Science.gov

Sample records for adventitious root production

  1. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  2. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  3. Large Scale Culture of Ginseng Adventitious Roots for Production of Ginsenosides

    NASA Astrophysics Data System (ADS)

    Paek, Kee-Yoeup; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Zhong, Jian-Jiang

    Ginseng (Panax ginseng C. A. Meyer) is one of the most famous oriental medicinal plants used as crude drugs in Asian countries, and now it is being used worldwide for preventive and therapeutic purposes. Among diverse constituents of ginseng, saponins (ginsenosides) have been found to be major components responsible for their biological and pharmacological actions. On the other hand, difficulties in the supply of pure ginsenosides in quantity prevent the development of ginseng for clinical medicines. Cultivation of ginseng in fields takes a long time, generally 5-7 years, and needs extensive effort regarding quality control since growth is susceptible to many environmental factors including soil, shade, climate, pathogens and pests. To solve the problems, cell and tissue cultures have been widely explored for more rapid and efficient production of ginseng biomass and ginsenosides. Recently, cell and adventitious root cultures of P. ginseng have been established in large scale bioreactors with a view to commercial application. Various physiological and engineering parameters affecting the biomass production and ginsenoside accumulation have been investigated. Advances in adventitious root cultures including factors for process scale-up are reviewed in this chapter. In addition, biosafety analyses of ginseng adventitious roots are also discussed for real application.

  4. Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots.

    PubMed

    Min, Ji Yun; Jung, Hee Young; Kang, Seung Mi; Kim, Yong Duck; Kang, Young Min; Park, Dong Jin; Prasad, Doddananjappa Theertha; Choi, Myung Suk

    2007-07-01

    The mass production of tropane alkaloids from adventitious root cultures of Scopolia parviflora, in small-scale bubble column bioreactor (BCB) was attempted. Adventitious roots of S. parviflora produced relatively enhanced levels of scopolamine and hyoscyamine in bioreactor compared to flask type cultures, and rapidly produced root clumps, with continuously increasing biomass throughout the culture period. The production of scopolamine and hyoscyamine in the top and bottom regions of root clumps were higher than in the core region. The adventitious root cultures of S. parviflora in the BCB required a relatively high level of aeration. The optimized conditions for the bioreactor culture growth and alkaloid production were found to be 3g of inoculum, on a fresh weight basis, a 15-day culture period and 0.4vvm of airflow. The elicitation by Staphylococus aureus increased the specific compound of scopolamine, while the production of hyoscyamine was slightly inhibited in BCB cultures.

  5. Gonadotropin promotion of adventitious root production on cuttings of Begonia semperflorens and Vitis vinifera.

    PubMed

    Leshem, Y; Lunenfeld, B

    1968-03-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA(3)-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems.

  6. Gonadotropin Promotion of Adventitious Root Production on Cuttings of Begonia semperflorens and Vitis vinifera 1

    PubMed Central

    Leshem, Y.; Lunenfeld, B.

    1968-01-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA3-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems. PMID:5641189

  7. Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds.

    PubMed

    Cui, Xi-Hua; Murthy, Hosakatte Niranjana; Paek, Kee-Yoeup

    2014-09-01

    Hypericum perforatum L. (St. John's Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l(-1) indole butyric acid, 0.1 mg l(-1) kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g(-1) DW of total phenolics, 48.6 mg g(-1) DW of total flavonoids, 1.3 mg g(-1) DW of chlorogenic acid, 0.01 mg g(-1) DW of hyperin, 0.04 mg g(-1) DW of hypericin, and 0.01 mg g(-1) DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry.

  8. Effect of nitrogen source on biomass and bioactive compound production in submerged cultures of Eleutherococcus koreanum Nakai adventitious roots.

    PubMed

    Lee, Eun-Jung; Paek, Kee-Yoeup

    2012-01-01

    Ammonium to nitrate ratios of 0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM were tested to determine the optimal NH(4)(+) :NO(3)(-) ratio for improving biomass and bioactive compound production in Eleutherococcus koreanum Nakai adventitious roots using 3-L bulb-type bubble bioreactors. A high ammonium nitrogen ratio had a negative effect on root growth, and the highest fresh and dry weights were obtained when NH(4)(+):NO(3)(-) ratios were 5:25 and 10:20 (mM) after 5 weeks of culture. Although the total production of eleutherosides B and E was slightly higher at the 10:20 ratio than at the 5:25 ratio (NH(4)(+):NO(3)(-)), we proposed that the optimal NH(4)(+):NO(3)(-) ratio was 5:25 mM. This ratio achieved both the highest total production of five target bioactive compounds (eleutherosides B and E, chlorogenic acid, total phenolics, and flavonoids) and the highest root biomass. Furthermore, increasing NH(4)(+):NO(3)(-) ratios to 10:20 decreased pH in the medium, interrupted the absorption of essential minerals from the culture medium, and resulted in low biomass and increased relative oxidative stress levels, which were evaluated by determining 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Therefore, nitrate rather than ammonium nitrogen was more essential not for only biomass production but also for bioactive compound production in E. koreanum adventitious root cultures. The optimal nitrogen source ratio produced 5.63 g L(-1) of biomass and 24.41 mg of the five total bioactive compounds per gram of biomass (dry weight basis). The development of such in vitro culture technology will benefit the pilot-scale production of E. koreanum-based bioactive compounds for commercialization.

  9. Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system.

    PubMed

    Lulu, Tao; Park, So-Young; Ibrahim, Rusli; Paek, Kee-Yoeup

    2015-06-01

    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.

  10. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    PubMed

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  11. Improvement of adventitious root formation in flax using hydrogen peroxide.

    PubMed

    Takáč, Tomáš; Obert, Bohuš; Rolčík, Jakub; Šamaj, Jozef

    2016-09-25

    Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting.

  12. [Influencing factors on culture of medicinal plants adventitious roots].

    PubMed

    Yin, Shuang-Shuang; Gao, Wen-Yuan; Wang, Juan; Liu, Hui; Zuo, Bei-Mei

    2012-12-01

    With the modernization of traditional Chinese medicine, medicinal plants resources cannot meet the request of Chinese medicine industry. Medicinal plants adventitious roots culture in a large scale is an important way to achieve Chinese medicine industrialization. However, how to establish good adventitious roots culture system is its key, such as plant hormones, explant, sucrose, innoculum and salt strength.

  13. Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid.

    PubMed

    Wu, Chun-Hua; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Paek, Kee-Yoeup

    2007-08-01

    Adventitious roots of Echinacea purpurea were cultured in airlift bioreactors (20 l, 500 l balloon-type, bubble bioreactors and 1,000 l drum-type bubble bioreactor) using Murashige and Skoog (MS) medium with 2 mg indole butyric acid l(-1) and 50 g sucrose l(-1) for the production of chichoric acid, chlorogenic acid and caftaric acid. In the 20 l bioreactor (containing 14 l MS medium) a maximum yield of 11 g dry biomass l(-1) was achieved after 60 days. However, the amount of total phenolics (57 mg g(-1) DW), flavonoids (34 mg g(-1) DW) and caffeic acid derivatives (38 mg g(-1) DW) were highest after 50 days. Based on these studies, pilot-scale cultures were established and 3.6 kg and 5.1 kg dry biomass were achieved in the 500 l and 1,000 l bioreactors, respectively. The accumulation of 5 mg chlorogenic acid g(-1) DW, 22 mg chichoric acid g(-1) DW and 4 mg caftaric acids g(-1) DW were achieved with adventitious roots grown in 1,000 l bioreactors.

  14. Meristematic Activity during Adventitious Root Primordium Development

    PubMed Central

    Haissig, Bruce E.

    1972-01-01

    Intact brittle willows (Salix fragilis L.) were treated so that developing adventitious root primordia in the stems would be subjected to elevated gibberellic acid or reduced endogenous auxin levels. Observations were made of primordia that were initiated during the experiments and of primordia that were established before the experiments began. The results indicated that as primordia became older and contained more cells, auxin basipetally transported in the stem seemed to be of less importance in determining cell number per primordium. Thus, established primordia depended upon this auxin to a lesser extent than primordia which were being initiated. These observations were explained on the basis of differential contributions during primordium development of cell division in the cambium of the stem and in the primordia themselves. As opposed to the effects of reduced auxin levels, applied gibberellic acid reduced the cell number per primordium most in established primordia. Initiating primordia were least affected by gibberellic acid treatment. Gibberellic acid treatment seemed mainly to reduce intraprimordium cell division, on which continued development of established primordia most depends. Seemingly, at least in brittle willow, applied gibberellic acid blocks the action of auxin in primordium development subsequent to the initiation phase. PMID:16658077

  15. Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana.

    PubMed

    López-Bucio, José; Ortiz-Castro, Randy; Ruíz-Herrera, León Francisco; Juárez, Consuelo Vargas; Hernández-Madrigal, Fátima; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2015-04-01

    Morphological root plasticity optimizes nutrient and water uptake by plants and is a promising target to improve tolerance to metal toxicity. Exposure to sublethal chromate [Cr(VI)] concentrations inhibits root growth, decreases photosynthesis and compromises plant development and productivity. Despite the increasing environmental problem that Cr(VI) represents, to date, the Cr tolerance mechanisms of plants are not well understood, and it remains to be investigated whether root architecture remodelling is important for plant adaptation to Cr(VI) stress. In this report, we analysed the growth response of Arabidopsis thaliana seedlings to concentrations of Cr(VI) that strongly repress primary and lateral root growth. Interestingly, adventitious roots started developing, branched and allowed seedlings to grow under highly growth-repressing Cr(VI) concentrations. Cr(VI) negatively regulates auxin transport and response gene expression in the primary root tip, as evidenced by decreased expression of auxin-related reporters DR5::GFP, DR5::uidA and PIN1::PIN1::GFP, and then, another auxin maximum is established at the site of adventitious root initiation that drives adventitious root organogenesis. Both primary root growth inhibition and adventitious root formation induced by high Cr(VI) levels are blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. These data provide evidence that suggests a critical role for auxin transport and signalling via IAA14/SLR1 in the developmental program linking Cr(VI) to root architecture remodelling.

  16. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings

    PubMed Central

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A.; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species. PMID:26230608

  17. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings.

    PubMed

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders' rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.

  18. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  19. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Wang, Meng; Niu, Lijuan; Xu, Qingqing; Jin, Xin

    2016-05-20

    Hydrogen gas (H2) is involved in plant development and stress responses. Cucumber explants were used to study whether nitric oxide (NO) is involved in H2-induced adventitious root development. The results revealed that 50% and 100% hydrogen-rich water (HRW) apparently promoted the development of adventitious root in cucumber. While, the responses of HRW-induced adventitious rooting were blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), NO synthase (NOS) enzyme inhibitor N(G)-nitro-l-arginine methylester hydrochloride (l-NAME) and nitrate reductase (NR) inhibitor NaN3. HRW also increased NO content and NOS and NR activity both in a dose- and time-dependent fashion. Moreover, molecular evidence showed that HRW up-regulated NR genes expression in explants. The results indicate the importance of NOS and NR enzymes, which might be responsible for NO production in explants during H2-induced root organogenesis. Additionally, peroxidase (POD) and indoleacetic acid oxidase (IAAO) activity was significantly decreased in the explants treated with HRW, while HRW treatment significantly increased polyphenol oxidase (PPO) activity. In addition, cPTIO, l-NAME and NaN3 inhibited the actions of HRW on the activity of these enzymes. Together, NO may be involved in H2-induced adventitious rooting, and NO may be acting downstream in plant H2 signaling cascade.

  20. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    PubMed

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots.

  1. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    PubMed

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  2. Dissecting the contribution of microtubule behaviour in adventitious root induction

    PubMed Central

    Abu-Abied, Mohamad; Rogovoy (Stelmakh), Oksana; Mordehaev, Inna; Grumberg, Marina; Elbaum, Rivka; Wasteneys, Geoffrey O.; Sadot, Einat

    2015-01-01

    Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction. PMID:25788735

  3. Dissecting the contribution of microtubule behaviour in adventitious root induction.

    PubMed

    Abu-Abied, Mohamad; Rogovoy Stelmakh, Oksana; Mordehaev, Inna; Grumberg, Marina; Elbaum, Rivka; Wasteneys, Geoffrey O; Sadot, Einat

    2015-05-01

    Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction.

  4. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation

    PubMed Central

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Schwambach, Joseli; Bellini, Catherine

    2014-01-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process. PMID:24596172

  5. An Efficient Method for Adventitious Root Induction from Stem Segments of Brassica Species

    PubMed Central

    Srikanth, Sandhya; Choong, Tsui Wei; Yan, An; He, Jie; Chen, Zhong

    2016-01-01

    Plant propagation via in vitro culture is a very laborious and time-consuming process. The growth cycle of some of the crop species is slow even in the field and the consistent commercial production is hard to maintain. Enhanced methods of reduced cost, materials and labor significantly impact the research and commercial production of field crops. In our studies, stem-segment explants of Brassica species were found to generate adventitious roots (AR) in aeroponic systems in less than a week. As such, the efficiency of rooting from stem explants of six cultivar varieties of Brassica spp was tested without using any plant hormones. New roots and shoots were developed from Brassica alboglabra (Kai Lan), B. oleracea var. acephala (purple kale), B. rapa L. ssp. chinensis L (Pai Tsai, Nai Bai C, and Nai Bai T) explants after 3 to 5 days of growing under 20 ± 2°C cool root zone temperature (C-RZT) and 4 to 7 days in 30 ± 2°C ambient root zone temperature (A-RZT). At the base of cut end, anticlinal and periclinal divisions of the cambial cells resulted in secondary xylem toward pith and secondary phloem toward cortex. The continuing mitotic activity of phloem parenchyma cells led to a ring of conspicuous white callus. Root initials formed from the callus which in turn developed into ARs. However, B. rapa var. nipposinica (Mizuna) explants were only able to root in C-RZT. All rooted explants were able to develop into whole plants, with higher biomass obtained from plants that grown in C-RZT. Moreover, explants from both RZTs produced higher biomass than plants grown from seeds (control plants). Rooting efficiency was affected by RZTs and explant cuttings of donor plants. Photosynthetic CO2 assimilation rate (Asat) and stomatal conductance (gssat) were significantly differentiated between plants derived from seeds and explants at both RZTs. All plants in A-RZT had highest transpiration rates. PMID:27446170

  6. An Efficient Method for Adventitious Root Induction from Stem Segments of Brassica Species.

    PubMed

    Srikanth, Sandhya; Choong, Tsui Wei; Yan, An; He, Jie; Chen, Zhong

    2016-01-01

    Plant propagation via in vitro culture is a very laborious and time-consuming process. The growth cycle of some of the crop species is slow even in the field and the consistent commercial production is hard to maintain. Enhanced methods of reduced cost, materials and labor significantly impact the research and commercial production of field crops. In our studies, stem-segment explants of Brassica species were found to generate adventitious roots (AR) in aeroponic systems in less than a week. As such, the efficiency of rooting from stem explants of six cultivar varieties of Brassica spp was tested without using any plant hormones. New roots and shoots were developed from Brassica alboglabra (Kai Lan), B. oleracea var. acephala (purple kale), B. rapa L. ssp. chinensis L (Pai Tsai, Nai Bai C, and Nai Bai T) explants after 3 to 5 days of growing under 20 ± 2°C cool root zone temperature (C-RZT) and 4 to 7 days in 30 ± 2°C ambient root zone temperature (A-RZT). At the base of cut end, anticlinal and periclinal divisions of the cambial cells resulted in secondary xylem toward pith and secondary phloem toward cortex. The continuing mitotic activity of phloem parenchyma cells led to a ring of conspicuous white callus. Root initials formed from the callus which in turn developed into ARs. However, B. rapa var. nipposinica (Mizuna) explants were only able to root in C-RZT. All rooted explants were able to develop into whole plants, with higher biomass obtained from plants that grown in C-RZT. Moreover, explants from both RZTs produced higher biomass than plants grown from seeds (control plants). Rooting efficiency was affected by RZTs and explant cuttings of donor plants. Photosynthetic CO2 assimilation rate (Asat ) and stomatal conductance (gssat ) were significantly differentiated between plants derived from seeds and explants at both RZTs. All plants in A-RZT had highest transpiration rates.

  7. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

    PubMed

    Agulló-Antón, María Ángeles; Ferrández-Ayela, Almudena; Fernández-García, Nieves; Nicolás, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sánchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel

    2014-03-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting.

  8. Acetylcholinesterase-Inhibition and Antibacterial Activity of Mondia whitei Adventitious Roots and Ex vitro-Grown Somatic Embryogenic-Biomass

    PubMed Central

    Baskaran, Ponnusamy; Kumari, Aloka; Ncube, Bhekumthetho; Van Staden, Johannes

    2016-01-01

    Mondia whitei (Hook.f.) Skeels is an important endangered medicinal and commercial plant in South Africa. In vitro propagation systems are required for biomass production and bioactivity analysis to supplement wild resources/stocks. Adventitious roots from somatic embryogenic explants using suspension culture and ex vitro-grown plants produced via somatic embryogenesis were established using different plant growth regulator treatments. The adventitious root biomass and different parts of ex vitro-grown and mother plants were used to investigate the potential for acetylcholinesterase (AChE) and antibacterial activities. Adventitious roots derived from 2.5 μM indole-3-acetic acid (IAA) treatments and ex vitro-grown plants derived from meta-topolin riboside and IAA treatments gave the best AChE and antibacterial activities. The in vitro-established M. whitei and ex vitro biomass have comparable ability to function as inhibitors of acetylcholinesterase and antibacterial agents, and can be used as potent bioresources in traditional medicine. PMID:27752244

  9. [Cloning of cDNA fragments related to adventitious root formation from mango cotyledon section].

    PubMed

    Xiao, Jie-Ning; Huang, Xue-Lin; Zhang, Yi-Shun; Li, Yin; Li, Xiao-Ju

    2004-04-01

    Two cut surfaces of mango cotyledon (distal and proximal cut surfaces) showed different capability of adventitious root formation, only proximal cut surface could be induced to form the roots and the distal cut surface did not. cDNA fragments related to adventitious root formation from the cut sections were isolated with suppressive subtractive hybridization. The forward substracted cDNA library was constructed using the cDNAs of distal (non-rooting) cut surface as driver and the cDNAs of proximal (rooting) cut surface as tester. Six positive clones were obtained by Virtual Northern blots. In this study, the putative up-regulated genes showed by sequence analysis were reported in mango for the first time, the deduced proteins among the positive clones were homologous to transporters, transcriptional regulators and enzymes.

  10. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability.

  11. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.

    PubMed

    Urquhart, Shelley; Foo, Eloise; Reid, James B

    2015-03-01

    The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency.

  12. The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana.

    PubMed

    Rovere, Federica Della; Fattorini, Laura; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2016-05-03

    Adventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers. The formation of adventitious roots (ARs) depends on numerous factors, among which the hormones, auxin, in particular. In both primary and lateral roots, growth depends on a functional stem cell niche in the apex, maintained by an active quiescent center (QC), and involving the expression of genes controlled by auxin and cytokinin. This review summarizes current knowledge about auxin and cytokinin control on genes involved in the definition and maintenance of QC, and stem cell niche, in the apex of Arabidopsis ARs in planta and in longitudinal thin cell layers.

  13. Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma.

    PubMed

    Yamauchi, Takaki; Abe, Fumitaka; Kawaguchi, Kentaro; Oyanagi, Atsushi; Nakazono, Mikio

    2014-01-01

    Exposing roots of plants to hypoxic conditions is known to greatly improve their anoxic stress tolerance. We previously showed that pre-treatment of wheat seedlings with an ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), enhanced their tolerance of oxygen-deficient conditions. Although ACC-pretreated seminal roots of wheat seedlings grown under oxygen-deficient conditions avoided root tip death, they elongated very little. In the present study, we assessed the effects of ethylene on the responses of adventitious roots of wheat seedlings to oxygen-deficient conditions. Lysigenous aerenchyma formation in the adventitious roots of wheat seedlings pretreated with ACC appeared to reduce tip death under oxygen-deficient conditions, but the adventitious roots, like the seminal roots, hardly elongated. We also found that adventitious roots that emerge in oxygen-deficient conditions continued to elongate even under such conditions. The adventitious roots emerged in oxygen-deficient conditions were found to have thicker root diameters than those emerged in aerated conditions. These results suggest that the adventitious roots with thicker root diameters can better cope with oxygen-deficient conditions. Measurements of the area of the lysigenous aerenchyma confirmed that the increased root diameters have a greater amount of air space generated by lysigenous aerenchyma formation.

  14. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara

    PubMed Central

    Zhang, Qian; Visser, Eric J. W.; de Kroon, Hans; Huber, Heidrun

    2015-01-01

    Background and Aims Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Methods Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Key Results Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. Conclusions The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant’s life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow

  15. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development1[W

    PubMed Central

    Sorin, Céline; Negroni, Luc; Balliau, Thierry; Corti, Hélène; Jacquemot, Marie-Pierre; Davanture, Marlène; Sandberg, Göran; Zivy, Michel; Bellini, Catherine

    2006-01-01

    A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities. PMID:16377752

  16. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus.

    PubMed

    Park, Yun Ji; Thwe, Aye Aye; Li, Xiaohua; Kim, Yeon Jeong; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-10-14

    Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.

  17. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation.

    PubMed

    Li, Mei-Yue; Cao, Ze-Yu; Shen, Wen-Biao; Cui, Jin

    2011-10-15

    Our previous work showed that in cucumber (Cucumis sativus), auxin rapidly induces heme oxygenase (HO) activity and the product of HO action, carbon monoxide (CO), then triggers the signal transduction events leading to adventitious root formation. In this study, the cucumber HO-1 gene (named as CsHO1) was isolated and sequenced. It contains four exons and three introns and encodes a polypeptide of 291 amino acids. Further results show that CsHO1 shares a high homology with plant HO-1 proteins and codes a 33.3 kDa protein with a 65-amino transit peptide, predicting a mature protein of 26.1 kDa. The mature CsHO1 was expressed in Escherichia coli to produce a fusion protein, which exhibits HO activity. The CsHO1:GFP fusion protein was localized in the chloroplast. Related biochemical analyses of mature CsHO1, including Vmax, Km, Topt and pHopt, were also investigated. CsHO1 mRNA was found in germinating seeds, roots, stem, and especially in leaf tissues. Several well-known adventitious root inducers, including auxin, ABA, hemin, nitric oxide donor sodium nitroprusside (SNP), CaCl(2), and sodium hydrosulfide (NaHS), differentially up-regulate CsHO1 transcripts and corresponding protein levels. These results suggest that CsHO1 may be involved in cucumber adventitious rooting.

  18. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  19. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    DOE PAGES

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; ...

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals andmore » progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of

  20. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    SciTech Connect

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; Novaes, Evandro; Novaes, Carolina R. D. B.; Dervinis, Christopher; Kirst, Matias

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals and progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp

  1. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    PubMed

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding.

  2. Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation.

    PubMed

    Patil, Swapnil M; Chandanshive, Vishal V; Rane, Niraj R; Khandare, Rahul V; Watharkar, Anuprita D; Govindwar, Sanjay P

    2016-04-01

    In vitro grown untransformed adventitious roots (AR) culture of Ipomoea hederifolia and its endophytic fungus (EF) Cladosporium cladosporioides decolorized Navy Blue HE2R (NB-HE2R) at a concentration of 20 ppm up to 83.3 and 65%, respectively within 96h. Whereas the AR-EF consortium decolorized the dye more efficiently and gave 97% removal within 36h. Significant inductions in the enzyme activities of lignin peroxidase, tyrosinase and laccase were observed in roots, while enzymes like tyrosinase, laccase and riboflavin reductase activities were induced in EF. Metabolites of dye were analyzed using UV-vis spectroscopy, FTIR and gas chromatography-mass spectrometry. Possible metabolic pathways of NB-HE2R were proposed with AR, EF and AR-EF systems independently. Looking at the superior efficacy of AR-EF system, a rhizoreactor was developed for the treatment of NB-HE2R at a concentration of 1000 ppm. Control reactor systems with independently grown AR and EF gave 94 and 85% NB-HE2R removal, respectively within 36h. The AR-EF rhizoreactor, however, gave 97% decolorization. The endophyte colonization additionally increased root and shoot lengths of candidate plants through mutualism. Combined bioreactor strategies can be effectively used for future eco-friendly remediation purposes.

  3. Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara

    PubMed Central

    Dawood, Thikra; Rieu, Ivo; Wolters-Arts, Mieke; Derksen, Emiel B.; Mariani, Celestina; Visser, Eric J. W.

    2013-01-01

    Flooding is a common stress factor in both natural and agricultural systems, and affects plant growth by the slow diffusion rate of gases in water. This results in low oxygen concentrations in submerged tissues, and hence in a decreased respiration rate. Understanding the responses of plants to flooding is essential for the management of wetland ecosystems, and may benefit research to improve the flood tolerance of crop species. This study describes the response to partial submergence of bittersweet (Solanum dulcamara). Bittersweet is a Eurasian species that grows both in dry habitats such as coastal dunes, and in wetlands, and therefore is a suitable model plant for studying responses to a variety of environmental stresses. A further advantage is that the species is closely related to flood-intolerant crops such as tomato and eggplant. The species constitutively develops dormant primordia on the stem, which we show to have a predetermined root identity. We investigated adventitious root growth from these primordia during flooding. The synchronized growth of roots from the primordia was detected after 2–3 days of flooding and was due to a combination of cell division and cell elongation. Gene expression analysis demonstrated that the molecular response to flooding began within 2 h and included activation of hypoxia and ethylene signalling genes. Unexpectedly, these early changes in gene expression were very similar in primordia and adjacent stem tissue, suggesting that there is a dominant general response in tissues during early flooding. PMID:24790121

  4. The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation.

    PubMed

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Lakehal, Abdellah; Pacurar, Andrea Mariana; Ranjan, Alok; Bellini, Catherine

    2017-04-04

    The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.

  5. Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions.

    PubMed

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Chen, Xuehao

    2017-04-01

    The hypocotyl-derived adventitious root (AR) is an important morphological acclimation to waterlogging stress; however, its genetic basis has not been adequately understood. In the present study, a mixed major gene plus polygene inheritance model was used to analyze AR numbers (ARN) 7 days after waterlogging treatment in six generations (P1, P2, F1, B1, B2, and F2), using cucumber waterlogging tolerant line Zaoer-N and sensitive Pepino as parents. The results showed that the genetic model D-4, mixed one negative dominance major gene and additive-dominance polygenes, is the best-fitting genetic model for waterlogging-triggered ARN phenotype. A genetic linkage map spanning 550.8 cM and consisting of 149 simple sequence repeat (SSR) markers segregating into seven linkage groups was constructed. Three QTLs (ARN3.1, ARN5.1, and ARN6.1) distributed on chromosomes 3, 5, and 6 were identified by composite interval mapping. The major-effect QTL, ARN6.1, located between SSR12898 and SSR04751, was the only locus detected in three seasons, with least likelihood (LOD) scores of 8.8, 10.4, and 9.5 and account for 17.6, 24, and 19.8% of the phenotypic variance, respectively. Using five additional single nucleotide polymorphism (SNP) makers, the ARN6.1 was narrowed down to a 0.79 Mb interval franked by SSR12898 and SNP25558853. Illumina RNA-sequencing data generated on hypocotyls of two parents 48 h after waterlogging treatment revealed 15 genes in the 0.79 Mb interval were differentially expressed, including Csa6G503880 encoding a salicylic acid methyl transferase-like protein, Csa6G504590 encoding a cytochrome P450 monooxygenase, and Csa6G505230 encoding a heavy metal-associated protein. Our findings shed light on the genetic architecture underlying adventitious rooting during waterlogging stress in cucumber, and provide a list of potential gene targets for further elucidating waterlogging tolerance in plants.

  6. Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana.

    PubMed

    Guénin, Stéphanie; Mareck, Alain; Rayon, Catherine; Lamour, Romain; Assoumou Ndong, Yves; Domon, Jean-Marc; Sénéchal, Fabien; Fournet, Françoise; Jamet, Elisabeth; Canut, Hervé; Percoco, Giuseppe; Mouille, Grégory; Rolland, Aurélia; Rustérucci, Christine; Guerineau, François; Van Wuytswinkel, Olivier; Gillet, Françoise; Driouich, Azeddine; Lerouge, Patrice; Gutierrez, Laurent; Pelloux, Jérôme

    2011-10-01

    • Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. • We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. • Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.

  7. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    PubMed

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  8. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana

    PubMed Central

    Veloccia, A.; Fattorini, L.; Della Rovere, F.; Sofo, A.; D’Angeli, S.; Betti, C.; Falasca, G.; Altamura, M.M.

    2016-01-01

    Adventitious roots (ARs) are post-embryonic roots essential for plant survival and propagation. Indole-3-acetic acid (IAA) is the auxin that controls AR formation; however, its precursor indole-3-butyric acid (IBA) is known to enhance it. Ethylene affects many auxin-dependent processes by affecting IAA synthesis, transport and/or signaling, but its role in AR formation has not been elucidated. This research investigated the role of ethylene in AR formation in dark-grown Arabidopsis thaliana seedlings, and its interaction with IAA/IBA. A number of mutants/transgenic lines were exposed to various treatments, and mRNA in situ hybridizations were carried out and hormones were quantified In the wild-type, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 0.1 μM enhanced AR formation when combined with IBA (10 μM), but reduced it when applied alone; this effect did not occur in the ein3eil1 ethylene-insensitive mutant. ACC inhibited the expression of the IAA-biosynthetic genes WEI2, WEI7, and YUC6, but enhanced IBA-to-IAA conversion, as shown by the response of the ech2ibr10 mutant and an increase in the endogenous levels of IAA. The ethylene effect was independent of auxin-signaling by TIR1-AFB2 and IBA-efflux by ABCG carriers, but it was dependent on IAA-influx by AUX1/LAX3. Taken together, the results demonstrate that a crosstalk involving ethylene signaling, IAA-influx, and IBA-to-IAA conversion exists between ethylene and IAA in the control of AR formation. PMID:27831474

  9. Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots.

    PubMed

    Kung, Yi-Jung; Yu, Tsong-Ann; Huang, Chiung-Huei; Wang, Hui-Chin; Wang, Shin-Lan; Yeh, Shyi-Dong

    2010-08-01

    Papaya production is seriously limited by Papaya ringspot virus (PRSV) worldwide and Papaya leaf-distortion mosaic virus (PLDMV) in Eastern Asia. An efficient transformation method for developing papaya lines with transgenic resistance to these viruses and commercially desirable traits, such as hermaphroditism, is crucial to shorten the breeding program for this fruit crop. In this investigation, an untranslatable chimeric construct pYP08 containing truncated PRSV coat protein (CP) and PLDMV CP genes coupled with the 3' untranslational region of PLDMV, was generated. Root segments from different portions of adventitious roots of in vitro multiple shoots of hermaphroditic plants of papaya cultivars 'Tainung No. 2', 'Sunrise', and 'Thailand' were cultured on induction medium for regeneration into somatic embryos. The highest frequency of somatic embryogenesis was from the root-tip segments of adventitious roots developed 2-4 weeks after rooting in perlite medium. After proliferation, embryogenic tissues derived from somatic embryos were wounded in liquid-phase by carborundum and transformed by Agrobacterium carrying pYP08. Similarly, another construct pBG-PLDMVstop containing untranslatable CP gene of PLDMV was also transferred to 'Sunrise' and 'Thailand', the parental cultivars of 'Tainung No. 2'. Among 107 transgenic lines regenerated from 349 root-tip segments, nine lines of Tainung No. 2 carrying YP08 were highly resistant to PRSV and PLDMV, and 9 lines (8 'Sunrise' and 1 'Thailand') carrying PLDMV CP highly resistant to PLDMV, by a mechanism of post-transcriptional gene silencing. The hermaphroditic characteristics of the transgenic lines were confirmed by PCR with sex-linked primers and phenotypes of flower and fruit. Our approach has generated transgenic resistance to both PRSV and PLDMV with commercially desirable characters and can significantly shorten the time-consuming breeding programs for the generation of elite cultivars of papaya hybrids.

  10. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  11. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    PubMed

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  12. Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare).

    PubMed

    Kotula, Lukasz; Clode, Peta L; Striker, Gustavo G; Pedersen, Ole; Läuchli, André; Shabala, Sergey; Colmer, Timothy D

    2015-12-01

    Oxygen deficiency associated with soil waterlogging adversely impacts root respiration and nutrient acquisition. We investigated the effects of O2 deficiency and salinity (100 mM NaCl) on radial O2 concentrations and cell-specific ion distributions in adventitious roots of barley (Hordeum vulgare). Microelectrode profiling measured O2 concentrations across roots in aerated, aerated saline, stagnant or stagnant saline media. X-ray microanalysis at two positions behind the apex determined the cell-specific elemental concentrations of potassium (K), sodium (Na) and chloride (Cl) across roots. Severe O2 deficiency occurred in the stele and apical regions of roots in stagnant solutions. O2 deficiency in the stele reduced the concentrations of K, Na and Cl in the pericycle and xylem parenchyma cells at the subapical region. Near the root apex, Na declined across the cortex in roots from the aerated saline solution but was relatively high in all cell types in roots from the stagnant saline solution. Oxygen deficiency has a substantial impact on cellular ion concentrations in roots. Both pericycle and xylem parenchyma cells are involved in energy-dependent K loading into the xylem and in controlling radial Na and Cl transport. At root tips, accumulation of Na in the outer cell layers likely contributed to reduction of Na in inner cells of the tips.

  13. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress

    PubMed Central

    Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M.; Li, Chunlan

    2017-01-01

    Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2-) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC, leaf

  14. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress.

    PubMed

    Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M; Li, Chunlan

    2017-01-01

    Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2(-)) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC

  15. Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root

    PubMed Central

    Wang, Juan; Li, Jinxin; Li, Jianli; Liu, Shujie; Wu, Xiaolei; Li, Jing; Gao, Wenyuan

    2016-01-01

    Here, we combine elicitors and transcriptomics to investigate the inducible biosynthesis of the ginsenoside from the Panax quinquefolium. Treatment of P. quinquefolium adventitious root with methyl jasmonate (MJ) results in an increase in ginsenoside content (43.66 mg/g compared to 8.32 mg/g in control group). Therefore, we sequenced the transcriptome of native and MJ treated adventitious root in order to elucidate the key differentially expressed genes (DEGs) in the ginsenoside biosynthetic pathway. Through DEG analysis, we found that 5,759 unigenes were up-regulated and 6,389 unigenes down-regulated in response to MJ treatment. Several defense-related genes (48) were identified, participating in salicylic acid (SA), jasmonic acid (JA), nitric oxide (NO) and abscisic acid (ABA) signal pathway. Additionally, we mapped 72 unigenes to the ginsenoside biosynthetic pathway. Four cytochrome P450s (CYP450) were likely to catalyze hydroxylation at C-16 (c15743_g1, c39772_g1, c55422_g1) and C-30 (c52011_g1) of the triterpene backbone. UDP-xylose synthases (c52571_g3) was selected as the candidate, which was likely to involve in ginsenoside Rb3 biosynthesis. PMID:27876840

  16. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco

    PubMed Central

    Toscano-Morales, Roberto; Xoconostle-Cázares, Beatriz; Martínez-Navarro, Angélica Concepción; Ruiz-Medrano, Roberto

    2016-01-01

    The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since Arabidopsis AtTCTP1 can rescue a Drosophila mutant, and vice versa. It has become clear, however, that these proteins may have “taxon-specific” functions. In the case of plants, mRNA and/or proteins have been found in the phloem translocation stream of different species, suggesting a role in long-distance signaling. We have found that a second Arabidopsis TCTP gene, AtTCTP2, codes for a protein that moves long-distance through a graft union in tobacco. Interestingly, the mRNA is also transported long-distance. Both mRNA and protein move long-distance; interestingly, the movement, while more efficient from source to sink tissues, also occurs in the opposite direction. The protein reaches the nuclei of parenchyma cells and adventitious roots. Furthermore, it is clear that the long-distance delivery of AtTCTP2 protein and mRNA is required for the induction of adventitious roots. A model is presented that accounts for these observations. PMID:26237533

  17. Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust.

    PubMed

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings.

  18. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara1[OPEN

    PubMed Central

    Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  19. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner.

    PubMed

    Lin, Yuting; Zhang, Wei; Qi, Fang; Cui, Weiti; Xie, Yanjie; Shen, Wenbiao

    2014-01-15

    Hydrogen gas (H2) is an endogenous gaseous molecule in plants. Although its reputation is as a "biologically inert gas", recent results suggested that H2 has therapeutic antioxidant properties in animals and plays fundamental roles in plant responses to environmental stresses. However, whether H2 regulates root morphological patterns is largely unknown. In this report, hydrogen-rich water (HRW) was used to characterize H2 physiological roles and possible signaling transduction pathways in the promotion of adventitious root (AR) formation in cucumber explants. Our results showed that a 50% concentration of HRW was able to mimic the effect of hemin, an inducer of a carbon monoxide (CO) synthetic enzyme, and heme oxygenase-1 (HO-1), in restoring AR formation in comparison with the inhibition effect conferred by auxin-depletion treatment alone. It was further shown that the inducible effect of HRW could be further blocked by the co-treatment with N-1-naphthylphtalamic acid (NPA; an auxin transport inhibitor). The HRW-induced response, at least partially, was HO-1-dependent. This conclusion was supported by the fact that the exposure of cucumber explants to HRW up-regulates cucumber HO-1 gene expression and its protein levels. HRW-mediated induction of representative target genes related to auxin signaling and AR formation, such as CsDNAJ-1, CsCDPK1/5, CsCDC6, CsAUX22B-like, and CsAUX22D-like, and thereafter AR formation (particularly in the AR length) was differentially sensitive to the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). Above blocking actions were clearly reversed by CO, further confirming that the above response was HO-1/CO-specific. However, the addition of a well-known antioxidant, ascorbic acid (AsA), failed to influence AR formation triggered by HRW, thus ruling out the involvement of redox homeostasis in this process. Together, these results indicated that HRW-induced adventitious rooting is, at least partially, correlated with the HO-1/CO

  20. The Cytokinin Type-B Response Regulator PtRR13 Is a Negative Regulator of Adventitious Root Development in Populus1[C][W][OA

    PubMed Central

    Ramírez-Carvajal, Gustavo A.; Morse, Alison M.; Dervinis, Christopher; Davis, John M.

    2009-01-01

    Adventitious root formation at the base of plant cuttings is an innate de novo organogenesis process that allows massive vegetative propagation of many economically and ecologically important species. The early molecular events following shoot excision are not well understood. Using whole-genome microarrays, we detected significant transcriptome remodeling during 48 h following shoot removal in Populus tremula × Populus alba softwood cuttings in the absence of exogenous auxin, with 27% and 36% of the gene models showing differential abundance between 0 and 6 h and between 6 and 24 h, respectively. During these two time intervals, gene networks involved in protein turnover, protein phosphorylation, molecular transport, and translation were among the most significantly regulated. Transgenic lines expressing a constitutively active form of the Populus type-B cytokinin response regulator PtRR13 (ΔDDKPtRR13) have a delayed rooting phenotype and cause misregulation of CONTINUOUS VASCULAR RING1, a negative regulator of vascularization; PLEIOTROPIC DRUG RESISTANCE TRANSPORTER9, an auxin efflux transporter; and two APETALA2/ETHYLENE RESPONSE FACTOR genes with sequence similarity to TINY. Inappropriate cytokinin action via ΔDDKPtRR13 expression appeared to disrupt adventitious root development 24 h after shoot excision, when root founder cells are hypothesized to be sensitive to the negative effects of cytokinin. Our results are consistent with PtRR13 acting downstream of cytokinin to repress adventitious root formation in intact plants, and that reduced cytokinin signaling after shoot excision enables coordinated expression of ethylene, auxin, and vascularization pathways leading to adventitious root development. PMID:19395410

  1. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    PubMed

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation.

  2. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  3. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  4. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.

  5. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    PubMed

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  6. Promoting Roles of Melatonin in Adventitious Root Development of Solanum lycopersicum L. by Regulating Auxin and Nitric Oxide Signaling

    PubMed Central

    Wen, Dan; Gong, Biao; Sun, Shasha; Liu, Shiqi; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2016-01-01

    Melatonin (MT) plays integral roles in regulating several biological processes including plant growth, seed germination, flowering, senescence, and stress responses. This study investigated the effects of MT on adventitious root formation (ARF) of de-rooted tomato seedlings. Exogenous MT positively or negatively influenced ARF, which was dependent on the concentration of MT application. In the present experiment, 50 μM MT showed the best effect on inducing ARF. Interestingly, exogenous MT promoted the accumulation of endogenous nitric oxide (NO) by down-regulating the expression of S-nitrosoglutathione reductase (GSNOR). To determine the interaction of MT and NO in ARF, MT synthesis inhibitor p-chlorophenylalanine, NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt as well as GSNOR-overexpression plants with low NO levels were used. The function of MT was removed by NO scavenger or GSNOR-overexpression plants. However, application of MT synthesis inhibitor did little to abolish the function of NO. These results indicate that NO, as a downstream signal, was involved in the MT-induced ARF. Concentrations of indole-3-acetic acid and indole-3-butyric acid, as well as the expression of several genes related to the auxin signaling pathway (PIN1, PIN3, PIN7, IAA19, and IAA24), showed that MT influenced auxin transport and signal transduction as well as auxin accumulation through the NO signaling pathway. Collectively, these strongly suggest that elevated NO levels resulting from inhibited GSNOR activity and auxin signaling were involved in the MT-induced ARF in tomato plants. This can be applied in basic research and breeding. PMID:27252731

  7. Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

    PubMed Central

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694

  8. Comparative Proteomic Analysis Provides Insight into the Key Proteins Involved in Cucumber (Cucumis sativus L.) Adventitious Root Emergence under Waterlogging Stress

    PubMed Central

    Xu, Xuewen; Ji, Jing; Ma, Xiaotian; Xu, Qiang; Qi, Xiaohua; Chen, Xuehao

    2016-01-01

    Waterlogging is a common abiotic stress in both natural and agricultural systems, and it primarily affects plant growth by the slow oxygen diffusion in water. To sustain root function in the hypoxic environment, a key adaptation for waterlogging tolerant plants is the formation of adventitious roots (ARs). We found that cucumber waterlogging tolerant line Zaoer-N seedlings adapt to waterlogging stress by developing a larger number of ARs in hypocotyls, while almost no AR is generated in sensitive line Pepino. To understand the molecular mechanisms underlying AR emergence, the iTRAQ-based quantitative proteomics approach was employed to map the proteomes of hypocotyls cells of the Zaoer-N and Pepino under control and waterlogging conditions. A total of 5508 proteins were identified and 146 were differentially regulated proteins (DRPs), of which 47 and 56 DRPs were specific to tolerant and sensitive line, respectively. In the waterlogged Zaoer-N hypocotyls, DRPs related to alcohol dehydrogenases (ADH), 1-aminocyclopropane-1-carboxylicacid oxidases, peroxidases, 60S ribosomal proteins, GSDL esterases/lipases, histone deacetylases, and histone H5 and were strongly overrepresented to manage the energy crisis, promote ethylene release, minimize oxidative damage, mobilize storage lipids, and stimulate cell division, differentiation and growth. The evaluations of ethylene production, ADH activity, pyruvate decarboxylase (PDC) activity and ethanol production were in good agreement with the proteomic results. qRT-PCR analysis of the corresponding 146 genes further confirmed the accuracy of the observed protein abundance. These findings shed light on the mechanisms underlying waterlogging triggered cucumber ARs emergence, and provided valuable information for the breeding of cucumber with enhanced tolerance to waterlogging. PMID:27790230

  9. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    PubMed

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-02-27

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype.

