normal growing season, they are maintained in a quiescent state through correlative inhibition. To enhance our...

  20. Evidence that inhibited prostatic epithelial bud formation in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed C57BL/6J fetal mice is not due to interruption of androgen signaling in the urogenital sinus.

    PubMed

    Ko, Kinarm; Theobald, H Michael; Moore, Robert W; Peterson, Richard E

    2004-06-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits the androgen-dependent processes by which the urogenital sinus (UGS) of fetal mice forms prostatic epithelial buds. This inhibition is mediated by aryl hydrocarbon receptors in UGS mesenchyme and causes prostate lobes to develop abnormally. Experiments were conducted to test the hypothesis that TCDD inhibits prostatic budding in C57BL/6J mice by inhibiting androgen signaling. In utero TCDD exposure sufficient to inhibit budding (5 microg/kg maternal dose on gestation day [GD] 13) had no effect on testicular testosterone content on GD 16 or 18. Nor did it inhibit the conversion of testosterone to 5alpha-dihydrotestosterone (DHT) by the UGS. Both hydroxyflutamide (OH-flutamide; a competitive androgen receptor antagonist) and TCDD inhibited prostatic epithelial budding by UGSs cultured in vitro with DHT. To determine if TCDD inhibits responsiveness to androgens, primary mesenchymal cells prepared from UGSs cultured for three days with DHT were transiently transfected with an androgen-responsive reporter plasmid (MMTV-luciferase). OH-flutamide prevented DHT from increasing luciferase activity in these cells but TCDD did not. The same results were obtained when the mesenchymal cells were isolated from UGSs cultured with both DHT and TCDD. The lack of effect of TCDD on androgen-dependent gene expression was not due to inability of transfected UGS mesenchymal cells to respond to TCDD, as shown by significant increases in luciferase activity after transfection with plasmids containing CYP1A1 and CYP1B1 promoters. Finally, while OH-flutamide prevented DHT from altering androgen receptor and 5alpha-reductase type II mRNA expression in UGS organ culture, TCDD had no such effects. Collectively, these results suggest that TCDD inhibits prostatic epithelial bud formation without impairing the androgen receptor signaling pathway.

  1. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings.

    PubMed

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N'-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings.

  2. Hydrogen Peroxide Is a Second Messenger in the Salicylic Acid-Triggered Adventitious Rooting Process in Mung Bean Seedlings

    PubMed Central

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings. PMID:24386397

  3. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings

    PubMed Central

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A.; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species. PMID:26230608

  4. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings.

    PubMed

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders' rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.

  5. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho–ROCK–myosin II signaling pathway to ensure formation of a basal constriction

    PubMed Central

    Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie

    2017-01-01

    Background: Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto‐ and endodermal epithelia is unknown. Results: Histological sections and staining of F‐actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F‐actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Conclusions: Our data suggest an essential role of FGFR and a Rho‐ROCK‐myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502–516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists PMID:28411398

  6. [Influencing factors on culture of medicinal plants adventitious roots].

    PubMed

    Yin, Shuang-Shuang; Gao, Wen-Yuan; Wang, Juan; Liu, Hui; Zuo, Bei-Mei

    2012-12-01

    With the modernization of traditional Chinese medicine, medicinal plants resources cannot meet the request of Chinese medicine industry. Medicinal plants adventitious roots culture in a large scale is an important way to achieve Chinese medicine industrialization. However, how to establish good adventitious roots culture system is its key, such as plant hormones, explant, sucrose, innoculum and salt strength.

  7. Cystic adventitial disease of popliteal artery with significant stenosis

    PubMed Central

    Gupta, Ranjana; Mittal, Puneet; Gupta, Praveen; Jindal, Nancy

    2013-01-01

    Cystic adventitial disease of popliteal artery is a rare condition of unknown etiology which usually presents in middle-aged men. We present Doppler and computed tomography angiography findings in a case of cystic adventitial disease with significant obstruction of popliteal artery, with secondary narrowing of popliteal vein. PMID:24082480

  8. Induction of endodormancy in crown buds of leafy spurge (Euphorbia esula L.) implicates a role for ethylene and cross-talk between photoperiod and temperature

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge is a model for studying well-defined phases of dormancy in underground adventitious buds (UABs) of herbaceous perennial weeds, which is a primary factor facilitating their escape from conventional control measures. A 12-week ramp down in both temperature (27°C ' 10°C) and photoperiod (1...

  9. Dehydration-induced endodormancy in crown buds of leafy spurge highlights involvement of MAF3- and RVE1-like homologs, and hormone signaling cross-talk

    USDA-ARS?s Scientific Manuscript database

    Vegetative shoot growth from underground adventitious buds of leafy spurge is critical for survival of this invasive perennial weed after episodes of severe abiotic stress. To determine the impact that dehydration-stress has on molecular mechanisms associated with vegetative reproduction of leafy sp...

  10. Foliar glyphosate treatment alters transcript and hormone profiles in crown buds of leafy spurge and induces dwarfed and bushy phenotypes throughout its perennial life cycle

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula) is an invasive weed of North America and its perennial nature is attributed to underground adventitious buds (UABs) that undergo seasonal cycles of para-, endo- and eco-dormancy. Recommended field rates of glyphosate (~1 kg/ha) destroys above-ground shoots of leafy spu...

  11. Wnt-5a and Wnt-7a are expressed in the developing chick limb bud in a manner suggesting roles in pattern formation along the proximodistal and dorsoventral axes.

    PubMed

    Dealy, C N; Roth, A; Ferrari, D; Brown, A M; Kosher, R A

    1993-10-01

    The Wnt gene family encodes a group of secreted signalling molecules that have been implicated in the regulation of cell fate and pattern formation during embryogenesis. We have examined the patterns of expression of two members of the chicken Wnt family, Wnt-5a and Wnt-7a, during development of the chick limb bud. Wnt-5a is expressed in the apical ectodermal ridge which directs outgrowth of limb mesoderm. Wnt-5a also exhibits three quantitatively distinct domains of expression along the proximodistal (PD) axis of the limb mesoderm that may correspond to the regions which will give rise to the three distinct PD segments of the limb, the autopod, zeugopod, and stylopod. In contrast, Wnt-7a expression in the limb bud is specifically limited to the dorsal ectoderm. These observations suggest possible roles for Wnt-5a and Wnt-7a in pattern formation along the PD and dorsoventral axes of the developing chick limb bud. In addition, Wnt-5a and Wnt-7a exhibit spatially discrete domains of expression in several other regions of the chick embryo consistent with developmental roles for these genes in a variety of other tissues.

  12. Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma.

    PubMed

    Yamauchi, Takaki; Abe, Fumitaka; Kawaguchi, Kentaro; Oyanagi, Atsushi; Nakazono, Mikio

    2014-01-01

    Exposing roots of plants to hypoxic conditions is known to greatly improve their anoxic stress tolerance. We previously showed that pre-treatment of wheat seedlings with an ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), enhanced their tolerance of oxygen-deficient conditions. Although ACC-pretreated seminal roots of wheat seedlings grown under oxygen-deficient conditions avoided root tip death, they elongated very little. In the present study, we assessed the effects of ethylene on the responses of adventitious roots of wheat seedlings to oxygen-deficient conditions. Lysigenous aerenchyma formation in the adventitious roots of wheat seedlings pretreated with ACC appeared to reduce tip death under oxygen-deficient conditions, but the adventitious roots, like the seminal roots, hardly elongated. We also found that adventitious roots that emerge in oxygen-deficient conditions continued to elongate even under such conditions. The adventitious roots emerged in oxygen-deficient conditions were found to have thicker root diameters than those emerged in aerated conditions. These results suggest that the adventitious roots with thicker root diameters can better cope with oxygen-deficient conditions. Measurements of the area of the lysigenous aerenchyma confirmed that the increased root diameters have a greater amount of air space generated by lysigenous aerenchyma formation.

  13. Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma

    PubMed Central

    Yamauchi, Takaki; Abe, Fumitaka; Kawaguchi, Kentaro; Oyanagi, Atsushi; Nakazono, Mikio

    2014-01-01

    Exposing roots of plants to hypoxic conditions is known to greatly improve their anoxic stress tolerance. We previously showed that pre-treatment of wheat seedlings with an ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), enhanced their tolerance of oxygen-deficient conditions. Although ACC-pretreated seminal roots of wheat seedlings grown under oxygen-deficient conditions avoided root tip death, they elongated very little. In the present study, we assessed the effects of ethylene on the responses of adventitious roots of wheat seedlings to oxygen-deficient conditions. Lysigenous aerenchyma formation in the adventitious roots of wheat seedlings pretreated with ACC appeared to reduce tip death under oxygen-deficient conditions, but the adventitious roots, like the seminal roots, hardly elongated. We also found that adventitious roots that emerge in oxygen-deficient conditions continued to elongate even under such conditions. The adventitious roots emerged in oxygen-deficient conditions were found to have thicker root diameters than those emerged in aerated conditions. These results suggest that the adventitious roots with thicker root diameters can better cope with oxygen-deficient conditions. Measurements of the area of the lysigenous aerenchyma confirmed that the increased root diameters have a greater amount of air space generated by lysigenous aerenchyma formation. PMID:24690588

  14. Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia).

    PubMed

    Ito, Akiko; Saito, Takanori; Nishijima, Takaaki; Moriguchi, Takaya

    2014-05-01

    To investigate the effects of light quality (wavelength) on shoot elongation and flower-bud formation in Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai), we treated 1-year-old trees with the following: (i) 8 h sunlight + 16 h dark (SD); (ii) 8 h sunlight + 16 h red light (LD(SD + R)); or (iii) 8 h sunlight + 16 h far-red (FR) light (LD(SD + FR)) daily for 4 months from early April (before the spring flush) until early August in 2009 and 2010. In both years, shoot elongation stopped earlier in the LD(SD + FR) treatment than in the SD and LD(SD + R) treatments. After 4 months of treatments, 21% (2009) or 40% (2010) of LD(SD + FR)-treated trees formed flower buds in the shoot apices, whereas all the shoot apices from SD or LD(SD + R)-treated plants remained vegetative. With an additional experiment conducted in 2012, we confirmed that FR light at 730 nm was the most efficacious wavelength to induce flower-bud formation. Reverse transcription-quantitative polymerase chain reaction revealed that the expression of two floral meristem identity gene orthologues, LEAFY (PpLFY2a) and APETALA1 (PpMADS2-1a), were up-regulated in the shoot apex of LD(SD + FR). In contrast, the expression of a flowering repressor gene, TERMINAL FLOWER 1 (PpTFL1-1a, PpTFL1-2a), was down-regulated. In addition, expression of an orthologue of the flower-promoting gene FLOWERING LOCUS T (PpFT1a) was positively correlated with flower-bud formation, although the expression of another orthologue, PpFT2a, was negatively correlated with shoot growth. Biologically active cytokinin and gibberellic acid concentrations in shoot apices were reduced with LD(SD + FR) treatment. Taken together, our results indicate that pear plants are able to regulate flowering in response to the R : FR ratio. Furthermore, LD(SD + FR) treatment terminated shoot elongation and subsequent flower-bud formation in the shoot apex at an earlier time, possibly by influencing the expression of flowering-related genes and modifying

  15. Singularity in polarization: rewiring yeast cells to make two buds.

    PubMed

    Howell, Audrey S; Savage, Natasha S; Johnson, Sam A; Bose, Indrani; Wagner, Allison W; Zyla, Trevin R; Nijhout, H Frederik; Reed, Michael C; Goryachev, Andrew B; Lew, Daniel J

    2009-11-13

    For budding yeast to ensure formation of only one bud, cells must polarize toward one, and only one, site. Polarity establishment involves the Rho family GTPase Cdc42, which concentrates at polarization sites via a positive feedback loop. To assess whether singularity is linked to the specific Cdc42 feedback loop, we disabled the yeast cell's endogenous amplification mechanism and synthetically rewired the cells to employ a different positive feedback loop. Rewired cells violated singularity, occasionally making two buds. Even cells that made only one bud sometimes initiated two clusters of Cdc42, but then one cluster became dominant. Mathematical modeling indicated that, given sufficient time, competition between clusters would promote singularity. In rewired cells, competition occurred slowly and sometimes failed to develop a single "winning" cluster before budding. Slowing competition in normal cells also allowed occasional formation of two buds, suggesting that singularity is enforced by rapid competition between Cdc42 clusters.

  16. The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana.

    PubMed

    Rovere, Federica Della; Fattorini, Laura; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2016-05-03

    Adventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers. The formation of adventitious roots (ARs) depends on numerous factors, among which the hormones, auxin, in particular. In both primary and lateral roots, growth depends on a functional stem cell niche in the apex, maintained by an active quiescent center (QC), and involving the expression of genes controlled by auxin and cytokinin. This review summarizes current knowledge about auxin and cytokinin control on genes involved in the definition and maintenance of QC, and stem cell niche, in the apex of Arabidopsis ARs in planta and in longitudinal thin cell layers.

  17. What Are Taste Buds?

    MedlinePlus

    ... your taste buds for letting you appreciate the saltiness of pretzels and the sweetness of ice cream. ... allow you to experience tastes that are sweet, salty, sour, and bitter. How exactly do your taste ...

  18. Tropical Storm Bud

    Atmospheric Science Data Center

    2013-04-19

    article title:  A Strengthening Eastern Pacific Storm     View Larger Image ... Imaging SpectroRadiometer (MISR) show then Tropical Storm Bud as it was intensifying toward hurricane status, which it acquired ...

  19. Interaction between bud-site selection and polarity-establishment machineries in budding yeast

    PubMed Central

    Wu, Chi-Fang; Savage, Natasha S.; Lew, Daniel J.

    2013-01-01

    Saccharomyces cerevisiae yeast cells polarize in order to form a single bud in each cell cycle. Distinct patterns of bud-site selection are observed in haploid and diploid cells. Genetic approaches have identified the molecular machinery responsible for positioning the bud site: during bud formation, specific locations are marked with immobile landmark proteins. In the next cell cycle, landmarks act through the Ras-family GTPase Rsr1 to promote local activation of the conserved Rho-family GTPase, Cdc42. Additional Cdc42 accumulates by positive feedback, creating a concentrated patch of GTP-Cdc42, which polarizes the cytoskeleton to promote bud emergence. Using time-lapse imaging and mathematical modelling, we examined the process of bud-site establishment. Imaging reveals unexpected effects of the bud-site-selection system on the dynamics of polarity establishment, raising new questions about how that system may operate. We found that polarity factors sometimes accumulate at more than one site among the landmark-specified locations, and we suggest that competition between clusters of polarity factors determines the final location of the Cdc42 cluster. Modelling indicated that temporally constant landmark-localized Rsr1 would weaken or block competition, yielding more than one polarity site. Instead, we suggest that polarity factors recruit Rsr1, effectively sequestering it from other locations and thereby terminating landmark activity. PMID:24062579

  20. Dissecting the contribution of microtubule behaviour in adventitious root induction.

    PubMed

    Abu-Abied, Mohamad; Rogovoy Stelmakh, Oksana; Mordehaev, Inna; Grumberg, Marina; Elbaum, Rivka; Wasteneys, Geoffrey O; Sadot, Einat

    2015-05-01

    Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction.

  1. Dissecting the contribution of microtubule behaviour in adventitious root induction

    PubMed Central

    Abu-Abied, Mohamad; Rogovoy (Stelmakh), Oksana; Mordehaev, Inna; Grumberg, Marina; Elbaum, Rivka; Wasteneys, Geoffrey O.; Sadot, Einat

    2015-01-01

    Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction. PMID:25788735

  2. Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis

    PubMed Central

    Rademakers, Timo; van der Vorst, Emiel P. C.; Daissormont, Isabelle T. M. N.; Otten, Jeroen J. T.; Theodorou, Kosta; Theelen, Thomas L.; Gijbels, Marion; Anisimov, Andrey; Nurmi, Harri; Lindeman, Jan H. N.; Schober, Andreas; Heeneman, Sylvia; Alitalo, Kari; Biessen, Erik A. L.

    2017-01-01

    During plaque progression, inflammatory cells progressively accumulate in the adventitia, paralleled by an increased presence of leaky vasa vasorum. We here show that next to vasa vasorum, also the adventitial lymphatic capillary bed is expanding during plaque development in humans and mouse models of atherosclerosis. Furthermore, we investigated the role of lymphatics in atherosclerosis progression. Dissection of plaque draining lymph node and lymphatic vessel in atherosclerotic ApoE−/− mice aggravated plaque formation, which was accompanied by increased intimal and adventitial CD3+ T cell numbers. Likewise, inhibition of VEGF-C/D dependent lymphangiogenesis by AAV aided gene transfer of hVEGFR3-Ig fusion protein resulted in CD3+ T cell enrichment in plaque intima and adventitia. hVEGFR3-Ig gene transfer did not compromise adventitial lymphatic density, pointing to VEGF-C/D independent lymphangiogenesis. We were able to identify the CXCL12/CXCR4 axis, which has previously been shown to indirectly activate VEGFR3, as a likely pathway, in that its focal silencing attenuated lymphangiogenesis and augmented T cell presence. Taken together, our study not only shows profound, partly CXCL12/CXCR4 mediated, expansion of lymph capillaries in the adventitia of atherosclerotic plaque in humans and mice, but also is the first to attribute an important role of lymphatics in plaque T cell accumulation and development. PMID:28349940

  3. Adventitial inflammation and its interaction with intimal atherosclerotic lesions

    PubMed Central

    Akhavanpoor, Mohammadreza; Wangler, Susanne; Gleissner, Christian A.; Korosoglou, Grigorios; Katus, Hugo A.; Erbel, Christian

    2014-01-01

    The presence of adventitial inflammation in correlation with atherosclerotic lesions has been recognized for decades. In the last years, several studies have investigated the relevance and impact of adventitial inflammation on atherogenesis. In the abdominal aorta of elderly Apoe−/− mice, adventitial inflammatory structures were characterized as organized ectopic lymphoid tissue, and therefore termed adventitial tertiary lymphoid organs (ATLOs). These ATLOs possess similarities in development, structure and function to secondary lymphoid organs. A crosstalk between intimal atherosclerotic lesions and ATLOs has been suggested, and several studies could demonstrate a potential role for medial vascular smooth muscle cells in this process. We here review the development, phenotypic characteristics, and function of ATLOs in atherosclerosis. Furthermore, we discuss the possible role of medial vascular smooth muscle cells and their interaction between plaque and ATLOs. PMID:25152736

  4. Current testing methods and challenges for detection of adventitious viruses.

    PubMed

    Khan, Arifa S

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Adventitious viruses are a major safety concern in biological products. This paper discusses various sources of virus contamination and approaches to develop a comprehensive detection and mitigation strategy for product safety. Additionally, general safety concerns related to adventitious agents in biologics and current testing recommendations by the Center for Biologics Evaluation and Research for demonstrating the absence of adventitious agents in viral vaccines will be presented. The limitations of the conventional assays and the need for and consideration of new technologies for broad detection of novel agents will also be discussed.

  5. Adventitial vasa vasorum arteriosclerosis in abdominal aortic aneurysm.

    PubMed

    Tanaka, Hiroki; Zaima, Nobuhiro; Sasaki, Takeshi; Hayasaka, Takahiro; Goto-Inoue, Naoko; Onoue, Kenji; Ikegami, Koji; Morita, Yoshifumi; Yamamoto, Naoto; Mano, Yuuki; Sano, Masaki; Saito, Takaaki; Sato, Kohji; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2013-01-01

    Abdominal aortic aneurysm (AAA) is a common disease among elderly individuals. However, the precise pathophysiology of AAA remains unknown. In AAA, an intraluminal thrombus prevents luminal perfusion of oxygen, allowing only the adventitial vaso vasorum (VV) to deliver oxygen and nutrients to the aortic wall. In this study, we examined changes in the adventitial VV wall in AAA to clarify the histopathological mechanisms underlying AAA. We found marked intimal hyperplasia of the adventitial VV in the AAA sac; further, immunohistological studies revealed proliferation of smooth muscle cells, which caused luminal stenosis of the VV. We also found decreased HemeB signals in the aortic wall of the sac as compared with those in the aortic wall of the neck region in AAA. The stenosis of adventitial VV in the AAA sac and the malperfusion of the aortic wall observed in the present study are new aspects of AAA pathology that are expected to enhance our understanding of this disease.

  6. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    PubMed

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  7. Assembly and budding of negative-strand RNA viruses.

    PubMed

    Lyles, Douglas S

    2013-01-01

    Assembly of negative-strand RNA viruses occurs by budding from host plasma membranes. The budding process involves association of the viral core or nucleocapsid with a region of cellular membrane that will become the virus budding site, which contains the envelope glycoproteins and matrix protein. This region of membrane then buds out and pinches off to become the virus envelope. This review will address the questions of what are the mechanisms that bring the nucleocapsid and envelope glycoproteins together to form the virus budding site, and how does this lead to release of progeny virions? Recent evidence supports the idea that viral envelope glycoproteins and matrix proteins are organized into membrane microdomains that coalesce to form virus budding sites. There has also been substantial progress in understanding the last step in virus release, referred to as the "late budding function," which often involves host proteins of the vacuolar protein sorting apparatus. Key questions are raised as to the mechanism of the initial steps in formation of virus budding sites: How are membrane microdomains brought together and how are nucleocapsids selected for incorporation into these budding sites, particularly in the case of viruses for which genome RNA sequences are important for envelopment of nucleocapsids? 2013 Elsevier Inc. All rights reserved

  8. "Bud, Not Buddy."

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2002-01-01

    Discusses the award-winning book "Bud, Not Buddy" written by Christopher Paul Curtis. Lists different versions of the book; suggests learning activities; lists sources for biographical information and interviews with Curtis, teacher guides, professional articles, and other Depression era novels; and provides a citation for the author's…

  9. "Bud, Not Buddy."

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2002-01-01

    Discusses the award-winning book "Bud, Not Buddy" written by Christopher Paul Curtis. Lists different versions of the book; suggests learning activities; lists sources for biographical information and interviews with Curtis, teacher guides, professional articles, and other Depression era novels; and provides a citation for the author's…

  10. Berkeley UXO Discriminator (BUD)

    SciTech Connect

    Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank; Becker, Alex

    2007-01-01

    The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve. Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.

  11. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3.

    PubMed

    Watanabe, Kohtaro; Takahashi, Hirokazu; Sato, Saori; Nishiuchi, Shunsaku; Omori, Fumie; Malik, Al Imran; Colmer, Timothy David; Mano, Yoshiro; Nakazono, Mikio

    2017-02-01

    A radial oxygen loss (ROL) barrier in roots of waterlogging-tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging-tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short-arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.

  12. A Role for the Actin Cytoskeleton of Saccharomyces cerevisiae in Bipolar Bud-Site Selection

    PubMed Central

    Yang, Shirley; Ayscough, Kathryn R.; Drubin, David G.

    1997-01-01

    Saccharomyces cerevisiae cells select bud sites according to one of two predetermined patterns. MATa and MATα cells bud in an axial pattern, and MATa/α cells bud in a bipolar pattern. These budding patterns are thought to depend on the placement of spatial cues at specific sites in the cell cortex. Because cytoskeletal elements play a role in organizing the cytoplasm and establishing distinct plasma membrane domains, they are well suited for positioning bud-site selection cues. Indeed, the septin-containing neck filaments are crucial for establishing the axial budding pattern characteristic of MATa and MATα cells. In this study, we determined the budding patterns of cells carrying mutations in the actin gene or in genes encoding actin-associated proteins: MATa/α cells were defective in the bipolar budding pattern, but MATa and MATα cells still exhibit a normal axial budding pattern. We also observed that MATa/α actin cytoskeleton mutant daughter cells correctly position their first bud at the distal pole of the cell, but mother cells position their buds randomly. The actin cytoskeleton therefore functions in generation of the bipolar budding pattern and is required specifically for proper selection of bud sites in mother MATa/α cells. These observations and the results of double mutant studies support the conclusion that different rules govern bud-site selection in mother and daughter MATa/α cells. A defective bipolar budding pattern did not preclude an sla2-6 mutant from undergoing pseudohyphal growth, highlighting the central role of daughter cell bud-site selection cues in the formation of pseudohyphae. Finally, by examining the budding patterns of mad2-1 mitotic checkpoint mutants treated with benomyl to depolymerize their microtubules, we confirmed and extended previous evidence indicating that microtubules do not function in axial or bipolar bud-site selection. PMID:9008707

  13. The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections

    PubMed Central

    2011-01-01

    Background Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of CCW12 results in severe cell wall damage and reduced mating efficiency. Results In order to explore the function of CCW12, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of CCW12. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are PFD1, WHI3, SRN2, PAC10, FEN1 and YDR417C, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant ccw12Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are BCK1, CHS3, EDE1, PFD1, SLT2 and SLA1 that were also identified in the SGA. In contrast, a specific feature of mutant ccw12Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection. Conclusions The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw

  14. [Cultivation of Panax ginseng adventitious roots in bubble bioreactors].

    PubMed

    Zuo, Bei-Mei; Gao, Wen-Yuan; Wang, Juan; Yin, Shuang-Shuang; Liu, Hui; Zhang, Li-Ming

    2012-12-01

    To study cultivation of Panax ginseng adventitious roots in bubble bioreactors. The adventitious roots were obtained through tissue culture different types of bioreactors. The contents of ginsenosides Re, Rb1 and Rg1 were determined by HPLC while the contents of polysaccharides were determined by ultraviolet spectrophotometry. The results showed that of the three types tested, the most efficient bioreactor for cultivation of the ginseng adventitious roots was the cone-type bioreactors (with the 120 degrees ), in which, the growth curve of adventitious roots was S-shaped. The maximum biomass was obtained on the 40th day, with the fresh weight, dry weight and growth rate reaching the maximum, which were 113.15 g, 9.62 g and 63.13 times respectively, and the concomitant contents of polysaccharide and ginsenoside were 2.73% and 2.25 mg x g(-1). The results showed that the most efficient bioreactor for cultivation of the ginseng adventitious roots was the cone-type bioreactors (with the 120 degrees). These results provide a theoretical reference for developing an efficient production process of active metabolites of ginseng in the scale-up cultivation.

  15. A positive role for hydrogen gas in adventitious root development.

    PubMed

    Zhu, Yongchao; Liao, Weibiao

    2016-06-02

    Our recent study highlights the role of hydrogen gas (H2) in adventitious root development in cucumber. H2 is an effective gaseous signal molecule with the abilities to regulate plant growth and development and enhance plant resistance to environmental stimulus. In addition, the effect of H2 on fruit senescence and flowering time also has been reported. Adventitious root development is a critical step in plant vegetative propagation affected by a serious of signaling molecules, such as auxin, nitric oxide (NO), carbon oxide (CO), ethylene and Ca(2+). Observational evidence has shown that H2 can regulate adventitious root development in a dose-dependent manner. H2 may regulate HO-1/CO pathway through or not through NO pathway during adventitious rooting. Rooting-related enzymes, peroxidase, polyphenol oxidase, indoleacetic acid oxidase were required for H2-induced adventitious root. CsDNAJ-1, CsCPDK1/5, CsCDC6, CsAUX228-like, and CsAUX22D-like genes also were involved in this process.

  16. How does a virus bud?

    PubMed Central

    Lerner, D M; Deutsch, J M; Oster, G F

    1993-01-01

    How does a virus bud from the plasma membrane of its host? Here we investigate several possible rate-limiting processes, including thermal fluctuations of the plasma membrane, hydrodynamic interactions, and diffusion of the glycoprotein spikes. We find that for bending moduli greater than 3 x 10(-13) ergs, membrane thermal fluctuations are insufficient to wrap the viral capsid, and the mechanical force driving the budding process must arise from some other process. If budding is limited by the rate at which glycoprotein spikes can diffuse to the budding site, we compute that the budding time is 10-20 min, in accord with the experimentally determined upper limit of 20 min. In light of this, we suggest some alternative mechanisms for budding and provide a rationale for the observation that budding frequently occurs in regions of high membrane curvature. Images FIGURE 1 FIGURE 2 PMID:8369463

  17. [HIV budding and Tsg101].

    PubMed

    Yasuda, Jiro

    2005-12-01

    HIV, as well as many enveloped viruses, exits the cells by budding directly from the plasma membrane. HIV budding is dependent on a PTAP motif, which is located within the p6 domain of Gag. Recent studies have shown that the cellular protein Tsg101 binds to the PTAP L-domain motif of HIV p6 and facilitates the final stages of virus release. Tsg101 function in the cellular vacuolar protein sorting pathway, where they play central roles in selecting cargo for incorporation into vesicles that bud into the maturing endosome to create multivesicular bodies (MVBs). Vesicle budding into the MVB and viral budding at the plasma membrane are topologically equivalent, and the same machinery could catalyze both processes. It will be important to understand the mechanism of virus budding in detail, since virus budding may be a potential target for interference with HIV propagation.

  18. An elastic model of partial budding of retroviruses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2008-03-01

    Retroviruses are characterized by their unique infection strategy of reverse transcription, in which the genetic information flows from RNA back to DNA. The most well known representative is the human immunodeficiency virus (HIV). Unlike budding of traditional enveloped viruses, retrovirus budding happens together with the formation of spherical virus capsids at the cell membrane. Led by this unique budding mechanism, we proposed an elastic model of retrovirus budding in this work. We found that if the lipid molecules of the membrane are supplied fast enough from the cell interior, the budding always proceeds to completion. In the opposite limit, there is an optimal size of partially budded virions. The zenith angle of these partially spherical capsids, α, is given by α˜(2̂/κσ)^1/4, where κ is the bending modulus of the membrane, σ is the surface tension of the membrane, and τ characterizes the strength of capsid protein interaction. If τ is large enough such that α˜π, the budding is complete. Our model explained many features of retrovirus partial budding observed in experiments.

  19. Automatic adventitious respiratory sound analysis: A systematic review.

    PubMed

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11

  20. Influenza virus morphogenesis and budding

    PubMed Central

    Nayak, Debi P.; Balogun, Rilwan A.; Yamada, Hiroshi; Zhou, Z. Hong; Barman, Subrata

    2009-01-01

    Influenza viruses are enveloped, negative stranded, segmented RNA viruses belonging to Orthomyxoviridae family. Each virion consists of three major subviral components, namely (i) a viral envelope decorated with three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and M2, (ii) an intermediate layer of matrix protein (M1), and (iii) an innermost helical viral ribonucleocapsid [vRNP] core formed by nucleoprotein (NP) and negative strand viral RNA (vRNA). Since complete virus particles are not found inside the cell, the processes of assembly, morphogenesis, budding and release of progeny virus particles at the plasma membrane of the infected cells are critically important for the production of infectious virions and pathogenesis of influenza viruses as well. Morphogenesis and budding require that all virus components must be brought to the budding site which is the apical plasma membrane in polarized epithelial cells whether in vitro cultured cells or in vivo infected animals. HA and NA forming the outer spikes on the viral envelope possess apical sorting signals and use exocytic pathways and lipid rafts for cell surface transport and apical sorting. NP also has apical determinant(s) and is probably transported to the apical budding site similarly via lipid rafts and/or through cortical actin microfilaments. M1 binds the NP and the exposed RNAs of vRNPs, as well as to the cytoplasmic tails (CT) and transmembrane (TM) domains of HA, NA and M2, and is likely brought to the budding site on the piggy-back of vRNP and transmembrane proteins. Budding processes involve bud initiation, bud growth and bud release. Presence of lipid rafts and assembly of viral components at the budding site can cause asymmetry of lipid bilayers and outward membrane bending leading to bud initiation and bud growth. Bud release requires fusion of the apposing viral and cellular membranes and scission of the virus buds from the infected cellular membrane. The processes involved in

  1. Epicormic buds in trees: a review of bud establishment, development and dormancy release

    Treesearch

    Andrew R. ​Meier; Michael R. Saunders; Charles H. Michler

    2012-01-01

    The formation of epicormic sprouts on the boles of trees is a phenomenon that has, until recently, been poorly understood. Renewed interest in the topic in the last two decades has led to significant advances in our knowledge of the subject, especially in regard to bud anatomy, morphology and ontogeny. There exists, however, no comprehensive synthesis of results from...

  2. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast.

    PubMed

    Paek, Andrew L; Kaochar, Salma; Jones, Hope; Elezaby, Aly; Shanks, Lisa; Weinert, Ted

    2009-12-15

    Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term "faulty template switching"). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms.

  3. Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii.

    PubMed

    Rich, Sarah Meghan; Ludwig, Martha; Colmer, Timothy David

    2012-07-01

    A common response of wetland plants to flooding is the formation of aquatic adventitious roots. Observations of aquatic root growth are widespread; however, controlled studies of aquatic roots of terrestrial herbaceous species are scarce. Submergence tolerance and aquatic root growth and physiology were evaluated in two herbaceous, perennial wetland species Cotula coronopifolia and Meionectes brownii. Plants were raised in large pots with 'sediment' roots in nutrient solution and then placed into individual tanks and shoots were left in air or submerged (completely or partially). The effects on growth of aquatic root removal, and of light availability to submerged plant organs, were evaluated. Responses of aquatic root porosity, chlorophyll and underwater photosynthesis, were studied. Both species tolerated 4 weeks of complete or partial submergence. Extensive, photosynthetically active, aquatic adventitious roots grew from submerged stems and contributed up to 90 % of the total root dry mass. When aquatic roots were pruned, completely submerged plants grew less and had lower stem and leaf chlorophyll a, as compared with controls with intact roots. Roots exposed to the lowest PAR (daily mean 4.7 ± 2.4 µmol m(-2) s(-1)) under water contained less chlorophyll, but there was no difference in aquatic root biomass after 4 weeks, regardless of light availability in the water column (high PAR was available to all emergent shoots). Both M. brownii and C. coronopifolia responded to submergence with growth of aquatic adventitious roots, which essentially replaced the existing sediment root system. These aquatic roots contained chlorophyll and were photosynthetically active. Removal of aquatic roots had negative effects on plant growth during partial and complete submergence.

  4. Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii

    PubMed Central

    Rich, Sarah Meghan; Ludwig, Martha; Colmer, Timothy David

    2012-01-01

    Background and Aims A common response of wetland plants to flooding is the formation of aquatic adventitious roots. Observations of aquatic root growth are widespread; however, controlled studies of aquatic roots of terrestrial herbaceous species are scarce. Submergence tolerance and aquatic root growth and physiology were evaluated in two herbaceous, perennial wetland species Cotula coronopifolia and Meionectes brownii. Methods Plants were raised in large pots with ‘sediment’ roots in nutrient solution and then placed into individual tanks and shoots were left in air or submerged (completely or partially). The effects on growth of aquatic root removal, and of light availability to submerged plant organs, were evaluated. Responses of aquatic root porosity, chlorophyll and underwater photosynthesis, were studied. Key Results Both species tolerated 4 weeks of complete or partial submergence. Extensive, photosynthetically active, aquatic adventitious roots grew from submerged stems and contributed up to 90 % of the total root dry mass. When aquatic roots were pruned, completely submerged plants grew less and had lower stem and leaf chlorophyll a, as compared with controls with intact roots. Roots exposed to the lowest PAR (daily mean 4·7 ± 2·4 µmol m−2 s−1) under water contained less chlorophyll, but there was no difference in aquatic root biomass after 4 weeks, regardless of light availability in the water column (high PAR was available to all emergent shoots). Conclusions Both M. brownii and C. coronopifolia responded to submergence with growth of aquatic adventitious roots, which essentially replaced the existing sediment root system. These aquatic roots contained chlorophyll and were photosynthetically active. Removal of aquatic roots had negative effects on plant growth during partial and complete submergence. PMID:22419759

  5. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    NASA Astrophysics Data System (ADS)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 μg/g dry weight).