  10. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile–adult transition

    PubMed Central

    Díaz-Sala, Carmen

    2014-01-01

    Cellular plasticity refers, among others, to the capability of differentiated cells to switch the differentiation process and acquire new fates. One way by which plant cell plasticity is manifested is through de novo regeneration of organs from somatic differentiated cells in an ectopic location. However, switching the developmental program of adult cells prior to organ regeneration is difficult in many plant species, especially in forest tree species. In these species, a decline in the capacity to regenerate shoots, roots, or embryos from somatic differentiated cells is associated with tree age and maturation. The decline in the ability to form adventitious roots from stem cuttings is one of the most dramatic effects of maturation, and has been the subject of investigations on the basic nature of the process. Cell fate switches, both in plants and animals, are characterized by remarkable changes in the pattern of gene expression, as cells switch from the characteristic expression pattern of a somatic cell to a new one directing a new developmental pathway. Therefore, determining the way by which cells reset their gene expression pattern is crucial to understand cellular plasticity. The presence of specific cellular signaling pathways or tissue-specific factors underlying the establishment, maintenance, and redirection of gene expression patterns in the tissues involved in adventitious root formation could be crucial for cell fate switch and for the control of age-dependent cellular plasticity. PMID:25071793

  11. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    PubMed

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees.

  12. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Krikorian, A. D.

    1996-01-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  13. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions.

    PubMed

    Levine, H G; Krikorian, A D

    1996-04-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  14. Elicitation Approaches for Withanolide Production in Hairy Root Culture of Withania somnifera (L.) Dunal.

    PubMed

    Sivanandhan, Ganeshan; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2016-01-01

    Withania somnifera (L.) Dunal is a versatile medicinal plant extensively utilized for production of phytochemical drug preparations. The roots and whole plants are traditionally used in Ayurveda, Unani, and Siddha medicines, as well as in homeopathy. Several studies provide evidence for an array of pharmaceutical properties due to the presence of steroidal lactones named "withanolides." A number of research groups have focused their attention on the effects of biotic and abiotic elicitors on withanolide production using cultures of adventitious roots, cell suspensions, shoot suspensions, and hairy roots in large-scale bioreactor for producing withanolides. This chapter explains the detailed procedures for induction and establishment of hairy roots from leaf explants of W. somnifera, proliferation and multiplication of hairy root cultures, estimation of withanolide productivity upon elicitation with salicylic acid and methyl jasmonate, and quantification of major withanolides by HPLC. The protocol herein described could be implemented for large-scale cultivation of hairy root biomass to improve withanolide production.

  15. The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots

    PubMed Central

    Peres, Lázaro Eustáquio Pereira

    2012-01-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively. PMID:22915742

  16. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).

    PubMed

    Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio

    2012-09-01

    Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.

  17. Analysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independent Alterations of Expression Patterns.

    PubMed

    Abu-Abied, Mohamad; Mordehaev, Inna; Sunil Kumar, Gujulla B; Ophir, Ron; Wasteneys, Geoffrey O; Sadot, Einat

    2015-01-01

    Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and whether expression differences are dependent on MT organization itself. To examine AR formation when MTs are disturbed we used two mutants in the MT severing protein KATANIN. It was found that rate and number of AR primordium formed following IBA induction for three days was reduced in bot1-1 and bot1-7 plants. The reduced capacity to form ARs in bot1-1 was associated with altered expression of MAP-encoding genes along AR induction. While the expression of MAP65-4, MAP65-3, AURORA1, AURORA2 and TANGLED, increased in wild-type but not in bot1-1 plants, the expression of MAP65-8 and MDP25 decreased in wild type plants but not in the bot1-1 plant after two days of IBA-treatment. The expression of MOR1 was increased two days after AR induction in wild type and bot1-1 plants. To examine its expression specifically in AR primordium, MOR1 upstream regulatory sequence was isolated and cloned to regulate GFP. Expression of GFP was induced in the primary root tips and lateral roots, in the pericycle of the hypocotyls and in all stages of AR primordium formation. It is concluded that the expression of MAPs is regulated along AR induction and that reduction in KATANIN expression inhibits AR formation and indirectly influences the specific expression of some MAPs.

  18. Analysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independent Alterations of Expression Patterns

    PubMed Central

    Abu-Abied, Mohamad; Mordehaev, Inna; Sunil Kumar, Gujulla B; Ophir, Ron; Wasteneys, Geoffrey O.; Sadot, Einat

    2015-01-01

    Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and whether expression differences are dependent on MT organization itself. To examine AR formation when MTs are disturbed we used two mutants in the MT severing protein KATANIN. It was found that rate and number of AR primordium formed following IBA induction for three days was reduced in bot1-1 and bot1-7 plants. The reduced capacity to form ARs in bot1-1 was associated with altered expression of MAP-encoding genes along AR induction. While the expression of MAP65-4, MAP65-3, AURORA1, AURORA2 and TANGLED, increased in wild-type but not in bot1-1 plants, the expression of MAP65-8 and MDP25 decreased in wild type plants but not in the bot1-1 plant after two days of IBA-treatment. The expression of MOR1 was increased two days after AR induction in wild type and bot1-1 plants. To examine its expression specifically in AR primordium, MOR1 upstream regulatory sequence was isolated and cloned to regulate GFP. Expression of GFP was induced in the primary root tips and lateral roots, in the pericycle of the hypocotyls and in all stages of AR primordium formation. It is concluded that the expression of MAPs is regulated along AR induction and that reduction in KATANIN expression inhibits AR formation and indirectly influences the specific expression of some MAPs. PMID:26630265

  19. Rapid in vitro adventitious shoot propagation of Scopolia parviflora through rhizome cultures for enhanced production of tropane alkaloids.

    PubMed

    Kang, Y M; Min, J Y; Moon, H S; Karigar, C S; Prasad, D T; Lee, C H; Choi, M S

    2004-09-01

    A rapid micropropagation system for Scopolia parviflora Nakai (Solanaceae), a rare medicinal plant native to Korea, was established using rhizome cultures. Shoots that originated from adventitious shoots of the rhizome were multiplied when the rhizomes were cultured on half-strength B5 liquid medium supplemented with various growth regulators. Optimum shoot multiplication was observed in half-strength B5 medium containing 3% (w/v) sucrose and 5.77 microM gibberellic acid (GA(3)). Each rhizome gave rise to an average of 12 shoots. Shoot elongation and root induction from multiple shoots occurred on growth regulator-free half-strength B5 solid medium. Healthy plantlets were transferred to a peat moss:vermiculite mixture for acclimatization, which was successful. The concentrations of tropane alkaloids, hyoscyamine and scopolamine were determined in different tissues of native growing plants, in vitro-propagated plants and acclimatized plants by high-performance liquid chromatography. The analysis revealed that the levels of hyoscyamine and scopolamine were higher in in vitro-propagated plants than in the native growing plants. When the rhizome was cut into segments and transferred to optimal culture conditions for multiple shoot propagation, only 12 weeks were required to produce a mature plant. We conclude that in vitro propagation techniques through rhizome cultures provide an efficient and rapid method for shoot propagation of S. parviflora.

  20. [Effects of phytohormones on plant regeneration and production of flavonoids in transgenic Saussurea involucrata hairy roots].

    PubMed

    Qiao, Xianli; Jiang, Shuguang; Li, Xiaofeng; Li, Fengxia; Zhao, Dexiu

    2011-01-01

    We investigated the plant regeneration and production of flavonoids in three high-yield flavonoids transgenic Saussurea involucrata hairy roots C17, C27 and C46 by quantification of two phytohormones GA3 and IAA. The results showed that GA3 concentration at more than 1.0 mg/L could induce adventitious shoots in the hairy root lines. The highest shoot regeneration rate, about 82%, was obtained when the hairy roots C17 were cultured with 2.0 mg/L GA3. The results on HPLC and UV spectrophotometry showed that exogenous application of both GA3 and IAA increased the content of flavonoids in the hairy roots. The contents of flavonoids and apigenin in the hormone-treated hairy roots and regenerates were higher comparing with those in the untreated hairy roots and the regenerates. However, the content of flavonoids was not related to tissue weight, and was negatively related to the regeneration efficiency.

  1. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    PubMed

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments.

  2. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber.

    PubMed

    Lanteri, María Luciana; Pagnussat, Gabriela Carolina; Lamattina, Lorenzo

    2006-01-01

    A few years ago it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during adventitious root (AR) formation in cucumber (Cucumis sativus). More recently, a mitogen-activated protein kinase cascade was shown to be induced by IAA in a NO-dependent, but cGMP-independent, pathway. In the present study, the involvement of Ca2+ and the regulation of Ca2+-dependent protein kinase (CDPK) activity during IAA- and NO-induced AR formation was evaluated in cucumber explants. The effectiveness of several broad-spectrum Ca2+ channel inhibitors and Ca2+ chelators in affecting AR formation induced by IAA or NO was also examined. Results indicate that the explants response to IAA and NO depends on the availability of both intracellular and extracellular Ca2+ pools. Protein extracts from cucumber hypocotyls were assayed for CDPK activity by using histone IIIS or syntide 2 as substrates for in-gel or in vitro assays, respectively. The activity of a 50 kDa CDPK was detected after 1 d of either NO or IAA treatments and it extended up to the third day of treatment. This CDPK activity was affected in both extracts from NO- and IAA-treated explants in the presence of the specific NO-scavenger cPTIO, suggesting that NO is required for its maximal and sustained activity. The in-gel and the in vitro CDPK activity, as well as the NO- or IAA-induced AR formation, were inhibited by calmodulin antagonists. Furthermore, the induction of CDPK activity by NO and IAA was shown to be reliant on the activity of the enzyme guanylate cyclase.

  3. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.

  4. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings

    PubMed Central

    Nordström, Ann-Caroline; Jacobs, Fernando Alvarado; Eliasson, Lennart

    1991-01-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by 1H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  5. Systematic Evaluation of In Vitro and In Vivo Adventitious Virus Assays for the Detection of Viral Contamination of Cell Banks and Biological Products1

    PubMed Central

    Gombold, James; Karakasidis, Stephen; Niksa, Paula; Podczasy, John; Neumann, Kitti; Richardson, James; Sane, Nandini; Johnson-Leva, Renita; Randolph, Valerie; Sadoff, Jerald; Minor, Phillip; Schmidt, Alexander; Duncan, Paul; Sheets, Rebecca L.

    2015-01-01

    Viral vaccines and the cell substrates used to manufacture them are subjected to tests for adventitious agents, including viruses, which might contaminant them. Some of the compendial methods (in vivo and in vitro in cell culture) were established in the mid-20th century. These methods have not been subjected to current assay validation, as new methods would need to be. This study was undertaken to provide insight into the breadth (selectivity) and sensitivity (limit of detection) of the routine methods, two such validation parameters. Sixteen viral stocks were prepared and characterized. These stocks were tested in serial dilutions by the routine methods to establish which viruses were detected by which methods and above what limit of detection. Sixteen out of sixteen viruses were detected in vitro, though one (bovine viral diarrhea virus) required special conditions to detect and another (rubella virus) was detected with low sensitivity. Many were detected at levels below 1 TCID50 or PFU (titers were established on the production cell line in most cases). In contrast, in vivo, only 6/11 viruses were detected, and 4 of these were detected only at amounts one or more logs above 1 TCID50 or PFU. Only influenza virus and vesicular stomatitis virus were detected at lower amounts in vivo than in vitro. Given the call to reduce, refine, or replace (3 R's) the use of animals in product safety testing and the emergence of new technologies for the detection of viruses, a re-examination of the current adventitious virus testing strategies seems warranted. Suggested pathways forward are offered. PMID:24681273

  6. Hairy root cultures for secondary metabolites production.

    PubMed

    Pistelli, Laura; Giovannini, Annalisa; Ruffoni, Barbara; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    Hairy roots (HRs) are differentiated cultures of transformed roots generated by the infection of wounded higher plants with Agrobacterium rhizogenes. This pathogen causes the HR disease leading to the neoplastic growth of roots that are characterized by high growth rate in hormone free media and genetic stability. HRs produce the same phytochemicals pattern of the corresponding wild type organ. High stability and productivity features allow the exploitation of HRs as valuable biotechnological tool for the production of plant secondary metabolites. In addition, several elicitation methods can be used to further enhance their accumulation in both small and large scale production. However, in the latter case, cultivation in bioreactors should be still optimized. HRs can be also utilised as biological farm for the production of recombinant proteins, hence holding additional potential for industrial use. HR technology has been strongly improved by increased knowledge of molecular mechanisms underlying their development. The present review summarizes updated aspects of the hairy root induction, genetics and metabolite production.

  7. In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur.

    PubMed

    Simonetti, Giovanna; Tocci, Noemi; Valletta, Alessio; Brasili, Elisa; D'Auria, Felicia Diodata; Idoux, Alicia; Pasqua, Gabriella

    2016-01-01

    Xanthone-rich extracts from Hypericum perforatum root cultures grown in a Mist Bioreactor as antifungal agents against Malassezia furfur. Extracts of Hypericum perforatum roots grown in a bioreactor showed activity against planktonic cells and biofilm of Malassezia furfur. Dried biomass, obtained from roots grown under controlled conditions in a ROOTec mist bioreactor, has been extracted with solvents of increasing polarity (i.e. chloroform, ethyl acetate and methanol). The methanolic fraction was the richest in xanthones (2.86 ± 0.43 mg g(-1) DW) as revealed by HPLC. The minimal inhibitory concentration of the methanol extract against M. furfur planktonic cells was 16 μg mL(-1). The inhibition percentage of biofilm formation, at a concentration of 16 μg mL(-1), ranged from 14% to 39%. The results show that H. perforatum root extracts could be used as new antifungal agents in the treatment of Malassezia infections.

  8. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    PubMed

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  9. Establishment of Tripterygium wilfordii Hook. f. Hairy root culture and optimization of its culture conditions for the production of triptolide and wilforine.

    PubMed

    Zhu, Chuanshu; Miao, Guopeng; Guo, Jia; Huo, Yanbo; Zhang, Xing; Xie, Jiahua; Feng, Juntao

    2014-06-28

    In order to solve the shortage of natural Tripterygium wilfordii Hook. f. plant resource for the production of the important secondary metabolites triptolide and wilforine, hairy roots were induced from its root calli by Agrobacterium rhizogenes. Induced hairy roots not only could be maintained and grown well in hormone-free half-strength Murashige and Skoog medium but also could produce sufficient amounts of both triptolide and wilforine. Although hairy roots produced approximately 15% less triptolide than adventitious roots and 10% less wilforine than naturally grown roots, they could grow fast and could be a suitable system for producing both secondary metabolites compared with other tissues. Addition of 50 micrometer methyl jasmonate (MeJA) could slightly affect hairy root growth, but dramatically stimulated the production of both triptolide and wilforine, whereas 50 micrometer salicylic acid had no apparent effect on hairy root growth with slightly stimulatory effects on the production of both secondary metabolites. Addition of precursor nicotinic acid, isoleucine, or aspartic acid at the concentration of 500 micrometer had varying effects on hairy root growth, but none of them had stimulatory effects on triptolide production, and only the former two had slightly beneficial effects on wilforine production. The majority of triptolide produced was secreted into the medium, whereas most of the produced wilforine was retained inside of hairy roots. Our studies provide a promising way to produce triptolide and wilforine in T. wilfordii hairy root cultures combined with MeJA treatment.

  10. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  11. Hyperforin production in Hypericum perforatum root cultures.

    PubMed

    Gaid, Mariam; Haas, Paul; Beuerle, Till; Scholl, Stephan; Beerhues, Ludger

    2016-03-20

    Extracts of the medicinal plant Hypericum perforatum are used to treat depression and skin irritation. A major API is hyperforin, characterized by sensitivity to light, oxygen and temperature. Total synthesis of hyperforin is challenging and its content in field-grown plants is variable. We have established in vitro cultures of auxin-induced roots, which are capable of producing hyperforin, as indicated by HPLC-DAD and ESI-MS analyses. The extraction yield and the productivity upon use of petroleum ether after solvent screening were ∼5 mg/g DW and ∼50 mg/L culture after six weeks of cultivation. The root cultures also contained secohyperforin and lupulones, which were not yet detected in intact plants. In contrast, they lacked another class of typical H. perforatum constituents, hypericins, as indicated by the analysis of methanolic extracts. Hyperforins and lupulones were stabilized and enriched as dicyclohexylammonium salts. Upon up-scaling of biomass production and downstream processing, H. perforatum root cultures may provide an alternative platform for the preparation of medicinal extracts and the isolation of APIs.

  12. Gravistimulus Production in Roots of Corn

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1985-01-01

    Because of the similarities in structure of known growth regulators, specifically abscisic acid and xanthoxin, with portions of the violaxanthin molecule, it was suggested that these growth substances normally arise from the breakdown or turnover of carotenoid. The light-induced disappearance of violaxanthin occurs in a time frame coincident with an increase in the levels in cap tissue of substances with growth inhibitor properties. One of the ways by which light may regulate root development, including aspects of gravitropism, is through the production of inhibitory growth substances arising from the turnover of carotenoids.

  13. Root susceptibility and inoculum production from roots of Eastern United States oak species to Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about root susceptibility of eastern U.S. tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Sprouted acorns of Q. rubra, Q. palustrus, Q. coccinia, Q. alba, Q. michauxii and Q. prinus were exposed to motile zoos...

  14. Root traits contributing to plant productivity under drought

    PubMed Central

    Comas, Louise H.; Becker, Steven R.; Cruz, Von Mark V.; Byrne, Patrick F.; Dierig, David A.

    2013-01-01

    Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less “leaky” and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g., functional differences between fine and coarse roots) needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria) and rice (Oryza) show approaches to phenotyping of root traits and current understanding of root trait genetics for breeding

  15. Root traits contributing to plant productivity under drought.

    PubMed

    Comas, Louise H; Becker, Steven R; Cruz, Von Mark V; Byrne, Patrick F; Dierig, David A

    2013-11-05

    Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less "leaky" and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g., functional differences between fine and coarse roots) needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria) and rice (Oryza) show approaches to phenotyping of root traits and current understanding of root trait genetics for breeding.

  16. LTB4 activates pulmonary artery adventitial fibroblasts in pulmonary hypertension

    PubMed Central

    Jiang, Xinguo; Tamosiuniene, Rasa; Sung, Yon K.; Shuffle, Eric M.; Tu, Allen B.; Valenzuela, Antonia; Jiang, Shirley; Zamanian, Roham T.; Fiorentino, David F.; Voelkel, Norbert F.; Peters-Golden, Marc; Stenmark, Kurt R.; Chung, Lorinda; Rabinovitch, Marlene; Nicolls, Mark R.

    2015-01-01

    A recent study demonstrated a significant role for leukotriene B4 (LTB4) causing pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). LTB4 was found to directly injure luminal endothelial cells and promote growth of the smooth muscle cell layer of pulmonary arterioles. The purpose of the current study was to determine the effects of LTB4 on the pulmonary adventitial layer, largely composed of fibroblasts. Here, we demonstrate that LTB4 enhanced human pulmonary artery adventitial fibroblast (HPAAF) proliferation, migration and differentiation in a dose-dependent manner through its cognate G-protein coupled receptor, BLT1. LTB4 activated HPAAF by up-regulating p38 MAPK as well as Nox4 signaling pathways. In an autoimmune model of PH, inhibition of these pathways blocked perivascular inflammation, decreased Nox4 expression, reduced reactive oxygen species production, reversed arteriolar adventitial fibroblast activation and attenuated PH development. This study uncovers a novel mechanism by which LTB4 further promotes PAH pathogenesis, beyond its established effects on endothelial and smooth muscle cells, by activating adventitial fibroblasts. PMID:26558820

  17. Root traits contributing to plant productivity under drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geneticists and breeders are poised to breed plants with root traits that improve productivity under drought. However, they need a better understanding of root functional traits and how these traits are related to whole plant strategies to increase crop productivity under different drought conditio...

  18. Identification of coniferous fine roots to species using ribosomal PCR products of pooled root samples

    EPA Science Inventory

    Background/Question/Methods To inform an individual-based forest stand model emphasizing belowground competition, we explored the potential of using the relative abundances of ribosomal PCR products from pooled and milled roots, to allocate total root biomass to each of the thre...

  19. Adventitious agents and live viral vectored vaccines: Considerations for archiving samples of biological materials for retrospective analysis.

    PubMed

    Klug, Bettina; Robertson, James S; Condit, Richard C; Seligman, Stephen J; Laderoute, Marian P; Sheets, Rebecca; Williamson, Anna-Lise; Gurwith, Marc; Kochhar, Sonali; Chapman, Louisa; Carbery, Baevin; Mac, Lisa M; Chen, Robert T

    2016-12-12

    Vaccines are one of the most effective public health medicinal products with an excellent safety record. As vaccines are produced using biological materials, there is a need to safeguard against potential contamination with adventitious agents. Adventitious agents could be inadvertently introduced into a vaccine through starting materials used for production. Therefore, extensive testing has been recommended at specific stages of vaccine manufacture to demonstrate the absence of adventitious agents. Additionally, the incorporation of viral clearance steps in the manufacturing process can aid in reducing the risk of adventitious agent contamination. However, for live viral vaccines, aside from possible purification of the virus or vector, extensive adventitious agent clearance may not be feasible. In the event that an adventitious agent is detected in a vaccine, it is important to determine its origin, evaluate its potential for human infection and pathology, and discern which batches of vaccine may have been affected in order to take risk mitigation action. To achieve this, it is necessary to have archived samples of the vaccine and ancillary components, ideally from developmental through to current batches, as well as samples of the biological materials used in the manufacture of the vaccine, since these are the most likely sources of an adventitious agent. The need for formal guidance on such vaccine sample archiving has been recognized but not fulfilled. We summarize in this paper several prior major cases of vaccine contamination with adventitious agents and provide points for consideration on sample archiving of live recombinant viral vector vaccines for use in humans.

  20. Acid protease production in fungal root endophytes.

    PubMed

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates.

  1. Transformation of Saussurea medusa for hairy roots and jaceosidin production.

    PubMed

    Zhao, Dexiu; Fu, Chunxiang; Chen, Yaqiong; Ma, Fengshan

    2004-12-01

    Axenically grown Saussurea medusa plantlets were inoculated with four Agrobacterium rhizogenes strains, and hairy root lines were established with A. rhizogenes strain R1601 in N6 medium. PCR and Southern hybridization confirmed integration of the T-DNA fragment of the Ri plasmid from A. rhizogenes into the genome of S. medusa hairy roots. In N6 medium, maximum biomass of the hairy root cultures was achieved [8 g (dry weight) per liter; growth ratio 35-fold] after 21 days of culture. The amount of jaceosidin extracted from the hairy root cultures was 46 mg/l (production ratio of 37-fold) after 27 days of culture. The maximum jaceosidin content obtained using N6 medium was higher than that obtained with Modified White, MS or B5 medium. In N6 medium, the tip segments were more efficient for hairy root growth and jaceosidin production than the middle and basal regions of the root.

  2. Seasonal patterns of root production in grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant phenology has important implications for plant resource use, carbon fluxes, and interactions with other organisms. Although aboveground phenology has been well studied, the timing of root growth is not well understood, and controls on the timing of growth unclear. We used minirhizotrons to exa...

  3. Genetic improvement for root growth angle to enhance crop production

    PubMed Central

    Uga, Yusaku; Kitomi, Yuka; Ishikawa, Satoru; Yano, Masahiro

    2015-01-01

    The root system is an essential organ for taking up water and nutrients and anchoring shoots to the ground. On the other hand, the root system has rarely been regarded as breeding target, possibly because it is more laborious and time-consuming to evaluate roots (which require excavation) in a large number of plants than aboveground tissues. The root growth angle (RGA), which determines the direction of root elongation in the soil, affects the area in which roots capture water and nutrients. In this review, we describe the significance of RGA as a potential trait to improve crop production, and the physiological and molecular mechanisms that regulate RGA. We discuss the prospects for breeding to improve RGA based on current knowledge of quantitative trait loci for RGA in rice. PMID:26069440

  4. Regulatory expectations of validation/qualification of adventitious virus assays.

    PubMed

    Baylis, S A; Blümel, J

    2010-01-01

    The European Union (EU) guideline concerning the virus safety evaluation of biotechnological investigational medicinal products (CPMP/BWP/398498/2005) recently came into force. In the guideline it is stated that analytical procedures supporting the qualification of cell banking systems, starting materials, as well as testing of unprocessed bulks for the presence of adventitious viruses, should be supported by appropriate qualification/validation studies. The validation protocols should prospectively set claims for assay performance, which should be verified by the validation experiments and demonstrate that a particular procedure is suitable for its intended purpose. Assay parameters for adventitious virus testing are discussed, and examples of validation of qualitative and quantitative assays for the detection of blood-borne viruses in human plasma are considered.

  5. Root : shoot ratios, optimization and nitrogen productivity.

    PubMed

    Agren, Göran I; Franklin, Oskar

    2003-12-01

    Plants respond to nitrogen availability by changing their root : shoot ratios. One hypothesis used to explain this allocation is that plants optimize their behaviour by maximizing their relative growth rate. The consequences of this hypothesis were investigated by formulating two models for root : shoot allocation, with and without explicit inclusion of maintenance respiration. The models also took into account that relative growth rate is a linear function of plant nitrogen concentration. The model without respiration gave qualitatively reasonable results when predictions were compared with observed results from growth experiments with birch and tomato. The explicit inclusion of maintenance respiration improved considerably the agreement between prediction and observation, and for birch was within the experimental accuracy. Further improvements will require additional details in the description of respiratory processes and the nitrogen uptake function. Plants growing under extreme nutrient stress may also optimize their behaviour with respect to other variables in addition to relative growth rate.

  6. Hairy Root Induction in Helicteres isora L. and Production of Diosgenin in Hairy Roots.

    PubMed

    Kumar, Vinay; Desai, Dnyanada; Shriram, Varsha

    2014-04-01

    Mature seeds of Helicteres isora L. were collected from seven geographical locations of Maharashtra and Goa (India) and evaluated for diosgenin (a bioactive steroidal sapogenin of prime importance) extraction and quantification. Chemotypic variations were evidenced with diosgenin quantity ranging from 33 μg g(-1) seeds (Osmanabad forests) to 138 μg g(-1) (Khopoli region). Nodal and leaf explants from in vitro-raised seedlings were used for callus and Agrobacterium-mediated transformation, respectively. Compact, hard, whitish-green callus (2.65 g explant(-1)) was obtained on MS + 13.32 μM BAP + 2.32 μM Kin after 30 days of inoculation. Various parameters including types of explant and Agrobacterium strain, culture density, duration of infection and various medium compositions were optimized for hairy root production. A. rhizogenes strain ATCC-15834 successfully induced hairy roots from leaf explants (1 cm(2)) with 42 % efficiency. Transgenic status of the roots was confirmed by PCR using rolB and VirD specific primers. Hairy roots showed an ability to synthesize diosgenin. Diosgenin yield was increased ~8 times in hairy roots and ~5 times in callus than the seeds of wild plants. Enhanced diosgenin content was associated with proline accumulation in hairy roots. This is the first report on induction of hairy roots in H. isora.

  7. Estimation of fine-root production using rates of diameter-dependent root mortality, decomposition and thickening in forests.

    PubMed

    Van Do, Tran; Osawa, Akira; Sato, Tamotsu

    2016-04-01

    Current studies indicate that fine roots of different diameter classes show different rates of decomposition. This study developed a new method to estimate fine-root production by considering the difference in the production of fine roots of two size classes, fine roots thinner than 1 mm and those between 1 and 2 mm, and their corresponding rates of decomposition. A litter bag experiment was used to estimate the decomposition rates, while the sequential soil core technique was used to identify mass values of live roots and dead roots at a given period of observation. The continuous inflow method was applied to estimate the amount of root decomposition, mortality and production with a framework of two diameter classes of fine roots and for quantification of the amount of mass transfer from the thicker fine-root class to the coarser root category (>2 mm). The results indicated that the estimate of fine-root production was greater when two size classes of fine roots were distinguished. Using a framework of two size classes developed in this study resulted in 21.3% higher fine-root production than a method that did not recognize fine-root size classes or mass transfer to the category of coarse roots. In addition, using shorter collection intervals led to higher production estimates than longer intervals. The production estimate with a 1-month interval was 21.4% higher than that with a 6-month interval. We consider that the use of the sequential soil core technique with continuous inflow estimate method by differentiating size classes of fine roots is likely to minimize the underestimation of the parameters of fine-root dynamics by accounting for decomposition and mortality of fine roots more appropriately.

  8. Organic fertilization leads to increased peach root production and lifespan.

    PubMed

    Baldi, E; Toselli, M; Eissenstat, D M; Marangoni, B

    2010-11-01

    We evaluated the effects of mineral and organic fertilizers on peach root dynamics in the growing season from 2003 to 2006 in a nectarine (Prunus persica L.) orchard, planted in 2001 and located in the Po valley, northeastern Italy. Very few studies have conducted long-term investigations of root dynamics of fruit crops. Our main objective was to determine whether organic fertilizers affect root dynamics differently than mineral fertilizers. The experiment was a completely randomized block design with four replicates of three treatments: unfertilized, mineral fertilized and composted with municipal waste. Mineral fertilizers included P (100 kg ha(-1) year(-1)) and K (200 kg ha(-1) year(-1)) applied only at planting and N (70-130 kg ha(-1) year(-1)) split into two applications, one at 40 days after full bloom (60%) and the other in September (40%) each year. The compost fertilization represented a yearly rate of 10 metric tons (t) dry weight ha(-1), which approximates (in kg ha(-1) year(-1)) 240 N, 100 P and 200 K, split similarly to that described for the mineral fertilization of N. Both root growth and survival were evaluated at 20-day intervals during the growing season by the minirhizotron technique. Compost increased the production of new roots compared with the other treatments (P < 0.01). Roots were mainly produced at a depth of 41-80 cm and from March to May and in late summer. An analysis of covariance indicated no significant effect of soil nitrate on root production (P = 0.47). The root lifespan was longer in compost-treated trees than in mineral-fertilized or unfertilized trees (P < 0.01) and it was strongly affected by time of birth; roots born later in the summer lived longer than those born in the spring. Across years and treatments, the average root lifespan was positively correlated with soil nitrate (r = 0.60; P < 0.001). Variation in root lifespan with method of fertilization could be accounted for by variation in soil

  9. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb).

    PubMed

    Sarropoulou, Virginia N; Therios, Ioannis N; Dimassi-Theriou, Kortessa N

    2012-01-01

    The objectives of this study were to test the effects of melatonin (N-acetyl-5-methoxytryptamine), a natural compound of edible plants on the rooting of certain commercial sweet cherry rootstocks. Shoot tip explants from previous in vitro cultures of the cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and M × M 60 (P. avium × P. mahaleb) were included in the experiment. The effect of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) alone or in combination with melatonin was tested concerning their rooting potential. Seven concentrations of melatonin (0, 0.05, 0.1, 0.5, 1, 5, and 10 μM) alone or in combination with 5.71 μM of IAA or 4.92 μM of IBA were tested. For each rootstock, 21 treatments were included. The explants were grown in glass tubes containing 10 mL of substrate. The parameters measured include rooting percentage, number of roots per rooted explant, root length, and callus formation. The data presented in this study show that melatonin has a rooting promoting effect at a low concentration but a growth inhibitory effect at high concentrations. In the absence of auxin, 1 μM melatonin had auxinic response concerning the number and length of roots, but 10 μM melatonin was inhibitory to rooting in all the tested rootstocks. The final conclusion of this experiment is that exogenously applied melatonin acted as a rooting promoter and its action was similar to that of IAA.

  10. Variability in root production, phenology, and turnover rate among 12 temperate tree species.

    PubMed

    McCormack, M Luke; Adams, Thomas S; Smithwick, Erica A H; Eissenstat, David M

    2014-08-01

    The timing of fine root production and turnover strongly influences both the seasonal potential for soil resource acquisition among competing root systems and the plant fluxes of root carbon into soil pools. However, basic patterns and variability in the rates and timing or fine root production and turnover are generally unknown among perennial plants species. We address this shortfall using a heuristic model relating root phenology to turnover together with three years of minirhizotron observations of root dynamics in 12 temperate tree species grown in a common garden. We specifically investigated how the amount and the timing of root production differ among species and how they impact estimates of fine root turnover. Across the 12 species, there was wide variation in the timing of root production with some species producing a single root flush in early summer and others producing roots either more uniformly over the growing season or in multiple pulses. Additionally, the pattern and timing of root production appeared to be consistent across years for some species but varied in others. Root turnover rate was related to total root production (P < 0.001) as species with greater root production typically had faster root turnover rates. We also found that, within species, annual root production varied up to a threefold increase between years, which led to large interannual differences in turnover rate. Results from the heuristic model indicated that shifting the pattern or timing of root production can impact estimates of root turnover rates for root populations with life spans less than one year while estimates of root turnover rate for longer lived roots were unaffected by changes in root phenology. Overall, we suggest that more detailed observations of root phenology and production will improve fidelity of root turnover estimates. Future efforts should link patterns of root phenology and production with whole-plant life history traits and variation in annual and

  11. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3.

    PubMed

    Watanabe, Kohtaro; Takahashi, Hirokazu; Sato, Saori; Nishiuchi, Shunsaku; Omori, Fumie; Malik, Al Imran; Colmer, Timothy David; Mano, Yoshiro; Nakazono, Mikio

    2017-02-01

    A radial oxygen loss (ROL) barrier in roots of waterlogging-tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging-tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short-arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.

  12. In vitro regeneration of Salix nigra from adventitious shoots.

    PubMed

    Lyyra, Satu; Lima, Amparo; Merkle, Scott A

    2006-07-01

    Black willow (Salix nigra Marsh.) is the largest and only commercially important willow species in North America. It is a candidate for phytoremediation of polluted soils because it is fast-growing and thrives on floodplains throughout eastern USA. Our objective was to develop a protocol for the in vitro regeneration of black willow plants that could serve as target material for gene transformation. Unexpanded inflorescence explants were excised from dormant buds collected from three source trees and cultured on woody plant medium (WPM) supplemented with one of: (1) 0.1 mg l(-1) thidiazuron (TDZ); (2) 0.5 mg l(-1) 6-benzoaminopurine (BAP); or (3) 1 mg l(-1) BAP. All plant growth regulator (PGR) treatments induced direct adventitious bud formation from the genotypes. The percentage of explants producing buds ranged from 20 to 92%, depending on genotype and treatment. Although most of the TDZ-treated inflorescences produced buds, these buds failed to elongate into shoots. Buds on explants treated with BAP elongated into shoots that were easily rooted in vitro and further established in potting mix in high humidity. The PGR treatments significantly affected shoot regeneration frequency (P < 0.01). The highest shoot regeneration frequency (36%) was achieved with Genotype 3 cultured on 0.5 mg l(-1) BAP. Mean number of shoots per explant varied from one to five. The ability of black willow inflorescences to produce adventitious shoots makes them potential targets for Agrobacterium-mediated transformation with heavy-metal-resistant genes for phytoremediation.

  13. Using Hairy Roots for Production of Valuable Plant Secondary Metabolites.

    PubMed

    Tian, Li

    2015-01-01

    Plants synthesize a wide variety of natural products, which are traditionally termed secondary metabolites and, more recently, coined specialized metabolites. While these chemical compounds are employed by plants for interactions with their environment, humans have long since explored and exploited plant secondary metabolites for medicinal and practical uses. Due to the tissue-specific and low-abundance accumulation of these metabolites, alternative means of production in systems other than intact plants are sought after. To this end, hairy root culture presents an excellent platform for producing valuable secondary metabolites. This chapter will focus on several major groups of secondary metabolites that are manufactured by hairy roots established from different plant species. Additionally, the methods for preservations of hairy roots will also be reviewed.

  14. Microbial products trigger amino acid exudation from plant roots.

    PubMed

    Phillips, Donald A; Fox, Tama C; King, Maria D; Bhuvaneswari, T V; Teuber, Larry R

    2004-09-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 microm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 microm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from (15)N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant.

  15. Relationship between Indole-3-Acetic Acid Levels in Apple (Malus pumila Mill) Rootstocks Cultured in Vitro and Adventitious Root Formation in the Presence of Indole-3-Butyric Acid 1

    PubMed Central

    Alvarez, Rafael; Nissen, Scott J.; Sutter, Ellen G.

    1989-01-01

    In vitro rooting response and indole-3-acetic acid (IAA) levels were examined in two genetically related dwarfing apple (Malus pumila Mill) rootstocks. M.26 and M.9 were cultured in vitro using Linsmaier-Skoog medium supplemented with benzyladenine (BA), indole-3-butyric acid (IBA), and 1,3,5-trihydroxybenzoic acid (PG). Rooting response was tested in Lepoivre medium supplemented with IBA and PG. IBA concentrations of 12.0 and 4.0 micromolar induced the maximum rooting percentages for M.9 and M.26, respectively. At these concentrations rooting response was 100% for M.26 and 80% for M.9. Free and conjugated IAA levels were determined in M.26 and M.9 shoots prior to root inducing treatment by high performance liquid chromatography with fluorescence detection and validated by gas chromatography-mass spectrometry using 13[C6]IAA as internal standard. Basal sections of M.26 shoots contained 2.8 times more free IAA than similar tissue in M.9 (477.1 ± 6.5 versus 166.6 ± 6.7 nanograms per gram fresh weight), while free IAA levels in apical sections of M.26 and M.9 shoots were comparable (298.0 ± 4.4 versus 263.7 ± 9.3 nanograms per gram fresh weight). Conjugated IAA levels were significantly higher in M.9 than in M.26 indicating that a greater proportion of total IAA was present as a conjugate in M.9. These data suggest that differences between M.26 and M.9 rooting responses may be related to differences in free IAA levels in the shoot base. PMID:16666562

  16. Congenitally Blind Counselor, Adventitiously Blind Client.

    ERIC Educational Resources Information Center

    Roberts, A. H.

    1994-01-01

    A counselor blind from birth describes personal difficulties in fully understanding the experience of clients who are adventitiously blind. Congenitally blind counselors are urged to recognize that adaptive methods cannot compensate for the panoramic view of the environment provided by vision and that recently blinded individuals need to deal with…

  17. Branching Out in Roots: Uncovering Form, Function, and Regulation1

    PubMed Central

    Atkinson, Jonathan A.; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J.; Wells, Darren M.; Bennett, Malcolm J.

    2014-01-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  18. Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots

    SciTech Connect

    Lynch, Douglas J; Matamala-Paradeda, Roser; Iversen, Colleen M; Norby, Richard J; Gonzalez-Meler, Miguel A

    2013-01-01

    The relative use of new photosynthate compared to stored C for the production and maintenance of fine roots, and the rate of C turnover in heterogeneous fine-root populations, are poorly understood. We followed the relaxation of a 13C tracer in fine roots in a Liquidambar styraciflua plantation at the conclusion of a free-air CO2 enrichment experiment. Goals included quantifying the relative fractions of new photosynthate versus stored C used in root growth and root respiration, as well as the turnover rate of fine-root C fixed during [CO2] fumigation. New fine-root growth was largely from recent photosynthate, while nearly one-quarter of respired C was from a storage pool. Changes in the isotopic composition of the fine-root population over two full growing seasons indicated heterogeneous C pools; less than 10% of root C had a residence time < 3 months, while a majority of root C had a residence time > 2 years. Compared to a 1-pool model, a 2-pool model for C turnover in fine roots (with 5 and 0.37 yr-1 turnover times) doubles the fine-root contribution to forest NPP (9-13%) and supports the 50% root-to-soil transfer rate often used in models.

  19. Root traits contributing to plant productivity under drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ROOT TRAITS CONTRIBUTING TO PLANT PRODUCTIVITY UNDER DROUGHT L.H. Comas1, S.R. Becker2, V.M.V. Cruz3,4, P.F. Byrne2, D.A. Dierig3 1USDA-ARS, Water Management Research Unit, Fort Collins, CO, USA 2Colorado State University, Soil and Crop Sciences, Fort Collins, CO, USA 3USDA-ARS, National Center fo...

  20. Hairy roots as a vaccine production and delivery system.

    PubMed

    Skarjinskaia, Marina; Ruby, Karen; Araujo, Adriana; Taylor, Karina; Gopalasamy-Raju, Vengadesan; Musiychuk, Konstantin; Chichester, Jessica A; Palmer, Gene A; de la Rosa, Patricia; Mett, Vadim; Ugulava, Natalia; Streatfield, Stephen J; Yusibov, Vidadi

    2013-01-01

    Prevention of infectious diseases by vaccination is often limited because of the lack of safe, effective, and accessible vaccines. Traditional vaccines are expensive and require special conditions for storage, distribution, and administration. Plants have potential for large-scale production of a variety of inexpensive and highly effective recombinant proteins for biomedical and pharmaceutical applications, including subunit vaccines. There are several approaches for the production of vaccine antigens in plants, including transient expression systems based on Agrobacterium delivery of binary vectors or plant viral vectors, stable transgenic plants, and plant cell or tissue cultures. Axenic plant cultures maintained under defined physical and chemical conditions appear to be an attractive production platform when target proteins need to be synthesized in a fully controlled environment. Hairy root cultures meet the criteria for such a system. Hairy root cultures, generated from edible plants and producing target antigens, provide a potential approach for the development of vaccines for oral delivery. With this approach, there are no protein extraction and purification costs and the active biomolecule is protected by the plant cell wall during passage through the upper gastrointestinal tract. This allows for gradual release of antigen at mucosal surfaces in the gut. Lyophilized hairy root cultures expressing vaccine antigens can be stored at ambient temperature for extended periods of time, which should facilitate storage and distribution, ultimately allowing for large populations to be vaccinated.

  1. OPTIMIZING MINIRHIZOTRON SAMPLE FREQUENCY FOR ESTIMATING FINE ROOT PRODUCTION AND TURNOVER

    EPA Science Inventory

    The most frequent reason for using minirhizotrons in natural ecosystems is the determination of fine root production and turnover. Our objective is to determine the optimum sampling frequency for estimating fine root production and turnover using data from evergreen (Pseudotsuga ...

  2. Production and secretion of a heterologous protein by turnip hairy roots with superiority over tobacco hairy roots.

    PubMed

    Huet, Yoann; Ekouna, Jean-Pierre Ele; Caron, Aurore; Mezreb, Katiba; Boitel-Conti, Michèle; Guerineau, François

    2014-01-01

    A fully contained and efficient heterologous protein production system was designed using Brassica rapa rapa (turnip) hairy roots. Two expression cassettes containing a cauliflower mosaic virus (CaMV) 35S promoter with a duplicated enhancer region, an Arabidopsis thaliana sequence encoding a signal peptide and the CaMV polyadenylation signal were constructed. One cassette was used to express the green fluorescent protein (GFP)-encoding gene in hairy roots grown in flasks. A stable and fast-growing hairy root line secreted GFP at >120 mg/l culture medium. GFP represented 60 % of the total soluble proteins in the culture medium. Turnip hairy roots retained sustainable growth and stable GFP production over 3 years. These results were superior to those obtained using tobacco hairy roots.

  3. Topographic and soil influences on root productivity of three bioenergy cropping systems.

    PubMed

    Ontl, Todd A; Hofmockel, Kirsten S; Cambardella, Cynthia A; Schulte, Lisa A; Kolka, Randall K

    2013-08-01

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern agroecosystem. Using ingrowth cores to measure annual root production, we tested for the effects of topography and 11 soil characteristics on root productivity. Root production significantly differed among cropping systems. Switchgrass root productivity was lowest on the floodplain position, but root productivity of annual crops was not influenced by topography or soil properties. Greater switchgrass root production was associated with high percent sand, which explained 45% of the variation. Percent sand was correlated negatively with soil C and nitrogen and positively with bulk density, indicating this variable is a proxy for multiple important soil properties. Our results suggest that easily measured soil parameters can be used to improve model predictions of root productivity in bioenergy switchgrass, but the edaphic factors we measured were not useful for predicting root productivity in annual crops. These results can improve C cycling modeling efforts by revealing the influence of cropping system and soil properties on root productivity.

  4. Cystic adventitial disease of popliteal artery with significant stenosis

    PubMed Central

    Gupta, Ranjana; Mittal, Puneet; Gupta, Praveen; Jindal, Nancy

    2013-01-01

    Cystic adventitial disease of popliteal artery is a rare condition of unknown etiology which usually presents in middle-aged men. We present Doppler and computed tomography angiography findings in a case of cystic adventitial disease with significant obstruction of popliteal artery, with secondary narrowing of popliteal vein. PMID:24082480

  5. A global analysis of fine root production as affected by soil nitrogen and phosphorus.

    PubMed

    Yuan, Z Y; Chen, Han Y H

    2012-09-22

    Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg(-1). With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.

  6. Production of an allelopathic polyacetylene in hairy root cultures of goldenrod (Solidago altissima L.).

    PubMed

    Inoguchi, Masahiko; Ogawa, Satoshi; Furukawa, Sanae; Kondo, Hirokiyo

    2003-04-01

    Hairy roots of goldenrod (Solidago altissima L.) were induced by infecting axenic plants with Agrobacterium rhizogenes strain A4. Growth and allelopathic polyacetylene (cis-dehydromatricaria ester, cis-DME) production of two independent hairy root clones were examined in several culture media and light regimes. cis-DME contents in hairy roots were at the same level as those in normal roots. cis-DME production in root cultures was several-fold lower than that of native plants and greatly repressed by light.

  7. Nitrate reductase-mediated NO production enhances Cd accumulation in Panax notoginseng roots by affecting root cell wall properties.

    PubMed

    Kan, Qi; Wu, Wenwei; Yu, Wenqian; Zhang, Jiarong; Xu, Jin; Rengel, Zed; Chen, Limei; Cui, Xiuming; Chen, Qi

    2016-04-01

    Panax notoginseng (Burk) F. H. Chen is a traditional medicinal herb in China. However, the high capacity of its roots to accumulate cadmium (Cd) poses a potential risk to human health. Although there is some evidence for the involvement of nitric oxide (NO) in mediating Cd toxicity, the origin of Cd-induced NO and its function in plant responses to Cd remain unknown. In this study, we examined NO synthesis and its role in Cd accumulation in P. notoginseng roots. Cd-induced NO production was significantly decreased by application of the nitrate reductase inhibitor tungstate but not the nitric oxide synthase inhibitor L-NAME (N(G)-methyl-l-arginine acetate), indicating that nitrate reductase is the major contributor to Cd-induced NO production in P. notoginseng roots. Under conditions of Cd stress, sodium nitroprusside (SNP, an NO donor) increased Cd accumulation in root cell walls but decreased Cd translocation to the shoot. In contrast, the NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and tungstate both significantly decreased NO-increased Cd retention in root cell walls. The amounts of hemicellulose 1 and pectin, together with pectin methylesterase activity, were increased with the addition of SNP but were decreased by cPTIO and tungstate. Furthermore, increases or decreases in hemicellulose 1 and pectin contents as well as pectin methylesterase activity fit well with the increased or decreased retention of Cd in the cell walls of P. notoginseng roots. The results suggest that nitrate reductase-mediated NO production enhances Cd retention in P. notoginseng roots by modulating the properties of the cell wall.

  8. Adventitial vasa vasorum arteriosclerosis in abdominal aortic aneurysm.

    PubMed

    Tanaka, Hiroki; Zaima, Nobuhiro; Sasaki, Takeshi; Hayasaka, Takahiro; Goto-Inoue, Naoko; Onoue, Kenji; Ikegami, Koji; Morita, Yoshifumi; Yamamoto, Naoto; Mano, Yuuki; Sano, Masaki; Saito, Takaaki; Sato, Kohji; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2013-01-01

    Abdominal aortic aneurysm (AAA) is a common disease among elderly individuals. However, the precise pathophysiology of AAA remains unknown. In AAA, an intraluminal thrombus prevents luminal perfusion of oxygen, allowing only the adventitial vaso vasorum (VV) to deliver oxygen and nutrients to the aortic wall. In this study, we examined changes in the adventitial VV wall in AAA to clarify the histopathological mechanisms underlying AAA. We found marked intimal hyperplasia of the adventitial VV in the AAA sac; further, immunohistological studies revealed proliferation of smooth muscle cells, which caused luminal stenosis of the VV. We also found decreased HemeB signals in the aortic wall of the sac as compared with those in the aortic wall of the neck region in AAA. The stenosis of adventitial VV in the AAA sac and the malperfusion of the aortic wall observed in the present study are new aspects of AAA pathology that are expected to enhance our understanding of this disease.

  9. Adventitial inflammation and its interaction with intimal atherosclerotic lesions

    PubMed Central

    Akhavanpoor, Mohammadreza; Wangler, Susanne; Gleissner, Christian A.; Korosoglou, Grigorios; Katus, Hugo A.; Erbel, Christian

    2014-01-01

    The presence of adventitial inflammation in correlation with atherosclerotic lesions has been recognized for decades. In the last years, several studies have investigated the relevance and impact of adventitial inflammation on atherogenesis. In the abdominal aorta of elderly Apoe−/− mice, adventitial inflammatory structures were characterized as organized ectopic lymphoid tissue, and therefore termed adventitial tertiary lymphoid organs (ATLOs). These ATLOs possess similarities in development, structure and function to secondary lymphoid organs. A crosstalk between intimal atherosclerotic lesions and ATLOs has been suggested, and several studies could demonstrate a potential role for medial vascular smooth muscle cells in this process. We here review the development, phenotypic characteristics, and function of ATLOs in atherosclerosis. Furthermore, we discuss the possible role of medial vascular smooth muscle cells and their interaction between plaque and ATLOs. PMID:25152736

  10. Targeting the adventitial microenvironment in pulmonary hypertension: A potential approach to therapy that considers epigenetic change

    PubMed Central

    Stenmark, Kurt R.; Frid, Maria G.; Yeager, Michael; Li, Min; Riddle, Suzette; McKinsey, Timothy; El Kasmi, Karim C.

    2012-01-01

    Experimental data indicate that the adventitial compartment of blood vessels, in both the pulmonary and systemic circulations, like the connective tissue stroma in tissues throughout the body, is a critical regulator of vessel wall function in health and disease. It is clear that adventitial cells, and in particular the adventitial fibroblast, are activated early following vascular injury, and play essential roles in regulating vascular wall structure and function through production of chemokines, cytokines, growth factors, and reactive oxygen species (ROS). The recognition of the ability of these cells to generate and maintain inflammatory responses within the vessel wall provides insight into why vascular inflammatory responses, in certain situations, fail to resolve. It is also clear that the activated adventitial fibroblast plays an important role in regulating vasa vasorum growth, which can contribute to ongoing vascular remodeling by acting as a conduit for delivery of inflammatory and progenitor cells. These functions of the fibroblast clearly support the idea that targeting chemokine, cytokine, adhesion molecule, and growth factor production in activated fibroblasts could be helpful in abrogating vascular inflammatory responses and thus in ameliorating vascular disease. Further, the recent observations that fibroblasts in vascular and fibrotic diseases may maintain their activated state through epigenetic alterations in key inflammatory and pro-fibrotic genes suggests that current therapies used to treat pulmonary hypertension may not be sufficient to induce apoptosis or to inhibit key inflammatory signaling pathways in these fibroblasts. New therapies targeted at reversing changes in the acetylation or methylation status of key transcriptional networks may be needed. At present, therapies specifically targeting abnormalities of histone deacytelase (HDAC) activity in fibroblast-like cells appear to hold promise. PMID:22558514

  11. Detecting and quantifying the adventitious presence of transgenic seeds in safflower, Carthamus tinctorius L.

    PubMed

    Christianson, Jed; McPherson, Marc; Topinka, Deborah; Hall, Linda; Good, Allen G

    2008-07-23

    Safflower ( Carthamus tinctorius L.) is currently being developed as a platform for the production of novel proteins. Methods for detecting and quantifying transgenic safflower are needed to ensure seed quality and to monitor for its adventitious presence. We developed and compared three methods of assaying for transgenic safflower presence in conventional seedlots: field bioassays, enzyme-linked immunosorbent assays (ELISA), and quantitative polymerase chain reaction (Q-PCR). Limits for reliable quantification for both ELISA and Q-PCR are approximately 0.1%, although levels at least as low as 0.02% can be detected by Q-PCR. Levels of quantification for the field bioassay are limited only by space and resources available. Multiple sampling methods to detect and quantify transgenic safflower presence at levels lower than 0.1% were used on field collected samples from a pollen outcrossing experiment to quantify the adventitious presence of transgenic safflower. Taking into account the potential utility and relative advantages or disadvantages of each detection method, it is recommended that the initial testing for the adventitious presence of transgenic seed be carried out using an antibody-based test if available and that Q-PCR-based assays to quantify transgenic proportion be used when it is necessary to identify specific transgenic constructs or if antibody-based assays are not readily available.

  12. Hairy root culture optimization and resveratrol production from Vitis vinifera subsp. sylvesteris.

    PubMed

    Hosseini, Sayed Mehdi; Bahramnejad, Bahman; Douleti Baneh, Hamed; Emamifar, Aryo; Goodwin, Paul H

    2017-04-01

    Resveratrol is a polyphenolic compound produced in very low levels in grapes. To achieve high yield of resveratrol in wild grape, three Agrobacterium rhizogenes strains, Ar318, ArA4 and LBA9402, were used to induce hairy roots following infection of internodes, nodes or petioles of in vitro grown Vitis vinifera subsp. sylvesteris accessions W2 and W16, and cultivar Rasha. The effects of inoculation time, age of explants, bacterial concentration and co-cultivation times were examined on the efficiency of the production of hairy roots. Strains Ar318, ArA4 and LBA9402 all induced hairy roots in the tested genotypes, but the efficiency of ArA4 strain was higher than the other strains. The highest hairy root production was with using internodes as explants. The transformation of hairy roots lines was confirmed by PCR detection of rolB gene. Half Murashige and Skoog (MS) medium was better for biomass production compared with MS medium. HPLC analysis of resveratrol production in the hairy root cultures showed that all the genotypes produced higher amounts of resveratrol than control roots. The highest amount of resveratrol was produced from W16 internode cultures, which was 31-fold higher than that of control root. Furthermore, TLC analysis showed that treatments of hairy roots with sodium acetate and jasmonate elevated resveratrol levels both in hairy root tissue and excreted into the half MS medium. These results demonstrate that endogenous and exogenous factors can affect resveratrol production in hairy root culture of grape, and this strategy could be used to increase low resveratrol production in grapes.

  13. Aerenchyma Formation and Recovery from Hypoxia of the Flooded Root System of Nodulated Soybean

    PubMed Central

    THOMAS, A. L.; GUERREIRO, S. M. C.; SODEK, L.

    2005-01-01

    • Background and Aims Flooding results in hypoxia of the root system to which N2 fixation of nodulated roots can be especially sensitive. Morphological adaptions, such as aerenchyma formation, can facilitate the diffusion of oxygen to the hypoxic tissues. Using soybean, the aim of the study was to characterize the morphological response of the nodulated root system to flooding and obtain evidence for the recovery of N metabolism. • Methods Sections from submerged tissues were observed by light microscopy, while sap bleeding from the xylem was analysed for nitrogenous components. • Key Results Flooding resulted in the rapid formation of adventitious roots and aerenchyma between the stem (immediately above the water line), roots and nodules. In the submerged stem, taproot, lateral roots and adventitious roots, lysigenous aerenchyma arose initially in the cortex and was gradually substituted by secondary aerenchyma arising from cells derived from the pericycle. Nodules developed aerenchyma from cells originating in the phellogen but nodules situated at depths greater than 7–8 cm showed little or no aerenchyma formation. As a result of aerenchyma formation, porosity of the taproot increased substantially between the 4th and 7th days of flooding, coinciding with the recovery of certain nitrogenous products of N metabolism of roots and nodules transported in the xylem. Thus, on the first day of flooding there was a sharp decline in xylem ureides and glutamine (products of N2 fixation), together with a sharp rise in alanine (product of anaerobic metabolism). Between days 7 and 10, recovery of ureides and glutamine to near initial levels was recorded while recovery of alanine was partial. • Conclusions N metabolism of the nodulated soybean root system can recover at least partially during a prolonged period of flooding, a process associated with aerenchyma formation. PMID:16199486

  14. Hairy root culture for mass-production of high-value secondary metabolites.

    PubMed

    Srivastava, Smita; Srivastava, Ashok K

    2007-01-01

    Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.

  15. Habitat productivity influences root mass vertical distribution in grazed Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Rueda, Marta; Rebollo, Salvador; Rodríguez, Miguel Á.

    2010-07-01

    Herbivores are expected to influence grassland ecosystems by modifying root biomass and root spatial distribution of plant communities. Studies in perennial dominated grasslands suggest that grazing intensity and primary productivity may be strong determinants of the vertical distribution of subterranean biomass. However, no studies have addressed this question in annual dominated pastures. In this study we assess the effect of grazing and habitat productivity on the vertical distribution of root mass in an annual dominated Mediterranean pasture grazed by free-ranging sheep and wild rabbits. We evaluate the effects of grazing on total root mass and vertical root distribution (0-4, 4-8 and 8-12 cm depths) in two neighboring topographic sites (uplands and lowlands) with different productivity using a replicated fence experiment which excludes sheep and sheep plus rabbits. We found evidences that grazing affected root biomass and vertical distribution at lowlands (high productivity habitats), where places grazed by sheep plus rabbits exhibit more root mass and a higher concentration of it towards the soil surface than only rabbits and ungrazed places. In contrast, grazing did not affect root biomass and vertical distribution at uplands (low productivity habitats). We suggest that higher nitrogen and organic matter found in lowlands permit a plant adjustment for nitrogen acquisition by increasing biomass allocation to root production which would allow plant regrowth and the quick completion of the annual life cycle. Contrary, soil resources scarcity at uplands do not permit plants modify their root growth patterns in response to grazing. Our study emphasizes the importance of primary productivity in predicting grazing effect on belowground processes in Mediterranean environments dominated by annuals.

  16. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  17. Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips.

    PubMed

    Valentovicová, Katarína; Halusková, L'ubica; Huttová, Jana; Mistrík, Igor; Tamás, Ladislav

    2010-01-01

    The effect of Cd on NADPH-diaphorase activity and nitric oxide (NO) production was investigated in barley root tips. The Cd-induced increase of NADPH-diaphorase activity occurred at the elongation zone and increased further in the differentiation zone of barley root tips. This activity was associated primarily with the microsomal membrane fraction of crude extract. In situ analysis revealed that the diaphorase activity was localized in the metaxylem and metaphloem elements and to some cells of the pericycle and parenchyma of root tips. Cd-induced NO generation was observed in pericycle, parenchymatic stelar cells and companion cells of protophloem. The results suggest that the Cd-induced generation of NO functions in Cd toxicity through the ectopic and accelerated differentiation of root tips, causing the shortening of the root elongation zone and a subsequent reduction in root growth.

  18. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants

    PubMed Central

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-01

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity. PMID:26744061

  19. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  20. Production of Triterpenoid Sapogenins in Hairy Root Cultures of Silene vulgaris.

    PubMed

    Kim, Yeon Bok; Reed, Darwin W; Covello, Patrick S

    2015-11-01

    Silene vulgaris (Moench) Garcke (Caryophyllaceae) is widely distributed in North America and contains bioactive oleanane-type saponins. In order to investigate in vitro production of triterpenoid saponins, hairy root cultures of S. vulgaris were established by infecting leaf explants with five strains of Agrobacterium rhizogenes (LBA9402, R1000, A4, 13333, and 15834). The A. rhizogenes strain LBA9402 had an infection of 100% frequency and induced the most hairy roots per plant. Methyl jasmonate (MeJA)-induced changes in triterpenoid saponins in S. vulgaris hairy roots were analyzed. Accumulation of segetalic acid and gypsogenic acid after MeJA treatment was 5-and 2-fold higher, respectively, than that of control root. We suggest that hairy root cultures of S. vulgaris could be an important alternative approach to the production of saponins.

  1. Effect of gamma irradiation on microbiological, chemical and sensory characteristics of licorice root product

    NASA Astrophysics Data System (ADS)

    Al-Bachir, M.; Al-Adawi, M. A.; Al-Kaid, A.

    2004-03-01

    Licorice root products were irradiated at doses of 0, 5, 10, 15 and 20 kGy in a 60Co package irradiator. Irradiated and unirradiated samples were stored at room temperatures. Microbial population on product, chemical changes and sensory properties of produced solution of licorice root products were evaluated after 0 and 12 months of storage. The results indicated that gamma irradiation reduced the counts of microorganisms on licorice root products. D10 of total count and klebsiella spp. were about 1.4 and 0.7 kGy, respectively. The mineral ions (Na, Ca and K) concentration in solution produced from irradiated products were lower than non-irradiated ones. Glycyrrhezinic acid and maltose concentration in solution produced from irradiated products were higher than non-irradiated ones. Sensory evaluation indicated that no significant differences ( P<0.05) were found between solution produced from irradiated and unirradiated products in color, flavor, texture, or taste.

  2. Does species richness affect fine root biomass and production in young forest plantations?

    PubMed

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  3. Performance evaluation of the multiple root node approach to the Rete pattern matcher for production systems

    SciTech Connect

    Sohn, A.; Gaudiot, J.-L.

    1991-12-31

    Much effort has been expanded on special architectures and algorithms dedicated to efficient processing of the pattern matching step of production systems. In this paper, the authors investigate the possible improvement on the Rete pattern matcher for production systems. Inefficiencies in the Rete match algorithm have been identified, based on which they introduce a pattern matcher with multiple root nodes. A complete implementation of the multiple root node-based production system interpreter is presented to investigate its relative algorithmic behavior over the Rete-based Ops5 production system interpreter. Benchmark production system programs are executed (not simulated) on a sequential machine Sun 4/490 by using both interpreters and various experimental results are presented. Their investigation indicates that the multiple root node-based production system interpreter would give a maximum of up to 6-fold improvement over the Lisp implementation of the Rete-based Ops5 for the match step.

  4. In vitro Cultured Primary Roots Derived from Stem Segments of Cassava (Manihot esculenta) Can Behave Like Storage Organs

    PubMed Central

    Medina, Ricardo D.; Faloci, Mirta M.; Gonzalez, Ana M.; Mroginski, Luis A.

    2007-01-01

    Background and Aims Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Methods Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Key Results Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0·54 μm 1-naphthaleneacetic acid and 0·44 μm 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly

  5. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1986-01-01

    We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn (Zea mays L., B73 x Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 mM CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 micromole) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of 1-aminocyclopropane-1-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.

  6. [Fine root biomass and production of four vegetation types in Loess Plateau, China].

    PubMed

    Deng, Qiang; Li, Ting; Yuan, Zhi-You; Jiao, Feng

    2014-11-01

    Fine roots (≤ 2 mm) play a major role in biogeochemical cycling in ecosystems. By the methods of soil cores and ingrowth soil cores, we studied the biomass and annual production of fine roots in 0-40 cm soil layers of four main vegetation types, i. e. , Robinia pseudoacacia plantation, deciduous shrubs, abandoned grassland, and Artemisia desertorum community in Loess Plateau, China. The spatial patterns of fine root biomass and production were negatively associated with latitudes. The fine root biomass in the 0-40 cm soil layer was in the order of deciduous shrubs (220 g · m(-2)), R. pseudoacacia plantation (163 g · m(-2)), abandoned grassland (162 g · m(-2)) and A. desertorum community (79 g · m(-2)). The proportion of ≤ 1 mm fine root biomass (74.1%) in the 0-40 cm soil layer of abandoned grassland was significantly higher than those in the other three vegetation types. The fine root biomass of the four vegetation types was mainly distributed in the 0-10 cm soil layer and decreased with soil depth. The proportion of fine root biomass (44.1%) in the 0-10 cm soil layer of abandoned grassland was significantly higher than those in other three vegetation types. The fine root productions of four vegetation types were in the order of abandoned grassland (315 g · m(-2) · a(-1)) > deciduous shrubs (249 g · m(-2) a(-1)) > R. pseudoacacia plantation (219 g · m(-2) · a(-1)) > A. desertorum community (115 g · m(-2) · a(-1)), and mainly concentrated in the 0-10 cm top soil layer and decreased with the soil depth. The proportion of the annual production (40.4%) in the 0-10 cm soil layer was the highest in abandoned grassland. Fine roots of abandoned grassland turned over faster than those from the other three vegetation types.

  7. Production of anthraquinones, phenolic compounds and biological activities from hairy root cultures of Polygonum multiflorum Thunb.

    PubMed

    Thiruvengadam, Muthu; Praveen, Nagella; Kim, Eun-Hye; Kim, Seung-Hyun; Chung, Ill-Min

    2014-05-01

    Polygonum multiflorum Thunb. is a highly important medicinal plant producing anthraquinones (emodin and physcion) and phenolic compounds which has pharmaceutical use. In vitro seedling explants such as roots, internodals, nodals and leaves were inoculated with A. rhizogenes strain KCTC 2703. Transformed roots were induced from internodals and leaf explants. Six transgenic clones of hairy roots were established and confirmed by polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR) using rolC specific primers. Hairy roots cultured using MS liquid medium supplemented with 30 g/l sucrose showed highest accumulation of biomass (99.05 g/l FW [fresh weight] and 10.95 g/l DW [dry weight]) and highest production of anthraquinones content (emodin 211.32 μg/g DW and physcion 353.23 μg/g DW) were observed at 20 days. Nearly 9.5-fold increment of biomass was evident in suspension cultures at 20 days of culture and hairy root biomass produced in suspension cultures possessed 3.7- and 3.5-fold higher content of emodin and physcion, respectively, when compared with the untransformed control roots. MS basal liquid medium was superior for the growth of hairy roots and production of anthraquinones compared with other culture media evaluated (SH, B5 and N6), with MS-basal liquid medium supplemented with 30 g/l sucrose was optimal for secondary metabolite production. A total of 23 polyphenolic compounds were identified and quantified from P. multiflorum untransformed and hairy roots, which includes hydroxybenzoic acids, hydroxycinnamic acids, flavonols and other groups of phenolic compounds. The ultra-performance liquid chromatography (UPLC) analysis of the phenolic compounds profile revealed that pyrogallol, hesperidin, naringenin and formononetin were higher in hairy roots compared to untransformed roots. The total phenolics, flavonoids content, antioxidant and antimicrobial activity was high in hairy roots compared to untransformed roots. This is the first

  8. Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production.

    PubMed

    Zhang, Peng; Chen, Caifa; Shen, Yanhu; Ding, Tielin; Ma, Daifu; Hua, Zichun; Sun, Dongxu

    2013-01-01

    An energy-saving ethanol fermentation technology was developed using uncooked fresh sweet potato as raw material. A mutant strain of Aspergillus niger isolated from mildewed sweet potato was used to produce abundant raw starch saccharification enzymes for treating uncooked sweet potato storage roots. The viscosity of the fermentation paste of uncooked sweet potato roots was lower than that of the cooked roots. The ethanol fermentation was carried out by Zymomonas mobilis, and 14.4 g of ethanol (87.2% of the theoretical yield) was produced from 100g of fresh sweet potato storage roots. Based on this method, an energy-saving, high efficient and environment-friendly technology can be developed for large-scale production of fuel ethanol from sweet potato roots.

  9. Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor.

    PubMed

    Srivastava, Smita; Srivastava, A K

    2012-11-01

    Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0 mg/l IAA and 0.025 mg/l GA(3)), permeabilizing agent (0.5 % v/v DNBP), a biotic elicitor (1 % v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50 mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113 mg/l) was obtained on 25th day of the growth cycle with a biomass of 21 g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2 g/l with azadirachtin accumulation in the hairy roots of 6.4 mg/g (97.28 mg/l) could be achieved after 25 days of the batch cultivation period, which was ~27 and ~14 % less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89 mg/(l day) of azadirachtin was obtained in the bioreactor.

  10. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems

    USGS Publications Warehouse

    Park, B.B.; Yanai, R.D.; Fahey, T.J.; Bailey, S.W.; Siccama, T.G.; Shanley, J.B.; Cleavitt, N.L.

    2008-01-01

    Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha-1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y-1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha-1 y-1 for hardwood stands and from 0.9 to 2.3 Mg ha-1 y -1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems. ?? 2008 Springer Science+Business Media, LLC.

  11. Strigolactones fine-tune the root system.

    PubMed

    Rasmussen, Amanda; Depuydt, Stephen; Goormachtig, Sofie; Geelen, Danny

    2013-10-01

    Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.

  12. Enhancement of rutin production in Fagopyrum tataricum hairy root cultures with its endophytic fungal elicitors.

    PubMed

    Zhao, Jianglin; Xiang, Dabing; Peng, Lianxin; Zou, Liang; Wang, Yuehua; Zhao, Gang

    2014-01-01

    Tartary buckwheat (Fagopyrum tataricum) is a potentially important source of rutin, a natural bioactive flavonoid with antihyperglycemic, antioxidative, antihypertensive, and anti-inflammatory properties. This study examines the effects of endophytic fungi on rutin production in the hairy root cultures of F. tataricum. Without obvious changes in the appearance of the hairy roots, the exogenous fungal mycelia elicitors efficiently stimulated the hairy root growth and rutin biosynthesis, and the stimulation effect was mainly dependent on the mycelia elicitor species, as well as its treatment dose. Two endophytic fungal isolates Fat9 (Fusarium oxysporum) and Fat15 (Alternaria sp.) were screened as promising candidates for promoting F. tataricum hairy root growth and rutin production. With application of polysaccharide (PS) of endophyte Fat9 (200 mg/L), and PS of endophyte Fat15 (100 mg/L) to the hairy root cultures on day 25, the rutin yield was increased to 45.9 mg/L and 47.2 mg/L, respectively. That was about 3.1- to 3.2-fold in comparison with the control level of 14.6 mg/L. Moreover, the present study revealed that the accumulation of rutin resulted from the stimulation of the phenylpropanoid pathway by mycelia PS treatments. This may be an efficient strategy for enhancing rutin production in F. tataricum hairy root culture provided with its endophytic mycelia elicitors.

  13. Root contact responses and the positive relationship between intraspecific diversity and ecosystem productivity.

    PubMed

    Yang, Lixue; Callaway, Ragan M; Atwater, Daniel Z

    2015-05-19

    High species and functional group richness often has positive effects on ecosystem function including increasing productivity. Recently, intraspecific diversity has been found to have similar effects, but because traits vary far less within a species than among species we have a much poorer understanding of the mechanisms by which intraspecific diversity affects ecosystem function. We explored the potential for identity recognition among the roots of different Pseudoroegneria spicata accessions to contribute to previously demonstrated overyielding in plots with high intraspecific richness of this species relative to monocultures. First, we found that when plants from different populations were planted together in pots the total biomass yield was 30 % more than in pots with two plants from the same population. Second, we found that the elongation rates of roots of Pseudoroegneria plants decreased more after contact with roots from another plant from the same population than after contact with roots from a plant from a different population. These results suggest the possibility of some form of detection and avoidance mechanism among more closely related Pseudoroegneria plants. If decreased growth after contact results in reduced root overlap, and reduced root overlap corresponds with reduced growth and productivity, then variation in detection and avoidance among related and unrelated accessions may contribute to how ecotypic diversity in Pseudoroegneria increases productivity.

  14. Root contact responses and the positive relationship between intraspecific diversity and ecosystem productivity

    PubMed Central

    Yang, Lixue; Callaway, Ragan M.; Atwater, Daniel Z.

    2015-01-01

    High species and functional group richness often has positive effects on ecosystem function including increasing productivity. Recently, intraspecific diversity has been found to have similar effects, but because traits vary far less within a species than among species we have a much poorer understanding of the mechanisms by which intraspecific diversity affects ecosystem function. We explored the potential for identity recognition among the roots of different Pseudoroegneria spicata accessions to contribute to previously demonstrated overyielding in plots with high intraspecific richness of this species relative to monocultures. First, we found that when plants from different populations were planted together in pots the total biomass yield was 30 % more than in pots with two plants from the same population. Second, we found that the elongation rates of roots of Pseudoroegneria plants decreased more after contact with roots from another plant from the same population than after contact with roots from a plant from a different population. These results suggest the possibility of some form of detection and avoidance mechanism among more closely related Pseudoroegneria plants. If decreased growth after contact results in reduced root overlap, and reduced root overlap corresponds with reduced growth and productivity, then variation in detection and avoidance among related and unrelated accessions may contribute to how ecotypic diversity in Pseudoroegneria increases productivity. PMID:25990363

  15. Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of two-chemical elicitors, salicylic acid and methyl jasmonate, on the production of gossypol, 6-methoxy gossypol, and 6,6'-dimethoxy gossypol in Gossypium barbadense hairy roots was examined. Methyl jasmonate, but not salicylic acid, was found to increase the production of gossypol and ...

  16. Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid.

    PubMed

    Grzegorczyk, Izabela; Królicka, Aleksandra; Wysokińska, Halina

    2006-01-01

    Shoots of Salvia officinalis, a medicinally important plant, were infected with Agrobacterium rhizogenes strains ATCC 15834 and A4 which led to the induction of hairy roots in 57% and 37% of the explants, respectively. Seven lines of hairy roots were established in WP liquid medium under light and dark conditions. The transformed nature of the root lines was confirmed by polymerase chain reaction using rolB and rolC specific primers. Transformed root cultures of Salvia officinalis showed variations in biomass and rosmarinic acid production depending on the bacterial strain used for transformation and the root line analyzed. Both parameters (growth and rosmarinic acid content) of ATCC 15834-induced lines were significantly higher than the A4-induced lines. The maximum accumulation of rosmarinic acid (about 45 mg g(-1) of dry weight) was achieved by hairy root line 1 (HR-1) at the end of the culture period (45-50 days). The level was significantly higher than that found in untransformed root culture (19 mg g(-10 of dry wt).

  17. In vitro root induction of faba bean (Vicia faba L.).

    PubMed

    Ismail, Roba M; Elazab, Heba E M; Hussein, Gihan M H; Metry, Emad A

    2011-01-01

    A major challenge for regeneration of faba bean (Vicia faba L.) plants is the difficulty of in vitro root induction. In the present study, in vitro rooting and its architecture have been studied. Adventitious root formation was successfully induced from regenerated faba bean shoots of four Egyptian cultivars, i.e., Giza 461, Giza 40, Giza 834 and Giza 716 on hormone free MS medium supplemented with 5 mg/l silver nitrate. Among the four cultivars, Giza 461 and Giza 40 were recorded as the highest root formation response (75 % and 65) followed by cultivars Giza716 and Giza843 (20%, and 10%). Anatomical study proved that the produced roots are initiated as the adventitious lateral root (LR) with tri-arch xylem strands as compared with the penta-arch of the primary roots of the intact faba bean seedling. The obtained results overcome the root induction problem in faba bean.

  18. Root productivity of deciduous and evergreen species identified using a molecular approach

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.; Sternberg, L. O.

    2012-12-01

    identified visually were separated based on each species ' unique banding pattern of restriction fragments. Approximately 2,500 roots were identified using PCR-RFLP and approximately 1,500 more roots were identified visually. Identifying fine roots to species allows for species-level analysis of root productivity in this in situ study.

  19. Production and metabolic engineering of bioactive substances in plant hairy root culture.

    PubMed

    Zhou, Mei-Liang; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2011-05-01

    In the past three decades, hairy roots research for the production of valuable biological active substances has received a lot of attention. The addition of knowledge to enhance the yields of desired substances and the development of novel tools for biomass engineering offer new possibilities for large-scale cultivation of the plant hairy root. Hairy roots can also produce recombinant proteins through the transfer of Agrobacterium T-DNA into the plant genome, and thereby hold immense potential for the pharmaceutical industry. This review highlights some of the significant progress made in the past few years and outlines future prospects for exploiting the potential utility of hairy root cultures as "chemical factories" for producing bioactive substances.

  20. Infection of Cultured Thin Cell Layer Roots of Lycopersicon esculentum by Meloidogyne incognita.

    PubMed

    Radin, D N; Eisenback, J D

    1991-10-01

    A new aseptic culture system for studying interactions between tomato (Lycopersicon esculentum) and Meloidogyne incognita is described. Epidermal thin cell layer explants from peduncles of tomato produced up to 20 adventitious roots per culture in 4-9 days on Murashige &Scoog medium plus kinetin and indole acetic acid. Rooted cultures were transferred to Gamborg's B-5 medium and inoculated with infective second-stage juveniles. Gall formation was apparent 5 days after inoculation and egg production by mature females occurred within 25 days at 25 C in the susceptible genotypes Rutgers and Red Alert. Resistant genotypes LA655, LA656, and LA1022 exhibited a characteristic hypersensitive response. This system provides large numbers of cultured root tips for studies on the molecular basis of the host-parasite relationship.

  1. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L).

    PubMed

    Srinivasan, C; Liu, Zongrang; Scorza, Ralph

    2011-04-01

    Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.

  2. The root herbivore history of the soil affects the productivity of a grassland plant community and determines plant response to new root herbivore attack.

    PubMed

    Sonnemann, Ilja; Hempel, Stefan; Beutel, Maria; Hanauer, Nicola; Reidinger, Stefan; Wurst, Susanne

    2013-01-01

    Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known whether these root herbivore history effects (i) are detectable at the plant community level and/or (ii) also determine plant species and plant community responses to new root herbivore attack. The present greenhouse study determined root herbivore history effects of click beetle larvae (Elateridae, Coleoptera, genus Agriotes) in a model grassland plant community consisting of six common species (Achillea millefolium, Plantago lanceolata, Taraxacum officinale, Holcus lanatus, Poa pratensis, Trifolium repens). Root herbivore history effects were generated in a first phase of the experiment by growing the plant community in soil with or without Agriotes larvae, and investigated in a second phase by growing it again in the soils that were either Agriotes trained or not. The root herbivore history of the soil affected plant community productivity (but not composition), with communities growing in root herbivore trained soil producing more biomass than those growing in untrained soil. Additionally, it influenced the response of certain plant species to new root herbivore attack. Effects may partly be explained by herbivore-induced shifts in the community of arbuscular mycorrhizal fungi. The root herbivore history of the soil proved to be a stronger driver of plant growth on the community level than an actual root herbivore attack which did not affect plant community parameters. History effects have to be taken into account when predicting the impact of root herbivores on grasslands.

  3. The Root Herbivore History of the Soil Affects the Productivity of a Grassland Plant Community and Determines Plant Response to New Root Herbivore Attack

    PubMed Central

    Sonnemann, Ilja; Hempel, Stefan; Beutel, Maria; Hanauer, Nicola; Reidinger, Stefan; Wurst, Susanne

    2013-01-01

    Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known whether these root herbivore history effects (i) are detectable at the plant community level and/or (ii) also determine plant species and plant community responses to new root herbivore attack. The present greenhouse study determined root herbivore history effects of click beetle larvae (Elateridae, Coleoptera, genus Agriotes) in a model grassland plant community consisting of six common species (Achillea millefolium, Plantago lanceolata, Taraxacum officinale, Holcus lanatus, Poa pratensis, Trifolium repens). Root herbivore history effects were generated in a first phase of the experiment by growing the plant community in soil with or without Agriotes larvae, and investigated in a second phase by growing it again in the soils that were either Agriotes trained or not. The root herbivore history of the soil affected plant community productivity (but not composition), with communities growing in root herbivore trained soil producing more biomass than those growing in untrained soil. Additionally, it influenced the response of certain plant species to new root herbivore attack. Effects may partly be explained by herbivore-induced shifts in the community of arbuscular mycorrhizal fungi. The root herbivore history of the soil proved to be a stronger driver of plant growth on the community level than an actual root herbivore attack which did not affect plant community parameters. History effects have to be taken into account when predicting the impact of root herbivores on grasslands. PMID:23441201

  4. On the longevity of desert plants and the production of new fine roots

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Czimczik, C. I.; Bullock, S.; Xu, X.; Djuricin, S.

    2012-12-01

    There is evidence that some plants in arid regions can live for several hundreds of years suggesting a strong resilience to climate variability including drought events. Therefore, an important question is: Which are the physiological mechanisms of survival that are present in long-lived plants? Recent studies have shown that plants are able to store nonstructural carbon (NSC) for several years and then allocate them for production of new structures such as fine roots. We established an experiment to measure the radiocarbon age of new fine roots of desert plants between 150 and 400 years old. The study site was located at the Central Desert of Baja California, Mexico and included individuals of Brahea armata, Washingtonia robusta, and Pachycereus pringlei. Our results showed that on average all the plant species were able to use stored old carbon for production of new fine roots. These results suggest that NSC pools are important in determining belowground responses of long-lived desert plants.

  5. Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings.

    PubMed

    Roach, Thomas; Kranner, Ilse

    2011-10-15

    The seedling stage is arguably the most vulnerable phase in the plant life cycle, where the young establishing plant is extremely sensitive to environmental stresses such as drought. Here, the production of superoxide (O(2)(-)), a molecule involved in stress signaling, was measured in response to desiccation of Pisum sativum L. seedlings. Following desiccation that was sufficient to kill the radicle meristem, viability could be retained by seedlings that grew secondary roots. Upon rehydration, secondary roots formed in a region that had displayed intense extracellular O(2)(-)production on desiccation. Treating partially desiccated seedlings with hydrogen peroxide (H(2)O(2)) prevented viability loss. In summary, reactive oxygen species (ROS) appear to participate in the signaling required for secondary root formation following desiccation stress of P. sativum seedlings.

  6. Massively parallel sequencing, a new method for detecting adventitious agents.

    PubMed

    Onions, David; Kolman, John

    2010-05-01

    There has been an upsurge of interest in developing new veterinary and human vaccines and, in turn, this has involved the development of new mammalian and insect cell substrates. Excluding adventitious agents from these cells can be problematic, particularly for cells derived from species with limited virological investigation. Massively parallel sequencing is a powerful new method for the identification of viruses and other adventitious agents, without prior knowledge of the nature of the agent. We have developed methods using random priming to detect viruses in the supernatants from cell substrates or in virus seed stocks. Using these methods we have recently discovered a new parvovirus in bovine serum. When applied to sequencing the transcriptome, massively parallel sequencing can reveal latent or silent infections. Enormous amounts of data are developed in this process usually between 100 and 400 Mbp. Consequently, sophisticated bioinformatic algorithms are required to analyse and verify virus targets.