  6. Adventitious Agents and Smallpox Vaccine in Strategic National Stockpile

    PubMed Central

    Osburn, Bennie I.

    2005-01-01

    In keeping with current standards, we urge that old smallpox vaccines that were made in animal skin and are still a key part of our strategic national stockpile be tested for adventitious infectious agents. The advisory especially applies to viruses that have the potential for zoonotic transmission to human vaccine recipients. PMID:16022785

  7. Adventitious agents and smallpox vaccine in strategic national stockpile.

    PubMed

    Murphy, Frederick A; Osburn, Bennie I

    2005-07-01

    In keeping with current standards, we urge that old smallpox vaccines that were made in animal skin and are still a key part of our strategic national stockpile be tested for adventitious infectious agents. The advisory especially applies to viruses that have the potential for zoonotic transmission to human vaccine recipients.

  8. LTB4 activates pulmonary artery adventitial fibroblasts in pulmonary hypertension

    PubMed Central

    Jiang, Xinguo; Tamosiuniene, Rasa; Sung, Yon K.; Shuffle, Eric M.; Tu, Allen B.; Valenzuela, Antonia; Jiang, Shirley; Zamanian, Roham T.; Fiorentino, David F.; Voelkel, Norbert F.; Peters-Golden, Marc; Stenmark, Kurt R.; Chung, Lorinda; Rabinovitch, Marlene; Nicolls, Mark R.

    2015-01-01

    A recent study demonstrated a significant role for leukotriene B4 (LTB4) causing pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). LTB4 was found to directly injure luminal endothelial cells and promote growth of the smooth muscle cell layer of pulmonary arterioles. The purpose of the current study was to determine the effects of LTB4 on the pulmonary adventitial layer, largely composed of fibroblasts. Here, we demonstrate that LTB4 enhanced human pulmonary artery adventitial fibroblast (HPAAF) proliferation, migration and differentiation in a dose-dependent manner through its cognate G-protein coupled receptor, BLT1. LTB4 activated HPAAF by up-regulating p38 MAPK as well as Nox4 signaling pathways. In an autoimmune model of PH, inhibition of these pathways blocked perivascular inflammation, decreased Nox4 expression, reduced reactive oxygen species production, reversed arteriolar adventitial fibroblast activation and attenuated PH development. This study uncovers a novel mechanism by which LTB4 further promotes PAH pathogenesis, beyond its established effects on endothelial and smooth muscle cells, by activating adventitial fibroblasts. PMID:26558820

  9. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation.

  10. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    PubMed Central

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  11. Axillary bud and pericycle involved in the thickening process of the rhizophore nodes in Smilax species.

    PubMed

    Appezzato-da-Glória, B; Silva, J M; Soares, M K M; Soares, A N; Martins, A R

    2015-08-01

    The species of the genus Smilax, popularly known as sarsaparilla, are widely used in folk medicine due to the antirheumatic properties of its underground structures. Smilax fluminensis and S. syphilitica occur in forested areas and form thickened stems called rhizophores from which adventitious roots grow. To provide information for more accurate identification of the commercialised product and for elucidating the process of stem thickening, a morphology and anatomy study of the underground organs of the two species was conducted. The adventitious roots differ in colour and diameter depending on the stage of development. They are white and have a larger diameter in the early stages of development, but as they grow, the adventitious roots become brown and have a smaller diameter due to the disintegration of the epidermis and virtually the entire cortex. In brown roots, the covering function is then performed by the lignified endodermis and the remaining walls of the cells from the last parenchyma cortical layer. These results are similar to those found in studies of other Smilax and suggest that the anatomy of the roots can be useful for identifying fraud in commercialised materials. The thickening process of the nodal regions of the rhizophores in both species involves the activity of axillary buds and pericyclic layers.

  12. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes.

    PubMed

    Różycki, Bartosz; Boura, Evzen; Hurley, James H; Hummer, Gerhard

    2012-01-01

    The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT) directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding.

  13. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems.

    PubMed

    Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua

    2014-02-01

    Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.

  14. Multilineage communication regulates human liver bud development from pluripotency.

    PubMed

    Camp, J Gray; Sekine, Keisuke; Gerber, Tobias; Loeffler-Wirth, Henry; Binder, Hans; Gac, Malgorzata; Kanton, Sabina; Kageyama, Jorge; Damm, Georg; Seehofer, Daniel; Belicova, Lenka; Bickle, Marc; Barsacchi, Rico; Okuda, Ryo; Yoshizawa, Emi; Kimura, Masaki; Ayabe, Hiroaki; Taniguchi, Hideki; Takebe, Takanori; Treutlein, Barbara

    2017-06-22

    Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor-ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.

  15. Live confocal imaging of Arabidopsis flower buds.

    PubMed

    Prunet, Nathanaël; Jack, Thomas P; Meyerowitz, Elliot M

    2016-11-01

    Recent advances in confocal microscopy, coupled with the development of numerous fluorescent reporters, provide us with a powerful tool to study the development of plants. Live confocal imaging has been used extensively to further our understanding of the mechanisms underlying the formation of roots, shoots and leaves. However, it has not been widely applied to flowers, partly because of specific challenges associated with the imaging of flower buds. Here, we describe how to prepare and grow shoot apices of Arabidopsis in vitro, to perform both single-point and time-lapse imaging of live, developing flower buds with either an upright or an inverted confocal microscope. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Innervation of the undifferentiated limb bud in rabbit embryo.

    PubMed Central

    Cameron, J; McCredie, J

    1982-01-01

    The concept that there are no nerves in the limb bud of mammalian embryos prior to differentiation has been re-examined. Rabbit embryos were collected at 260 and 290 hours gestation, which is prior to cartilage formation in the forelimb at 320 hours. Forelimb buds and adjacent neural tube were excised, fixed and embedded for light and electron microscopy. The limb buds were sectioned in two planes by serial 1 micrometer sections and inspected by light microscopy. Bundles of nerve fibres were seen within the proximal third of the limb bud, with distal ramification into adjacent zones of condensing mesenchyme. Electron microscopy confirmed the presence of axons and associated immature Schwann cells. These results demonstrate the existence of an anatomical framework through which a neurotrophic influence might be brought to bear upon mesenchyme prior to early differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:7130041

  17. Rapid evaporation-induced synthesis of monodisperse budded silica spheres.

    PubMed

    Chen, Hongmin; He, Junhui

    2007-12-15

    Budded silica spheres have been synthesized by a novel rapid evaporation-induced self-assembly combined with the well-known Stöber method. The morphology of budded silica spheres were examined by transmission electron microscopy, and their mean size and size distribution were also estimated. Both the temperature of the sol-gel reaction and following post-treatment were found to play crucial roles in determining the surface morphology of obtained silica spheres and the yield of budded silica spheres. The possible formation mechanism was also proposed on the basis of experimental observations. The budded silica spheres would have higher surface areas than smooth silica spheres, and significant potentials for catalyst supports, building blocks of photonic crystals, and for constructing superhydrophobic and superhydrophilic surfaces.

  18. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  19. Budding Yeast SLX4 Contributes to the Appropriate Distribution of Crossovers and Meiotic Double-Strand Break Formation on Bivalents During Meiosis

    PubMed Central

    Higashide, Mika; Shinohara, Miki

    2016-01-01

    The number and distribution of meiosis crossover (CO) events on each bivalent are strictly controlled by multiple mechanisms to assure proper chromosome segregation during the first meiotic division. In Saccharomyces cerevisiae, Slx4 is a multi-functional scaffold protein for structure-selective endonucleases, such as Slx1 and Rad1 (which are involved in DNA damage repair), and is also a negative regulator of the Rad9-dependent signaling pathway with Rtt107. Slx4 has been believed to play only a minor role in meiotic recombination. Here, we report that Slx4 is involved in proper intrachromosomal distribution of meiotic CO formation, especially in regions near centromeres. We observed an increase in uncontrolled CO formation only in a region near the centromere in the slx4∆ mutant. Interestingly, this phenomenon was not observed in the slx1∆, rad1∆, or rtt107∆ mutants. In addition, we observed a reduced number of DNA double-strand breaks (DSBs) and altered meiotic DSB distribution on chromosomes in the slx4∆ mutant. This suggests that the multi-functional Slx4 is required for proper CO formation and meiotic DSB formation. PMID:27172214

  20. Regulatory expectations of validation/qualification of adventitious virus assays.

    PubMed

    Baylis, S A; Blümel, J

    2010-01-01

    The European Union (EU) guideline concerning the virus safety evaluation of biotechnological investigational medicinal products (CPMP/BWP/398498/2005) recently came into force. In the guideline it is stated that analytical procedures supporting the qualification of cell banking systems, starting materials, as well as testing of unprocessed bulks for the presence of adventitious viruses, should be supported by appropriate qualification/validation studies. The validation protocols should prospectively set claims for assay performance, which should be verified by the validation experiments and demonstrate that a particular procedure is suitable for its intended purpose. Assay parameters for adventitious virus testing are discussed, and examples of validation of qualitative and quantitative assays for the detection of blood-borne viruses in human plasma are considered.

  1. Automatic adventitious respiratory sound analysis: A systematic review

    PubMed Central

    Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Background Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. Objective To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. Data sources A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Study selection Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Data extraction Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. Data synthesis A total of 77 reports from the literature were included in this review. 55 (71.43%) of the

  2. Massively parallel sequencing, a new method for detecting adventitious agents.

    PubMed

    Onions, David; Kolman, John

    2010-05-01

    There has been an upsurge of interest in developing new veterinary and human vaccines and, in turn, this has involved the development of new mammalian and insect cell substrates. Excluding adventitious agents from these cells can be problematic, particularly for cells derived from species with limited virological investigation. Massively parallel sequencing is a powerful new method for the identification of viruses and other adventitious agents, without prior knowledge of the nature of the agent. We have developed methods using random priming to detect viruses in the supernatants from cell substrates or in virus seed stocks. Using these methods we have recently discovered a new parvovirus in bovine serum. When applied to sequencing the transcriptome, massively parallel sequencing can reveal latent or silent infections. Enormous amounts of data are developed in this process usually between 100 and 400 Mbp. Consequently, sophisticated bioinformatic algorithms are required to analyse and verify virus targets.

  3. Eukaryotic-Like Virus Budding in Archaea.

    PubMed

    Quemin, Emmanuelle R J; Chlanda, Petr; Sachse, Martin; Forterre, Patrick; Prangishvili, David; Krupovic, Mart

    2016-09-13

    Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. The replication of enveloped viruses has been extensively studied in eukaryotes but has remained unexplored for enveloped viruses infecting Archaea Here, we provide a sequential view on the assembly and egress of SSV1, a prototypic archaeal virus. The observed process is highly similar to the budding of eukaryotic enveloped viruses, including human immunodeficiency virus

  4. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    PubMed

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots.

  5. Theory and practice of conventional adventitious virus testing.

    PubMed

    Gregersen, Jens-Peter

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) For decades conventional tests in cell cultures and in laboratory animals have served as standard methods for broad-spectrum screening for adventitious viruses. New virus detection methods based on molecular biology have broadened and improved our knowledge about potential contaminating viruses and about the suitability of the conventional test methods. This paper summarizes and discusses practical aspects of conventional test schemes, such as detectability of various viruses, questionable or false-positive results, animal numbers needed, time and cost of testing, and applicability for rapidly changing starting materials. Strategies to improve the virus safety of biological medicinal products are proposed. The strategies should be based upon a flexible application of existing and new methods along with a scientifically based risk assessment. However, testing alone does not guarantee the absence of adventitious agents and must be accompanied by virus removing or virus inactivating process steps for critical starting materials, raw materials, and for the drug product.

  6. Detection of adventitious viruses in biologicals--a rare occurrence.

    PubMed

    Nims, R W

    2006-01-01

    Adventitious virus assays are performed as part of raw materials testing, cell-line characterization, and lot-release testing of biologicals such as monoclonal antibodies, gene therapy vectors, recombinant proteins, and vaccines. The testing methods follow guidance provided in the 9 CFR (bovine and porcine raw materials testing, and certain vaccine products) or Points to Consider documents (cell line characterization and evaluation of the majority of biologicals). The methodologies used and the types of adventitious viruses detected during testing of the various types of samples are discussed in this paper. The detection of adventitious viruses is quite rare, especially during evaluation of cell banks and biologicals produced in human, mouse, or insect cell substrates. The most common detection scenarios include bovine viral diarrhoea virus in foetal bovine serum samples, porcine parvovirus in porcine substrates, and murine minute virus, REO virus, and Cache Valley virus in Chinese hamster cell-derived bulk harvests. The two last-named viral entities are believed to be introduced via bovine serum used during the manufacturing process (during scale-up or during the entire process). Knowledge of the types of agents being detected is useful in designing viral clearance methodologies for purification processes and in engineering manufacturing processes and facilities.

  7. Root formation in ethylene-insensitive plants.

    PubMed

    Clark, D G; Gubrium, E K; Barrett, J E; Nell, T A; Klee, H J

    1999-09-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia x hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more below-ground root mass but fewer above-ground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated tap-roots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli.

  8. Eukaryotic-Like Virus Budding in Archaea

    PubMed Central

    Quemin, Emmanuelle R. J.; Chlanda, Petr; Sachse, Martin; Forterre, Patrick

    2016-01-01

    ABSTRACT Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. PMID:27624130

  9. Bud8p and Bud9p, Proteins That May Mark the Sites for Bipolar Budding in YeastV⃞

    PubMed Central

    Harkins, Heidi A.; Pagé, Nicolas; Schenkman, Laura R.; De Virgilio, Claudio; Shaw, Sidney; Bussey, Howard; Pringle, John R.

    2001-01-01

    The bipolar budding pattern of a/α Saccharomyces cerevisiae cells appears to depend on persistent spatial markers in the cell cortex at the two poles of the cell. Previous analysis of mutants with specific defects in bipolar budding identified BUD8 and BUD9 as potentially encoding components of the markers at the poles distal and proximal to the birth scar, respectively. Further genetic analysis reported here supports this hypothesis. Mutants deleted for BUD8 or BUD9 grow normally but bud exclusively from the proximal and distal poles, respectively, and the double-mutant phenotype suggests that the bipolar budding pathway has been totally disabled. Moreover, overexpression of these genes can cause either an increased bias for budding at the distal (BUD8) or proximal (BUD9) pole or a randomization of bud position, depending on the level of expression. The structures and localizations of Bud8p and Bud9p are also consistent with their postulated roles as cortical markers. Both proteins appear to be integral membrane proteins of the plasma membrane, and they have very similar overall structures, with long N-terminal domains that are both N- and O-glycosylated followed by a pair of putative transmembrane domains surrounding a short hydrophilic domain that is presumably cytoplasmic. The putative transmembrane and cytoplasmic domains of the two proteins are very similar in sequence. When Bud8p and Bud9p were localized by immunofluorescence and tagging with GFP, each protein was found predominantly in the expected location, with Bud8p at presumptive bud sites, bud tips, and the distal poles of daughter cells and Bud9p at the necks of large-budded cells and the proximal poles of daughter cells. Bud8p localized approximately normally in several mutants in which daughter cells are competent to form their first buds at the distal pole, but it was not detected in a bni1 mutant, in which such distal-pole budding is lost. Surprisingly, Bud8p localization to the presumptive bud

  10. Early epithelial signaling center governs tooth budding morphogenesis

    PubMed Central

    Thesleff, Irma

    2016-01-01

    During organogenesis, cell fate specification and patterning are regulated by signaling centers, specialized clusters of morphogen-expressing cells. In many organs, initiation of development is marked by bud formation, but the cellular mechanisms involved are ill defined. Here, we use the mouse incisor tooth as a model to study budding morphogenesis. We show that a group of nonproliferative epithelial cells emerges in the early tooth primordium and identify these cells as a signaling center. Confocal live imaging of tissue explants revealed that although these cells reorganize dynamically, they do not reenter the cell cycle or contribute to the growing tooth bud. Instead, budding is driven by proliferation of the neighboring cells. We demonstrate that the activity of the ectodysplasin/Edar/nuclear factor κB pathway is restricted to the signaling center, and its inactivation leads to fewer quiescent cells and a smaller bud. These data functionally link the signaling center size to organ size and imply that the early signaling center is a prerequisite for budding morphogenesis. PMID:27621364

  11. Patterns of bud-site selection in the yeast Saccharomyces cerevisiae

    PubMed Central

    1995-01-01

    Cells of the yeast Saccharomyces cerevisiae select bud sites in either of two distinct spatial patterns, known as axial (expressed by a and alpha cells) and bipolar (expressed by a/alpha cells). Fluorescence, time-lapse, and scanning electron microscopy have been used to obtain more precise descriptions of these patterns. From these descriptions, we conclude that in the axial pattern, the new bud forms directly adjacent to the division site in daughter cells and directly adjacent to the immediately preceding division site (bud site) in mother cells, with little influence from earlier sites. Thus, the division site appears to be marked by a spatial signal(s) that specifies the location of the new bud site and is transient in that it only lasts from one budding event to the next. Consistent with this conclusion, starvation and refeeding of axially budding cells results in the formation of new buds at nonaxial sites. In contrast, in bipolar budding cells, both poles are specified persistently as potential bud sites, as shown by the observations that a pole remains competent for budding even after several generations of nonuse and that the poles continue to be used for budding after starvation and refeeding. It appears that the specification of the two poles as potential bud sites occurs before a daughter cell forms its first bud, as a daughter can form this bud near either pole. However, there is a bias towards use of the pole distal to the division site. The strength of this bias varies from strain to strain, is affected by growth conditions, and diminishes in successive cell cycles. The first bud that forms near the distal pole appears to form at the very tip of the cell, whereas the first bud that forms near the pole proximal to the original division site (as marked by the birth scar) is generally somewhat offset from the tip and adjacent to (or overlapping) the birth scar. Subsequent buds can form near either pole and appear almost always to be adjacent either to

  12. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud site selection in budding yeast.

    PubMed

    Wu, Huan; Guo, Jia; Zhou, Ya-Ting; Gao, Xiang-Dong

    2015-03-01

    The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4's function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3.

  13. The Anillin-Related Region of Bud4 Is the Major Functional Determinant for Bud4's Function in Septin Organization during Bud Growth and Axial Bud Site Selection in Budding Yeast

    PubMed Central

    Wu, Huan; Guo, Jia; Zhou, Ya-Ting

    2015-01-01

    The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4's function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3. PMID:25576483

  14. Budding and vesiculation induced by conical membrane inclusions

    NASA Astrophysics Data System (ADS)

    Auth, Thorsten; Gompper, Gerhard

    2009-09-01

    Conical inclusions in a lipid bilayer generate an overall spontaneous curvature of the membrane that depends on concentration and geometry of the inclusions. Examples are integral and attached membrane proteins, viruses, and lipid domains. We propose an analytical model to study budding and vesiculation of the lipid bilayer membrane, which is based on the membrane bending energy and the translational entropy of the inclusions. If the inclusions are placed on a membrane with similar curvature radius, their repulsive membrane-mediated interaction is screened. Therefore, for high inclusion density the inclusions aggregate, induce bud formation, and finally vesiculation. Already with the bending energy alone our model allows the prediction of bud radii. However, in case the inclusions induce a single large vesicle to split into two smaller vesicles, bending energy alone predicts that the smaller vesicles have different sizes whereas the translational entropy favors the formation of equal-sized vesicles. Our results agree well with those of recent computer simulations.

  15. Glycoconjugate in rat taste buds.

    PubMed

    Kano, K; Ube, M; Taniguchi, K

    2001-05-01

    The taste buds of the fungiform papillae, circumvallate papilla, foliate papillae, soft palate and epiglottis of the rat oral cavity were examined by lectin histochemistry to elucidate the relationships between expression of glycoconjugates and innervation. Seven out of 21 lectins showed moderate to intense staining in at least more than one taste bud. They were succinylated wheat germ agglutinin (s-WGA). Dolichos biflorus agglutinin (DBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-I), peanut agglutinin (PNA), Ulex europaeus agglutinin-I (UEA-I) and Phaseolus vulgaris agglutinin-L (PHA-L). UEA-I and BSL-I showed moderate to intense staining in all of the taste buds examined. They strongly stained the taste buds of the epiglottis, which are innervated by the cranial nerve X. UEA-I intensely stained the taste buds of the fungiform papillae and soft palate, both of which are innervated by the cranial nerve VII. The taste buds of circumvallate papilla and foliate papillae were innervated by the cranial nerve IX and strongly stained by BSL-I. Thus, UEA-I and BSL-I binding glycoconjugates, probably alpha-linked fucose and alpha-D-galactose, respectively, might be specific for taste buds. Although the expression of these glycoconjugates would be related to the innervation of the cranial nerve X, the differential expression of alpha-linked fucose and alpha-D-galactose might be related to the innervation of the cranial nerve VII and IX, respectively.

  16. Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing

    PubMed Central

    Ishikawa, Masaya; Ishikawa, Mikiko; Toyomasu, Takayuki; Aoki, Takayuki; Price, William S.

    2015-01-01

    Wintering flower buds of cold hardy Rhododendron japonicum cooled slowly to subfreezing temperatures are known to undergo extraorgan freezing, whose mechanisms remain obscure. We revisited this material to demonstrate why bud scales freeze first in spite of their lower water content, why florets remain deeply supercooled and how seasonal adaptive responses occur in regard to extraorgan freezing in flower buds. We determined ice nucleation activity (INA) of various flower bud tissues using a test tube-based assay. Irrespective of collection sites, outer and inner bud scales that function as ice sinks in extraorgan freezing had high INA levels whilst florets that remain supercooled and act as a water source lacked INA. The INA level of bud scales was not high in late August when flower bud formation was ending, but increased to reach the highest level in late October just before the first autumnal freeze. The results support the following hypothesis: the high INA in bud scales functions as the subfreezing sensor, ensuring the primary freezing in bud scales at warmer subzero temperatures, which likely allows the migration of floret water to the bud scales and accumulation of icicles within the bud scales. The low INA in the florets helps them remain unfrozen by deep supercooling. The INA in the bud scales was resistant to grinding and autoclaving at 121∘C for 15 min, implying the intrinsic nature of the INA rather than of microbial origin, whilst the INA in stem bark was autoclaving-labile. Anti-nucleation activity (ANA) was implicated in the leachate of autoclaved bud scales, which suppresses the INA at millimolar levels of concentration and likely differs from the colligative effects of the solutes. The tissue INA levels likely contribute to the establishment of freezing behaviors by ensuring the order of freezing in the tissues: from the primary freeze to the last tissue remaining unfrozen. PMID:25859249

  17. Biofilm/Mat assays for budding yeast.

    PubMed

    Cullen, Paul J

    2015-02-02

    Many microbial species form biofilms/mats under nutrient-limiting conditions, and fungal pathogens rely on this social behavior for virulence. In budding yeast, mat formation is dependent on the mucin-like flocculin Flo11, which promotes cell-to-cell and cell-to-substrate adhesion in mats. The biofilm/mat assays described here allow the evaluation of the role of Flo11 in the formation of mats. Cells are grown on surfaces with different degrees of rigidity to assess their expansion and three-dimensional architecture, and the cells are also exposed to plastic surfaces to quantify their adherence. These assays are broadly applicable to studying biofilm/mat formation in microbial species.

  18. Establishment of adventitious root cultures of Echinacea purpurea for the production of caffeic acid derivatives.

    PubMed

    Paek, Kee-Yoeup; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo

    2009-01-01

    Echinacace purpurea (purple cone flower) is an important medicinal plant, and widely used for phytochemical purposes. The roots are traditionally used in herbal medicines and dietary supplements as an immunostimulant in treating inflammatory and viral diseases. Extensive research work has been carried out on both the induction of adventitious roots from E. purpurea as well as established small-scale (shake flask) to large-scale (bioreactor) cultures for the production of adventitious root biomass and caffeic acid derivatives. This chapter describes the methodologies of induction of adventitious roots from explants of E. purpurea, propagation of adventitious roots in suspension cultures, estimation of total phenolics, flavonoids, and antioxidant activities. The detailed methodology for high-performance liquid chromatographic analysis of caffeic acid derivatives present in the adventitious roots is also discussed.

  19. Hypoperfusion of the Adventitial Vasa Vasorum Develops an Abdominal Aortic Aneurysm

    PubMed Central

    Sasaki, Takeshi; Sano, Masaki; Yamamoto, Naoto; Saito, Takaaki; Inuzuka, Kazunori; Hayasaka, Takahiro; Goto-Inoue, Naoko; Sugiura, Yuki; Sato, Kohji; Kugo, Hirona; Moriyama, Tatsuya; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2015-01-01

    The aortic wall is perfused by the adventitial vasa vasorum (VV). Tissue hypoxia has previously been observed as a manifestation of enlarged abdominal aortic aneurysms (AAAs). We sought to determine whether hypoperfusion of the adventitial VV could develop AAAs. We created a novel animal model of adventitial VV hypoperfusion with a combination of a polyurethane catheter insertion and a suture ligation of the infrarenal abdominal aorta in rats. VV hypoperfusion caused tissue hypoxia and developed infrarenal AAA, which had similar morphological and pathological characteristics to human AAA. In human AAA tissue, the adventitial VV were stenotic in both small AAAs (30–49 mm in diameter) and in large AAAs (> 50 mm in diameter), with the sac tissue in these AAAs being ischemic and hypoxic. These results indicate that hypoperfusion of adventitial VV has critical effects on the development of infrarenal AAA. PMID:26308526

  20. Hypoperfusion of the Adventitial Vasa Vasorum Develops an Abdominal Aortic Aneurysm.

    PubMed

    Tanaka, Hiroki; Zaima, Nobuhiro; Sasaki, Takeshi; Sano, Masaki; Yamamoto, Naoto; Saito, Takaaki; Inuzuka, Kazunori; Hayasaka, Takahiro; Goto-Inoue, Naoko; Sugiura, Yuki; Sato, Kohji; Kugo, Hirona; Moriyama, Tatsuya; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2015-01-01

    The aortic wall is perfused by the adventitial vasa vasorum (VV). Tissue hypoxia has previously been observed as a manifestation of enlarged abdominal aortic aneurysms (AAAs). We sought to determine whether hypoperfusion of the adventitial VV could develop AAAs. We created a novel animal model of adventitial VV hypoperfusion with a combination of a polyurethane catheter insertion and a suture ligation of the infrarenal abdominal aorta in rats. VV hypoperfusion caused tissue hypoxia and developed infrarenal AAA, which had similar morphological and pathological characteristics to human AAA. In human AAA tissue, the adventitial VV were stenotic in both small AAAs (30-49 mm in diameter) and in large AAAs (> 50 mm in diameter), with the sac tissue in these AAAs being ischemic and hypoxic. These results indicate that hypoperfusion of adventitial VV has critical effects on the development of infrarenal AAA.

  1. Generation of bioengineered feather buds on a reconstructed chick skin from dissociated epithelial and mesenchymal cells.

    PubMed

    Ishida, Kentaro; Mitsui, Toshiyuki

    2016-04-01

    Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial-mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β-catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.

  2. Endothelial Cells Inhibit the Angiotensin II Induced Phenotypic Modulation of Rat Vascular Adventitial Fibroblasts.

    PubMed

    Xu, Jia-Ying; Chang, Neng-Bin; Li, Tao; Jiang, Rui; Sun, Xiao-Lei; He, Yan-Zheng; Jiang, Jun

    2017-07-01

    The phenotypic modulation of vascular adventitial fibroblasts plays an important role in vascular remodeling. Evidence have shown that endothelial cells and adventitial fibroblasts interact under certain conditions. In this study, we investigated the influence of endothelial cells on the phenotypic modulation of adventitial fibroblasts. Endothelial cells and adventitial fibroblasts from rat thoracic aorta were cultivated in a co-culture system and adventitial fibroblasts were induced with angiotensin II (Ang II). Collagen I and alpha smooth muscle actin (α-SMA) expression and migration of adventitial fibroblasts were analyzed. Ang II upregulated the expression of collagen I and α-SMA and the migration of adventitial fibroblasts. Adventitial fibroblasts-endothelial cells co-culturing attenuated the effects of Ang II. Homocysteine-treated endothelial cells, which are functionally impaired, were less inhibitory of the phenotypic modulation of adventitial fibroblasts. Supplementation of endothelial cells with L-arginine (L-Arg) or 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) enhanced the trends, while with L-NG-nitroarginine methyl ester (L-NAME) or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) the opposite effect was observed. Under the influence of Ang II, adventitial fibroblasts were prone to undergo phenotypic modulation, which was closely related to vascular remodeling. Our study showed that endothelial cells influenced fibroblast phenotypic transformation and such effect would be mediated through the nitric oxide (NO)/cGMP signaling pathway. J. Cell. Biochem. 118: 1921-1927, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Mitochondrial inheritance in budding yeast.

    PubMed

    Boldogh, I R; Yang, H C; Pon, L A

    2001-06-01

    During the past decade significant advances were made toward understanding the mechanism of mitochondrial inheritance in the yeast Saccharomyces cerevisiae. A combination of genetics, cell-free assays and microscopy has led to the discovery of a great number of components. These fall into three major categories: cytoskeletal elements, mitochondrial membrane components and regulatory proteins. These proteins mediate activities, including movement of mitochondria from mother cells to buds, segregation of mitochondria and mitochondrial DNA, and equal distribution of the organelle between mother cells and buds during yeast cell division.

  4. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    PubMed Central

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  5. Lipid Droplets Can Spontaneously Bud Off from a Symmetric Bilayer.

    PubMed

    Deslandes, François; Thiam, Abdou Rachid; Forêt, Lionel

    2017-07-11

    Lipid droplets (LDs) are cytosolic organelles that protrude from the endoplasmic reticulum membrane under energy-rich conditions. How an LD buds off from the endoplasmic reticulum bilayer is still elusive. By using a continuous media description, we computed the morphology of a lipid droplet embedded in between two identical monolayers of a bilayer. We found that beyond a critical volume, the droplet morphology abruptly transits from a symmetrical elongated lens to a spherical protrusion. This budding transition does not require any energy-consuming machinery, or curvature-inducing agent, or intrinsic asymmetry of the bilayer; it is solely driven by the large interfacial energy of the LD, as opposed to the bilayer surface tension. This spontaneous budding mechanism gives key insights on cellular LD formation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Budding yeast colony growth study based on circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  7. Foamy Virus Budding and Release

    PubMed Central

    Hütter, Sylvia; Zurnic, Irena; Lindemann, Dirk

    2013-01-01

    Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems. PMID:23575110

  8. Dehydration-stress affects vegetative reproduction and transcriptome profiles in underground adventitious buds of leafy spurge (Euphorbia esula)

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge is an invasive perennial weed that infests mainly range, recreational and right-of-way lands in the great plains of the US and Canada. Although spread occurs by both seeds and roots, the perennial nature of leafy spurge is attributed to vegetative reproduction from an abundance of under...

  9. Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust.

    PubMed

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings.

  10. Molecular Cloning, Characterization and Expression Analysis of the SAMS Gene during Adventitious Root Development in IBA-Induced Tetraploid Black Locust

    PubMed Central

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings. PMID:25285660

  11. Root Formation in Ethylene-Insensitive Plants1

    PubMed Central

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  12. The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast.

    PubMed

    Fraschini, Roberta; Venturetti, Marianna; Chiroli, Elena; Piatti, Simonetta

    2008-06-01

    During asymmetric cell division, spindle positioning is critical to ensure the unequal segregation of polarity factors and generate daughter cells with different sizes or fates. In budding yeast the boundary between mother and daughter cell resides at the bud neck, where cytokinesis takes place at the end of the cell cycle. Since budding and bud neck formation occur much earlier than bipolar spindle formation, spindle positioning is a finely regulated process. A surveillance device called the SPOC (spindle position checkpoint) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability.

  13. The Cytokinin Type-B Response Regulator PtRR13 Is a Negative Regulator of Adventitious Root Development in Populus1[C][W][OA

    PubMed Central

    Ramírez-Carvajal, Gustavo A.; Morse, Alison M.; Dervinis, Christopher; Davis, John M.

    2009-01-01

    Adventitious root formation at the base of plant cuttings is an innate de novo organogenesis process that allows massive vegetative propagation of many economically and ecologically important species. The early molecular events following shoot excision are not well understood. Using whole-genome microarrays, we detected significant transcriptome remodeling during 48 h following shoot removal in Populus tremula × Populus alba softwood cuttings in the absence of exogenous auxin, with 27% and 36% of the gene models showing differential abundance between 0 and 6 h and between 6 and 24 h, respectively. During these two time intervals, gene networks involved in protein turnover, protein phosphorylation, molecular transport, and translation were among the most significantly regulated. Transgenic lines expressing a constitutively active form of the Populus type-B cytokinin response regulator PtRR13 (ΔDDKPtRR13) have a delayed rooting phenotype and cause misregulation of CONTINUOUS VASCULAR RING1, a negative regulator of vascularization; PLEIOTROPIC DRUG RESISTANCE TRANSPORTER9, an auxin efflux transporter; and two APETALA2/ETHYLENE RESPONSE FACTOR genes with sequence similarity to TINY. Inappropriate cytokinin action via ΔDDKPtRR13 expression appeared to disrupt adventitious root development 24 h after shoot excision, when root founder cells are hypothesized to be sensitive to the negative effects of cytokinin. Our results are consistent with PtRR13 acting downstream of cytokinin to repress adventitious root formation in intact plants, and that reduced cytokinin signaling after shoot excision enables coordinated expression of ethylene, auxin, and vascularization pathways leading to adventitious root development. PMID:19395410

  14. Differential regulation of matrix metalloproteinases in varicella zoster virus-infected human brain vascular adventitial fibroblasts.

    PubMed

    Nagel, Maria A; Choe, Alexander; Rempel, April; Wyborny, Ann; Stenmark, Kurt; Gilden, Don

    2015-11-15

    Upon reactivation, varicella zoster virus (VZV) spreads transaxonally, infects cerebral arteries and causes ischemic or hemorrhagic stroke, as well as aneurysms. The mechanism(s) of VZV-induced aneurysm formation is unknown. However, matrix metalloproteinases (MMPs), which digest extracellular structural proteins in the artery wall, play a role in cerebral and aortic artery aneurysm formation and rupture. Here, we examined the effect of VZV infection on expression of MMP-1, -2, -3, and -9 in primary human brain vascular adventitial fibroblasts (BRAFS). At 6 days post-infection, VZV- and mock-infected BRAFs were analyzed for mRNA levels of MMP-1, -2, -3 and -9 by RT-PCR and for corresponding total intra- and extracellular protein levels by multiplex ELISA. The activity of MMP-1 was also measured in a substrate cleavage assay. Compared to mock-infected BRAFs, MMP-1, MMP-3 and MMP-9 transcripts, cell lysate protein and conditioned supernatant protein were all increased in VZV-infected BRAFs, whereas MMP-2 transcripts, cell lysate protein and conditioned supernatant protein were decreased. MMP-1 from the conditioned supernatant of VZV-infected BRAFs showed increased cleavage activity on an MMP-1-specific substrate compared to mock-infected BRAFs. Differential regulation of MMPs in VZV-infected BRAFs may contribute to aneurysm formation in VZV vasculopathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Tritrichomonas foetus: budding from multinucleated pseudocysts.