  7. Metabolic engineering of fatty alcohol production in transgenic hairy roots of Crambe abyssinica.

    PubMed

    Miklaszewska, Magdalena; Banaś, Antoni; Królicka, Aleksandra

    2016-12-12

    Biotechnological production of fatty alcohols, important raw materials in the chemical industry, has been receiving considerable attention in recent years. Fatty alcohols are formed by the reduction of fatty acyl-CoAs or fatty acyl-ACPs catalyzed by a fatty acyl reductase (FAR). In this study, we introduced genes encoding FARs from Arabidopsis thaliana (AtFAR5) and Simmondsia chinensis (ScFAR) into Crambe abyssinica hairy roots via Agrobacterium rhizogenes-mediated transformation. The efficiency of the transformation ranged between 30 and 45%. The fatty alcohols were only detected in the transgenic hairy root lines expressing ScFAR gene. In all tested lines stearyl alcohol (18:0-OH), arachidyl alcohol (20:0-OH), and behenyl alcohol (22:0-OH) were produced. The content of 18:0-OH varied from 1 to 3% of total fatty acids and fatty alcohols, while the amount of either 20:0-OH and 22:0-OH did not exceed 2%. The transgenic hairy root lines produced from 0.98 to 2.59 nmol of fatty alcohols per mg of dry weight. Very low activity of ScFAR was detected in the microsomal fractions isolated from the selected hairy root lines. To our knowledge, this is the first report on the fatty alcohol production in the hairy root cultures. Biotechnol. Bioeng. 2016;9999: 1-8. © 2016 Wiley Periodicals, Inc.

  8. ESTIMATES OF DOUGLAS-FIR FINE ROOT PRODUCTION AND MORTALITY FROM MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons were used to assess the influence of soil resources on fine root (diameter < 2 mm) production, mortality, and standing crop over a two-year period. Two study sites were located, along an elevational transect, in the Oregon Cascade Mountains in mature (> 100 years o...

  9. EFFECT OF SOIL N ON FINE ROOT PRODUCTION AND MORTALITY IN PSEUDOTSUGA MENZIESII

    EPA Science Inventory

    The influence of soil N level on fine (diameter < 2 mm) root standing crop, production and mortality was assessed over a three-year period using minirhizotron tubes. Study sites were located in the central Oregon Cascade mountains in mature stands (> 100 years old) of Pseudotsuga...

  10. Ethylene production and its effect on storage respiration rate in wounded and unwounded sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is produced by all seed plants and stimulates respiration in most plant tissues and organs. To understand how this plant hormone may affect postharvest sugarbeet root respiration, a series of experiments were conducted to determine (1) the rate of ethylene production in wounded and unwound...

  11. Adventitious Shoot Regeneration from Leaf Explant of Dwarf Hygro (Hygrophila polysperma (Roxb.) T. Anderson)

    PubMed Central

    Karataş, Mehmet; Aasim, Muhammad; Çınar, Ayşegül; Dogan, Muhammet

    2013-01-01

    Dwarf hygro (Hygrophila polysperma) is an ornamental aquatic plant that changes its leaf colours to pinkish in high light. It is listed as a medicinal plant in medicinal plant lists of Indian states of West Bengal and Karnataka. It is also used as a screening tool for toxicities and a bioindicator to detect and control algae. The study reported in vitro adventitious shoot regeneration from leaf explants cultured on MS medium containing 0.10–1.60 mg/L Kin/TDZ with or without 0.10 mg/L IBA and 500 mg/L Amoklavin to eradicate endogenic bacterial contamination. Direct adventitious shoot regeneration started within one week from both culture mediums followed by late callus induction which was more prominent on TDZ containing media compared to Kin containing media. Addition of 0.10 mg/L IBA with both Kin and TDZ increased shoot regeneration frequency, mean number of shoots per explant, and mean shoot length. Maximum number of 16.33 and 20.55 shoots per explant was obtained on MS medium containing 0.80 + 0.10 mg/L Kin-IBA and 0.10 + 0.10 mg/L TDZ-IBA, respectively. Regenerated shoots were rooted on MS medium containing 0.20–1.00 mg/L IBA followed by successfull acclimatization in aquariums. Regenerated plantlets were also tested in jars containing distilled water that showed the pH 6–9 for the best plant growth and development. PMID:23853539

  12. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  13. The SMAP Level 4 Surface and Root Zone Soil Moisture data assimilation product

    NASA Astrophysics Data System (ADS)

    Reichle, R. H.; De Lannoy, G. J. M.; Crow, W. T.; Kimball, J. S.; Koster, R. D.; Liu, Q.

    2014-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission is scheduled for launch in January 2015 and will provide L-band radar and radiometer observations that are sensitive to surface soil moisture (in the top few centimeters of the soil column). For several of the key applications targeted by SMAP, however, knowledge of root zone soil moisture (defined here nominally as soil moisture in the top 1 m of the soil column) is needed. The SMAP mission will therefore provide a value-added Level 4 Surface and Root Zone Soil Moisture (L4_SM) product with the two key objectives: (i) to provide estimates of root zone soil moisture based on SMAP observations, and (ii) to provide a global surface and root zone soil moisture product that is spatially and temporally complete. The L4_SM algorithm uses an ensemble Kalman filter (EnKF) to merge SMAP observations with soil moisture estimates from the NASA GEOS-5 Catchment land surface model. The model describes the vertical transfer of soil moisture between the surface and root zone reservoirs and will be driven with observation-based surface meteorological forcing data, including precipitation, on a global 9 km Earth-fixed grid. The presentation provides an overview of the SMAP L4_SM algorithm and pre-launch validation. Specifically, an L4_SM prototype product based on the assimilation of observations from the Soil Moisture and Ocean Salinity (SMOS) mission was validated using in situ measurements from SMAP core validation sites (densely instrumented watersheds) and from more than 100 single-profile sensors scattered across the United States. The validation results indicate that the prototype soil moisture product satisfies the formal RMSE requirement for the L4_SM product of 0.04 m3/m3 (after removal of the long-term mean bias). An examination of the observation-minus-forecast residuals from the L4_SM system suggests where the system could be improved further.

  14. Fine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2016-01-01

    Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016

  15. Fine root dynamics in lodgepole pine and white spruce stands along productivity gradients in reclaimed oil sands sites.

    PubMed

    Jamro, Ghulam Murtaza; Chang, Scott X; Naeth, M Anne; Duan, Min; House, Jason

    2015-10-01

    Open-pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re-establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (P < 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.

  16. A Large and Deep Root System Underlies High Nitrogen-Use Efficiency in Maize Production

    PubMed Central

    Yu, Peng; Li, Xuexian; White, Philip J.; Li, Chunjian

    2015-01-01

    Excessive N fertilization results in low N-use efficiency (NUE) without any yield benefits and can have profound, long-term environmental consequences including soil acidification, N leaching and increased production of greenhouse gases. Improving NUE in crop production has been a longstanding, worldwide challenge. A crucial strategy to improve NUE is to enhance N uptake by roots. Taking maize as a model crop, we have compared root dry weight (RDW), root/shoot biomass ratio (R/S), and NUE of maize grown in the field in China and in western countries using data from 106 studies published since 1959. Detailed analysis revealed that the differences in the RDW and R/S of maize at silking in China and the western countries were not derived from variations in climate, geography, and stress factors. Instead, NUE was positively correlated with R/S and RDW; R/S and NUE of maize varieties grown in western countries were significantly greater than those grown in China. We then testified this conclusion by conducting field trials with representative maize hybrids in China (ZD958 and XY335) and the US (P32D79). We found that US P32D79 had a better root architecture for increased N uptake and removed more mineral N than Chinese cultivars from the 0-60 cm soil profile. Reported data and our field results demonstrate that a large and deep root, with an appropriate architecture and higher stress tolerance (higher plant density, drought and N deficiency), underlies high NUE in maize production. We recommend breeding for these traits to reduce the N-fertilizer use and thus N-leaching in maize production and paying more attention to increase tolerance to stresses in China. PMID:25978356

  17. Root and shoot parts of strawberry: factories for production of functional human pro-insulin.

    PubMed

    Tavizi, Ashkan; Javaran, Mokhtar Jalali; Moieni, Ahmad; Mohammadi-Dehcheshmeh, Manijeh; Mohebodini, Mehdi; Ebrahimie, Esmaeil

    2015-05-01

    Diabetes, a disease caused by excessive blood sugar, is caused by the lack of insulin. For commercial production, insulin is made in bacteria or yeast by protein recombinant technology. The focus of this research is evaluating another resource and producing of recombinant insulin protein in as strawberry as this plant has high potential in production of pharmaceutical proteins. Strawberry is a suitable bioreactor for production of recombinant proteins especially edible vaccines. In this research, human pro-insulin gene was cloned in pCAMBIA1304 vector under CaMV35S promoter and NOS terminator. Agrobacterium tumefaciens LBA4404, AGL1, EHA105, EHA101, C58, C58 (pGV2260) and C58 (pGV3101) strains were used for transformation of pro-insulin gene into strawberry cv. Camarosa, Selva, Sarian Hybrid, Pajaro, Paros, Gaviota, Alpine. Additionally, Agrobacterium rhizogenes K599, R1000, A4 and MSU440 strains were utilized for gene transformation into hairy roots. PCR analysis indicated the presence of transformed human pro-insulin gene in the strawberry and hairy roots. Also, its transcription was confirmed using RT-PCR. Furthermore, the analysis of plants, fruits and hairy roots at the level of proteins using dot blot, ELISA, SDS-PAGE and ECL tests re-confirmed the expression of this protein in the transgenic plants as well as hairy roots. Protein purification of human pro-insulin from transgenic tissues was performed using affinity chromatography. Finally, the bioassay of recombinant pro-insulin was performed. The analysis of second generations of transgenic plants (T1) at DNA and protein levels was also performed as a complementary experiment. This study opens a new avenue in molecular farming of human pro-insulin through its mass production in roots and shoots of strawberry.

  18. Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production

    PubMed Central

    2011-01-01

    Background The therapeutic and health promoting role of highly unsaturated fatty acids (HUFAs) from fish, i.e. eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are well known. These same benefits may however be shared by some of their precursors, the polyunsaturated fatty acids (PUFAs), such as stearidonic acid (SDA, 18:4 n-3). In order to obtain alternative sources for the large-scale production of PUFAs, new searches are being conducted focusing on higher plants oils which can contain these n-3 and n-6 C18 precursors, i.e. SDA and GLA (18:3n-6, γ-linolenic acid). Results The establishment of the novel Echium acanthocarpum hairy root cultures represents a powerful tool in order to research the accumulation and metabolism of fatty acids (FAs) in a plant particularly rich in GLA and SDA. Furthermore, this study constitutes the first example of a Boraginaceae species hairy root induction and establishment for FA studies and production. The dominant PUFAs, 18:2n-6 (LA, linoleic acid) and 18:3n-6 (GLA), accounted for about 50% of total FAs obtained, while the n-3 PUFAs, 18:3n-3 (ALA, α-linolenic acid) and 18:4n-3 (SDA), represented approximately 5% of the total. Production of FAs did not parallel hairy root growth, and the optimal productivity was always associated with the highest biomass density during the culture period. Assuming a compromise between FA production and hairy root biomass, it was determined that sampling times 4 and 5 gave the most useful FA yields. Total lipid amounts were in general comparable between the different hairy root lines (29.75 and 60.95 mg/g DW), with the major lipid classes being triacylglycerols. The FAs were chiefly stored in the hairy roots with very minute amounts being released into the liquid nutrient medium. Conclusions The novel results presented here show the utility and high potential of E. acanthocarpum hairy roots. They are capable of biosynthesizing and accumulating a large range of

  19. 9-methoxycanthin-6-one production in elicited hairy roots culture of Eurycoma longifolia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nazirah; Ismail, Ismanizan; Hassan, Nor Hasnida; Basherudin, Norlia

    2016-11-01

    Eurycoma longifolia (Tongkat Ali) is a highly sought after medicinal plant in Malaysia. Propagation of E. longifolia through tissue culture has been reported in order to cater the industry demands for planting and raw materials as well as for conservation purposes. E. longifolia hairy roots culture has been developed using Agrobacterium rhizogenes for the production of Tongkat Ali phytochemicals. Effects of three elicitors; methyl jasmonate, salicylic acid, and yeast extract at different concentrations were evaluated on the production of 9-methoxycanthin-6-one in E. longifolia hairy roots. The cultures were elicited at early exponential growth phase, followed by extraction of 9-methoxycanthin-6-one using methanol and HPLC analysis. Elicitation with methyl jasmonate at all concentrations increased 9-methoxycanthin-6-one up to 1-3 fold and treatment with (0.1 mM) was most efficient in enhancing 9-methoxycanthin-6-one production up to 3.902 mg/g dry weight after 7 days (168 hours) elicitation.

  20. Production of chlorogenic acid and its derivatives in hairy root cultures of Stevia rebaudiana.

    PubMed

    Fu, Xiao; Yin, Zhong-Ping; Chen, Ji-Guang; Shangguan, Xin-Chen; Wang, Xiaoqiang; Zhang, Qing-Feng; Peng, Da-Yong

    2015-01-14

    Chlorogenic acid and its derivatives (CADs) are valuable bioactive plant secondary metabolites with many health benefits. In the present study, Stevia rebaudiana hairy root cultures were established, and the culture conditions for the production of CADs were optimized. The hairy roots were induced by coculture of S. rebaudiana leaves and Agrobacterium rhizogenes (C58C1) after infection, which were further verified by PCR detection of rolB and rolC genes. HPLC-MS and HPLC analysis showed that chlorogenic acid (3-caffeoylquinic acid, 3-CQA), 3,5-dicaffeoylquinic acid (3,5-CQA), and 4,5-dicaffeoylquinic acid (4,5-CQA) were the major CADs in the hairy roots. Eight single roots with rapid growth rate were selected. Among them, T3 had the highest yield of CADs. B5 medium supplemented with 40 g/L sucrose was more suitable for the production of CADs than others. Under optimal culture conditions, the total content of these three compounds reached 105.58 mg/g and total yield was 234.40 mg/100 mL.

  1. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  2. Enhanced Lignin Monomer Production Caused by Cinnamic Acid and Its Hydroxylated Derivatives Inhibits Soybean Root Growth

    PubMed Central

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth. PMID:24312480

  3. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  4. Micropropagation of Salvia wagneriana Polak and hairy root cultures with rosmarinic acid production.

    PubMed

    Ruffoni, Barbara; Bertoli, Alessandra; Pistelli, Laura; Pistelli, Luisa

    2016-01-04

    Salvia wagneriana Polak is a tropical species native to Central America, well adapted to grow in the Mediterranean basin for garden decoration. Micropropagation has been assessed from axillary shoots of adult plants using a Murashige and Skoog basal medium, with the addition of 1.33-μM 6-benzylaminopurine for shoot proliferation; the subsequent rooting phase occurred in plant growth regulator-free medium. The plants were successfully acclimatised with high survival frequency. Hairy roots were induced after co-cultivation of leaf lamina and petiole fragments with Agrobacterium rhizogenes and confirmed by PCR. The establishment and proliferation of the selected HRD3 line were obtained in hormone-free liquid medium and the production of rosmarinic acid (RA) was evaluated after elicitation. The analysis of RA was performed by LC-ESI-DAD-MS in the hydroalcoholic extracts. The addition of casein hydrolysate increased the RA production, whereas no enrichment was observed after the elicitation with jasmonic acid.

  5. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  6. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.

    PubMed

    Srivastava, Smita; Srivastava, Ashok K

    2013-11-01

    Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l(-1)dry weight and azadirachtin yield of 3.2 mg g(-1) leading to a volumetric productivity of azadirachtin as 1.14 mg l(-1) day(-1). The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).

  7. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata.

  8. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    PubMed

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress.

  9. Hypoperfusion of the Adventitial Vasa Vasorum Develops an Abdominal Aortic Aneurysm.

    PubMed

    Tanaka, Hiroki; Zaima, Nobuhiro; Sasaki, Takeshi; Sano, Masaki; Yamamoto, Naoto; Saito, Takaaki; Inuzuka, Kazunori; Hayasaka, Takahiro; Goto-Inoue, Naoko; Sugiura, Yuki; Sato, Kohji; Kugo, Hirona; Moriyama, Tatsuya; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2015-01-01

    The aortic wall is perfused by the adventitial vasa vasorum (VV). Tissue hypoxia has previously been observed as a manifestation of enlarged abdominal aortic aneurysms (AAAs). We sought to determine whether hypoperfusion of the adventitial VV could develop AAAs. We created a novel animal model of adventitial VV hypoperfusion with a combination of a polyurethane catheter insertion and a suture ligation of the infrarenal abdominal aorta in rats. VV hypoperfusion caused tissue hypoxia and developed infrarenal AAA, which had similar morphological and pathological characteristics to human AAA. In human AAA tissue, the adventitial VV were stenotic in both small AAAs (30-49 mm in diameter) and in large AAAs (> 50 mm in diameter), with the sac tissue in these AAAs being ischemic and hypoxic. These results indicate that hypoperfusion of adventitial VV has critical effects on the development of infrarenal AAA.

  10. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    PubMed

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  11. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia

    USGS Publications Warehouse

    Cormier, Nicole; Twilley, Robert R.; Ewel, Katherine C.; Krauss, Ken W.

    2015-01-01

    Belowground biomass is thought to account for much of the total biomass in mangrove forests and may be related to soil fertility. The Yela River and the Sapwalap River, Federated States of Micronesia, contain a natural soil resource gradient defined by total phosphorus (P) density ranging from 0.05 to 0.42 mg cm−3 in different hydrogeomorphic settings. We used this fertility gradient to test the hypothesis that edaphic conditions constrain mangrove productivity through differential allocation of biomass to belowground roots. We removed sequential cores and implanted root ingrowth bags to measure in situ biomass and productivity, respectively. Belowground root biomass values ranged among sites from 0.448 ± 0.096 to 2.641 ± 0.534 kg m−2. Root productivity (roots ≤20 mm) did not vary significantly along the gradient (P = 0.3355) or with P fertilization after 6 months (P = 0.2968). Fine root productivity (roots ≤2 mm), however, did vary significantly among sites (P = 0.0363) and ranged from 45.88 ± 21.37 to 118.66 ± 38.05 g m−2 year−1. The distribution of total standing root biomass and fine root productivity followed patterns of N:P ratios as hypothesized, with larger root mass generally associated with lower relative P concentrations. Many of the processes of nutrient acquisition reported from nutrient-limited mangrove forests may also occur in forests of greater biomass and productivity when growing along soil nutrient gradients.

  12. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production.

    PubMed

    Wielanek, Marzena; Królicka, Aleksandra; Bergier, Katarzyna; Gajewska, Ewa; Skłodowska, Maria

    2009-06-01

    Hairy roots of Nasturtium officinale, Barbarea verna and Arabis caucasica with active glucosinolate-myrosinase system were obtained after transformation with Agrobacterium rhizogenes. Hairy roots of N. officinale produced phenylalanine-derived gluconasturtiin and glucotropaeolin (max. 24 and 7 mg g(-1) DW). B. verna and A. caucasica hairy roots produced gluconasturtiin (max. 41 mg g(-1) DW) and methionine-derived glucoiberverin (max. 32 mg g(-1) DW), respectively. Treatment of the roots with amino acid precursors of glucosinolate or/and cysteine biosynthesis increased levels of glucosinolate production, combinations of phenylalanine with cysteine (for gluconasturtiin and glucotropaeolin) and methionine with o-acetylserine (for glucoiberverin) were the most effective.

  13. Quantitative risk assessment relating to adventitious presence of allergens in food: a probabilistic model applied to peanut in chocolate.

    PubMed

    Rimbaud, Loup; Heraud, Fanny; La Vieille, Sébastien; Leblanc, Jean-Charles; Crepet, Amélie

    2010-01-01

    Peanut allergy is a public health concern, owing to the high prevalence in France and the severity of the reactions. Despite peanut-containing product avoidance diets, a risk may exist due to the adventitious presence of peanut allergens in a wide range of food products. Peanut is not mentioned in their ingredients list, but precautionary labeling is often present. A method of quantifying the risk of allergic reactions following the consumption of such products is developed, taking the example of peanut in chocolate tablets. The occurrence of adventitious peanut proteins in chocolate and the dose-response relationship are estimated with a Bayesian approach using available published data. The consumption pattern is described by the French individual consumption survey INCA2. Risk simulations are performed using second-order Monte Carlo simulations, which separately propagates variability and uncertainty of the model input variables. Peanut allergens occur in approximately 36% of the chocolates, leading to a mean exposure level of 0.2 mg of peanut proteins per eating occasion. The estimated risk of reaction averages 0.57% per eating occasion for peanut-allergic adults. The 95% values of the risk stand between 0 and 3.61%, which illustrates the risk variability. The uncertainty, represented by the 95% credible intervals, is concentrated around these risk estimates. Children have similar results. The conclusion is that adventitious peanut allergens induce a risk of reaction for a part of the French peanut-allergic population. The method developed can be generalized to assess the risk due to the consumption of every foodstuff potentially contaminated by allergens.

  14. Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis.

    PubMed

    Singh, R S; Bhermi, H K

    2008-10-01

    Root tubers of Asparagus officinalis were used as a source of raw inulin for the production of exoinulinase (EC 3.2.1.7) from Kluyveromyces marxianus YS-1. Root extract prepared at 10kg/cm2 pressure for 10min showed maximum inulinase production. Medium components and process parameters were standardized to improve the enzyme production. Inulinase yield of 40.2IU/mL in a medium containing raw inulin (3.5%), beef extract (2%), SDS (0.001%), Mn2+ (2.0mM), Mg2+ (1.5mM), Co2+ (2mM) and pH 6.5 has been obtained under agitation (150rpm) after 60h of incubation at 30 degrees C at shake flask level. After optimization, the enzyme production was 4.8 times more than the basal medium. To test the feasibility of raw inulin from A. officinalis for the production of inulinase, trials were also made in a bioreactor (1.5L). Inulinase activity of 50.2IU/mL was obtained from raw inulin (4.0%) under agitation (200rpm) and aeration (0.75vvm) at 30 degrees C after 60h of fermentation. Inulinase yield in bioreactor was almost six times higher than the basal medium used initially in shake flask.

  15. Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production.

    PubMed

    Ye, Xie-Feng; Xue, Yanfeng; Ling, Tianxiao; Wang, Yong; Yu, Xiao-Na; Cheng, Changxin; Feng, Guosheng; Hu, Liangbin; Shi, Zhiqi; Chen, Jian

    2016-12-24

    Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl₂ at 20 μM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 μM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd(2+) accumulation in roots. CA blocked the Cd-induced increase in the endogenous H₂S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H₂S scavenger hypotaurine (HT) or potent H₂S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H₂S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H₂S level with NaHS (H₂S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H₂S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H₂S in physiological modulations.

  16. Production of podophyllotoxin from roots and plantlets of Hyptis suaveolens cultivated in vitro

    PubMed Central

    Velóz, Rafael A.; Cardoso-Taketa, Alexandre; Villarreal, María Luisa

    2013-01-01

    Background: Hyptis suaveolens was an important source of food and medicines in pre-hispanic Mιxico and is actually used popularly to treat respiratory and skin diseases, fever, pain, and cramps, between other ailments. In 2008 the presence of podophyllotoxin (PTOX) was reported in this plant. Objective: To establish in vitro cultures of H. suaveolens able to produce PTOX. Materials and Methods: Explants of H. suaveolens were cultivated in Murashige and Skoog (MS) medium supplemented with different concentrations of the phytohormones 6-benzylaminopurine (6-BAP), 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (NAA) and kinetin (Kin), in order to induce the production of podophyllotoxin. Root cultures without hormones were also established and the quantification of PTOX was performed by HPLC analysis. Results: The presence of growth regulators during in vitro cultivation of H. suaveolens, provoked morphological variations in explants, and induced the accumulation of different levels of PTOX. Roots grown without phytohormones accumulated PTOX at 0.013% dry weight (DW), while in three of the callus cultures cell lines growing together with roots, PTOX accumulated at concentrations of 0.003, 0.005 and 0.006% DW when NAA was combined with either Kin or BAP. In wild plant material PTOX was present in trace amounts in the aerial parts, while in the roots it was found at 0.005% DW. Conclusion: This study demonstrated that although it is possible to obtain PTOX in a variety of in vitro cultures of H. suaveolens, in vitro roots grown without the addition of growth regulators were better producers of PTOX. PMID:23798883

  17. Effect of drought on fine roots productivity in poplar-based short rotation coppice

    NASA Astrophysics Data System (ADS)

    Mani Tripathi, Abhishek; Fischer, Milan; Berhongaray, Gonzalo; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    Short rotation woody crops (SRWC) are alternative source of bioenergy, which apart from their 'carbon neutrality' have potential to store carbon (C) into soil and mitigate the increasing CO2 emission. Studies of below ground biomass of trees are divided into two types according to root diameter - analysis of fine roots (less than 2 mm) and coarse roots (more than 2 mm). Trees roots are spatially highly heterogeneous and it requires large number of samples to obtain a representative estimate of belowground biomass. For this study we used hybrid poplar clone J-105 (Populus nigra x P. maximowiczii) grown under short rotation coppice system in the region of Bohemian-Moravian Highland (49o32'N, 16o15'E and altitude 530 m a.s.l.) since April 2000. The plantation with planting density of 9,216 trees ha-1 was established on the former agricultural land and the length of the rotation cycle was set to 6-8 years. While mean annual rainfall was 609 mm with mean annual temperature 7.2oC during 1981-2013 significant increase of temperature and more frequent droughts are expected. In 2011, we established drought experiment based on throughfall exclusion system, reducing up to 70 % of throughfall precipitation. Thus 2 treatments with normal and lowered soil moisture levels were introduced. In January and February 2014, we cored 18 places including drought and control using root bipartite auger. The main goal of the study is to assess the response of fine roots productivity and fine roots vertical distribution on the reduced soil water availability. Results will be presented at the conference. Acknowledgements: This study was funded by research project IGA Mendel University 2014 "Study of below ground biomass in short rotation poplar coppice (J-105) in the Czech-Moravian Highlands", project PASED (KONTAKT II LH12037 ʺDevelopment of models for the assessment of abiotic stresses in selected energy woody plantsʺ and "Building up a multidisciplinary scientific team focused on drought

  18. Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene.

    PubMed

    Cha, Mijeong; Shim, Sang Hee; Kim, Sung Hong; Kim, Ok Tae; Lee, Se-Weon; Kwon, Suk-Yoon; Baek, Kwang-Hyun

    2012-10-01

    Paclitaxel is produced by various species of yew trees and has been extensively used to treat tumors. In our research, a taxadiene synthase (TS) gene from Taxus brevifolia was used to transform the roots of cultured ginseng (Panax ginseng C.A. Meyer) to produce taxadiene, the unique skeletal precursor to taxol. The TS gene was successfully introduced into the ginseng genome, and the de novo formation of taxadiene was identified by mass spectroscopy profiling. Without any change in phenotypes or growth difference in a TS-transgenic ginseng line, the transgenic TSS3-2 line accumulated 9.1 μg taxadiene per gram of dry weight. In response to the treatment of methyl jasmonate for 3 or 6 days, the accumulation was 14.6 and 15.9 μg per g of dry weight, respectively. This is the first report of the production of taxadiene by engineering ginseng roots with a taxadiene synthase gene.

  19. The role of strigolactones in root development.

    PubMed

    Sun, Huwei; Tao, Jinyuan; Gu, Pengyuan; Xu, Guohua; Zhang, Yali

    2016-01-01

    Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions.

  20. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis

    PubMed Central

    de Rycke, Riet; Fernandez, Ana; Himschoot, Ellie; Van Breusegem, Frank; Périlleux, Claire

    2016-01-01

    Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation; however, their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatiotemporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH). We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying root tissues decelerates (or accelerates) the development and emergence of LRs. We conclude that RBOH-mediated ROS production facilitates LR outgrowth by promoting cell wall remodeling of overlying parental tissues. PMID:27402709

  1. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition.

    PubMed

    Molina-Montenegro, Marco A; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought.

  2. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition

    PubMed Central

    Molina-Montenegro, Marco A.; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought. PMID:27613875

  3. Genotype-Specific Variation in the Structure of Root Fungal Communities Is Related to Chickpea Plant Productivity

    PubMed Central

    Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2015-01-01

    Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques. PMID:25616789

  4. Carbon Dioxide Effects on Ethanol Production, Pyruvate Decarboxylase, and Alcohol Dehydrogenase Activities in Anaerobic Sweet Potato Roots 1

    PubMed Central

    Chang, Ling A.; Hammett, Larry K.; Pharr, David M.

    1983-01-01

    The effect of varied anaerobic atmospheres on the metabolism of sweet potato (Ipomoea batatas [L.] Lam.) roots was studied. The internal gas atmospheres of storage roots changed rapidly when the roots were submerged under water. O2 and N2 gases disappeared quickly and were replaced by CO2. There were no appreciable differences in gas composition among the four cultivars that were studied. Under different anaerobic conditions, ethanol concentration in the roots was highest in a CO2 environment, followed by submergence and a N2 environment in all the cultivars except one. A positive relationship was found between ethanol production and pyruvate decarboxylase activity from both 100% CO2-treated and 100% N2-treated roots. CO2 atmospheres also resulted in higher pyruvate decarboxylase activity than did N2 atmospheres. Concentrations of CO2 were higher within anaerobic roots than those in the ambient anaerobic atmosphere. The level of pyruvate decarboxylase and ethanol in anaerobic roots was proportional to the ambient CO2 concentration. The measurable activity of pyruvate decarboxylase that was present in the roots was about 100 times less than that of alcohol dehydrogenase. Considering these observations, it is suggested that the rate-limiting enzyme for ethanol biosynthesis in sweet potato storage roots under anoxia is likely to be pyruvate decarboxylase rather than alcohol dehydrogenase. PMID:16662798

  5. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system.

    PubMed

    Srivastava, Shivani; Conlan, Xavier A; Cahill, David M; Adholeya, Alok

    2016-11-01

    Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.

  6. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development

    PubMed Central

    Guevara-García, A. A.

    2014-01-01

    Mitogen-activated protein kinase (MAPKs) cascades are signal transduction modules highly conserved in all eukaryotes regulating various aspects of plant biology, including stress responses and developmental programmes. In this study, we characterized the role of MAPK 6 (MPK6) in Arabidopsis embryo development and in post-embryonic root system architecture. We found that the mpk6 mutation caused altered embryo development giving rise to three seed phenotypes that, post-germination, correlated with alterations in root architecture. In the smaller seed class, mutant seedlings failed to develop the primary root, possibly as a result of an earlier defect in the division of the hypophysis cell during embryo development, but they had the capacity to develop adventitious roots to complete their life cycle. In the larger class, the MPK6 loss of function did not cause any evident alteration in seed morphology, but the embryo and the mature seed were bigger than the wild type. Seedlings developed from these bigger seeds were characterized by a primary root longer than that of the wild type, accompanied by significantly increased lateral root initiation and more and longer root hairs. Apparently, the increment in primary root growth resulted from an enhanced cell production and cell elongation. Our data demonstrated that MPK6 plays an important role during embryo development and acts as a repressor of primary and lateral root development. PMID:24218326

  7. Venous cystic adventitial disease presenting as an enlarging groin mass.

    PubMed

    Scott, Mark F; Gavin, Timothy; Levin, Steven

    2014-02-01

    Venous cystic adventitial disease is an exceedingly rare vascular disorder, with 12 cases reported in the past decade. A 60-year-old woman presented with a painful, palpable groin mass without leg swelling. She was initially thought to have a nonreducible inguinal hernia. A computed tomography scan was obtained that revealed a cystic mass involving the right common femoral vein. Previous imaging revealed that the mass had enlarged over time. In the operating room, the cyst wall was excised without compromising vein integrity. The patient had an uneventful recovery and her pain resolved. We review the presentation, diagnosis, and treatment of this condition. We believe that the rapid evolution of this lesion suggests that an unknown inciting factor triggers its onset and growth.

  8. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  9. Search for the production of scalar bottom quarks in pp collisions at square root(s) = 1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-08-20

    We report on a search for direct scalar bottom quark (sbottom) pair production in pp collisions at square root(s) = 1.96 TeV, in events with large missing transverse energy and two jets of hadrons in the final state, where at least one of the jets is required to be identified as originating from a b quark. The study uses a collider detector at Fermilab Run II data sample corresponding to 2.65 fb(-1) of integrated luminosity. The data are in agreement with the standard model. In an R-parity conserving minimal supersymmetric scenario, and assuming that the sbottom decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits on the sbottom pair production cross section of 0.1 pb are obtained. For neutralino masses below 70 GeV/c2, sbottom masses up to 230 GeV/c2 are excluded at 95% confidence level.

  10. Root production, distribution, and turnover in conventional and organic northern highbush blueberry systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Northern highbush blueberry is a shallow-rooted crop with very fine, fibrous roots. Recently, we installed minirhizotrons (root observation tubes) in a conventional and an organic blueberry planting in western Oregon. We wanted to know exactly when and where new roots were being produced and determi...

  11. Root production, distribution, and turnover in conventional and organic northern highbush blueberry systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Northern highbush blueberry (Vaccinium corymbosum L.) is a shallow-rooted crop with very fine, fibrous roots. Recently, we installed minirhizotrons (root observation tubes) in a conventional and an organic blueberry planting in western Oregon. We wanted to know exactly when and where new roots were ...

  12. Adventitious Reinforcement of Maladaptive Stimulus Control Interferes with Learning.

    PubMed

    Saunders, Kathryn J; Hine, Kathleen; Hayashi, Yusuke; Williams, Dean C

    2016-09-01

    Persistent error patterns sometimes develop when teaching new discriminations. These patterns can be adventitiously reinforced, especially during long periods of chance-level responding (including baseline). Such behaviors can interfere with learning a new discrimination. They can also disrupt already learned discriminations, if they re-emerge during teaching procedures that generate errors. We present an example of this process. Our goal was to teach a boy with intellectual disabilities to touch one of two shapes on a computer screen (in technical terms, a simple simultaneous discrimination). We used a size-fading procedure. The correct stimulus was at full size, and the incorrect-stimulus size increased in increments of 10 %. Performance was nearly error free up to and including 60 % of full size. In a probe session with the incorrect stimulus at full size, however, accuracy plummeted. Also, a pattern of switching between choices, which apparently had been established in classroom instruction, re-emerged. The switching pattern interfered with already-learned discriminations. Despite having previously mastered a fading step with the incorrect stimulus up to 60 %, we were unable to maintain consistently high accuracy beyond 20 % of full size. We refined the teaching program such that fading was done in smaller steps (5 %), and decisions to "step back" to a smaller incorrect stimulus were made after every 5-instead of 20-trials. Errors were rare, switching behavior stopped, and he mastered the discrimination. This is a practical example of the importance of designing instruction that prevents adventitious reinforcement of maladaptive discriminated response patterns by reducing errors during acquisition.

  13. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses.

    PubMed

    Wilson, Gail W T; Hickman, Karen R; Williamson, Melinda M

    2012-07-01

    Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.

  14. Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2014-11-01

    Artemisinin is an important drug commonly used in the treatment of malaria as a combination therapy. It is primarily produced by a plant Artemisia annua, however, its supply from plant is significantly lower than its huge demand and therefore alternative in vitro production routes are sought. Hairy root cultivation could be one such alternative production protocol. Agrobacterium rhizogenes was used to induce hairy roots of A. annua. Statistical optimization of media was thereafter attempted to maximize the biomass/artemisinin production. The growth and product formation kinetics and the significant role of O2 in hairy root propagation were established in optimized media. Mass cultivation of hairy roots was, thereafter, attempted in a modified 3-L Stirred Tank Bioreactor (Applikon Dependable Instruments, The Netherlands) using optimized culture conditions. The reactor was suitably modified to obtain profuse growth of hairy roots by segregating and protecting the growing roots from the agitator rotation in the reactor using a perforated Teflon disk. It was possible to produce 18 g biomass L(-1) (on dry weight basis) and 4.63 mg L(-1) of artemisinin in 28 days, which increased to 10.33 mg L(-1) by the addition of elicitor methyl jasmonate.

  15. Modeling gene flow distribution within conventional fields and development of a simplified sampling method to quantify adventitious GM contents in maize

    PubMed Central

    Melé, Enric; Nadal, Anna; Messeguer, Joaquima; Melé-Messeguer, Marina; Palaudelmàs, Montserrat; Peñas, Gisela; Piferrer, Xavier; Capellades, Gemma; Serra, Joan; Pla, Maria

    2015-01-01

    Genetically modified (GM) crops have been commercially grown for two decades. GM maize is one of 3 species with the highest acreage and specific events. Many countries established a mandatory labeling of products containing GM material, with thresholds for adventitious presence, to support consumers’ freedom of choice. In consequence, coexistence systems need to be introduced to facilitate commercial culture of GM and non-GM crops in the same agricultural area. On modeling adventitious GM cross-pollination distribution within maize fields, we deduced a simple equation to estimate overall GM contents (%GM) of conventional fields, irrespective of its shape and size, and with no previous information on possible GM pollen donor fields. A sampling strategy was designed and experimentally validated in 19 agricultural fields. With 9 samples, %GM quantification requires just one analytical GM determination while identification of the pollen source needs 9 additional analyses. A decision support tool is provided. PMID:26596213

  16. Tricarboxylic Acid Cycle Activity Regulates Tomato Root Growth via Effects on Secondary Cell Wall Production1[W][OA

    PubMed Central

    van der Merwe, Margaretha J.; Osorio, Sonia; Araújo, Wagner L.; Balbo, Ilse; Nunes-Nesi, Adriano; Maximova, Eugenia; Carrari, Fernando; Bunik, Victoria I.; Persson, Staffan; Fernie, Alisdair R.

    2010-01-01

    Transgenic tomato (Solanum lycopersicum ‘Moneymaker’) plants independently expressing fragments of various genes encoding enzymes of the tricarboxylic acid cycle in antisense orientation have previously been characterized as exhibiting altered root growth. In this study, we evaluate the rates of respiration of roots from these lines in addition to determining their total dry weight accumulation. Given that these features were highly correlated, we decided to carry out an evaluation of the cell wall composition in the transformants that revealed a substantial reduction in cellulose. Since the bulk of cellulose is associated with the secondary cell walls in roots, we reasoned that the transformants most likely were deficient in secondary wall cellulose production. Consistent with these findings, cross-sections of the root collar (approximately 15 mm from the junction between root and stem) displayed reduced lignified secondary cell walls for the transformants. In contrast, cell and cell wall patterning displayed no differences in elongating cells close to the root tip. To further characterize the modified cell wall metabolism, we performed feeding experiments in which we incubated excised root tips in [U-14C]glucose in the presence or absence of phosphonate inhibitors of the reaction catalyzed by 2-oxoglutarate dehydrogenase. Taken together, the combined results suggest that restriction of root respiration leads to a deficit in secondary cell wall synthesis. These data are discussed in the context of current models of biomass partitioning and plant growth. PMID:20118274

  17. Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.).

    PubMed

    Swain, Swasti S; Rout, Kedar K; Chand, Pradeep K

    2012-10-01

    Independent transformed root somaclones (rhizoclones) of butterfly pea (Clitoria ternatea L.) were established using explant co-cultivation with Agrobacterium rhizogenes. Rhizoclones capable of sustained growth were maintained under low illumination in auxin-free agar-solidified MS medium through subcultures at periodic intervals. Integration of T(L)-DNA rolB gene in the transformed rhizoclone genome was verified by Southern blot hybridization, and the transcript expression of T(R)-DNA ags and man2 genes was ascertained by reverse transcription polymerase chain reaction analysis. The major compound isolated and purified from the transformed root extracts was identified as the pentacyclic triterpenoid compound taraxerol using IR, (1)H-NMR, and (13)C-NMR spectroscopy. The taraxerol yield in cultured hairy roots, as quantified by HPTLC analysis, was up to 4-fold on dry weight basis compared to that in natural roots. Scanning of bands from cultured transformed roots and natural roots gave super-imposable spectra with standard taraxerol, suggesting a remarkable homology in composition. To date, this is the first report claiming production of the cancer therapeutic phytochemical taraxerol in genetically transformed root cultures as a viable alternative to in vivo roots of naturally occurring plant species.

  18. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  19. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    SciTech Connect

    Xu Fang; Ji Jian; Li Li; Chen Rong; Hu Weicheng . E-mail: huweicheng@sdu.edu.cn

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.

  20. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    PubMed

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (P<0.05). In addition, catalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  1. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  2. Adventitial Nab-Rapamycin Injection Reduces Porcine Femoral Artery Luminal Stenosis Induced by Balloon Angioplasty via Inhibition of Medial Proliferation and Adventitial Inflammation

    PubMed Central

    Gasper, Warren J.; Jimenez, Cynthia A.; Walker, Joy; Conte, Michael S.; Seward, Kirk; Owens, Christopher D.

    2014-01-01

    Background Endovascular interventions on peripheral arteries are limited by high rates of restenosis. Our hypothesis was that adventitial injection of rapamycin nanoparticles would be safe and reduce luminal stenosis in a porcine femoral artery balloon angioplasty model. Methods and Results Eighteen juvenile male crossbred swine were included. Single-injury (40%–60% femoral artery balloon overstretch injury; n=2) and double-injury models (endothelial denudation injury 2 weeks before a 20%–30% overstretch injury; n=2) were compared. The double-injury model produced significantly more luminal stenosis at 28 days, P=0.002, and no difference in medial fibrosis or inflammation. Four pigs were randomized to the double-injury model and adventitial injection of saline (n=2) or 500 μg of nanoparticle albumin-bound rapamycin (nab-rapamycin; n=2) with an endovascular microinfusion catheter. There was 100% procedural success and no difference in endothelial regeneration. At 28 days, nab-rapamycin led to significant reductions in luminal stenosis, 17% (interquartile range, 12%–35%) versus 10% (interquartile range, 8.3%–14%), P=0.001, medial cell proliferation, P<0.001, and fibrosis, P<0.001. There were significantly fewer adventitial leukocytes at 3 days, P<0.001, but no difference at 28 days. Pharmacokinetic analysis (single-injury model) found rapamycin concentrations 1500× higher in perivascular tissues than in blood at 1 hour. Perivascular rapamycin persisted ≥8 days and was not detectable at 28 days. Conclusions Adventitial nab-rapamycin injection was safe and significantly reduced luminal stenosis in a porcine femoral artery balloon angioplasty model. Observed reductions in early adventitial leukocyte infiltration and late medial cell proliferation and fibrosis suggest an immunosuppressive and antiproliferative mechanism. An intraluminal microinfusion catheter for adventitial injection represents an alternative to stent- or balloon-based local drug delivery

  3. Permeabilization and in situ adsorption studies during growth and coumarin production in hairy root cultures of Cichorium intybus L.

    PubMed

    Bais, H P; Sudha, G; Suresh, B; Ravishankar, G A

    2001-06-01

    Effect of addition of a permeabilizing agent dimethyl sulfoxide (DMSO) and a solid adsorbent, XAD -7, on growth and coumarin production in hairy root cultures of C. intybus was studied. Continuous permeabilization of the hairy root cultures of C. intybus with DMSO has been shown to be an effective strategy for enhanced release of coumarins while preserving the root viability. DMSO at 0.2% (v/v) level showed the maximum growth and coumarin production but was less as compared to control on day 28. Treatment of cells with increasing concentrations of DMSO (0.3 - 0.6 % v/v) to hairy root cultures of C. intybus, showed an inverse relationship with growth and coumarin production. Growth and production of coumarins increased with 1% media filtrate (MF) of cultures of Phytopthora parasitica var. nicotiana treatment. It was observed that treatment with DMSO (0.2% v/v) and 1% MF of P. parasitica showed the better growth and coumarin production with an increased release of coumarins as compared to the control and other treatments. It was observed that treatment of hairy root cultures with XAD-7 resulted in lesser growth and coumarin production as compared to control during the culture period. Addition of XAD-7 along with 1% MF of P. parasitica showed enhanced growth, coumarin production and increased adsorption as compared to control and lone XAD-7 treatment. Combined addition of DMSO/XAD-7 with fungal elicitor showed synergistic response in terms of biomass and coumarin production. Excretion of coumarins in both the cases was dependent on the presence of DMSO/XAD-7. These results showed that continuous permeabilization of hairy root cultures of C. intybus by using DMSO at 0.2% (v/v) level coupled with 1% MF of P. parasitica maintained viability of tissues and produced coumarins at higher level.

  4. An anatomically based imaging sign to detect adventitial cyst derived from the superior tibiofibular joint.

    PubMed

    Hébert-Blouin, Marie-Noëlle; Pirola, Elena; Amrami, Kimberly K; Wang, Huan; Desy, Nicholas M; Spinner, Robert J

    2011-10-01

    The origin for complex intraneural cysts remains controversial despite recent emerging evidence to support their articular origin. The coexistence of intraneural and adventitial cysts has been described due to the proximate neurovascular bundle, i.e., the articular (neural) branch and vessels at the joint capsule. To clarify the pathogenesis, anatomically based imaging patterns can be identified. This paper characterizes a common finding identified on MRI describing the adventitial component originating from the superior tibiofibular joint (STFJ). MRIs of patients with fibular (peroneal) (n = 24) and tibial (n = 7) intraneural ganglion cysts were reviewed. Eleven patients with fibular intraneural ganglion cysts were identified as having a coexisting adventitial component. In all cases, the adventitial cyst extended from the anterior portion of the STFJ, within the capsular vessels, and along the anterior tibial vessels. The reproducible anatomy permitted the identification of an imaging pattern: the "vascular U" sign, consisting of cystic anterior tibial vessels running through the interosseous membrane between the proximal tibia and fibula. This sign was seen on axial MR image(s) obtained at the level of the fibular neck in all cases. To generalize these findings, the rare tibial intraneural ganglion cysts (derived from the posterior aspect of the STFJ) were examined; two cases had coexisting adventitial cysts with visualization of the vascular U sign. This new imaging pattern can improve the identification of adventitial cysts at the level of the STFJ.

  5. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  6. Arabidopsis homolog of trithorax1 (ATX1) is required for cell production, patterning, and morphogenesis in root development.

    PubMed

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G

    2014-12-01

    Arabidopsis homolog of trithorax1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture.

  7. Innovative Approach for Identifying Root Causes of Glass Defects in Sterile Drug Product Manufacturing.

    PubMed

    Eberle, Lukas; Svensson, Alexander; Graser, Andreas; Luemkemann, Joerg; Sugiyama, Hirokazu; Schmidt, Rainer; Hungerbuehler, Konrad

    2017-03-14

    In sterile drug product manufacturing, scratched and broken glass containers (i.e., vials) cause product losses, glass particles, equipment contamination and additional cleaning efforts. However, mechanical resistance and exposure of vials to mechanical stress are not sufficiently understood, and no systematic approach for reducing glass-related losses is established. Manufacturers may tackle glass-related losses more rationally if (i) frequencies for inflicting disqualifying damages to drug product containers are known for given forces, (ii) actual exposure in industrial filling lines is quantified and (iii) process enhancements are derived based on collected information. In this work, an innovative approach for exploiting these opportunities, identifying glass defect root causes and reducing glass defects is provided. Devices for quantifying (i) damaging frequencies and (ii) actual exposure are presented and then applied in an industrial case study on sterile drug product manufacturing; finally, (iii) process enhancements are derived and implemented. In the case study, frequencies for scratching vials at given forces as well as breaking forces have been determined. Peak exposure in the investigated filling line was detected at 6 Newton. As a result of the case study, key machine parts were identified and adjusted.

  8. Production of mesons and baryons at high rapidity and high p(T) in proton-proton collisions at square root[s] = 200 GeV.

    PubMed

    Arsene, I; Bearden, I G; Beavis, D; Bekele, S; Besliu, C; Budick, B; Bøggild, H; Chasman, C; Christensen, C H; Dalsgaard, H H; Debbe, R; Gaardhøje, J J; Hagel, K; Ito, H; Jipa, A; Johnson, E B; Jørgensen, C E; Karabowicz, R; Katrynska, N; Kim, E J; Larsen, T M; Lee, J H; Lindal, S; Løvhøiden, G; Majka, Z; Murray, M; Natowitz, J; Nielsen, B S; Nygaard, C; Płaneta, R; Rami, F; Renault, F; Ristea, C; Ristea, O; Röhrich, D; Samset, B H; Sanders, S J; Scheetz, R A; Staszel, P; Tveter, T S; Videbaek, F; Wada, R; Yin, Z; Yang, H; Zgura, I S

    2007-06-22

    We present particle spectra for charged hadrons pi(+/-), K(+/-), p, and p[over] from pp collisions at square root[s] = 200 GeV measured for the first time at forward rapidities (2.95 and 3.3). The kinematics of these measurements are skewed in a way that probes the small momentum fraction in one of the protons and large fractions in the other. Large proton to pion ratios are observed at values of transverse momentum that extend up to 4 GeV/c, where protons have momenta up to 35 GeV. Next-to-leading order perturbative QCD calculations describe the production of pions and kaons well at these rapidities, but fail to account for the large proton yields and small p[over]/p ratios.

  9. Measurement of the cross section for prompt isolated diphoton production in pp collisions at square root(s) = 1.96  TeV.

    PubMed

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Pranko, A; Prokoshin, F; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Sgalaberna, D; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stancari, M; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S

    2011-09-02

    This Letter reports a measurement of the cross section of prompt isolated photon pair production in pp collisions at a total energy square root(s)=1.96  TeV using data of 5.36  fb(-1) integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured cross section, differential in basic kinematic variables, is compared with three perturbative QCD predictions, a leading order parton shower calculation and two next-to-leading order calculations. The next-to-leading order calculations reproduce most aspects of the data. By including photon radiation from quarks before and after hard scattering, the parton shower prediction becomes competitive with the next-to-leading order predictions.

  10. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils.

  11. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives

    PubMed Central

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A.; Kiss, Anna K.

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots. PMID:25811023

  12. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives.

    PubMed

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A; Kiss, Anna K; Wysokińska, Halina

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L(-1) of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS(3) and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots.

  13. Abscisic Acid Accumulation Maintains Maize Primary Root Elongation at Low Water Potentials by Restricting Ethylene Production1

    PubMed Central

    Spollen, William G.; LeNoble, Mary E.; Samuels, Timmy D.; Bernstein, Nirit; Sharp, Robert E.

    2000-01-01

    Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (ψw) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743–1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene. At a ψw of −1.6 MPa, inhibition of root elongation in dark-grown seedlings treated with fluridone to impose ABA deficiency was largely prevented with two inhibitors of ethylene synthesis (aminooxyacetic acid and aminoethoxyvinylglycine) and one inhibitor of ethylene action (silver thiosulfate). The fluridone treatment caused an increase in the rate of ethylene evolution from intact seedlings. This effect was completely prevented with aminooxyacetic acid and also when ABA was supplied at a concentration that restored the ABA content of the root elongation zone and the root elongation rate. Consistent results were obtained when ABA deficiency was imposed using the vp5 mutant. Both fluridone-treated and vp5 roots exhibited additional morphological symptoms of excess ethylene. The results demonstrate that an important role of ABA accumulation in the maintenance of root elongation at low ψw is to restrict ethylene production. PMID:10712561

  14. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  15. Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai.

    PubMed

    Lee, Eun-Jung; Moh, Sang-Hyun; Paek, Kee-Yoeup

    2011-07-01

    This study deals with the effects of initial inoculum density and aeration volume on biomass and bioactive compound production in adventitious roots of Eleutherococcus koreanum Nakai in bulb-type bubble bioreactors (3-L capacity). While the fresh and dry weights of the roots increased with increasing inoculum density, the highest percentage dry weight and accumulation of total target compounds (eleutheroside B and E, chlorogenic acid, total phenolics, and flavonoids) were noted at an inoculum density of 5.0 g L(-1). Poor aeration volume (0.05 vvm) stunted root growth, and high aeration volume (0.4 vvm) caused physiological disorders. Moreover, an inoculum density of 5.0 g L(-1) and an aeration volume of 0.1 vvm resulted in the highest concentration of total target compounds and least root death. Such optimization of culture conditions will be beneficial for the large-scale production of E. koreanum biomass and bioactive compounds.

  16. Soybean roots retain the seed urease isozyme synthesized during embryo development. [Glycine max (L. ) Merr

    SciTech Connect

    Torisky, R.S.; Polacco, J.C. )

    1990-10-01

    Roots of young soybean (Glycine max (L.) Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (embryo-specific) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the ubiquitous urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. seed urease-null), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from ({sup 35}S)methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root.

  17. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production.

    PubMed

    Chen, Meng; Cui, Weiti; Zhu, Kaikai; Xie, Yanjie; Zhang, Chunhua; Shen, Wenbiao

    2014-02-28

    One of the earliest and distinct symptoms of aluminum (Al) toxicity is the inhibition of root elongation. Although hydrogen gas (H2) is recently described as an important bio-regulator in plants, whether and how H2 regulates Al-induced inhibition of root elongation is largely unknown. To address these gaps, hydrogen-rich water (HRW) was used to investigate a physiological role of H2 and its possible molecular mechanism. Individual or simultaneous (in particular) exposure of alfalfa seedlings to Al, or a fresh but not old nitric oxide (NO)-releasing compound sodium nitroprusside (SNP), not only increased NO production, but also led to a significant inhibition of root elongation. Above responses were differentially alleviated by pretreatment with 50% saturation of HRW. The addition of HRW also alleviated the appearance of Al toxicity symptoms, including the improvement of seedling growth and less accumulation of Al. Subsequent results revealed that the removal of NO by the NO scavenger, similar to HRW, could decrease NO production and alleviate Al- or SNP-induced inhibition of root growth. Thus, we proposed that HRW alleviated Al-induced inhibition of alfalfa root elongation by decreasing NO production. Such findings may be applicable to enhance crop yield and improve stress tolerance.

  18. The architecture of adventitial elastin in the canine infrarenal aorta.

    PubMed

    Haas, K S; Phillips, S J; Comerota, A J; White, J V

    1991-05-01

    Although the artery wall consists of three distinct layers, only the structures of the intima and media have been well characterized. The adventitia has generally been overlooked. Our examination focused on the organization of elastin and collagen which are the major components of this tunic. Canine infrarenal aortas were excised, stretched to their in vivo length, then pressure fixed in formalin. Transverse, longitudinal, and frontal sections were prepared with specific elastin and collagen stains. Areas of adventitia in these sections were examined with LM, and interconnections between collagen and elastin were photographed at various magnifications. Subsequently, the slides were fractured for attachment to SEM stubs, and the coverslips were demounted. The identical areas were then examined with SEM using the LM micrographs as a guide to identify elastin and collagen. Whole mount aortic ring preparations were digested in formic acid for 72 and 96 h at 45 degrees C to confirm adventitial elastin architecture. The adventitia was organized in alternating lamellae of collagen and elastin. The elastin lamellae consisted of continuous sheets of elastin with a longitudinal fibrillar substructure. Finer circumferential elastin fibers were also identified. These attached to both longitudinal elastin and adjacent collagen lamellae. Collagen lamellae were arranged in broad corrugated bands of fibrils. The unique architecture of the adventitia may explain some of the visco-elastic properties of the aorta in both normal and pathologic states.

  19. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to

  20. Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity.

    PubMed

    Stein, Claudia; Rissmann, Cornelia; Hempel, Stefan; Renker, Carsten; Buscot, François; Prati, Daniel; Auge, Harald

    2009-02-01

    Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.

  1. Methyl jasmonate influence on silymarin production and plant stress responses in Silybum marianum hairy root cultures in a bioreactor.

    PubMed

    Rahimi, Shadi; Hasanloo, Tahereh; Najafi, Farzaneh; Khavari-Nejad, Ramezan Ali

    2012-01-01

    In this article our aim was to evaluate mass cultivation of S. marianum hairy roots in a bioreactor to produce silymarin. The effects of methyl jasmonate (MJ) elicitation on the accumulation of silymarin and the extent of the MJ-induced oxidative damage were investigated in bioreactor hairy root cultures of S. marianum. The growth rate of the bioreactor hairy root cultures was higher than that of those in a shake flask after 3 weeks. Silymarin accumulation was increased from 0.13 mg g⁻¹ DW in non-treated hairy roots to 0.22 mg g⁻¹ DW in hairy roots 72 h after 100 µM MJ treatment. Guaiacol peroxidase and ascorbate peroxidase were activated by MJ 72 h after treatment, being 3.2- and 1.3-fold higher, respectively, than that of the control. An increase in enzymatic activity suggests increased scavenging of reactive oxygen species, indicating the tolerance to MJ stress. These results suggest that MJ elicitation is beneficial for silymarin production using bioreactor hairy root cultures.

  2. Effect of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of Scutellaria lateriflora.

    PubMed

    Marsh, Zachary; Yang, Tianhong; Nopo-Olazabal, Luis; Wu, Shuchi; Ingle, Taylor; Joshee, Nirmal; Medina-Bolivar, Fabricio

    2014-11-01

    Scutellaria lateriflora (American skullcap) has been used in traditional medicine to treat several medical conditions including nervous disorders and cancer. Previous studies have associated these medicinal properties to flavones present in roots and leaves of this species. In order to develop a production system and study the biosynthesis of these bioactive compounds, hairy root cultures of S. lateriflora were established and line 4 was selected for further studies based on its growth performance in a modified Murashige and Skoog's medium supplemented with 0.5mg/l indole-3-butyric acid. Scanning electron microscopy of the hairy roots showed a high profusion of hairs along the root. Several phenolic compounds, including verbascoside, and the flavones wogonin, baicalein, scutellarein and their respective glucuronides were identified by high performance liquid chromatography-tandem mass spectrometry in the root tissue, but not in the culture medium. Among these compounds, verbascoside accumulated at the highest levels. Interestingly, cultures incubated under continuous light and treated with 15mM methyl-β-cyclodextrin for 24h produced significantly higher levels of the aglycones, baicalein and wogonin, but not scutellarein, compared to cultures incubated under continuous darkness. This work demonstrates that hairy root cultures of S. lateriflora have the biosynthetic capacity to produce known Scutellaria flavones and suggest that light may have a selected regulatory effect on the synthesis or accumulation of these phenolic compounds.

  3. Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling.

    PubMed

    Steffens, Bianka; Kovalev, Alexander; Gorb, Stanislav N; Sauter, Margret

    2012-08-01

    A central question in biology is how spatial information is conveyed to locally establish a developmental program. Rice (Oryza sativa) can survive flash floods by the emergence of adventitious roots from the stem. Epidermal cells that overlie adventitious root primordia undergo cell death to facilitate root emergence. Root growth and epidermal cell death are both controlled by ethylene. This study aimed to identify the signal responsible for the spatial control of cell death. Epidermal cell death correlated with the proximity to root primordia in wild-type and ADVENTITIOUS ROOTLESS1 plants, indicating that the root emits a spatial signal. Ethylene-induced root growth generated a mechanical force of ~18 millinewtons within 1 h. Force application to epidermal cells above root primordia caused cell death in a dose-dependent manner and was inhibited by 1-methylcyclopropene or diphenylene iodonium, an inhibitor of NADPH oxidase. Exposure of epidermal cells not overlying a root to either force and ethylene or force and the catalase inhibitor aminotriazole induced ectopic cell death. Genetic downregulation of the reactive oxygen species (ROS) scavenger METALLOTHIONEIN2b likewise promoted force-induced ectopic cell death. Hence, reprogramming of epidermal cell fate by the volatile plant hormone ethylene requires two signals: mechanosensing for spatial resolution and ROS for cell death signaling.

  4. Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus.

    PubMed

    Moyano, Elisabet; Jouhikainen, Katja; Tammela, Päivi; Palazón, Javier; Cusidó, Rosa M; Piñol, M Teresa; Teeri, Teemu H; Oksman-Caldentey, Kirsi-Marja

    2003-01-01

    In order to increase the production of the pharmaceuticals hyoscyamine and scopolamine in hairy root cultures, a binary vector system was developed to introduce the T-DNA of the Ri plasmid together with the tobacco pmt gene under the control of CaMV 35S promoter, into the genome of Datura metel and Hyoscyamus muticus. This gene codes for putrescine:SAM N-methyltransferase (PMT; EC. 2.1.1.53), which catalyses the first committed step in the tropane alkaloid pathway. Hairy root cultures overexpressing the pmt gene aged faster and accumulated higher amounts of tropane alkaloids than control hairy roots. Both hyoscyamine and scopolamine production were improved in hairy root cultures of D. metel, whereas in H. muticus only hyoscyamine contents were increased by pmt gene overexpression. These roots have a high capacity to synthesize hyoscyamine, but their ability to convert it into scopolamine is very limited. The results indicate that the same biosynthetic pathway in two related plant species can be differently regulated, and overexpression of a given gene does not necessarily lead to a similar accumulation pattern of secondary metabolites.

  5. Effect of Loblolly Pine (Pinus taeda L.) Root Pruning on Alley Cropped Herbage Production and Tree Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The competitive irradiance constraint of trees on the understory can be reduced by imposing standard silvicultural practices like pruning and thinning. Use of tillage to disrupt tree roots is an intensive practice which may improve herbage productivity at the crop-tree interface by reducing competi...

  6. Effect of Loblolly Pine (Pinus taeda L.) Root Pruning on Alley Cropped Herbage Production and Tree Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The competitive irradiance constraint of trees on the understory can be reduced by foliar pruning. Use of tillage to disrupt (prune) tree roots is an intensive practice which could improve herbage productivity at the crop-tree interface by reducing competition for water. Our objective was to compa...

  7. Quantification of Adventitial Vasa Vasorum Vascularization in Double-injury Restenotic Arteries

    PubMed Central

    Ye, Meng; Zhang, Bai-Gen; Zhang, Lan; Xie, Hui; Zhang, Hao

    2015-01-01

    Background: Accumulating evidence indicates a potential role of adventitial vasa vasorum (VV) dysfunction in the pathophysiology of restenosis. However, characterization of VV vascularization in restenotic arteries with primary lesions is still missing. In this study, we quantitatively evaluated the response of adventitial VV to vascular injury resulting from balloon angioplasty in diseased arteries. Methods: Primary atherosclerotic-like lesions were induced by the placement of an absorbable thread surrounding the carotid artery of New Zealand rabbits. Four weeks following double-injury induced that was induced by secondary balloon dilation, three-dimensional patterns of adventitial VV were reconstructed; the number, density, and endothelial surface of VV were quantified using micro-computed tomography. Histology and immunohistochemistry were performed in order to examine the development of intimal hyperplasia. Results: Results from our study suggest that double injured arteries have a greater number of VV, increased luminal surface, and an elevation in the intima/media ratio (I/M), along with an accumulation of macrophages and smooth muscle cells in the intima, as compared to sham or single injury arteries. I/M and the number of VV were positively correlated (R2 = 0.82, P < 0.001). Conclusions: Extensive adventitial VV neovascularization occurs in injured arteries after balloon angioplasty, which is associated with intimal hyperplasia. Quantitative assessment of adventitial VV response may provide insight into the basic biological process of postangioplasty restenosis. PMID:26228224

  8. CD14 Directs Adventitial Macrophage Precursor Recruitment: Role in Early Abdominal Aortic Aneurysm Formation

    PubMed Central

    Blomkalns, Andra L.; Gavrila, Daniel; Thomas, Manesh; Neltner, Bonnie S.; Blanco, Victor M.; Benjamin, Stephanie B.; McCormick, Michael L.; Stoll, Lynn L.; Denning, Gerene M.; Collins, Sean P.; Qin, Zhenyu; Daugherty, Alan; Cassis, Lisa A.; Thompson, Robert W.; Weiss, Robert M.; Lindower, Paul D.; Pinney, Susan M.; Chatterjee, Tapan; Weintraub, Neal L.

    2013-01-01

    Background Recruitment of macrophage precursors to the adventitia plays a key role in the pathogenesis of abdominal aortic aneurysms (AAAs), but molecular mechanisms remain undefined. The innate immune signaling molecule CD14 was reported to be upregulated in adventitial macrophages in a murine model of AAA and in monocytes cocultured with aortic adventitial fibroblasts (AoAf) in vitro, concurrent with increased interleukin‐6 (IL‐6) expression. We hypothesized that CD14 plays a crucial role in adventitial macrophage precursor recruitment early during AAA formation. Methods and Results CD14−/− mice were resistant to AAA formation induced by 2 different AAA induction models: aortic elastase infusion and systemic angiotensin II (AngII) infusion. CD14 gene deletion led to reduced aortic macrophage infiltration and diminished elastin degradation. Adventitial monocyte binding to AngII‐infused aorta in vitro was dependent on CD14, and incubation of human acute monocytic leukemia cell line‐1 (THP‐1) monocytes with IL‐6 or conditioned medium from perivascular adipose tissue (PVAT) upregulated CD14 expression. Conditioned medium from AoAf and PVAT induced CD14‐dependent monocyte chemotaxis, which was potentiated by IL‐6. CD14 expression in aorta and plasma CD14 levels were increased in AAA patients compared with controls. Conclusions These findings link CD14 innate immune signaling via a novel IL‐6 amplification loop to adventitial macrophage precursor recruitment in the pathogenesis of AAA. PMID:23537804

  9. Detection of patients considering observation frequency of continuous and discontinuous adventitious sounds in lung sounds.

    PubMed

    Nakamura, Naoki; Yamashita, Masaru; Matsunaga, Shoichi

    2016-08-01

    We propose an improved approach for distinguishing between healthy subjects and patients with pulmonary emphysema by the use of one stochastic acoustic model for continuous adventitious sounds and another for discontinuous adventitious sounds. These models are able to represent the spectral features of the adventitious sounds for the detection of abnormal respiration. However, abnormal respiratory sounds with unclassifiable spectral features are present among the continuous and discontinuous adventitious sounds and mixing noises. These sounds cause difficulties in achieving a highly accurate classification. In this study, the difference in occurrence frequencies between two types of adventitious sounds for each considered auscultation point and inspiration/expiration was considered. This difference, in combination with the confusion tendency of the classifier, was formulated as the validity score of each respiratory sound. The conventional spectral likelihood and the newly formulated validity score were combined to perform detection of abnormal respiration and patients. In the classification of healthy subjects and patients, the proposed approach achieved a higher classification rate (87.7%) than the conventional method (85.2%), demonstrating the statistical superiority (5% level) of the former.

  10. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice

    PubMed Central

    Tieu, Brian C.; Lee, Chang; Sun, Hong; LeJeune, Wanda; Recinos, Adrian; Ju, Xiaoxi; Spratt, Heidi; Guo, Dong-Chuan; Milewicz, Dianna; Tilton, Ronald G.; Brasier, Allan R.

    2009-01-01

    Vascular inflammation contributes to cardiovascular diseases such as aortic aneurysm and dissection. However, the precise inflammatory pathways involved have not been clearly defined. We have shown here that subcutaneous infusion of Ang II, a vasopressor known to promote vascular inflammation, into older C57BL/6J mice induced aortic production of the proinflammatory cytokine IL-6 and the monocyte chemoattractant MCP-1. Production of these factors occurred predominantly in the tunica adventitia, along with macrophage recruitment, adventitial expansion, and development of thoracic and suprarenal aortic dissections. In contrast, a reduced incidence of dissections was observed after Ang II infusion into mice lacking either IL-6 or the MCP-1 receptor CCR2. Further analysis revealed that Ang II induced CCR2+CD14hiCD11bhiF4/80– macrophage accumulation selectively in aortic dissections and not in aortas from Il6–/– mice. Adoptive transfer of Ccr2+/+ monocytes into Ccr2–/– mice resulted in selective monocyte uptake into the ascending and suprarenal aorta in regions of enhanced ROS stress, with restoration of IL-6 secretion and increased incidence of dissection. In vitro, coculture of monocytes and aortic adventitial fibroblasts produced MCP-1– and IL-6–enriched conditioned medium that promoted differentiation of monocytes into macrophages, induced CD14 and CD11b upregulation, and induced MCP-1 and MMP-9 expression. These results suggest that leukocyte-fibroblast interactions in the aortic adventitia potentiate IL-6 production, inducing local monocyte recruitment and activation, thereby promoting MCP-1 secretion, vascular inflammation, ECM remodeling, and aortic destabilization. PMID:19920349

  11. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    SciTech Connect

    Busov, Victor

    2013-03-05

    DR5 as a reporter system to study auxin response in Populus Plant Cell Reports 32:453-463 Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar. The Populus AINTEGUMENTA LIKE 1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia. Plant Physiol. 160: 1996-2006 Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to

  12. Gentiana dinarica Beck hairy root cultures and evaluation of factors affecting growth and xanthone production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The induction and establishment of hairy root cultures of Gentiana dinarica using two strains of Agrobacterium rhizogenes (A4M70GUS and 15834/PI) is reported for the first time. Hairy roots were formed from the shoots 25 days after inoculation, and strain 15834/PI had higher induction rate of hairy ...

  13. SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES

    EPA Science Inventory

    Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...

  14. Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.

    2013-01-01

    Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.

  15. Technical aspects on production of fluid extract from Brosimum gaudichaudii Trécul roots

    PubMed Central

    Martins, Frederico Severino; Pascoa, Henrique; de Paula, José Realino; da Conceição, Edemilson Cardoso

    2015-01-01

    Instruction: Despite the increased use of Brosimum gaudichaudii roots as raw material on medicine to treatment of vitiligo, there are not studies that showing the impact of unit operations on the quality and standardized of the extract of B. gaudichaudii. The quality of the herbal extract is essential to ensure the safety and efficacy of pharmaceutical product. Due the medical and commercial importance, this study aimed to evaluate the impact of the extraction method (ultrasound or percolation) on the quality of herbal extract and optimize the extraction of psoralen and 8-methoxypsoralen (8-MOP) from B. gaudichaudii. Materials and Methods: The extraction recovery was evaluate by high-performance liquid chromatography (C8 reverse phase column and acetonitrile: Water 45:55 and flow rate 0.6 mL/min). The extraction was performed by ultrasound-assisted extraction (UEA) or percolation using a Box-Behnken design. Results: From both chemical markers (psoralen and bergapten), the optimal conditions for the UEA were an extraction time of 25 min, the mean particle size of 100 μm, and an ethanol: Water ratio of 55:45 (v/v). Conclusion: The extraction by percolation revealed that ethanol 55% was more efficient than ethanol 80% to extract psoralen and bergapten. PMID:25709236

  16. Production of nematocidal compounds by hairy root cultures of Tagetes patula L.

    PubMed

    Kyo, M; Miyauchi, Y; Fujimoto, T; Mayama, S

    1990-11-01

    Marigold (Tagetes patula L.) hairy roots induced by infection with Agrobacterium rhizogenes produced α-terthienyl when grown in darkness, and an n-hexane extract of the roots showed nematocidal activity. Depending on the hairy root line used, the level of α-terthienyl varied from 15 to 1268 μg per g dry weight, a level that corresponded to 0.15 to 12.7-fold that in intact roots. Analysis by HPLC indicated that the nematocidal activity was due predominantly to α-terthienyl. However, it is suggested that nematocidal compounds other than α-terthienyl are present in hairy roots cultured in the dark for long periods or in the light.

  17. miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation.

    PubMed

    Luo, Ying; Dong, Hai-Ying; Zhang, Bo; Feng, Zhao; Liu, Yi; Gao, Yu-Qi; Dong, Ming-Qing; Li, Zhi-Chao

    2015-02-01

    Activation of pulmonary adventitial fibroblasts plays a key role in the pulmonary vascular remodeling in hypoxic pulmonary hypertension. Previous studies showed that miRNAs participated in the regulation of fibroblast activation. This study explored the role of miR-29 in the activation of pulmonary adventitial fibroblasts and the therapeutic potential in hypoxic pulmonary hypertension. We found that hypoxia-induced pulmonary adventitial fibroblasts activation was accompanied with a drastic decrease of miR-29a-3p expression. Knockdown of hypoxia-inducible factor-1 α or Smad3 reversed the hypoxia-induced decrease of miR-29-3p in cultured pulmonary adventitial fibroblasts. In vitro, miR-29a-3p mimic inhibited the hypoxia-induced proliferation, migration, and secretion of pulmonary adventitial fibroblasts, suppressed the hypoxia-induced expression of α-smooth muscle actin and extracellular matrix collagen in pulmonary adventitial fibroblasts; however, miR-29a-3p inhibitor mimicked the effect of hypoxia on the activation of pulmonary adventitial fibroblasts. Further studies revealed that preventative or therapeutic administration of miR-29a-3p significantly decreased pulmonary artery pressure and right ventricle hypertrophy index and ameliorated pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. These findings suggest that miR-29a-3p regulates the activation and phenotype of pulmonary adventitial fibroblasts in hypoxia and has preventative and therapeutic potential in hypoxic pulmonary hypertension.

  18. ASSESSING THE EFFECTS OF ELEVATED ATMOSP;HERIC CO2 AND TEMPERATURE ON FINE ROOT PRODUCTION AND MORTALITY IN FORESTED SYSTEMS

    EPA Science Inventory

    Little is known about the effects of global climate change on the production and mortality of fine roots. To better understand these processes we have conducted a number of studies to investigate the factors that influence the production and mortality of fine roots in coniferous...

  19. Forest fine-root production and nitrogen use under elevated CO2: Contrasting responses explained by a common principle

    SciTech Connect

    Franklin, Oscar; McMurtrie, Ross E; Iversen, Colleen M; Crous, Kristine; Finzi, Adrien C; Tissue, David Thomas; Ellsworth, David; Oren, Ram; Norby, Richard J

    2009-01-01

    Despite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO2 concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO2 (eCO2) and soil N availability on forest productivity and C allocation, we hypothesized that 1) trees maximize fitness by allocating N and C to maximize their net growth, and 2) that N uptake is controlled by root exploration for N. We tested this model using data collected in FACE sites dominated by evergreen (Pinus taeda; Duke Forest) and deciduous (Liquidambar styraciflua; Oak Ridge National Laboratory ORNL) trees. The model explained 80-95% of variation in productivity and N-uptake data among eCO2, N fertilization and control treatments over six years. The model explains why fine-root production increased, and why N uptake increased despite reduced soil N availability under eCO2 at ORNL and Duke. In agreement with observations at other sites, soil N availability reduced below a critical level diminishes all eCO2 responses. At Duke, a negative feedback between reduced soil N availability and N uptake counteracted progressive reduction in soil N availability at eCO2. At ORNL, decreasing soil N availability was perpetuated as it generated no reduction in N uptake, due to strongly increased production of fast turnover fine-roots. This implies that species with fast root turnover could be more prone to progressive N limitation of carbon sequestration in woody biomass than species with slow root turnover, such as evergreens.

  20. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    USGS Publications Warehouse

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  1. [Roles of reactive oxygen species in Streptomyces pactum Act12-induced tanshinone production in Salvia miltiorrhiza hairy roots].

    PubMed

    Yan, Yan; Zhao, Xin; Zhang, Shun-Cang; Liu, Yan; Liang, Zong-Suo

    2014-06-01

    Our previous research indicated that the Streptomyces pactum Act12 (Act12) had a certain promotional effect on tanshinone accumulation and up-regulated the expression of genes 3-hydroxy-3-methyglutaryl-CoA reductase (HMGR) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in Salvia miltiorrhiza hairy roots. This study focuses on the roles of reactive oxygen species in S. pactum Act12-induced tanshinone production in S. miltiorrhiza hairy roots. The 4% Act12, 4% Act12 + CAT and 4% Act12 + SOD were added to S. miltiorrhiza hairy root and subcultured for 21 days, the dry weight, contents of reactive oxygen species, contents of tanshinones and expression of HMGR and DXR were determined at different harvest-time. The generation of reactive oxygen species (ROS) in S. miltiorrhiza hairy roots was triggered by 4% Act12 treatment. The relative expressions of genes HMGR and DXR in 4% Act12 treatment were 32.4 and 4.8-fold higher than those in the control. And the total tanshinone in the hairy roots was 10.2 times higher than that of the control. The CAT and SOD could significantly inhibit the ROS accumulation and relative expressions of genes HMGR and DXR in 4% Act12 treatment, which induced the total tanshinone content was decreased by 74.6% comparing with the 4% Act12 treatment. ROS mediated Act12-induced tanshinone production. The Act12 may be via the ROS signal channel to activate the tanshinone biosynthesis pathways. Thereby the tanshinon content in hairy roots was increased.

  2. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    PubMed

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system.

  3. Root growth and exudate production define the frequency of horizontal plasmid transfer in the Rhizosphere.

    PubMed

    Mølbak, Lars; Molin, Søren; Kroer, Niels

    2007-01-01

    To identify the main drivers of plasmid transfer in the rhizosphere, conjugal transfer was studied in the rhizospheres of pea and barley. The donor Pseudomonas putida KT2442, containing plasmid pKJK5::gfp, was coated onto the seeds, while the recipient P. putida LM24, having a chromosomal insertion of dsRed, was inoculated into the growth medium. Mean transconjugant-to-donor ratios in vermiculite were 4.0+/-0.8 x 10(-2) in the pea and 5.9+/-1.4 x 10(-3) in the barley rhizospheres. In soil, transfer ratios were about 10 times lower. As a result of a 2-times higher root exudation rate in pea, donor densities in pea (1 x 10(6)-2 x 10(9) CFU g(-1) root) were about 10 times higher than in barley. No difference in recipient densities was observed. In situ visualization of single cells on the rhizoplane and macroscopic visualization of the colonization pattern showed that donors and transconjugants were ubiquitously distributed in the pea rhizosphere, while they were only located on the upper parts of the barley roots. Because the barley root elongated about 10 times faster than the pea root, donors were probably outgrown by the elongating barley root. Thus by affecting the cell density and distribution, exudation and root growth appear to be key parameters controlling plasmid transfer in the rhizosphere.

  4. High spatial resolution magnetic resonance imaging of cystic adventitial disease of the popliteal artery.

    PubMed

    Maged, Ismaeel M; Turba, Ulku C; Housseini, Ahmed M; Kern, John A; Kron, Irving L; Hagspiel, Klaus D

    2010-02-01

    High spatial resolution magnetic resonance imaging (MRI) of patients with cystic adventitial disease can demonstrate connections between cysts in the adventitia and the adjacent joint, which is important for successful treatment. The inability to identify these during surgery can lead to a recurrence; thus, high spatial resolution MRI has the potential to affect therapy. This article presents the high spatial resolution MRI findings of cystic adventitial disease in a series of three consecutive patients and discusses the relevance of these findings to the etiology and therapy.

  5. Adventitial stripping of the radial and ulnar arteries in Raynaud's disease.

    PubMed

    Balogh, Brigitta; Mayer, W; Vesely, M; Mayer, S; Partsch, H; Piza-Katzer, H

    2002-11-01

    Adventitial stripping of the palmar arch, the palmar common digital arteries, or the proper digital arteries is a last resort in the treatment of refractory primary or secondary Raynaud's phenomenon. Seven patients who had adventitial stripping of the ulnar and radial arteries proximal to the wrist and resection of the nerve of Henle, if identifiable, are presented. All of them were evaluated by telethermography, acral rheography, and a questionnaire before and after surgery. All were asymptomatic after surgery with satisfactory healing of the ulcers at the fingertips. None of them relapsed during the follow-up time of 1.5 years.

  6. Efficient production of isoflavonoids by Astragalus membranaceus hairy root cultures and evaluation of antioxidant activities of extracts.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Fu, Yu-Jie; Ma, Wei; Peng, Xiao; Tan, Sheng-Nan; Efferth, Thomas

    2014-12-31

    In this study, Astragalus membranaceus hairy root cultures (AMHRCs) were established as an attractive alternative source for the efficient production of isoflavonoids (IF). A. membranaceus hairy root line II was screened as the most efficient line and was confirmed by PCR amplification of rolB, rolC and aux1 genes. Culture parameters of AMHRCs were systematically optimized, and five main IF constituents were quali-quantitatively determined by LC-MS/MS. Under optimal conditions, the total IF accumulation of 34 day old AMHRCs was 234.77 μg/g dry weight (DW). This yield was significantly higher compared to that of 3 year old field grown roots (187.38 μg/g DW). Additionally, in vitro antioxidant assays demonstrated that AMHRC extracts exhibited antioxidant activities with lower IC50 values (1.40 and 1.73 mg/mL) as compared to those of field grown roots (1.96 and 2.17 mg/mL). Overall, AMHRCs may offer a promising and continuous product platform for naturally derived, high quality and valuable nutraceuticals.

  7. Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots.

    PubMed

    Hijosa-Valsero, María; Reyes-Contreras, Carolina; Domínguez, Carmen; Bécares, Eloy; Bayona, Josep M

    2016-02-01

    Seven mesocosm-scale constructed wetlands (CWs) with different design configurations, dealing with primary-treated urban wastewater, were assessed for the concentration, distribution and fate of ten pharmaceutical and personal care products (PPCPs) [ibuprofen, ketoprofen, naproxen, diclofenac, salicylic acid, caffeine, carbamazepine, methyl dihydrojasmonate, galaxolide and tonalide] and eight of their transformation products (TPs). Apart from influent and effluent, various CW compartments were analysed, namely, substrate, plant roots and pore water. PPCP content in pore water depended on the specific CW configuration. Macrophytes can take up PPCPs through their roots. Ibuprofen, salicylic acid, caffeine, methyl dihydrojasmonate, galaxolide and tonalide were present on the root surface with a predominance of galaxolide and caffeine in all the planted systems. Naproxen, ibuprofen, salicylic acid, methyl dihydrojasmonate, galaxolide and tonalide were uptaken by the roots. In order to better understand the removal processes, biomass measurement and biodegradability studies through the characterization of internal-external isomeric linear alkylbenzenes present on the gravel bed were performed. Three TPs namely, ibuprofen-amide, 3-ethylbenzophenone and 4-hydroxy-diclofenac were identified for the first time in wetland pore water and effluent water, which suggests de novo formation (they were not present in the influent). Conversely, O-desmethyl-naproxen was degraded through the wetland passage since it was detected in the influent but not in the subsequent treatment stages. Biodegradation pathways are therefore suggested for most of the studied PPCPs in the assessed CWs.

  8. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest.

    PubMed

    Wright, S Joseph; Yavitt, Joseph B; Wurzburger, Nina; Turner, Benjamin L; Tanner, Edmund V J; Sayer, Emma J; Santiago, Louis S; Kaspari, Michael; Hedin, Lars O; Harms, Kyle E; Garcia, Milton N; Corre, Marife D

    2011-08-01

    We maintained a factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment for 11 years in a humid lowland forest growing on a relatively fertile soil in Panama to evaluate potential nutrient limitation of tree growth rates, fine-litter production, and fine-root biomass. We replicated the eight factorial treatments four times using 32 plots of 40 x 40 m each. The addition of K was associated with significant decreases in stand-level fine-root biomass and, in a companion study of seedlings, decreases in allocation to roots and increases in height growth rates. The addition of K and N together was associated with significant increases in growth rates of saplings and poles (1-10 cm in diameter at breast height) and a further marginally significant decrease in stand-level fine-root biomass. The addition of P was associated with a marginally significant (P = 0.058) increase in fine-litter production that was consistent across all litter fractions. Our experiment provides evidence that N, P, and K all limit forest plants growing on a relatively fertile soil in the lowland tropics, with the strongest evidence for limitation by K among seedlings, saplings, and poles.

  9. Solasodine glycoside production by hairy root cultures of Physalis minima Linn.

    PubMed

    Putalun, Waraporn; Prasamsiwamai, Preeyaporn; Tanaka, Hiroyuki; Shoyama, Yukihiro

    2004-04-01

    Hairy root cultures of Physalis minima L. were developed using Agrobacterium rhizogenes, strain ATCC 15834 mediated transformation and grown in half strength of Murashige and Skoog medium containing 8% (w/v) sucrose. Media supplementation with 1 mg naphthalenacetic acid l(-1) and 1 mg benzyladenine increased solasodine glycoside up to 900 g dry wt, which was 20 times higher than that in the native root.

  10. Prediction of Root Zone Soil Moisture using Remote Sensing Products and In-Situ Observation under Climate Change Scenario

    NASA Astrophysics Data System (ADS)

    Singh, G.; Panda, R. K.; Mohanty, B.