    PubMed

    Pereira-Neves, Antonio; Benchimol, Marlene

    2009-11-01

    Tritrichomonas foetus is a flagellated protozoan parasite that causes trichomoniasis, a major sexually transmitted disease in cattle. T. foetus presents a simple life cycle, exhibiting only the trophozoitic form. However, under unfavorable growth conditions, the trophozoites, which are polar and flagellated, can round up and internalize their flagella forming pseudocysts. In this form no cyst wall surrounds the cell and it also displays a distinct mitosis when compared with the trophozoite form. In pseudocyst mitosis, the cell proceeds with duplication of cytoskeletal and mastigont structures; nuclear division occurs but without the corresponding cytoplasm division. Thus, giant multinucleated cells which present many mastigont structures are formed (approximately 62% of the population). These polymastigont/multinucleated cells are maintained when the cells are under stress conditions. When environmental conditions become favorable, the flagella are externalized and new flagellated trophozoites one by one, gradually bud from the multinucleated cell. Thus, in order to better understand the pseudocyst mitosis, the polymastigont formation and the generation of new cells by this budding process, video microscopy and other complementary techniques, such as immunofluorescence and transmission electron microscopy were used.

  16. Venous cystic adventitial disease presenting as an enlarging groin mass.

    PubMed

    Scott, Mark F; Gavin, Timothy; Levin, Steven

    2014-02-01

    Venous cystic adventitial disease is an exceedingly rare vascular disorder, with 12 cases reported in the past decade. A 60-year-old woman presented with a painful, palpable groin mass without leg swelling. She was initially thought to have a nonreducible inguinal hernia. A computed tomography scan was obtained that revealed a cystic mass involving the right common femoral vein. Previous imaging revealed that the mass had enlarged over time. In the operating room, the cyst wall was excised without compromising vein integrity. The patient had an uneventful recovery and her pain resolved. We review the presentation, diagnosis, and treatment of this condition. We believe that the rapid evolution of this lesion suggests that an unknown inciting factor triggers its onset and growth.

  17. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  18. GATA6 Is a Crucial Regulator of Shh in the Limb Bud

    PubMed Central

    Kozhemyakina, Elena; Ionescu, Andreia; Lassar, Andrew B.

    2014-01-01

    In the limb bud, patterning along the anterior-posterior (A-P) axis is controlled by Sonic Hedgehog (Shh), a signaling molecule secreted by the “Zone of Polarizing Activity”, an organizer tissue located in the posterior margin of the limb bud. We have found that the transcription factors GATA4 and GATA6, which are key regulators of cell identity, are expressed in an anterior to posterior gradient in the early limb bud, raising the possibility that GATA transcription factors may play an additional role in patterning this tissue. While both GATA4 and GATA6 are expressed in an A-P gradient in the forelimb buds, the hindlimb buds principally express GATA6 in an A-P gradient. Thus, to specifically examine the role of GATA6 in limb patterning we generated Prx1-Cre; GATA6fl/fl mice, which conditionally delete GATA6 from their developing limb buds. We found that these animals display ectopic expression of both Shh and its transcriptional targets specifically in the anterior mesenchyme of the hindlimb buds. Loss of GATA6 in the developing limbs results in the formation of preaxial polydactyly in the hindlimbs. Conversely, forced expression of GATA6 throughout the limb bud represses expression of Shh and results in hypomorphic limbs. We have found that GATA6 can bind to chromatin (isolated from limb buds) encoding either Shh or Gli1 regulatory elements that drive expression of these genes in this tissue, and demonstrated that GATA6 works synergistically with FOG co-factors to repress expression of luciferase reporters driven by these sequences. Most significantly, we have found that conditional loss of Shh in limb buds lacking GATA6 prevents development of hindlimb polydactyly in these compound mutant embryos, indicating that GATA6 expression in the anterior region of the limb bud blocks hindlimb polydactyly by repressing ectopic expression of Shh. PMID:24415953

  19. Chirality-Induced Budding: A Raft-Mediated Mechanism for Endocytosis and Morphology of Caveolae?

    PubMed Central

    Sarasij, R. C.; Mayor, Satyajit; Rao, Madan

    2007-01-01

    The formation of transport carriers (spherical vesicles and tubules) involves membrane budding, growth, and ultimately fission. We propose a mechanism of membrane budding, wherein the tilt and chirality of constituent molecules, confined to a patch of area A, induces buds of ∼50–100 nm that are comparable to vesicles involved in endocytosis. Because such chiral and tilted lipid molecules are likely to exist in “rafts”, we suggest the involvement of this mechanism in generating membrane buds in the clathrin and dynamin-independent, raft-component mediated endocytosis of glycosylphosphatidylinositol-anchored proteins. We argue that caveolae, permanent cell surface structures with characteristic morphology and enriched in raft constituents, are also likely to be formed by this mechanism. Thus, molecular chirality and tilt, and its expression over large spatial scales may be a common organizing principle in membrane budding of transport carriers. PMID:17237196

  20. Adventitious Reinforcement of Maladaptive Stimulus Control Interferes with Learning.

    PubMed

    Saunders, Kathryn J; Hine, Kathleen; Hayashi, Yusuke; Williams, Dean C

    2016-09-01

    Persistent error patterns sometimes develop when teaching new discriminations. These patterns can be adventitiously reinforced, especially during long periods of chance-level responding (including baseline). Such behaviors can interfere with learning a new discrimination. They can also disrupt already learned discriminations, if they re-emerge during teaching procedures that generate errors. We present an example of this process. Our goal was to teach a boy with intellectual disabilities to touch one of two shapes on a computer screen (in technical terms, a simple simultaneous discrimination). We used a size-fading procedure. The correct stimulus was at full size, and the incorrect-stimulus size increased in increments of 10 %. Performance was nearly error free up to and including 60 % of full size. In a probe session with the incorrect stimulus at full size, however, accuracy plummeted. Also, a pattern of switching between choices, which apparently had been established in classroom instruction, re-emerged. The switching pattern interfered with already-learned discriminations. Despite having previously mastered a fading step with the incorrect stimulus up to 60 %, we were unable to maintain consistently high accuracy beyond 20 % of full size. We refined the teaching program such that fading was done in smaller steps (5 %), and decisions to "step back" to a smaller incorrect stimulus were made after every 5-instead of 20-trials. Errors were rare, switching behavior stopped, and he mastered the discrimination. This is a practical example of the importance of designing instruction that prevents adventitious reinforcement of maladaptive discriminated response patterns by reducing errors during acquisition.

  1. Vasohibin prevents arterial neointimal formation through angiogenesis inhibition

    SciTech Connect

    Yamashita, Hiroshi; Abe, Mayumi; Watanabe, Kazuhide; Shimizu, Kazue; Moriya, Takuya; Sato, Akira; Satomi, Susumu; Ohta, Hideki; Sonoda, Hikaru; Sato, Yasufumi . E-mail: y-sato@idac.tohoku.ac.jp

    2006-07-07

    Vasohibin is a VEGF-inducible angiogenesis inhibitor in vascular endothelium. Here we examined the presence of vasohibin in human arterial wall, and found it in endothelium of adventitial microvessels in atherosclerotic lesion. Adventitial angiogenesis is involved in the progression of neointimal formation. Even in the presence of endogenous angiogenesis inhibitors, pathological angiogenesis persists. However, the supplementation of exogenous angiogenesis inhibitors can prevent pathological angiogenesis. We evaluated the potential role of vasohibin in neointimal formation. Adenovirus-mediated human vasohibin gene transfer in mouse liver resulted in the release of vasohibin in plasma and exhibited anti-angiogenic effects at remote sites. This gene transfer inhibited adventitial angiogenesis, macrophage infiltration, and neointimal formation after cuff placement on mouse femoral artery. Vasohibin exhibited no direct effect on migration and proliferation of smooth muscle cells. Thus, vasohibin has an activity to prevent neointimal formation by inhibiting adventitial angiogenesis.

  2. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.

    The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.

    The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.

    Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.

    Each image covers a swath approximately 380 kilometers wide.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  3. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team

  4. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.

    The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.

    The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.

    Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.

    Each image covers a swath approximately 380 kilometers wide.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team

  6. Tropical Storms Bud and Dera

    NASA Image and Video Library

    2001-04-04

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. http://photojournal.jpl.nasa.gov/catalog/PIA03400

  7. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  8. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    PubMed

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (P<0.05). In addition, catalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  9. Coevolutionary patterning of teeth and taste buds

    PubMed Central

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  10. Coevolutionary patterning of teeth and taste buds.

    PubMed

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-03

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  11. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana

    PubMed Central

    Veloccia, A.; Fattorini, L.; Della Rovere, F.; Sofo, A.; D’Angeli, S.; Betti, C.; Falasca, G.; Altamura, M.M.

    2016-01-01

    Adventitious roots (ARs) are post-embryonic roots essential for plant survival and propagation. Indole-3-acetic acid (IAA) is the auxin that controls AR formation; however, its precursor indole-3-butyric acid (IBA) is known to enhance it. Ethylene affects many auxin-dependent processes by affecting IAA synthesis, transport and/or signaling, but its role in AR formation has not been elucidated. This research investigated the role of ethylene in AR formation in dark-grown Arabidopsis thaliana seedlings, and its interaction with IAA/IBA. A number of mutants/transgenic lines were exposed to various treatments, and mRNA in situ hybridizations were carried out and hormones were quantified In the wild-type, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 0.1 μM enhanced AR formation when combined with IBA (10 μM), but reduced it when applied alone; this effect did not occur in the ein3eil1 ethylene-insensitive mutant. ACC inhibited the expression of the IAA-biosynthetic genes WEI2, WEI7, and YUC6, but enhanced IBA-to-IAA conversion, as shown by the response of the ech2ibr10 mutant and an increase in the endogenous levels of IAA. The ethylene effect was independent of auxin-signaling by TIR1-AFB2 and IBA-efflux by ABCG carriers, but it was dependent on IAA-influx by AUX1/LAX3. Taken together, the results demonstrate that a crosstalk involving ethylene signaling, IAA-influx, and IBA-to-IAA conversion exists between ethylene and IAA in the control of AR formation. PMID:27831474

  12. Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis[W

    PubMed Central

    Gutierrez, Laurent; Mongelard, Gaëlle; Floková, Kristýna; Păcurar, Daniel I.; Novák, Ondřej; Staswick, Paul; Kowalczyk, Mariusz; Păcurar, Monica; Demailly, Hervé; Geiss, Gaia; Bellini, Catherine

    2012-01-01

    Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways. PMID:22730403

  13. An anatomically based imaging sign to detect adventitial cyst derived from the superior tibiofibular joint.

    PubMed

    Hébert-Blouin, Marie-Noëlle; Pirola, Elena; Amrami, Kimberly K; Wang, Huan; Desy, Nicholas M; Spinner, Robert J

    2011-10-01

    The origin for complex intraneural cysts remains controversial despite recent emerging evidence to support their articular origin. The coexistence of intraneural and adventitial cysts has been described due to the proximate neurovascular bundle, i.e., the articular (neural) branch and vessels at the joint capsule. To clarify the pathogenesis, anatomically based imaging patterns can be identified. This paper characterizes a common finding identified on MRI describing the adventitial component originating from the superior tibiofibular joint (STFJ). MRIs of patients with fibular (peroneal) (n = 24) and tibial (n = 7) intraneural ganglion cysts were reviewed. Eleven patients with fibular intraneural ganglion cysts were identified as having a coexisting adventitial component. In all cases, the adventitial cyst extended from the anterior portion of the STFJ, within the capsular vessels, and along the anterior tibial vessels. The reproducible anatomy permitted the identification of an imaging pattern: the "vascular U" sign, consisting of cystic anterior tibial vessels running through the interosseous membrane between the proximal tibia and fibula. This sign was seen on axial MR image(s) obtained at the level of the fibular neck in all cases. To generalize these findings, the rare tibial intraneural ganglion cysts (derived from the posterior aspect of the STFJ) were examined; two cases had coexisting adventitial cysts with visualization of the vascular U sign. This new imaging pattern can improve the identification of adventitial cysts at the level of the STFJ.

  14. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites.

    PubMed Central

    Amberg, D C; Zahner, J E; Mulholland, J W; Pringle, J R; Botstein, D

    1997-01-01

    A search for Saccharomyces cerevisiae proteins that interact with actin in the two-hybrid system and a screen for mutants that affect the bipolar budding pattern identified the same gene, AIP3/BUD6. This gene is not essential for mitotic growth but is necessary for normal morphogenesis. MATa/alpha daughter cells lacking Aip3p place their first buds normally at their distal poles but choose random sites for budding in subsequent cell cycles. This suggests that actin and associated proteins are involved in placing the bipolar positional marker at the division site but not at the distal tip of the daughter cell. In addition, although aip3 mutant cells are not obviously defective in the initial polarization of the cytoskeleton at the time of bud emergence, they appear to lose cytoskeletal polarity as the bud enlarges, resulting in the formation of cells that are larger and rounder than normal. aip3 mutant cells also show inefficient nuclear migration and nuclear division, defects in the organization of the secretory system, and abnormal septation, all defects that presumably reflect the involvement of Aip3p in the organization and/or function of the actin cytoskeleton. The sequence of Aip3p is novel but contains a predicted coiled-coil domain near its C terminus that may mediate the observed homo-oligomerization of the protein. Aip3p shows a distinctive localization pattern that correlates well with its likely sites of action: it appears at the presumptive bud site prior to bud emergence, remains near the tips of small bund, and forms a ring (or pair of rings) in the mother-bud neck that is detectable early in the cell cycle but becomes more prominent prior to cytokinesis. Surprisingly, the localization of Aip3p does not appear to require either polarized actin or the septin proteins of the neck filaments. Images PMID:9247651

  15. Neuronal Nuclear Membrane Budding Occurs during a Developmental Window Modulated by Torsin Paralogs.

    PubMed

    Tanabe, Lauren M; Liang, Chun-Chi; Dauer, William T

    2016-09-20

    DYT1 dystonia is a neurodevelopmental disease that manifests during a discrete period of childhood. The disease is caused by impaired function of torsinA, a protein linked to nuclear membrane budding. The relationship of NE budding to neural development and CNS function is unclear, however, obscuring its potential role in dystonia pathogenesis. We find NE budding begins and resolves during a discrete neurodevelopmental window in torsinA null neurons in vivo. The developmental resolution of NE budding corresponds to increased torsinB protein, while ablating torsinB from torsinA null neurons prevents budding resolution and causes lethal neural dysfunction. Developmental changes in torsinB also correlate with NE bud formation in differentiating DYT1 embryonic stem cells, and overexpression of torsinA or torsinB rescues NE bud formation in this system. These findings identify a torsinA neurodevelopmental window that is essential for normal CNS function and have important implications for dystonia pathogenesis and therapeutics. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Intracellular and extracellular regulation of ureteric bud morphogenesis

    PubMed Central

    DAVIES, JAMIE

    2001-01-01

    The urinary collecting duct system of the permanent kidney develops by growth and branching of an initially unbranched epithelial tubule, the ureteric bud. Formation of the ureteric bud as an outgrowth of the wolffian duct is induced by signalling molecules (such as GDNF) that emanate from the adjacent metanephrogenic mesenchyme. Once it has invaded the mesenchyme, growth and branching of the bud is controlled by a variety of molecules, such as the growth factors GDNF, HGF, TGFβ, activin, BMP-2, BMP-7, and matrix molecules such as heparan sulphate proteoglycans and laminins. These various influences are integrated by signal transduction systems inside ureteric bud cells, with the MAP kinase, protein kinase A and protein kinase C pathways appearing to play major roles. The mechanisms of morphogenetic change that produce branching remain largely obscure, but matrix metalloproteinases are known to be necessary for the process, and there is preliminary evidence for the involvement of the actin/myosin contractile cytoskeleton in creating branch points. PMID:11322719

  17. Cryo Electron Tomography of Native HIV-1 Budding Sites

    PubMed Central

    Carlson, Lars-Anders; de Marco, Alex; Oberwinkler, Heike; Habermann, Anja; Briggs, John A. G.; Kräusslich, Hans-Georg; Grünewald, Kay

    2010-01-01

    The structure of immature and mature HIV-1 particles has been analyzed in detail by cryo electron microscopy, while no such studies have been reported for cellular HIV-1 budding sites. Here, we established a system for studying HIV-1 virus-like particle assembly and release by cryo electron tomography of intact human cells. The lattice of the structural Gag protein in budding sites was indistinguishable from that of the released immature virion, suggesting that its organization is determined at the assembly site without major subsequent rearrangements. Besides the immature lattice, a previously not described Gag lattice was detected in some budding sites and released particles; this lattice was found at high frequencies in a subset of infected T-cells. It displays the same hexagonal symmetry and spacing in the MA-CA layer as the immature lattice, but lacks density corresponding to NC-RNA-p6. Buds and released particles carrying this lattice consistently lacked the viral ribonucleoprotein complex, suggesting that they correspond to aberrant products due to premature proteolytic activation. We hypothesize that cellular and/or viral factors normally control the onset of proteolytic maturation during assembly and release, and that this control has been lost in a subset of infected T-cells leading to formation of aberrant particles. PMID:21124872

  18. The expression pattern of the Distal-less homeobox-containing gene Dlx-5 in the developing chick limb bud suggests its involvement in apical ectodermal ridge activity, pattern formation, and cartilage differentiation.

    PubMed

    Ferrari, D; Sumoy, L; Gannon, J; Sun, H; Brown, A M; Upholt, W B; Kosher, R A

    1995-08-01

    Here we report the isolation from a chick limb bud cDNA library of a cDNA that contains the full coding sequence of chicken Dlx-5, a member of the Distal-less (Dlx) family of homeobox-containing genes that encode homeodomains highly similar to that of the Drosophila Distal-less gene, a gene that is required for limb development in the Drosophila embryo. The expression pattern of Dlx-5 in the developing chick limb bud suggests that it may be involved in several aspects of limb morphogenesis. Dlx-5 is expressed in the apical ectodermal ridge (AER) which directs the outgrowth and patterning of underlying limb mesoderm. During early limb development Dlx-5 is also expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the mid-proximal posterior margin that corresponds to the posterior necrotic zone. These mesodermal domains of Dlx-5 expression roughly correspond to the anterior and posterior boundaries of the progress zone, the group of highly proliferating undifferentiated mesodermal cells underneath the AER that will give rise to the skeletal elements of the limb and associated structures. The AER and anterior and posterior mesodermal domains of Dlx-5 expression are regions in which the homeobox-containing gene Msx-2 is also highly expressed, suggesting that Dlx-5 and Msx-2 might be involved in regulatory networks that control AER activity and demarcate the progress zone. In addition, Dlx-5 is expressed in high amounts by the differentiating cartilaginous skeletal elements of the limb, suggesting it may be involved in regulating the onset of limb cartilage differentiation.

  19. Experimental evolution in budding yeast

    NASA Astrophysics Data System (ADS)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  20. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    PubMed

    Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Early action of pea symbiotic gene NOD3 is confirmed by adventitious root phenotype.

    PubMed

    Novák, Karel

    2010-11-01

    A supernodulating and Nts (nitrate-tolerant symbiosis) symbiotic mutation of pea (Pisum sativum L.) line RisfixC was found to retain its expression in the distant genetic background of pea lines Afghanistan L1268, Zhodino E900, and cv. Arvika. This finding allowed for reliable scoring for the trait in mapping crosses. The RisfixC mutation was localized 8.2cM apart from SYM2 and cosegregated with molecular markers for SYM2-NOD3 region Psc923 and OA-1. Grafting experiments showed that supernodulation is root-determined, consistently with mutants in the NOD3 locus. Therefore, the mutation of RisfixC can be localized in gene NOD3. Like in other published nod3 alleles, the RisfixC mutation determines supernodulation when it is expressed in the root but not in the shoot. Supernodulated adventitious roots that are spontaneously formed in the wild-type scions on mutant rootstocks indicate that the descending systemic signal, which is inhibitory to nodule formation, is absent in this type of chimeric plants. Since the descending signal production in the wild-type shoot reflects the presence of the ascending root signal, the nod3-associated lesion must be located in the beginning of the systemic circuit regulating nodule number. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. Najda.

    PubMed

    Mazri, Mouaad Amine; Belkoura, Ilham; Meziani, Reda; Mokhless, Boutaïna; Nour, Souad

    2017-05-01

    An efficient regeneration system through somatic embryogenesis was developed for date palm cv. Najda. Adventitious bud and proximal leaf segments cultured on Murashige and Skoog (MS) medium supplemented with various combinations of auxins and cytokinins induced embryogenesis after at least 6 months of culture. Somatic embryogenesis induction seemed correlated with the type of the explant, the induction period and the auxin used. The highest rate of somatic embryogenesis (86.0%) was obtained on bud explants cultured on MS medium supplemented with 45.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D), and 4.5 µM kinetin or 4.5 µM 6-(dimethylallylamino) purine (2iP). Whereas, low levels of embryogenesis were obtained on media supplemented with 1-naphthalene acetic acid (NAA) or 2-naphthoxyacetic acid (NOA). Proximal leaf segments showed somatic embryogenesis only when cultured on media supplemented with 2,4-D or picloram. Statistical analysis revealed significant effects of explant type and plant growth regulators (PGRs) combination on somatic embryogenesis. Somatic embryos were germinated successfully on PGR-free MS medium with or without activated charcoal (50.0-60.0 and 26.6-36.6%, respectively), and 80.0% of plantlets survived after transferring to a glasshouse for 6 months. Our results will be useful for large-scale propagation of date palm cv. Najda, characterized by high fruit quality and bayoud disease resistance.

  3. Decellularized Tooth Bud Scaffolds for Tooth Regeneration.

    PubMed

    Zhang, W; Vazquez, B; Oreadi, D; Yelick, P C

    2017-01-01

    Whole tooth regeneration approaches currently are limited by our inability to bioengineer full-sized, living replacement teeth. Recently, decellularized organ scaffolds have shown promise for applications in regenerative medicine by providing a natural extracellular matrix environment that promotes cell attachment and tissue-specific differentiation leading to full-sized organ regeneration. We hypothesize that decellularized tooth buds (dTBs) created from unerupted porcine tooth buds (TBs) can be used to guide reseeded dental cell differentiation to form whole bioengineered teeth, thereby providing a potential off-the-shelf scaffold for whole tooth regeneration. Porcine TBs were harvested from discarded 6-mo-old pig jaws, and decellularized by successive sodium dodecyl sulfate/Triton-X cycles. Four types of replicate implants were used in this study: 1) acellular dTBs; 2) recellularized dTBs seeded with porcine dental epithelial cells, human dental pulp cells, and human umbilical vein endothelial cells (recell-dTBs); 3) dTBs seeded with bone morphogenetic protein (BMP)-2 (dTB-BMPs); and 4) freshly isolated nondecellularized natural TBs (nTBs). Replicate samples were implanted into the mandibles of host Yucatan mini-pigs and grown for 3 or 6 mo. Harvested mandibles with implanted TB constructs were fixed in formalin, decalcified, embedded in paraffin, sectioned, and analyzed via histological methods. Micro-computed tomography (CT) analysis was performed on harvested 6-mo samples prior to decalcification. All harvested constructs exhibited a high degree of cellularity. Significant production of organized dentin and enamel-like tissues was observed in dTB-recell and nTB implants, but not in dTB or dTB-BMP implants. Micro-CT analyses of 6-mo implants showed the formation of organized, bioengineered teeth of comparable size to natural teeth. To our knowledge, these results are the first to describe the potential use of dTBs for functional whole tooth regeneration.

  4. HIV Pol Inhibits HIV Budding and Mediates the Severe Budding Defect of Gag-Pol

    PubMed Central

    Gan, Xin; Gould, Stephen J.

    2012-01-01

    The prevailing hypothesis of HIV budding posits that the viral Gag protein drives budding, and that the Gag p6 peptide plays an essential role by recruiting host-cell budding factors to sites of HIV assembly. HIV also expresses a second Gag protein, p160 Gag-Pol, which lacks p6 and fails to bud from cells, consistent with the prevailing hypothesis of HIV budding. However, we show here that the severe budding defect of Gag-Pol is not caused by the absence of p6, but rather, by the presence of Pol. Specifically, we show that (i) the budding defect of Gag-Pol is unaffected by loss of HIV protease activity and is therefore an intrinsic property of the Gag-Pol polyprotein, (ii) the N-terminal 433 amino acids of Gag and Gag-Pol are sufficient to drive virus budding even though they lack p6, (iii) the severe budding defect of Gag-Pol is caused by a dominant, cis-acting inhibitor of budding in the HIV Pol domain, and (iv) Gag-Pol inhibits Gag and virus budding in trans, even at normal levels of Gag and Gag-Pol expression. These and other data support an alternative hypothesis of HIV budding as a process that is mediated by the normal, non-viral pathway of exosome/microvesicle biogenesis. PMID:22235295

  5. The architecture of adventitial elastin in the canine infrarenal aorta.

    PubMed

    Haas, K S; Phillips, S J; Comerota, A J; White, J V

    1991-05-01

    Although the artery wall consists of three distinct layers, only the structures of the intima and media have been well characterized. The adventitia has generally been overlooked. Our examination focused on the organization of elastin and collagen which are the major components of this tunic. Canine infrarenal aortas were excised, stretched to their in vivo length, then pressure fixed in formalin. Transverse, longitudinal, and frontal sections were prepared with specific elastin and collagen stains. Areas of adventitia in these sections were examined with LM, and interconnections between collagen and elastin were photographed at various magnifications. Subsequently, the slides were fractured for attachment to SEM stubs, and the coverslips were demounted. The identical areas were then examined with SEM using the LM micrographs as a guide to identify elastin and collagen. Whole mount aortic ring preparations were digested in formic acid for 72 and 96 h at 45 degrees C to confirm adventitial elastin architecture. The adventitia was organized in alternating lamellae of collagen and elastin. The elastin lamellae consisted of continuous sheets of elastin with a longitudinal fibrillar substructure. Finer circumferential elastin fibers were also identified. These attached to both longitudinal elastin and adjacent collagen lamellae. Collagen lamellae were arranged in broad corrugated bands of fibrils. The unique architecture of the adventitia may explain some of the visco-elastic properties of the aorta in both normal and pathologic states.

  6. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding.

    PubMed

    Calvo-Polanco, Mónica; Señorans, Jorge; Zwiazek, Janusz J

    2012-06-27

    Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under

  7. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding

    PubMed Central

    2012-01-01

    Background Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Results Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Conclusions Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water

  8. Actin cable dynamics in budding yeast

    PubMed Central

    Yang, Hyeong-Cheol; Pon, Liza A.

    2002-01-01

    Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (i) bud-associated cables, which extend from the bud along the mother-bud axis, and (ii) randomly oriented cables, which are relatively short. Time-lapse imaging of Abp140p–GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abp140p–GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 ± 0.08 μm/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 ± 0.14 μm/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation. PMID:11805329

  9. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    PubMed

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events.

  10. Detection of patients considering observation frequency of continuous and discontinuous adventitious sounds in lung sounds.

    PubMed

    Nakamura, Naoki; Yamashita, Masaru; Matsunaga, Shoichi

    2016-08-01

    We propose an improved approach for distinguishing between healthy subjects and patients with pulmonary emphysema by the use of one stochastic acoustic model for continuous adventitious sounds and another for discontinuous adventitious sounds. These models are able to represent the spectral features of the adventitious sounds for the detection of abnormal respiration. However, abnormal respiratory sounds with unclassifiable spectral features are present among the continuous and discontinuous adventitious sounds and mixing noises. These sounds cause difficulties in achieving a highly accurate classification. In this study, the difference in occurrence frequencies between two types of adventitious sounds for each considered auscultation point and inspiration/expiration was considered. This difference, in combination with the confusion tendency of the classifier, was formulated as the validity score of each respiratory sound. The conventional spectral likelihood and the newly formulated validity score were combined to perform detection of abnormal respiration and patients. In the classification of healthy subjects and patients, the proposed approach achieved a higher classification rate (87.7%) than the conventional method (85.2%), demonstrating the statistical superiority (5% level) of the former.

  11. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation

    PubMed Central

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Schwambach, Joseli; Bellini, Catherine

    2014-01-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process. PMID:24596172

  12. Quantification of Adventitial Vasa Vasorum Vascularization in Double-injury Restenotic Arteries

    PubMed Central

    Ye, Meng; Zhang, Bai-Gen; Zhang, Lan; Xie, Hui; Zhang, Hao

    2015-01-01

    Background: Accumulating evidence indicates a potential role of adventitial vasa vasorum (VV) dysfunction in the pathophysiology of restenosis. However, characterization of VV vascularization in restenotic arteries with primary lesions is still missing. In this study, we quantitatively evaluated the response of adventitial VV to vascular injury resulting from balloon angioplasty in diseased arteries. Methods: Primary atherosclerotic-like lesions were induced by the placement of an absorbable thread surrounding the carotid artery of New Zealand rabbits. Four weeks following double-injury induced that was induced by secondary balloon dilation, three-dimensional patterns of adventitial VV were reconstructed; the number, density, and endothelial surface of VV were quantified using micro-computed tomography. Histology and immunohistochemistry were performed in order to examine the development of intimal hyperplasia. Results: Results from our study suggest that double injured arteries have a greater number of VV, increased luminal surface, and an elevation in the intima/media ratio (I/M), along with an accumulation of macrophages and smooth muscle cells in the intima, as compared to sham or single injury arteries. I/M and the number of VV were positively correlated (R2 = 0.82, P < 0.001). Conclusions: Extensive adventitial VV neovascularization occurs in injured arteries after balloon angioplasty, which is associated with intimal hyperplasia. Quantitative assessment of adventitial VV response may provide insight into the basic biological process of postangioplasty restenosis. PMID:26228224

  13. Distinct Domains of Yeast Cortical Tag Proteins Bud8p and Bud9p Confer Polar Localization and Functionality

    PubMed Central

    Krappmann, Anne-Brit; Taheri, Naimeh; Heinrich, Melanie

    2007-01-01

    In Saccharomyces cerevisiae, diploid yeast cells follow a bipolar budding program, which depends on the two transmembrane glycoproteins Bud8p and Bud9p that potentially act as cortical tags to mark the cell poles. Here, we have performed systematic structure-function analyses of Bud8p and Bud9p to identify functional domains. We find that polar transport of Bud8p and Bud9p does not depend on N-terminal sequences but instead on sequences in the median part of the proteins and on the C-terminal parts that contain the transmembrane domains. We show that the guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange factor Bud5p, which is essential for bud site selection and physically interacts with Bud8p, also interacts with Bud9p. Regions of Bud8p and Bud9p predicted to reside in the extracellular space are likely to confer interaction with the N-terminal region of Bud5p, implicating indirect interactions between the cortical tags and the GDP/GTP exchange factor. Finally, we have identified regions of Bud8p and Bud9p that are required for interaction with the cortical tag protein Rax1p. In summary, our study suggests that Bud8p and Bud9p carry distinct domains for delivery of the proteins to the cell poles, for interaction with the general budding machinery and for association with other cortical tag proteins. PMID:17581861

  14. Cystic adventitial disease of the popliteal artery: elongation into the media of the popliteal artery and communication with the knee joint capsule: report of a case.

    PubMed

    Unno, N; Kaneko, H; Uchiyama, T; Yamamoto, N; Nakamura, S

    2000-01-01

    Cystic disease of the popliteal artery is a rare disorder in which most cases involve the formation of an adventitial cyst that disturbs the popliteal artery blood flow. We present herein the case of a patient presenting with popliteal artery occlusion due to compression by a cyst which formed at the media of the popliteal artery. The onset occurred during a baseball game in which he played catcher. Preoperative magnetic resonance imaging demonstrated a communication of the cyst with the adjacent knee joint. This unusual case could provide important clues to help identify the pathogenesis of this disease.

  15. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    PubMed

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  16. Cell Biology of Yeast Zygotes, from Genesis to Budding

    PubMed Central

    Tartakoff, Alan M.

    2015-01-01

    The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in S. cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through to zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events. PMID:25862405

  17. How to halve ploidy: lessons from budding yeast meiosis.

    PubMed

    Kerr, Gary William; Sarkar, Sourav; Arumugam, Prakash

    2012-09-01

    Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.

  18. Developing a biomimetic tooth bud model.

    PubMed

    Smith, Elizabeth E; Zhang, Weibo; Schiele, Nathan R; Khademhosseini, Ali; Kuo, Catherine K; Yelick, Pamela C

    2017-01-08

    A long-term goal is to bioengineer, fully functional, living teeth for regenerative medicine and dentistry applications. Biologically based replacement teeth would avoid insufficiencies of the currently used dental implants. Using natural tooth development as a guide, a model was fabricated using post-natal porcine dental epithelial (pDE), porcine dental mesenchymal (pDM) progenitor cells, and human umbilical vein endothelial cells (HUVEC) encapsulated within gelatin methacrylate (GelMA) hydrogels. Previous publications have shown that post-natal DE and DM cells seeded onto synthetic scaffolds exhibited mineralized tooth crowns composed of dentin and enamel. However, these tooth structures were small and formed within the pores of the scaffolds. The present study shows that dental cell-encapsulated GelMA constructs can support mineralized dental tissue formation of predictable size and shape. Individually encapsulated pDE or pDM cell GelMA constructs were analysed to identify formulas that supported pDE and pDM cell attachment, spreading, metabolic activity, and neo-vasculature formation with co-seeded endothelial cells (HUVECs). GelMa constructs consisting of pDE-HUVECS in 3% GelMA and pDM-HUVECs within 5% GelMA supported dental cell differentiation and vascular mineralized dental tissue formation in vivo. These studies are the first to demonstrate the use of GelMA hydrogels to support the formation of post-natal dental progenitor cell-derived mineralized and functionally vascularized tissues of specified size and shape. These results introduce a novel three-dimensional biomimetic tooth bud model for eventual bioengineered tooth replacement teeth in humans. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Selective Entrapment of Extrachromosomally Amplified DNA by Nuclear Budding and Micronucleation during S Phase

    PubMed Central

    Shimizu, Noriaki; Itoh, Nobuo; Utiyama, Hiroyasu; Wahl, Geoffrey M.

    1998-01-01

    Acentric, autonomously replicating extrachromosomal structures called double-minute chromosomes (DMs) frequently mediate oncogene amplification in human tumors. We show that DMs can be removed from the nucleus by a novel micronucleation mechanism that is initiated by budding of the nuclear membrane during S phase. DMs containing c-myc oncogenes in a colon cancer cell line localized to and replicated at the nuclear periphery. Replication inhibitors increased micronucleation; cell synchronization and bromodeoxyuridine–pulse labeling demonstrated de novo formation of buds and micronuclei during S phase. The frequencies of S-phase nuclear budding and micronucleation were increased dramatically in normal human cells by inactivating p53, suggesting that an S-phase function of p53 minimizes the probability of producing the broken chromosome fragments that induce budding and micronucleation. These data have implications for understanding the behavior of acentric DNA in interphase nuclei and for developing chemotherapeutic strategies based on this new mechanism for DM elimination. PMID:9508765

  20. Adventitious agents and live viral vectored vaccines: Considerations for archiving samples of biological materials for retrospective analysis.