    2015-12-01

    Prediction of root zone soil moisture status at field level is vital for developing efficient agricultural water management schemes. In this study, root zone soil moisture was estimated across the Rana watershed in Eastern India, by assimilation of near-surface soil moisture estimate from SMOS satellite into a physically-based Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble Kalman filter (EnKF) technique coupled with SWAP model was used for assimilating the satellite soil moisture observation at different spatial scales. The universal triangle concept and artificial intelligence techniques were applied to disaggregate the SMOS satellite monitored near-surface soil moisture at a 40 km resolution to finer scale (1 km resolution), using higher spatial resolution of MODIS derived vegetation indices (NDVI) and land surface temperature (Ts). The disaggregated surface soil moisture were compared to ground-based measurements in diverse landscape using portable impedance probe and gravimetric samples. Simulated root zone soil moisture were compared with continuous soil moisture profile measurements at three monitoring stations. In addition, the impact of projected climate change on root zone soil moisture were also evaluated. The climate change projections of rainfall were analyzed for the Rana watershed from statistically downscaled Global Circulation Models (GCMs). The long-term root zone soil moisture dynamics were estimated by including a rainfall generator of likely scenarios. The predicted long term root zone soil moisture status at finer scale can help in developing efficient agricultural water management schemes to increase crop production, which lead to enhance the water use efficiency.

  11. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  12. Response of the Fine Root Production, Phenology, and Turnover Rate of Six Shrub Species from a Subtropical Forest to a Soil Moisture Gradient and Shading

    NASA Astrophysics Data System (ADS)

    Fu, X.; Dai, X.; Wang, H.

    2015-12-01

    Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics

  13. Yield enhancement strategies for the production of picroliv from hairy root culture of Picrorhiza kurroa Royle ex Benth.

    PubMed

    Verma, Praveen Chandra; Singh, Harpal; Negi, Arvind Singh; Saxena, Gauri; Rahman, Laiq-Ur; Banerjee, Suchitra

    2015-01-01

    Fast-growing hairy root cultures of Picrorhiza kurroa induced by Agrobacterium rhizogenes offers a potential production system for iridoid glycosides. In present study we have investigated the effects of various nutrient medium formulations viz B5, MS, WP and NN, and sucrose concentrations (1-8%) on the biomass and glycoside production of selected clone (14-P) of P. kurroa hairy root. Full strength B5 medium was found to be most suitable for maximum biomass yield on the 40th day of culture (GI = 32.72 ± 0.44) followed by the NN medium of the same strength (GI = 22.9 ± 0.43). Secondary metabolite production was 1.1 and 1.3 times higher in half strength B5 medium respectively in comparison to MS medium. Maximum biomass accumulation along with the maximum picroliv content was achieved with 4% sucrose concentration in basal medium. RT vitamin and Thiamine-HCl effected the growth and secondary metabolite production of hairy roots growing on MS medium but did not show any effect on other media. The pH of the medium played significant role in growth and secondary metabolite production and was found to be highest at pH 6.0 while lowest at pH 3.0 and pH 8.0. To enhance the production of biomass and Picroliv 5 liter working capacity bioreactor was used, 27-fold (324 g FW) higher growth was observed in bioreactor than shake flask and secondary metabolite production was similarly enhanced.

  14. Yield enhancement strategies for the production of picroliv from hairy root culture of Picrorhiza kurroa Royle ex Benth.

    PubMed Central

    Verma, Praveen Chandra; Singh, Harpal; Negi, Arvind Singh; Saxena, Gauri; Rahman, Laiq-ur; Banerjee, Suchitra

    2015-01-01

    Fast-growing hairy root cultures of Picrorhiza kurroa induced by Agrobacterium rhizogenes offers a potential production system for iridoid glycosides. In present study we have investigated the effects of various nutrient medium formulations viz B5, MS, WP and NN, and sucrose concentrations (1–8%) on the biomass and glycoside production of selected clone (14-P) of P. kurroa hairy root. Full strength B5 medium was found to be most suitable for maximum biomass yield on the 40th day of culture (GI = 32.72 ± 0.44) followed by the NN medium of the same strength (GI = 22.9 ± 0.43). Secondary metabolite production was 1.1 and 1.3 times higher in half strength B5 medium respectively in comparison to MS medium. Maximum biomass accumulation along with the maximum picroliv content was achieved with 4% sucrose concentration in basal medium. RT vitamin and Thiamine-HCl effected the growth and secondary metabolite production of hairy roots growing on MS medium but did not show any effect on other media. The pH of the medium played significant role in growth and secondary metabolite production and was found to be highest at pH 6.0 while lowest at pH 3.0 and pH 8.0. To enhance the production of biomass and Picroliv 5 liter working capacity bioreactor was used, 27-fold (324 g FW) higher growth was observed in bioreactor than shake flask and secondary metabolite production was similarly enhanced. PMID:26039483

  15. Adventitial cystic disease of the common femoral vein presenting as deep vein thrombosis.

    PubMed

    Kim, Young-Kyun; Chun, Ho Jong; Hwang, Jeong Kye; Kim, Ji Il; Kim, Sang Dong; Park, Sun-Cheol; Moon, In Sung

    2016-07-01

    Adventitial cystic disease of the common femoral vein is a rare condition. We herein report the case of a 50-year-old woman who presented with painless swelling in her left lower leg that resembled deep vein thrombosis. She underwent femoral exploration and excision of the cystic wall. The presentation, investigation, treatment, and pathology of this condition are discussed with a literature review.

  16. Tissue sealing device associated thermal spread: a comparison of histologic methods for detecting adventitial collagen denaturation

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Grisez, Brian T.; Thomas, Aaron C.; Livengood, Ryan H.; Coad, James E.

    2013-02-01

    Thermal spread (thermal tissue damage) results from heat conduction through the tissues immediately adjacent to a hyperthermic tissue sealing device. The extent of such heat conduction can be assessed by the detection of adventitial collagen denaturation. Several histologic methods have been reported to measure adventitial collagen denaturation as a marker of thermal spread. This study compared hematoxylin and eosin staining, Gomori trichrome staining and loss of collagen birefringence for the detection of collagen denaturation. Twenty-eight ex vivo porcine carotid arteries were sealed with a commercially available, FDA-approved tissue sealing device. Following formalin fixation and paraffin embedding, two 5-micron tissue sections were hematoxylin and eosin and Gomori trichrome stained. The hematoxylin and eosin-stained section was evaluated by routine bright field microscopy and under polarized light. The trichromestained section was evaluated by routine bright field microscopy. Radial and midline adventitial collagen denaturation measurements were made for both the top and bottom jaw sides of each seal. The adventitial collagen denaturation lengths were determined using these three methods and statistically compared. The results showed that thermal spread, as represented by histologically detected collagen denaturation, is technique dependent. In this study, the trichrome staining method detected significantly less thermal spread than the hematoxylin and eosin staining and birefringence methods. Of the three methods, hematoxylin and eosin staining provided the most representative results for true thermal spread along the adjacent artery.

  17. Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protocols were developed to optimize adventitious shoot regeneration from four southern highbush blueberry cultivars. Leaf explants from six-week-old shoots of the four cultivars were excised and cultured on ten WPM (woody plant medium)-based regeneration media each containing thidiazuron (TDZ) (4.5...

  18. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production.

    PubMed

    Allario, Thierry; Brumos, Javier; Colmenero-Flores, Jose M; Iglesias, Domingo J; Pina, Jose A; Navarro, Luis; Talon, Manuel; Ollitrault, Patrick; Morillon, Raphaël

    2013-04-01

    Whole-genome duplication, or polyploidy, is common in many plant species and often leads to better adaptation to adverse environmental condition. However, little is known about the physiological and molecular determinants underlying adaptation. We examined the drought tolerance in diploid (2x) and autotetraploid (4x) clones of Rangpur lime (Citrus limonia) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Physiological experiments to study root-shoot communication associated with gene expression studies in roots and leaves were performed. V/4xRL was much more tolerant to water deficit than V/2xRL. Gene expression analysis in leaves and roots showed that more genes related to the response to water stress were differentially expressed in V/2xRL than in V/4xRL. Prior to the stress, when comparing V/4xRL to V/2xRL, V/4xRL leaves had lower stomatal conductance and greater abscisic acid (ABA) content. In roots, ABA content was higher in V/4xRL and was associated to a greater expression of drought responsive genes, including CsNCED1, a pivotal regulatory gene of ABA biosynthesis. We conclude that tetraploidy modifies the expression of genes in Rangpur lime citrus roots to regulate long-distance ABA signalling and adaptation to stress.

  19. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.

    PubMed

    Moser, Gerald; Schuldt, Bernhard; Hertel, Dietrich; Horna, Viviana; Coners, Heinz; Barus, Henry; Leuschner, Christoph

    2014-05-01

    Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood

  20. Developmental anatomy and branching of roots of four Zeylanidium species (podostemaceae), with implications for evolution of foliose roots.

    PubMed

    Hiyama, Y; Tsukamoto, I; Imaichi, R; Kato, M

    2002-12-01

    Podostemaceae have markedly specialized and diverse roots that are adapted to extreme habitats, such as seasonally submerged or exposed rocks in waterfalls and rapids. This paper describes the developmental anatomy of roots of four species of Zeylanidium, with emphasis on the unusual association between root branching and root-borne adventitious shoots. In Z. subulatum and Z. lichenoides with subcylindrical or ribbon-like roots, the apical meristem distal (exterior) to a shoot that is initiated within the meristem area reduces and loses meristematic activity. This results in a splitting into two meristems that separate the parental root and lateral root (anisotomous dichotomy). In Z. olivaceum with lobed foliose roots, shoots are initiated in the innermost zone of the marginal meristem, and similar, but delayed, meristem reduction usually occurs, producing a parenchyma exterior to shoots located between root lobes. In some extreme cases, due to meristem recovery, root lobing does not occur, so the margin is entire. In Z. maheshwarii with foliose roots, shoots are initiated proximal to the marginal meristem and there is no shoot-root lobe association. Results suggest that during evolution from subcylindrical or ribbon-like roots to foliose roots, reduction of meristem exterior to a shoot was delayed and then arrested as a result of inward shifting of the sites of shoot initiation. The evolutionary reappearance of a protective tissue or root cap in Z. olivaceum and Z. maheshwarii in the Zeylanidium clade is implied, taking into account the reported molecular phylogeny and root-cap development in Hydrobryum.

  1. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production.

    PubMed

    Bais, Harsh Pal; Fall, Ray; Vivanco, Jorge M

    2004-01-01

    Relatively little is known about the exact mechanisms used by Bacillus subtilis in its behavior as a biocontrol agent on plants. Here, we report the development of a sensitive plant infection model demonstrating that the bacterial pathogen Pseudomonas syringae pv tomato DC3000 is capable of infecting Arabidopsis roots both in vitro and in soil. Using this infection model, we demonstrated the biocontrol ability of a wild-type B. subtilis strain 6051 against P. syringae. Arabidopsis root surfaces treated with B. subtilis were analyzed with confocal scanning laser microscopy to reveal a three-dimensional B. subtilis biofilm. It is known that formation of biofilms by B. subtilis is a complex process that includes secretion of surfactin, a lipopeptide antimicrobial agent. To determine the role of surfactin in biocontrol by B. subtilis, we tested a mutant strain, M1, with a deletion in a surfactin synthase gene and, thus, deficient in surfactin production. B. subtilis M1 was ineffective as a biocontrol agent against P. syringae infectivity in Arabidopsis and also failed to form robust biofilms on either roots or inert surfaces. The antibacterial activity of surfactin against P. syringae was determined in both broth and agar cultures and also by live-dead staining methods. Although the minimum inhibitory concentrations determined were relatively high (25 microg mL(-1)), the levels of the lipopeptide in roots colonized by B. subtilis are likely to be sufficient to kill P. syringae. Our results collectively indicate that upon root colonization, B. subtilis 6051 forms a stable, extensive biofilm and secretes surfactin, which act together to protect plants against attack by pathogenic bacteria.

  2. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions

    PubMed Central

    Kato, Yoichiro; Okami, Midori

    2011-01-01

    Background and Aims Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture. Methods Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions. Key Results Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa. Conclusions Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep

  3. Post-harvest induced production of salvianolic acids and significant promotion of antioxidant properties in roots of Salvia miltiorrhiza (Danshen).

    PubMed

    Zhou, Guo-Jun; Wang, Wei; Xie, Xiao-Mei; Qin, Min-Jian; Kuai, Ben-Ke; Zhou, Tong-Shui

    2014-05-30

    Danshen, the dried roots of Salvia miltiorrhiza, is an extremely valued Traditional Chinese Medicine. Previously, we have demonstrated that salvianolic acid B (SaB), the important bioactive ingredient in this herb, was a post-harvest product. Here, we further reported that all salvianolic acids (SAs) in the roots were post-harvest products of the drying process. In addition, the results of various radical scavenging activity assays, including lipid peroxidation (1), DPPH (2), hydroxyl (3) and superoxide (4), were significantly increased along with the accumulation of total salvianolic acids in the process. The contents of chemical targets and antioxidant activities both reached the highest value under thermal treatment at 130 °C for 80 min. In this dehydration period, contents of SaB, and sum of nine SAs increased from 0.01% to 5.51%, and 0.20% to 6.61%; and IC50 of antioxidant activity decreased from 4.85 to 2.69 (1); 7.75 to 0.43 (2); 2.57 to 1.13 (3) and 17.25 to 1.10 mg/mL. These results further supported the hypothesis that the newly harvested plant roots were still physiologically active and the secondary metabolites might be produced due to dehydration stress after harvest. Our findings supplied an important and useful theoretical basis for promoting the quality of Danshen and other medicinal plant materials.

  4. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    PubMed

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.

  5. Resilient populations of root fungi occur within five tomato production systems in Southeast Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices are known to impact arbuscular mycorrhizal (AM) fungi and other soil microbial communities in agroecosystems. The effects of divergent land management strategies on the incidence and infectivity of AM and other fungal root endophytes were evaluated in a 5-year tomato (Lycopersicon...

  6. Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The allelochemical, sorgoleone, a major component of the hydrophobic root exudates of Sorghum bicolor, was formulated as a wettable powder [WP] and evaluated as a natural herbicide on several weed and crop species under different growth conditions. Formulated sorgoleone suppressed germination and ...

  7. Mustard seed meal for management of root-knot nematode and weeds in tomato production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mustard seed meals of indian mustard [InM (Brassica juncea)] and yellow mustard [YeM (Sinapis alba)], alone and combined, were tested for effects on tomato (Solanum lycopersicum) plants and for suppression of southern root-knot nematode [RKN (Meloidogyne incognita)] and weed populations. In the gree...

  8. The allelochemical L-DOPA increases melanin production and reduces reactive oxygen species in soybean roots.

    PubMed

    Soares, Anderson Ricardo; de Lourdes Lucio Ferrarese, Maria; de Cássia Siqueira-Soares, Rita; Marchiosi, Rogério; Finger-Teixeira, Aline; Ferrarese-Filho, Osvaldo

    2011-08-01

    The non-protein amino acid, L-3,4-dihydroxyphenylalanine (L-DOPA), is the main allelochemical released from the roots of velvetbean and affects seed germination and root growth of several plant species. In the work presented here, we evaluated, in soybean roots, the effects of L-DOPA on the following: polyphenol oxidase (PPO), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities; superoxide anion (O·-2), hydrogen peroxide (H(2)O(2)), and melanin contents; and lipid peroxidation. To this end, 3-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0), with or without 0.1 to 1.0 mM L-DOPA in a growth chamber (at 25°C, with a light/dark photoperiod of 12/12 hr and a photon flux density of 280 μmol m(-2) s(-1)) for 24 hr. The results showed that L-DOPA increased the PPO activity and, further, the melanin content. The activities of SOD and POD increased, but CAT activity decreased after the chemical exposure. The contents of reactive oxygen species (ROS), such as O·-2 and H(2)O(2), and the levels of lipid peroxidation significantly decreased under all concentrations of L-DOPA tested. These results suggest that L-DOPA was absorbed by the soybean roots and metabolized to melanin. It was concluded that the reduction in the O·-2 and H(2)O(2) contents and lipid peroxidation in soybean roots was due to the enhanced SOD and POD activities and thus a possible antioxidant role of L-DOPA.

  9. Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem.

    PubMed

    Lipson, David A; Kuske, Cheryl R; Gallegos-Graves, La Verne; Oechel, Walter C

    2014-08-01

    Soil fungal communities are likely to be central in mediating microbial feedbacks to climate change through their effects on soil carbon (C) storage, nutrient cycling, and plant health. Plants often produce increased fine root biomass in response to elevated atmospheric carbon dioxide (CO2 ), but the responses of soil microbial communities are variable and uncertain, particularly in terms of species diversity. In this study, we describe the responses of the soil fungal community to free air CO2 enrichment (FACE) in a semiarid chaparral shrubland in Southern California (dominated by Adenomstoma fasciculatum) using large subunit rRNA gene sequencing. Community composition varied greatly over the landscape and responses to FACE were subtle, involving a few specific groups. Increased frequency of Sordariomycetes and Leotiomycetes, the latter including the Helotiales, a group that includes many dark septate endophytes known to associate positively with roots, was observed in the FACE plots. Fungal diversity, both in terms of richness and evenness, increased consistently in the FACE treatment, and was relatively high compared to other studies that used similar methods. Increases in diversity were observed across multiple phylogenetic levels, from genus to class, and were distributed broadly across fungal lineages. Diversity was also higher in samples collected close to (5 cm) plants compared to samples in canopy gaps (30 cm away from plants). Fungal biomass correlated well with soil organic matter (SOM) content, but patterns of diversity were correlated with fine root production rather than SOM. We conclude that the fungal community in this ecosystem is tightly linked to plant fine root production, and that future changes in the fungal community in response to elevated CO2 and other climatic changes will be primarily driven by changes in plant belowground allocation. Potential feedbacks mediated by soil fungi, such as soil C sequestration, nutrient cycling, and

  10. Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato.

    PubMed

    Xu, Sheng; Zhang, Bo; Cao, Ze-Yu; Ling, Teng-Fang; Shen, Wen-Biao

    2011-04-01

    In animals, heme oxygenase (HO), a rate-limiting enzyme responsible for carbon monoxide (CO) production, was regarded as a protective system maintaining cellular homeostasis. It was also established that metal ions are powerful HO-inducing agents and cobalt chloride (CoCl(2)) was the first metal ion identified with an inducing property. Previous study suggests that CoCl(2) stimulates adventitious root formation in tomato and cucumber cuttings. In this test, we discover that both CoCl(2) and an inducer of HO-1, hemin, could lead to the promotion of lateral root development, as well as the induction of HO-1 protein expression, HO activity, or LeHO-1/2 transcripts, in lateral root initiation zone of tomato seedlings. The effect is specific for HO since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) blocked the above actions of CoCl(2), and the inhibitory effect was reversed partially when 50% CO aqueous solution was added. However, the addition of ascorbic acid (AsA), a well-known antioxidant, exhibited no obvious effect on lateral root formation. Molecular evidence further showed that CoCl(2)-induced the up-regulation of target genes responsible for lateral root formation, including LeCDKA1, LeCYCA2;1, and LeCYCA3;1, was suppressed differentially by ZnPPIX. And these decreases were reversed further by the addition of CO. All together, these results suggest a novel role for HO in the CoCl(2)-induced tomato lateral root formation.

  11. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L.

    PubMed

    Długosz, Marek; Wiktorowska, Ewa; Wiśniewska, Anita; Pączkowski, Cezary

    2013-01-01

    In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with β-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions.

  12. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions

    PubMed Central

    Voisard, Christophe; Keel, Christoph; Haas, Dieter; Dèfago, Geneviève

    1989-01-01

    Pseudomonas fluorescens CHA0 suppresses black root rot of tobacco, a disease caused by the fungus Thielaviopsis basicola. Strain CHA0 excretes several metabolites with antifungal properties. The importance of one such metabolite, hydrogen cyanide, was tested in a gnotobiotic system containing an artificial, iron-rich soil. A cyanidenegative (hcn) mutant, CHA5, constructed by a gene replacement technique, protected the tobacco plant less effectively than did the wild-type CHA0. Complementation of strain CHA5 by the cloned wild-type hcn+ genes restored the strain's ability to suppress disease. An artificial transposon carrying the hcn+ genes of strain CHA0 (Tnhcn) was constructed and inserted into the genome of another P.fluorescens strain, P3, which naturally does not produce cyanide and gives poor plant protection. The P3::Tnhcn derivative synthesized cyanide and exhibited an improved ability to suppress disease. All bacterial strains colonized the roots similarly and did not influence significantly the survival of T.basicola in soil. We conclude that bacterial cyanide is an important but not the only factor involved in suppression of black root rot. Images PMID:16453871

  13. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae).

    PubMed

    Zaheer, Mohd; Reddy, Vudem Dashavantha; Giri, Charu Chandra

    2016-07-01

    Daidzin (7-O-glucoside of daidzein) has several pharmacological benefits in herbal remedy, as antioxidant and shown antidipsotropic activity. Hairy root culture of Psoralea corylifolia L. was developed for biomass and enhanced daidzin production using signalling compounds such as jasmonic acid (JA) and acetyl salicylic acid (ASA). Best response of 2.8-fold daidzin (5.09% DW) with 1 μM JA treatment after second week and 7.3-fold (3.43% DW) with 10 μM JA elicitation after 10th week was obtained from hairy roots compared to untreated control. ASA at 10 μM promoted 1.7-fold increase in daidzin (1.49% DW) content after seventh week compared to control (0.83% DW). Addition of 25 μM ASA resulted in 1.44% DW daidzin (1.5-fold increase) with 0.91% DW in control after fifth week and 1.44% DW daidzin (2.3-fold increase) after eighth week when compared to untreated control (0.62% DW). Reduced biomass with increased daidzin content was facilitated by elicited hairy root cultures.

  14. An auxin-responsive endogenous peptide regulates root development in Arabidopsis.

    PubMed

    Yang, Fengxi; Song, Yu; Yang, Hao; Liu, Zhibin; Zhu, Genfa; Yang, Yi

    2014-07-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, root morphology, including lateral root number and adventitious roots, differed greatly between transgenic and wild-type plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wild-type plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxin-mediated root development.

  15. CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study.

    PubMed

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J; Ball, J Timothy; Johnson, Dale W

    2006-06-01

    We conducted a 4-year study of juvenile Pinus ponderosa fine root (< or =2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 mumol/mol, ambient+350 mumol/mol) and three N-fertilization levels (0, 10, 20 g m(-2) year(-1)). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.5 years old. Neither CO2 nor N-fertilization treatments affected the seasonal patterns of root production or mortality. Yearly values of fine-root length standing crop (m m(-2)), production (m m(-2) year(-1)), and mortality (m m(-2) year(-1)) were consistently higher in elevated CO2 treatments throughout the study, except for mortality in the first year; however, the only statistically significant CO2 effects were in the fine-root length standing crop (m m(-2)) in the second and third years, and production and mortality (m m(-2) year(-1)) in the third year. Higher mortality (m m(-2) year(-1)) in elevated CO2 was due to greater standing crop rather than shorter life span, as fine roots lived longer in elevated CO2. No significant N effects were noted for annual cumulative production, cumulative mortality, or mean standing crop. N availability did not significantly affect responses of fine-root standing crop, production, or mortality to elevated CO2. Multi-year studies at all life stages of trees are important to characterize belowground responses to factors such as atmospheric CO2 and N-fertilization. This study showed the potential for juvenile ponderosa pine to increase fine-root C pools and C fluxes through root mortality in response to elevated CO2.

  16. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2.

    PubMed

    Fransson, Petra M A; Taylor, Andy F S; Finlay, Roger D

    2005-01-01

    Effects of elevated atmospheric carbon dioxide (CO2) levels on the production and spread of ectomycorrhizal fungal mycelium from colonised Scots pine roots were investigated. Pinus sylvestris (L.) Karst. seedlings inoculated with either Hebeloma crustuliniforme (Bull:Fr.) Quel. or Paxillus involutus (Fr.) Fr. were grown at either ambient (350 ppm) or elevated (700 ppm) levels of CO2. Mycelial production was measured after 6 weeks in pots, and mycelial spread from inoculated seedlings was studied after 4 months growth in perlite in shallow boxes containing uncolonised bait seedlings. Plant and fungal biomass were analysed, as well as carbon and nitrogen content of seedling shoots. Mycelial biomass production by H. crustuliniforme was significantly greater under elevated CO2 (up to a 3-fold increase was observed). Significantly lower concentrations and total amounts of N were found in plants exposed to elevated CO2.

  17. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites.

    PubMed

    Yoneyama, Kaori; Xie, Xiaonan; Kusumoto, Dai; Sekimoto, Hitoshi; Sugimoto, Yukihiro; Takeuchi, Yasutomo; Yoneyama, Koichi

    2007-12-01

    Strigolactones released from plant roots induce hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi and germination of root parasitic weeds, Striga and Orobanche spp. We already demonstrated that, in red clover plants (Trifolium pratense L.), a host for both AM fungi and the root holoparasitic plant Orobanche minor Sm., reduced supply of phosphorus (P) but not of other elements examined (N, K, Ca, Mg) in the culture medium significantly promoted the secretion of a strigolactone, orobanchol, by the roots of this plant. Here we show that in the case of sorghum [Sorghum bicolor (L.) Moench], a host of both the root hemiparasitic plant Striga hermonthica and AM fungi, N deficiency as well as P deficiency markedly enhanced the secretion of a strigolactone, 5-deoxystrigol. The 5-deoxystrigol content in sorghum root tissues also increased under both N deficiency and P deficiency, comparable to the increase in the root exudates. These results suggest that strigolactones may be rapidly released after their production in the roots. Unlike the situation in the roots, neither N nor P deficiency affected the low content of 5-deoxystrigol in sorghum shoot tissues.

  18. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    PubMed Central

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  19. Influences of polar auxin transport on polarity of adventitious bud formation in hybrid populas

    SciTech Connect

    Kim, Myung Won ); Hackett, W. )

    1989-04-01

    The role of auxin and cytokinin distribution of polar regeneration of adventitious bud has been investigated. Explants from leaf midvein were labelled with {sup 14}C-NAA and {sup 14}C-BA and the radioactivity in proximal, mid, and distal portions was counted after 24h and 48h. Explants showing polar regeneration of buds on the proximal end showed a clear polar distribution of {sup 14}CNAA. Auxin transport inhibitors (NPA, TIBA) eliminated polar distribution of auxin and reduced polarity of bud formation and the total number of buds formed, but did not reduce callus formation. Increased concentration of Ca(NO{sub 3}){sub 2} decreased polarity of bud formation and increased the number of buds formed but did not affect the distribution of auxin of cytokinin. Some factor in addition to polar distribution of auxin or cytokinin-auxin ratio appears to influence the polarity of adventitious bud formation.

  20. Root Diseases and Exotic Ecosystems: Implications for Long-Term Site Productivity

    SciTech Connect

    Otrosina, W. J.; Garbelotto, M.

    1997-09-01

    Management activities and various land uses have taken place recently that have dramatically altered edaphic and environmental conditions under which forest tree species and ecosystems have evolved. Sequoia giganteum stands, fire suppression in this fire dependent ecosystem has resulted in increased mortality due to Heterobasidion annosum. On hypothesis is that fire suppression results in increased encroachment of true firs, easily infected by S-group Heterobasidion annosum, thereby transferring the disease via root contacts with S. giganteum. Existence of a hybrid with S and P ISG's of H. annosum may be evidence for anthropogenic influences on evolutionary pathways in this pathogen.

  1. Recurrent cystic adventitial disease of the popliteal artery: successful treatment with percutaneous transluminal angioplasty.

    PubMed

    Maged, Ismaeel M; Kron, Irving L; Hagspiel, Klaus D

    2009-01-01

    Cystic adventitial disease (CAD) is a rare vascular condition that most commonly affects the popliteal artery. Percutaneous transluminal angioplasty (PTA) is generally not considered a valid therapeutic option due to high recurrence rate. We report a case of CAD of the popliteal artery that recurred after surgical cyst enucleation that was successfully treated with PTA. To the best of our knowledge, this is the first case of successful PTA for the treatment of recurrent CAD of the popliteal artery.

  2. Cystic adventitial disease of the popliteal artery: an infrequent cause of intermittent claudication

    PubMed Central

    Kauffman, Paulo; Kuzniec, Sergio; Sacilotto, Roberto; Teivelis, Marcelo Passos; Wolosker, Nelson; Tachibana, Adriano

    2014-01-01

    Intermittent claudication is frequently associated with atherosclerotic disease, but differential diagnosis must be sought in patients with no traditional risk factors. Cystic adventitial disease, of unknown etiology, most frequently affects the popliteal artery, and occasionally presents as intermittent claudication. We report a case of this disease and the surgical treatment, and discuss some aspects related to etiopathogenesis, diagnosis and treatment of this condition. PMID:25167336

  3. Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis

    PubMed Central

    Rademakers, Timo; van der Vorst, Emiel P. C.; Daissormont, Isabelle T. M. N.; Otten, Jeroen J. T.; Theodorou, Kosta; Theelen, Thomas L.; Gijbels, Marion; Anisimov, Andrey; Nurmi, Harri; Lindeman, Jan H. N.; Schober, Andreas; Heeneman, Sylvia; Alitalo, Kari; Biessen, Erik A. L.

    2017-01-01

    During plaque progression, inflammatory cells progressively accumulate in the adventitia, paralleled by an increased presence of leaky vasa vasorum. We here show that next to vasa vasorum, also the adventitial lymphatic capillary bed is expanding during plaque development in humans and mouse models of atherosclerosis. Furthermore, we investigated the role of lymphatics in atherosclerosis progression. Dissection of plaque draining lymph node and lymphatic vessel in atherosclerotic ApoE−/− mice aggravated plaque formation, which was accompanied by increased intimal and adventitial CD3+ T cell numbers. Likewise, inhibition of VEGF-C/D dependent lymphangiogenesis by AAV aided gene transfer of hVEGFR3-Ig fusion protein resulted in CD3+ T cell enrichment in plaque intima and adventitia. hVEGFR3-Ig gene transfer did not compromise adventitial lymphatic density, pointing to VEGF-C/D independent lymphangiogenesis. We were able to identify the CXCL12/CXCR4 axis, which has previously been shown to indirectly activate VEGFR3, as a likely pathway, in that its focal silencing attenuated lymphangiogenesis and augmented T cell presence. Taken together, our study not only shows profound, partly CXCL12/CXCR4 mediated, expansion of lymph capillaries in the adventitia of atherosclerotic plaque in humans and mice, but also is the first to attribute an important role of lymphatics in plaque T cell accumulation and development. PMID:28349940

  4. Expression and large-scale production of the biochemically active human tissue-plasminogen activator in hairy roots of Oriental melon (Cucumis melo).

    PubMed

    Kim, Sung-Ryong; Sim, Joon-Soo; Ajjappala, Hemavathi; Kim, Yong-Hwan; Hahn, Bum-Soo

    2012-01-01

    Human tissue-plasminogen activator (t-PA) is a thrombolytic protein that plays an active role in dissolving fibrin clots by fibrinolysis and in activating plasminogen to plasmin in blood vessels. t-PA and synthetic t-PA (st-PA) genes were expressed as enzymatically active form in hairy roots of Oriental melon (Cucumis melo L. cv. Geumssaragi-euncheon) infected by Agrobacterium rhizogenes. The insertion of the t-PA genes in genomic DNA of transgenic hairy roots was verified by PCR. The presence and expression of t-PA-specific transcripts in the total RNAs of transgenic hairy roots were confirmed by RT-PCR. Western blot analysis of the transgenic hairy roots showed a single major band of 59-kDa recombinant t-PAs. ELISA demonstrated that the highest level of recombinant t-PA (798 ng mg⁻¹) was detected in hairy roots expressing t-PA. Similarly, the maximum fibrinolysis of recombinant t-PAs was observed in hairy roots transformed with t-PA. WPM medium was found to be more suitable for rapid growth of hairy roots among all the seven media types tested. The hairy root production was 5.8 times higher than that of White medium. The total yield of hairy roots grown on WPM medium was 621.8±8.7 g L⁻¹ at pH 7.0. These studies demonstrate that the hairy roots could be employed for the mass production of enzymatically active t-PA.

  5. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    PubMed Central

    Sun, Peng; Xiao, Xingguo; Duan, Liusheng; Guo, Yuhai; Qi, Jianjun; Liao, Dengqun; Zhao, Chunli; Liu, Yan; Zhou, Lili; Li, Xianen

    2015-01-01

    Rehmannia glutinosa, an herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well-known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR), thickening adventitious root (TAR), and the developing tuberous root (DTR). Expression profiling identified a total of 6794 differentially expressed unigenes during root development. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation. PMID:26113849

  6. Inhibitory effects of devil's claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages.

    PubMed

    Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki

    2010-04-01

    Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.

  7. Enhanced morphinan alkaloid production in hairy root cultures of Papaver bracteatum by over-expression of salutaridinol 7-o-acetyltransferase gene via Agrobacterium rhizogenes mediated transformation.

    PubMed

    Sharafi, Ali; Hashemi Sohi, Haleh; Mousavi, Amir; Azadi, Pejman; Dehsara, Bahareh; Hosseini Khalifani, Bahman

    2013-11-01

    Papaver bracteatum is an important medicinal plant valued for its high content of thebaine and an alternative to P. somniferum for benzylisoquinoline alkaloid production. Salutaridinol 7-o-acetyltransferase (SalAT) is a key gene in morphinan alkaloids biosynthesis pathway. Over expression of SalAT gene was used for metabolic engineering in P. bracteatum hairy root cultures. Transcript level of the salutaridinol 7-o-acetyltransferase gene in transgenic hairy root lines increased up to 154 and 128 % in comparison with hairy roots without SalAT over expression and wild type roots, respectively. High performance liquid chromatography analysis showed that the transgenic hairy roots relatively improved levels of thebaine (1.28 % dry weight), codeine (0.02 % dry weight) and morphine (0.03 % dry weight) compared to those hairy roots without SalAT over expression. This suggests that P. bracteatum hairy roots expressing the SalAT gene could be potentially used for the production of valuable morphinan alkaloids.

  8. Interannual Variation in Root Production in Grasslands Affected by Artificially Modified Amount of Rainfall

    PubMed Central

    Fiala, Karel; Tůma, Ivan; Holub, Petr

    2012-01-01

    The effect of different amounts of rainfall on the below-ground plant biomass was studied in three grassland ecosystems. Responses of the lowland (dry Festuca grassland), highland (wet Cirsium grassland), and mountain (Nardus grassland) grasslands were studied during five years (2006–2010). A field experiment based on rainout shelters and gravity irrigation simulated three climate scenarios: rainfall reduced by 50% (dry), rainfall increased by 50% (wet), and the natural rainfall of the current growing season (ambient). The interannual variation in root increment and total below-ground biomass reflected the experimentally manipulated amount of precipitation and also the amount of current rainfall of individual years. The effect of year on these below-ground parameters was found significant in all studied grasslands. In comparison with dry Festuca grassland, better adapted to drought, submontane wet Cirsium grassland was more sensitive to the different water inputs forming rather lower amount of below-ground plant matter at reduced precipitation. PMID:22629201

  9. Interannual variation in root production in grasslands affected by artificially modified amount of rainfall.

    PubMed

    Fiala, Karel; Tůma, Ivan; Holub, Petr

    2012-01-01

    The effect of different amounts of rainfall on the below-ground plant biomass was studied in three grassland ecosystems. Responses of the lowland (dry Festuca grassland), highland (wet Cirsium grassland), and mountain (Nardus grassland) grasslands were studied during five years (2006-2010). A field experiment based on rainout shelters and gravity irrigation simulated three climate scenarios: rainfall reduced by 50% (dry), rainfall increased by 50% (wet), and the natural rainfall of the current growing season (ambient). The interannual variation in root increment and total below-ground biomass reflected the experimentally manipulated amount of precipitation and also the amount of current rainfall of individual years. The effect of year on these below-ground parameters was found significant in all studied grasslands. In comparison with dry Festuca grassland, better adapted to drought, submontane wet Cirsium grassland was more sensitive to the different water inputs forming rather lower amount of below-ground plant matter at reduced precipitation.

  10. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination.

    PubMed

    Park, Sangkyu; Back, Kyoungwhan

    2012-11-01

    The effect of melatonin on root growth after germination was examined in transgenic rice seedlings expressing sheep serotonin N-acetyltransferase (NAT). Enhanced melatonin levels were found in T(3) homozygous seedlings because of the ectopic overexpression of sheep NAT, which is believed to be the rate-limiting enzyme in melatonin biosynthesis in animals. Compared with wild-type rice seeds, the transgenic rice seeds showed enhanced seminal root growth and an analogous number of adventitious roots 4 and 10 days after seeding on half-strength Murashige and Skoog medium. The enhanced initial seminal root growth in the transgenic seedlings matched their increased root biomass well. We also found that treatment with 0.5 and 1 μM melatonin promoted seminal root growth of the wild type under continuous light. These results indicate that melatonin plays an important role in regulating both seminal root length and root growth after germination in monocotyledonous rice plants. This is the first report on the effects of melatonin on root growth in gain-of-function mutant plants that produce high levels of melatonin.

  11. Assessment of different dietary fibers (tomato fiber, beet root fiber, and inulin) for the manufacture of chopped cooked chicken products.

    PubMed

    Cava, Ramón; Ladero, Luis; Cantero, V; Rosario Ramírez, M

    2012-04-01

    Three dietary fibers (tomato fiber [TF], beet root fiber [BRF], and inulin) at 3 levels of addition (1%, 2%, and 3%) were assessed for the manufacture of chopped, cooked chicken products and compared with a control product without fiber added. The effect of fiber incorporation on (i) batters, (ii) cooked (30 min at 70 °C), and (iii) cooked and stored (for 10 d at 4 °C) chicken products were studied. The addition of the fiber to chicken meat products reduced the pH of chicken batters in proportional to the level of fiber addition. Fiber incorporation increased water-holding capacity but only the addition of TF reduced cook losses. The color of batters and cooked products was significantly modified by the type and level of fiber added. These changes were more noticeable when TF was added. Texture parameters were affected by the incorporation of TF and BRF; they increased the hardness in proportional to the level of addition. The addition of tomato and BRF to chicken meat products reduced lipid oxidation processes. These changes were dependent on the level of fiber added. The reduction of lipid oxidation processes was more marked in TF meat products than in products with other types of fibers. In contrast, the addition level of inulin increased TBA-RS numbers in chicken meat products. Although the addition of TF increased the redness of the meat products, the use of this fiber was more suitable as it reduced the extent of lipid oxidation processes. INDUSTRIAL APPLICATION: Nowadays, the reduction of fat and the increase of fiber content in meat products is one of the main goals of meat industry. Numerous sources of fiber can be added to the meat products; however, before that it is necessary to study their technological effect on raw and cooked meat products in order to evaluate their suitability for meat products manufacture. In addition, some of them could have beneficial effect on meat products conservation that could also increase their shelf life.

  12. Search for Higgs boson production in dilepton and missing energy final states with 5.4 fb(-1) of pp collisions at square root(s) = 1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2010-02-12

    A search for the standard model Higgs boson is presented using events with two charged leptons and large missing transverse energy selected from 5.4 fb(-1) of integrated luminosity in pp collisions at square root(s) = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron collider. No significant excess of events above background predictions is found, and observed (expected) upper limits at 95% confidence level on the rate of Higgs boson production are derived that are a factor of 1.55 (1.36) above the predicted standard model cross section at m(H) = 165 GeV.

  13. Enhancement of chlorogenic acid production in hairy roots of Platycodon grandiflorum by over-expression of an Arabidopsis thaliana transcription factor AtPAP1.

    PubMed

    Tuan, Pham Anh; Kwon, Do Yeon; Lee, Sanghyun; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Nam Il; Park, Sang Un

    2014-08-22

    To improve the production of chlorogenic acid (CGA) in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1) using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  14. Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1

    PubMed Central

    Tuan, Pham Anh; Kwon, Do Yeon; Lee, Sanghyun; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Nam Il; Park, Sang Un

    2014-01-01

    To improve the production of chlorogenic acid (CGA) in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1) using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA. PMID:25153629

  15. NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat.

    PubMed

    Yang, Yingli; Xu, Shijian; An, Lizhe; Chen, Nianlai

    2007-11-01

    Hydrogen peroxide (H(2)O(2)) is often generated by cells and tissues under environmental stress. In this work, we provide evidence that plasma membrane (PM) NADPH oxidase-dependent H(2)O(2) production might act as an intermediate step in the NaCl-induced elevation of calcium (Ca) in roots of wheat. Remarkable increases in the content of total Ca were observed not only in roots exposed to NaCl but also in roots of seedlings exposed to exogenous H(2)O(2). In roots, H(2)O(2) production increased upon exposure to salt stress. PM vesicles were isolated from roots, and NADPH oxidase activity was determined by measuring superoxide anion (O(2)(-)) production. NADPH oxidase-dependent O(2)(-) production was 11.6nmolmg(-1)proteinmin(-1) in control vesicles, but 19.6nmol after NaCl treatment (24h), indicating that salt stress resulted in the activation of the PM NADPH oxidase. Furthermore, the NaCl-induced increase in total Ca was partially abolished by the addition of 150U/mL catalase (CAT), a H(2)O(2) scavenger, and also by 10microM diphenylane iodonium (DPI), a NADPH oxidase inhibitor. This data suggest that NADPH oxidase-dependent H(2)O(2) production might be involved in the modulation of the Ca content in wheat roots. In conclusion, our results show that salinity stress increases the total Ca content of wheat roots, which is partly due to PM NADPH oxidase-dependent H(2)O(2) generation.

  16. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    PubMed Central

    2011-01-01

    Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal medicinal products already

  17. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins.

  18. Assimilation of Smos Observations to Generate a Prototype SMAP Level 4 Surface and Root-Zone Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John

    2012-01-01

    The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].

  19. Deuteron and antideuteron production in Au+Au collisions at square root of s(NN)=200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2005-04-01

    The production of deuterons and antideuterons in the transverse momentum range 1.1root of s(NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A coalescence analysis, comparing the deuteron and antideuteron spectra with that of proton and antiproton, has been performed. The coalescence probability is equal for both deuterons and antideuterons and it increases as a function of p(T), which is consistent with an expanding collision zone. Comparing (anti)proton yields, p /p=0.73+/-0.01, with (anti)deuteron yields, d /d=0.47+/-0.03, we estimate that n /n=0.64+/-0.04. The nucleon phase space density is estimated from the coalescence measurement.

  20. The Separability of Morphological Processes from Semantic Meaning and Syntactic Class in Production of Single Words: Evidence from the Hebrew Root Morpheme.

    PubMed

    Deutsch, Avital

    2016-02-01

    In the present study we investigated to what extent the morphological facilitation effect induced by the derivational root morpheme in Hebrew is independent of semantic meaning and grammatical information of the part of speech involved. Using the picture-word interference paradigm with auditorily presented distractors, Experiment 1 compared the facilitation effect induced by semantically transparent versus semantically opaque morphologically related distractor words (i.e., a shared root) on the production latency of bare nouns. The results revealed almost the same amount of facilitation for both relatedness conditions. These findings accord with the results of the few studies that have addressed this issue in production in Indo-European languages, as well as previous studies in written word perception in Hebrew. Experiment 2 compared the root's facilitation effect, induced by morphologically related nominal versus verbal distractors, on the production latency of bare nouns. The results revealed a facilitation effect of similar size induced by the shared root, regardless of the distractor's part of speech. It is suggested that the principle that governs lexical organization at the level of morphology, at least for Hebrew roots, is form-driven and independent of semantic meaning. This principle of organization crosses the linguistic domains of production and written word perception, as well as grammatical organization according to part of speech.

  1. Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures.

    PubMed

    Lonoce, Chiara; Salem, Reda; Marusic, Carla; Jutras, Philippe V; Scaloni, Andrea; Salzano, Anna Maria; Lucretti, Sergio; Steinkellner, Herta; Benvenuto, Eugenio; Donini, Marcello

    2016-09-01

    Hairy root (HR) cultures derived from Agrobacterium rhizogenes transformation of plant tissues are an advantageous biotechnological manufacturing platform due to the accumulation of recombinant proteins in an otherwise largely protein free culture medium. In this context, HRs descending from transgenic Nicotiana tabacum plants were successfully used for the production of several functional mAbs with plant-type glycans. Here, we expressed the tumor-targeting monoclonal antibody mAb H10 in HRs obtained either by infecting a transgenic N. tabacum line expressing H10 with A. rhizogenes or a glyco-engineered N. benthamiana line (ΔXTFT) with recombinant A. rhizogenes carrying mAb H10 heavy and light chain cDNAs. Selected HR clones derived from both plants accumulated mAb H10 in the culture medium with similar yields (2-3 mg/L). N-glycosylation profiles of antibodies purified from HR supernatant revealed the presence of plant-typical complex structures for N. tabacum-derived mAb H10 and of GnGn structures lacking xylose and fucose for the ΔXTFT-derived counterpart. Both antibody glyco-formats exhibited comparable antigen binding activities. Collectively, these data demonstrate that the co-infection of ΔXTFT Nicotiana benthamiana with recombinant A. rhizogenes is an efficient procedure for the generation of stable HR cultures expressing the tumor-targeting mAb H10 with a human-compatible glycosylation profile, thus representing an important step towards the exploitation of root cultures for the production of 'next generation' human therapeutic antibodies.

  2. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  3. Hypoxia induces unique proliferative response in adventitial fibroblasts by activating PDGFβ receptor-JNK1 signalling

    PubMed Central

    Panzhinskiy, Evgeniy; Zawada, W. Michael; Stenmark, Kurt R.; Das, Mita

    2012-01-01

    Aims Pulmonary hypertension (PH) is a devastating condition for which no disease-modifying therapies exist. PH is recognized as proliferative disease of the pulmonary artery (PA). In the experimental newborn calf model of hypoxia-induced PH, adventitial fibroblasts in the PA wall exhibit a heightened replication index. Because elevated platelet-derived growth factor β receptor (PDGFβ-R) signalling is associated with PH, we tested the hypothesis that the activation of PDGFβ-R contributes to fibroblast proliferation and adventitial remodelling in PH. Methods and results Newborn calves were exposed to either ambient air (PB = 640 mmHg) (Neo-C) or high altitude (PB = 445 mm Hg) (Neo-PH) for 2 weeks. PDGFβ-R phosphorylation was markedly elevated in PA adventitia of Neo-PH calves as well as in cultured PA fibroblasts isolated from Neo-PH animals. PDGFβ-R activation with PDGF-BB stimulated higher replication in Neo-PH cells compared with that of control fibroblasts. PDGF-BB-induced proliferation was dependent on reactive oxygen species generation and extracellular signal-regulated kinase1/2 activation in both cell populations; however, only Neo-PH cell division via PDGFβ-R activation displayed a unique dependence on c-Jun N-terminal kinase1 (JNK1) stimulation as the blockade of JNK1 with SP600125, a pharmacological antagonist of the JNK pathway, and JNK1-targeted siRNA selectively blunted Neo-PH cell proliferation. Conclusions Our data strongly suggest that hypoxia-induced modified cells engage the PDGFβ-R-JNK1 axis to confer distinctively heightened proliferation and adventitial remodelling in PH. PMID:22735370

  4. Salt stress-induced production of reactive oxygen- and nitrogen species and cell death in the ethylene receptor mutant Never ripe and wild type tomato roots.

    PubMed

    Poór, Péter; Kovács, Judit; Borbély, Péter; Takács, Zoltán; Szepesi, Ágnes; Tari, Irma

    2015-12-01

    The salt stress triggered by sublethal, 100 mM and lethal, 250 mM NaCl induced ethylene production as well as rapid accumulation of superoxide radical and H2O2 in the root tips of tomato (Solanum lycopersicum cv. Ailsa Craig) wild type and ethylene receptor mutant, Never ripe (Nr/Nr) plants. In the wild type plants superoxide accumulation confined to lethal salt concentration while H2O2 accumulated more efficiently under sublethal salt stress. However, in Nr roots the superoxide production was higher and unexpectedly, H2O2 level was lower than in the wild type under sublethal salt stress. Nitric oxide production increased significantly under sublethal and lethal salt stress in both genotypes especially in mutant plants, while peroxynitrite accumulated significantly under lethal salt stress. Thus, the nitro-oxidative stress may be stronger in Nr roots, which leads to the programmed death of tissues, characterized by the DNA and protein degradation and loss of cell viability under moderate salt stress. In Nr mutants the cell death was induced in the absence of ethylene perception. Although wild type roots could maintain their potassium content under moderate salt stress, K(+) level significantly declined leading to small K(+)/Na(+) ratio in Nr roots. Thus Nr mutants were more sensitive to salt stress than the wild type and the viability of root cells decreased significantly under moderate salt stress. These changes can be attributed to a stronger ionic stress due to the K(+) loss from the root tissues.

  5. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected

  6. Cloning and characterization of a type-A response regulator differentially expressed during adventitious shoot formation in Pinus pinea L.

    PubMed

    Cortizo, M; Alvarez, J M; Rodríguez, A; Fernández, B; Ordás, R J

    2010-08-15

    Type-A response regulators play an important role in cytokinin-induced adventitious shoot formation, acting as negative regulators of cytokinin signal transduction. In this work, we obtained the full-length cDNA clone of a type-A response regulator from the conifer Pinus pinea, designated PipiRR1. The derived peptide sequence showed all the characteristic motifs found in angiosperms. Gene expression analysis showed that the gene was differentially expressed during adventitious shoot formation in P. pinea cotyledons, suggesting that PipiRR1 may play a role in caulogenesis in conifers. This is the first type-A response regulator identified in gymnosperms.

  7. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR.

    PubMed

    Alonso, Pablo; Cortizo, Millán; Cantón, Francisco R; Fernández, Belén; Rodríguez, Ana; Centeno, Maria L; Cánovas, Francisco M; Ordás, Ricardo J

    2007-12-01

    As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.

  8. Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals.

    PubMed

    Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank

    2017-02-01

    Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.

  9. Supercritical fluid extract of Lycium chinense Miller root inhibition of melanin production and its potential mechanisms of action

    PubMed Central

    2014-01-01

    Background The mode of action of Lycium chinense Miller root extract in skin care has never been explored. In the present study, Lycium chinense Miller root was extracted by the supercritical fluid CO2 extraction method. Methods In the present study, the components of the root extract were analyzed by HPLC. The effects of the extract on tyrosinase activity and melanin content were determined spectrophotometrically; the expression of melanogenesis-related proteins was determined by Western blotting; the possible signaling pathways involved in the root extract-mediated depigmentation were also investigated using specific inhibitors. Results The results revealed that the SFE of Lycium chinense Miller root (2.37-7.11 mg/mL) effectively suppressed intracellular tyrosinase activity and decreased the melanin content in B16F10 cells. The root extract also effectively decreased intracellular reactive oxygen species (ROS) levels. Furthermore, the root extract decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) and then inhibited melanogenesis in B16F10 cells. The root extract also showed antioxidant capacities and depleted cellular ROS. Conclusions Our results indicate that the SFE of Lycium chinense Miller root inhibited melanogenesis in B16F10 cells by down-regulation of both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways or through its antioxidant properties. PMID:24972978

  10. Robust root growth in altered hydrotropic response1 (ahr1) mutant of Arabidopsis is maintained by high rate of cell production at low water potential gradient.

    PubMed

    Salazar-Blas, Amed; Noriega-Calixto, Laura; Campos, María E; Eapen, Delfeena; Cruz-Vázquez, Tania; Castillo-Olamendi, Luis; Sepulveda-Jiménez, Gabriela; Porta, Helena; Dubrovsky, Joseph G; Cassab, Gladys I

    2017-01-01

    Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this work were to ascertain how ahr1 roots could sustain growth in the WPGS, with a special focus on the integration of cellular processes involved in the signaling that determines root growth during abiotic stress and their relation to hydrotropism. Cellular analysis of the root apical meristem of ahr1 mutant contrary to the wild type showed an absence of changes in the meristem length, the elongation zone length, the length of fully elongated cells, and the cell cycle duration. The robust and steady root growth of ahr1 seedlings in the WPGS is explained by the mutant capacity to maintain cell production and cell elongation at the same level as in the NM. Analysis of auxin response at a transcriptional level showed that roots of the ahr1 mutant had a lower auxin response when grown in the WPGS, compared to wild type, indicating that auxin signaling participates in attenuation of root growth under water stress conditions. Also, wild type plants exhibited a high increase in proline content while ahr1 mutants showed minimum changes in the Normal Medium→Water Stress Medium (NM→WSM), a lower water potential gradient system than the WPGS. Accordingly, in this condition, gene expression of Δ1-6 Pyrroline-5-Carboxylate Synthetase1 (P5CS1) involved in proline synthesis strongly increased in wild type but not in ahr1 seedlings. The ahr1 phenotype shows unique features since the mutant root cells continue to proliferate and grow in the presence of a progressively negative water potential gradient at a level comparable to wild type growing in the NM. As such, it represents an exceptional resource for understanding

  11. Pulmonary Artery Adventitial Fibroblasts Cooperate with Vasa Vasorum Endothelial Cells to Regulate Vasa Vasorum Neovascularization

    PubMed Central

    Davie, Neil J.; Gerasimovskaya, Evgenia V.; Hofmeister, Stephen E.; Richman, Aaron P.; Jones, Peter L.; Reeves, John T.; Stenmark, Kurt R.

    2006-01-01

    The precise cellular and molecular mechanisms regulating adventitial vasa vasorum neovascularization, which occurs in the pulmonary arterial circulation in response to hypoxia, remain unknown. Here, using a technique to isolate and culture adventitial fibroblasts (AdvFBs) and vasa vasorum endothelial cells (VVECs) from the adventitia of pulmonary arteries, we report that hypoxia-activated pulmonary artery AdvFBs exhibited pro-angiogenic properties and influenced the angiogenic phenotype of VVEC, in a process of cell-cell communication involving endothelin-1 (ET-1). We demonstrated that AdvFBs, either via co-culture or conditioned media, stimulated VVEC proliferation and augmented the self-assembly and integrity of cord-like networks that formed when VVECs where cultured on Matrigel. In addition, hypoxia-activated AdvFBs produced ET-1, suggesting a paracrine role for this pro-angiogenic molecule in these processes. When co-cultured on Matrigel, AdvFBs and VVECs self-assembled into heterotypic cord-like networks, a process augmented by hypoxia but attenuated by either selective endothelin receptor antagonists or oligonucleotides targeting prepro-ET-1 mRNA. From these observations, we propose that hypoxia-activated AdvFBs exhibit pro-angiogenic properties and, as such, communicate with VVECs, in a process involving ET-1, to regulate vasa vasorum neovascularization occurring in the adventitia of pulmonary arteries in response to chronic hypoxia. PMID:16723696

  12. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta

    PubMed Central

    Leclercq, Anne; Veillat, Véronique; Loriot, Sandrine; Spuul, Pirjo; Madonna, Francesco; Roques, Xavier; Génot, Elisabeth

    2015-01-01

    Background Aortic diseases are diverse and involve a multiplicity of biological systems in the vascular wall. Aortic dissection, which is usually preceded by aortic aneurysm, is a leading cause of morbidity and mortality in modern societies. Although the endothelium is now known to play an important role in vascular diseases, its contribution to aneurysmal aortic lesions remains largely unknown. The aim of this study was to define a reliable methodology for the isolation of aortic intimal and adventitial endothelial cells in order to throw light on issues relevant to endothelial cell biology in aneurysmal diseases. Methodology/Principal Findings We set up protocols to isolate endothelial cells from both the intima and the adventitia of human aneurysmal aortic vessel segments. Throughout the procedure, analysis of cell morphology and endothelial markers allowed us to select an endothelial fraction which after two rounds of expansion yielded a population of >90% pure endothelial cells. These cells have the features and functionalities of freshly isolated cells and can be used for biochemical studies. The technique was successfully used for aortic vessel segments of 20 patients and 3 healthy donors. Conclusions/Significance This simple and highly reproducible method allows the simultaneous preparation of reasonably pure primary cultures of intimal and adventitial human endothelial cells, thus providing a reliable source for investigating their biology and involvement in both thoracic aneurysms and other aortic diseases. PMID:26599408

  13. Venous Adventitial Cystic Disease: A Review of 45 Cases Treated Since 1963

    PubMed Central

    Bascone, Corey; Szuchmacher, Mauricio; Cicchillo, Michael; Krishnasastry, Kambhampaty V.

    2016-01-01

    Purpose. To review and identify the most accurate ways of diagnosing and treating adventitial cystic disease (ACD) of the venous system. Methods. Cases of ACD were collected through three popular medical databases, including PubMed, Cochrane, OVID, and MEDLINE. After reviewing the literature, the sites of occurrence of 323 cases of adventitial cystic disease were documented, and all cases of arterial ACD were excluded. The clinical features, treatment, and subsequent course of 45 cases of venous ACD are included in this paper. Results. After reviewing all 45 cases of venous ACD , we have confirmed that the most common vessel affected is the common femoral vein, which reproduces the most common symptom of venous ACD: asymmetric lower extremity swelling worsening over time. Conclusion. Venous ACD most commonly affects the common femoral vein. When unilateral leg swelling occurs with or without a noticeable mass, ACD should be considered. It is best confirmed with CT venography and the treatment of choice is transluminal cyst evacuation and excision. PMID:27885342

  14. ASSESSING THE EFFECTS OF GLOBAL CLIMATE CHANGE ON THE PRODUCTION AND MORTALITY OF DOUGLAS FIR FINE ROOTS USING MINIRHIZOTRONS

    EPA Science Inventory

    Fine roots (roots 2 mm in diameter) are one of the principal absorptive surfaces for water and nutrients in terrestrial plants. As such they are vital for plant growth and survival, while their turnover serves as a primary mechanism for carbon addition to soil. Little is known...

  15. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.).

    PubMed

    Gonzalez Padilla, I M; Webb, K; Scorza, R

    2003-08-01

    We describe here an improved system for routinely developing transgenic plum plants (Prunus domestica L.) through the use of Agrobacterium tumefaciens. The production of non-transformed "escapes" has been virtually eliminated, and rates of plant establishment in the greenhouse have been dramatically improved. The system is based on the regeneration of shoots from hypocotyls extracted from mature seed. The shoot regeneration medium is Murashige and Skoog (MS) salts and vitamins supplemented with 7.5 microM thidiazuron and 0.25 microM indole-butyric acid. Transferring the explants after co-cultivation to shoot regeneration medium containing 80 mg l(-1) of kanamycin and 300 mg l(-1) of Timentin reduced the total number of regenerated shoots without affecting the transformation rate. Transformation rates using the described system averaged 1.2% of the hypocotyl slices producing transgenic plants, with a range of 0-4.2%. The transgenic shoots rooted at a rate of 90% on half-strength MS salts and vitamins supplemented with 5 microM alpha-naphthaleneacetic acid and 0.01 microM kinetin. Plantlets were transferred to a greenhouse directly from culture tubes with a 90% average survival.

  16. Improvement of Polyunsaturated Fatty Acid Production in Echium acanthocarpum Transformed Hairy Root Cultures by Application of Different Abiotic Stress Conditions

    PubMed Central

    Zárate, Rafael; Cequier-Sánchez, Elena; Rodríguez, Covadonga; Dorta-Guerra, Roberto; El Jaber-Vazdekis, Nabil; Ravelo, Ángel G.

    2013-01-01

    Fatty acids are of great nutritional, therapeutic, and physiological importance, especially the polyunsaturated n-3 fatty acids, possessing larger carbon chains and abundant double bonds or their immediate precursors. A few higher plant species are able to accumulate these compounds, like those belonging to the Echium genus. Here, the novel E. acanthocarpum hairy root system, which is able to accumulate many fatty acids, including stearidonic and α-linolenic acids, was optimized for a better production. The application of abiotic stress resulted in larger yields of stearidonic and α-linolenic acids, 60 and 35%, respectively, with a decrease in linoleic acid, when grown in a nutrient medium consisting of B5 basal salts, sucrose or glucose, and, more importantly, at a temperature of 15°C. The application of osmotic stress employing sorbitol showed no positive influence on the fatty acid yields; furthermore, the combination of a lower culture temperature and glucose did not show a cumulative boosting effect on the yield, although this carbon source was similarly attractive. The abiotic stress also influenced the lipid profile of the cultures, significantly increasing the phosphatidylglycerol fraction but not the total lipid neither their biomass, proving the appropriateness of applying various abiotic stress in this culture to achieve larger yields. PMID:25937970

  17. Chrysanthemum transcription factor CmLBD1 direct lateral root formation in Arabidopsis thaliana

    PubMed Central

    Zhu, Lu; Zheng, Chen; Liu, Ruixia; Song, Aiping; Zhang, Zhaohe; Xin, Jingjing; Jiang, Jiafu; Chen, Sumei; Zhang, Fei; Fang, Weimin; Chen, Fadi

    2016-01-01

    The plant-specific LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes are important regulators of growth and development. Here, a chrysanthemum class I LBD transcription factor gene, designated CmLBD1, was isolated and its function verified. CmLBD1 was transcribed in both the root and stem, but not in the leaf. The gene responded to auxin and was shown to participate in the process of adventitious root primordium formation. Its heterologous expression in Arabidopsis thaliana increased the number of lateral roots formed. When provided with exogenous auxin, lateral root emergence was promoted. CmLBD1 expression also favored callus formation from A. thaliana root explants in the absence of exogenously supplied phytohormones. In planta, CmLBD1 probably acts as a positive regulator of the response to auxin fluctuations and connects auxin signaling with lateral root formation. PMID:26819087

  18. Enhancement of growth and coumarin production in hairy root cultures of witloof chicory (Cichorium intybus L.cv. Lucknow local) under the influence of fungal elicitors.

    PubMed

    Bais, H P; Govindaswamy, S; Ravishankar, G A

    2000-01-01

    Studies were conducted to determine the possible production of coumarins in hairy root cultures of Cichorium intybus L.cv. Lucknow local under the influence of microbial agents. Pythium aphanidermatum and Phytopthora parasitica var. nicotiana were cultured and their mycelial and medium filtrate were used for the elicitation of coumarin production. The media filtrate of P. parasitica at 1.0% v/v added to the MS basal medium led to the maximum growth of hairy roots of C. intybus, which was 1.57-fold higher than the untreated control on the 28th day of culture, along with maximum esculin and esculetin yields which were 4.06- and 3.71-fold higher than the control on the 28th day. The yields of esculin and esculetin in hairy root cultures of chicory strongly correlated with growth. To check the effect of these fungal elicitors on endogenous polyamine metabolism, titers of total endogenous polyamines were analyzed. It was confirmed that the media filtrate of P. parasitica at 1.0% v/v concentration resulted in maximum accumulation of total endogenous polyamines, wherein endogenous spermine titers were found to be maximum as compared to endogenous spermidine and putrescine titers on the 28th day. Total endogenous spermine in the case of 1.0% MF v/v P. parasitica was 1.3-fold higher than that of the control on the 28th day of culture. Maximum growth index with greater length of primary root (17.61+/-0.18 cm) and greater number of secondary and tertiary roots was recorded for the medium filtrate of P. parasitica at 1.0% v/v concentration. This study also provided an insight into the morphological changes in terms of branching patterns, occurring in roots under the influence of these fungal elicitors.

  19. Evaluation of a nematode bio-product Dbx-20% against root-knot nematode Meloidogyne incognita affecting grapevine under field conditions.

    PubMed

    Aboul-Eid, H Z; Noweer, E M A; Ashour, N E; Ameen, Hoda H

    2006-01-01

    A field trial was conducted in El-Shourouk Farm, El-Beheira governorate, western Nile valley, Egypt to determine the effectiveness of the commercial bio-product Dbx 1003 20% containing the nematode-trapping fungus Dactylaria brochopaga against root-knot nematode Meloidogyne incognita infesting grapevine variety Superior. Its effects on plant growth criteria and yield production were also investigated. The fungus was introduced to soil by either of two ways. First: soil was drenched with spore suspension at the rate of 3 l/tree. Second: 1/2 kg of a vermiculite substrate, as a carrier of spores and mycelia was added around each tree both as single and twice application in autumn and spring. All treatments significantly reduced M. incognita J2 in soil and number of root galls compared with the untreated control. Significant yield increases have been observed with all treatments compared with the untreated control. Spores suspension twice applications gave the highest yield production.

  20. Evidence to support that adventitial cysts, analogous to intraneural ganglion cysts, are also joint-connected.

    PubMed

    Spinner, Robert J; Desy, Nicholas M; Agarwal, Gautum; Pawlina, Wojciech; Kalra, Manju; Amrami, Kimberly K

    2013-03-01

    Cystic adventitial disease (CAD) is a rare condition in which cyst is found within a vessel, typically producing symptoms of vascular compromise. Most commonly located in the popliteal artery near the knee, it has been reported in arteries and veins throughout the body. Its pathogenesis has been poorly understood and various surgical approaches have been recommended. We extrapolated some recent information about a similar condition, intraneural ganglion cyst affecting the deep fibular (peroneal) nerve, to the prototype, CAD of the popliteal artery. In intraneural ganglion cysts affecting the deep fibular nerve we have shown that an articular (neural) branch is the conduit between the superior tibiofibular joint and the main parent nerve for which epineurial dissection of joint fluid can occur. We hypothesized that the same principles would apply to CAD and that an articular (vascular) branch would be the conduit from the knee joint leading to dissection to the main parent vessel. We reviewed five patients with CAD of the popliteal artery in whom MRIs were available: two treated by the primary author well familiar with the proposed articular theory, and three treated by others at our institution, less familiar with it. We then reviewed the literature critically to assess for additional evidence to support our articular (synovial) theory and an anatomic explanation. In the two cases treated by the primary author a joint connection was identified on high resolution MRI prospectively and intraoperatively through the middle genicular artery (MGA); postoperatively in these cases there was no recurrence. In the other three cases, a joint connection was not identified on imaging or at operation. Reinterpretation of these cases revealed a joint connection through the MGA in the one patient who had preoperative imaging and subclinical persistence/recurrence in the two patients who underwent postoperative MRIs done for other reasons. Our review of the literature and imaging

  1. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen

    PubMed Central

    Zhu, Jingwen; Liang, Jing; Xu, Zhihui; Fan, Xiaorong; Zhou, Quansuo; Shen, Qirong; Xu, Guohua

    2015-01-01

    In wetland soils, changes in oxygen (O2) level in the rhizosphere are believed to influence the behaviour of nutrients and their usage by plants. However, the effect of aeration on nitrogen (N) acquisition under different N supply conditions remains largely unknown. In this study, the rice cultivars Yangdao 6 (YD6, with higher root aerenchyma abundance) and Nongken 57 (NK57, with lower root aerenchyma abundance) were used to evaluate the effects of aeration on rice growth and N accumulation. Our results showed that the number of adventitious roots and the root surface area increased significantly, and ethylene production and aerenchyma formation decreased in both cultivars after external aeration (EA). Five N treatments, including no N (−N), 0.125 mM NH4NO3 (LN), 1.25 mM Ca(NO3)2 (NO3-N), 1.25 mM (NH4)2SO4 (NH4-N) and 1.25 mM NH4NO3 (N/N), were applied to YD6 and NK57 for 2 days under internal aeration or EA conditions. External aeration increased the root biomass in both cultivars and the shoot biomass in NK57 by 18–50 %. The total N concentrations in roots of YD6 grown under −N and LN and of NK57 grown under NO3-N were increased by EA. Expression of OsPAD4, one of four putative genes regulating aerenchyma formation, showed a similar pattern alongside changes in the ethylene level in the EA-treated rice irrespective of the N treatments. Furthermore, expression of the high-affinity nitrate transporter gene OsNRT2.1 was increased by EA under −N, LN and NO3-N conditions. Our data provide evidence of an interaction between O2 and the supply of N in ethylene production, aerenchyma formation and N nutrition through modification of the expression of OsPAD4 and OsNRT2.1. PMID:26578743

  2. Anatomical aspects of angiosperm root evolution

    PubMed Central

    Seago, James L.; Fernando, Danilo D.

    2013-01-01

    Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly

  3. Establishment of Hairy Root Cultures by Agrobacterium Rhizogenes Mediated Transformation of Isatis Tinctoria L. for the Efficient Production of Flavonoids and Evaluation of Antioxidant Activities

    PubMed Central

    Luo, Meng; Wei, Zuo-Fu; Zu, Yuan-Gang; Ma, Wei; Fu, Yu-Jie

    2015-01-01

    In this work, Isatis tinctoria hairy root cultures (ITHRCs) were established as an alternative source for flavonoids (FL) production. I. tinctoria hairy root line V was found to be the most efficient line and was further confirmed by the PCR amplification of rolB, rolC and aux1 genes. Culture parameters of ITHRCs were optimized by Box-Behnken design (BBD), and eight bioactive FL constituents (rutin, neohesperidin, buddleoside, liquiritigenin, quercetin, isorhamnetin, kaempferol and isoliquiritigenin) were quali-quantitatively determined by LC-MS/MS. Under optimal conditions, the total FL accumulation of ITHRCs (24 day-old) achieved was 438.10 μg/g dry weight (DW), which exhibited significant superiority as against that of 2 year-old field grown roots (341.73 μg/g DW). Additionally, in vitro antioxidant assays demonstrated that ITHRCs extracts exhibited better antioxidant activities with lower IC50 values (0.41 and 0.39, mg/mL) as compared to those of field grown roots (0.56 and 0.48, mg/mL). To the best of our knowledge, this is the first report describing FL production and antioxidant activities from ITHRCs. PMID:25785699

  4. Search for resonant pair production of neutral long-lived particles decaying to bb in pp collisions at square root(S)=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Devaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; da Silva, W L Prado; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-08-14

    We report on a first search for resonant pair production of neutral long-lived particles (NLLP) which each decay to a bb pair, using 3.6 fb(-1) of data recorded with the D0 detector at the Fermilab Tevatron collider. We search for pairs of displaced vertices in the tracking detector at radii in the range 1.6-20 cm from the beam axis. No significant excess is observed above background, and upper limits are set on the production rate in a hidden-valley benchmark model for a range of Higgs boson masses and NLLP masses and lifetimes.

  5. Seasonal Patterns of Fine Root Production and Turnover in a Mature Rubber Tree (Hevea brasiliensis Müll. Arg.) Stand- Differentiation with Soil Depth and Implications for Soil Carbon Stocks

    PubMed Central

    Maeght, Jean-Luc; Gonkhamdee, Santimaitree; Clément, Corentin; Isarangkool Na Ayutthaya, Supat; Stokes, Alexia; Pierret, Alain

    2015-01-01

    Fine root dynamics is a main driver of soil carbon stocks, particularly in tropical forests, yet major uncertainties still surround estimates of fine root production and turnover. This lack of knowledge is largely due to the fact that studying root dynamics in situ, particularly deep in the soil, remains highly challenging. We explored the interactions between fine root dynamics, soil depth, and rainfall in mature rubber trees (Hevea brasiliensis Müll. Arg.) exposed to sub-optimal edaphic and climatic conditions. A root observation access well was installed in northern Thailand to monitor root dynamics along a 4.5 m deep soil profile. Image-based measurements of root elongation and lifespan of individual roots were carried out at monthly intervals over 3 years. Soil depth was found to have a significant effect on root turnover. Surprisingly, root turnover increased with soil depth and root half-life was 16, 6–8, and only 4 months at 0.5, 1.0, 2.5, and 3.0 m deep, respectively (with the exception of roots at 4.5 m which had a half-life similar to that found between depths of 1.0 and 2.5 m). Within the first two meters of the soil profile, the highest rates of root emergence occurred about 3 months after the onset of the rainy season, while deeper in the soil, root emergence was not linked to the rainfall pattern. Root emergence was limited during leaf flushing (between March and May), particularly within the first two meters of the profile. Between soil depths of 0.5 and 2.0 m, root mortality appeared independent of variations in root emergence, but below 2.0 m, peaks in root emergence and death were synchronized. Shallow parts of the root system were more responsive to rainfall than their deeper counterparts. Increased root emergence in deep soil toward the onset of the dry season could correspond to a drought acclimation mechanism, with the relative importance of deep water capture increasing once rainfall ceased. The considerable soil depth regularly explored

  6. Giant kelp vegetative propagation: Adventitious holdfast elements rejuvenate senescent individuals of the Macrocystis pyrifera "integrifolia" ecomorph.

    PubMed

    Murúa, Pedro; Müller, Dieter G; Patiño, David J; Westermeier, Renato

    2016-11-22

    Recent findings on holdfast development in the giant kelp highlighted its key importance for Macrocystis vegetative propagation. We report here for the first time the development of adventitious holdfasts from Macrocystis stipes. Swellings emerge spontaneously from different areas of the stipes, especially in senescent or creeping individuals. After being manually fastened to solid substrata, these swellings elongated into haptera, which became strongly attached after 1 month. Within 4 months, new thalli increased in size and vitality, and developed reproductive fronds. Our results suggest the usage of these structures for auxiliary attachment techniques. These could act as a backup, when primary holdfasts are weak, and thus improve the survival rate of the giant kelp in natural beds.

  7. Summary of cases of adventitial cystic disease of the popliteal artery.

    PubMed Central

    Flanigan, D P; Burnham, S J; Goodreau, J J; Bergan, J J

    1979-01-01

    Adventitial cystic disease of the popliteal artery is explored. The results of correspondence with authors reporting this condition are elaborated upon. This has provided an opportunity to discuss the history of the condition, the findings in 115 cases which have come to the attention of the Correspondence Office dealing with this entity, and the results of treatment. A discussion of the suspected etiology of the condition is presented. The condition remains one of unknown etiology which can be treated by cyst evacuation or aspiration when the popliteal artery is patent and which is best treated by arterial reconstruction when the artery is occluded. The results of such treatment are good but are dependent upon technical excellence of the operative procedure. PMID:426549

  8. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  9. The effects of phytase and root hydroalcoholic extract of Withania somnifera on productive performance and bone mineralisation of laying hens in the late phase of production.

    PubMed

    Tahmasbi, A M; Mirakzehi, M T; Hosseini, S J; Agah, M J; Fard, M Kazemi

    2012-01-01

    1. A 6-week study was conducted to investigate the effects of phytase and hydroalcoholic extract of Withania somnifera root (WS) on productive performance and bone mineralisation of laying hens in the late phase of production. 2. Diets were arranged factorially (3 × 2 × 2) and consisted of a positive control with adequate Ca (4·37%) and nonphytate P (NPP; 0·39%) and a negative control diet with Ca (4·06%) and NPP (0·36 %); three concentrations of Withania somnifera (0, 65 and 130 mg/kg diet); and two concentrations of microbial phytase (0 and 300 U/kg diet). 3. A total of 144 72-week-old Hy-Line W36 laying hens were randomly assigned to the 12 treatment groups. Each treatment was replicated 4 times (4 x 3 hens). Egg production and egg weight were recorded daily, while feed intake and egg quality traits were recorded every two weeks. Bone quality traits were evaluated at the end of experiment. 4. Withania somnifera supplementation increased egg production and lowered egg weight only in the second two weeks of the experiment. Addition of phytase significantly depressed specific gravity of the eggs for the entire experiment period. No dietary treatment effects were observed on egg shell thickness and yolk weight. 5. Withania somnifera at 130 mg/kg did not affect feed intake. The hens fed on the positive control diet had higher albumen weight than the negative control diet in the second two-week period. Supplementation of the positive control diet with 65 mg/kg Withania somnifera in the absence of phytase significantly improved shell weight compared with the negative control (5·779 vs. 5·273 g respectively). 6. Supplementing Withania somnifera significantly improved Ca and P retention in tibia bone. In addition, an increase in tibia bone P was observed with phytase supplementation. There were significant interactions between Withania somnifera content and phytase for tibia bone Ca and P. 7. The results of this experiment indicated that dietary

  10. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation1[OPEN

    PubMed Central

    Steenackers, Ward; Corneillie, Sander; Araújo, Pedro; Viaene, Tom; Nowack, Moritz K.; Blakeslee, Joshua J.; Novák, Ondřej; Zažímalová, Eva

    2017-01-01

    Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis. PMID:27837086

  11. Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding

    SciTech Connect

    Sena Gomes, A.R.; Kozlowski, T.T.

    1980-01-01

    Flooding induced several physiological and morphological changes in Fraxinus pennsylvanica seedlings, with stomatal closure among the earliest responses. Subsequent changes included: reduction in dry weight increment of roots, stems, and leaves; formation of hypertrophied lenticles and production of adventitious roots on submerged portions of the stem above the soil line; leaf necrosis; and leaf abscission. After 15 days of stomatal closure as a results of flooding, stomata began to reopen progressively until stomata aperture was similar in flooded and unflooded plants. Adventitious roots began to form at about the time stomatal reopening began. As more adventitious roots formed, elongated, and branched, the stomata opened further. The formation of adventitious roots was in important adaptation for flooding tolerance as shown by the high efficiency of adventitious roots in absorption of water and in high correlation between the production of adventitious roots and stomatal reopening. 6 figures, 2 tables.

  12. Measurement of the W(+)W(-) production cross section in pp collisions at square root[s]=1.96 TeV using dilepton events.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'agnello, S; Dell'orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Dörr, C; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Efron, J; Ehlers, J; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; Guimaraes da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P A; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-06-03

    We present a measurement of the W(+)W(-) production cross section using 184 pb(-1) of p(p) collisions at a center-of-mass energy of 1.96 TeV collected with the Collider Detector at Fermilab. Using the dilepton decay channel W(+)W(-)-->l(+)nul(-), where the charged leptons can be either electrons or muons, we find 17 candidate events compared to an expected background of 5.0(+2.2)(-0.8) events. The resulting W(+)W(-) production cross-section measurement of sigma(pp-->W(+)W(-))=14.6(+5.8)(-5.1)(stat)(+1.8)(-3.0)(syst) +/- 0.9(lum) pb agrees well with the standard model expectation.

  13. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  14. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway.

    PubMed

    Ritala, Anneli; Dong, Lemeng; Imseng, Nicole; Seppänen-Laakso, Tuulikki; Vasilev, Nikolay; van der Krol, Sander; Rischer, Heiko; Maaheimo, Hannu; Virkki, Arho; Brändli, Johanna; Schillberg, Stefan; Eibl, Regine; Bouwmeester, Harro; Oksman-Caldentey, Kirsi-Marja

    2014-04-20

    The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their genetic and biochemical stability and their rapid growth in hormone-free media. Tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots, which do not produce geraniol naturally, were engineered to express a plastid-targeted geraniol synthase gene originally isolated from Valeriana officinalis L. (VoGES). A SPME-GC-MS screening tool was developed for the rapid evaluation of production clones. The GC-MS analysis revealed that the free geraniol content in 20 hairy root clones expressing VoGES was an average of 13.7 μg/g dry weight (DW) and a maximum of 31.3 μg/g DW. More detailed metabolic analysis revealed that geraniol derivatives were present in six major glycoside forms, namely the hexose and/or pentose conjugates of geraniol and hydroxygeraniol, resulting in total geraniol levels of up to 204.3 μg/g DW following deglycosylation. A benchtop-scale process was developed in a 20-L wave-mixed bioreactor eventually yielding hundreds of grams of biomass and milligram quantities of geraniol per cultivation bag.

  15. Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term control of leafy spurge with glyphosate requires multiple applications because the plant reproduces vegetatively from abundant underground adventitious buds (UABs). Determining the molecular mechanisms involved in controlling vegetative reproduction in leafy spurge following foliar glyphos...

  16. Search for resonant WZ production in the WZ to lvl l channel in root(s)=7 TeV pp collisions with the ATLAS detector

    SciTech Connect

    Aad G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderhol

    2012-06-25

    A generic search is presented for a heavy particle decaying to WZ {yields} lvl{prime}l{prime} (l, l{prime} = e, {mu}) final states. The data were recorded by the ATLAS detector in {radical}s = 7 TeV pp collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02 fb{sup -1}. The transverse mass distribution of the selected WZ candidates is found to be consistent with the standard model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a WZ pair.

  17. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.

    PubMed

    Agrawal, Bhavana; Czymmek, Kirk J; Sparks, Donald L; Bais, Harsh P

    2013-03-08

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.

  18. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  19. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization.

    PubMed

    Li, Ya; Wang, Qi; Wang, Lu; He, Lin-Yan; Sheng, Xia-Fang

    2016-02-01

    Endophytic bacterial strain K3-2 was isolated from the roots of Sorghum sudanense (an bioenergy plant) grown in a Cu mine wasteland soils and characterized. Strain K3-2 was identified as Enterobacter sp. based on 16S rRNA gene sequence analysis. Strain K3-2 exhibited Cu resistance and produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), siderophores, and arginine decarboxylase. Pot experiments showed that strain K3-2 significantly increased the dry weight and root Cu accumulation of Sorghum sudanense grown in the Cu mine wasteland soils. Furthermore, increase in total Cu uptake (ranging from 49% to 95%) of the bacterial inoculated-Sorghum sudanense was observed compared to the control. Notably, most of Cu (83-86%) was accumulated in the roots of Sorghum sudanense. Furthermore, inoculation with strain K3-2 was found to significantly increase Cu bioconcentration factors and the proportions of IAA- and siderophore-producing bacteria in the root interiors and rhizosphere soils of Sorghum sudanense compared with the control. Significant decrease in the available Cu content was also observed in the rhizosphere soils of the bacterial-inoculated Sorghum sudanense. The results suggest that the endophytic bacterial strain K3-2 may be exploited for promoting Sorghum sudanense biomass production and Cu phytostabilization in the Cu mining wasteland soils.

  20. Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis1[C][W][OA

    PubMed Central

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Cortés-Penagos, Carlos; López-Bucio, José

    2009-01-01

    Trichoderma species belong to a class of free-living fungi beneficial to plants that are common in the rhizosphere. We investigated the role of auxin in regulating the growth and development of Arabidopsis (Arabidopsis thaliana) seedlings in response to inoculation with Trichoderma virens and Trichoderma atroviride by developing a plant-fungus interaction system. Wild-type Arabidopsis seedlings inoculated with either T. virens or T. atroviride showed characteristic auxin-related phenotypes, including increased biomass production and stimulated lateral root development. Mutations in genes involved in auxin transport or signaling, AUX1, BIG, EIR1, and AXR1, were found to reduce the growth-promoting and root developmental effects of T. virens inoculation. When grown under axenic conditions, T. virens produced the auxin-related compounds indole-3-acetic acid, indole-3-acetaldehyde, and indole-3-ethanol. A comparative analysis of all three indolic compounds provided detailed information about the structure-activity relationship based on their efficacy at modulating root system architecture, activation of auxin-regulated gene expression, and rescue of the root hair-defective phenotype of the rhd6 auxin response Arabidopsis mutant. Our results highlight the important role of auxin signaling for plant growth promotion by T. virens. PMID:19176721

  1. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    PubMed

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  2. Measurement of the WW production cross section in pp collisions at square root[s]=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Asman, B; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystricky, J; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Cho, D K; Choi, S; Christiansen, T; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M-C; Crépé-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveria Martins, C; Dean, S; Déliot, F; Delsart, P A; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Y; Ginther, G; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Gris, Ph; Grivaz, J-F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Jöstlein, H; Juste, A; Kado, M M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A; Kharzheev, Y M; Kim, K H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Krzywdzinski, S; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kurca, T; Lager, S; Lahrichi, N; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Lubatti, H J; Lueking, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melanson, H L; Melnitchouk, A; Merkin, M; Merritt, K W; Meyer, A; Miettinen, H; Mihalcea, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Oshima, N; Otero y Garzón, G J; Padley, P; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Perez, E; Peters, O; Pétroff, P; Petteni, M; Phaf, L; Piegaia, R; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pope, B G; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Rani, K J; Rapidis, P A; Ratoff, P N; Reay, N W; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shephard, W D; Shpakov, D; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Steinbrück, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tentindo-Repond, S; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vlimant, J-R; Von Toerne, E; Vreeswijk, M; Vu Anh, T; Wahl, H D; Walker, R; Wang, L; Wang, Z-M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Whiteson, D; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xu, Q; Xuan, N; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Zylberstejn, A

    2005-04-22

    We present a measurement of the W boson pair-production cross section in pp collisions at a center-of-mass energy of sqrt[s]=1.96 TeV. The data, collected with the Run II D0 detector at Fermilab, correspond to an integrated luminosity of 224-252 pb(-1) depending on the final state (ee, emu, or mumu). We observe 25 candidates with a background expectation of 8.1+/-0.6(stat)+/-0.6(syst)+/-0.5(lum) events. The probability for an upward fluctuation of the background to produce the observed signal is 2.3x10(-7), equivalent to 5.2 standard deviations. The measurement yields a cross section of 13.8(+4.3)(-3.8)(stat)+1.2-0.9(syst)+/-0.9(lum) pb, in agreement with predictions from the standard model.