    PubMed

    Klug, Bettina; Robertson, James S; Condit, Richard C; Seligman, Stephen J; Laderoute, Marian P; Sheets, Rebecca; Williamson, Anna-Lise; Gurwith, Marc; Kochhar, Sonali; Chapman, Louisa; Carbery, Baevin; Mac, Lisa M; Chen, Robert T

    2016-12-12

    Vaccines are one of the most effective public health medicinal products with an excellent safety record. As vaccines are produced using biological materials, there is a need to safeguard against potential contamination with adventitious agents. Adventitious agents could be inadvertently introduced into a vaccine through starting materials used for production. Therefore, extensive testing has been recommended at specific stages of vaccine manufacture to demonstrate the absence of adventitious agents. Additionally, the incorporation of viral clearance steps in the manufacturing process can aid in reducing the risk of adventitious agent contamination. However, for live viral vaccines, aside from possible purification of the virus or vector, extensive adventitious agent clearance may not be feasible. In the event that an adventitious agent is detected in a vaccine, it is important to determine its origin, evaluate its potential for human infection and pathology, and discern which batches of vaccine may have been affected in order to take risk mitigation action. To achieve this, it is necessary to have archived samples of the vaccine and ancillary components, ideally from developmental through to current batches, as well as samples of the biological materials used in the manufacture of the vaccine, since these are the most likely sources of an adventitious agent. The need for formal guidance on such vaccine sample archiving has been recognized but not fulfilled. We summarize in this paper several prior major cases of vaccine contamination with adventitious agents and provide points for consideration on sample archiving of live recombinant viral vector vaccines for use in humans.

  1. miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation.

    PubMed

    Luo, Ying; Dong, Hai-Ying; Zhang, Bo; Feng, Zhao; Liu, Yi; Gao, Yu-Qi; Dong, Ming-Qing; Li, Zhi-Chao

    2015-02-01

    Activation of pulmonary adventitial fibroblasts plays a key role in the pulmonary vascular remodeling in hypoxic pulmonary hypertension. Previous studies showed that miRNAs participated in the regulation of fibroblast activation. This study explored the role of miR-29 in the activation of pulmonary adventitial fibroblasts and the therapeutic potential in hypoxic pulmonary hypertension. We found that hypoxia-induced pulmonary adventitial fibroblasts activation was accompanied with a drastic decrease of miR-29a-3p expression. Knockdown of hypoxia-inducible factor-1 α or Smad3 reversed the hypoxia-induced decrease of miR-29-3p in cultured pulmonary adventitial fibroblasts. In vitro, miR-29a-3p mimic inhibited the hypoxia-induced proliferation, migration, and secretion of pulmonary adventitial fibroblasts, suppressed the hypoxia-induced expression of α-smooth muscle actin and extracellular matrix collagen in pulmonary adventitial fibroblasts; however, miR-29a-3p inhibitor mimicked the effect of hypoxia on the activation of pulmonary adventitial fibroblasts. Further studies revealed that preventative or therapeutic administration of miR-29a-3p significantly decreased pulmonary artery pressure and right ventricle hypertrophy index and ameliorated pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. These findings suggest that miR-29a-3p regulates the activation and phenotype of pulmonary adventitial fibroblasts in hypoxia and has preventative and therapeutic potential in hypoxic pulmonary hypertension.

  2. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    NASA Astrophysics Data System (ADS)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  3. Adventitious Agents: Issues and Considerations during Pre-Approval Reviews and Inspections.

    PubMed

    Eltermann, John

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) There are potential risks for adventitious agent contamination at every stage in the lifecycle of a product. This can range from an impact on product quality that must be investigated and corrected to the temporary shutdown of manufacturing altogether. An assessment of the risk management plans and the associated testing and proper manufacturing controls will be part of the review and inspection at the pre-approval stage in the product lifecycle, and the effectiveness of the mitigating activities will be monitored as part of the activities as well. Appropriate measures aiming at preventing or reducing adventitious agents should be considered as part of the overall plan to ensure both product quality and continued manufacturing.

  4. Using ChromaFlo intra-vascular ultrasound (IVUS) to analyze adventitial vasa vasorum distribution: considerations and recommendations

    NASA Astrophysics Data System (ADS)

    Redwood, Abena; Holmes, David R., III; Robb, Richard

    2006-03-01

    The adventitia and outer media of large blood vessels are supplied with nutrients by microscopic blood vessels called vasa vasorum. While vasa vasorum have been implicated in a number of diseases including atherosclerosis, knowledge of their functional anatomy and specific role in these diseases has been hindered due to the small size of the vasa vasorum, and difficulty in accessing them. Micro-CT and histological methods have been used in ex-vivo animal studies of the vasa vasorum, but these techniques are limited by their inability to be used for in-vivo investigation. As such, there is very little in-vivo human data available. Intra-vascular ultrasound can acquire high-resolution anatomic images of coronary vessels. ChromaFlo IVUS has been used to identify blood flow in vessel lumens and has exciting prospect for in-vivo studies of vasa vasorum functional anatomy. In this study, ChromaFlo IVUS images of the human mid-left anterior descending coronary artery (LAD) were segmented to analyze the distribution of adventitial vasa vasorum proximal to intimal plaque. Previous animal studies suggest that formation of intimal plaque is accompanied by increased density of adventitial vasa vasorum. The data collected with ChromaFlo ultrasound is inconsistent with the current literature. While IVUS has the fidelity to acquire high-resolution US images of the coronary arteries, ChromaFlo lacks the necessary resolving power to differentiate the vasa vasorum. Further study of IVUS and other imaging methods on a large cohort will provide the basis for future in-vivo analysis of coronary disease.

  5. Hexactinellid sponges reported from shallow waters in the Oligo-Miocene Pirabas Formation (N Brazil) are in fact cheilostome bryozoans

    NASA Astrophysics Data System (ADS)

    Muricy, Guilherme; Domingos, Celso; Távora, Vladimir A.; Ramalho, Laís V.; Pisera, Andrzej; Taylor, Paul

    2016-12-01

    Although hexactinellid sponges occur exclusively in deep and/or cold waters, three species of hexactinellids have been reported from shallow and warm waters in Oligo-Miocene deposits of the Pirabas Formation in northern Brazil: Aphrocallistes estevoui, A. lobata and Manzonia aprutina. Here we re-examine these fossils and show that they are not hexactinellid sponges but instead comprise three species of cheilostome bryozoans of the genus Celleporaria (Family Lepraliellidae). Two of these are new to science, viz., Celleporaria pirabasensis sp. nov. and Celleporaria triangulavicularis sp. nov., and the third could not be identified to species level due to poor preservation. Colonies of all three species are massive and multilaminar, with irregular layers of zooids produced by frontal budding. Autozooids have marginal areolar pores and a rounded, asinuate primary orifice. All colonies also have suboral adventitious avicularia and interzooidal avicularia, although of different shapes and sizes. Celleporaria triangulavicularis sp. nov. has distinctive triangular interzooidal avicularia. The underside of the frontal shield was seen only in Celleporaria pirabasensis sp. nov. and Celleporaria sp., in which it is umbonuloid. Ovicells were only seen in Celleporaria pirabasensis sp. nov. and are cap-shaped. The three species differ among themselves mainly in the shape and position of the adventitious and interzooidal avicularia. The presence of several typical bryozoan traits and the absence of spicule traces or any other sponge features clearly demonstrate that these fossils are bryozoans, not sponges. The change in the classification of these fossils from hexactinellids to bryozoans of the genus Celleporaria eliminates the incongruence of the occurrence of deep-water species in the warm shallow water depositional environment of the Pirabas Formation.

  6. Adventitial stripping of the radial and ulnar arteries in Raynaud's disease.

    PubMed

    Balogh, Brigitta; Mayer, W; Vesely, M; Mayer, S; Partsch, H; Piza-Katzer, H

    2002-11-01

    Adventitial stripping of the palmar arch, the palmar common digital arteries, or the proper digital arteries is a last resort in the treatment of refractory primary or secondary Raynaud's phenomenon. Seven patients who had adventitial stripping of the ulnar and radial arteries proximal to the wrist and resection of the nerve of Henle, if identifiable, are presented. All of them were evaluated by telethermography, acral rheography, and a questionnaire before and after surgery. All were asymptomatic after surgery with satisfactory healing of the ulcers at the fingertips. None of them relapsed during the follow-up time of 1.5 years.

  7. High spatial resolution magnetic resonance imaging of cystic adventitial disease of the popliteal artery.

    PubMed

    Maged, Ismaeel M; Turba, Ulku C; Housseini, Ahmed M; Kern, John A; Kron, Irving L; Hagspiel, Klaus D

    2010-02-01

    High spatial resolution magnetic resonance imaging (MRI) of patients with cystic adventitial disease can demonstrate connections between cysts in the adventitia and the adjacent joint, which is important for successful treatment. The inability to identify these during surgery can lead to a recurrence; thus, high spatial resolution MRI has the potential to affect therapy. This article presents the high spatial resolution MRI findings of cystic adventitial disease in a series of three consecutive patients and discusses the relevance of these findings to the etiology and therapy.

  8. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner.

    PubMed

    Lin, Yuting; Zhang, Wei; Qi, Fang; Cui, Weiti; Xie, Yanjie; Shen, Wenbiao

    2014-01-15

    Hydrogen gas (H2) is an endogenous gaseous molecule in plants. Although its reputation is as a "biologically inert gas", recent results suggested that H2 has therapeutic antioxidant properties in animals and plays fundamental roles in plant responses to environmental stresses. However, whether H2 regulates root morphological patterns is largely unknown. In this report, hydrogen-rich water (HRW) was used to characterize H2 physiological roles and possible signaling transduction pathways in the promotion of adventitious root (AR) formation in cucumber explants. Our results showed that a 50% concentration of HRW was able to mimic the effect of hemin, an inducer of a carbon monoxide (CO) synthetic enzyme, and heme oxygenase-1 (HO-1), in restoring AR formation in comparison with the inhibition effect conferred by auxin-depletion treatment alone. It was further shown that the inducible effect of HRW could be further blocked by the co-treatment with N-1-naphthylphtalamic acid (NPA; an auxin transport inhibitor). The HRW-induced response, at least partially, was HO-1-dependent. This conclusion was supported by the fact that the exposure of cucumber explants to HRW up-regulates cucumber HO-1 gene expression and its protein levels. HRW-mediated induction of representative target genes related to auxin signaling and AR formation, such as CsDNAJ-1, CsCDPK1/5, CsCDC6, CsAUX22B-like, and CsAUX22D-like, and thereafter AR formation (particularly in the AR length) was differentially sensitive to the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). Above blocking actions were clearly reversed by CO, further confirming that the above response was HO-1/CO-specific. However, the addition of a well-known antioxidant, ascorbic acid (AsA), failed to influence AR formation triggered by HRW, thus ruling out the involvement of redox homeostasis in this process. Together, these results indicated that HRW-induced adventitious rooting is, at least partially, correlated with the HO-1/CO

  9. Development of the human tail bud and splanchnic mesenchyme.

    PubMed

    Hashimoto, Ryozo

    2013-03-01

    The purpose of this paper was to shed some light on anorectal development from a viewpoint of the tail bud and splanchnic mesenchyme for better understanding of the morphogenesis of the human anorectum. Human embryos ranging from Carnegie stage 11 to 23 (CS 11 to 23) were adopted in this study. Seventeen embryos preserved at the Congenital Anomaly Research Center of Kyoto University Graduate School of Medicine were histologically examined. The cloaca, extending caudally to the hindgut, was dramatically enlarged, particularly both its dorsal portion and membrane, that is, the cloacal membrane resulting from the development of the tailgut derived from the tail bud. The splanchnic mesenchyme surrounding the hindgut was spread out in the direction of the urorectal septum ventrally, suggesting that it participated in the formation of the septum. No fusion of the urorectal septum and the cloacal membrane was found. The splanchnic mesenchyme proliferated and developed into smooth muscle (circular and longitudinal) layers from cranial to caudal along the hindgut. The tail bud seems to cause both the adequate dilation of the dorsal cloaca and the elongation of the cloacal membrane; its dorsal portion in particular will be necessary for normal anorectal development. The splanchnic mesenchyme developed and descended toward the pectinate line and formed the internal sphincter muscle at the terminal bowel. © 2012 The Author. Congenital Anomalies © 2012 Japanese Teratology Society.

  10. Arenavirus budding: a common pathway with mechanistic differences.

    PubMed

    Wolff, Svenja; Ebihara, Hideki; Groseth, Allison

    2013-01-31

    The Arenaviridae is a diverse and growing family of viruses that includes several agents responsible for important human diseases. Despite the importance of this family for public health, particularly in Africa and South America, much of its biology remains poorly understood. However, in recent years significant progress has been made in this regard, particularly relating to the formation and release of new enveloped virions, which is an essential step in the viral lifecycle. While this process is mediated chiefly by the viral matrix protein Z, recent evidence suggests that for some viruses the nucleoprotein (NP) is also required to enhance the budding process. Here we highlight and compare the distinct budding mechanisms of different arenaviruses, concentrating on the role of the matrix protein Z, its known late domain sequences, and the involvement of cellular endosomal sorting complex required for transport (ESCRT) pathway components. Finally we address the recently described roles for the nucleoprotein NP in budding and ribonucleoprotein complex (RNP) incorporation, as well as discussing possible mechanisms related to its involvement.

  11. Mathematical model of the morphogenesis checkpoint in budding yeast

    PubMed Central

    Ciliberto, Andrea; Novak, Bela; Tyson, John J.

    2003-01-01

    The morphogenesis checkpoint in budding yeast delays progression through the cell cycle in response to stimuli that prevent bud formation. Central to the checkpoint mechanism is Swe1 kinase: normally inactive, its activation halts cell cycle progression in G2. We propose a molecular network for Swe1 control, based on published observations of budding yeast and analogous control signals in fission yeast. The proposed Swe1 network is merged with a model of cyclin-dependent kinase regulation, converted into a set of differential equations and studied by numerical simulation. The simulations accurately reproduce the phenotypes of a dozen checkpoint mutants. Among other predictions, the model attributes a new role to Hsl1, a kinase known to play a role in Swe1 degradation: Hsl1 must also be indirectly responsible for potent inhibition of Swe1 activity. The model supports the idea that the morphogenesis checkpoint, like other checkpoints, raises the cell size threshold for progression from one phase of the cell cycle to the next. PMID:14691135

  12. Mathematical model of the morphogenesis checkpoint in budding yeast.

    PubMed

    Ciliberto, Andrea; Novak, Bela; Tyson, John J

    2003-12-22

    The morphogenesis checkpoint in budding yeast delays progression through the cell cycle in response to stimuli that prevent bud formation. Central to the checkpoint mechanism is Swe1 kinase: normally inactive, its activation halts cell cycle progression in G2. We propose a molecular network for Swe1 control, based on published observations of budding yeast and analogous control signals in fission yeast. The proposed Swe1 network is merged with a model of cyclin-dependent kinase regulation, converted into a set of differential equations and studied by numerical simulation. The simulations accurately reproduce the phenotypes of a dozen checkpoint mutants. Among other predictions, the model attributes a new role to Hsl1, a kinase known to play a role in Swe1 degradation: Hsl1 must also be indirectly responsible for potent inhibition of Swe1 activity. The model supports the idea that the morphogenesis checkpoint, like other checkpoints, raises the cell size threshold for progression from one phase of the cell cycle to the next.

  13. The etiology and management of cystic adventitial disease.

    PubMed

    Desy, Nicholas M; Spinner, Robert J

    2014-07-01

    Cystic adventitial disease (CAD) is a rare condition that affects arteries and veins. The etiology remains controversial and several treatment methods have been described. By understanding the pathogenesis of CAD, we can improve the surgical treatment, reduce recurrence rates, and improve patient outcomes. The objective of this study was to perform a systematic review of the world's literature. We searched across multiple scientific databases and cross-referenced each article to collect the world's literature on CAD. Studies included were those that reported a case or case series of CAD. Each article was analyzed for site of CAD, patient demographic data, type of imaging, surgical management, presence of a joint connection on imaging or at surgery, and recurrences. A regression analysis was used to identify risk factors for cyst recurrence. We identified 503 reports (724 patients), which were included in our analysis. The most common vessel affected was the popliteal artery with 587 cysts. The mean age was 46 (range, 5-80) years with a male-to-female ratio of approximately 4:1. Magnetic resonance imaging (MRI) or angiography was performed for 182 cysts and conventional angiography was the most advanced imaging modality used in 355 patients who did not receive a MRI or computed tomography scan as part of their assessment. Multiple types of surgical interventions were reported with the most common being cyst resection and saphenous vein graft reconstruction (204 cases). There were 122 joint connections (17%) identified. Sixty-five patients (9%) developed at least one cyst recurrence or persistence. Percutaneous surgery (aspiration or angioplasty) was found to be a risk factor for cyst recurrence (odds ratio, 13.7; 95% confidence interval, 6.5-29.0; P < .0001). Because of the rarity of this condition, publications were limited to level IV evidence consisting of case series and case reports. Several reports had short or no follow-up and few patients had postoperative

  14. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings

    PubMed Central

    da Costa, Cibele T.; de Almeida, Márcia R.; Ruedell, Carolina M.; Schwambach, Joseli; Maraschin, Felipe S.; Fett-Neto, Arthur G.

    2013-01-01

    Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins

  15. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings.

    PubMed

    da Costa, Cibele T; de Almeida, Márcia R; Ruedell, Carolina M; Schwambach, Joseli; Maraschin, Felipe S; Fett-Neto, Arthur G

    2013-01-01

    Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins

  16. Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings.

    PubMed

    Li, Shuwen; Reza Pezeshki, S; Douglas Shields, F

    2006-04-01

    Black willow (Salix nigra) cuttings are used for streambank stabilization where they are subjected to a range of soil moisture conditions including flooding. Flooding has been shown to adversely impact cutting performance, and improved understanding of natural adaptations to flooding might suggest handling and planting techniques to enhance success. However, data assessing the root aeration in adventitious roots that are developed on cuttings of woody species are scant. In addition, it appears that no data are available regarding aeration of the root system under partially flooded conditions. This experiment was designed to examine the effects of continuous flooding (CF) and partial flooding (PF) on aerenchyma formation and radial oxygen loss (ROL) in black willow cuttings. Photosynthetic and growth responses to these conditions were also investigated. Under laboratory condition, replicated potted cuttings were subjected to three treatments: no flooding (control, C), CF, and PF. Water was maintained above the soil surface in CF and at 10 cm depth in PF. Results indicated that after the 28-d treatments, root porosity ranged between 28.6% and 33.0% for the CF and C plants but was greater for the PF plants (39.2% for the drained and 37.2% for the flooded portions). A similar response pattern was found for ROL. In addition, CF treatment led to decreases in final root biomass and root/shoot ratio. Neither CF nor PF had any detectable adverse effects on plant gas exchange or photosystem II functioning. Our results indicated that S. nigra cuttings exhibited avoidance mechanisms in response to flooding, especially the partially flooded condition which is the most common occurrence in riparian systems.

  17. The dormant buds of Rhabdopleura compacta (Hemichordata).

    PubMed

    Dilly, P N

    1975-06-13

    Rhabdopleura has an overwintering stage that consists of two layers of cells surrounding a central yolk mass. This cellular part is surrounded by a thick electron dense capsule which is secreted by the bud itself. The capsule is probably impervious and protective to its contents. Blood vessels join the buds to the zooids of the colony. They form the probable route of transfer of yolk from the zooids to the dormant bud. The capsule of the dormant bud has some structural features in common with the black stolon of the adult zooids. The black stolon is probably formed in a manner similar to that which made the fusellar fabric of the periderm of fossil graptolities.

  18. Supercooling in Overwintering Azalea Flower Buds 1

    PubMed Central

    George, Milon F.; Burke, Michael J.; Weiser, Conrad J.

    1974-01-01

    Differential thermal analysis and nuclear magnetic resonance spectroscopy experiments on whole flower buds and excised floral primordia of azalea (Rhododendron kosterianum, Schneid.) proved that supercooling is the mode of freezing resistance (avoidance) of azalea flower primordia. Increase in the linewidth of nuclear magnetic resonance spectra for water upon thawing supports the view that injury to the primordia occurs at the moment of freezing. Nonliving primordia freeze at the same temperatures as living primordia, indicating that morphological features of primordial tissues are a key factor in freezing avoidance of dormant azalea flower primordia. Differential thermal analyses was used to study the relationship of cooling rate to the freezing points of floral primordia in whole flower buds. At a cooling rate of 8.5 C per hour, primordia in whole buds froze at about the same subfreezing temperatures as did excised primordia cooled at 37 C per hour. At more rapid cooling rates primordia in intact buds froze at higher temperatures. PMID:16658832

  19. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    PubMed

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  20. [Compensation effect of cotton growth and development after soil salt content reduction at bud stage].

    PubMed

    Guo, Wen-Qi; Zhang, Pei-Tong; Li, Chun-Hong; Yin, Jian-Mei; Han, Xiao-Yong

    2014-01-01

    To elucidate the dynamic characteristics of cotton growth and development after soil salt content reduction (SD) at bud stage and its effect on yield formation, a pot experiment was conducted in which soil salt content was declined from 5 per thousand level to 2 per thousand level at cotton bud stage. The results showed that the plant height, biomass, total fruit branch and fruit node number, boll number, boll mass of cotton plants increased after soil salt content reduction at bud stage. The distribution proportions of biomass in root and boll decreased after soil salt content reduction, however, the distribution proportions of biomass in leaf, main stem and fruit branch were on the rise. The growth rate of cotton plant increased after soil salt content reduction. Plant dry matter accumulation rate of SD cotton exceeded CK cotton at 22 days after soil salt content reduction. The response of different organs of cotton plant were different to soil salt content reduction, the plant height was the earliest, followed by the fruit branch and fruit node formation, and the bud and boll were the latest, which indicated that the compensation effect of cotton growth and development after soil salt content reduction at bud stage firstly appeared on the formation and growth of new leaf, fruit branch and fruit node, and on this basis, gradually brought out yield compensation.

  1. Properties of Peach Flower Buds Which Facilitate Supercooling

    PubMed Central

    Ashworth, Edward N.

    1982-01-01

    Water in dormant peach (Prunus persica [L.] Batsch. var. `Harbrite') flower buds deep supercooled. Both supercooling and the freezing of water within the bud axis and primordium as distinct components depended on the viability of the bud axis tissue. The viability of the primordium was not critical. Supercooling was prevented by wounding buds with a dissecting needle, indicating that bud structural features were important. Bud morphological features appeared to prevent the propagation of ice through the vascular tissue and into the primordium. In dormant buds, procambial cells had not yet differentiated into xylem vessel elements. Xylem continuity between the bud primordium and adjacent tissues did not appear to be established until buds had deacclimated. It was concluded that structural, morphological, and physiological features of the bud facilitated supercooling. Images Fig. 3 Fig. 4 Fig. 5 PMID:16662701

  2. Comparative evaluation of oxidative enzyme activities during adventitious rooting in the cuttings of grapevine rootstocks.

    PubMed

    Kose, Cafer; Erdal, Serkan; Kaya, Ozkan; Atici, Okkeş

    2011-03-15

    This study investigated changes in peroxidase (POX) and polyphenol oxidase (PPO) activities through adventitious rooting in hardwood cuttings of grapevine rootstocks. Three grapevine rootstocks with different propensity to produce adventitious roots were selected: recalcitrant (Ramsey), non-recalcitrant (Rupestris du Lot) and intermediate (99R) cultivars. The averages of root number at 65 days were 96 in Lot, 76 in 99R and 30 in Ramsey. Both enzyme activities characteristically increased before adventitious rooting, regardless of rooting ability of the rootstocks, and then decreased. POX activity increased in Ramsey cuttings at 22 days, in Lot and 99R cuttings at 14 days after planting, and then decreased gradually until 51 days. The highest POX activity was determined in Ramsey rootstock with the highest rooting ability and the lowest activity was determined in the rootstocks with the lowest rooting ability. PPO activity gradually increased in Ramsey rootstock cuttings from 10 days to 22 days, in Lot and 99R cuttings at 14 days, and then decreased until 51 days. A significant correlation was identified between high POX activity and adventitious rooting capability in rootstocks, but the same result was not determined with PPO activity. A recalcitrant rooting variety cannot increase POX activity sufficiently before rooting. Therefore applications that could increase POX activity in stem cuttings during rooting may facilitate increased rooting in such rootstocks. Copyright © 2011 Society of Chemical Industry.

  3. Selecting Populus with different adventitious root types for environmental benefits, fiber, and energy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny

    2009-01-01

    Primary roots from seeds, sucker roots in aspens, and adventitious roots (ARs) in poplars and their hybrids are prevalent within the genus Populus. Two AR types develop on hardwood cuttings: (i) lateral roots from either preformed or induced primordia along the length of the cutting and (ii) basal roots from callus at the base of the cutting in...

  4. Adventitious shoot regeneration from in vitro leaf explants of Fraxinus nigra

    Treesearch

    Jun Hyung Lee; Paula M. Pijut

    2017-01-01

    Black ash (Fraxinus nigra) is an endangered hardwood tree species under threat of extirpation by the emerald ash borer (EAB), an aggressive exotic phloemfeeding beetle. We have developed an efficient regeneration system through adventitious shoot organogenesis in F. nigra using in vitro-derived leaf explants. Two types of leaf...

  5. Adventitial cystic disease of the common femoral vein presenting as deep vein thrombosis.

    PubMed

    Kim, Young-Kyun; Chun, Ho Jong; Hwang, Jeong Kye; Kim, Ji Il; Kim, Sang Dong; Park, Sun-Cheol; Moon, In Sung

    2016-07-01

    Adventitial cystic disease of the common femoral vein is a rare condition. We herein report the case of a 50-year-old woman who presented with painless swelling in her left lower leg that resembled deep vein thrombosis. She underwent femoral exploration and excision of the cystic wall. The presentation, investigation, treatment, and pathology of this condition are discussed with a literature review.

  6. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  7. Tissue sealing device associated thermal spread: a comparison of histologic methods for detecting adventitial collagen denaturation

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Grisez, Brian T.; Thomas, Aaron C.; Livengood, Ryan H.; Coad, James E.

    2013-02-01

    Thermal spread (thermal tissue damage) results from heat conduction through the tissues immediately adjacent to a hyperthermic tissue sealing device. The extent of such heat conduction can be assessed by the detection of adventitial collagen denaturation. Several histologic methods have been reported to measure adventitial collagen denaturation as a marker of thermal spread. This study compared hematoxylin and eosin staining, Gomori trichrome staining and loss of collagen birefringence for the detection of collagen denaturation. Twenty-eight ex vivo porcine carotid arteries were sealed with a commercially available, FDA-approved tissue sealing device. Following formalin fixation and paraffin embedding, two 5-micron tissue sections were hematoxylin and eosin and Gomori trichrome stained. The hematoxylin and eosin-stained section was evaluated by routine bright field microscopy and under polarized light. The trichromestained section was evaluated by routine bright field microscopy. Radial and midline adventitial collagen denaturation measurements were made for both the top and bottom jaw sides of each seal. The adventitial collagen denaturation lengths were determined using these three methods and statistically compared. The results showed that thermal spread, as represented by histologically detected collagen denaturation, is technique dependent. In this study, the trichrome staining method detected significantly less thermal spread than the hematoxylin and eosin staining and birefringence methods. Of the three methods, hematoxylin and eosin staining provided the most representative results for true thermal spread along the adjacent artery.

  8. Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars

    USDA-ARS?s Scientific Manuscript database

    Protocols were developed to optimize adventitious shoot regeneration from four southern highbush blueberry cultivars. Leaf explants from six-week-old shoots of the four cultivars were excised and cultured on ten WPM (woody plant medium)-based regeneration media each containing thidiazuron (TDZ) (4.5...

  9. The physics of lipid droplet nucleation, growth and budding.

    PubMed

    Thiam, Abdou Rachid; Forêt, Lionel

    2016-08-01

    Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation.

  10. Adventitial VEGF165 gene transfer prevents lumen loss through induction of positive arterial remodeling after PTCA in porcine coronary arteries.

    PubMed

    Deiner, Carolin; Schwimmbeck, Peter Lothar; Koehler, Ina Sabine; Loddenkemper, Christoph; Noutsias, Michel; Nikol, Sigrid; Schultheiss, Heinz-Peter; Ylä-Herttuala, Seppo; Pels, Klaus

    2006-11-01

    Negative arterial remodeling still plays an important role in the pathogenesis of coronary restenosis even in the era of interventional stenting (e.g. arterial narrowing occurs proximal and distal of a stented segment). Previous studies suggest that increased angiogenesis and inhibited regression of injury-induced adventitial microvessels prevents negative remodeling. We have examined the effect of local vascular endothelial growth factor (VEGF(165)) gene transfer on adventitial microvessel angiogenesis/regression and arterial remodeling after coronary angioplasty. Twenty pigs underwent angioplasty, each one in two major coronary arteries, followed by plasmid liposome gene transfer with either VEGF(165) or control gene LacZ (50 microg DNA with 50 microg of Lipofectine) into the (peri)adventitial space using a needle injection catheter. Arteries were examined at days 1, 7, 14, and 28. Local delivery of VEGF(165) gene into the outer compartments of balloon-injured porcine coronary arteries reduced lumen area loss due to distinct positive remodeling (arterial enlargement). Prevention of adventitial microvessel regression, enhanced adventitial elastin accumulation, reduced adventitial myofibroblast numbers, and a pronounced adventitial inflammatory response considered as a part of arterial healing seem to be the main VEGF-mediated mechanisms indicating the therapeutic potential of VEGF for restenosis prevention.

  11. Budded baculovirus particle structure revisited.

    PubMed

    Wang, Qiushi; Bosch, Berend-Jan; Vlak, Just M; van Oers, Monique M; Rottier, Peter J; van Lent, Jan W M

    2016-02-01

    Baculoviruses are a group of enveloped, double-stranded DNA insect viruses with budded (BV) and occlusion-derived (ODV) virions produced during their infection cycle. BVs are commonly described as rod shaped particles with a high apical density of protein extensions (spikes) on the lipid envelope surface. However, due to the fragility of BVs the conventional purification and electron microscopy (EM) staining methods considerably distort the native viral structure. Here, we use cryo-EM analysis to reveal the near-native morphology of two intensively studied baculoviruses, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV), as models for BVs carrying GP64 and F as envelope fusion protein on the surface. The now well-preserved AcMNPV and SeMNPV BV particles have a remarkable elongated, ovoid shape leaving a large, lateral space between nucleocapsid (NC) and envelope. Consistent with previous findings the NC has a distinctive cap and base structure interacting tightly with the envelope. This tight interaction may explain the partial retaining of the envelope on both ends of the NC and the disappearance of the remainder of the BV envelope in the negative-staining EM images. Cryo-EM also reveals that the viral envelope contains two layers with a total thickness of ≈ 6-7 nm, which is significantly thicker than a usual biological membrane (<4 nm) as measured by X-ray scanning. Most spikes are densely clustered at the two apical ends of the virion although some envelope proteins are also found more sparsely on the lateral regions. The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new near-native structural model of baculovirus BVs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Control of head morphogenesis in an invertebrate asexually produced larva-like bud ( Cassiopea andromeda; Cnidaria: Scyphozoa).

    PubMed

    Thieme, Claudia; Hofmann, Dietrich Kurt

    2003-04-01

    Scyphopolyps of Cassiopea andromeda propagate asexually by forming larva-like buds which separate from the parent in a developmentally quiescent state. These buds metamorphose into sessile polyps when exposed to specific biogenic, chemical inducers. Morphogenesis of transversely dissected buds indicates the presence of pattern-determining signals; whereas the basal bud fragments may still form a complete scyphistoma the apical bud fragments develop spontaneously in the absence of an inducer into a polyp head without stalk and foot. Based on these findings Neumann (dissertation, Cologne University, 1980) postulated a head-inhibiting signal which is released at the basal pole and inhibits head formation at the apical end. Contrary to this hypothesis dissection itself might induce the development of head structures. The present study deals with the control of polyp head formation in C. andromeda. It concentrates on two points, namely the postulated head inhibitor and the involvement of compounds known to act during metamorphosis (the enzyme protein kinase C and the specific metamorphosis inducer Z-GPGGPA). We found that compared to intact buds and apical bud fragments transversely incised buds reached an intermediate stage of head development. This confirms Neumann's hypothesis. Consequently we focused on the mode of action and the chemical nature of the head-inhibiting signal in C. andromeda. Our results indicate that the head inhibitor may be included in one of six pooled fractions isolated from bud homogenate via gel filtration on a Sephadex G-50 column. The inhibitor is supposed to be water-soluble and to have a molecular weight of 850-1,500 Da. Furthermore we prove that head formation is not promoted by the metamorphosis-inducer Z-GPGGPA but is prevented by the inhibitors psychosine, chelerythrine and RO-32-0432 showing the involvement of protein kinase C in this process.

  13. Preformation in vegetative buds of Prunus persica: factors influencing number of leaf primordia in overwintering buds.

    PubMed

    Gordon, D; Damiano, C; DeJong, T M

    2006-04-01

    We investigated the influence of bud position, cultivar, tree age, tree carbohydrate status, sampling date, drought and light exposure on the number of leaf primordia formed in dormant vegetative peach buds (Prunus persica (L.) Batsch) relative to the number of primordia formed after bud break (neoformed). During winter dormancy, vegetative peach buds from California and Italy were dissected and the number of leaf primordia recorded. Between leaf drop and bud break, the number of leaf primordia doubled from about five to about 10. Parent shoot length, number of nodes on the parent shoot, cross-sectional area of the parent shoot, bud position along the parent shoot and bud cross-sectional area were correlated with the number of leaf primordia. Previous season light exposure, drought and tree carbohydrate status did not affect the number of leaf primordia present. The number of leaf primordia differed significantly among peach varieties and tree ages at leaf drop, but not at bud break. Our results indicate that neoformation accounted for all shoot growth beyond about 10 nodes. The predominance of neoformed shoot growth in peach allows this species great plasticity in its response to current-season conditions.

  14. Overexpression of DEMETER, a DNA demethylase, promotes early apical bud maturation in poplar.

    PubMed

    Conde, Daniel; Moreno-Cortés, Alicia; Dervinis, Christopher; Ramos-Sánchez, José M; Kirst, Matias; Perales, Mariano; González-Melendi, Pablo; Allona, Isabel

    2017-08-15

    The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative orthologue in the more experimentally tractable hybrid poplar (Populus tremula x alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling and 5mC immunodetection studies to evaluate the role of CsDML and its homologue in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analyzed. Short days (SD) and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated SD-induced bud formation, specifically from stage 1 to 0. Bud acquired a red-brown coloration earlier than wild type (WT) plants, alongside with the up regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the SAM and bud scales. Our data shows that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter. This article is protected by copyright. All rights reserved.

  15. Antibiofilm and Antioxidant Activity of Propolis and Bud Poplar Resins versus Pseudomonas aeruginosa

    PubMed Central

    De Marco, Stefania; Piccioni, Miranda; Pagiotti, Rita

    2017-01-01

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in lung, skin, and systemic infections. Biofilms are majorly associated with chronic lung infection, which is the most severe complication in cystic fibrosis patients characterized by drug-resistant biofilms in the bronchial mucus with zones, where reactive oxygen species concentration is increased mainly due to neutrophil activity. Aim of this work is to verify the anti-Pseudomonas property of propolis or bud poplar resins extracts. The antimicrobial activity of propolis and bud poplar resins extracts was determined by MIC and biofilm quantification. Moreover, we tested the antioxidant activity by DPPH and neutrophil oxidative burst assays. In the end, both propolis and bud poplar resins extracts were able to inhibit P. aeruginosa biofilm formation and to influence both swimming and swarming motility. Moreover, the extracts could inhibit proinflammatory cytokine production by human PBMC and showed both direct and indirect antioxidant activity. This work is the first to demonstrate that propolis and bud poplar resins extracts can influence biofilm formation of P. aeruginosa contrasting the inflammation and the oxidation state typical of chronic infection suggesting that propolis or bud poplar resins can be used along with antibiotic as adjuvant in the therapy against P. aeruginosa infections related to biofilm. PMID:28127379

  16. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  17. Oxytocin signaling in mouse taste buds.

    PubMed

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite

  18. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    PubMed

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees.

  19. Isolation, characterization and expression analysis of the BABY BOOM (BBM) gene from Larix kaempferi × L. olgensis during adventitious rooting.

    PubMed

    Li, Kui-Peng; Sun, Xiao-Mei; Han, Hua; Zhang, Shou-Gong

    2014-11-10

    The full-length cDNA and genomic sequences of the BABY BOOM (BBM) gene, designated LkBBM, were isolated from Larix kaempferi × Larix olgensis. The 3324 bp cDNA was cloned and its open reading frame (ORF) consists of 2370 nucleotides. The deduced 789 amino acid protein contains two AP2 domains and a BBM specific motif. Four conserved motifs between BBM and PLT were identified, which may be conducive to the similar function of BBM and PLT. The three dimensional (3D) structure of LkBBM was predicted and β-sheets in the AP2-R2 domain of LkBBM might recognize the specific base pairs in the major groove. Analysis of the LkBBM gene structure indicates that the gene has eight introns and nine exons. In the 5'-flanking promoter region of LkBBM, many important potential cis-acting elements were identified, such as the TATABOX5 element (a functional TATA element), ROOTMOTIFTAPOX1 element (element of root specificity), AUXREPSIAA4 element (element involved in auxin responsiveness and gene expression in root meristem), MYB1AT element (element involved in MYB recognition), ARR1AT element (element involved in cytokinin responsiveness), GARE1OSREP1 element (element involved in gibberellin responsiveness) and PYRIMIDINEBOXHVEPB1 element (element involved in abscisic acid responsiveness), which all suggested that the expression of LkBBM is highly regulated. Compared with gene expression levels in the stem, stem tip and leaf, LkBBM shows a specific expression in the root, which indicates that LkBBM plays a key role in regulating the development and growth of root in larch. In the processing of larch adventitious root formation, LkBBM started to express on the eighth day after rooting treatment and its transcript level increased continuously afterwards. According to the gene characteristics, LkBBM is proposed as a molecular marker for root primordia of larch, and the initial period of LkBBM expression may be the formation period of root primordia in the processing of adventitious

  20. Gene expression analysis of bud and leaf color in tea.

    PubMed

    Wei, Kang; Zhang, Yazhen; Wu, Liyun; Li, Hailin; Ruan, Li; Bai, Peixian; Zhang, Chengcai; Zhang, Fen; Xu, Liyi; Wang, Liyuan; Cheng, Hao

    2016-10-01

    Purple shoot tea attributing to the high anthocyanin accumulation is of great interest for its wide health benefits. To better understand potential mechanisms involved in purple buds and leaves formation in tea plants, we performed transcriptome analysis of six green or purple shoot tea individuals from a F1 population using the Illumina sequencing method. Totally 292 million RNA-Seq reads were obtained and assembled into 112,233 unigenes, with an average length of 759 bp and an N50 of 1081 bp. Moreover, totally 2193 unigenes showed significant differences in expression levels between green and purple tea samples, with 1143 up- and 1050 down-regulated in the purple teas. Further real time PCR analysis confirmed RNA-Seq results. Our study identified 28 differentially expressed transcriptional factors and A CsMYB gene was found to be highly similar to AtPAP1 in Arabidopsis. Further analysis of differentially expressed genes involved in anthocyanin biosynthesis and transportation showed that the late biosynthetic genes and genes involved in anthocyanin transportation were largely affected but the early biosynthetic genes were less or none affected. Overall, the identification of a large number of differentially expressed genes offers a global view of the potential mechanisms associated with purple buds and leaves formation, which will facilitate molecular breeding in tea plants.

  1. High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds.

    PubMed

    Solymosi, Katalin; Morandi, Dominique; Bóka, Károly; Böddi, Béla; Schoefs, Benoît

    2012-05-01

    To study the formation of the photosynthetic apparatus in nature, the carotenoid and chlorophyllous pigment compositions of differently developed leaf primordia in closed and opening buds of common ash (Fraxinus excelsior L.) and horse chestnut (Aesculus hippocastanum L.) as well as in closed buds of tree of heaven (Ailanthus altissima P. Mill.) were analyzed with HPLC. The native organization of the chlorophyllous pigments was studied using 77 K fluorescence spectroscopy, and plastid ultrastructure was investigated with electron microscopy. Complete etiolation, i.e., accumulation of protochlorophyllide, and absence of chlorophylls occurred in the innermost leaf primordia of common ash buds. The other leaf primordia were partially etiolated in the buds and contained protochlorophyllide (0.5-1 μg g(-1) fresh mass), chlorophyllides (0.2-27 μg g(-1) fresh mass) and chlorophylls (0.9-643 μg g(-1) fresh mass). Etio-chloroplasts with prolamellar bodies and either regular or only low grana were found in leaves having high or low amounts of chlorophyll a and b, respectively. After bud break, etioplast-chloroplast conversion proceeded and the pigment contents increased in the leaves, similarly to the greening processes observed in illuminated etiolated seedlings under laboratory conditions. The pigment contents and the ratio of the different spectral forms had a high biological variability that could be attributed to (i) various light conditions due to light filtering in the buds resulting in differently etiolated leaf primordia, (ii) to differences in the light-exposed and inner regions of the same primordia in opening buds due to various leaf folding, and (iii) to tissue-specific slight variations of plastid ultrastructure.

  2. Forecasting emergence and movement of overwintering hazelnut big bud mites from big buds.

    PubMed

    Webber, Janette; Bruce Chapman, R; Worner, S P

    2008-06-01

    Eriophyoid big bud mites are key pests of hazelnut throughout the world, but they are difficult to control with chemicals or other methods because they are protected inside the bud. The most effective time for control is during the relatively short emergence period which is difficult for growers to predict. The key objectives of this study were to monitor mite emergence from big buds in spring, determine the phenology of mites in relation to tree phenology and weather, and identify the optimum timing for control measures. Mite emergence was found to occur between early and late spring in Canterbury, New Zealand. Mite emergence and movement occurred when daily maximum temperatures were >15 degrees C and when mean temperatures were >9 degrees C, with mite emergence increasing with temperature. The developmental status of new buds during mite emergence was a crucial factor in the infestation of new buds. An accumulated heat sum model (DD), starting at Julian date 152 and using a lower threshold temperature of 6 degrees C, predicted the onset of emergence on two cultivars and at two sites at approximately 172 DD. A regression model based on leaf number, bud length, bud width, DD and Julian date provided a more satisfactory prediction of percent accumulated mite emergence. It is recommended both peak mite emergence and the developmental status of hazelnut buds be used to optimise the time to apply control measures. The optimum time to apply a control was predicted to be before buds measure 0.5 x 0.5 mm (width x length), are enclosed within the axil, and have a rounded tip, or, when 50% accumulated mite emergence has occurred, whichever occurs first.

  3. N-terminally myristoylated feline foamy virus Gag allows Env-independent budding of sub-viral particles.

    PubMed

    Liu, Yang; Kim, Yong-Boum; Löchelt, Martin

    2011-11-01

    Foamy viruses (FVs) are distinct retroviruses classified as Spumaretrovirinae in contrast to the other retroviruses, the Orthoretrovirinae. As a unique feature of FVs, Gag is not sufficient for sub-viral particle (SVP) release. In primate and feline FVs (PFV and FFV), particle budding completely depends on the cognate FV Env glycoproteins. It was recently shown that an artificially added N-terminal Gag myristoylation signal (myr-signal) overcomes this restriction in PFV inducing an Orthoretrovirus-like budding phenotype. Here we show that engineered, heterologous N-terminal myr-signals also induce budding of the distantly related FFV Gag. The budding efficiency depends on the myr-signal and its location relative to the N-terminus of Gag. When the first nine amino acid residues of FFV Gag were replaced by known myr-signals, the budding efficiency as determined by the detection of extracellular SVPs was low. In contrast, adding myr-signals to the intact N-terminus of FFV Gag resulted in a more efficient SVP release. Importantly, budding of myr-Gag proteins was sensitive towards inhibition of cellular N-myristoyltransferases. As expected, the addition or insertion of myr-signals that allowed Env-independent budding of FFV SVPs also retargeted Gag to plasma membrane-proximal sites and other intracellular membrane compartments. The data confirm that membrane-targeted FV Gag has the capacity of SVP formation.

  4. A bipartite late-budding domain in human immunodeficiency virus type 1.

    PubMed

    Martin-Serrano, Juan; Bieniasz, Paul D

    2003-11-01

    Human immunodeficiency virus type 1 (HIV-1) encodes a PTAP motif within the p6 domain of Gag that recruits Tsg101 and associated factors to facilitate virion budding. In this study, we use trans-complementation assays to demonstrate that the PTAP motif acts synergistically with additional p6 sequences to mediate the formation of infectious extracellular HIV-1 virions. These studies suggest that Tsg101 recruitment is necessary but not sufficient to account for late-budding activity exhibited by HIV-1 p6.

  5. A Bipartite Late-Budding Domain in Human Immunodeficiency Virus Type 1

    PubMed Central

    Martin-Serrano, Juan; Bieniasz, Paul D.

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1) encodes a PTAP motif within the p6 domain of Gag that recruits Tsg101 and associated factors to facilitate virion budding. In this study, we use trans-complementation assays to demonstrate that the PTAP motif acts synergistically with additional p6 sequences to mediate the formation of infectious extracellular HIV-1 virions. These studies suggest that Tsg101 recruitment is necessary but not sufficient to account for late-budding activity exhibited by HIV-1 p6. PMID:14581576

  6. Quantifying Adventitious Error in a Covariance Structure as a Random Effect

    PubMed Central

    Wu, Hao; Browne, Michael W.

    2017-01-01

    We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463

  7. Results of Survey Regarding Prevalence of Adventitial Infections in Mice and Rats at Biomedical Research Facilities.

    PubMed

    Marx, James O; Gaertner, Diane J; Smith, Abigail L

    2017-09-01

    Control of rodent adventitial infections in biomedical research facilities is of extreme importance in assuring both animal welfare and high-quality research results. Sixty-three U.S. institutions participated in a survey reporting the methods used to detect and control these infections and the prevalence of outbreaks from 1 January 2014 through 31 December 2015. These results were then compared with the results of 2 similar surveys published in 1998 and 2008. The results of the current survey demonstrated that the rate of viral outbreaks in mouse colonies was decreasing, particularly in barrier facilities, whereas the prevalence of parasitic outbreaks has remained constant. These results will help our profession focus its efforts in the control of adventitial rodent disease outbreaks to the areas of the greatest needs.

  8. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane

    PubMed Central

    Booth, Amy M.; Fang, Yi; Fallon, Jonathan K.; Yang, Jr-Ming; Hildreth, James E.K.; Gould, Stephen J.

    2006-01-01

    Exosomes are secreted, single membrane organelles of ∼100 nm diameter. Their biogenesis is typically thought to occur in a two-step process involving (1) outward vesicle budding at limiting membranes of endosomes (outward = away from the cytoplasm), which generates intralumenal vesicles, followed by (2) endosome–plasma membrane fusion, which releases these internal vesicles into the extracellular milieu as exosomes. In this study, we present evidence that certain cells, including Jurkat T cells, possess discrete domains of plasma membrane that are enriched for exosomal and endosomal proteins, retain the endosomal property of outward vesicle budding, and serve as sites of immediate exosome biogenesis. It has been hypothesized that retroviruses utilize the exosome biogenesis pathway for the formation of infectious particles. In support of this, we find that Jurkat T cells direct the key budding factor of HIV, HIV Gag, to these endosome-like domains of plasma membrane and secrete HIV Gag from the cell in exosomes. PMID:16533950

  9. Arenavirus budding resulting from viral-protein-associated cell membrane curvature.

    PubMed

    Schley, David; Whittaker, Robert J; Neuman, Benjamin W

    2013-09-06

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.

  10. Arenavirus budding resulting from viral-protein-associated cell membrane curvature

    PubMed Central

    Schley, David; Whittaker, Robert J.; Neuman, Benjamin W.

    2013-01-01

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations. PMID:23864502

  11. Targeting the adventitial microenvironment in pulmonary hypertension: A potential approach to therapy that considers epigenetic change

    PubMed Central

    Stenmark, Kurt R.; Frid, Maria G.; Yeager, Michael; Li, Min; Riddle, Suzette; McKinsey, Timothy; El Kasmi, Karim C.

    2012-01-01

    Experimental data indicate that the adventitial compartment of blood vessels, in both the pulmonary and systemic circulations, like the connective tissue stroma in tissues throughout the body, is a critical regulator of vessel wall function in health and disease. It is clear that adventitial cells, and in particular the adventitial fibroblast, are activated early following vascular injury, and play essential roles in regulating vascular wall structure and function through production of chemokines, cytokines, growth factors, and reactive oxygen species (ROS). The recognition of the ability of these cells to generate and maintain inflammatory responses within the vessel wall provides insight into why vascular inflammatory responses, in certain situations, fail to resolve. It is also clear that the activated adventitial fibroblast plays an important role in regulating vasa vasorum growth, which can contribute to ongoing vascular remodeling by acting as a conduit for delivery of inflammatory and progenitor cells. These functions of the fibroblast clearly support the idea that targeting chemokine, cytokine, adhesion molecule, and growth factor production in activated fibroblasts could be helpful in abrogating vascular inflammatory responses and thus in ameliorating vascular disease. Further, the recent observations that fibroblasts in vascular and fibrotic diseases may maintain their activated state through epigenetic alterations in key inflammatory and pro-fibrotic genes suggests that current therapies used to treat pulmonary hypertension may not be sufficient to induce apoptosis or to inhibit key inflammatory signaling pathways in these fibroblasts. New therapies targeted at reversing changes in the acetylation or methylation status of key transcriptional networks may be needed. At present, therapies specifically targeting abnormalities of histone deacytelase (HDAC) activity in fibroblast-like cells appear to hold promise. PMID:22558514

  12. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.

    PubMed

    Urquhart, Shelley; Foo, Eloise; Reid, James B

    2015-03-01

    The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency.

  13. Gravitropic response of adventitious roots cultivated in light and darkness on sucrose-free medium.

    PubMed

    Vinterhalter, D V; Vinterhalter, B S

    1999-11-30

    Elongation of adventitious roots of Dracaena fragrans was investigated under photoautotrophic conditions. Root elongation decreased and stopped when cultures were transferred to darkness. Upon return to light roots renewed growth after a 5 day lag period. During the first two days of intensive new growth roots were agravitropic elongating in random directions. Investigation showed that transient absence of geotropic response was connected with disappearance of starch grains in root tip which occurred due to sucrose starvation of cultures in continuous darkness.

  14. Recurrent cystic adventitial disease of the popliteal artery: successful treatment with percutaneous transluminal angioplasty.

    PubMed

    Maged, Ismaeel M; Kron, Irving L; Hagspiel, Klaus D

    2009-01-01

    Cystic adventitial disease (CAD) is a rare vascular condition that most commonly affects the popliteal artery. Percutaneous transluminal angioplasty (PTA) is generally not considered a valid therapeutic option due to high recurrence rate. We report a case of CAD of the popliteal artery that recurred after surgical cyst enucleation that was successfully treated with PTA. To the best of our knowledge, this is the first case of successful PTA for the treatment of recurrent CAD of the popliteal artery.

  15. Cystic adventitial disease of the popliteal artery: an infrequent cause of intermittent claudication

    PubMed Central

    Kauffman, Paulo; Kuzniec, Sergio; Sacilotto, Roberto; Teivelis, Marcelo Passos; Wolosker, Nelson; Tachibana, Adriano

    2014-01-01

    Intermittent claudication is frequently associated with atherosclerotic disease, but differential diagnosis must be sought in patients with no traditional risk factors. Cystic adventitial disease, of unknown etiology, most frequently affects the popliteal artery, and occasionally presents as intermittent claudication. We report a case of this disease and the surgical treatment, and discuss some aspects related to etiopathogenesis, diagnosis and treatment of this condition. PMID:25167336

  16. Tumor budding in colorectal carcinoma assessed by cytokeratin immunostaining and budding areas: possible involvement of c-Met.

    PubMed

    Satoh, Keisuke; Nimura, Satoshi; Aoki, Mikiko; Hamasaki, Makoto; Koga, Kaori; Iwasaki, Hiroshi; Yamashita, Yuichi; Kataoka, Hiroaki; Nabeshima, Kazuki

    2014-11-01

    Tumor budding/sprouting has been shown to be an independent adverse prognostic factor in T1 and T3N0 colorectal carcinomas, however, its assessment could be improved by more accurate identification of budding carcinoma cells and consideration of budding areas. Moreover, tumor budding mechanisms are yet to be defined. In this study, we evaluated the identification of budding tumor cells by either H&E staining alone or H&E with immunohistochemistry and developed a scoring system based on budding grades and areas. We examined whether the budding score correlated with clinicopathologic features and prognosis and the association between tumor budding/sprouting and c-Met protein expression and phosphorylation and MET gene copy numbers because c-Met is known to play an important role in colorectal carcinoma tumorigenesis. Cytokeratin immunohistochemistry could identify tumors with shorter disease-free survival (DFS) from the low-grade budding group assessed with H&E alone. High budding scores based on budding grade and area were more significantly correlated with DFS than scores obtained using the budding grade alone. In tumors with a high budding score, c-Met expression and phosphorylation levels and MET gene copy numbers were significantly increased at the invasive front compared with those in superficial tumor portions. This study showed for the first time that high levels of phospho-c-Met at the invasive front were significantly associated with a high budding score and shorter DFS. In conclusion, a budding score assessed by budding grades and budding-positive areas correlates highly with clinicopathologic aggressive features of colorectal carcinoma. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  17. Tumor budding in colorectal carcinoma assessed by cytokeratin immunostaining and budding areas: Possible involvement of c-Met

    PubMed Central

    Satoh, Keisuke; Nimura, Satoshi; Aoki, Mikiko; Hamasaki, Makoto; Koga, Kaori; Iwasaki, Hiroshi; Yamashita, Yuichi; Kataoka, Hiroaki; Nabeshima, Kazuki

    2014-01-01

    Tumor budding/sprouting has been shown to be an independent adverse prognostic factor in T1 and T3N0 colorectal carcinomas, however, its assessment could be improved by more accurate identification of budding carcinoma cells and consideration of budding areas. Moreover, tumor budding mechanisms are yet to be defined. In this study, we evaluated the identification of budding tumor cells by either H&E staining alone or H&E with immunohistochemistry and developed a scoring system based on budding grades and areas. We examined whether the budding score correlated with clinicopathologic features and prognosis and the association between tumor budding/sprouting and c-Met protein expression and phosphorylation and MET gene copy numbers because c-Met is known to play an important role in colorectal carcinoma tumorigenesis. Cytokeratin immunohistochemistry could identify tumors with shorter disease-free survival (DFS) from the low-grade budding group assessed with H&E alone. High budding scores based on budding grade and area were more significantly correlated with DFS than scores obtained using the budding grade alone. In tumors with a high budding score, c-Met expression and phosphorylation levels and MET gene copy numbers were significantly increased at the invasive front compared with those in superficial tumor portions. This study showed for the first time that high levels of phospho-c-Met at the invasive front were significantly associated with a high budding score and shorter DFS. In conclusion, a budding score assessed by budding grades and budding-positive areas correlates highly with clinicopathologic aggressive features of colorectal carcinoma. PMID:25220207

  18. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes.

    PubMed

    Létoquart, Juliette; Huvelle, Emmeline; Wacheul, Ludivine; Bourgeois, Gabrielle; Zorbas, Christiane; Graille, Marc; Heurgué-Hamard, Valérie; Lafontaine, Denis L J

    2014-12-23

    The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N(7)-methylguanosine (m(7)G) introduced at position 1575 on 18S rRNA by Bud23-Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23-Trm112 in the apo and S-adenosyl-L-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23-Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23-Trm112 binds precursor ribosomes at an early nucleolar stage, m(7)G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23-Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23-Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction.

  19. Detecting and quantifying the adventitious presence of transgenic seeds in safflower, Carthamus tinctorius L.

    PubMed

    Christianson, Jed; McPherson, Marc; Topinka, Deborah; Hall, Linda; Good, Allen G

    2008-07-23

    Safflower ( Carthamus tinctorius L.) is currently being developed as a platform for the production of novel proteins. Methods for detecting and quantifying transgenic safflower are needed to ensure seed quality and to monitor for its adventitious presence. We developed and compared three methods of assaying for transgenic safflower presence in conventional seedlots: field bioassays, enzyme-linked immunosorbent assays (ELISA), and quantitative polymerase chain reaction (Q-PCR). Limits for reliable quantification for both ELISA and Q-PCR are approximately 0.1%, although levels at least as low as 0.02% can be detected by Q-PCR. Levels of quantification for the field bioassay are limited only by space and resources available. Multiple sampling methods to detect and quantify transgenic safflower presence at levels lower than 0.1% were used on field collected samples from a pollen outcrossing experiment to quantify the adventitious presence of transgenic safflower. Taking into account the potential utility and relative advantages or disadvantages of each detection method, it is recommended that the initial testing for the adventitious presence of transgenic seed be carried out using an antibody-based test if available and that Q-PCR-based assays to quantify transgenic proportion be used when it is necessary to identify specific transgenic constructs or if antibody-based assays are not readily available.

  20. Large Scale Culture of Ginseng Adventitious Roots for Production of Ginsenosides

    NASA Astrophysics Data System (ADS)

    Paek, Kee-Yoeup; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Zhong, Jian-Jiang

    Ginseng (Panax ginseng C. A. Meyer) is one of the most famous oriental medicinal plants used as crude drugs in Asian countries, and now it is being used worldwide for preventive and therapeutic purposes. Among diverse constituents of ginseng, saponins (ginsenosides) have been found to be major components responsible for their biological and pharmacological actions. On the other hand, difficulties in the supply of pure ginsenosides in quantity prevent the development of ginseng for clinical medicines. Cultivation of ginseng in fields takes a long time, generally 5-7 years, and needs extensive effort regarding quality control since growth is susceptible to many environmental factors including soil, shade, climate, pathogens and pests. To solve the problems, cell and tissue cultures have been widely explored for more rapid and efficient production of ginseng biomass and ginsenosides. Recently, cell and adventitious root cultures of P. ginseng have been established in large scale bioreactors with a view to commercial application. Various physiological and engineering parameters affecting the biomass production and ginsenoside accumulation have been investigated. Advances in adventitious root cultures including factors for process scale-up are reviewed in this chapter. In addition, biosafety analyses of ginseng adventitious roots are also discussed for real application.

  1. Ethylene Induces Epidermal Cell Death at the Site of Adventitious Root Emergence in Rice1

    PubMed Central

    Mergemann, Heidi; Sauter, Margret

    2000-01-01

    In deepwater rice (Oryza sativa), adventitious root primordia initiate at the nodes as part of normal development. Emergence of the roots is dependent on flooding of the plant and is mediated by ethylene action. Root growth was preceded by the induced death of epidermal cells of the node external to the tip of the root primordium. Cell death proceeded until the epidermis split open. Through this crack the root eventually emerged. Induced death was confined to nodal epidermal cells covering the tip of the primordia. Our results suggest that this process facilitates adventitious root emergence and prevents injury to the growing root. Cell death was inducible not only by submergence but also by application of 1-aminocyclopropane-1-carboxylic acid, the natural precursor of ethylene and it was suppressed in the presence of 2,5-norbornadiene (bicyclo[2.2.1]hepta-2,5-diene), an inhibitor of ethylene action. Adventitious root growth and epidermal cell death are therefore linked to the ethylene signaling pathway, which is activated in response to low oxygen stress. PMID:11027711

  2. GDNF-independent ureteric budding: role of PI3K-independent activation of AKT and FOSB/JUN/AP-1 signaling

    PubMed Central

    Tee, James B.; Choi, Yohan; Dnyanmote, Ankur; Decambre, Marvalyn; Ito, Chiharu; Bush, Kevin T.; Nigam, Sanjay K.

    2013-01-01

    Summary A significant fraction of mice deficient in either glial cell-derived neurotrophic factor (GDNF) or its co-receptors (Gfrα1, Ret), undergoes ureteric bud (UB) outgrowth leading to the formation of a rudimentary kidney. Previous studies using the isolated Wolffian duct (WD) culture indicate that activation of fibroblast growth factor (FGF) receptor signaling, together with suppression of BMP/Activin signaling, is critical for GDNF-independent WD budding (Maeshima et al., 2007). By expression analysis of embryonic kidney from Ret(−/−) mice, we found the upregulation of several FGFs, including FGF7. To examine the intracellular pathways, we then analyzed GDNF-dependent and GDNF-independent budding in the isolated WD culture. In both conditions, Akt activation was found to be important; however, whereas this occurred through PI3-kinase in GDNF-dependent budding, in the case of GDNF-independent budding, Akt activation was apparently via a PI3-kinase independent mechanism. Jnk signaling and the AP-1 transcription factor complex were also implicated in GDNF-independent budding. FosB, a binding partner of c-Jun in the formation of AP-1, was the most highly upregulated gene in the ret knockout kidney (in which budding had still occurred), and we found that its siRNA-mediated knockdown in isolated WDs also blocked GDNF-independent budding. Taken together with the finding that inhibition of Jnk signaling does not block Akt activation/phosphorylation in GDNF-independent budding, the data support necessary roles for both FosB/Jun/AP-1 signaling and PI3-kinase-independent activation of Akt in GDNF-independent budding. A model is proposed for signaling events that involve Akt and JNK working to regulate GDNF-independent WD budding. PMID:24143282

  3. GDNF-independent ureteric budding: role of PI3K-independent activation of AKT and FOSB/JUN/AP-1 signaling.

    PubMed

    Tee, James B; Choi, Yohan; Dnyanmote, Ankur; Decambre, Marvalyn; Ito, Chiharu; Bush, Kevin T; Nigam, Sanjay K

    2013-01-01

    A significant fraction of mice deficient in either glial cell-derived neurotrophic factor (GDNF) or its co-receptors (Gfrα1, Ret), undergoes ureteric bud (UB) outgrowth leading to the formation of a rudimentary kidney. Previous studies using the isolated Wolffian duct (WD) culture indicate that activation of fibroblast growth factor (FGF) receptor signaling, together with suppression of BMP/Activin signaling, is critical for GDNF-independent WD budding (Maeshima et al., 2007). By expression analysis of embryonic kidney from Ret((-/-)) mice, we found the upregulation of several FGFs, including FGF7. To examine the intracellular pathways, we then analyzed GDNF-dependent and GDNF-independent budding in the isolated WD culture. In both conditions, Akt activation was found to be important; however, whereas this occurred through PI3-kinase in GDNF-dependent budding, in the case of GDNF-independent budding, Akt activation was apparently via a PI3-kinase independent mechanism. Jnk signaling and the AP-1 transcription factor complex were also implicated in GDNF-independent budding. FosB, a binding partner of c-Jun in the formation of AP-1, was the most highly upregulated gene in the ret knockout kidney (in which budding had still occurred), and we found that its siRNA-mediated knockdown in isolated WDs also blocked GDNF-independent budding. Taken together with the finding that inhibition of Jnk signaling does not block Akt activation/phosphorylation in GDNF-independent budding, the data support necessary roles for both FosB/Jun/AP-1 signaling and PI3-kinase-independent activation of Akt in GDNF-independent budding. A model is proposed for signaling events that involve Akt and JNK working to regulate GDNF-independent WD budding.

  4. The Terminal End Bud: the Little Engine that Could.

    PubMed

    Paine, Ingrid S; Lewis, Michael T

    2017-06-01

    The mammary gland is one of the most regenerative organs in the body, with the majority of development occurring postnatally and in the adult mammal. Formation of the ductal tree is orchestrated by a specialized structure called the terminal end bud (TEB). The TEB is responsible for the production of mature cell types leading to the elongation of the subtending duct. The TEB is also the regulatory control point for basement membrane deposition, branching, angiogenesis, and pattern formation. While the hormonal control of TEB growth is well characterized, the local regulatory factors are less well understood. Recent studies of pubertal outgrowth and ductal elongation have yielded surprising details in regards to ongoing processes in the TEB. Here we summarize the current understanding of TEB biology, discuss areas of future study, and discuss the use of the TEB as a model for the study of breast cancer.

  5. Bilingual Buds: The Evolution of a Program

    ERIC Educational Resources Information Center

    Huang, Sharon

    2009-01-01

    The impetus to begin Bilingual Buds came about six years ago when the author, pregnant with twins and commuting into New York City, was reading about the numerous cognitive benefits for children of acquiring a second language early in their lives. She was surprised to learn that even by the age of six months, children begin to lose the ability to…

  6. Bud-grafting yellow-poplar

    Treesearch

    David T. Funk

    1963-01-01

    Several years ago we began work on the vegetative propagation of yellow-poplar (Liriodendron tulipifera L.) with the aim of eventually establishing a clonal seed orchard. We tried field grafting, field budding, and air layering. We then attempted rooting cuttings in the greenhouse and in an indoor propagation bench. The best we could do with any of these methods was 4...

  7. Bilingual Buds: The Evolution of a Program

    ERIC Educational Resources Information Center

    Huang, Sharon

    2009-01-01

    The impetus to begin Bilingual Buds came about six years ago when the author, pregnant with twins and commuting into New York City, was reading about the numerous cognitive benefits for children of acquiring a second language early in their lives. She was surprised to learn that even by the age of six months, children begin to lose the ability to…

  8. Cryopreservation of Salix sp. dormant winter buds

    USDA-ARS?s Scientific Manuscript database

    In cryopreservation, using dormant winter buds (DB) as source plant materials is economically advantageous over tissue culture options (TC). Processing DB does not require aseptic conditions and elaborate cryopreservation procedures. However, the DB approach is only feasible for cryopreserving a sel...

  9. Radiation effects on bovine taste bud membranes

    SciTech Connect

    Shatzman, A.R.; Mossman, K.L.

    1982-11-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.

  10. Sprouting of dormant buds on border trees

    Treesearch

    G.R., Jr. Trimble; H. Clay Smith; H. Clay Smith

    1970-01-01

    As part of an evaluation of silvicultura1 systems used in managing Appalachian hardwoods, we are studying degrade of border trees surrounding harvest-cut openings made in the patch cutting and group selection systems. One facet of this research dealt with determining what portion of visually evident dormant buds on border tree boles sprouted when the openings were cut...

  11. Visualization of Assembly Intermediates and Budding Vacuoles of Singapore Grouper Iridovirus in Grouper Embryonic Cells

    PubMed Central

    Liu, Yang; Tran, Bich Ngoc; Wang, Fan; Ounjai, Puey; Wu, Jinlu; Hew, Choy L.

    2016-01-01

    Iridovirid infection is associated with the catastrophic loss in aquaculture industry and the population decline of wild amphibians and reptiles, but none of the iridovirid life cycles have been well explored. Here, we report the detailed visualization of the life cycle of Singapore grouper iridovirus (SGIV) in grouper cells by cryo-electron microscopy (cryoEM) and tomography (ET). EM imaging revealed that SGIV viral particles have an outer capsid layer, and the interaction of this layer with cellular plasma membrane initiates viral entry. Subsequent viral replication leads to formation of a viral assembly site (VAS), where membranous structures emerge as precursors to recruit capsid proteins to form an intermediate, double-shell, crescent-shaped structure, which curves to form icosahedral capsids. Knockdown of the major capsid protein eliminates the formation of viral capsids. As capsid formation progresses, electron-dense materials known to be involved in DNA encapsidation accumulate within the capsid until it is fully occupied. Besides the well-known budding mechanism through the cell periphery, we demonstrate a novel budding process in which viral particles bud into a tubular-like structure within vacuoles. This budding process may denote a new strategy used by SGIV to disseminate viral particles into neighbor cells while evading host immune response. PMID:26727547

  12. Organogenesis during budding and lophophoral morphology of Hislopia malayensis Annandale, 1916 (Bryozoa, Ctenostomata)

    PubMed Central

    2011-01-01

    Background Bryozoans represent a large lophotrochozoan phylum with controversially discussed phylogenetic position and in group relationships. Developmental processes during the budding of bryozoans are in need for revision. Just recently a study on a phylactolaemate bryozoan gave a comprehensive basis for further comparisons among bryozoans. The aim of this study is to gain more insight into developmental patterns during polypide formation in the budding process of bryozoans. Particular focus is laid upon the lophophore, also its condition in adults. For this purpose we studied organogenesis during budding and lophophoral morphology of the ctenostome bryozoan Hislopia malayensis. Results Polypide buds develop on the frontal side of the developing cystid as proliferation of the epidermal and peritoneal layer. Early buds develop a lumen bordered by the inner budding layer resulting in the shape of a two-layered sac or vesicle. The hind- and midgut anlagen are first to develop as outpocketing of the prospective anal area. These grow towards the prospective mouth area where a comparatively small invagination marks the formation of the foregut. In between the prospective mouth and anus the ganglion develops as an invagination protruding in between the developing gut loop. Lophophore development starts with two lateral ridges which form tentacles very early. At the lophophoral base, intertentacular pits, previously unknown for ctenostomes, develop. The ganglion develops a circum-oral nerve ring from which the tentacle nerves branch off in adult zooids. Tentacles are innervated by medio-frontal nerves arising directly from the nerve ring, and medio-frontal and abfrontal nerves which originate both from an intertentacular fork. Conclusions We are able to show distinct similarities among bryozoans in the formation of the different organ systems: a two-layered vesicle-like early bud, the ganglion forming as an invagination of the epidermal layer in between the prospective

  13. Organogenesis during budding and lophophoral morphology of Hislopia malayensis Annandale, 1916 (Bryozoa, Ctenostomata).

    PubMed

    Schwaha, Thomas; Wood, Timothy S

    2011-04-18

    Bryozoans represent a large lophotrochozoan phylum with controversially discussed phylogenetic position and in group relationships. Developmental processes during the budding of bryozoans are in need for revision. Just recently a study on a phylactolaemate bryozoan gave a comprehensive basis for further comparisons among bryozoans. The aim of this study is to gain more insight into developmental patterns during polypide formation in the budding process of bryozoans. Particular focus is laid upon the lophophore, also its condition in adults. For this purpose we studied organogenesis during budding and lophophoral morphology of the ctenostome bryozoan Hislopia malayensis. Polypide buds develop on the frontal side of the developing cystid as proliferation of the epidermal and peritoneal layer. Early buds develop a lumen bordered by the inner budding layer resulting in the shape of a two-layered sac or vesicle. The hind- and midgut anlagen are first to develop as outpocketing of the prospective anal area. These grow towards the prospective mouth area where a comparatively small invagination marks the formation of the foregut. In between the prospective mouth and anus the ganglion develops as an invagination protruding in between the developing gut loop. Lophophore development starts with two lateral ridges which form tentacles very early. At the lophophoral base, intertentacular pits, previously unknown for ctenostomes, develop. The ganglion develops a circum-oral nerve ring from which the tentacle nerves branch off in adult zooids. Tentacles are innervated by medio-frontal nerves arising directly from the nerve ring, and medio-frontal and abfrontal nerves which originate both from an intertentacular fork. We are able to show distinct similarities among bryozoans in the formation of the different organ systems: a two-layered vesicle-like early bud, the ganglion forming as an invagination of the epidermal layer in between the prospective mouth and anal area, the

  14. Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis

    SciTech Connect

    Carlson, L.; Simon, M.; Briggs, J. A. G.; Glass, B.; Riches, J. D.; Johnson, M. C.; Muller, B.; Grunewald, K.; Krausslich, H.-G.

    2008-12-11

    Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release - akin to its role in vesicle formation - and is not restricted to severing the thin membrane tether.

  15. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust.

    PubMed

    Quan, Jine; Meng, Seng; Guo, Erhui; Zhang, Sheng; Zhao, Zhong; Yang, Xitian

    2017-02-16

    Indole-3-butyric acid (IBA) is applied to the cuttings of various plant species to induce formation of adventitious roots (ARs) in commercial settings. Tetraploid black locust is an attractive ornamental tree that is drought resistant, sand tolerant, can prevent sand erosion and has various commercial uses. To further elucidate the mechanisms of AR formation, we used Illumina sequencing to analyze transcriptome dynamics and differential gene expression at four developmental stages in control (CK) and IBA-treated groups. The short reads were assembled into 127,038 unitranscripts and 101,209 unigenes, with average lengths of 986 and 852 bp. In total, 10,181 and 14,924 differentially expressed genes (DEGs) were detected in the CK and IBA-treated groups, respectively. Comparison of the four consecutive developmental stages showed that 282 and 260 DEGs were shared between IBA-treated and CK, suggesting that IBA treatment increased the number of DEGs. We observed 1,721 up-regulated and 849 down-regulated genes in CI vs. II, 849 up-regulated and 836 down-regulated genes in CC vs. IC, 881 up-regulated and 631 down-regulated genes in CRP vs. IRP, and 5,626 up-regulated and 4,932 down-regulated genes in CAR vs. IAR, of which 25 up-regulated DEGs were common to four pairs, and these DEGs were significantly up-regulated at AR. These results suggest that substantial changes in gene expression are associated with adventitious rooting. GO functional category analysis indicated that IBA significantly up- or down-regulated processes associated with regulation of transcription, transcription of DNA dependent, integral to membrane and ATP binding during the development process. KEGG pathway enrichment indicated that glycolysis/gluconeogenesis, cysteine and methionine metabolism, photosynthesis, nucleotide sugar metabolism, and lysosome were the pathways most highly regulated by IBA. We identified a number of differentially regulated unigenes, including 12 methionine-related genes

  16. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  17. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  18. Histopathological Evidence of Adventitial or Medial Injury Is a Strong Predictor of Restenosis During Directional Atherectomy for Peripheral Artery Disease.

    PubMed

    Tarricone, Arthur; Ali, Ziad; Rajamanickam, Anitha; Gujja, Karthik; Kapur, Vishal; Purushothaman, K-Raman; Purushothaman, Meerarani; Vasquez, Miguel; Zalewski, Adrian; Parides, Micheal; Overbey, Jessica; Wiley, Jose; Krishnan, Prakash

    2015-10-01

    To investigate the impact on restenosis rates of deep injury to the adventitial layer during directional atherectomy. Between 2007 and 2010, 116 consecutive patients (mean age 69.6 years; 56 men) with symptomatic femoropopliteal stenoses were treated with directional atherectomy at a single center. All patients had claudication and TASC A/B lesions in the superficial femoral or popliteal arteries. Histopathology analysis of atherectomy specimens was performed to identify adventitial injury. Clinical follow-up included physical examination and duplex ultrasound scans at 3, 6, and 12 months in all patients. The primary endpoint was the duplex-documented 1-year rate of restenosis, which was determined by a peak systolic velocity ratio <2.4. Patients were dichotomized by the presence or absence of adventitial or medial cuts as evaluated by histopathology. Adventitial injury were identified in 62 (53%) of patients. There were no differences in baseline demographic and clinical features (p>0.05), lesion length (58.7±12.8 vs 56.2±13.6 mm, p=0.40), or vessel runoff (1.9±0.6 vs 2.0±0.6, p=0.37) between patients with and without adventitial injury, respectively. The overall 1-year incidence of restenosis was 57%, but the rate was significantly higher (p<0.0001) in patients with adventitial or medial injury (97%, 60/62) as compared with those without (11%, 6/54). Lack of adventitial injury after atherectomy for femoropopliteal stenosis is strongly related to patency at 1 year. © The Author(s) 2015.

  19. Localization of Bud2p, a GTPase-activating protein necessary for programming cell polarity in yeast to the presumptive bud site

    PubMed Central

    Park, Hay-Oak; Sanson, Anthony; Herskowitz, Ira

    1999-01-01

    Yeast cells of different cell type exhibit distinct budding patterns that reflect the organization of the actin cytoskeleton. Bud1p (Rsr1p), a Ras-like GTPase, and Bud2p, a GTPase-activating protein for Bud1p, are essential for proper budding pattern. We show that Bud2p is localized at the presumptive bud site in G1 cells in all cell types and that this localization is independent of Bud1p. Bud2p subsequently localizes to the mother-bud neck after bud emergence; this localization depends on the integrity of the septins. These observations indicate that Bud2p becomes positioned in G1 cells by recognizing cell type-specific landmarks at the presumptive bud site. PMID:10444589

  20. Processing umami and other tastes in mammalian taste buds.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  1. Dehydration-induced endodormancy in crown buds of leafy spurge highlights involvement of MAF3- and RVE1-like homologs, and hormone signaling cross-talk.

    PubMed

    Doğramacı, Münevver; Horvath, David P; Anderson, James V

    2014-11-01

    Vegetative shoot growth from underground adventitious buds of leafy spurge is critical for survival of this invasive perennial weed after episodes of severe abiotic stress. To determine the impact that dehydration-stress has on molecular mechanisms associated with vegetative reproduction of leafy spurge, greenhouse plants were exposed to mild- (3-day), intermediate- (7-day), severe- (14-day) and extended- (21-day) dehydration treatments. Aerial tissues of treated plants were then decapitated and soil was rehydrated to determine the growth potential of underground adventitious buds. Compared to well-watered plants, mild-dehydration accelerated new vegetative shoot growth, whereas intermediate- through extended-dehydration treatments both delayed and reduced shoot growth. Results of vegetative regrowth further confirmed that 14 days of dehydration induced a full-state of endodormancy in crown buds, which was correlated with a significant (P < 0.05) change in abundance of 2,124 transcripts. Sub-network enrichment analyses of transcriptome data obtained from the various levels of dehydration treatment also identified central hubs of over-represented genes involved in processes such as hormone signaling (i.e., ABA, auxin, ethylene, GA, and JA), response to abiotic stress (DREB1A/2A, RD22) and light (PIF3), phosphorylation (MPK4/6), circadian regulation (CRY2, PHYA), and flowering (AGL20, AP2, FLC). Further, results from this and previous studies highlight homologs most similar to Arabidopsis HY5, MAF3, RVE1 and RD22 as potential molecular markers for endodormancy in crown buds of leafy spurge. Early response to mild dehydration also highlighted involvement of upstream ethylene and JA-signaling, whereas severe dehydration impacted ABA-signaling. The identification of conserved ABRE- and MYC-consensus, cis-acting elements in the promoter of leafy spurge genomic clones similar to Arabidopsis RVE1 (AT5G17300) implicates a potential role for ABA-signaling in its dehydration

  2. Sex specific retinoic acid signaling is required for the initiation of urogenital sinus bud development

    PubMed Central

    Bryant, Sarah L.; Francis, Jeffrey C.; Lokody, Isabel B.; Wang, Hong; Risbridger, Gail P.; Loveland, Kate L.; Swain, Amanda

    2014-01-01

    The mammalian urogenital sinus (UGS) develops in a sex specific manner, giving rise to the prostate in the male and the sinus vagina in the embryonic female. Androgens, produced by the embryonic testis, have been shown to be crucial to this process. In this study we show that retinoic acid signaling is required for the initial stages of bud development from the male UGS. Enzymes involved in retinoic acid synthesis are expressed in the UGS mesenchyme in a sex specific manner and addition of ligand to female tissue is able to induce prostate-like bud formation in the absence of androgens, albeit at reduced potency. Functional studies in mouse organ cultures that faithfully reproduce the initiation of prostate development indicate that one of the roles of retinoic acid signaling in the male is to inhibit the expression of Inhba, which encodes the βA subunit of Activin, in the UGS mesenchyme. Through in vivo genetic analysis and culture studies we show that inhibition of Activin signaling in the female UGS leads to a similar phenotype to that of retinoic acid treatment, namely bud formation in the absence of androgens. Our data also reveals that both androgens and retinoic acid have extra independent roles to that of repressing Activin signaling in the development of the prostate during fetal stages. This study identifies a novel role for retinoic acid as a mesenchymal factor that acts together with androgens to determine the position and initiation of bud development in the male UGS epithelia. PMID:25261715

  3. Altered expression of the chicken homeobox-containing genes GHox-7 and GHox-8 in the limb buds of limbless mutant chick embryos.

    PubMed

    Coelho, C N; Krabbenhoft, K M; Upholt, W B; Fallon, J F; Kosher, R A

    1991-12-01

    It has been suggested that the reciprocal expression of the chicken homeobox-containing genes GHox-8 and GHox-7 by the apical ectodermal ridge and subjacent limb mesoderm might be involved in regulating the proximodistal outgrowth of the developing chick limb bud. In the present study the expression of GHox-7 and GHox-8 has been examined by in situ and dot blot hybridization in the developing limb buds of limbless mutant chick embryos. The limb buds of homozygous mutant limbless embryos form at the proper time in development (stage 17/18), but never develop an apical ectodermal ridge, fail to undergo normal elongation, and eventually degenerate. At stage 18, which is shortly following the formation of the limb bud, the expression of GHox-7 is considerably reduced (about 3-fold lower) in the mesoderm of limbless mutant limb buds compared to normal limb bud mesoderm. By stages 20 and 21, as the limb buds of limbless embryos cease outgrowth, GHox-7 expression in limbless mesoderm declines to very low levels, whereas GHox-7 expression increases in the mesoderm of normal limb buds which are undergoing outgrowth. In contrast to GHox-7, expression of GHox-8 in limbless mesoderm at stage 18 is quantitatively similar to its expression in normal limb bud mesoderm, and in limbless and normal mesoderm GHox-8 expression is highly localized in the anterior mesoderm of the limb bud. In normal limb buds, GHox-8 is also expressed in high amounts by the apical ectodermal ridge.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Loss of flower bud vigour in the Mediterranean shrub, Cistus albidus L. at advanced developmental stages.

    PubMed

    Oñate, M; Munné-Bosch, S

    2010-05-01

    To better understand aging in perennials, age-related changes in the physiology of leaves and flower buds of the Mediterranean shrub, Cistus albidus L. were evaluated. Two groups of different ages (5 and 10 years old), both at advanced developmental stages but of similar size, were compared. Total plant biomass, biomass produced per apical meristem and levels of cytokinins, abscisic acid and jasmonic acid in leaves and flower buds, as well as flower production, were measured. No differences in plant size, vegetative growth rates and levels of phytohormones in leaves were observed between 5- and 10-year-old plants. However, they showed significant differences in flower bud development; the older plants having reduced vigour, with 29.6% of flowers reaching anthesis compared to 52.5% in the younger plants. Furthermore, endogenous concentrations of zeatin and abscisic acid in flower buds at stage I (start of flower organ formation) were 61% and 41%, respectively, smaller in 10- than in 5-year-old plants. At stage II (with all flower organs formed), zeatin and abscisic acid concentrations decreased by ca. 90% and 80%, respectively, but differences between age groups were still evident (60% and 29% for zeatin and abscisic acid, respectively). Jasmonic acid levels in flower buds decreased by 80% from stage I to II, but did not differ between age groups. Despite reductions in flower bud vigour, total number of flowers per individual was not significantly different between age groups, so that an age-related loss in reproductive vigour at the organ level did not lead to a decrease in flower production at the whole plant level.

  5. Budding of domains in mixed bilayer membranes

    NASA Astrophysics Data System (ADS)

    Wolff, Jean; Komura, Shigeyuki; Andelman, David

    2015-01-01

    We propose a model that accounts for the budding behavior of domains in lipid bilayers, where each of the bilayer leaflets has a coupling between its local curvature and the local lipid composition. The compositional asymmetry between the two monolayers leads to an overall spontaneous curvature. The membrane free energy contains three contributions: the bending energy, the line tension, and a Landau free energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams which contain fully budded, dimpled, and flat states. In particular, for some range of membrane parameters, the phase diagrams exhibit a tricritical behavior as well as a three-phase coexistence region. The global phase diagrams can be divided into three types and are analyzed in terms of the curvature-composition coupling parameter and domain size.

  6. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  7. The ESCRT pathway and HIV-1 budding.

    PubMed

    Usami, Yoshiko; Popov, Sergei; Popova, Elena; Inoue, Michio; Weissenhorn, Winfried; G Göttlinger, Heinrich

    2009-02-01

    HIV-1 Gag engages components of the ESCRT (endosomal sorting complex required for transport) pathway via so-called L (late-assembly) domains to promote virus budding. Specifically, the PTAP (Pro-Thr-Ala-Pro)-type primary L domain of HIV-1 recruits ESCRT-I by binding to Tsg101 (tumour susceptibility gene 101), and an auxiliary LYPX(n)L (Leu-Tyr-Pro-Xaa(n)-Leu)-type L domain recruits the ESCRT-III-binding partner Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X]. The structurally related CHMPs (charged multivesicular body proteins), which form ESCRT-III, are kept in an inactive state through intramolecular interactions, and become potent inhibitors of HIV-1 budding upon removal of an autoinhibitory region. In the absence of the primary L domain, HIV-1 budding is strongly impaired, but can be efficiently rescued through the overexpression of Alix. This effect of Alix depends on its ability to interact with CHMP4, suggesting that it is the recruitment of CHMPs that ultimately drives virus release. Surprisingly, HIV-1 budding defects can also be efficiently corrected by overexpressing Nedd (neural-precursor-cell-expressed developmentally down-regulated) 4-2s, a member of a family of ubiquitin ligases previously implicated in the function of PPXY (Pro-Pro-Xaa-Tyr)-type L domains, which are absent from HIV-1. At least under certain circumstances, Nedd4-2s stimulates the activity of PTAP-type L domains, raising the possibility that the ubiquitin ligase regulates the activity of ESCRT-I.

  8. In Vitro Budding of Intralumenal Vesicles into Late Endosomes Is Regulated by Alix and Tsg101

    PubMed Central

    Falguières, Thomas; Luyet, Pierre-Philippe; Bissig, Christin; Scott, Cameron C.; Velluz, Marie-Claire

    2008-01-01

    Endosomes along the degradation pathway leading to lysosomes accumulate membranes in their lumen and thus exhibit a characteristic multivesicular appearance. These lumenal membranes typically incorporate down-regulated EGF receptor destined for degradation, but the mechanisms that control their formation remain poorly characterized. Here, we describe a novel quantitative biochemical assay that reconstitutes the formation of lumenal vesicles within late endosomes in vitro. Vesicle budding into the endosome lumen was time-, temperature-, pH-, and energy-dependent and required cytosolic factors and endosome membrane components. Our light and electron microscopy analysis showed that the compartment supporting the budding process was accessible to endocytosed bulk tracers and EGF receptor. We also found that the EGF receptor became protected against trypsin in our assay, indicating that it was sorted into the intraendosomal vesicles that were formed in vitro. Our data show that the formation of intralumenal vesicles is ESCRT-dependent, because the process was inhibited by the K173Q dominant negative mutant of hVps4. Moreover, we find that the ESCRT-I subunit Tsg101 and its partner Alix control intralumenal vesicle formation, by acting as positive and negative regulators, respectively. We conclude that budding of the limiting membrane toward the late endosome lumen, which leads to the formation of intraendosomal vesicles, is controlled by the positive and negative functions of Tsg101 and Alix, respectively. PMID:18768755

  9. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget.

    PubMed

    Zlobec, Inti; Lugli, Alessandro

    2010-11-01

    Epithelial mesenchymal transition (EMT) is proposed as a critical mechanism for the acquisition of malignant phenotypes by epithelial cells. In colorectal cancer, tumor cells having undergone EMT are histologically represented by the presence of tumor buds defined as single cells or small clusters of de-differentiated tumor cells at the invasive front. Tumor budding is not a static, histological feature rather it represents a snap-shot of a dynamic process undertaken by an aggressive tumor with the potential to disseminate and metastasize. Strong, consistent evidence shows that tumor budding is a predictor of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival time and an independent prognostic factor. Moreover, the International Union against Cancer (UICC) recognizes tumor budding as a highly relevant, additional prognostic parameter. The aim of this review is to summarize the evidence supporting the implementation of tumor budding into diagnostic pathology and patient management and additionally to illustrate its worthiness as a potential therapeutic target.

  10. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: Tumor budding as oncotarget

    PubMed Central

    Zlobec, Inti; Lugli, Alessandro

    2010-01-01

    Epithelial mesenchymal transition (EMT) is proposed as a critical mechanism for the acquisition of malignant phenotypes by epithelial cells. In colorectal cancer, tumor cells having undergone EMT are histologically represented by the presence of tumor buds defined as single cells or small clusters of de-differentiated tumor cells at the invasive front. Tumor budding is not a static, histological feature rather it represents a snap-shot of a dynamic process undertaken by an aggressive tumor with the potential to disseminate and metastasize. Strong, consistent evidence shows that tumor budding is a predictor of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival time and an independent prognostic factor. Moreover, the International Union against Cancer (UICC) recognizes tumor budding as a highly relevant, additional prognostic parameter. The aim of this review is to summarize the evidence supporting the implementation of tumor budding into diagnostic pathology and patient management and additionally to illustrate its worthiness as a potential therapeutic target. PMID:21317460

  11. A Bni4-Glc7 Phosphatase Complex That Recruits Chitin Synthase to the Site of Bud EmergenceV⃞

    PubMed Central

    Kozubowski, Lukasz; Panek, Heather; Rosenthal, Ashley; Bloecher, Andrew; DeMarini, Douglas J.; Tatchell, Kelly

    2003-01-01

    Bni4 is a scaffold protein in the yeast Saccharomyces cerevisiae that tethers chitin synthase III to the bud neck by interacting with septin neck filaments and with Chs4, a regulatory subunit of chitin synthase III. We show herein that Bni4 is also a limiting determinant for the targeting of the type 1 serine/threonine phosphatase (Glc7) to the bud neck. Yeast cells containing a Bni4 variant that fails to associate with Glc7 fail to tether Chs4 to the neck, due in part to the failure of Bni4V831A/F833A to localize properly. Conversely, the Glc7-129 mutant protein fails to bind Bni4 properly and glc7-129 mutants exhibit reduced levels of Bni4 at the bud neck. Bni4 is phosphorylated in a cell cycle-dependent manner and Bni4V831A/F833A is both hyperphosphorylated and mislocalized in vivo. Yeast cells lacking the protein kinase Hsl1 exhibit increased levels of Bni4-GFP at the bud neck. GFP-Chs4 does not accumulate at the incipient bud site in either a bni4::TRP1 or a bni4V831A/F833A mutant but does mobilize to the neck at cytokinesis. Together, these results indicate that the formation of the Bni4-Glc7 complex is required for localization to the site of bud emergence and for subsequent targeting of chitin synthase. PMID:12529424

  12. Shh pathway activation is present and required within the vertebrate limb bud apical ectodermal ridge for normal autopod patterning.

    PubMed

    Bouldin, Cortney M; Gritli-Linde, Amel; Ahn, Sohyun; Harfe, Brian D

    2010-03-23

    Expression of Sonic Hedgehog (Shh) in the posterior mesenchyme of the developing limb bud regulates patterning and growth of the developing limb by activation of the Hedgehog (Hh) signaling pathway. Through the analysis of Shh and Hh signaling target genes, it has been shown that activation in the limb bud mesoderm is required for normal limb development to occur. In contrast, it has been stated that Hh signaling in the limb bud ectoderm cannot occur because components of the Hh signaling pathway and Hh target genes have not been found in this tissue. However, recent array-based data identified both the components necessary to activate the Hh signaling pathway and targets of this pathway in the limb bud ectoderm. Using immunohistochemistry and various methods of detection for targets of Hh signaling, we found that SHH protein and targets of Hh signaling are present in the limb bud ectoderm including the apex of the bud. To directly test whether ectodermal Hh signaling was required for normal limb patterning, we removed Smo, an essential component of the Hh signaling pathway, from the apical ectodermal ridge (AER). Loss of functional Hh signaling in the AER resulted in disruption of the normal digit pattern and formation of additional postaxial cartilaginous condensations. These data indicate that contrary to previous accounts, the Hh signaling pathway is present and required in the developing limb AER for normal autopod development.

  13. Golgi cisternal unstacking stimulates COPI vesicle budding and protein transport.

    PubMed

    Wang, Yanzhuang; Wei, Jen-Hsuan; Bisel, Blaine; Tang, Danming; Seemann, Joachim

    2008-02-20

    The Golgi apparatus in mammalian cells is composed of flattened cisternae that are densely packed to form stacks. We have used the Golgi stacking protein GRASP65 as a tool to modify the stacking state of Golgi cisternae. We established an assay to measure protein transport to the cell surface in post-mitotic cells in which the Golgi was unstacked. Cells with an unstacked Golgi showed a higher transport rate compared to cells with stacked Golgi membranes. Vesicle budding from unstacked cisternae in vitro was significantly increased compared to stacked membranes. These results suggest that Golgi cisternal stacking can directly regulate vesicle formation and thus the rate of protein transport through the Golgi. The results further suggest that at the onset of mitosis, unstacking of cisternae allows extensive and rapid vesiculation of the Golgi in preparation for its subsequent partitioning.

  14. Golgi Cisternal Unstacking Stimulates COPI Vesicle Budding and Protein Transport

    PubMed Central

    Wang, Yanzhuang; Wei, Jen-Hsuan; Bisel, Blaine; Tang, Danming; Seemann, Joachim

    2008-01-01

    The Golgi apparatus in mammalian cells is composed of flattened cisternae that are densely packed to form stacks. We have used the Golgi stacking protein GRASP65 as a tool to modify the stacking state of Golgi cisternae. We established an assay to measure protein transport to the cell surface in post-mitotic cells in which the Golgi was unstacked. Cells with an unstacked Golgi showed a higher transport rate compared to cells with stacked Golgi membranes. Vesicle budding from unstacked cisternae in vitro was significantly increased compared to stacked membranes. These results suggest that Golgi cisternal stacking can directly regulate vesicle formation and thus the rate of protein transport through the Golgi. The results further suggest that at the onset of mitosis, unstacking of cisternae allows extensive and rapid vesiculation of the Golgi in preparation for its subsequent partitioning. PMID:18297130

  15. Morphological and Physiological Factors Affecting Formation of Adventitious Roots on Sugar Maple Stem Cuttings

    Treesearch

    John R. Donnelly

    1977-01-01

    Sugar maple cuttings were collected twice a week throughout June from four mature trees. Some of the cuttings were analyzed for carbohydrate (starch and sugars) and nitrogen content; the others were stuck in rooting beds. Rooting response showed significant daily and clonal variations. Cuttings rooted best when their terminal leaves were mature, as judged by size and...

  16. Promotion of adventitious root formation of difficult-to-root hardwood tree species

    Treesearch

    Paula M. Pijut; Keith E. Woeste; Charles H. Michler

    2011-01-01

    North American hardwood tree species, such as alder (Alnus spp.), ash (Fraxinus spp.), basswood (Tilia spp.), beech (Fagus spp.), birch (Betula spp.), black cherry (Prunus seratina), black walnut (Juglans nigra), black willow (...

  17. Hypoxia induces unique proliferative response in adventitial fibroblasts by activating PDGFβ receptor-JNK1 signalling

    PubMed Central

    Panzhinskiy, Evgeniy; Zawada, W. Michael; Stenmark, Kurt R.; Das, Mita

    2012-01-01

    Aims Pulmonary hypertension (PH) is a devastating condition for which no disease-modifying therapies exist. PH is recognized as proliferative disease of the pulmonary artery (PA). In the experimental newborn calf model of hypoxia-induced PH, adventitial fibroblasts in the PA wall exhibit a heightened replication index. Because elevated platelet-derived growth factor β receptor (PDGFβ-R) signalling is associated with PH, we tested the hypothesis that the activation of PDGFβ-R contributes to fibroblast proliferation and adventitial remodelling in PH. Methods and results Newborn calves were exposed to either ambient air (PB = 640 mmHg) (Neo-C) or high altitude (PB = 445 mm Hg) (Neo-PH) for 2 weeks. PDGFβ-R phosphorylation was markedly elevated in PA adventitia of Neo-PH calves as well as in cultured PA fibroblasts isolated from Neo-PH animals. PDGFβ-R activation with PDGF-BB stimulated higher replication in Neo-PH cells compared with that of control fibroblasts. PDGF-BB-induced proliferation was dependent on reactive oxygen species generation and extracellular signal-regulated kinase1/2 activation in both cell populations; however, only Neo-PH cell division via PDGFβ-R activation displayed a unique dependence on c-Jun N-terminal kinase1 (JNK1) stimulation as the blockade of JNK1 with SP600125, a pharmacological antagonist of the JNK pathway, and JNK1-targeted siRNA selectively blunted Neo-PH cell proliferation. Conclusions Our data strongly suggest that hypoxia-induced modified cells engage the PDGFβ-R-JNK1 axis to confer distinctively heightened proliferation and adventitial remodelling in PH. PMID:22735370

  18. Tumor budding in colorectal cancer--ready for diagnostic practice?

    PubMed

    Koelzer, Viktor H; Zlobec, Inti; Lugli, Alessandro

    2016-01-01

    Tumor budding is an important additional prognostic factor for patients with colorectal cancer (CRC). Defined as the presence of single tumor cells or small clusters of up to 5 cells in the tumor stroma, tumor budding has been likened to an epithelial-mesenchymal transition. Based on well-designed retrospective studies, tumor budding is linked to adverse outcome of CRC patients in 3 clinical scenarios: (1) in malignant polyps, detection of tumor buds is a risk factor for lymph node metastasis indicating the need for colorectal surgery; (2) tumor budding in stage II CRC is a highly adverse prognostic indicator and may aid patient selection for adjuvant therapy; (3) in the preoperative setting, presence of tumor budding in biopsy material may help to identify high-risk rectal cancer patients for neoadjuvant therapy. However, lack of consensus guidelines for standardized assessment still limits reporting in daily diagnostic practice. This article provides a practical and comprehensive overview on tumor budding aimed at the practicing pathologist. First, we review the prognostic value of tumor budding for the management of colon and rectal cancer patients. Second, we outline a practical, evidence-based proposal for the assessment of tumor budding in the daily sign-out. Last, we summarize the current knowledge of the molecular characteristics of high-grade budding tumors in the context of personalized treatment approaches and biomarker discovery. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Panax ginseng Adventitious Root Suspension Culture: Protocol for Biomass Production and Analysis of Ginsenosides by High Pressure Liquid Chromatography.

    PubMed

    Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2016-01-01

    Panax ginseng C.A. Meyer (Korean ginseng) is a popular herbal medicine. It has been used in Chinese and Oriental medicines since thousands of years. Ginseng products are generally used as a tonic and an adaptogen to resist the adverse influence of a wide range of physical, chemical and biological factors, and to restore homeostasis. Ginsenosides or ginseng saponins are the principal active ingredients of ginseng. Since ginseng cultivation process is very slow and needs specific environment for field cultivation, cell and tissue cultures are sought as alternatives for the production of ginseng biomass and bioactive compounds. In this chapter, we focus on methods of induction of adventitious roots from ginseng roots, establishment of adventitious root suspension cultures using bioreactors, procedures for processing of adventitious roots, and analysis of ginsenosides by high pressure liquid chromatography.

  20. Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots.

    PubMed

    Min, Ji Yun; Jung, Hee Young; Kang, Seung Mi; Kim, Yong Duck; Kang, Young Min; Park, Dong Jin; Prasad, Doddananjappa Theertha; Choi, Myung Suk

    2007-07-01

    The mass production of tropane alkaloids from adventitious root cultures of Scopolia parviflora, in small-scale bubble column bioreactor (BCB) was attempted. Adventitious roots of S. parviflora produced relatively enhanced levels of scopolamine and hyoscyamine in bioreactor compared to flask type cultures, and rapidly produced root clumps, with continuously increasing biomass throughout the culture period. The production of scopolamine and hyoscyamine in the top and bottom regions of root clumps were higher than in the core region. The adventitious root cultures of S. parviflora in the BCB required a relatively high level of aeration. The optimized conditions for the bioreactor culture growth and alkaloid production were found to be 3g of inoculum, on a fresh weight basis, a 15-day culture period and 0.4vvm of airflow. The elicitation by Staphylococus aureus increased the specific compound of scopolamine, while the production of hyoscyamine was slightly inhibited in BCB cultures.

  1. Gonadotropin promotion of adventitious root production on cuttings of Begonia semperflorens and Vitis vinifera.

    PubMed

    Leshem, Y; Lunenfeld, B

    1968-03-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA(3)-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems.

  2. Gonadotropin Promotion of Adventitious Root Production on Cuttings of Begonia semperflorens and Vitis vinifera 1

    PubMed Central

    Leshem, Y.; Lunenfeld, B.

    1968-01-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA3-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems. PMID:5641189

  3. From Buds to Follicles: Matrix Metalloproteinases in Developmental Tissue Remodeling during Feather Morphogenesis

    PubMed Central

    Jiang, Ting-Xin; Tuan, Tai Lan; Wu, Ping; Widelitz, Randall B.; Chuong, Cheng-Ming

    2011-01-01

    Organogenesis involves a series of dynamic morphogenesis and remodeling processes. Since feathers exhibit complex forms, we have been using the feather as a model to analyze how molecular pathways and cellular events are used. While several major molecular pathways have been studied, the roles of matrix degrading proteases and inhibitors in feather morphogenesis are unknown. Here we addressed this knowledge gap by studying the temporal and spatial expression of proteases and inhibitors in developing feathers using mammalian antibodies that cross react with chicken proteins. We also investigated the effect of protease inhibitors on feather development employing an in vitro feather bud culture system. The results show that antibodies specific for mammalian MMP2 and TIMP2 stained positive in both feather epithelium and mesenchyme. The staining co-localized in structures of E10 to E13 developing feathers. Interestingly, MMP2 and TIMP2 exhibited a complementary staining pattern in developing E15 and E20 feathers and in maturing feather filaments. Although they exhibited a slight delay in feather bud development, similar patterns of MMP2 and TIMP2 staining were observed in in vitro culture explants. The broad spectrum pharmacological inhibitors AG3340 and BB103 (MMP inhibitors) but not Aprotinin (a plasmin inhibitor) showed a reversible effect on epithelium invagination and feather bud elongation. TIMP2, a physiological inhibitor to MMPs, exhibited a similar effect. Markers of feather morphogenesis showed that MMP activity was required for both epithelium invagination and mesenchymal cell proliferation. Inhibition of MMP activity led to an overall delay in the expression of molecules that regulate either early feather bud growth and/or differentiation and thereby produced abnormal buds with incomplete follicle formation. This work demonstrates that MMPs and their inhibitors are not only important in injury repair, but also in development tissue remodeling as demonstrated

  4. From buds to follicles: matrix metalloproteinases in developmental tissue remodeling during feather morphogenesis.

    PubMed

    Jiang, Ting-Xin; Tuan, Tai Lan; Wu, Ping; Widelitz, Randall B; Chuong, Cheng-Ming

    2011-06-01

    Organogenesis involves a series of dynamic morphogenesis and remodeling processes. Since feathers exhibit complex forms, we have been using the feather as a model to analyze how molecular pathways and cellular events are used. While several major molecular pathways have been studied, the roles of matrix degrading proteases and inhibitors in feather morphogenesis are unknown. Here we addressed this knowledge gap by studying the temporal and spatial expression of proteases and inhibitors in developing feathers using mammalian antibodies that cross react with chicken proteins. We also investigated the effect of protease inhibitors on feather development employing an in vitro feather bud culture system. The results show that antibodies specific for mammalian MMP2 and TIMP2 stained positive in both feather epithelium and mesenchyme. The staining co-localized in structures of E10-E13 developing feathers. Interestingly, MMP2 and TIMP2 exhibited a complementary staining pattern in developing E15 and E20 feathers and in maturing feather filaments. Although they exhibited a slight delay in feather bud development, similar patterns of MMP2 and TIMP2 staining were observed in in vitro culture explants. The broad spectrum pharmacological inhibitors AG3340 and BB103 (MMP inhibitors) but not Aprotinin (a plasmin inhibitor) showed a reversible effect on epithelium invagination and feather bud elongation. TIMP2, a physiological inhibitor to MMPs, exhibited a similar effect. Markers of feather morphogenesis showed that MMP activity was required for both epithelium invagination and mesenchymal cell proliferation. Inhibition of MMP activity led to an overall delay in the expression of molecules that regulate either early feather bud growth and/or differentiation and thereby produced abnormal buds with incomplete follicle formation. This work demonstrates that MMPs and their inhibitors are not only important in injury repair, but also in development tissue remodeling as demonstrated

  5. Case report of adventitial cystic disease of the popliteal artery presented with the ''dog-leg'' sign.

    PubMed

    Nano, G; Dalainas, I; Casana, R; Stegher, S; Malacrida, G; Tealdi, D G

    2007-03-01

    Adventitial cystic disease of the popliteal artery constitutes an infrequent cause of claudication in non-atherosclerotic young or middle-aged population. Here, we report the case of a 43-year-old female with adventitial cystic disease of the popliteal artery causing left lower leg claudication, detected by duplex scanning. The angio-CT showed the "dog-leg" sign, typical of the aneurysm of the popliteal artery. Surgery was performed through the posterior approach. The cyst and the affected segment of the artery were successfully excised and replaced with an autogenous saphenous vein graft. In 1 year follow-up the graft is patent and the patient is completely asymptomatic.

  6. Focal accumulation of preribosomes outside the nucleolus during metaphase-anaphase in budding yeast.

    PubMed

    Moriggi, Giulia; Gaspar, Sonia G; Nieto, Blanca; Bustelo, Xosé R; Dosil, Mercedes

    2017-09-01

    Saccharomyces cerevisiae contains one nucleolus that remains intact in the mother-cell side of the nucleus throughout most of mitosis. Based on this, it is assumed that the bulk of ribosome production during cell division occurs in the mother cell. Here, we show that the ribosome synthesis machinery localizes not only in the nucleolus but also at a center that is present in the bud side of the nucleus after the initiation of mitosis. This center can be visualized by live microscopy as a punctate body located in close proximity to the nuclear envelope and opposite to the nucleolus. It contains ribosomal DNA (rDNA) and precursors of both 40S and 60S ribosomal subunits. Proteins that actively participate in ribosome synthesis, but not functionally defective variants, accumulate in that site. The formation of this body occurs in the metaphase-to-anaphase transition when discrete regions of rDNA occasionally exit the nucleolus and move into the bud. Collectively, our data unveil the existence of a previously unknown mechanism for preribosome accumulation at the nuclear periphery in budding yeast. We propose that this might be a strategy to expedite the delivery of ribosomes to the growing bud. © 2017 Moriggi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Estimation of population effects in synchronized budding yeast experiments

    NASA Astrophysics Data System (ADS)

    Niemistoe, Antti; Aho, Tommi; Thesleff, Henna; Tiainen, Mikko; Marjanen, Kalle; Linne, Marja-Leena; Yli-Harja, Olli P.

    2003-05-01

    An approach for estimating the distribution of a synchronized budding yeast (Saccharomyces cerevisiae) cell population is discussed. This involves estimation of the phase of the cell cycle for each cell. The approach is based on counting the number of buds of different sizes in budding yeast images. An image processing procedure is presented for the bud-counting task. The procedure employs clustering of the local mean-variance space for segmentation of the images. The subsequent bud-detection step is based on an object separation method which utilizes the chain code representation of objects as well as labeling of connected components. The procedure is tested with microscopic images that were obtained in a time-series experiment of a synchronized budding yeast cell population. The use of the distribution estimate of the cell population for inverse filtering of signals that are obtained in time-series microarray measurements is discussed as well.

  8. Foliar application of GA3 during terminal long-shoot bud development stimulates shoot apical meristem activity in Pinus sylvestris seedlings.

    PubMed

    MacDonald, Joanne E; Little, C H Anthony

    2006-10-01

    The effect of exogenous gibberellin (GA3) on shoot apical meristem activity in conifer vegetative buds was investigated by spraying 0 or 0.1% GA3 on the foliage of first-year Scots pine (Pinus sylvestris L.) seedlings twice weekly for 9 weeks during development of the terminal long-shoot bud. Exogenous GA3 promoted mitotic activity in the apical zone, thereby increasing both the rate and duration of cataphyll formation and giving rise to a higher and wider apical meristem. The increase in number of cataphylls increased the number of axillary meristems, which developed as short-shoot buds.

  9. Genetic evidence for the roles of the bud-site-selection genes BUD5 and BUD2 in control of the Rsr1p (Bud1p) GTPase in yeast.

    PubMed Central

    Bender, A

    1993-01-01

    Yeast cells normally display either an axial (for MATa or MAT alpha cells) or bipolar (for MATa/alpha cells) pattern of bud-site selection. The RSR1 gene, which was previously identified as a multicopy suppressor of Ts- mutations in the bud-emergence gene CDC24, encodes a GTPase of the Ras family that is required for both budding patterns. Mutations in Rsr1p that presumably block its ability to bind or hydrolyze GTP cause a randomized budding phenotype, suggesting that regulators of Rsr1p will prove to be required for proper bud positioning. The BUD5 gene product is required for proper bud-site selection and contains similarity to GDP-dissociation stimulators (GDS) for Ras-type proteins, suggesting that Bud5p may be a GDS for Rsr1p. Here I report that BUD5 is required for wild-type RSR1, but not for mutationally activated rsr1val12, to serve as a multicopy suppressor of cdc24, indicating that Bud5p functions as a GDS for Rsr1p in vivo. To identify the GAP (GTPase-activating protein) for Rsr1p, a genetic selection was designed based on the observation that mutationally activated rsr1val12, but not wild-type RSR1, can serve as a multicopy suppressor of yeast RAS2(Ts) mutants. Mutants were selected that allowed wild-type RSR1 to act as a multicopy suppressor of RAS2(Ts). Two such mutations proved to be in the BUD2 gene, suggesting that Bud2p functions as a GAP for Rsr1p in vivo. Images Fig. 1 Fig. 2 Fig. 3 PMID:8234337

  10. Pulmonary Artery Adventitial Fibroblasts Cooperate with Vasa Vasorum Endothelial Cells to Regulate Vasa Vasorum Neovascularization

    PubMed Central

    Davie, Neil J.; Gerasimovskaya, Evgenia V.; Hofmeister, Stephen E.; Richman, Aaron P.; Jones, Peter L.; Reeves, John T.; Stenmark, Kurt R.

    2006-01-01

    The precise cellular and molecular mechanisms regulating adventitial vasa vasorum neovascularization, which occurs in the pulmonary arterial circulation in response to hypoxia, remain unknown. Here, using a technique to isolate and culture adventitial fibroblasts (AdvFBs) and vasa vasorum endothelial cells (VVECs) from the adventitia of pulmonary arteries, we report that hypoxia-activated pulmonary artery AdvFBs exhibited pro-angiogenic properties and influenced the angiogenic phenotype of VVEC, in a process of cell-cell communication involving endothelin-1 (ET-1). We demonstrated that AdvFBs, either via co-culture or conditioned media, stimulated VVEC proliferation and augmented the self-assembly and integrity of cord-like networks that formed when VVECs where cultured on Matrigel. In addition, hypoxia-activated AdvFBs produced ET-1, suggesting a paracrine role for this pro-angiogenic molecule in these processes. When co-cultured on Matrigel, AdvFBs and VVECs self-assembled into heterotypic cord-like networks, a process augmented by hypoxia but attenuated by either selective endothelin receptor antagonists or oligonucleotides targeting prepro-ET-1 mRNA. From these observations, we propose that hypoxia-activated AdvFBs exhibit pro-angiogenic properties and, as such, communicate with VVECs, in a process involving ET-1, to regulate vasa vasorum neovascularization occurring in the adventitia of pulmonary arteries in response to chronic hypoxia. PMID:16723696

  11. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta

    PubMed Central

    Leclercq, Anne; Veillat, Véronique; Loriot, Sandrine; Spuul, Pirjo; Madonna, Francesco; Roques, Xavier; Génot, Elisabeth

    2015-01-01

    Background Aortic diseases are diverse and involve a multiplicity of biological systems in the vascular wall. Aortic dissection, which is usually preceded by aortic aneurysm, is a leading cause of morbidity and mortality in modern societies. Although the endothelium is now known to play an important role in vascular diseases, its contribution to aneurysmal aortic lesions remains largely unknown. The aim of this study was to define a reliable methodology for the isolation of aortic intimal and adventitial endothelial cells in order to throw light on issues relevant to endothelial cell biology in aneurysmal diseases. Methodology/Principal Findings We set up protocols to isolate endothelial cells from both the intima and the adventitia of human aneurysmal aortic vessel segments. Throughout the procedure, analysis of cell morphology and endothelial markers allowed us to select an endothelial fraction which after two rounds of expansion yielded a population of >90% pure endothelial cells. These cells have the features and functionalities of freshly isolated cells and can be used for biochemical studies. The technique was successfully used for aortic vessel segments of 20 patients and 3 healthy donors. Conclusions/Significance This simple and highly reproducible method allows the simultaneous preparation of reasonably pure primary cultures of intimal and adventitial human endothelial cells, thus providing a reliable source for investigating their biology and involvement in both thoracic aneurysms and other aortic diseases. PMID:26599408

  12. Venous Adventitial Cystic Disease: A Review of 45 Cases Treated Since 1963

    PubMed Central

    Bascone, Corey; Szuchmacher, Mauricio; Cicchillo, Michael; Krishnasastry, Kambhampaty V.

    2016-01-01

    Purpose. To review and identify the most accurate ways of diagnosing and treating adventitial cystic disease (ACD) of the venous system. Methods. Cases of ACD were collected through three popular medical databases, including PubMed, Cochrane, OVID, and MEDLINE. After reviewing the literature, the sites of occurrence of 323 cases of adventitial cystic disease were documented, and all cases of arterial ACD were excluded. The clinical features, treatment, and subsequent course of 45 cases of venous ACD are included in this paper. Results. After reviewing all 45 cases of venous ACD , we have confirmed that the most common vessel affected is the common femoral vein, which reproduces the most common symptom of venous ACD: asymmetric lower extremity swelling worsening over time. Conclusion. Venous ACD most commonly affects the common femoral vein. When unilateral leg swelling occurs with or without a noticeable mass, ACD should be considered. It is best confirmed with CT venography and the treatment of choice is transluminal cyst evacuation and excision. PMID:27885342

  13. Cell Polarization and Cytokinesis in Budding Yeast

    PubMed Central

    Bi, Erfei; Park, Hay-Oak

    2012-01-01

    Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field. PMID:22701052

  14. Promoting Roles of Melatonin in Adventitious Root Development of Solanum lycopersicum L. by Regulating Auxin and Nitric Oxide Signaling

    PubMed Central

    Wen, Dan; Gong, Biao; Sun, Shasha; Liu, Shiqi; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2016-01-01

    Melatonin (MT) plays integral roles in regulating several biological processes including plant growth, seed germination, flowering, senescence, and stress responses. This study investigated the effects of MT on adventitious root formation (ARF) of de-rooted tomato seedlings. Exogenous MT positively or negatively influenced ARF, which was dependent on the concentration of MT application. In the present experiment, 50 μM MT showed the best effect on inducing ARF. Interestingly, exogenous MT promoted the accumulation of endogenous nitric oxide (NO) by down-regulating the expression of S-nitrosoglutathione reductase (GSNOR). To determine the interaction of MT and NO in ARF, MT synthesis inhibitor p-chlorophenylalanine, NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt as well as GSNOR-overexpression plants with low NO levels were used. The function of MT was removed by NO scavenger or GSNOR-overexpression plants. However, application of MT synthesis inhibitor did little to abolish the function of NO. These results indicate that NO, as a downstream signal, was involved in the MT-induced ARF. Concentrations of indole-3-acetic acid and indole-3-butyric acid, as well as the expression of several genes related to the auxin signaling pathway (PIN1, PIN3, PIN7, IAA19, and IAA24), showed that MT influenced auxin transport and signal transduction as well as auxin accumulation through the NO signaling pathway. Collectively, these strongly suggest that elevated NO levels resulting from inhibited GSNOR activity and auxin signaling were involved in the MT-induced ARF in tomato plants. This can be applied in basic research and breeding. PMID:27252731

  15. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordia.

    PubMed

    Kuprian, Edith; Munkler, Caspar; Resnyak, Anna; Zimmermann, Sonja; Tuong, Tan D; Gierlinger, Notburga; Müller, Thomas; Livingston, David P; Neuner, Gilbert

    2017-09-29

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50°C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extra-organ freezing by water potential measurements and cell-specific chemical patterns by RAMAN microscopy and Mass Spectrometry Imaging. A bowl-like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At -18°C break-down of supercooling was triggered by intrinsic ice nucleators while the ice barrier remained active. Temperature-dependent freeze dehydration (-0.1 MPa/K) caused accumulation of extra-organ ice masses that by rupture of the shoot pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin-rich cell walls and intercellular spaces and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di-, tri- and tetrasaccharides. Bud architecture efficiently prevents ice penetration but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell-specific biochemical analysis. This article is protected by copyright. All rights reserved.

  16. Electrochemical Regulation of Budding Yeast Polarity

    PubMed Central

    Piel, Matthieu; Chang, Fred; Minc, Nicolas

    2014-01-01

    Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs) at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae) cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs), which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization. PMID:25548923

  17. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  18. Functional Diversity of Silencers in Budding Yeasts

    PubMed Central

    Sjöstrand, Jimmy O. O.; Kegel, Andreas; Åström, Stefan U.

    2002-01-01

    We studied the silencing of the cryptic mating-type loci HMLα and HMRa in the budding yeast Kluyveromyces lactis. A 102-bp minimal silencer fragment was defined that was both necessary and sufficient for silencing of HMLα. Mutagenesis of the silencer revealed three distinct regions (A, B, and C) that were important for silencing. Recombinant K. lactis ribosomal DNA enhancer binding protein 1 (Reb1p) could bind the silencer in vitro, and point mutations in the B box abolished both Reb1p binding and silencer function. Furthermore, strains carrying temperature-sensitive alleles of the REB1 gene derepressed the transcription of the HMLα1 gene at the nonpermissive temperature. A functional silencer element from the K. lactis cryptic HMRa locus was also identified, which contained both Reb1p binding sites and A boxes, strongly suggesting a general role for these sequences in K. lactis silencing. Our data indicate that different proteins bind to Kluyveromyces silencers than to Saccharomyces silencers. We suggest that the evolution of silencers is rapid in budding yeasts and discuss the similarities and differences between silencers in Saccharomyces and Kluyveromyces. PMID:12456003

  19. Molecular Mechanism of Arenavirus Assembly and Budding

    PubMed Central

    Urata, Shuzo; Yasuda, Jiro

    2012-01-01

    Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2. PMID:23202453

  20. Molecular mechanism of arenavirus assembly and budding.

    PubMed

    Urata, Shuzo; Yasuda, Jiro

    2012-10-10

    Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.

  1. RACK1 regulates mesenchymal cell recruitment during sexual and asexual reproduction of budding tunicates.

    PubMed

    Tatzuke, Yuki; Sunanaga, Takeshi; Fujiwara, Shigeki; Kawamura, Kaz

    2012-08-15

    A homolog of receptor for activated protein kinase C1 (RACK1) was cloned from the budding tunicate Polyandrocarpa misakiensis. By RT-PCR and in situ hybridization analyses, PmRACK1 showed biphasic gene expression during asexual and sexual reproduction. In developing buds, the signal was exclusively observed in the multipotent atrial epithelium and undifferentiated mesenchymal cells that contributed to morphogenesis by the mesenchymal-epithelial transition (MET). In juvenile zooids, the signal was first observable in germline precursor cells that arose as mesenchymal cell aggregated in the ventral hemocoel. In mature zooids, the germinal epithelium in the ovary and the pharynx were the most heavily stained parts. GFP reporter assay indicated that the ovarian expression of PmRACK1 was constitutive from germline precursor cells to oocytes. To elucidate the in vivo function of PmRACK1, RNA interference was challenged. When growing buds were incubated with 5 nmol/mL siRNA, most mesenchymal cells remained round and appeared to have no interactions with the extracellular matrix (ECM), causing lower activity of MET without any apparent effects on cell proliferation. The resultant zooids became growth-deficient. The dwarf zooids did not form buds or mature gonads. Prior to RNAi, buds were treated with human BMP4 that could induce PmRACK1 expression, which resulted in MET activity. We conclude that in P. misakiensis, PmRACK1 plays roles in mesenchymal cell recruitment during formation of somatic and gonad tissues, which contributes to zooidal growth and sexual and asexual reproduction. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis

    PubMed Central

    Boehm, Bernd; Westerberg, Henrik; Lesnicar-Pucko, Gaja; Raja, Sahdia; Rautschka, Michael; Cotterell, James; Swoger, Jim; Sharpe, James

    2010-01-01

    Although the vertebrate limb bud has been studied for decades as a model system for spatial pattern formation and cell specification, the cellular basis of its distally oriented elongation has been a relatively neglected topic by comparison. The conventional view is that a gradient of isotropic proliferation exists along the limb, with high proliferation rates at the distal tip and lower rates towards the body, and that this gradient is the driving force behind outgrowth. Here we test this hypothesis by combining quantitative empirical data sets with computer modelling to assess the potential role of spatially controlled proliferation rates in the process of directional limb bud outgrowth. In particular, we generate two new empirical data sets for the mouse hind limb—a numerical description of shape change and a quantitative 3D map of cell cycle times—and combine these with a new 3D finite element model of tissue growth. By developing a parameter optimization approach (which explores spatial patterns of tissue growth) our computer simulations reveal that the observed distribution of proliferation rates plays no significant role in controlling the distally extending limb shape, and suggests that directional cell activities are likely to be the driving force behind limb bud outgrowth. This theoretical prediction prompted us to search for evidence of directional cell orientations in the limb bud mesenchyme, and we thus discovered a striking highly branched and extended cell shape composed of dynamically extending and retracting filopodia, a distally oriented bias in Golgi position, and also a bias in the orientation of cell division. We therefore provide both theoretical and empirical evidence that limb bud elongation is achieved by directional cell activities, rather than a PD gradient of proliferation rates. PMID:20644711

  3. Effects of light regime and IBA concentration on adventitious rooting of an eastern cottonwood (Populus deltoides) clone

    Treesearch

    Alexander P. Hoffman; Joshua P. Adams; Andrew Nelson

    2016-01-01

    Eastern cottonwood (Populus deltoides) has received a substantial amount of interest from invitro studies within the past decade. The ability to efficiently multiply the stock of established clones such as clone 110412 is a valuable asset for forest endeavors. However, a common problem encountered is initiating adventitious rooting in new micropropagation protocols....

  4. Constitutive expression of the Poplar FD-like basic leucine zipper transcription factor alters growth and bud development.

    PubMed

    Parmentier-Line, Cécile M; Coleman, Gary D

    2016-01-01

    In poplar, the CO/FT regulatory module mediates seasonal growth cessation. Although FT interacts with the basic leucine zipper transcription factor FD, surprisingly little is known about the possible role of FD in bud development and growth cessation in trees. In this study, we examined the expression and localization of the poplar FD homolog, PtFD1, during short-day (SD)-induced bud development, and the consequences of overexpressing PtFD1 on bud development and shoot growth. PtFD1 was primarily expressed in apical and axillary buds and exhibited a transient increase in expression during the initial stages of SD-induced bud development. This transient increase declined with continued SD treatment. When PtFD1 was overexpressed in poplar, SD-induced growth cessation and bud formation were abolished. PTFD1 overexpression also resulted in precocious flowering of juvenile plants in long-day (LD) photoperiods. Because the phenotypes associated with overexpression of PtFD1 are similar to those observe when poplar FT1 is overexpressed (Science, 312, 2006, 1040), the expression and diurnal patterns of expression of both poplar FT1 and FT2 were characterized in PtFD1 overexpression poplars and found to be altered. DNA microarray analysis revealed few differences in gene expression between PtFD1 overexpressing poplars in LD conditions while extensive levels of differential gene expression occur in SD-treated plants. These results enforce the connection between the regulation of flowering and the regulation of growth cessation and bud development in poplar. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Astral Microtubule Dynamics in Yeast: A Microtubule-based Searching Mechanism for Spindle Orientation and Nuclear Migration into the Bud

    PubMed Central

    Shaw, Sidney L.; Yeh, Elaine; Maddox, Paul; Salmon, E.D.; Bloom, Kerry

    1997-01-01

    Localization of dynein–green fluorescent protein (GFP) to cytoplasmic microtubules allowed us to obtain one of the first views of the dynamic properties of astral microtubules in live budding yeast. Several novel aspects of microtubule function were revealed by time-lapse, three-dimensional fluorescence microscopy. Astral microtubules, about four to six in number for each pole, exhibited asynchronous dynamic instability throughout the cell cycle, growing at ≅0.3–1.5 μm/min toward the cell surface then switching to shortening at similar velocities back to the spindle pole body (SPB). During interphase, a conical array of microtubules trailed the SPB as the nucleus traversed the cytoplasm. Microtubule disassembly by nocodozole inhibited these movements, indicating that the nucleus was pushed around the interior of the cell via dynamic astral microtubules. These forays were evident in unbudded G1 cells, as well as in late telophase cells after spindle disassembly. Nuclear movement and orientation to the bud neck in S/G2 or G2/M was dependent on dynamic astral microtubules growing into the bud. The SPB and nucleus were then pulled toward the bud neck, and further microtubule growth from that SPB was mainly oriented toward the bud. After SPB separation and central spindle formation, a temporal delay in the acquisition of cytoplasmic dynein at one of the spindle poles was evident. Stable microtubule interactions with the cell cortex were rarely observed during anaphase, and did not appear to contribute significantly to spindle alignment or elongation into the bud. Alterations of microtubule dynamics, as observed in cells overexpressing dynein-GFP, resulted in eventual spindle misalignment. These studies provide the first mechanistic basis for understanding how spindle orientation and nuclear positioning are established and are indicative of a microtubule-based searching mechanism that requires dynamic microtubules for nuclear migration into the bud. PMID:9362516

  6. Adventitious Root Production and Plastic Resource Allocation to Biomass Determine Burial Tolerance in Woody Plants from Central Canadian Coastal Dunes

    PubMed Central

    DECH, JEFFERY P.; MAUN, M. ANWAR

    2006-01-01

    • Background and Aims Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. • Methods Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. • Key Results Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25–50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. • Conclusions Adventitious root production and plastic resource

  7. Season of fire manipulates bud bank dynamics in northern mixed-grass prairie

    USDA-ARS?s Scientific Manuscript database

    In perennial grassland dominated systems, belowground bud banks regulate plant community dynamics. Plant community responses to disturbance are largely driven by the ability to generate future aboveground growth originating from belowground axillary buds. This study examined bud bank dynamics for...

  8. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016.

    PubMed

    Lugli, Alessandro; Kirsch, Richard; Ajioka, Yoichi; Bosman, Fred; Cathomas, Gieri; Dawson, Heather; El Zimaity, Hala; Fléjou, Jean-François; Hansen, Tine Plato; Hartmann, Arndt; Kakar, Sanjay; Langner, Cord; Nagtegaal, Iris; Puppa, Giacomo; Riddell, Robert; Ristimäki, Ari; Sheahan, Kieran; Smyrk, Thomas; Sugihara, Kenichi; Terris, Benoît; Ueno, Hideki; Vieth, Michael; Zlobec, Inti; Quirke, Phil

    2017-09-01

    Tumor budding is a well-established independent prognostic factor in colorectal cancer but a standardized method for its assessment has been lacking. The primary aim of the International Tumor Budding Consensus Conference (ITBCC) was to reach agreement on an international, evidence-based standardized scoring system for tumor budding in colorectal cancer. The ITBCC included nine sessions with presentations, a pre-meeting survey and an e-book covering the key publications on tumor budding in colorectal cancer. The 'Grading of Recommendation Assessment, Development and Evaluation' method was used to determine the strength of recommendations and quality of evidence. The following 10 statements achieved consensus: tumor budding is defined as a single tumor cell or a cell cluster consisting of four tumor cells or less (22/22, 100%). Tumor budding is an independent predictor of lymph node metastases in pT1 colorectal cancer (23/23, 100%). Tumor budding is an independent predictor of survival in stage II colorectal cancer (23/23, 100%). Tumor budding should be taken into account along with other clinicopathological features in a multidisciplinary setting (23/23, 100%). Tumor budding is counted on H&E (19/22, 86%). Intratumoral budding exists in colorectal cancer and has been shown to be related to lymph node metastasis (22/22, 100%). Tumor budding is assessed in one hotspot (in a field measuring 0.785 mm(2)) at the invasive front (22/22, 100%). A three-tier system should be used along with the budding count in order to facilitate risk stratification in colorectal cancer (23/23, 100%). Tumor budding and tumor grade are not the same (23/23, 100%). Tumor budding should be included in guidelines/protocols for colorectal cancer reporting (23/23, 100%). Members of the ITBCC were able to reach strong consensus on a single international, evidence-based method for tumor budding assessment and reporting. It is proposed that this method be incorporated into colorectal cancer

  9. Bud gall midges - potential invaders on larches in North America

    Treesearch

    Yuri N. Baranchikov

    2007-01-01

    Larch bud gall midges (Diptera: Cecidomyiidae) form a specialized group of gall insects inhabiting buds of larch (Larix) in the northern Palaearctic Region. Currently there are four described species in this group. Dasineura kellneri Henschel is found in Central Europe and infests Larix decidua; D....

  10. Dormancy induction and release in buds and seeds

    USDA-ARS?s Scientific Manuscript database

    Dormancy is a complex trait in both buds and seeds, which is an important mechanism for survival during the life cycle of plants. Over the years, a vast wealth of information has been generated on how environmental and developmental signals impact dormancy in buds and seeds. At the molecular level, ...

  11. Kinetics of human immunodeficiency virus budding and assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2009-03-01

    Human immunodeficiency virus (HIV) belongs to a large family of RNA viruses, retroviruses. Unlike budding of regular enveloped viruses, retroviruses bud concurrently with the assembly of retroviral capsids on the cell membrane. The kinetics of HIV (and other retroviruses) budding and assembly is therefore strongly affected by the elastic energy of the membrane and fundamentally different from regular viruses. The main result of this work shows that the kinetics is tunable from a fast budding process to a slow and effectively trapped partial budding process, by varying the attractive energy of retroviral proteins (call Gags), relative to the membrane elastic energy. When the Gag-Gag attraction is relatively high, the membrane elastic energy provides a kinetic barrier for the two pieces of the partial capsids to merge. This energy barrier determines the slowest step in the kinetics and the budding time. In the opposite limit, the membrane elastic energy provides not only a kinetic energy barrier, but a free energy barrier. The budding and assembly is effectively trapped at local free energy minimum, corresponding to a partially budded state. The time scale to escape from this metastable state is exponentially large. In both cases, our result fit with experimental measurements pretty well.

  12. Desiccation tolerance of dormant buds from selected Prunus species

    USDA-ARS?s Scientific Manuscript database

    Dormant buds of woody plant species present a convenient material for backing-up of germplasm in liquid nitrogen. Routinely, this type of material is used in long-term preservation of only a few species (e.g. apple and sour cherry). Cryopreservation procedures of dormant buds are species dependent, ...

  13. Anatomy and morphology in developing vegetative buds on detached Norway spruce branches in controlled conditions before bud burst.

    PubMed

    Sutinen, Sirkka; Partanen, Jouni; Viherä-Aarnio, Anneli; Häkkinen, Risto

    2009-11-01

    We studied the light and stereomicroscopic structure of developing vegetative buds from a 16-year-old Norway spruce [Picea abies (L.) Karst.] of southern Finnish origin in relation to temperature sum and to externally visible changes in the buds before and during bud burst in forcing conditions. Branches were collected on 17 January and transferred to the greenhouse where they were first subjected to preforcing conditions (darkness, +4 degrees C) for 7 days and then to the forcing conditions (day length 12 h, +20 degrees C). Buds were sampled 20 times between 17 January and 13 February. Air temperature was recorded hourly throughout the study period. The first microscopic change was a temporary increase in the size and number of lipid droplets before the onset of temperature sum (T > or = +5 degrees C) accumulation. From the 4th to the 9th day under the forcing conditions, tracheids started to develop from the base up to the top of the bud. This was closely synchronized with an observed morphological change in the shape of needle tip from rounded to pointed ones. Development from the first visible change in the bud scales on the 12th forcing day to bud burst took 9 days when the temperature sum was 313 d.d. The temperature sums in our experiment overestimated the requirements of temperature sum for bud development phases measured in the field. Bud development could be divided into four structural phases. The first two phases, i.e., morphological changes in the primary needles, occurred without any externally visible changes in the buds. Thus, these phases have a potential for testing and improving the phenological models, which, up to now, have mainly been based on the bud burst observation by the naked eye.

  14. Adventitial adipogenic degeneration is an unidentified contributor to aortic wall weakening in the abdominal aortic aneurysm.

    PubMed

    Doderer, Stefan A; Gäbel, Gabor; Kokje, Vivianne B C; Northoff, Bernd H; Holdt, Lesca M; Hamming, Jaap F; Lindeman, Jan H N

    2017-09-11

    The processes driving human abdominal aortic aneurysm (AAA) progression are not fully understood. Although antiinflammatory and proteolytic strategies effectively quench aneurysm progression in preclinical models, so far all clinical interventions failed. These observations hint at an incomplete understanding of the processes involved in AAA progression and rupture. Interestingly, strong clinical and molecular associations exist between popliteal artery aneurysms (PAAs) and AAAs; however, PAAs have an extremely low propensity to rupture. We thus reasoned that differences between these aneurysms may provide clues toward (auxiliary) processes involved in AAA-related wall debilitation. A better understanding of the pathophysiologic processes driving AAA growth can contribute to pharmaceutical treatments in the future. Aneurysmal wall samples were collected during open elective and emergency repair. Control perirenal aorta was obtained during kidney transplantation, and reference popliteal tissue obtained from the anatomy department. This study incorporates various techniques including (immuno)histochemistry, Western Blot, quantitative polymerase chain reaction, microarray, and cell culture. Histologic evaluation of AAAs, PAAs, and control aorta shows extensive medial (PAA) and transmural fibrosis (AAA), and reveals abundant adventitial adipocytes aggregates as an exclusive phenomenon of AAAs (P < .001). Quantitative polymerase chain reaction, immunohistochemistry, Western blotting, and microarray analysis showed enrichment of adipogenic mediators (C/EBP family P = .027; KLF5 P < .000; and peroxisome proliferator activated receptor-γ, P = .032) in AAA tissue. In vitro differentiation tests indicated a sharply increased adipogenic potential of AAA adventitial mesenchymal cells (P < .0001). Observed enrichment of adipocyte-related genes and pathways in ruptured AAA (P < .0003) supports an association between the extent of fatty degeneration and rupture. This

  15. Evidence to support that adventitial cysts, analogous to intraneural ganglion cysts, are also joint-connected.

    PubMed

    Spinner, Robert J; Desy, Nicholas M; Agarwal, Gautum; Pawlina, Wojciech; Kalra, Manju; Amrami, Kimberly K

    2013-03-01

    Cystic adventitial disease (CAD) is a rare condition in which cyst is found within a vessel, typically producing symptoms of vascular compromise. Most commonly located in the popliteal artery near the knee, it has been reported in arteries and veins throughout the body. Its pathogenesis has been poorly understood and various surgical approaches have been recommended. We extrapolated some recent information about a similar condition, intraneural ganglion cyst affecting the deep fibular (peroneal) nerve, to the prototype, CAD of the popliteal artery. In intraneural ganglion cysts affecting the deep fibular nerve we have shown that an articular (neural) branch is the conduit between the superior tibiofibular joint and the main parent nerve for which epineurial dissection of joint fluid can occur. We hypothesized that the same principles would apply to CAD and that an articular (vascular) branch would be the conduit from the knee joint leading to dissection to the main parent vessel. We reviewed five patients with CAD of the popliteal artery in whom MRIs were available: two treated by the primary author well familiar with the proposed articular theory, and three treated by others at our institution, less familiar with it. We then reviewed the literature critically to assess for additional evidence to support our articular (synovial) theory and an anatomic explanation. In the two cases treated by the primary author a joint connection was identified on high resolution MRI prospectively and intraoperatively through the middle genicular artery (MGA); postoperatively in these cases there was no recurrence. In the other three cases, a joint connection was not identified on imaging or at operation. Reinterpretation of these cases revealed a joint connection through the MGA in the one patient who had preoperative imaging and subclinical persistence/recurrence in the two patients who underwent postoperative MRIs done for other reasons. Our review of the literature and imaging

  16. The S40 residue in HIV-1 Gag p6 impacts local and distal budding determinants, revealing additional late domain activities.

    PubMed

    Watanabe, Susan M; Chen, Min-Huei; Khan, Mahfuz; Ehrlich, Lorna; Kemal, Kimdar Sherefa; Weiser, Barbara; Shi, Binshan; Chen, Chaoping; Powell, Michael; Anastos, Kathryn; Burger, Harold; Carter, Carol A

    2013-11-21

    HIV-1 budding is directed primarily by two motifs in Gag p6 designated as late domain-1 and -2 that recruit ESCRT machinery by binding Tsg101 and Alix, respectively, and by poorly characterized determinants in the capsid (CA) domain. Here, we report that a conserved Gag p6 residue, S40, impacts budding mediated by all of these determinants. Whereas budding normally results in formation of single spherical particles ~100 nm in diameter and containing a characteristic electron-dense conical core, the substitution of Phe for S40, a change that does not alter the amino acids encoded in the overlapping pol reading frame, resulted in defective CA-SP1 cleavage, formation of strings of tethered particles or filopodia-like membrane protrusions containing Gag, and diminished infectious particle formation. The S40F-mediated release defects were exacerbated when the viral-encoded protease (PR) was inactivated or when L domain-1 function was disrupted or when budding was almost completely obliterated by the disruption of both L domain-1 and -2. S40F mutation also resulted in stronger Gag-Alix interaction, as detected by yeast 2-hybrid assay. Reducing Alix binding by mutational disruption of contact residues restored single particle release, implicating the perturbed Gag-Alix interaction in the aberrant budding events. Interestingly, introduction of S40F partially rescued the negative effects on budding of CA NTD mutations EE75,76AA and P99A, which both prevent membrane curvature and therefore block budding at an early stage. The results indicate that the S40 residue is a novel determinant of HIV-1 egress that is most likely involved in regulation of a critical assembly event required for budding in the Tsg101-, Alix-, Nedd4- and CA N-terminal domain affected pathways.

  17. Rabies virus inactivates cofilin to facilitate viral budding and release.

    PubMed

    Zan, Jie; An, Shu-Ting; Mo, Kai-Kun; Zhou, Jian-Wei; Liu, Juan; Wang, Hai-Long; Yan, Yan; Liao, Min; Zhou, Ji-Yong

    2016-09-02

    Cytoplasmic actin and actin-associated proteins have been identified in RABV particles. Although actin is involved in RABV entry into cells, the specific role of actin in RABV budding and release remains unknown. Our study found that RABV M protein-mediated virion budding depends on intact actin filaments. Confocal microscopy demonstrated a block to virions budding, with a number of M protein-mediated budding vesicles detained in the cell cytoplasm. Furthermore, RABV infection resulted in inactivation of cofilin and upregulation of phosphorylated cofilin. Knockdown of cofilin reduced RABV release. These results for the first time indicate that RABV infection resulted in upregulation of phosphorylated cofilin to facililtate actin polymerization for virus budding. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Structural and functional studies of Bud23–Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes

    PubMed Central

    Létoquart, Juliette; Huvelle, Emmeline; Wacheul, Ludivine; Bourgeois, Gabrielle; Zorbas, Christiane; Graille, Marc; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2014-01-01

    The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N7-methylguanosine (m7G) introduced at position 1575 on 18S rRNA by Bud23–Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23–Trm112 in the apo and S-adenosyl-l-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23–Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23–Trm112 binds precursor ribosomes at an early nucleolar stage, m7G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23–Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23–Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction. PMID:25489090

  19. High tumor budding stratifies breast cancer with metastatic properties.

    PubMed

    Salhia, Bodour; Trippel, Mafalda; Pfaltz, Katrin; Cihoric, Nikola; Grogg, André; Lädrach, Claudia; Zlobec, Inti; Tapia, Coya

    2015-04-01

    Tumor budding refers to single or small cluster of tumor cells detached from the main tumor mass. In colon cancer high tumor budding is associated with positive lymph nodes and worse prognosis. Therefore, we investigated the value of tumor budding as a predictive feature of lymph node status in breast cancer (BC). Whole tissue sections from 148 surgical resection specimens (SRS) and 99 matched preoperative core biopsies (CB) with invasive BC of no special type were analyzed on one slide stained with pan-cytokeratin. In SRS, the total number of intratumoral (ITB) and peripheral tumor buds (PTB) in ten high-power fields (HPF) were counted. A bud was defined as a single tumor cell or a cluster of up to five tumor cells. High tumor budding equated to scores averaging >4 tumor buds across 10HPFs. In CB high tumor budding was defined as ≥10 buds/HPF. The results were correlated with pathological parameters. In SRS high PTB stratified BC with lymph node metastases (p ≤ 0.03) and lymphatic invasion (p ≤ 0.015). In CB high tumor budding was significantly (p = 0.0063) associated with venous invasion. Pathologists are able, based on morphology, to categorize BC into a high and low risk groups based in part on lymph node status. This risk assessment can be easily performed during routine diagnostics and it is time and cost effective. These results suggest that high PTB is associated with loco-regional metastasis, highlighting the possibility that this tumor feature may help in therapeutic decision-making.

  20. Form and function of topologically associating genomic domains in budding yeast.

    PubMed

    Eser, Umut; Chandler-Brown, Devon; Ay, Ferhat; Straight, Aaron F; Duan, Zhijun; Noble, William Stafford; Skotheim, Jan M

    2017-04-11

    The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.

  1. Hif-1α regulates differentiation of limb bud mesenchyme and joint development

    PubMed Central

    Provot, Sylvain; Zinyk, Dawn; Gunes, Yasemin; Kathri, Richa; Le, Quynh; Kronenberg, Henry M.; Johnson, Randall S.; Longaker, Michael T.; Giaccia, Amato J.; Schipani, Ernestina

    2007-01-01

    Recent evidence suggests that low oxygen tension (hypoxia) may control fetal development and differentiation. A crucial mediator of the adaptive response of cells to hypoxia is the transcription factor Hif-1α. In this study, we provide evidence that mesenchymal condensations that give origin to endochondral bones are hypoxic during fetal development, and we demonstrate that Hif-1α is expressed and transcriptionally active in limb bud mesenchyme and in mesenchymal condensations. To investigate the role of Hif-1α in mesenchymal condensations and in early chondrogenesis, we conditionally inactivated Hif-1α in limb bud mesenchyme using a Prx1 promoter-driven Cre transgenic mouse. Conditional knockout of Hif-1α in limb bud mesenchyme does not impair mesenchyme condensation, but alters the formation of the cartilaginous primordia. Late hypertrophic differentiation is also affected as a result of the delay in early chondrogenesis. In addition, mutant mice show a striking impairment of joint development. Our study demonstrates a crucial, and previously unrecognized, role of Hif-1α in early chondrogenesis and joint formation. PMID:17470636

  2. Constituents of the cotton bud: XII. The carotenoids in buds, seeds and other tissue.

    PubMed

    Thompson, A C; Henson, R D; Hedin, P A; Minyard, J P

    1968-11-01

    Eleven carotenoid pigments were found in the bud, leaf, flower petal, seedling and seed of the cotton plant; nine were identified and quantitated. The most abundant carotenoids in the green tissue of the cotton plant were beta-carotene and lutein. Carotene hydrocarbons comprised 12% of the total carotenoids in the seed, 15% in the 1-day-old flower petal, 51% in the bud and 57% in green leaves. Only 5,8-epoxy carotenoids were found in the flower petals and only 5,6-epoxides in the other tissue but both were present in the seed. The colorless phytoene precursors to the carotenoids comprised from 20% to 38% of the total carotenoid pigment in the growing tissue of the plant.

  3. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  4. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    PubMed

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  5. Mitochondrial movement and inheritance in budding yeast.

    PubMed

    Boldogh, Istvan R; Fehrenbacher, Kammy L; Yang, Hyeong-Cheol; Pon, Liza A

    2005-07-18

    Mitochondria are essential organelles that perform fundamental cellular functions including aerobic energy mobilization, fatty acid oxidation, amino acid metabolism, heme biosynthesis and apoptosis. Mitochondria cannot be synthesized de novo. Therefore, the inheritance of this organelle is an essential part of the cell cycle; that is, daughter cells that do not inherit mitochondria will not survive. The budding yeast, Saccharomyces cerevisiae, is a facultative aerobe that can tolerate mitochondrial mutations that would be lethal in other organisms. Therefore, yeast has been used extensively to study inheritance and segregation of mitochondria. As a result, much of what we know regarding mitochondrial inheritance has been uncovered using yeast as a model system. Here, we describe the latest developments in mitochondrial motility and inheritance.

  6. Cell polarization in budding and fission yeasts.

    PubMed

    Martin, Sophie G; Arkowitz, Robert A

    2014-03-01

    Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shapes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Summary of cases of adventitial cystic disease of the popliteal artery.

    PubMed Central

    Flanigan, D P; Burnham, S J; Goodreau, J J; Bergan, J J

    1979-01-01

    Adventitial cystic disease of the popliteal artery is explored. The results of correspondence with authors reporting this condition are elaborated upon. This has provided an opportunity to discuss the history of the condition, the findings in 115 cases which have come to the attention of the Correspondence Office dealing with this entity, and the results of treatment. A discussion of the suspected etiology of the condition is presented. The condition remains one of unknown etiology which can be treated by cyst evacuation or aspiration when the popliteal artery is patent and which is best treated by arterial reconstruction when the artery is occluded. The results of such treatment are good but are dependent upon technical excellence of the operative procedure. PMID:426549

  8. Giant kelp vegetative propagation: Adventitious holdfast elements rejuvenate senescent individuals of the Macrocystis pyrifera "integrifolia" ecomorph.

    PubMed

    Murúa, Pedro; Müller, Dieter G; Patiño, David J; Westermeier, Renato

    2016-11-22

    Recent findings on holdfast development in the giant kelp highlighted its key importance for Macrocystis vegetative propagation. We report here for the first time the development of adventitious holdfasts from Macrocystis stipes. Swellings emerge spontaneously from different areas of the stipes, especially in senescent or creeping individuals. After being manually fastened to solid substrata, these swellings elongated into haptera, which became strongly attached after 1 month. Within 4 months, new thalli increased in size and vitality, and developed reproductive fronds. Our results suggest the usage of these structures for auxiliary attachment techniques. These could act as a backup, when primary holdfasts are weak, and thus improve the survival rate of the giant kelp in natural beds.

  9. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  10. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  11. Chromosome Segregation in Budding Yeast: Sister Chromatid Cohesion and Related Mechanisms

    PubMed Central

    2014-01-01

    Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase–anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion. PMID:24395824

  12. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  13. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis.

    PubMed

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-07-03

    Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy.

  14. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis

    PubMed Central

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-01-01

    ABSTRACT Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy. PMID:26743180

  15. An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu)

    SciTech Connect

    Song, Mia; He, Qianjing; Berk, Benjamin-Andreas; Hartwig, John H.; Stossel, Thomas P.; Nakamura, Fumihiko

    2016-01-15

    Filamin A (FLNA) is an actin filament crosslinking protein with multiple intracellular binding partners. Mechanical force exposes cryptic FLNA binding sites for some of these ligands. To identify new force-dependent binding interactions, we used a fusion construct composed of two FLNA domains, one of which was previously identified as containing a force-dependent binding site as a bait in a yeast two-hybrid system and identified the Rho dissociation inhibitor 2 (RhoGDI2) as a potential interacting partner. A RhoGDI2 truncate with 81 N-terminal amino acid residues and a phosphomimetic mutant, RhoGDI(Tyr153Glu) interacted with the FLNA construct. However, neither wild-type or full-length RhoGDI2 phosphorylated at Y153 interacted with FLNA. Our interpretation of these contradictions is that truncation and/or mutation of RhoGDI2 perturbs its conformation to expose a site that adventitiously binds FLNA and is not a bona–fide interaction. Therefore, previous studies reporting that a RhoGDI(Y153E) mutant suppresses the metastasis of human bladder cancer cells must be reinvestigated in light of artificial interaction of this point mutant with FLNA. - Highlights: • RhoGDI2 is identified as a potential filamin A (FLNA)-binding partner. • Phosphomimetic mutant, RhoGDI2(Tyr153Glu) interacts with FLNA. • RhoGDI2 phosphorylated (Tyr153) by src kinase does not interact with FLNA. • Mutation of Tyr-153 to Glu of RhoGDI2 does not mimic phosphorylation. • RhoGDI2(Tyr153Glu) provokes an adventitious interaction with FLNA.

  16. Adventitious Shoot Regeneration from Leaf Explant of Dwarf Hygro (Hygrophila polysperma (Roxb.) T. Anderson)

    PubMed Central

    Karataş, Mehmet; Aasim, Muhammad; Çınar, Ayşegül; Dogan, Muhammet

    2013-01-01

    Dwarf hygro (Hygrophila polysperma) is an ornamental aquatic plant that changes its leaf colours to pinkish in high light. It is listed as a medicinal plant in medicinal plant lists of Indian states of West Bengal and Karnataka. It is also used as a screening tool for toxicities and a bioindicator to detect and control algae. The study reported in vitro adventitious shoot regeneration from leaf explants cultured on MS medium containing 0.10–1.60 mg/L Kin/TDZ with or without 0.10 mg/L IBA and 500 mg/L Amoklavin to eradicate endogenic bacterial contamination. Direct adventitious shoot regeneration started within one week from both culture mediums followed by late callus induction which was more prominent on TDZ containing media compared to Kin containing media. Addition of 0.10 mg/L IBA with both Kin and TDZ increased shoot regeneration frequency, mean number of shoots per explant, and mean shoot length. Maximum number of 16.33 and 20.55 shoots per explant was obtained on MS medium containing 0.80 + 0.10 mg/L Kin-IBA and 0.10 + 0.10 mg/L TDZ-IBA, respectively. Regenerated shoots were rooted on MS medium containing 0.20–1.00 mg/L IBA followed by successfull acclimatization in aquariums. Regenerated plantlets were also tested in jars containing distilled water that showed the pH 6–9 for the best plant growth and development. PMID:23853539

  17. The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast.

    PubMed

    Merlini, Laura; Piatti, Simonetta

    2011-08-01

    During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.

  18. A Statistical-Thermodynamic Model of Viral Budding

    PubMed Central

    Tzlil, Shelly; Deserno, Markus; Gelbart, William M.; Ben-Shaul, Avinoam

    2004-01-01

    We present a simple statistical thermodynamic model for budding of viral nucleocapsids at the cell membrane. The membrane is modeled as a flexible lipid bilayer embedding linker (spike) proteins, which serve to anchor and thus wrap the membrane around the viral capsids. The free energy of a single bud is expressed as a sum of the bending energy of its membrane coat, the spike-mediated capsid-membrane adhesion energy, and the line energy associated with the bud's rim, all depending on the extent of wrapping (i.e., bud size), and density of spikes in the curved membrane. This self-energy is incorporated into a simple free energy functional for the many-bud system, allowing for different spike densities, and hence entropy, in the curved (budding) and planar membrane regions, as well as for the configurational entropy of the polydisperse bud population. The equilibrium spike densities in the coexisting, curved and planar, membrane regions are calculated as a function of the membrane bending energy and the spike-mediated adhesion energy, for different spike and nucleocapsid concentrations in the membrane plane, as well as for several values of the bud's rim energy. We show that complete budding (full wrapping of nucleocapsids) can only take place if the adhesion energy exceeds a certain, critical, bending free energy. Whenever budding takes place, the spike density in the mature virions is saturated, i.e., all spike adhesion sites are occupied. The rim energy plays an important role in determining the size distribution of buds. The fraction of fully wrapped buds increases as this energy increases, resulting eventually in an all-or-nothing mechanism, whereby nucleocapsids at the plasma membrane are either fully enveloped or completely naked (just touching the membrane). We also find that at low concentrations all capsids arriving at the membrane get tightly and fully enveloped. Beyond a certain concentration, corresponding approximately to a stoichiometric spike

  19. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy.

    PubMed

    Santamaría, María Estrella; Rodríguez, Roberto; Cañal, María Jesús; Toorop, Peter E

    2011-09-01

    Recent papers indicated that epigenetic control is involved in transitions in bud dormancy, purportedly controlling gene expression. The present study aimed to identify genes that are differentially expressed in dormant and non-dormant Castanea sativa buds. Two suppression subtractive hybridization cDNA libraries were constructed to characterize the transcriptomes of dormant apical buds of C. sativa, and buds in which dormancy was released. A total of 512 expressed sequence tags (ESTs) were generated in a forward and reverse subtractive hybridization experiment. Classification of these ESTs into functional groups demonstrated that dormant buds were predominantly characterized by genes associated with stress response, while non-dormant buds were characterized by genes associated with energy, protein synthesis and cellular components for development and growth. ESTs for a few genes involved in different forms of epigenetic modification were found in both libraries, suggesting a role for epigenetic control in bud dormancy different from that in growth. Genes encoding histone mono-ubiquitinase HUB2 and histone acetyltransferase GCN5L were associated with dormancy, while a gene encoding histone H3 kinase AUR3 was associated with growth. Real-time RT-PCR with a selection of genes involved in epigenetic modification and stress tolerance confirmed the expression of the majority of investigated genes in various stages of bud development, revealing a cyclical expression pattern concurring with the growth seasons for most genes. However, senescing leaves also showed an increased expression of several of the genes associated with dormancy, implying pleiotropy. Furthermore, a comparison between these subtraction cDNA libraries and the poplar bud dormancy transcriptome and arabidopsis transcriptomes for seed dormancy and non-dormancy indicated a common basis for dormancy in all three systems. Bud dormancy and non-dormancy in C. sativa were characterized by distinct sets of genes

  20. The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots

    PubMed Central

    Peres, Lázaro Eustáquio Pereira

    2012-01-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively. PMID:22915742

  1. Responses of adventitial CD34(+) vascular wall-resident stem/progenitor cells and medial smooth muscle cells to carotid injury in rats.

    PubMed

    Shen, Yan; Wu, Yan; Zheng, Yong; Ao, Feng; Kang, Kai; Wan, Yu; Song, Jian

    2016-12-01

    Cell culture and carotid injury studies with SD rats were performed to investigate the roles of CD34(+) vascular wall-resident stem/progenitor cells (VRS/Pcs) and vascular smooth muscle cells (SMCs) in neointimal formation. In vitro, the media-isolated SM MHC(+) SMCs occupied 93.92±8.62% of total BrdU(+) cells, whereas the CD34(+) cells, only 2.61±0.82%, indicating that the cell expansion in SMC culture was attributed to SM MHC(+) SMCs. The adventitia-isolated CD34(+) VRS/Pcs responded to PDGF-BB by differentiating into SMC-like cells which expressed SM22α (an early stage SMC marker), but seldom SM MHC (a late stage SMC marker). In carotid injury model, the CD34(+) VRS/Pcs differentiated SMC-like cells migrated in very few numbers into only the outer layer of the media, and this was further confirmed by a cell tracking analysis. While the neointimal cells were consistently SM MHC(+) and CD34(-) SMCs during whole course of the post-injury remodeling. Thus it is speculated that the adventitial CD34(+) VRS/Pcs, at least in rat model, do not directly participate in neointimal formation, but function to maintain homeostasis of the media during injury-induced vascular wall remodeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.

    PubMed

    Bahn, Y S; Sundstrom, P

    2001-05-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.

  3. CAP1, an Adenylate Cyclase-Associated Protein Gene, Regulates Bud-Hypha Transitions, Filamentous Growth, and Cyclic AMP Levels and Is Required for Virulence of Candida albicans

    PubMed Central

    Bahn, Yong-Sun; Sundstrom, Paula

    2001-01-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis. PMID:11325951

  4. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  5. Alterations of membrane curvature during influenza virus budding.

    PubMed

    Martyna, Agnieszka; Rossman, Jeremy

    2014-10-01

    Influenza A virus belongs to the Orthomyxoviridae family. It is an enveloped virus that contains a segmented and negative-sense RNA genome. Influenza A viruses cause annual epidemics and occasional major pandemics, are a major cause of morbidity and mortality worldwide, and have a significant financial impact on society. Assembly and budding of new viral particles are a complex and multi-step process involving several host and viral factors. Influenza viruses use lipid raft domains in the apical plasma membrane of polarized epithelial cells as sites of budding. Two viral glycoproteins, haemagglutinin and neuraminidase, concentrate in lipid rafts, causing alterations in membrane curvature and initiation of the budding process. Matrix protein 1 (M1), which forms the inner structure of the virion, is then recruited to the site followed by incorporation of the viral ribonucleoproteins and matrix protein 2 (M2). M1 can alter membrane curvature and progress budding, whereas lipid raft-associated M2 stabilizes the site of budding, allowing for proper assembly of the virion. In the later stages of budding, M2 is localized to the neck of the budding virion at the lipid phase boundary, where it causes negative membrane curvature, leading to scission and virion release.

  6. A permeability barrier surrounds taste buds in lingual epithelia.

    PubMed

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste.

  7. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  8. A permeability barrier surrounds taste buds in lingual epithelia

    PubMed Central

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  9. Characterization of Septin Ultrastructure in Budding Yeast Using Electron Tomography

    PubMed Central

    Bertin, Aurélie; Nogales, Eva

    2015-01-01

    Summary Septins are essential for the completion of cytokinesis. In budding yeast, Saccharomyces cerevisiae, septins are located at the bud neck during mitosis and are closely connected to the inner plasma membrane. In vitro, yeast septins have been shown to self-assemble into a variety of filamentous structures, including rods, paired filaments, bundles and rings [1–3]. Using electron tomography of freeze-substituted section and cryo-electron tomography of frozen sections, we determined the three dimensional organization of the septin cytoskeleton in dividing budding yeast with molecular resolution [4,5]. Here we describe the detailed procedures used for our characterization of the septin cellular ultrastructure. PMID:26519309

  10. [Significance of the colonial components for the medusa formation and differentiation inPodocoryne carnea M. Sars].

    PubMed

    Brändle, Elisabeth

    1971-09-01

    1. All axial regions of the gonozoid and the medusa buds ofPodocaryne carnea M. Sars incorporate(3)H-thymidine. Medusa buds grow by mitosis and by migration of cells from the colony into the buds. 2. Stolonization inhibits the formation and differentiation of medusa buds: non stolonizing chimerae formed by a gonozoid and an autozoid produce more buds than stolonizing ones. 3. When isolated gonozoids and likewise isolated budding regions are not connected with an nutritive autozoid, the formation and differentiation of medusa buds are restricted. Young medusa buds (stage 3, Frey, 1968) transplanted onto autozoids may differentiate into medusae, while isolated buds of the same stage are transformed into stolons. 4. If the hypostome of the gonozoid is separated from the subhypostomal budding region by ligature and does not regenerate, the young buds already present are resorbed and no new ones are formed. 5. Heads of gonozoids transplanted onto cauli of adult autozoids may induce the formation of medusa buds in the subtentacular axial region. These buds differentiate into normal medusae. 6. Isolated adult autozoids, treated with extract taken from hypostomes of gonozoids, form medusa buds which complete normal differentiation. 7. Treatment of autozoid colonies with extract from gonozoids brings about a standstill of colony growth and resorption of autozoids. After transfer to normal sea-water a compensatory increase in growth and head formation takes place. 8. The results are discussed. It is suggested that an "activator" substance is produced in the hypostome of the gonozoid which induces and maintains the budding region in the subtentacular zone. Furthermore, budding would be dependent on the nutritional state of the gonozoid, food being supplied by the autozoid, and on the extent of inhibition by intensive stolonization.

  11. Characterization of Natural, Decellularized and Reseeded Porcine Tooth Bud Matrices

    PubMed Central

    Traphagen, Samantha B.; Fourligas, Nikos; Xylas, Joanna; Sengupta, Sejuti; Kaplan, David; Georgakoudi, Irene; Yelick, Pamela C.

    2012-01-01

    Dental tissue engineering efforts have yet to identify scaffolds that instruct the formation of bioengineered teeth of predetermined size and shape. Here we investigated whether extracellular matrix (ECM) molecules present in natural tooth scaffolds can provide insight on how to achieve this goal. We describe methods to effectively decellularize and demineralize porcine molar tooth buds, while preserving natural ECM protein gradients. Natural tooth ECM composition was assessed using histological and immunohistochemical (IHC) analyses of fibrillar and basement membrane proteins. Our results showed that Collagen I, Fibronectin, Collagen IV, and Laminin gradients were detected in natural tooth tissues, and retained in decellularized samples. Second harmonic generation (SHG) image analysis and 3D reconstructions were used to show that natural tooth tissue exhibited higher collagen fiber density, and less oriented and less organized collagen fibers, as compared to decellularized tooth tissue. We also found that reseeded decellularized tooth scaffolds exhibited distinctive collagen content and organization as compared to decelluarized scaffolds. Our results show that SHG allows for quantitative assessment of ECM features that are not easily characterized using traditional histological analyses. In summary, our results demonstrate the potential for natural decellularized molar tooth ECM to instruct dental cell matrix synthesis, and lay the foundation for future use of biomimetic scaffolds for dental tissue engineering applications. PMID:22551485

  12. An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia.

    PubMed

    Zhao, Ying; Thammannagowda, Shivegowda; Staton, Margaret; Tang, Sha; Xia, Xinli; Yin, Weilun; Liang, Haiying

    2013-03-01

    The "living fossil" Metasequoia glyptostroboides Hu et Cheng, commonly known as dawn redwood or Chinese redwood, is the only living species in the genus and is valued for its essential oil and crude extracts that have great potential for anti-fungal activity. Despite its paleontological significance and economical value as a rare relict species, genomic resources of Metasequoia are very limited. In order to gain insight into the molecular mechanisms behind the formation of reproductive buds and the transition from vegetative phase to reproductive phase in Metasequoia, we performed sequencing of expressed sequence tags from Metasequoia vegetative buds and female buds. By using the 454 pyrosequencing technology, a total of 1,571,764 high-quality reads were generated, among which 733,128 were from vegetative buds and 775,636 were from female buds. These EST reads were clustered and assembled into 114,124 putative unique transcripts (PUTs) with an average length of 536 bp. The 97,565 PUTs that were at least 100 bp in length were functionally annotated by a similarity search against public databases and assigned with Gene Ontology (GO) terms. A total of 59 known floral gene families and 190 isotigs involved in hormone regulation were captured in the dataset. Furthermore, a set of PUTs differentially expressed in vegetative and reproductive buds, as well as SSR motifs and high confidence SNPs, were identified. This is the first large-scale expressed sequence tags ever generated in Metasequoia and the first evidence for floral genes in this critically endangered deciduous conifer species.

  13. A mathematical model for the induction of the mammalian ureteric bud.

    PubMed

    Lawson, Brodie A J; Flegg, Mark B

    2016-04-07

    Congenital abnormalities of the kidney and urinary tract collectively form the most common type of prenatally diagnosed malformations. Whilst many of the crucial genes that direct the kidney developmental program are known, the mechanisms by which kidney organogenesis is achieved is still largely unclear. In this paper, we propose a mathematical model for the localisation of the ureteric bud, the precursor to the ureter and collecting duct system of the kidney. The mathematical model presented fundamentally implicates Schnakenberg-like ligand-receptor Turing patterning as the mechanism by which the ureteric bud is localised on the Wolfian duct as proposed by Menshykaul and Iber (2013). This model explores the specific roles of regulatory proteins GREM1 and BMP as well as the domain properties of GDNF production. Our model demonstrates that this proposed pattern formation mechanism is capable of naturally predicting the phenotypical outcomes of many genetic experiments from the literature. Furthermore, we conclude that whilst BMP inhibits GDNF away from the budding site and GREM1 permits GDNF to signal, GREM1 also stabilises the effect of BMP on GDNF signalling from fluctuations in BMP sensitivity but not signal strength.

  14. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability.

  15. Micropropagation of Helleborus through axillary budding.

    PubMed

    Beruto, Margherita; Viglione, Serena; Bisignano, Alessandro

    2013-01-01

    Helleborus genus, belonging to the Ranunculaceae family, has 20 species of herbaceous perennial flowering plants. The commercial exploitation of this plant is dependent on the selection and propagation of appropriate lines. High propagation rate could be accomplished by using a suitable tissue culture method enabling the rapid introduction of valuable selections in the market. However, in vitro cultivation of Helleborus is still very difficult. Thereby the development of reliable in vitro propagation procedures is crucial for future production systems. Axillary buds cultured on agar-solidified Murashige and Skoog medium supplemented with 1 mg/L benzyladenine, 0.1 mg/L β-naphthoxyacetic acid, and 2 mg/L isopentenyl adenine develop shoots after 16 weeks of culture under 16 h light regime, 50-60 μmol/s/m(2), and 19 ± 1°C. The multiplication rate ranges from 1.4 to 2.1. However, the genotype and the number of subcultures affect the efficiency of the micropropagation process. The rooting of shoots is about 80% in solidified MS medium containing 1 mg/L 1-naphthaleneacetic acid and 3 mg/L indole-3-butyric acid. The described protocol provides information which can contribute to the commercial production of Helleborus plants.

  16. Mechanical feedback stabilizes budding yeast morphogenesis

    NASA Astrophysics Data System (ADS)

    Banavar, Samhita; Trogdon, Michael; Petzold, Linda; Campas, Otger

    Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres. This requires a tight and simultaneous regulation of cell wall assembly and mechanochemistry, but the underlying mechanisms by which this is achieved remain unclear. Using the growth of mating projections in budding yeast (S. cerevisiae) as a motivating example, we have developed a theoretical description that couples the mechanics of cell wall expansion and assembly via a mechanical feedback. In the absence of a mechanical feedback, cell morphogenesis is inherently unstable. The presence of a mechanical feedback stabilizes changes in cell shape and growth, and provides a mechanism to prevent cell lysis in a wide range of conditions. We solve for the dynamics of the system and obtain the different dynamical regimes. In particular, we show that several parameters affect the stability of growth, including the strength of mechanical feedback in the system. Finally, we compare our results to existing experimental data.

  17. Bioengineered teeth from cultured rat tooth bud cells.

    PubMed

    Duailibi, M T; Duailibi, S E; Young, C S; Bartlett, J D; Vacanti, J P; Yelick, P C

    2004-07-01

    The recent bioengineering of complex tooth structures from pig tooth bud tissues suggests the potential for the regeneration of mammalian dental tissues. We have improved tooth bioengineering methods by comparing the utility of cultured rat tooth bud cells obtained from three- to seven-day post-natal (dpn) rats for tooth-tissue-engineering applications. Cell-seeded biodegradable scaffolds were grown in the omenta of adult rat hosts for 12 wks, then harvested. Analyses of 12-week implant tissues demonstrated that dissociated 4-dpn rat tooth bud cells seeded for 1 hr onto PGA or PLGA scaffolds generated bioengineered tooth tissues most reliably. We conclude that tooth-tissue-engineering methods can be used to generate both pig and rat tooth tissues. Furthermore, our ability to bioengineer tooth structures from cultured tooth bud cells suggests that dental epithelial and mesenchymal stem cells can be maintained in vitro for at least 6 days.

  18. Ubiquitin is part of the retrovirus budding machinery

    NASA Astrophysics Data System (ADS)

    Patnaik, Akash; Chau, Vincent; Wills, John W.

    2000-11-01

    Retroviruses contain relatively large amounts of ubiquitin, but the significance of this finding has been unknown. Here, we show that drugs that are known to reduce the level of free ubiquitin in the cell dramatically reduced the release of Rous sarcoma virus, an avian retrovirus. This effect was suppressed by overexpressing ubiquitin and also by directly fusing ubiquitin to the C terminus of Gag, the viral protein that directs budding and particle release. The block to budding was found to be at the plasma membrane, and electron microscopy revealed that the reduced level of ubiquitin results in a failure of mature virus particles to separate from each other and from the plasma membrane during budding. These data indicate that ubiquitin is actually part of the budding machinery.

  19. Polarity-Driven Geometrical Cluster Growth Model of Budding Yeast

    NASA Astrophysics Data System (ADS)

    Cabral, Reniel B.; Lim, May T.

    We present a polarity-driven activator-inhibitor model of budding yeast in a two-dimensional medium wherein impeding metabolites secretion (or growth inhibitors) and growth directionality are determined by the local nutrient level. We found that colony size and morphological features varied with nutrient concentration. A branched-type morphology is associated with high impeding metabolite concentration together with a high fraction of distal budding, while opposite conditions (low impeding metabolite concentration, high fraction of proximal budding) promote Eden-type patterns. Increasing the anisotropy factor (or polarity) produced other spatial patterns akin to the electrical breakdown under varying electric field. Rapid changes in the colony morphology, which we conjecture to be equivalent to a transition from an inactive quiescent state to an active budding state, appeared when nutrients were limited.

  20. Oriented cell motility and division underlie early limb bud morphogenesis.

    PubMed

    Wyngaarden, Laurie A; Vogeli, Kevin M; Ciruna, Brian G; Wells, Mathew; Hadjantonakis, Anna-Katerina; Hopyan, Sevan

    2010-08-01

    The vertebrate limb bud arises from lateral plate mesoderm and its overlying ectoderm. Despite progress regarding the genetic requirements for limb development, morphogenetic mechanisms that generate early outgrowth remain relatively undefined. We show by live imaging and lineage tracing in different vertebrate models that the lateral plate contributes mesoderm to the early limb bud through directional cell movement. The direction of cell motion, longitudinal cell axes and bias in cell division planes lie largely parallel to one another along the rostrocaudal (head-tail) axis in lateral plate mesoderm. Transition of these parameters from a rostrocaudal to a mediolateral (outward from the body wall) orientation accompanies early limb bud outgrowth. Furthermore, we provide evidence that Wnt5a acts as a chemoattractant in the emerging limb bud where it contributes to the establishment of cell polarity that is likely to underlie the oriented cell behaviours.

  1. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  2. Grapevine bud break prediction for cool winter climates

    NASA Astrophysics Data System (ADS)

    Nendel, Claas

    2010-05-01

    Statistical analysis of bud break data for grapevine ( Vitis vinifera L. cvs. Riesling and Müller-Thurgau) at 13 sites along the northern boundary of commercial grapevine production in Europe revealed that, for all investigated sites, the heat summation method for bud break prediction can be improved if the starting date for the accumulation of heat units is specifically determined. Using the coefficient of variance as a criterion, a global minimum for each site can be identified, marking the optimum starting date. Furthermore, it was shown that the application of a threshold temperature for the heat summation method does not lead to an improved prediction of bud break. Using site-specific parameters, bud break of grapevine can be predicted with an accuracy of ± 2.5 days. Using average parameters, the prediction accuracy is reduced to ± 4.5 days, highlighting the sensitivity of the heat summation method to the quality and the representativeness of the driving temperature data.

  3. Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds.

    PubMed

    Cui, Xi-Hua; Murthy, Hosakatte Niranjana; Paek, Kee-Yoeup

    2014-09-01

    Hypericum perforatum L. (St. John's Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l(-1) indole butyric acid, 0.1 mg l(-1) kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g(-1) DW of total phenolics, 48.6 mg g(-1) DW of total flavonoids, 1.3 mg g(-1) DW of chlorogenic acid, 0.01 mg g(-1) DW of hyperin, 0.04 mg g(-1) DW of hypericin, and 0.01 mg g(-1) DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry.

  4. Analysis of the transcriptional responses in inflorescence buds of Jatropha curcas exposed to cytokinin treatment.

    PubMed

    Chen, Mao-Sheng; Pan, Bang-Zhen; Wang, Gui-Juan; Ni, Jun; Niu, Longjian; Xu, Zeng-Fu

    2014-11-30

    Jatropha curcas L. is a potential biofuel plant. Application of exogenous cytokinin (6-benzyladenine, BA) on its inflorescence buds can significantly increase the number of female flowers, thereby improving seed yield. To investigate which genes and signal pathways are involved in the response to cytokinin in J. curcas inflorescence buds, we monitored transcriptional activity in inflorescences at 0, 3, 12, 24, and 48 h after BA treatment using a microarray. We detected 5,555 differentially expressed transcripts over the course of the experiment, which could be grouped into 12 distinct temporal expression patterns. We also identified 31 and 131 transcripts in J. curcas whose homologs in model plants function in flowering and phytohormonal signaling pathways, respectively. According to the transcriptional analysis of genes involved in flower development, we hypothesized that BA treatment delays floral organ formation by inhibiting the transcription of the A, B and E classes of floral organ-identity genes, which would allow more time to generate more floral primordia in inflorescence meristems, thereby enhancing inflorescence branching and significantly increasing flower number per inflorescence. BA treatment might also play an important role in maintaining the flowering signals by activating the transcription of GIGANTEA (GI) and inactivating the transcription of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and TERMINAL FLOWER 1b (TFL1b). In addition, exogenous cytokinin treatment could regulate the expression of genes involved in the metabolism and signaling of other phytohormones, indicating that cytokinin and other phytohormones jointly regulate flower development in J. curcas inflorescence buds. Our study provides a framework to better understand the molecular mechanisms underlying changes in flowering traits in response to cytokinin treatment in J. curcas inflorescence buds. The results provide valuable information related to the mechanisms of cross-talk among

  5. Longleaf pine bud development: influence of seedling nutrition

    Treesearch

    J. P. Barnett; D. P. Jackson; R. K. Dumroese

    2010-01-01

    A subset of seedlings from a larger study (Jackson and others 2006, 2007) were selected and evaluated for two growing seasons to relate bud development, and root-collar diameter (RCD), and height growth with three nursery fertilization rates. We chose seedlings in the 0.5 (lowest), 2.0 (mid-range), and 4.0 (highest) mg of nitrogen per seedling treatments. Buds moved...

  6. Impact of peritumoral and intratumoral budding in esophageal adenocarcinomas.

    PubMed

    Thies, Svenja; Guldener, Lars; Slotta-Huspenina, Julia; Zlobec, Inti; Koelzer, Viktor H; Lugli, Alessandro; Kröll, Dino; Seiler, Christian A; Feith, Marcus; Langer, Rupert

    2016-06-01

    Tumor budding has prognostic significance in many carcinomas and is defined as the presence of detached isolated single cells or small cell clusters up to 5 cells at the invasion front (peritumoral budding [PTB]) or within the tumor (intratumoral budding [ITB]). For esophageal adenocarcinomas (EACs), there are currently only few data about the impact of this morphological feature. We investigated tumor budding in a large collective of 200 primarily resected EACs. Pancytokeratin staining was demonstrated to be superior to hematoxylin and eosin staining for the detection of buds with substantial to excellent interobserver agreement and used for subsequent analysis. PTB and ITB were scored across 10 high-power fields (HPFs). The median count of tumor buds was 130/10 HPFs for PTB (range, 2-593) and 80/10 HPFs for ITB (range, 1-656). PTB and ITB correlated significantly with each other (r = 0.9; P < .001). High PTB and ITB rates were seen in more advanced tumor categories (P < .001 each); tumors with lymph node metastases (P < .001/P = .002); and lymphatic, vascular, and perineural invasion and higher tumor grading (P < .001 each). Survival analysis showed an association with worse survival for high-grade ITB (P = .029) but not PTB (P = .385). However, in multivariate analysis, lymph node and resection status, but not ITB, were independent prognostic parameters. In conclusion, PTB and ITB can be observed in EAC to various degrees. High-grade budding is associated with aggressive tumor phenotype. Assessment of tumor budding, especially ITB, may provide additional prognostic information about tumor behavior and may be useful in specific cases for risk stratification of EAC patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Real Life Science with Dandelions and Project BudBurst.

    PubMed

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  8. Real Life Science with Dandelions and Project BudBurst

    PubMed Central

    Johnson, Katherine A.

    2016-01-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education PMID:27047605

  9. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing.

    PubMed

    Mee, Edward T; Preston, Mark D; Minor, Philip D; Schepelmann, Silke

    2016-04-12

    Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Fifteen laboratories returned results, obtained using a wide range of wet-lab and informatics methods. Six of 25 target viruses were detected by all laboratories, with the remaining viruses detected by 4-14 laboratories. Six non-target viruses were detected by three or more laboratories. The study demonstrated that a wide range of methods are currently used for adventitious virus detection screening in biological products by deep sequencing and that they can yield significantly different results. This underscores the need for common reference materials to ensure satisfactory assay performance and enable comparisons between laboratories. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations.

    PubMed

    Roger, Isolda; Symes, Mark D

    2015-11-04

    Electrolytic water oxidation using earth-abundant elements is a key challenge in the quest to develop cheap, large surface area arrays for solar-to-hydrogen conversion. There have been numerous studies in this area in recent years, but there remains an imperative to demonstrate that the current densities reported are indeed due to the species under consideration and not due to the presence of adventitious (yet possibly highly active) contaminants at low levels. Herein, we show that adventitious nickel at concentrations as low as 17 nM can act as a water oxidation catalyst in mildly basic aqueous solutions, achieving stable (tens of hours) current densities of 1 mA cm(-2) at overpotentials as