  3. Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is not always accompanied with enhancement of ROS production

    PubMed Central

    Soltys, Dorota; Gniazdowska, Agnieszka; Bogatek, Renata

    2013-01-01

    Mode of action of allelochemicals in target plants is currently widely studied. Cyanamide is one of the newly discovered allelochemical, biosynthesized in hairy vetch. Recently, it has been recognized that cyanamide is plant growth inhibitor, which affects mitosis in root tip cells and causes,e.g., disorder in phytohormonal balance. We also demonstrated that CA may act as oxidative stress agent but it strictly depends on plant species, exposure time and doses. Roots of tomato seedling treated with water solution of 1.2 mM cyanamide did not exhibit elevated reactive oxygen species concentration during the whole culture period. PMID:23428892

  4. Midrapidity Lambda and Lambda(macro) production in Au+Au collisions at the square root of [s(NN)]=130 GeV.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2002-08-26

    We report the first measurement of strange (Lambda) and antistrange (Lambda macro) baryon production from square root of [s(NN)]=130 GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at midrapidity are presented as a function of centrality. The yield of Lambda and Lambda; hyperons is found to be approximately proportional to the number of negative hadrons. The production of Lambda; hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models alone.

  5. Evidence of WW and WZ production with lepton + jets final states in pp collisions at square root s=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blekman, F; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Devaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dutt, S; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; Meijer, M M; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Villeneuve-Seguier, F; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-04-24

    We present first evidence for WW+WZ production in lepton + jets final states at a hadron collider. The data correspond to 1.07 fb-1 of integrated luminosity collected with the D0 detector at the Fermilab Tevatron in pp collisions at square root s=1.96 TeV. The observed cross section for WW+WZ production is 20.2+/-4.5 pb, consistent with the standard model and more precise than previous measurements in fully leptonic final states. The probability that background fluctuations alone produce this excess is <5.4 x 10-6, which corresponds to a significance of 4.4 standard deviations.

  6. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)

    PubMed Central

    Valliyodan, Babu; Van Toai, Tara T.; Alves, Jose Donizeti; de Fátima P. Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B.; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J. Grover; Nguyen, Henry T.

    2014-01-01

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  7. CO2 AND N-FERTILIZATION EFFECTS ON FINE ROOT LENGTH, PRODUCTION, AND MORTALITY: A 4-YEAR PONDEROSA PINE STUDY

    EPA Science Inventory

    We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...

  8. Polyamines and Root Formation in Mung Bean Hypocotyl Cuttings 1

    PubMed Central

    Friedman, Ra'Anan; Altman, Arie; Bachrach, Uriel

    1982-01-01

    The effect of several polyamines (putrescine, spermidine, and spermine), their precursors (l-arginine and l-ornithine), and some analogs and metabolic inhibitors (l-canavanine, l-canaline, and methylglyoxal-bis [guanylhydrazone]) on root formation have been studied in mung bean (Vigna radiata [L.] Wilczek) hypocotyl cuttings. Exogenously applied polyamines did not promote adventitious root formation. Rooting was inhibited by l-canavanine and l-canaline, and this inhibition was reversed by the corresponding amino acids l-arginine and l-ornithine. Methylglyoxal-bis (guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase and polyamine biosynthesis, was also found to inhibit root formation. All compounds at concentrations of >10−4 molarity completely inhibited natural root formation, whereas at <10−5 molarity only the indole-butyric acid-induced root formation was inhibited. Indole-butyric acid-induced root formation was accompanied by a considerable increase in polyamine levels, more than 2-fold of the control. Whereas senescing (unrooted) cuttings evinced a rapid decline in polyamine content during 48 hours, indole-butyric acid treatment resulted in elevated levels of putrescine and increased putrescine to spermidine ratio. The changes in polyamines were dependent on indole-butyric acid concentration and were organ specific. Images Fig. 1 PMID:16662586

  9. Biomass Production of Hairy Roots of Artemisia annua and Arachis hypogaea in a Scaled-Up Mist Bioreactor

    PubMed Central

    Sivakumar, Ganapathy; Liu, Chunzhao; Towler, Melissa J.

    2014-01-01

    Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was μ = 0.173 day−1 with biomass yield of 12.75 g DWL−1. This exceeded that in shake flasks at μ = 0.166 day−1 and 11.10 g DWL−1. Best growth rate and biomass yield at 20 L was μ = 0.147 and 7.77 g DWL−1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. PMID:20687140

  10. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source, root-zone pH, and aerial CO2 concentration on growth and productivity of soybeans

    NASA Technical Reports Server (NTRS)

    Raper, C. D.; Tolley-Henry, L.

    1989-01-01

    An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.

  11. Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations.

    PubMed

    Roger, Isolda; Symes, Mark D

    2015-11-04

    Electrolytic water oxidation using earth-abundant elements is a key challenge in the quest to develop cheap, large surface area arrays for solar-to-hydrogen conversion. There have been numerous studies in this area in recent years, but there remains an imperative to demonstrate that the current densities reported are indeed due to the species under consideration and not due to the presence of adventitious (yet possibly highly active) contaminants at low levels. Herein, we show that adventitious nickel at concentrations as low as 17 nM can act as a water oxidation catalyst in mildly basic aqueous solutions, achieving stable (tens of hours) current densities of 1 mA cm(-2) at overpotentials as low as 540 mV at pH 9.2 and 400 mV at pH 13. This nickel was not added to the electrolysis baths deliberately, but it was found to be present in the electrolytes as an impurity by ICP-MS. The presence of nickel on anodes from extended-time bulk electrolysis experiments was confirmed by XPS. In showing that such low levels of nickel can perform water oxidation at overpotentials comparable to many recently reported water oxidation catalysts, this work serves to raise the burden of proof required of new materials in this field: contamination by adventitious metal ions at trace loadings must be excluded as a possible cause of any observed water oxidation activity.

  12. Centrality dependence of direct photon production in (square root)S(NN) = 200 GeV Au + Au collisions.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Perdekamp, M Grosse; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2005-06-17

    The first measurement of direct photons in Au + Au collisions at (square root)S(NN) = 200 GeV is presented. The direct photon signal is extracted as a function of the Au + Au collision centrality and compared to next-to-leading order perturbative quantum chromodynamics calculations. The direct photon yield is shown to scale with the number of nucleon-nucleon collisions for all centralities.

  13. High Levels of Hemoglobin Promote Carotid Adventitial Vasa Vasorum Neoangiogenesis in Chronic Kidney Disease

    PubMed Central

    Martinez-Alonso, Montserrat; Belart, Montserrat; Vilar, Ana; Martín, Marisa; Craver, Lourdes; Betriu, Àngels; Valdivielso, José Manuel; Fernández, Elvira

    2017-01-01

    Chronic kidney disease (CKD) patients, characterized by traditional and nontraditional risk factors, are prone to develop atheromatosis and thus cardiovascular events and mortality. The angiogenesis of the adventitial vasa vasorum (aVV) surrounding the carotid has been described as the atheromatosis initiator. Therefore, the aim of the study was to (1) evaluate if the carotid aVV in CKD patients increases in comparison to its physiological value of healthy patients; (2) explore which traditional or nontraditional risk factor including inflammation, bone and mineral metabolism, and anemia could be related to the aVV angiogenesis. CKD patients without previous cardiovascular events (44, stages 3-4; 37, stage 5D) and 65 healthy subjects were compared. The carotid aVV and the intima-media thickness (cIMT) were evaluated by ultrasound. CKD patients at stages 3-4 showed higher aVV of the right carotid artery even after adjusting for age. Importantly, a multiple linear regression model showed hemoglobin levels > 12.5 g/dL as the factor for an estimated higher aVV of the right carotid artery. In conclusion, the association of hemoglobin with higher aVV could suggest the role of high hemoglobin in the higher incidence of adverse cardiovascular outcomes in CKD patients. PMID:28133420

  14. An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu)

    PubMed Central

    Song, Mia; He, Qianjing; Berk, Benjamin-Andreas; Hartwig, John H.; Stossel, Thomas P.; Nakamura, Fumihiko

    2015-01-01

    Filamin A (FLNA) is an actin filament crosslinking protein with multiple intracellular binding partners. Mechanical force exposes cryptic FLNA binding sites for some of these ligands. To identify new force-dependent binding interactions, we used a fusion construct composed of two FLNA domains, one of which was previously identified as containing a force-dependent binding site as a bait in a yeast two-hybrid system and identified the Rho dissociation inhibitor 2 (RhoGDI2) as a potential interacting partner. A RhoGDI2 truncate with 81 N-terminal amino acid residues and a phosphomimetic mutant, RhoGDI(Tyr153Glu) interacted with the FLNA construct. However, neither wild-type or full-length RhoGDI2 phosphorylated at Y153 interacted with FLNA. Our interpretation of these contradictions is that truncation and/or mutation of RhoGDI2 perturbs its conformation to expose a site that adventitiously binds FLNA and is not a bona-fide interaction. Therefore, previous studies reporting that a RhoGDI(Y153E) mutant suppresses the metastasis of human bladder cancer cells must be reinvestigated in light of artificial interaction of this point mutant with FLNA. PMID:26707877

  15. Percutaneous Image-Guided Aspiration and Sclerosis of Adventitial Cystic Disease of the Femoral Vein

    SciTech Connect

    Johnson, Jason M.; Kiankhooy, Armin; Bertges, Daniel J.; Morris, Christopher S.

    2009-07-15

    Adventitial cystic disease (ACD), also known as cystic mucoid or myxomatous degeneration, is a rare vascular disease mainly seen in arteries. Seventeen cases have been reported in the world literature. We report the first known case of ACD successfully treated with percutaneous image-guided ethanol sclerosis. Computed tomography showed a cystic mass adherent to the wall of the common femoral vein. An ultrasound examination revealed a deep venous thrombosis of the leg, secondary to extrinsic compression of the common femoral vein. Three years prior to our procedure, the cyst was aspirated, which partially relieved the patient's symptoms. Over the following 3 years the patient's symptoms worsened and a 10-cm discrepancy in thigh size developed, in addition to the deep venous thrombosis associated with lower-extremity edema. Using ultrasound guidance and fluoroscopic control, the cyst was drained and then sclerosed with absolute ethanol. The patient's symptoms and leg swelling resolved completely within several weeks. Follow-up physical examination and duplex ultrasound 6 months following sclerosis demonstrated resolution of the symptoms and elimination of the extrinsic compression effect of the ACD on the common femoral vein.

  16. Sampling and modeling for the quantification of adventitious genetically modified presence in maize.

    PubMed

    Allnutt, Theodore Richard; Dwyer, Mark; McMillan, Jillian; Henry, Christine; Langrell, Stephen

    2008-05-14

    The coexistence of genetically modified (GM) and non-GM crops is an important economic and political issue in the European Union. We examined the GM content in non-GM maize crops in Spain in 2005. Both the standing crop and the harvest were tested, and the %GM DNA was quantified by real-time polymerase chain reaction. We compared the level of GM as a function of distance from known GM source fields in a 1.2 km2 landscape. The distribution of GM was compared to predictions from previous studies, and good agreement was found. Control and monitoring of adventitious GM presence in non-GM crops can only be achieved by fit-for-purpose sampling and testing schemes. We used a GM dispersal function to simulate non-GM crops in the studied zone and tested the accuracy of five different sampling schemes. Random sampling was found to be the most accurate and least susceptible to bias by GM spatial structure or gradients. Simulations showed that to achieve greater than 95% confidence in a GM labeling decision of a harvest (when treated as a single marketed lot), 34 samples would be needed when the harvest was outside 50% of the GM threshold value. The number of samples required increased rapidly as the harvest approached the GM threshold, implying that accurate labeling when the harvest is within +/-17% of the threshold may not be possible with high confidence.

  17. The effect of polar auxin transport on adventitious branches formation in Gracilaria lichenoides in vitro.

    PubMed

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Zhang, Fang; Fang, Baishan; Wang, Zhaokai

    2016-11-01

    Seaweed tissue culture (STC) is an important micropropagation tool that has been applied for strain improvement, micropropagation and genetic engineering. Because the mechanisms associated with STC are poorly understood, its application to these organisms lags far behind that of tissue culture propagation of higher plants. Auxin, calcium (Ca(2+) ) and hydrogen peroxide (H2 O2 ) fluxes all play key roles during plant growth and development. In this study, we therefore measured indole-3-acetic acid, Ca(2+) and H2 O2 fluxes of Gracilaria lichenoides explants during adventitious branches (ABs) formation for the first time using noninvasive micro-test technology. We confirmed that polar auxin transport (PAT) also occurs in the marine red alga G. lichenoides. We additionally found that N-1-naphthylphthalamic acid may suppress auxin efflux via ABCB1 transporters and then inhibit ABs formation from the apical region of G. lichenoides segments. The involvement of Ca(2+) and H2 O2 fluxes in PAT-mediated AB formation in G. lichenoides was also investigated. We propose that complex feedback among Ca(2+) , H2 O2 and auxin signaling and response systems may occur during ABs polar formation in G. lichenoides explants, similar to that in higher plants. Our results provide innovative insights that should aid future elucidation of mechanisms operative during STC.

  18. Analysis of miRNAs and Their Targets during Adventitious Shoot Organogenesis of Acacia crassicarpa

    PubMed Central

    Hou, Lingyu; Wang, Xiaoyu; Zheng, Fei; Wang, Weixuan; Liang, Di; Yang, Hailun; Jin, Yi; Xie, Xiangming

    2014-01-01

    Organogenesis is an important process for plant regeneration by tissue or cell mass differentiation to regenerate a complete plant. MicroRNAs (miRNAs) play an essential role in regulating plant development by mediating target genes at transcriptional and post-transcriptional levels, but the diversity of miRNAs and their potential roles in organogenesis of Acacia crassicarpa have rarely been investigated. In this study, approximately 10 million sequence reads were obtained from a small RNA library, from which 189 conserved miRNAs from 57 miRNA families, and 7 novel miRNAs from 5 families, were identified from A. crassicarpa organogenetic tissues. Target prediction for these miRNAs yielded 237 potentially unique genes, of which 207 received target Gene Ontology annotations. On the basis of a bioinformatic analysis, one novel and 13 conserved miRNAs were selected to investigate their possible roles in A. crassicarpa organogenesis by qRT-PCR. The stage-specific expression patterns of the miRNAs provided information on their possible regulatory functions, including shoot bud formation, modulated function after transfer of the culture to light, and regulatory roles during induction of organogenesis. This study is the first to investigate miRNAs associated with A. crassicarpa organogenesis. The results provide a foundation for further characterization of miRNA expression profiles and roles in the regulation of diverse physiological pathways during adventitious shoot organogenesis of A. crassicarpa. PMID:24718555

  19. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    PubMed

    Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation.

  20. Distribution of myofibroblast and tenascin-C in cystic adventitial disease: comparison with ganglion.

    PubMed

    Hao, Hiroyuki; Ishibashi-Ueda, Hatsue; Nishida, Naoki; Kawakami, Rika; Tsukamoto, Yoshitane; Tsujimoto, Masahiko; Hirota, Seiichi

    2013-12-01

    Cystic adventitial disease (CAD) is a rare peripheral artery disorder which shows the development of gelatinous cysts in the adventitia. Although several theories for the pathogenesis of CAD have been postulated, the etiology of CAD remains unclear. Histological examination of three CAD cases revealed that these cyst walls were composed of fibrous tissue and lacked both epithelial and endothelial lining. The surfaces of these cysts were partially covered with spindle-shaped cells, similar to the interstitial cells within the cyst wall. A pool of mucinous material in the adventitia was evident. Distribution of vimentin-positive spindle-shaped cells and scattered CD68-positive oval-shaped cells in the cyst wall was revealed by immunohistochemistry. A part of vimentin-positive spindle-shaped cells demonstrated to be positive for α-smooth muscle actin, indicating the presence of myofibroblasts in the cyst wall. A focal tenascin-C-positive area was observed in the cyst wall of our CAD cases. Presence of two different cell types, proliferation of myofibroblasts and expression of tenascin-C were consistent with those of cyst walls of 20 surgically resected ganglions. These results suggest that CAD may arise as capsular synovial structures, similar to ganglion cysts.

  1. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development.

    PubMed

    Snowden, Kimberley C; Simkin, Andrew J; Janssen, Bart J; Templeton, Kerry R; Loucas, Holly M; Simons, Joanne L; Karunairetnam, Sakuntala; Gleave, Andrew P; Clark, David G; Klee, Harry J

    2005-03-01

    Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development.

  2. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 Gene Affects Branch Production and Plays a Role in Leaf Senescence, Root Growth, and Flower Development

    PubMed Central

    Snowden, Kimberley C.; Simkin, Andrew J.; Janssen, Bart J.; Templeton, Kerry R.; Loucas, Holly M.; Simons, Joanne L.; Karunairetnam, Sakuntala; Gleave, Andrew P.; Clark, David G.; Klee, Harry J.

    2005-01-01

    Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development. PMID:15705953

  3. Methylmercury production in and export from agricultural wetlands in California, USA: the need to account for physical transport processes into and out of the root zone

    USGS Publications Warehouse

    Bachand, Philip A.M.; Bachand, Sandra M.; Fleck, Jacob A.; Alpers, Charles N.; Stephenson, Mark; Windham-Myers, Lisamarie

    2014-01-01

    Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~ 3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m− 2 for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m− 2. These exports are

  4. Reprint of "Methylmercury production in and export from agricultural wetlands in California, USA: the need to account for physical transport processes into and out of the root zone".

    PubMed

    Bachand, P A M; Bachand, S M; Fleck, J A; Alpers, C N; Stephenson, M; Windham-Myers, L

    2014-06-15

    Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1μgm(-2) for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3μgm(-2). These exports are within the range

  5. Measurement of the cross section for prompt diphoton production in pp collisions at square root of s=1.96 TeV.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Dörr, C; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ehlers, J; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; Guimaraes da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P A; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Denis, R St; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-07-08

    We report a measurement of the rate of prompt diphoton production in pp collisions at square root of s=1.96 TeV using a data sample of 207 pb(-1) collected with the upgraded Collider Detector at Fermilab. The background from nonprompt sources is determined using a statistical method based on differences in the electromagnetic showers. The cross section is measured as a function of the diphoton mass, the transverse momentum of the diphoton system, and the azimuthal angle between the two photons and is found to be consistent with perturbative QCD predictions.

  6. Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at square root of s = 200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-12-22

    We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.

  7. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits

    PubMed Central

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  8. Association of Shifting Populations in the Root Zone Microbiome of Millet with Enhanced Crop Productivity in the Sahel Region (Africa)

    PubMed Central

    Assigbetse, Komi; Bayala, Roger; Chapuis-Lardy, Lydie; Dick, Richard P.; McSpadden Gardener, Brian B.

    2015-01-01

    This study characterized specific changes in the millet root zone microbiome stimulated by long-term woody-shrub intercropping at different sites in Senegal. At the two study sites, intercropping with woody shrubs and shrub residue resulted in a significant increase in millet [Pennisetum glaucum (L.) R. Br.] yield (P < 0.05) and associated patterns of increased diversity in both bacterial and fungal communities in the root zone of the crop. Across four experiments, operational taxonomic units (OTUs) belonging to Chitinophaga were consistently significantly (P < 0.001) enriched in the intercropped samples, and “Candidatus Koribacter” was consistently significantly enriched in samples where millet was grown alone. Those OTUs belonging to Chitinophaga were enriched more than 30-fold in residue-amended samples and formed a distinct subgroup from all OTUs detected in the genus. Additionally, OTUs belonging to 8 fungal genera (Aspergillus, Coniella, Epicoccum, Fusarium, Gibberella, Lasiodiplodia, Penicillium, and Phoma) were significantly (P < 0.005) enriched in all experiments at all sites in intercropped samples. The OTUs of four genera (Epicoccum, Fusarium, Gibberella, and Haematonectria) were consistently enriched at sites where millet was grown alone. Those enriched OTUs in intercropped samples showed consistently large-magnitude differences, ranging from 30- to 1,000-fold increases in abundance. Consistently enriched OTUs in intercropped samples in the genera Aspergillus, Fusarium, and Penicillium also formed phylogenetically distinct subgroups. These results suggest that the intercropping system used here can influence the recruitment of potentially beneficial microorganisms to the root zone of millet and aid subsistence farmers in producing higher-yielding crops. PMID:25681183

  9. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  10. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos.

    PubMed

    Lawit, Shai J; Chamberlin, Mark A; Agee, April; Caswell, Eric S; Albertsen, Marc C

    2013-06-01

    Expression datasets relating to the Arabidopsis female gametophyte have enabled the creation of a tool set which allows simultaneous visual tracking of each specific cell type (egg, synergids, central cell, and antipodals). This cell-specific, fluorescent labeling tool-set functions from gametophyte cellularization through fertilization and early embryo development. Using this system, cell fates were tracked within Arabidopsis ovules following molecular manipulations, such as the ablation of the egg and/or synergids. Upon egg cell ablation, it was observed that a synergid can switch its developmental fate to become egg/embryo-like upon loss of the native egg. Also, manipulated was the fate of the somatic ovular cells, which can become egg- and embryo-like, reminiscent of adventitious embryony. These advances represent initial steps toward engineering synthetic apomixis resulting in seed derived wholly from the maternal plant. The end goal of applied apomixis research, fixing important agronomic traits such as hybrid vigor, would be a key benefit to agricultural productivity.

  11. Feline immunodeficiency virus and retrovirus-mediated adventitial ex vivo gene transfer to rabbit carotid artery using autologous vascular smooth muscle cells.

    PubMed

    Kankkonen, Hanna M; Turunen, Mikko P; Hiltunen, Mikko O; Lehtolainen, Pauliina; Koponen, Jonna; Leppänen, Pia; Turunen, Anna-Mari; Ylä-Herttuala, Seppo

    2004-03-01

    We have developed an ex vivo gene transfer technique to rabbit arterial wall using autologous smooth muscle cells (SMCs). SMCs were harvested from rabbit ear artery, transduced in vitro with vesicular stomatitis virus G-glycoprotein pseudotyped retrovirus or feline immunodeficiency virus (FIV) and returned to the adventitial surface of the carotid artery using a periadventitial silicone collar or collagen sheet placed around the artery. Beta-galactosidase (lacZ) and human apolipoprotein E3 (apoE3) cDNAs were used as transgenes. After retrovirus-mediated gene transfer of lacZ the selected cells implanted with high efficiency and expressed lacZ marker gene at a very high level 7 and 14 days after the operation. The level of lacZ expression decreased thereafter but was still detectable 12 weeks after the gene transfer, and was exclusively localized to the site of cell implantation inside the collar. Utilizing FIV vector expressing apoE3, low levels of apoE were measured from serum collected from a low-density lipoprotein receptor deficient Watanabe heritable hyperlipidemic rabbits 1 month after the gene transfer. The physiological effect of apoE expression was detected as transiently elevated serum cholesterol levels. The results indicate that the model can be used for high efficiency local gene transfer in arteries, e.g. during vascular surgery. The model is also valuable for studying expression, stability and safety of new gene transfer vectors and their expression products in vivo.

  12. Review: production, characterization, and testing of banked mammalian cell substrates used to produce biological products.

    PubMed

    Schiff, Leonard J

    2005-01-01

    A critical component in controlling the production of biological products derived from human and animal cell lines is the characterization and testing of banked cell substrates. The objective is to confirm the identity, purity, and suitability of these cells for manufacturing use. Quality concerns for biological products derived from cell lines originate from the presence of cellular and adventitious contaminants. Well-characterized cell banks not only permit a consistent source of production cells throughout the life of a product but also decrease the likelihood of contamination by other cell lines and adventitious agents. An important part of qualifying a cell line is choosing the appropriate testing for the presence of adventitious contaminants. The qualification of cell banks includes tests for cell identity and endogenous and adventitious microbial contaminants (bacteria, fungi, mycoplasmas, and viruses). For cells producing recombinant deoxyribonucleic acid-derived products, analysis of the expression construct at the nucleic acid level (genetic stability) is also a primary concern. The strategy for designing a safety-testing program for banked cells should be based on sound scientific principles and current regulatory guidance.

  13. Insecticidal activity of the root extract of Decalepis hamiltonii against stored-product insect pests and its application in grain protection.

    PubMed

    Rajashekar, Y; Gunasekaran, N; Shivanandappa, T

    2010-06-01

    Root extracts of Decalepis hamiltonii were tested for insecticidal activity against the stored products pests, Rhyzopertha domonica, Sitophilus oryzae, Stigobium pancieum, Tribolium castaneum and Callosobruchus chinensis, in residual and contact toxicity bioassays. Methanolic extract showed LC50 value of 0.14 mg/cm(2) for all the test species in a filter paper residual bioassay. The extract was effective as a grain protectant for wheat and green gram. Reduction of F1 progeny was observed in treated grain stored for 3-4 months. The extract did not affect the germination of the treated grains. Our results indicate that methanolic extracts of D. hamiltonii has a potential to control stored product pests and could serve as a natural grain protectant.

  14. Production of a single cyclic type of fructooligosaccharide structure by inulin-degrading Paenibacillus sp. LX16 newly isolated from Jerusalem artichoke root.

    PubMed

    Yao, Zhihua; Guo, Jiqiang; Tang, Wenzhu; Sun, Zhen; Hou, Yingmin; Li, Xianzhen

    2016-05-01

    A novel inulin-degrading bacterium was isolated from a soil sample collected on Jerusalem artichoke roots. It is a Gram-positive, aerobic, motile and central endospore-forming straight rod, and exhibits phenotypic properties being consistent with its classification in the genus Paenibacillus. The predominant cellular fatty acids were anteiso-C15:0, C16:0 and anteiso-C17:0. This strain represents a novel species of the genus Paenibacillus on the basis of phenotypic data together with phylogenetic analysis, and it is here designated as LX16 and deposited in China centre for type collection, China (= CCTCC 2015256). Strain LX16 could produce a cyclofructooligosaccharide fructanotransferase catalysing the formation of one type of fructooligosaccharide (FOS) from inulin. The FOS was identified as a cyclofructooligosaccharide with a degree of polymerization of 6. Such homology in inulin degradation products may be beneficial for the functional FOS production.

  15. Galectin-3 Gene Inactivation Reduces Atherosclerotic Lesions and Adventitial Inflammation in ApoE-Deficient Mice

    PubMed Central

    Nachtigal, Maurice; Ghaffar, Abdul; Mayer, Eugene P.

    2008-01-01

    This study has examined the role of galectin-3 (GaL3), a multicompartmented N-acetyllactosamine-binding chimeric lectin, on atherogenesis in the ApoE-deficient mouse model of atherosclerosis. Pathological changes consisting of atheromatous plaques, atherosclerotic microaneurysms extending into periaortic vascular channels, and adventitial and periaortic inflammatory infiltrates were assessed in an equal number (n = 36) of apolipoprotein (Apo)E-deficient mice and ApoE-GaL3 double-knockout mice. These mice were divided into three age groups, 21 to 23 weeks, 25 to 31 weeks, and 36 to 44 weeks of age. Results of this morphological analysis have shown an age-related increase in the incidence of aorta atheromatous plaques and periaortic vascular channels in ApoE-deficient mice. By contrast ApoE/GaL3 double-knockout mice did not show an increase in pathological changes with age. The 36- to 44-week group of ApoE−/−/GaL3−/− mice had a significantly lower number of atherosclerotic lesions (P < 0.004) and fewer atheromatous plaques (P < 0.008) when compared with ApoE−/−/GaL3+/+ mice of the same age. ApoE−/−/GaL3−/− mice had a lower number of perivascular inflammatory infiltrates and mast cells than those found in ApoE−/−/GaL3+/+ mice. The reduced number of perivascular mast cells may have resulted in a low level of interleukin-4 that contributed to the reduction in the morphological parameters of atherogenesis correlated with the lack of GaL3 expression. The effect of GaL3 deficiency on atherogenesis decrease could be related to its function as a multifunctional protein implicated in macrophage chemotaxis, angiogenesis, lipid loading, and inflammation. PMID:18156214

  16. Novel approach to continuous adventitious respiratory sound analysis for the assessment of bronchodilator response

    PubMed Central

    Fiz, José Antonio; Martínez-Rivera, Carlos; Torrents, Aurora; Ruiz-Manzano, Juan; Jané, Raimon

    2017-01-01

    Background A thorough analysis of continuous adventitious sounds (CAS) can provide distinct and complementary information about bronchodilator response (BDR), beyond that provided by spirometry. Nevertheless, previous approaches to CAS analysis were limited by certain methodology issues. The aim of this study is to propose a new integrated approach to CAS analysis that contributes to improving the assessment of BDR in clinical practice for asthma patients. Methods Respiratory sounds and flow were recorded in 25 subjects, including 7 asthma patients with positive BDR (BDR+), assessed by spirometry, 13 asthma patients with negative BDR (BDR-), and 5 controls. A total of 5149 acoustic components were characterized using the Hilbert spectrum, and used to train and validate a support vector machine classifier, which distinguished acoustic components corresponding to CAS from those corresponding to other sounds. Once the method was validated, BDR was assessed in all participants by CAS analysis, and compared to BDR assessed by spirometry. Results BDR+ patients had a homogenous high change in the number of CAS after bronchodilation, which agreed with the positive BDR by spirometry, indicating high reversibility of airway obstruction. Nevertheless, we also found an appreciable change in the number of CAS in many BDR- patients, revealing alterations in airway obstruction that were not detected by spirometry. We propose a categorization for the change in the number of CAS, which allowed us to stratify BDR- patients into three consistent groups. From the 13 BDR- patients, 6 had a high response, similar to BDR+ patients, 4 had a noteworthy medium response, and 1 had a low response. Conclusions In this study, a new non-invasive and integrated approach to CAS analysis is proposed as a high-sensitive tool for assessing BDR in terms of acoustic parameters which, together with spirometry parameters, contribute to improving the stratification of BDR levels in patients with

  17. Adventitial Tertiary Lymphoid Organs as Potential Source of MicroRNA Biomarkers for Abdominal Aortic Aneurysm.

    PubMed

    Spear, Rafaelle; Boytard, Ludovic; Blervaque, Renaud; Chwastyniak, Maggy; Hot, David; Vanhoutte, Jonathan; Staels, Bart; Lemoine, Yves; Lamblin, Nicolas; Pruvot, François-René; Haulon, Stephan; Amouyel, Philippe; Pinet, Florence

    2015-05-18

    Abdominal aortic aneurysm (AAA) is an inflammatory disease associated with marked changes in the cellular composition of the aortic wall. This study aims to identify microRNA (miRNA) expression in aneurysmal inflammatory cells isolated by laser microdissection from human tissue samples. The distribution of inflammatory cells (neutrophils, B and T lymphocytes, mast cells) was evaluated in human AAA biopsies. We observed in half of the samples that adventitial tertiary lymphoid organs (ATLOs) with a thickness from 0.5 to 2 mm were located exclusively in the adventitia. Out of the 850 miRNA that were screened by microarray in isolated ATLOs (n = 2), 164 miRNAs were detected in ATLOs. The three miRNAs (miR-15a-3p, miR-30a-5p and miR-489-3p) with the highest expression levels were chosen and their expression quantified by RT-PCR in isolated ATLOs (n = 4), M1 (n = 2) and M2 macrophages (n = 2) and entire aneurysmal biopsies (n = 3). Except for the miR-30a-5p, a similar modulation was found in ATLOs and the two subtypes of macrophages. The modulated miRNAs were then evaluated in the plasma of AAA patients for their potential as AAA biomarkers. Our data emphasize the potential of miR-15a-3p and miR-30a-5p as biomarkers of AAA but also as triggers of ATLO evolution. Further investigations will be required to evaluate their targets in order to better understand AAA pathophysiology.

  18. Assessment of root uptake and systemic vine-transport of Salmonella enterica sv. Typhimurium by melon (Cucumis melo) during field production.

    PubMed

    Lopez-Velasco, Gabriela; Sbodio, Adrian; Tomás-Callejas, Alejandro; Wei, Polly; Tan, Kin Hup; Suslow, Trevor V

    2012-08-01

    Among melons, cantaloupes are most frequently implicated in outbreaks and surveillance-based recalls due to Salmonella enterica. There is limited but compelling evidence that associates irrigation water quality as a significant risk of preharvest contamination of melons. However, the potential for root uptake from water and soil and subsequent systemic transport of Salmonella into melon fruit is uncharacterized. The aim of this work was to determine whether root uptake of S. enterica results in systemic transport to fruit at high doses of applied inoculum through sub-surface drip and furrow irrigation during field production of melons. Cantaloupe and honeydew were grown under field conditions, in a silt clay loam soil using standard agronomic practices for California. An attenuated S. enterica sv. Typhimurium strain was applied during furrow irrigation and, in separate plots, buried drip-emitter lines delivered the inoculum directly into the established root zone. Contamination of the water resulted in soil contamination within furrows however Salmonella was not detected on top of the beds or around melon roots of furrow-irrigated rows demonstrating absence of detectable lateral transfer across the soil profile. In contrast, positive detection of the applied isolate occurred in soil and the rhizosphere in drip injected plots; survival of Salmonella was at least 41 days. Despite high populations of the applied bacteria in the rhizosphere, after surface disinfection, internalized Salmonella was not detected in mature melon fruit (n=485). Contamination of the applied Salmonella was detected on the rind surface of melons if fruit developed in contact with soil on the sides of the inoculated furrows. Following an unusual and heavy rain event during fruit maturation, melons collected from the central area of the beds, were shown to harbor the furrow-applied Salmonella. Delivery of Salmonella directly into the peduncle, after minor puncture wounding, resulted in detection

  19. Globular body production, their anatomy, DNase gel analysis and NDP kinase activity in root tips of Poncirus trifoliata L.

    PubMed

    Tzatzani, Thiresia-Teresa; Dimassi-Theriou, Kortessa; Yupsanis, Traianos; Bosabalidis, Artemios; Therios, Ioannis; Sarropoulou, Virginia

    2013-10-01

    Green globular bodies were developed from Poncirus trifoliata L. root tip explants as a response to addition in the substrate of different growth regulators. From the globular bodies, shoots initiated and grew. Median section of the globular bodies reveals that they are composed of parenchyma cells and originate from the pericycle. The activity of DNases during shoot formation from globular bodies was influenced by the type and concentration of plant growth regulators that were added in the nutrient substrate. Peptide bands formation was also influenced by the increase of BA concentration. Consequently, BA, NAA and IAA combination influenced 5'-triphosphonucleosides (NTPs) appearance and activity in the presence of metal. Peptide bands resulted from the electrophoretic analysis of endogenous protein phosphorylation, proved to be catalytic subunits of NDP kinases, as they all phosphorylate diphosphonucleosides. The enzymes DNases and NDP kinases could be used as a scientific tool for the study of shoot formation from P. trifoliata L. green globular bodies.

  20. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    SciTech Connect

    Michaelides, Michael; Pantziara, Maria Ioannidis, Kleanthis

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  1. Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production.

    PubMed

    Shi, Sheng-Qing; Shi, Zheng; Jiang, Ze-Ping; Qi, Li-Wang; Sun, Xiao-Mei; Li, Chun-Xiu; Liu, Jian-Feng; Xiao, Wen-Fa; Zhang, Shou-Gong

    2010-02-01

    gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid presented in a wide range of organisms. In this study, a suppression subtractive hybridization (SSH) library was constructed using roots of a legume shrub, Caragana intermedia, with the combined treatment of 300 mm NaCl and 300 mm NaCl + 10 mm GABA. We obtained 224 GABA-regulated unique expressed sequence tags (ESTs) including signal transduction, transcriptional regulation, hormone biosynthesis, reactive oxygen species (ROS) and polyamine metabolism, etc. The key H(2)O(2)-generated genes, NADPH oxidase (CaGR60), peroxidase (CaGR61) and amine oxidase (CaGR62), were regulated at the mRNA level by 10 mm GABA, which clearly inhibited H(2)O(2) accumulation brought about by NaCl stress in roots and leaves with the observation of 3,3'-diaminobenzidine (DAB) staining. Similarly, 10 mm GABA also regulated the expression of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) genes (CaGR30 and CaGR31) and ethylene production in NaCl-treated roots. Surprisingly, these H(2)O(2)-generated genes were enhanced at the mRNA level by a lower concentration of GABA, at 0.25 mm, but not other alternative nitrogen sources, and endogenous GABA accumulated largely just by the application of GABA at either concentration. Our results further proved that GABA, as a signal molecule, participates in regulating the expression of genes in plants under salt stress.

  2. Enhanced Production of Resveratrol, Piceatannol, Arachidin-1, and Arachidin-3 in Hairy Root Cultures of Peanut Co-treated with Methyl Jasmonate and Cyclodextrin.

    PubMed

    Yang, Tianhong; Fang, Lingling; Nopo-Olazabal, Cesar; Condori, Jose; Nopo-Olazabal, Luis; Balmaceda, Carlos; Medina-Bolivar, Fabricio

    2015-04-22

    Peanut (Arachis hypogaea) produces stilbenoids upon exposure to abiotic and biotic stresses. Among these compounds, the prenylated stilbenoids arachidin-1 and arachidin-3 have shown diverse biological activities with potential applications in human health. These compounds exhibit higher or novel biological activities in vitro when compared to their nonprenylated analogues piceatannol and resveratrol, respectively. However, assessment of these bioactivities in vivo has been challenging because of their limited availability. In this study, hairy root cultures of peanut were induced to produce stilbenoids upon treatment with elicitors. Co-treatment with 100 μM methyl jasmonate (MeJA) and 9 g/L methyl-β-cyclodextrin (CD) led to sustained high levels of resveratrol, piceatannol, arachidin-1, and arachidin-3 in the culture medium when compared to other elicitor treatments. The average yields of arachidin-1 and arachidin-3 were 56 and 148 mg/L, respectively, after co-treatment with MeJA and CD. Furthermore, MeJA and CD had a synergistic effect on resveratrol synthase gene expression, which could explain the higher yield of resveratrol when compared to treatment with either MeJA or CD alone. Peanut hairy root cultures were shown to be a controlled and sustainable axenic system for the production of the diverse types of biologically active stilbenoids.

  3. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    USGS Publications Warehouse

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  4. LC-MS(n) characterization of steroidal saponins in Helleborus niger L. roots and their conversion products during fermentation.

    PubMed

    Duckstein, Sarina M; Stintzing, Florian C

    2015-01-01

    Steroidal saponins comprise a substantial part of the secondary metabolite spectrum in the medicinal plant Helleborus niger L. (black hellebore). The saponin fraction from the roots was investigated by LC-MS(n) resulting in 38 saponins and β-ecdysone. Nine diosgenyl-type glycosides, mainly furostanols consisting of the aglycones diosgenin, macranthogenin, sceptrumgenin, and sarsasapogenin were accompanied by 5 diosgenyl-type saponins exhibiting an aglycone with an additional OH group. However, the most relevant compounds were 24 acetylated polyhydroxy saponins including hellebosaponins A and D. The enzymes glucuronidase, β-glucosidase, and pectinase were used to obtain an idea on potential fermentative transformation reactions by incubation of the isolated model saponins macranthosid I and hellebosaponin A. In a second step, aqueous H. niger extracts containing a much greater range of saponins were monitored during fermentation and 12months of storage. The metabolites were examined and assigned by LC-MS(n) and targeted extracted ion current (EIC) scan analyses. Good agreement was found among the results from the model compounds and the whole aqueous fermented extracts. The native diosgenyl-type furostanol saponins were converted to spirostanols under scission of hexoses. Alteration of the acetylated polyhydroxy saponins, exclusively spirostanols, took place following cleavage of acetyl groups and terminal deoxyhexoses. Most interestingly, the pentoses of the sugar chain at C(1) were not affected. Conversion of acetylated polyhydroxy saponins resulted in a final structure type which was stable and detectable, even after 12months of fermentation and storage.

  5. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity.

    PubMed

    Ge, Lei; Chen, Hui; Jiang, Jia-Fu; Zhao, Yuan; Xu, Ming-Li; Xu, Yun-Yuan; Tan, Ke-hui; Xu, Zhi-Hong; Chong, Kang

    2004-07-01

    There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1::GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1::GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature.

  6. Measurement of Wgamma and Zgamma production in pp collisions at square root s=1.96 TeV.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; Guimaraes da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; joo, K K; Jun, S; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefevre, R; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stefanini, A; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik Iii, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester Iii, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-02-04

    The standard model predictions for Wgamma and Zgamma production are tested using an integrated luminosity of 200 pb(-1) of pp collision data collected at the Collider Detector at Fermilab. The cross sections are measured by selecting leptonic decays of the W and Z bosons, and photons with transverse energy ET>7 GeV that are well separated from leptons. The production cross sections and kinematic distributions for the Wgamma and Zgamma data are compared to SM predictions.

  7. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  8. J/psi production versus centrality, transverse momentum, and rapidity in Au+Au collisions at square root sNN=200 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chang, B S; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Masek, L; Masui, H; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2007-06-08

    The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured J/psi production for rapidities -2.2root sNN=200 GeV. The J/psi invariant yield and nuclear modification factor RAA as a function of centrality, transverse momentum, and rapidity are reported. A suppression of J/psi relative to binary collision scaling of proton-proton reaction yields is observed. Models which describe the lower energy J/psi data at the CERN Super Proton Synchrotron invoking only J/psi destruction based on the local medium density predict a significantly larger suppression at RHIC and more suppression at midrapidity than at forward rapidity. Both trends are contradicted by our data.

  9. Measurement of the tt production cross section in pp collisions at square root of s = 1.96 TeV.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra